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ABSTRACT 

 As the United States healthcare system transitions to a pay for performance model 

in response to increasing costs and utilization, assessing quality of care has come to the 

forefront. Venous thromboembolisms (VTE), which include deep vein thrombosis (DVT) 

and pulmonary embolism (PE), is a key measure of quality of hospital care and are 

associated with increased morbidity, mortality and cost in hospitalized patients.  

Traditional ways of measuring quality and identifying adverse events such as VTE using 

administrative data are convenient but lack accuracy.  Manual review of clinical records 

is widely considered the gold standard but resource intensive.  Consequently, this study 

sought to determine the accuracy of Natural Language Processing (NLP) and machine 

learning classifiers in identifying VTE from free text data. 

 This study used radiology reports performed within 30 days of surgery for 

hospital patients sampled from 2011 through 2014 as part of the American College of 

Surgeons-National Surgical Quality Improvement Program (ACS-NSQIP).  Though 

records for this sample were previously reviewed and VTE cases identified, a total of 909 

ultrasound reports and 1,837 computed tomography (CT) angiogram reports were again 

manually reviewed to identify DVT/PE within each report and served as the gold 

standard.  The Naïve Bayes, k-Nearest Neighbors (kNN), C4.5 decision tree, and support 

vector machine (SVM) classifiers were trained on 70% of the total preprocessed reports 

and performance was assessed on the remaining 30%.  

 DVTs were identified in 16.8% of all ultrasound reports and PEs were identified 

in 5.0% of all CT angiogram reports.  SVM yielded the best results in classifying both 

DVT and PE, with precision of 91.3%, recall of 95.5% and F-measure of 93.3% for DVT 
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classification and precision of 93.1%, recall of 87.1% and F-measure of 90.0% for PE 

classification.  In conclusion, NLP along with statistical machine learning classifiers can 

accurately identify VTE from narrative radiology reports. 
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CHAPTER I:  INTRODUCTION 

1.1 Statement of the Problem 

 It is no surprise that the healthcare environment in the United States is going 

through dramatic changes.  The economic burden and utilization of healthcare services in 

the U.S has become highly unsustainable and inefficient.  As evidenced through such 

legislation as the Affordable Care Act (2010) and the Centers for Medicare and 

Medicaid’s (CMS) Inpatient Quality Reporting (IQR) and Hospital Value-Based 

Purchasing (VBP) programs, healthcare providers are being held accountable for the 

quality of services provided.
1,2 

 Reimbursement in healthcare has now changed from 

paying for volume to paying for performance.  The number of quality measures hospitals 

are asked to report and to be displayed for public consumption is increasing.  These 

measures, many of which are identified through administrative data, can be viewed on 

sites such as Hospital Compare and  are used by organizations such as U.S. News and 

World Report and Consumer Reports to rank hospitals and develop hospital “report 

cards”.
3-5

  For example, the Agency for Healthcare Research and Quality’s (AHRQ) 

Patient Safety Indicators (PSI) and CMS’s Hospital Acquired Conditions (HAC) Program 

use the International Classification of Diseases, Ninth Revision (ICD-9) codes to identify 

conditions related to quality of care during the hospital stay.
6,7

  Measures such as these 

which rely heavily on quality of coding and integrity of  data have come under scrutiny as 

they may not fully describe the complete patient clinical experience.  Identifying these 

conditions through manual review of medical records can give a more accurate picture of 

these conditions and is considered by most as the “gold standard” but is extremely 

resource intensive.   
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 Venous Thromboembolism, or VTE, refers to targeted conditions in the CMS 

HAC program and is also an AHRQ PSI.  VTE refers to both Deep Vein Thrombosis 

(DVT) and Pulmonary Embolism (PE).  DVT is a blood clot that forms in a vein deep in 

the body, mostly in the lower leg or thigh.
8
 PE refers to when the blood clot in the deep 

vein breaks off and travels through the bloodstream, possibly to an artery in the lungs 

which can cause blockage of blood flow.
8
 Incidence of hospital acquired DVT among 

patients who did not receive prophylaxis is between 10% and 40%, where 10% to 30% of 

all VTE patients suffer mortality within 30 days.
9
 The outcome of a study assessing the 

accuracy of detecting adverse events such as VTEs using natural language processing and 

machine learning algorithms can provide insight into alternative methods of identifying 

conditions other than coding and  manual chart abstraction.  This study can also assist in 

identifying gaps in clinical documentation and coding of adverse events. 

 Previous studies have compared the accuracy of the ICD-9 diagnosis codes and 

AHRQ PSIs in identifying clinical events from administrative data to manual review of 

medical records by trained abstractors, revealing low positive predictive value for PSIs.
10-

12
Some studies have also used NLP to identify adverse events, including VTE, and other 

aspects of the clinical experience from documentation in the medical record with high 

accuracies when compared to AHR PSIs.
13-17

However, few studies assess the 

performance of NLP methods in combination with multiple machine learning algorithms 

in detecting VTE from free text. 

1.2 Background of the Problem 

 The attention to safety in healthcare intensified when the Institute of Medicine 

(IOM) released its report To Err Is Human: Building a Safer Health System.
18

 In this 
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report IOM highlighted the cost and burden of medical errors in the U.S. healthcare 

system and suggested improving safety thorough a four tiered approach: 

1. Establishing a national focus to create leadership, research, tools, and protocols to 

enhance the knowledge base about safety 

 

2. Identifying and learning from errors by developing a nationwide public 

mandatory reporting system and by encouraging health care organizations and 

practitioners to develop and participate in voluntary reporting systems 

 

3. Raising performance standards and expectations for improvements in safety 

through the actions of oversight organizations, professional groups, and group 

purchasers of health care 

 

4. Implementing safety systems in health care organizations to en-sure safe practices 

at the delivery level 

 

Since this report many hospitals now monitor and assess quality and safety through the 

collection and analysis of various measures.  In the AHRQ published report Making 

Health Care Safer: A Critical Analysis of Patient Safety Practices, evidence of harm and 

burden due to VTEs was presented with the importance of surveillance and prophylaxis 

use was stressed.
19

   DVT/PE are part of the CMS HAC program where preventable 

conditions deemed to be of high cost and high volume are tracked, publically reported 

and will impact reimbursement in the future.
7
  In New York State, the Department of 

Health uses the New York Patient Occurrence Reporting and Tracking System 

(NYPORTS) to identify, correct and prevent patient safety issues.
20  

NYPORTS is a 

mandatory reporting system that collects information from hospitals concerning adverse 

events. For these initiatives, events are identified using codes assigned for billing 

purposes, and cases may be manually reviewed for accuracy.
 

 Many studies analyzing the accuracy of coded data have found that measuring 

quality performance with these methods can yield substandard results, with existing 



12 

 

methods needing considerable improvement.
21-23

These studies also acknowledge that 

though manual review of medical records is the gold standard, it also uses substantial 

resources.  However, studies exploring text mining of various aspects of the medical 

record, such as discharge summaries to assess quality of care, have found positive results 

when compared to manual review.
16,17 

Therefore applying text mining methods to clinical 

documentation with the goal of identifying quality indicators of care such as DVT/PE and 

comparing the results to those from coded data can provide insight into improving current 

methods as well as offer alternatives in monitoring quality of care.
 

 1.3 Research Purpose, Aims and Hypothesis 

1. RESEARCH PURPOSE 

 Based on the arguments above, the purpose of this research is to explore: 1) 

whether or not deep vein thromboses can be identified from radiology reports and 2) 

whether or not pulmonary emboli can be identified from radiology reports.  In addition 

this research looks to explore natural language processing methods that can be used to 

preprocess text from radiology reports, apply machine learning algorithms to this 

preprocessed text based on what was done from previous research, and quantify the 

performance of each of these machine learning methods with the goal of assessing 

performance.   

2.  OBJECTIVES AND HYPOTHESES  

1- To study the performance of the Naïve Bayes classifier in detecting deep vein 

thromboses and pulmonary emboli from radiology reports 

Hypothesis:  the Naïve Bayes classifier can accurately identify positive DVT and PE 

radiology reports. 
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2- To study the performance of the K-Nearest Neighbors (KNN) classifier in detecting 

deep vein thromboses and pulmonary emboli from radiology reports 

Hypothesis:  the K-Nearest Neighbors classifier can accurately identify positive DVT 

and PE radiology reports. 

3- To study the performance of a decision tree learning method in detecting deep vein 

thromboses and pulmonary emboli from radiology reports 

Hypothesis:  decision trees can accurately identify positive DVT and PE radiology 

reports. 

4- To study the performance of the support vector machines (SVM) learning method in 

detecting deep vein thromboses and pulmonary emboli from radiology reports 

Hypothesis:  Support Vector Machines accurately identify positive DVT and PE 

radiology reports. 

1.4 Significance of Study 

 Studies such as this are essential in moving towards a healthcare system that 

delivers quality of care in an efficient manner while controlling costs.  Hospitals are 

tasked with measuring quality, which includes reviewing aspects of the electronic 

medical record rich with information though limited in methods of extracting such 

information.  Currently, manual review proves accurate but is time consuming and costly.  

Exploring methods to extract the same information in an automated fashion can have a 

meaningful impact in reducing healthcare costs. 
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CHAPTER II:  LITERATURE REVIEW 

2.1 General Overview of Previous Literature 

Many studies have analyzed the accuracy of indicators assessing quality of care.  

Specifically, studies show that applying natural language processing techniques to free 

text can identify adverse events with higher accuracy when compared to identifying 

events from administrative data.  Most of these studies use NLP in rule-based systems.  

However, studies assessing performance of NLP methods in combination with statistical 

machine learning classifiers in identifying adverse events such as VTE are lacking.   

2.2 Coding in Healthcare 

 Medical coding involves translating narrative descriptions of diseases, injuries 

and procedures into numeric or alpha numeric codes.
24

 Codes are commonly used for 

reimbursement purposes, administrative functions such as staffing and scheduling of 

services, and identifying patient symptoms or co morbidities. The vast majority of 

payments for healthcare providers are from filed insurance claims which require CPT-4 

(Current Procedural Terminology, 4
th

 Revision) and ICD9-CM codes.
25

These codes are 

derived from the medical records made during the course of the patient visit.  Medical 

coders review the notes in the medical record and assign the codes. 

 Physician documentation is extremely important for coding.  When reviewing the 

medical record, coders can only use documentation by physicians who are directly caring 

for the patient during the admission.
26

 Coders can use documentation by resident 

physicians, physician assistants, or nurse practitioners, but with documented agreement 

from the attending.  As a result, clinicians need to document using appropriate 

terminology for diagnosing conditions and symptoms. 
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2.3 Measuring Performance with Administrative Data 

 Administrative or claims data are readily accessible, fairly inexpensive to acquire 

and maintain, and contain diverse and large amounts of information.  CMS describes 

administrative data as information that is collected, processed and stored in automated 

information systems.
27

These data contain enrollment or eligibility information as well as 

claims and encounter information.  Hospital specific information may include claims, 

encounters and information on services pertaining to prescription drugs, laboratory tests 

and clinic visits. Some of these basic data elements are listed in Table 1.
27

 

 

-Personal Identification 

-Date of Birth 

-Sex 

-Race and ethnicity 

-Residential zip code 

-Hospital identification 

-Admission date 

-Discharge date 

-Attending physician identification 

-Operating physician identification 

-Codes for principal diagnosis and other diagnoses 

-Codes and dates for principal procedure and other procedures 

-Disposition of the patient 

-Expected principal source of payment 

 

Table 1: Contents of a Uniform Hospital Discharge Dataset 

 Capturing information about the episode of care for billing and utilization is the 

main purpose of administrative data, though these datasets are increasingly being used for 

assessing quality of care, raising many concerns.  Some argue that this information does 

not describe the full clinical experience and is subject to errors and omission of 

information.  Despite these concerns, many state and federal organizations put a lot of 
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weight into measures derived from these data and are financially penalizing organizations 

based on performance on these measures.  

2.4 Reporting of Adverse Events/ Public Reporting of Quality of Care Indicators 

 Stated earlier, one of the strategies mentioned in IOM’s report To Err Is Human: 

Building a Safer Health System is the development of a mandatory nationwide public 

reporting system and encouraging healthcare organizations and practitioners to 

participate in voluntary reporting systems, with the goal of identifying and learning from 

errors.
18

   The expectation at the time was that state governments would be required to 

collect standardized data about adverse events that result in serious patient harm or death.  

Currently, state and federal agencies require hospital and healthcare organizations to 

submit data on a regular basis.  Some of these data are chart abstracted, where patient 

records are reviewed to look for adherence with process of care measures pertaining to, 

for example, heart failure or acute myocardial infarction.  Administrative data are also 

submitted and used to determine events through codes such as in CMS’s HAC program. 

For example, a code of 998.4 that is indicated to have occurred in the hospital setting is 

considered a preventable adverse event and can be publicly reported.   Healthcare 

consumers and interested stakeholders can go to various websites such as Hospital 

Compare to see this information by hospitals.
3 

 In an effort to promote patient safety, New York State established the New York 

Patient Occurrence Reporting System (NYPORTS).
28

One of the tools used by the 

Department of Health to identify, correct and prevent safety deficiencies; NYPORTS is a 

mandatory reporting system that collects information on adverse events from hospitals 

and diagnostic treatment centers.  Serious NYPORTS occurrences, which are defined as 
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those with an impact on the patient, average about nine percent of all NYPORTS reports.  

These occurrences require a root cause analysis (RCA) of the human, equipment and/or 

system failures that led to the adverse event.  A plan of correction that is approved by the 

Department of Health is also required to reduce the risk of future similar events.   The 

Department of Health implemented several NYPORTS-related patient safety initiatives 

from 2005-2007 including Pulmonary Embolism (PE) Prevention.  This project involved 

six hospitals in a study with the goal of improving physician compliance in using proper 

prophylaxis in the prevention of PE. In this study, records were selected that met the PE 

diagnostic criteria from the NYSDOH Statewide Planning and Research Cooperative 

System (SPARCS) inpatient discharge data. Potential PE cases were identified on a 

quarterly basis for each of the six study hospitals if they met any of three criteria: 
 

1. PE and infarction (ICD-9-CM code of 415.1X) or obstetrical blood clot embolism 

(673.2X) reported in any of 14 secondary diagnosis fields as not present at the time of 

admission.  

2. PE and infarction (415.1X) or obstetrical blood clot embolism (673.2X) as a principal 

diagnosis, along with a hospitalization less than 31 days prior to the admission date 

associated with the target discharge.  

3. Any secondary diagnosis of PE and infarction (415.1X) or obstetrical blood clot 

embolism (673.2X) reported as present on admission, along with a hospitalization 

less than 31 days prior to the admission date associated with the target discharge.
28

 

 

In addition hospitals were asked to submit detailed information on all adult PE patients 

including detailed descriptive data, type and timing of prophylaxis given, and the method 

of diagnosis.   Intervention included implementation of a prophylaxis protocol and risk 

factor assessment at the six hospitals.  

After reviewing each case, results showed a significant increase in the use of 

prophylaxis among PE patients, where post intervention prophylaxis rate was 88.9%, 

statistically significantly better than the baseline rate of 76.1%.  Researchers state that 
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even with concerted efforts to increase prophylaxis use at the six hospitals, the rate of use 

did not pass 90%.  They speculate that this could be due to clinicians perceiving patients 

to be at lower risk than they actually are, or lack of the hospital’s reliability to respond 

and maintain protocols due to staff turnover.   

This example demonstrates that mandatory reporting can facilitate change in 

delivery of care in improving quality and outcomes.  However, these reported methods 

have weaknesses which may allow for underreporting and errors, as will be discussed 

later. 

2.5 Challenges in Capturing Significant Events  

2.5.1 Mandatory Reporting and Administrative Data  

Though now mandated by government agencies and publicly reported, accuracy 

of reported adverse events is still a challenge for many organizations.  A 2012 report by 

the Office of the Inspector General (OIG) concluded that hospital incidence reporting 

systems do not capture most patient harm.
29

In this study, the 189 hospitals sampled used 

incident reporting systems to capture adverse events.  Of this sample, 34 hospitals that 

reported adverse events were interviewed.  They indicated that they rely on incident 

reporting systems to capture the bulk of information on these events, which they use for 

activities surrounding improvement of patient safety.  OIG found only 14% of incidents 

involving Medicare beneficiaries discharged in 2008 were captured by incident reporting 

systems.  Because of staff misperception of what constitutes patient harm, 62% of events 

went unreported.   An additional 25% went unreported because, in these instances, staff 

did not report these incidences that they would normally report. As this shows lack of 

reporting standards contributes to underreporting, OIG recommended that AHRQ and 
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CMS collaborate to create a list of potentially reportable events that can be used to 

educate hospital staff as well as medical and nursing students. Focusing on a subset of 

events rather than many events may lead to a higher rate of reporting by hospital staff. 

 Discussed earlier, NYPORTS has significantly improved the way hospitals 

identify and track adverse events while improving quality of patient care.  Though as 

with many mandatory reporting systems it has weaknesses similar to those mentioned in 

OIG’s report.  Tuttle, Panzer and Baird analyzed NYPORTS data to describe how 

administrative data can improve identification and reporting of adverse events.
10

 

Stemming from a 2000 NYSDOH announcement that they would be using the Statewide 

Planning and Research Cooperative System (SPARCS) data to understand NYPORTS 

reporting rates, the authors sought to gauge the degree of underreporting in NYPORTS 

by looking at their own administrative data at Strong Memorial Hospital in Rochester, 

NY.  The SPARCS dataset contains New York State billing discharge data, including 

ICD-9 codes.  ICD-9 codes were identified for 24 NYPORTS categories.  Using Strong 

Memorials Hospital’s inpatient data, patient lists were developed for each code, 

excluding cases already identified in NYPORTS reporting.  Pulling cases by ICD-9 

defined events yielded a 30% or more match for 13 of the NYPORTS codes (Table 2), 

ranging from 35.7% to 100% with an average match rate of 56%.  In total, 560 reviews 

identified 187 (33.4%) reportable events for the code the case was being screened for and 

26 events for another NYPORTS code not being screened for.   

Code Description Percentage 

401 New pulmonary embolism 45.5 

402 New DVT 64.3 



20 

 

601 New neurological deficit 40.0 

603 

Cardiac arrest with 

successful resuscitation 42.4 

604 AMI 61.9 

605 Death 47.0 

701 2nd or 3rd degree burns 66.7 

801 

Injury Requiring repair, 

organ removal, or procedure 60.9 

803 

Hemorrhage or hemotoma 

requiring drainage 61.9 

806 

Breakage or shift of implant, 

device, or graft 35.7 

808 Post-op wound infection 46.7 

851 

Hysterectomy in pregnant 

woman 100.0 

854 

Circumcision requiring 

repair 50.0 

Table 2: NYPORTS ICD-9 Codes with a >30 Percent Match Rate
10 

 

 The authors note that at a statewide level “underreporting revealed some 

continued ambiguity and lack of specificity in selection criteria, which resulted in further 

refinement of definitions.”
 
At their institution, there is a continued effort on a monthly 

basis to run a list of high yield ICD-9 codes not in their NYPORTS database.  This is a 

great example of how administrative data being used to supplement a manual review 

process using less resources and time. 

2.5.2 Using Administrative Data to Assess Quality of Patient Care 

 The inclination to use administrative data in quantifying quality of care is obvious 

as administrative data are readily available, inexpensive to acquire, and contains 

information on large populations.
27 
As Iezonni states, “Administrative data cannot 
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elucidate the interpersonal quality of care, evaluate the technical quality of processes of 

care, determine most errors of omission or commission, or assess the appropriateness of 

care.” This illustrates a major complaint from clinicians in that administrative data does 

not give the full picture of the patient-provider experience. 

Quantifying quality of care is reliant on many factors including accuracy and 

completeness of coding, data quality standards across institutions, timing of events, and 

structure of administrative databases.
27 

Measuring quality of care using administrative 

data is highly dependent on coding quality.  The accuracy of coding has been scrutinized 

since codes impact reimbursement.  For example, the concept of “DRG creep” is known 

as when diagnoses are coded to yield higher financially weighing Diagnosis Related 

Groups in an attempt to achieve optimal reimbursement, resulting in bias in coding 

practices.  Coding standards across institutions also vary, where institutions that code 

more may capture more adverse events, therefore impacting quality and outcomes scores.  

Kaafarani et al. sought to assess the validity of AHRQ’s Patient Safety Indicators 

(PSI) as these ICD-9 code based indicators are being used to detect potential adverse 

events.
30

They examined the Positive Predictive Value (PPV) of three surgical PSIs; 

Postoperative Deep Vein Thrombosis and Pulmonary Embolism (DVT/PE), Iatrogenic 

Pneumothorax (iPTX), and Accidental Puncture and Laceration (APL).  PPV was 

calculated by dividing the number of true positives by the number of records reviewed 

that were identified as positive. The AHRQ PSI software (version 3.1a) was applied to 

2003-2007 Veterans Health Administration (VA) data from a sample of eight VA 

hospitals.  Patients suspected of having one of the PSIs above were flagged and a 
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retrospective chart review was conducted on 336 charts (112 per PSI) by trained nursing 

staff to determine the number of true or false positives.  

The VA data consisted of 2,343,088 admissions of which 6,080 were flagged for 

DVT/PE (0.28%), 1402 for iPTX (0.06%) and 7,203 for APL (0.31%).  Results showed 

variance in the PPVs of the three PSIs with DVT/PE having the lowest PPV of 43%, 

iPTX with 73% and APL with the highest at 85% (Figure 1). The authors concluded that 

the PSIs studied have the potential to detect patient safety events though accuracy can be 

improved.  Some of their suggestions included adjusting coding guidelines and increasing 

coders’ clinical knowledge.  They also highlight that ICD-9 CM codes are used for 

billing and using them for clinical and quality of care assessment will require changes in 

coding schemes.  Ultimately they felt that using these quality measures for pay for 

performance and public reporting is premature. A follow up study using the same VA 

data broadened the focus to 12 PSIs where results showed great variability in PPV from 

28% for Postoperative Hip Fracture to 87% for Postoperative Wound Dehiscence (Table 

3).
 
These results were comparable to those of other VA and non-VA studies.

11, 12   

The authors of this study also found limitations in using the AHRQ PSIs for 

detection of adverse events.  Some of the reasons they list for the variation in results were 

differences in hospital coding practices, lack of POA codes, lack of precise or meaningful 

codes and poor documentation.  As seen in Table 3, correct POA coding can increase 

PPV.  For example, DVT/PE cases that are POA would be dropped therefore potentially 

increasing PPV by as much as 13% and decreasing the number of flagged cases.  Using 

DVT/PE as an example again, the inability to “distinguish the type and nature of 

thrombosis” was a common reason for miscoding which was also stated in studies cited 
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earlier where cases flagged included arterial (not venous) thrombosis or had a history of 

thrombosis.
11,12  

In conclusion the authors felt that PSIs are not ready to be used for public 

reporting or pay for performance metrics though they are a good tool for screening 

quality improvement and are a step in the right direction.  

Bahl and others performed a study to assess AHRQ PSIs and their ability to flag 

conditions present on admission using University of Michigan Health System 2006 

discharges.
31

They applied the AHRQ PSI software to 35,994 adult inpatient cases.  PSIs 

of focus were those that use both principal and secondary diagnoses.  Numerator and 

denominators were determined for 14 PSIs with and without POA.  Table 4 shows the 

results of unadjusted rates of PSIs with and without POA and if they were significantly 

different.  PSI rates were lower for all but one of the PSIs when considering POA.  

Though a more telling result of the study is that after nurse review of these cases, the 

agreement between the coders and the nurse reviewers for cases flagged for conditions 

that were POA was low (49%), compared with agreement for cases that were flagged for 

complications that happened during the hospital stay (89%).  These results show the 

importance of the POA indicator in determining hospital acquired complications and also 

highlights the inconsistency of which POA is determined, as seen in the difference 

between coders and the nurse reviewers.  As seen in the previous studies discussed, the 

validity of the AHRQ PSIs for use in public reporting and pay for performance is highly 

questioned.  Administrative data in general and coded data meant to be used for billing 

can be used to identify problems though going as far as penalizing institutions and 

assessing performance is up for debate. 
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Figure 1: Positive predictive value and false positives analysis of DVT/PE, iPTX an APL 

cases.
30
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Table 3: PPV and Percentage of Cases Present on Admission among Flagged Cases and 

False Positives
30

 

 

Table 4: AHRQ PSI Rate with and without POA Indicator
31

 

2.6 Burden and Significance of DVT PE 

Hospital acquired VTE is a major source of morbidity and mortality in the United 

States.  Studies estimate that 10%-30% of all VTE patients suffer mortality within 30 

days, with the majority of deaths occurring among those with PE; death occurs rapidly in 
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an estimated 20-25% of all PE cases.
9
 Hospitalized patients have at least one risk factor 

for VTE and approximately 40% have three or more risk factors. 
 
Risk factors for VTE 

include, but are not limited to surgery, trauma, immobility, cancer, cancer therapy, 

previous VTE, age, obesity and central venous catheterization.
9,32-34

 The incidence of 

hospital acquired DVT among patients who did not receive prophylaxis is 10 to 40% 

among medical or general surgical patients.
9 

 A study by the CDC using 2007-2009 

National Hospital Discharge Survey (NHDS) data reports 547,596 hospitalizations with 

VTE occur each year among adults (>=18 years old) in the U.S., of which 348,558 of 

them are DVTs and 277,549 PEs, 78,511 have both DVT and PE.  The average annual 

rates of DVT, PE or VTE among adults were 102,121 and 239 per 100,000 population 

respectively.
35

 

A study using the AHRQ Healthcare Cost and Utilization Project Nationwide 

Inpatient Sample (HCUP NIS) assessed excess length of stay, charges and deaths 

attributable to medical injuries using AHRQ PSIs derived from 7.45 million hospital 

discharge abstracts from 994 acute-care hospitals across 28 states in the year 2000.
36

  

This study found that an excess length of stay of 5.36 days was attributable to 

postoperative pulmonary embolism or deep vein thrombosis, with excess charges of 

$21,709 and excess mortality of 6.56%.
36

 In an effort to quantify the cost of preventable 

DVT/PEs, Mahan and others developed a cost model and calculated costs of DVT 

through literature searches.
37

 Results, as reflected in 2010 U.S. dollars, show that the 

average annual cost of a DVT was $19,767 per patient.  The authors estimated the annual 

cost to be in the range of $7.5 to $39.5 billion.  The average annual cost of a hospital 

acquired DVT was $13,232 per patient leading to an estimated annual U.S. HAC DVT 
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cost of $5 to $26.5 billion. Estimated cost of HAC “preventable” DVTs ranges from $2.5 

to $9.5 billion.
37

 

 Furthermore, DVT/PE rates are expected to rise in the U.S as many of the 

associated risks such as obesity, advanced age, chronic diseases and cancer are 

increasing.
37

 Concerns over the cost and burden of community and hospital acquired 

DVT/PEs have led to policy changes such as public reporting of rates for most hospitals 

and a push for increased prophylaxis use.   

2.7 Text Mining 

2.7.1 Natural Language Processing, Text Mining and Machine Learning 

 Marti Hearst defines text mining as the discovery of new, previously unknown 

information by extracting information from different written resources, linking together 

the extracted information to form new facts or hypotheses.
38  

  Text mining can be 

accomplished in a few ways such as automatic text classification according to some fixed 

set of categories, text clustering, automatic summarization, extraction of topics from texts 

or groups of texts and analysis of trends in text streams.
39

 Natural Language Processing 

or NLP differs from text mining in that NLP looks to break down text with the purpose of 

interpreting what the text is actually saying in an attempt to mimic language, where 

grammar, combination of words, and word relationships are taken into account.
39 

Both 

text mining and NLP can be of great use in healthcare as providers are increasingly being 

asked to document more in the EHR.  Machine learning is defined as knowledge for 

making predictions as obtained from processing training data through a computer.
40

 Text 

mining applies machine learning techniques to accomplish the tasks mentioned above 

such as text classification. 
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2.7.2 Text Mining in Healthcare 

There are growing examples of text mining and NLP being applied to the 

healthcare field.  Providers spend a significant amount of time on documentation, much 

of which is never read or used though there may be valuable clinical information 

contained in these unstructured data.  In one study researchers observed rates and times 

of authoring and viewing clinical documentation using audit logs from electronic health 

records from an urban academic medical center.
41

 Their results showed that users spent 

20-103 minutes per day authoring notes and 7-56 minutes per day viewing notes, with 

physicians spending 90 minutes per day total.  Another study observing provider 

documentation at a 200 bed hospital in Austria showed that physicians spent 26.6% of 

their daily working time documenting, 27.5% on direct patient care, 36.2% for 

communication tasks and 9.7% on other tasks, showing that nearly as much time is spent 

on documentations as is on patient care.
42

 

   In one example researchers attempted to determine whether text mining can 

accurately detect follow-up appointment criteria in free text hospital discharge records, 

the relevance being that follow up appointments arranged at discharge can lower 

readmission rates.
16

 In a retrospective cross sectional study, researchers at the Mayo 

Clinic in Rochester, MN manually reviewed textual hospital discharge summaries to 

determine whether records contained specific follow-up appointment elements such as 

date, time and physician or location. This was compared to data that was derived using 

text mining software (SAS) which has the capability to retrieve information from text 

using text parsing.  Follow up appointment details are typed directly into an unstructured 

field of the EMR by a clinical assistant, attending physician or trained transcriptionist and 



29 

 

upon discharge a copy of the dismissal summary is given to the patient containing follow 

up arrangements.   

The dataset consisted of 6,481 free text summaries from 2006 hospital discharges. 

To be considered complete for a follow up appointment, there had to be a specific date, 

time and physician name or location of appointment.  There were 2 reviewers, one main 

reviewer who extracted the necessary data elements and another reviewer who reviewed a 

sample of the records to assess reviewer reliability.  Researchers reported that the raw 

agreement between reviewers was high at 0.97.  The data was then evaluated using the 

SAS text miner software that extracted words or phrases from large collections of 

unstructured documents. The analyst performing the electronic abstraction had to 

thoroughly review hundreds of terms from the documentation to select indicators for each 

appointment element be it date, time and location or physician.   

In most text mining studies, outcome measures consist of agreement between text 

mining and manual review, true positives and negatives.  The four main measures are: 

o Positive Predictive Value (PPV)- percent of records flagged by text mining that 

actually contain information of focus, in this case percent of records flagged as 

containing follow-up appointment criteria by SAS Text Miner that actually have 

the elements identified by manual review 

o Negative Predictive Value (NPV)- proportion of records not identified as 

containing follow-up appointment elements through text mining that were truly 

lacking appointment criteria 

o Sensitivity- proportion of records containing follow-up appointment information 

that were identified via text mining 
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o Specificity- percent of records lacking follow up appointment elements not 

flagged through text mining 

Using the text mining software, 96.6% of the records were in agreement with records 

identified through manual abstraction. Table 5 has the results expressed by the four 

measures described above for each appointment element. Researchers in this study also 

point out that manual abstraction (considered the gold standard) of the 6,481 electronic 

discharge summaries required 43 hours of the reviewer’s time at a rate of about 150 

records reviewed per hour.  The analyst using the text miner software extracted the 

appointment information from the same records in a total of 14 hours.  

 

 

Table 5: Text Mining Accuracy Results in Identifying Follow-Up Appointment 

Elements
16

 

 

In a similar study, the text of inpatient and outpatient clinical reports was searched 

with natural language queries for evidence of neurological, vascular, and structural 

components of a foot exam, which is critical when caring for patients with diabetes.
17

 

Medical records for 401 eligible patients were randomly selected from a population of 

approximately 6,000 with a diabetes diagnosis in the Mayo Clinic diabetes registry 

(patients seen at a primary care clinic between July and September 2000 and July and 

September 2004). Compliance with the American Diabetes Association and National 
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Committee for Quality Assurance guidelines was assessed by examining medical records 

for these patients 12 months prior to index visit.  The 401 patients were split into 3 sets; a 

development set used to determine terms for identifying foot examination, a validation 

set used to validate the methodology created based on the development set, and a 

reliability set to determine reliability of manual data abstraction from medical records. 

Text queries were compiled from key words that show evidence of a foot exam.  

Natural language queries were constructed for the four aggregate query elements 

(Structural, Neurological, Vascular and Anatomy). Figure 2 shows the natural language 

content of these elements where each element consists of key words. Researchers used 

this to design three queries that 1) had an Anatomy element plus one other key foot 

examination element, 2) Anatomy plus 2 of the other elements and 3) Anatomy plus all 3 

elements. Results of these queries are shown in Table 6.  The query identifying 1 of the 3 

components of a foot exam resulted in an overall accuracy (calculated as the proportion 

of true positives and true negatives to the total number of samples) of 89%, 88% overall 

accuracy for identifying 2 of the 3 components, and 75% for identifying all 3.  The 

authors concluded that the methodology tested is a low-cost and scalable to monitoring 

large numbers of patients and can streamline quality of care reporting. 
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Figure 2: Content of Natural Language Query Elements
17

 

 

 

Table 6: Results of Natural Language Queries on the Validation Set (N=118)
 17

 

 

A Dutch study published in 2012 investigated whether text mining can make 

unstructured narrative from EMRs suitable for epidemiological studies.
43 

Researchers 

used machine learning algorithms to identify cases from non cases in 2 different datasets.  

The first study sought to automatically assign ICD-9 CM codes to radiology reports using 

a training set (n = 978) and a test set (n= 976).  Each entry was annotated with ICD-9 CM 
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codes by the radiology department and two independent coding companies.  The second 

study consisted of a collection of EHRs containing medical notes, prescriptions and 

indications for therapy, referrals, admissions and lab results of approximately 800,000 

patients throughout the Netherlands.  This study looked for signs of liver damage, which 

is one of the side effects of using drugs. Querying for specific terms denoting liver 

disorders (e.g. gall stones, cholecystitis, liver cirrhosis, etc.) returned 53,385 patient 

records of which 1,000 were randomly sampled for manual review.  For both study sets, 

machine learning algorithms defined by the authors in Figure 3 were applied to the 

unstructured documentation.  Cases and non cases identified by the computer were 

compared to manual identification of cases and results are represented graphically for 

each study in Figures 4 and 5.  Performance results were varied by each algorithm, with 

the Ripper software performing the best when considering PPV and sensitivity. The 

authors conclude that machine learning algorithms are able to detect specific language 

used by physicians and can distinguish between cases and non cases. 
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 Figure 3: According to Schuemie et al., most well known machine learning algorithms, 

or set of techniques that allow computers to learn from examples.
43 

 

 

ω bŀƠǾŜ .ŀȅŜǎ ŎƭŀǎǎƛŦƛŜǊ ƛǎ ŀ ǎƛƳǇƭŜ ǇǊƻōŀōƛƭƛǎǘƛŎ ŎƭŀǎǎƛŦƛŜǊ

ōŀǎŜŘƻƴ.ŀȅŜǎΩ ǘƘŜƻǊŜƳΦ Lǘ ŀǎǎǳƳŜǎ ǘƘŀǘ ǘƘŜ ǇǊŜǎŜƴŎŜ

or absence of every feature independently contributes to

the probability that the record belongs to a particular

class (case or noncase).

ω YπbŜŀǊŜǎǘ bŜƛƎƘōƻǊǎ όYbbύ ŎƭŀǎǎƛŦƛŜǎ ǊŜŎƻǊŘǎ ōŀǎŜŘ

on the most similar records in the training set. In

our experiments, we found the best performance for

k = 1, that is, a record is given the same classification

as the most similar document in the training set. The

similarity is calculated as the Euclidean distance

between records.

ω /пΦр ƛǎ ŀƴ ŀƭƎƻǊƛǘƘƳ ǘƘŀǘ ƎŜƴŜǊŀǘŜǎ ŘŜŎƛǎƛƻƴ ǘǊŜŜǎΦ

The tree is constructed by first selecting the feature that

best splits the set of examples in cases and noncases.

Two branches, one for when the feature is found and

one for when it is not found, are created, and the

process is repeated for each branch. Later, the tree is

pruned to remove noninformative branches.

ω wŀƴŘƻƳ ŦƻǊŜǎǘ ƛǎ ŀƴ ŜƴǎŜƳōƭŜ ƻŦ Ƴŀƴȅ ŘŜŎƛǎƛƻƴ

trees.

ω aȅ/ ƛǎ ŀ ǎƛƳǇƭŜ ŘŜŎƛǎƛƻƴπǘǊŜŜ ƭŜŀǊƴƛƴƎ ŀƭƎƻǊƛǘƘƳ

that we developed, similar to C4.5. It is based solely

on the chi-square test: iteratively, the feature with

the highest chi-square score is used to split the data

until the p-value becomes higher than a predetermined

threshold (currently 0.00001).

ω {ǳǇǇƻǊǘ ǾŜŎǘƻǊ ƳŀŎƘƛƴŜ ƛǎ ŀ ǎƻǇƘƛǎǘƛŎŀǘŜŘ ƳŀǘƘŜƳŀǘƛŎŀƭ

approach that attempts to find a function that best

separates cases from noncases.

ω wLtt9w ƛǎ ŀƴ ŀƭƎƻǊƛǘƘƳ ǘƘŀǘ ǇǊƻŘǳŎŜǎ ŀ ǎŜǘ ƻŦ ŘŜŎƛǎƛƻƴ

rules similar to how C4.5 creates decision trees.

An important aspect of RIPPER is that is retains part

of the examples to test whether the learned rules are

generalizable.
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Figure 4: Performance of machine learning algorithms for Study 1, assigning ICD-9 CM 

codes to radiology reports
43

 

 

 
Figure 5: Performance of machine learning algorithms for Study 2, identifying cases and 

non cases for liver disorders
43 
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2.7.3 Using Text Mining and NLP to Detect Adverse Events from Free Text 

 Accurately detecting adverse events remains a challenge for many institutions as 

observed in many of the studies cited earlier.  Being able to accurately detect these events 

can help hospitals develop effective quality of care programs and improve coding 

practices. Text mining critical conditions from free text sources such as discharge 

summaries, radiology and pathology reports and lab values with accuracy is feasible.  

Lakhani, Kim and Langlotz developed text mining algorithms to detect critical results in 

radiology reports.
44

  Conditions tested included pneumothorax, acute PE, acute 

cholecystitis, acute appendicitis, ectopic pregnancy, scrotal torsion, unexplained free 

intraperitoneal air, intracranial hemorrhage and malpositioned tubes and lines. Initial 

testing was performed on approximately 2.3 million radiology reports performed at The 

Hospital of The University of Pennsylvania from 1997-2005 and subsequent testing was 

done on approximately 10 million radiology reports from 1988-2011.  Query algorithms 

were developed using SQL (Structured Query Language) and synonyms were used to 

expand the search.  For example “ectopic pregnancy” and “extrauterine pregnancy” were 

considered the same.  Other text mining concepts were applied to algorithms as well such 

as proximity searching (if the word “embolism” is a certain word distance from 

“pulmonary” then “pulmonary embolism”) and wildcards (“embol%” searches for 

“embolism”, “embolic”, “emboli”, and “embolus”).  The “Impression” section was 

parsed out from the radiology report and most of the searches focused exclusively on the 

impression except for large pneumothorax.  To refine algorithms, groups of 50-100 

reports were selected by the algorithm then modified until precision and recall did not 

improve significantly.  Precision refers to the percentage of radiology reports selected by 
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the algorithm that actually contained the critical result in question.  Recall represents the 

percentage of reports selected by the algorithm of all possible reports in the database 

positive for that critical value.  These two metrics are often combined to form harmonic 

mean, known as the F-measure.
45

After fine tuning the algorithms, precision, recall and 

the F-measure determined accuracy of these algorithms which were tested on 500-2000 

new random reports for each algorithm.  Results are displayed in Table 7. 

 

Table 7: Accuracy of critical results algorithms
44

 

All algorithms except for one had overall accuracies (F-measure) of greater than 90% 

with acute pulmonary embolism and malpositioned tubes yielding the highest accuracies 

(>98%).  The lowest F-measure belonged to intracranial hemorrhage due to a recall of 

68%, meaning the algorithm excluding a lot of cases that were actually positive for the 

result.  This was due to the text mining concept of negation.  The algorithm was built to 

exclude reports where the word “no” was near the critical value “hemorrhage” which was 

the case though it was meant to negate another term. The authors also noted that in the 

designing the algorithms there were occasional tradeoffs between precision and recall: 

That is, the more radiology reports recalled by the algorithms, the less precise they were by 

selecting some reports that did not contain critical findings. In such situations, the algorithms 

were preferentially tailored to have greater precision. That way, the reports selected by the 
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algorithm were more likely to contain critical findings and therefore to be relevant for quality 

improvement efforts in this area.
44

 

 

The authors bring up an important concept here as institutions may want to be more 

inclusive of desired results and therefore accept false positives to achieve quality 

improvement goals.  This study showed that it is possible to detect critical results from 

free text with reasonably high accuracy. 

 Additional studies show the effectiveness of detecting conditions from free text 

data.  In one study at the University of Michigan, a locally developed electronic medical 

record search engine (EMERSE) was used to test the accuracy of automatically detected 

postoperative complications.
13

 Cases that were reviewed as part of the American College 

of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) served as 

the gold standard as these cases have been manually reviewed.  The NSQIP program 

provides reliable, risk-adjusted outcomes data using standardized definitions and end 

points.
47

 Cases from 2001-2004 (5,894) were used to build the terminology while 4,898 

cases from 2005-2006 were used for validation.  Sensitivities of 100% to 93% for 

identifying postoperative myocardial infarction and pulmonary embolism were achieved 

respectively, with specificities of 93% and 95.9%, showing accurate identification of 

cases using the EMERSE tool compared with chart abstraction.  The Veterans Affairs 

Surgical Quality Improvement Program, or VASQIP was used to test the accuracy of 

detecting post operative complications when using NLP and the AHRQ PSIs.
15

 Again, 

with a random sample of inpatient admissions (1999-2006) from six Veterans Health 

Administration hospitals, the VASQIP data served as the gold standard.   Source 

documents such as clinical notes, progress notes and discharge summaries were 
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processed through a Natural Language Processor which used an index schema based on 

medical concepts from the Systematized Nomenclature of Medicine- Clinical Terms 

(SNOMED-CT) terminology.  The AHRQ PSI logic was applied to the same cohort of 

patients to evaluate the accuracy of both approaches (NLP vs. PSI).  Results showed that 

the NLP processor detected adverse events with higher sensitivities.  For example, VTE 

sensitivity was 0.59 with NLP versus 0.46 for the PSI. These studies are significant as 

they demonstrate increased accuracy of detecting post op complications using NLP when 

compared to the current and widely used PSIs. 

Another study involving detection of VTE from narrative electronic health record 

data sampled 2,000 (from 2008-2012) narrative radiology reports from patients with 

suspected DVT/PE from the McGill University Health Centre (MUHC), a university 

health network located in Quebec, Canada.
47 

DVT/PE events were manually identified 

within each report. A bag of words approach (to be discussed in more detail later) was 

used and 10 support vector machine (SVM) models were trained to detect DVT, and 10 

SVM models trained to predict PE.    Authors found that the best DVT model achieved an 

average sensitivity of 0.80, specificity of 0.98 and PPV of 0.89.  The best PE model 

achieved a sensitivity of 0.79, specificity of 0.99 and PPV of 0.84, leading them to 

conclude that statistical NLP can accurately identify VTE from free text radiology 

reports.  Similarly, one study used NLP to detect the presence, chronicity and location of 

pulmonary embolism from CT pulmonary angiography reports (CTPA).
48

 Researchers 

used NILE which is an NLP library developed for information extraction from clinical 

narratives.  As in the previous studies classifiers were trained on a set of reports and 

validated on a different set of reports.  The Area Under the Curve (AUC) was reported 
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for each task.  AUC is an effective and combined measure of sensitivity and specificity in 

assessing predictive validity of a classifier.
49

The classifiers achieved high accuracy for all 

four tasks with AUC being 0.998, 0.945, 0.987,0.986, for PE present, acute PE, central 

PE, and subsegmental PE, respectively. 

 The literature presented highlights some of the shortcomings with using 

administrative data, which can be unreliable, limited and biased.  These data are the 

byproduct of the billing process and using them for assessment of hospital quality of care 

is understandable.  Text mining, natural language processing and machine learning are 

growing fields and concepts but offer opportunities to get more out of free text and 

narrative data which are rich with information but expensive to mine.  

2.8 Natural Language Processing 

 This section looks to expound further on common Natural Language Processing 

(NLP) tasks used when dealing with clinical text.  NLP is a field of computer science 

concerned with the interactions between computers and human or natural languages.  

Some examples of NLP tasks include: 

- Sentence boundary detection
50

 

- Tokenization – given a character sequence, tokens are when the sequence is 

divided by each character
50-51

 

 

- Part of Speech (POS)Tagging
50

 

- Lemmatization and Stemming
 
– goal is to reduce inflectional forms and 

derivationally related forms of a word into a common base form such as “am”, 

“are”, “is” converted to “be” (lemmatization) or “cars”, “car”, “car’s” converted 

to “car” (stemming)
51

 

 

- Dropping stop words- very common words with little value in helping to classify 

documents
51
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- Named Entity Recognition- identifying specific words or phrases and categorizing 

them
50

 

 

- Negation- inferring whether a named entity is absent or present, for example “No 

evidence of DVT” where DVT is the named entity
50,51

 

 

- Temporal inferences and relationship extraction- for example, inferring something 

occurred in the past
50

 

 

- Problem-specific segmentation- segmenting text into meaningful groups such as 

Chief complaint, Patient Medical History, etc.
50

 

 

Regular expression (RegEx) in NLP concerns matching expressions within text by 

defining search patterns.
50

These expressions can be words, numbers or part of a sentence.
 

With RegEx, rules are provided that can be applied to search for a match. For example, 

the RegEx expression “s(ei)?z” which would match the pattern “seiz” identifying related 

words like “seizure”, “seizing”, “seized”, “seizes” and so on.    The “ei” string in 

parenthesis followed by the question mark means search for expression with or without 

“ei”, yielding “sz”, for example, which can be a common abbreviation for seizure.
50 

One 

study did just that where researchers developed a text search tool using RegEx to identify 

cases of children with first simple febrile seizure from the notes of 4,328 patient medical 

charts.
52

   

 These are just a few examples of the many NLP methods that are used to 

preprocess data.  Once applied, the data can then be used to perform text mining tasks. 

2.9 Document Classification 

 Document or text classification is a common task involving NLP and machine 

learning.  As it relates to this dissertation, radiology reports of an unknown class will 

need to be placed into two classes where the conditions in question are either present or 
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absent.  To achieve this goal, documents labeled with the correct classes will be used to 

train the algorithms (the learning phase), which will be our training dataset.  A test 

dataset will then be applied to the algorithm and performance of the classifier determined.  

This is what is known as supervised learning.  As Witten, Hall and Frank explain: 

“Classification learning is sometimes called supervised, because, in a sense, the scheme 

operates under supervision by being provided with the actual outcome for each of the 

training examples”.
53

 The outcome is the class and the success of classification learning 

can be judged by applying what is learned on an independent set of test data for which 

the true classifications are known but not made available to the machine.  

 To distinguish document classes, a classifier can use features within the document 

that set apart the two classes.  These features can be each word in the document, an 

approach known as “bag of words”.   This “bag of words” approach takes into 

consideration the amount of times each words appears in the document, or word 

frequencies.
52 

Stemming and other NLP concepts mentioned earlier can be applied to 

these words before documents are classified (Figure 6). 

 

Figure 6:  An example of some optimizing tools changing a document from its natural 

form into a bag of words. A, Initial documents. B, Eliminating the 200 most common 
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words in the English language (optional), also referred to as “stop words”, which can 

significantly degrade document classification in some situations). C, Eliminating numeric 

characters or combined numeric/letters (optional). D, Eliminating non-α numeric features 

(optional). E, Running a stemmer (when counting the features [words], the word seizure 

and “seizing” will be considered the same adding to a count of 2 seizure words). F, Bag 

of words.
52

 

Instead of using individual words, we can also use N-grams which are sequence of letters 

or words that appear together.
49,51

 For example  word “Thrombosis” can appear many 

times
 
 with the word “Vein” yielding the bigram “vein thrombosis”.  Once the textual 

data is preprocessed, using some of the methods described here, various classifiers can be 

applied which we will be discussed in the following sections. 

2.10 Machine Learning  

 Machine learning is a rapidly growing field that integrates computer science and 

statistics where recent progress in the field has been driven by low cost computing and 

data availability.
54

Some examples of practical uses of machine learning can be seen in the 

field of Artificial Intelligence such as speech recognition, NLP and robot control.  Most 

machine learning methods are supervised where the training data are a collection of input 

and output pairs (x, y) with the goal of predicting y given an unseen x.
50.54

The inputs can 

be vectors, documents, images or DNA sequences.  As described by Jordan and Mitchell 

(2015), “Supervised learning systems generally form their predictions via a learned 

mapping f(x), which produces an output y for each input x (or a probability distribution 

over y given x). Many different forms of mapping f exist, including decision trees, 

decision forests, logistic regression, support vector machines, neural networks, kernel 

machines, and Bayesian classifiers.
54
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 Machine learning methods can be generally classified as generative or 

discriminative.  Generative classifiers learn what the data looks like in each category.  

Given that the input = X and the output/label = Y, generative models attempt to learn the 

model of joint probability p(X,Y)  given p(Y)p(X|Y) and compute p(Y|X) (probability of 

Y given X) based on  p(X|Y) and p(Y) (probability of y), which is Bayes Rule, p(X,Y) = 

p(Y)p(X|Y).
54

 Discriminative classifiers model p(Y|X) directly by learning what features 

separate the categories.
54

 Some examples of discriminative classifiers are Logistic 

Regression, Support Vector Machine (SVM) and k-Nearest Neighbors (kNN).  In 

summary, a generative classifier is a likelihood function which indirectly measures 

training errors whereas a discriminative classifier learns exactly what features separate 

categories or labels and directly measures errors on training data.   

In document classification, all machine learning methods rely on discriminative 

features to distinguish categories but differ in the way they measure errors on the training 

data.  

2.10.1 Naïve Bayes 

 The Naïve Bayes classifier is described as a simple probabilistic classifier which 

assumes that the presence or absence of every feature contributes independently to the 

probability that a record belongs to a particular class.
43,56

 As Witten, Hall and Frank 

explain (2011), Naïve Bayes is a simple and intuitive method is based on Bayes’ rule of 

conditional probability.
56

 Bayes’ rule says that if you have a hypothesis H and evidence E 

that bears on that hypothesis, then 

Pr[H|E ] = Pr[E|H]Pr[H] 
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Pr[E] 
 

Table 8 shows fabricated data on patients who have or don’t have food poisoning and 

“Yes” or “No” for the presence of three symptoms: cramps, fever and vomiting.  Table 9 

shows the fractions observed probabilities for each symptom and the outcome.   For 

example, three patients have food poisoning = “Yes” and two of those three patients had 

cramps (“Yes”) yielding a fraction of 2/3, or 0.67.  Now if  we wanted to predict the 

outcome of food poisoning for a new patient who exhibits the values for each symptoms 

(Table 10), the three symptoms, or features,  and the overall likelihood that food 

poisoning = “Yes” or “No” are treated as equally important, independent pieces of 

evidence and multiply the fractions that correspond to each symptom and outcome.  So 

for the outcome of yes from Table 9 gives 

Likelihood of “Yes” = 0.67 x 0.67 x 1.00 x 0.60 = 0.27 

Likelihood of “No”  = 0.50 x 0.50 x 0.50 x 0.40 = 0.05 

The resulting products of the observed probabilities show that it is more than five times 

more likely that Patient F has food poisoning than not.  These numbers can be turned into 

probabilities by normalizing: 

Probability of "Yes" =  
0.27 

 = 84.2% 
0.27 + 0.05 

 

Probability of "No"  =  
0.05 

 =15.8% 
0.27 + 0.05 

Referring back to Bayes’ Rule, the hypothesis H is that Patient F has food poisoning and 

Pr[H|E] is 84.2%. 
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                    Table 8: Patient Symptoms and Outcomes 

   

 

 

 

                     Table 9: Counts and Probabilities of Symptoms and Outcomes 

  

 

 

      Table 10: New Patient with Unknown Outcome 

  

The Naïve Bayes Method is referred to as Naïve because it naively assumes 

independence, where each of the probabilities of the features is not related to one another.  

Though this assumption is pretty simplistic, the Naive Bayes method has been proven to 

work effectively on large datasets and can be easily applied to large datasets because of 

its simplistic nature. 

Patient Cramps Fever  Vomiting 
Food 

Poisoning 

A Yes Yes Yes Yes 

B Yes No Yes Yes 

C No Yes Yes Yes 

D Yes No No No 

E No Yes Yes No 

  Cramps Fever  Vomiting 
Food 

Poisoning 

Yes 0.67 0.67 1.00 0.60 

No 0.50 0.50 0.50 0.40 

Patient Cramps Fever  Vomiting 
Food 

Poisoning 

F No No Yes ? 
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2.10.2 Decision Trees 

 A decision tree refers to a graph or model that uses a tree-like structure to 

illustrate every possible outcome of a decision.  The tree first starts out with a root node 

which consists of an attribute or feature.  For each node there are branches for each value 

of that attribute and then another branch for another attribute and its values.  This is 

repeated recursively for each branch. When all the instances at a node have the same 

classification then that part of that tree is fully developed.  Witten, Hall and Frank 

provide an example using sample data in Table 11.
56

 These fictitious data have weather 

condition attributes (outlook, temperature, humidity and windy)  that determine what the 

outcome will be, or play = “yes” or “no”.  A popular decision tree classifier called C4.5 

uses information theory to produce the purest nodes and smallest trees.
57

 Information 

theory refers to quantifying information in bits based on entropy, providing the amount of 

information gained by knowing the value of each attribute, or difference between entropy 

of distribution before the split and entropy of distribution after the split.
58,59

 Using the 

provided weather data, the  with  outlook having the highest amount of bits and therefore 

the attribute chosen for the root node.  The tree is then further split by the other attributes 

depending on the attribute which yields the highest information gain.  The resulting 

decision tree is shown in Figure 8.  Calculating information gain, the tree starts with the 

outlook attribute.  When the outlook is “overcast”, play is always “yes”.  When outlook is 

“sunny”, the next attribute selected is humidity and when humidity = “normal”, there are 

two instances of play = “yes”.  This “divide and conquer” strategy is also performed with 

the windy attribute. 
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 Decision trees are considered a simple classification method and easy to use.  

They are attractive because one can discern what went into making a decision by 

examining the tree structure. Furthermore, the C4.5 method which uses the information 

gain calculation assures the best feature/attributes to split on rather than splitting on all 

features which can increase efficiency in implementation. 

 

 

Outlook Temperature Humidity Windy Play 

Sunny                  hot                       high                     false                    no 

Sunny                  hot                       high                      true                      no 

Overcast              hot                       high                     false                    yes 

Rainy                   mild                      high                      false                    yes 

Rainy                   cool                     normal                 false                    yes 

Rainy                     cool                      normal                 true                      no 

Overcast              cool                     normal                 true                      yes 

Sunny                  mild                     high                     false                    no 

Sunny                  cool                     normal                  false                     yes 

Rainy                   mild                     normal                 false                    yes 

Sunny                   mild                      normal                 true                      yes 

Overcast              mild                     high                     true                      yes 

Overcast              hot                       normal                 false                    yes 

Rainy                   mild                     high                      true                      no 

            

                      Table 11: Weather data (Witten, Hall and Frank)
57 
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  Figure 7: Using information theory to choose attributes by calculating information gain    

                 (expressed in bits).
57

 

 

 

0.247 bits 
0.029 bits 

0.048 bits 
0.152 bits 
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 Figure 8: Final C4.5 decision tree based on the weather data.
57

 

2.10.3 K- Nearest Neighbors 

The k-Nearest Neighbors classifier, or kNN, classifies a new record based on the 

similarity between the new record and those in the training dataset.
55

 This is also referred 

to as “instance- based learning” or “lazy learning”. In document classification would 

mean the classifier does nothing until it gets a new document at which time it searches 

the training set for a document (or set of documents depending on k) for one that is most 

like the new document.  Figure 9 illustrates the kNN method for classification where the 

shapes represent documents of different classes.  When new document X is introduced, 

the nearest neighbors classifier looks for the document that is most like it, using distance.  

The smaller circle, k=1, determines the one neighbor closer to the new document (circle 

class) whereas the larger circle, k=4, looks for the nearest four neighbors to determine 

which document from the training set is the new document X most like (square class).  
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Most instance based learners use Euclidean distance to calculate the distance between 

two points on a plane.
57

 

The kNN classifier is regarded as a discriminative classifier because it learns what 

features separate the categories.  It is considered a very accurate but can have slow 

processing time since it scans the entire training data to make each prediction.  It also 

assumes each feature or attribute is equally important so selecting important attributes or 

weighting more important attributes can improve classification.
56,60

 

  

Figure 9:  K- Nearest Neighbors classifier where k =1 (smaller solid red circle) and k=4 

(larger, dashed red circle). 

2.10.4 Support Vector Machines 

 A Support Vector Machine, or SVM, is another discriminative classifier that 

works well with two classes. The key concept here is that when given two classes in the 

training data, the classifier users a linear separator to divide the two classes, or a 

hyperplane in the case of multiple dimensions.
61,62

 The margins between the linear 
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separator and the instances that separate each class are maximized, as shown in Figure 

10.  These instances, circled in red, are the support vectors and determine the class of a 

new instance, therefore taking the other instances in the model out of consideration. 

 Since SVM only relies on a few data points, the model is very resilient to 

overfitting.  Overfitting refers to the concept of modifying a model based on a complex 

training dataset to yield to perform well in predicting outcomes on the training data but 

may not perform well on simpler test data because it is somewhat too “customized”. 

        

Figure 10: Support vectors (circled in red) defining the linear boundary in a SVM   

model.  

   

In summary, prior work demonstrates the feasibility of using NLP and machine 

learning for adverse event detection, including for VTE. However, it is not clear what is 

the best performing solution for automated VTE detection from radiology notes. 
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Therefore, this study seeks to evaluate an NLP-enabled, head-to-head comparison of four 

leading machine learning approaches to this challenge to identify the best method for 

automated VTE detection. 

CHAPTER III.  RESEARCH METHODS 

3.1 Overview  

Studies related to document classification and identification of various clinical 

conditions were reviewed in detail in the previous chapter.  A variety of rule based and 

machine learning classifiers were applied to different forms of clinical text.  One of these 

studies detected critical conditions from radiology reports.
44

The impression section of the 

radiology report was parsed out and the algorithms were focused on this section only for 

all of the conditions except one.  Query algorithms were developed using SQL and NLP 

methods such as proximity searching from key words and wildcard searches.  Results 

were expressed in terms of precision, recall and the F-measure.  Another study used 

various machine learning algorithms, including the four of interest for this dissertation, to 

automatically assign ICD-9 codes to radiology reports and identify liver disorder cases 

from the text of medical notes, prescriptions, referrals and lab results.
43

 Similarly, one 

study uses cases reviewed as the gold standard to evaluate the performance of a locally 

developed medical record search engine on detecting complications.  This dissertation 

looks to test the hypotheses stated earlier by using NLP methods along with four 

statistical machine learning to detect VTE from free text radiology reports.  
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3.2 NSQIP 

 This study uses cases reviewed and identified as a DVT or PE as part of the 

American College of Surgeons National Surgical Quality Improvement Program (ACS-

NSQIP), of which Memorial Sloan Kettering Cancer center is a participating hospital.  

Since these cases have already been manually reviewed as part of the program, this 

served as the gold standard.  NSQIP was started in the Department of Veterans Affairs 

(VA) in 1994 by the ACS and was expanded to private sector hospitals in 2004.
62

The 

program uses clinical data to assess outcomes at 30 days after the index surgery, 

including both inpatient and outpatient procedures. The data definitions are standardized 

and validated and data are collected by a trained and certified data collector.  By 

participating, hospitals receive risk-adjusted comparisons of all ACS-NSQIP hospitals 

regarding morbidity, mortality and complications.  Benefits of participating include 

identifying quality improvement targets, improving quality of patient care and reducing 

costs of care.  

3.3 Analysis 

 This study was approved by the Institutional Review Board.   

Database 

 Initial testing was done on radiology reports for surgery cases from Memorial 

Sloan Kettering Cancer (MSKCC) Center, a large cancer treatment facility in New York 

City.     At this institution sampling is done on an eight day cycle assuring that cases from 

different surgery services have an equal chance of being selected.  The report 

classification workflow is shown in Figure 11. The data set consisted of radiology reports 

performed within 30 days of surgery from 2011 to 2014, totaling 10,295 cases.  The 
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radiology reports were transferred from the institution’s radiology information system 

(RIS) to a Microsoft Structured Query Language (SQL) database.  Since many critical 

results are contained within the “Impression” section of the radiology report, this section 

was parsed out for analyses.  For DVT detection only the ultrasound reports were used 

and CT Angiogram reports for PE.  There were 909 ultrasound reports for these 755 

patients and 1,837 CT angiogram report for 1,451 patients performed within 30 days of 

surgery.  These were divided into training (70%) and test sets (30%). The training set was 

used to train each of the classifiers while the test set evaluated performance of each 

classifier.  Though cases were already identified through the NSQIP program, reports 

pulled were manually reviewed and flagged for absence or presence of a DVT or PE.   
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Figure 11: Report classification workflow 

 

Data Preprocessing 

 Analyses were performed using the WEKA machine learning toolkit.
63

  WEKA is 

an open source software consisting of a collection of machine learning algorithms with 

tools for data pre processing, classification, regression, clustering, association rules and 
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visualization.  To prepare the dataset for input into the classifiers, the strings of text from 

radiology reports are converted to numeric data, or document vectors.   Documents are 

represented by rows, sentences are split into tokens and each token is a column.  For each 

document and word column, there is a number indicating the absence or presence of that 

word in the document (0,1) or frequency of that word in the document.  Figure 12 shows 

a number NLP methods applied to the documents which include: 

- Converting string to word vectors 

- Converting all words to lower text 

- Outputting word counts 

- Stemming (using the LovinsStemmer)
64

 

- Converting strings to n-grams 

- Excluding stop words (no, the, of, etc) 

Using the training data, each of the methods above were altered then performance was 

assessed on each iteration for each classifier.  For example, when training the Naïve 

Bayes classifier, n grams were set to one, stop words were included and performance 

assessed.  In another iteration n grams were set to two, stop words were included and 

performance assessed.  Once it was determined which NLP settings performed the best 

when inputting the preprocessed text into each classifier, we applied the same methods to 

the test set, effectively using the model based on training data 
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Figure 12: Preprocessing of six documents from string to word vectors. 

CHAPTER IV: RESULTS OF DATA ANALYSIS  

4.1  Introduction 

 For identifying DVT, 909 ultrasound reports were randomly split into training and 

testing sets.  For PE, 1,837 CT angiogram reports were randomly split into training and 

testing sets.  Studies differ on exactly how to split the data or corpus with the most 

popular being holding out 70% of the data for training and 30% to test on, holding two 

thirds for training and one third for test, and holding out 80% for training and 20% for 

test.
50,65-66

  The data can also be split into three groups; 1) a training set, 2) a development 

test set that serves as the set that “tuning” is performed on based on results from the 

training data, and  3) an unseen test set.   A disadvantage to using the “holdout” method 

for training and testing is the possibility of uneven representation between the training 
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and test set.  With cross validation, the training development, and test would switch roles 

repeatedly, or a fixed number of folds or partitions.
52 

For example, in three fold cross 

validation, the data is split into three partitions, each in turn is used for testing 

development and training.  This would be repeated three times to ensure a representative 

sample in each group.  This study uses the 70/30 split for training and test.  We used the 

same training and test datasets to train and test each of the four classifiers. 

4.2  Naïve Bayes 

 DVT Analysis 

 When applying the Naïve Bayes classifier on the training data, the best 

performance, as evaluated with the F-Measure, occurs when all tokens are converted to 

lower case, word frequencies were counted per document, applying the stemmer and 

when n=3 for n-grams (trigrams).  The confusion matrix for training is displayed in Table 

12 with 95.9% of the documents classified correctly and yields a precision of 83.2%, 

recall of 95.4% and an F-measure of 88.9%.   

  
Classified as 

 

  
NEG POS TOTAL 

Actual 
NEG 506 21 527 

POS 5 104 109 

 
TOTAL 511 125 636 

 

Table 12: Confusion matrix using Naïve Bayes classifier for DVT training documents 
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Applying these settings to the test set yields results similar to those from the training set 

as computed from the confusion matrix in Table 13.  With Naïve Bayes, 95.2% of the 

documents in the test set were classified correctly, with a precision of 80.4%, recall of 

93.2% and an F-measure of 86.3%. 

 

Table 13: Confusion matrix using Naïve Bayes classifier for DVT test documents 
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 PE Analysis  

For the evaluation of PE identification, the training set of the CT angiogram 

reports performed best when words were converted to lower case, stemming was applied 

and trigrams were used  (Table 14), with an accuracy of 96.9%, precision of 61.0%, recall 

of 98.4% and F-measure of 75.3%. 

 

Table 14: Confusion matrix using Naïve Bayes classifier for PE training documents 

 

NEG POS TOTAL

NEG 1184 39 1223

POS 1 61 62

TOTAL 1185 100 1285

Actual

Classified as
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Using this model on the test set of documents gives an accuracy of 96.0%, and precision, 

recall and F-measure of 60.0%, 87.1% and 71.1% respectively, as calculated from the 

confusion matrix in Table 15. 

 

Table 15: Confusion matrix using Naïve Bayes classifier for PE test documents 

4.3  K-Nearest Neighbors 

 DVT Analysis 

 Applying the K- nearest neighbors classifier to the training set showed 100 % 

accuracy in classifying radiology reports as indicating DVT or not (Table 16).  These 

results were without applying any changes to the text such as converting to lower case, 

and stemming with unigrams only and setting k=1 for neighbors. 

 

Table 16: Performance of KNN classifier on DVT training documents 

 

The confusion matrix in Table 17 shows the results of the KNN classifier with these 

settings applied to test documents.  Classifier precision was 86.8%, recall was 75.0% and 

the F-measure was 80.5% with an overall accuracy of 94.1%. 

NEG POS TOTAL

NEG 503 18 521

POS 4 27 31

TOTAL 507 45 552

Classified as

Actual

NEG POS TOTAL

NEG 527 0 527

POS 0 109 109

TOTAL 527 109 636

Actual

Classified as
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Table 17: Performance of KNN classifier on DVT test documents 

 PE Analysis 

 With converting all words to lower case, stemming and using unigrams only, the 

KNN classifier achieved 100% accuracy as seen in Table 18. In applying KNN to the test 

set (Table 19), the accuracy was 96.2% with precision of 85.7%. recall of 38.7% an F-

measure of 53.3%. 

 

Table 18: Performance of KNN classifier on PE training documents 

 

Table 19: Performance of KNN classifier on PE test documents 

4.4  C4.5 Decision Tree  

DVT Analysis  

The C4.5 decision tree classifier, called J48 in WEKA as it is Java-based, 

performed best on training documents with stemming and unigrams only.  This model 

yielded a precision of 98.1%, recall of 96.3% and the F-measure was 97.2% with an 

NEG POS TOTAL

NEG 224 5 229

POS 11 33 44

TOTAL 235 38 273

Actual

Classified as

NEG POS TOTAL

NEG 1223 0 1223

POS 0 62 62

TOTAL 1223 62 1285

Actual

Classified as

NEG POS TOTAL

NEG 519 2 521

POS 19 12 31

TOTAL 538 14 552

Actual

Classified as
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overall accuracy of 99.1% (Table 20).  Figure 13 illustrates the decision tree for this 

model which was applied to the test set of documents. 

 

Table 20: Performance of C4.5 classifier on DVT training documents 

 

 

Figure 12: Decision tree produced using the WEKA J48 classifier (C4.5) on DVT 

training documents. 

Applying this model to the test set yielded an overall accuracy of 96.7%.  Precision, 

recall and the F-measure were 85.7%, 95.5% and 90.3% respectively (Table 21). 

NEG POS TOTAL

NEG 525 2 527

POS 4 105 109

TOTAL 529 107 636

Classified as

Actual
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Table 21: Performance of C4.5 classifier on DVT test documents 

   

 PE Analysis 

The C4.5 decision tree classifier, when applied to the training dataset of CT 

angiogram reports, produced best results of 98.2%, 90.3% and 94.1% for precision, recall 

and the f-measure respectively.  As seen in Table 22, the overall accuracy was 99.5%. 

Figure 13 shows the tree decision tree produced from training. Table 23 show 

performance of the decision tree classifier on the test set of documents with an accuracy 

of 97.5%, precision of 75.8%, recall of 80.6% and F-measure of 78.1%. 

 

Table 22: Performance of C4.5 classifier on PE training documents  

 

NEG POS TOTAL

NEG 222 7 229

POS 2 42 44

TOTAL 224 49 273

Classified as

Actual

NEG POS TOTAL

NEG 1222 1 1223

POS 6 56 62

TOTAL 1228 57 1285

Classified as

Actual
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Figure 13: Decision tree produced using the WEKA J48 classifier (C4.5) on PE training 

documents. 

 

Table 23: Performance of C4.5 classifier on PE test documents 

 

NEG POS TOTAL

NEG 513 8 521

POS 6 25 31

TOTAL 519 33 552

Classified as

Actual
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4.5  Support Vector Machine 

 DVT Analysis 

The best performance for classifying documents using SVM on the training set 

when a simple unigram bag of words approach was used.  This model resulted in 100% 

correct classification as seen in the confusion matrix (Table 24). 

 

Table 24: Performance of SVM classifier on DVT training documents 

Application of this model to the test set of ultrasound reports resulted in 97.8% accuracy. 

Precision was 91.3%%, recall was 95.5% and the F-measure was 93.3% (Table 25). 

 

Table 25: Performance of SVM classifier on DVT test documents 

 

PE Analysis 

 With the CT angiogram reports, the SVM model used unigrams only to achieve 

100% accuracy with the training set of documents (Table 26).  

NEG POS TOTAL

NEG 527 0 527

POS 0 109 109

TOTAL 527 109 636

Classified as

Actual

NEG POS TOTAL

NEG 225 4 229

POS 2 42 44

TOTAL 227 46 273

Classified as

Actual
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Table 26: Performance of SVM classifier on PE training documents 

Using the SVM classifier on the test set of documents yielded an accuracy of 98.9%, 

precision of 93.1%, recall of 87.1% and F-measure of 90.0% (Table 27). 

 

Table 27: Performance of SVM classifier on PE test documents 

CHAPTER V: DISCUSSION AND STUDY LIMITATIONS 

 The aim of this research was to assess the performance of four different classifiers 

on detecting critical results from radiology reports.  These classifiers were different in 

nature as there was one probabilistic classifier in Naïve Bayes, discriminative classifiers 

such as the Support Vector Machine and K-Nearest Neighbors, and decision trees based 

on the C4.5 induction, or top down classifier.  Data consisted of the impression sections 

of 909 ultrasound and 1,837 CT angiogram radiology reports from cases that were 

sampled as part of the NSQIP program from 2011 through 2014.  Ultrasounds are usually 

performed when there is suspicion of DVT, and CT angiograms where there may be a PE 

present.  The NSQIP sample was used as these cases have already been flagged for 

critical conditions, DVT and PE included, by trained reviewers.  Radiology reports within 

NEG POS TOTAL

NEG 1223 0 1223

POS 0 62 62

TOTAL 1223 62 1285

Classified as

Actual

NEG POS TOTAL

NEG 519 2 521

POS 4 27 31

TOTAL 523 29 552

Classified as

Actual
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30 days of surgery for these cases were queried and reviewed again for indications of 

DVT and PE.  As done in most document classification studies, a part of the sample was 

held out for training and one part for testing.  In this study 70% of the sample was 

designated for training and 30% for testing.  When training each classifier, NLP methods 

such as lower case conversion, excluding stop words, stemming and n-grams were used, 

then this preprocessed data was input into each of the four classifiers.  Settings of each 

classifier that performed best on training data were then applied to the test set.   

The F-measure was used to evaluate overall performance of each classifier as it is 

the harmonic mean of both the recall and precision.  As can be seen on Figure 14, the 

SVM classifier predicted class (positive or negative for DVT/PE) for the test set of 

radiology reports with the highest accuracy, with an F-measure of 93.3% for DVT and 

90.0% for PE.  In order of decreasing performance for detecting both DVT and PE were 

the decision tree classier, Naïve Bayes and k-Nearest Neighbors. There are a few reasons 

why the SVM classifier performed the best.  SVM is an instance based classifier 

therefore only uses document features that are closest to the linear separator or 

hyperplane dividing the two classes.  In this study a linear separator was used and proved 

sufficient in separating classes. Since SVM is an instance based learner and does not use 

all features in the dataset, it is resilient to overfitting.  It also uses a so called kernel 

function for calculating the best space between two classes.
61

 Although Naïve Bayes did 

not perform as well as SVM, recall is very similar for DVT detection, with 95.5% for 

SVM and 93.2% for Naïve Bayes.  Similarly, recall for PE detection is 87.1% for both 

the SVM and Naïve Bayes classifiers.  As a result of low precision, the F-measure for 

Naïve Bayes is decreased.  In this study, both precision and recall are weighted the same, 
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where β = 1.  Though the Naïve Bayes classifier predicted a high number of false 

positives (low precision), it can still reduce the number of cases for review and is proven 

to be accurate in detecting positive reports.  In this case β can be adjusted to give 

precision a higher weight in the resulting F-measure.  One important preprocessing aspect 

in using the Naïve Bayes classifier is that using trigrams increased performance.  This is 

not surprising since Naïve Bayes calculates probability of an outcome without 

considering how features relate to one another.  For example when an ultrasound is 

negative for a DVT, many of the reports have the same template text, “No evidence of 

DVT in…”.  Since negation was not applied in preprocessing, using trigrams would 

capture “no” and “DVT” together rather than treat them as separate features. 

 

 

Figure 14: Classifier performance in detecting VTE from ultrasound and CT angiogram 

radiology reports 
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 The kNN and C4.5 (J48 in Weka) classifiers varied in accuracy of detecting DVT 

and PE.  The kNN classifier performed well for DVT detection.  This is possible since the 

text in these ultrasound reports are similar in the phrasing of a non-finding, resulting in a 

uniform dataset.  For PE, the CT angiogram reports are not as uniform as many other 

conditions can be detected and documented from this diagnostic test, resulting in poor 

performance of this instance based classifier.  The decision tree classifier performed well 

in detecting DVT and followed only SVM in performance of detecting PE.  The C4.5 

classifier is an induction based classifier and only uses the “best” features to split the tree 

on, based on the information theory discussed earlier.  Again, as in kNN, since the CT 

angiogram reports contain more heterogeneous text compared to the ultrasounds, overall 

performance was not as high as in the SVM classifier. 

 A limitation of this study is that the radiology reports used for testing and training 

are from one cancer center and these methods should be applied to a more general patient 

base as models may be skewed by the high volume of cancer/surgery patients.  In 

addition, classifiers were trained on a single source of data, the impression sections of 

ultrasounds and CT angiogram radiology reports.  Accuracy may differ if other clinical 

narratives are included such as other radiology report types, physician notes or discharge 

summaries. There was some possible overfitting as seen in the PE analysis when using 

kNN, where the training set was classified with 100% accuracy but the test set yielded an 

F-measure of 53.3%. Using cross validation or a larger sample may improve 

performance. 

In the event that a report indicated both the absence and presence of a condition 

such as “1.Deep vein thrombosis in the left superior calf. 2. No evidence of deep venous 
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thrombosis in bilateral femoral popliteal system.”, the classifiers categorized this as a 

negative report.  Accuracy could potentially be increased by including logic that accounts 

for a positive and negative indication in the same report. 

 Although we used the NSQIP sample of cases as the gold standard, classifiers 

were able to detect positive reports for cases that were not identified in the NSQIP 

database.  To demonstrate, there were a total of 44 positive DVT reports of which the 

SVM classifier identified all but two.  In addition, the SVM classifier also found six 

reports for patients that were not flagged as having a DVT in the NSQIP database.  The 

SVM classifier also found four additional CT angiogram reports positive for PE not 

flagged in the NSQIP database.   

 In this study performance of four different machine learning classifiers was 

assessed.  The results show that VTEs can be identified from narrative radiology reports 

with high accuracy.  Accurate identification of VTEs could assist hospitals in quality 

improvement, adverse event surveillance, evaluation of interventions and improving 

documentation and coding.  

CHAPTER VI: FUTURE RESEARCH 

 The research performed in this study contributes to the growing literature of NLP 

and machine learning in healthcare.  There are research opportunities that can follow up 

on this study.   For example, a larger dataset and different sampling methods such as 

cross validation could improve classifier performance and prevent overfitting. 

 In this study there were limited NLP methods used and applying negation, named 

entity recognition, keyword searches, semantic analysis, etc. to narrative text can 
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potentially increase classifier performance.  It would be valuable to assess performance 

using other existing NLP tools such as the Apache clinical Text Analysis and Knowledge 

Extraction System (cTAKES) and the Medial Language Extraction and Encoding System 

(MedLEE).
67,68   

Both of these tools are NLP systems for extracting information from 

electronic medical record free text. 

 Natural language processing and machine learning are being used to extract 

information from unstructured text in all disciplines.  Healthcare is extremely rich and 

reliant on free text data and it is essential that researchers, clinicians, data scientists and 

all involved continue improve and contribute to the field of text mining and 

computational linguistics to maximize potential applications and benefits, with the 

ultimate goal of providing optimal patient care. 
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