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THESIS ABSTRACT 

Mathematical Modeling of Birds Group Behavior 

By AYLIN AYDOGDU 

 

Thesis Director: 

Dr. BENEDETTO PICCOLI 

 

In this paper we introduce two different models to study the group dynamic of birds on 

wire and taking off the ground. To begin with, the first model is agent-based and 

encompasses attraction-repulsion forces and topological interactions. The model is firstly 

analyzed and then simulated to study the main properties. Then, we compare the achieved 

results with data from pictures taken in New Jersey. Two different image elaboration 

protocols allowed establishing a good agreement with the model. Moreover, we showed 

potential handiness by analyzing group organization features and dynamics of groups 

with landing new birds. To further complete the analysis we also introduced a birth-death 

process to include the modeling of landing and departing birds. Secondly, the second 

model inspired by videos of birds taking flight was created with options for two different 

methods that are metric and topological interactions. Furthermore, the model returns a 

graph displaying the number of birds in the air vs. the time that is very similar to the 

observed data that was analyzes via ImageJ. Comparing the topological and metric 

interaction, the topological method is less regular and has a longer front length. Lastly, 

many trends were observed when comparing the front velocities under various 

constraints.  
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Part I

First Project-Birds On The Wire

1 Introduction

We all know that birds perch on wires between telephone poles. The goal of this

work is to account for their observed distribution quantitatively: we do so by

creating a model that predicts the relative spacings between individual birds and

comparing the model with experimental observations of the spacings in nature.

Group behavior in animals has greatly interested researchers and naturalists in the

past, and has received special attention in the last decades as an example of

self-organization in nature. In recent years a number of quantitative methods, both

computational and mathematical, were developed not only by biologists, ethologists

and zoologists, but also by mathematicians, physicists and engineers. The

corresponding vast literature is well reviewed in a number of articles, see for

instance [17, 24, 10]. In simple words, most studies aim at showing how

self-organization may emerge from relatively simple interaction rules among

individuals. The interest is usually on the resulting patterns generated by such

interactions. There are quite a few common ingredients in most models, including

the presence of social forces which produce attraction (for mating, food search or to

avoid predation) and repulsion (to avoid collisions or excessive crowding) among

group members. The collection of data for groups on the move is not an easy task,

especially for birds in the wild, even if the seminal papers [2, 3] were able to extract

massive data from the monitoring large starling flocks. At the modeling level, one of

the main lessons from these investigations was the observation that interactions

between birds were topological, i.e. interaction of birds is based on a given number
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of closest neighbors and not on their absolute distance.

A special example of groups on the move is represented by birds roosting on a wire.

The specific features of this phenomenon, especially its one-dimensional nature,

permit the development mathematical models that are amenable to relatively simple

analytical and numerical investigations. For the same reasons, an effective

validation based on targeted data collection is also possible by simple tools.

Notwithstanding these attractive features, to our knowledge this is the first study to

deal with birds on wires with a systematic quantitative approach.

Our work has proceeded in three steps: modeling, analysis, and validation, which we

describe below. The first step of our work is the development of the mathematical

model. Our mathematical model is based on three main features: agent-based

dynamics, attraction-repulsion forces, and “topological” interactions. While a

formal description is given in Section 2, we informally describe it here, also in

relation to the literature.

Firstly, our model is agent-based, in the sense that each agent is singularly

considered: the dynamics is described an ordinary differential equation for every

bird in the group. The birds are indistinguishable for the dynamics, so no bird plays

a special role and in particular there are no leaders. Many models used similar

assumptions, among others [5, 6, 15, 22, 26]. However, other research lines have

been looking at the collective dynamics by statistical or continuum models [4].

Secondly, in our model birds interact by social forces of attractive and repulsive

type. Note that in the literature, forces of attraction and repulsion are sometimes

combined with alignment, i.e. the attitude of birds to adjust their own velocities to

neighbors in the group, see for instance [9, 25]. However this ingredient is not

necessary in our case because we choose to postulate a first order dynamics, thus

distinguishing ourselves from models that mimic the laws of mechanics [8]. Our

model is instead more similar to those proposed in [7, 21, 26].
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Thirdly, we assume topological interactions. In contrast, most models in the

literature assume metric interactions, that is, each animal in the group interacts

with all individuals who are within a given distance from it [5, 6, 12, 18]. However,

as mentioned above, there is evidence that starlings interact with a given number of

neighbors, that is, topologically. More precisely, each bird will interact with a

preassigned number d of closest mates independently of their distance (which may

be much smaller or much bigger than a fixed metric radius). Such modeling idea

actually has a long history: already Hamilton [14] considered attraction to the

nearest neighbor, while Aoki [1] used two-to-four interactions. The latter type of

interactions was also used in a few subsequent studies [15, 16, 20, 22, 26].

The second step is the analytical and numerical study of the model. In particular

we proved useful mathematical properties, such as the existence of solutions for all

times, the preservation of the order between the birds, the avoidance of collisions,

and the preservation of the barycenter of the group. Then, we moved on to

numerical investigations, which demonstrate other key properties of the model. All

simulations convergence to an equilibrium configuration that has interesting

properties: it shows larger inter-animal spacing close to the group borders and this

increase of inter-animal distances is more pronounced when the number of neighbors

d is larger. In fact, we also provide a formula for the total length of the group as

function of model parameters. In particular, our simulations are able to reproduce

expected structures for birds on wires, with particular focus on the inter-animal

distances as function of the position in the group.

Our final step was to compare the predictive distributions with patterns of birds

found in the wild. We collected images of starlings and pigeons on various locations

in New Jersey (Camden county). Out of the collected pictures, we selected more

than hundred images fitting our admissibility criteria in terms of image quality,

position of the group, and presence of local factors affecting group positioning (such



4

as obstacles or poles). The first challenging task was the determination of groups in

each picture. We used uniform criteria detailed in Section 3, such as minimum size

of five birds, same species, static conditions and others. We measured all

inter-animal distances of the various groups. The inter-animal distance can be

defined in terms of the position of the bird’s head or bird’s barycenter, thus we used

two different methods: the first based on ImageJ and the skeletonize function to

measure distance between birds’ heads; the second based on Matlab to measure

distance among birds’ barycenters. The results were comparable for the two different

methods. The main results of the experimental study can be summarized as follows:

1) Groups with more than nine birds show the same structure of inter-animal

distances as the model simulations; 2) The variation among inter-animal distances

in pictures is significantly more varied w.r.t. those of simulations; 3) The length of

the group and coefficients of second order fittings of group structures show a linear

dependence on the size of the group (in accordance with the results from our

model); 4) There is a significant asymmetry in group shapes, which suggests possible

handedness of birds. To further investigate this issue, we analyze movies that reveal

pretty consistent direction of movements of incoming birds to the wire. However, we

feel that the variability of measurements of pictures and some environmental

condition (such as wind) for movies do not allow to claim a definite conclusion

about handedness. Finally, we statistically analyzed the correlation between model

results and picture measurements and shows a reasonably good correlation.

To complete our investigation and model the situation detected in movies, we

designed a variation of our mathematical model by adding a birth-death Poisson

process representing birds landing or taking off. The model is necessarily stochastic,

thus we limited our analysis to compute the expected number of birds as function of

the arrival and departure rate and to show, by simulations, that the structure of the

group of this second model appears to be quite close to the structure of the original
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one.

The paper is organized as follows. In Section 2, we describe the proposed

agent-based model and analyze it theoretically and numerically. In Section 3, we

describe the data collection and analysis process. Moreover, we show comparison of

results with the model ones. Finally in Section 4, we illustrate the model that

includes the birth-death process.
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2 An attraction-repulsion model for birds on

wires

We consider N birds moving on a wire, represented by a one-dimensional state

space. The vector of birds’ positions depends on time, due to the interactions

among them, and is represented by x : R≥0 → RN . We assume that each component

xi(t), representing the position of bird i ∈ {1, . . . , N}, satisfies the ODE

ẋi =
∑

j∈N (i)

(
|xj − xi|ma−1 − ξma−mr|xj − xi|mr−1)(xj − xi) ∀i ∈ {1, . . . , N}, (1)

or equivalently

ẋi =fi(x) ∀i ∈ {1, . . . , N}

fi(x) =
∑

j∈N (i)

|xj − xi|ma
(xj − xi)
|xj − xi|

− ξma−mr
∑

j∈N (i)

|xj − xi|mr
(xj − xi)
|xj − xi|

(2)

where

• N (i) is the interaction neighborhood of bird i, that is, the set of birds that i is

influenced by;

• ma ≥ 0, mr < 0 are exponents that determine the attraction and repulsion

forces, respectively (the two terms in (2));

• ξ > 0 is a desired distance between two birds, which compares the relative

strengths of repulsion and attraction.

Observe that the dynamics (1) is invariant for translations, that is, it only depends

on relative distances between pairs of birds and not on their absolute positions in a

global reference frame.
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In order to define the topological neighborhood in a concise way, we first assume

that the birds are sorted so that xi < xj if i < j (we shall see later that this choice

entails no loss of generality). Then, given d ∈ N, we define

N (i) = {k ∈ {1, . . . , N} | |i− k| ≤ d}, (3)

meaning that each animal interacts with d group mates on its left and d group

mates on its right. Note that (3) implies that interactions are symmetric: if

j ∈ N (i), then i ∈ N (j). This fact in turn implies that d
dt

(∑N
i=1 xi

)
= 0, that is,

the barycenter of the group is kept constant.

From a mathematical perspective, also note that the right-hand-side of (1) is not

defined when x ∈ D, with

D = {x ∈ RN | xh = xk for some h 6= k}.

We collect some basic but important properties of (1) in next Proposition.

Proposition 2.1 (Fundamental properties of solutions). Let x(t) satisfy (1) with

neighborhoods (3) and x(0) = x̄ ∈ (RN \ D), with x̄i > x̄j when i > j. Then,

i) a solution x(t) exists for all t > 0;

ii) xi(t) > xj(t) for all t > 0;

iii) defining xave(t) = 1
N

∑N
k=1 xk(t), then xave(t) = xave(0), for all t > 0.

We stress that this result guarantees that the birds do not collide and do not change

their order on the wire during the dynamics. We postpone the technical proof of

Proposition 2.1 to the Appendix.

The long-time behavior of the solutions to (1) has been investigated through

simulations, which support the following claim. Recall that x∗ ∈ RN is said to be an

equilibrium for (1), if f(x∗) = 0.
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Claim 1 (Convergence). The solutions to (1) with neighborhood (3) converge to an

equilibrium.

Figure 1 shows an example of this observed convergence.

Figure 1: Positions of each individual bird as function of time, from random initial
conditions for a group of N = 20 birds with ξ = 1, ma = 0, mr = −2.

Furthermore, some properties of the equilibria can be studied analytically, as stated

in the following simple result.

Proposition 2.2 (Properties of equilibria). Let x∗ ∈ RN be such that f(x∗) = 0.

Then,

i) f(x∗ + c1) = 0 for every c ∈ R;

ii) for every i ∈ {1, . . . , N}, the normalized spacing
x∗i+1 − x∗i
x∗N − x∗1

does not depend on

ξ.

Proof. Notice that i) is immediate, as f(x) only depends on differences among
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components of x. In order to prove ii), since

0 =
∑

j∈Ni

[(xj − xi)ma − ξma−mr(xj − xi)mr ]

=L−ma
∑

j∈Ni

[(xj − xi)ma −
(
ξ

L
L

)ma−mr

(xj − xi)mr ]

=
∑

j∈Ni

[

(
xj − xi
L

)ma

−
(
ξ

L

)ma−mr
(
xj − xi
L

)mr

],

we can argue that for any ma,mr, if x is an equilibrium for system (1), then x/L is

an equilibrium for the system with ξ replaced by ξ′ = ξ
L
, and this fact is equivalent

to ii).

This result has told us that the parameter ξ only plays a role in determining the

total length of the group and does not influence how the birds distribute within the

group. The intra-group distribution of the birds, instead, can be explored by

simulations.

Our findings are summarized in the following statement and in the related

discussion below.

Claim 2 (Group center is denser). If d = 1, then the equilibrium configuration is

evenly spaced. If instead d > 1, then the animals are more widely spaced at the

borders of the group. The increase in inter-animal distance becomes more

pronounced as d grows.

In order to support this claim, in Figure 2 we represent the equilibria reached at the

end of simulations for various values of d. More precisely, we plot the (normalized)

inter-animal distance as function of the bird position. From Figure 2 we see that the

inter-animal distances are constant for d = 1, while they are larger close to the

boundary of the group for d ≥ 2. For d = 2 we notice that the inter-animal

distances are not monotonically increasing as we approach the border of the group:
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Figure 2: Distribution of normalized inter-animal distances at the equilibrium of (1);
N = 20, ξ = 1, ma = 0, mr = −2.

however, for larger d the monotonicity appear to be guaranteed.

We can also confirm that the increase in inter-animal distances, as we approach the

borders of the group, is more pronounced as d increases. More precisely, for larger d

(i.e. when there is more interaction), the intervals between birds at the extremities of

the group are larger than the intervals between birds in the center. In other words,

the more the birds interact with each other the more the sizes of the intervals vary.

Claim 3 (Group length). The total length L of the equilibrium configuration is

proportional to ξ and to N − 1, and approximately L ≈ ξ(N−1)√
d

.

In our example case, ξ = 1 and N = 20, thus the length of the group is claimed to be

proportional to 19√
d
. The comparison between this prediction and the group length

obtained by simulations is reported in Figure 3, showing a pretty good agreement.
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2.1 Asymmetric interactions and modeling of handedness

Motivated by our experimental results below, we are interested in verifying whether

the observed birds exhibit a preference for interactions to their right or to their

left–we refer to this feature as handedness. To this goal, we propose a variation of

the model where each bird interacts with a different number of neighbors on its left

(dl) and its right (dr), hereafter called the asymmetric case. More formally, in the

asymmetric case the neighborhood definition becomes

N (i) = {k ∈ {1, . . . , N} | i− dl ≤ k ≤ i+ dr} (4)

We now focus on the asymmetric case and compare it with the symmetric one.

Moreover, we study the asymmetric case for different values for dl and dr and

illustrate some results for the specific case in which the ratio dl/dr is kept constant:

this quantity appears to determine the final configuration of the group.

We have seen that the symmetric case satisfies the first claim and the velocities of

the birds converge to zero and an equilibrium position is reached with constant

inter-animal distances, see Figure 1. Instead, the asymmetric case does not satisfy

the Claim 1 in a strict sense because, although the birds do reach stable inter-animal

distances, they continue to drift as a whole, see Figure 4. Clearly, this unbounded

motion can not be achieved in reality due to physical constraints of the wires.

However, the asymmetric case satisfies Claim 2 as shown in Figure 5, where a

concave up configuration is reached in inter-animal distances for the final

configuration of the group. The concavity increases with increasing values of d.
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Figure 4: Positions of each individual bird as function of time in the asymmetric case.

Figure 5: Final inter-animal spacing of starlings. Comparison of (left) symmetric case;
(center) asymmetric case; (right) asymmetric case with constant ratio dl/dr = 2.
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3 Model validation from experimental data

In order to validate the ODE model, fieldwork activity has been performed at

locations in Camden County, South Jersey, with the goal of collecting images of

birds on wires. By this activity, a set of 114 pictures of pigeons and starlings was

collected, of which 108 imaged starling groups and 6 imaged pigeon groups. A single

picture, however, can include several groups located on different wires: an example is

in Figure 6. The main criteria adopted to identify different groups are the following:

• a group includes at least five birds;

• a group ends in case of pole, of course in case of lack of adjacent bird or in

case the neighboring straight bird is too far off;

• all members of each group show the same side to the photographer;

• all members belong to the same species;

• all members are static (e.g. a bird has not taken off or landed on the wire in

the immediate past);

• groups on crossing wires are not included, in order to avoid interactions not

included in the model.

�

Figure 6: Left: Pigeons photo. Right: Starlings photo.
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3.1 Methodology

To analyze and measure distance in photographs, we used ImageJ(version 1.47t)

and two different methods.

Method 1. With this program, we were able to scale our pictures using a landmark

directly measured in each photograph to produce a ratio of pixels to centimeter.

ImageJ allowed us to crop the bird groups in the pictures, convert the images to

binary to isolate the birds against a background of the sky, and skeletonize the

image. The skeletonize function in ImageJ uses the black pixel clusters of a binary

image and collapses them to a centerline ’skeleton’ based on the center of mass of

the cluster. Then, we were able to measure from the ’head’, or top, of each skeleton

to the next to gather our i-th spacing measurements and group length L

measurements. (See Figure 7)

Figure 7: The crop of a bird group and its binary, skeletonized counterpart with
measurement tool (magenta).

Method 2. We removed extraneous objects that have a size comparable to that of

the birds and readjusted the contrast and brightness. We further processed our

images using an algorithm in Matlab that performs the following:

1. Converts the image to black and white (see Figure 8).

2. Removes the wires on the pictures by removing clusters of pixels that have

height that is relatively small compared to those of the birds.

3. Determines the centroid of each bird in terms of pixels.
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4. Computes the distances between the centroids from left to right.

Figure 8: Processing images of bird groups with Matlab.
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3.2 Analysis of images

We selected images and identified groups of birds adhering to the following criteria:

1. There had to be a minimum of 12 birds.

2. A group ends when the distances between two birds on the periphery exceed

twice the average of the rest of the birds in the group.

3. The lens of the camera is perpendicular to the wire imaged in a photograph.

In Figure 9, the distance between adjacent pairs of birds is represented. A

second-order regression curve shows a trend quite similar for both species (d = 20 or

d = 10). These results conclusively demonstrate that the distance between pairs of

birds is smaller in the middle of a group than near the borders of the group.

y	  =	  0.4242x2	  -‐	  6.4834x	  +	  56.125	  
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Figure 9: Left: Inter-pigeons distances. Right: Inter-starlings distances.

The distribution of distances between subsequent pairs is reported in Figure 10 for

both pigeons and starlings. Small distances in the distribution of pigeons are more

frequent and this is consistent with remarks describing Figure 9 that pairs of birds

in the middle of a group closer than pairs at the borders.

Figure 11 on the left reports group lengths as a function of number of group couples

(including all species, both starlings and pigeons). The regression line shows the

global group length increases with number of birds but less quickly (a double couple

number implies an increased length, but less than a double increase).
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Figure 10: Distribution of distances of each interval in the pigeons (left) and starlings
(right) pictures.
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Figure 11: Left: L = f(#intervals) for all species. Right: a = g(#intervals) for all
species.
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3.3 Correlation between simulations and images

To validate our model, we computed Pearson’s correlation coefficients between the

images and simulated symmetric case, and between the images and the simulated

asymmetric non-proportional case. To attain statistical significance, only groups

with a minimum of 3 corresponding images with the same number of birds were

used. The model correlated reasonably well with measurements taken from the

images across the ranges of ξ and d considered (Figures 12-13-14).

Figure 12: Pearson’s correlation coefficients between the images with 14 birds and the
simulations for the (left) symmetric case; (center) asymmetric and non-proportional
increase case; and (right) asymmetric with fixed ratio dl/dr. The (dldr) combinations
in (center) and (right) are (2 1), (3 1), (3 2), (4 3), (5 3), (5 4) and (2 1), (4 2), (6
3), (8 4), (10 5), respectively.

Figure 13: Pearson’s correlation coefficients between the images with 13 birds and
the simulations: (left) symmetric case; (center) asymmetric case; (right) asymmetric
case with fixed ratio dl/dr.

We further evaluated the performances of symmetric and asymmetric and

non-proportional increase cases by comparing the correlation coefficients between

them using paired t-tests (Figure 15). Using a significance value of 0.05, we found

that the number of the p-values greater than 0.05 (n = 99) is significantly greater
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Figure 14: Pearson’s correlation coefficients between the images with 16 birds and
the simulations: (left) symmetric case; (center) asymmetric case; (right) asymmetric
case with fixed ration dl/dr.

than those less than 0.05 (n = 26). This suggests that as far as this particular case

goes, neither the symmetric nor the asymmetric and non-proportional increase case

performed better than the other.

Figure 15: Distribution of p-values computed by varying d of the symmetric case
and comparing it with all combinations of d for the asymmetric and non-proportional
increase case. Note that the set of combinations of d (2 1), (3 1), (3 2), (4 3), (5 3)
is used for the asymmetric case for the t-test.
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3.4 Fitting quadratic curves

We now move to further analyse the fitting of second-order regression curves

(parabolas), say a x2 + b x+ c, as in Figure 9. The analysis of coefficients a and b,

fitting the distance between subsequent pairs of birds, sheds some light on birds

behaviors. The behavior of coefficient a as function of number of birds in the group

(all species) is illustrated in Figure 11 on the right. Since a measures the curvature

of the parabola, the first order regression line shows as the curvature decreases with

increasing number of birds. Notice that the shape of the distribution of distances,

obtained by the model of Section 2, strongly depends on the parameter d, which

represents the number of influential birds on each side of a focal individual. Here a

and L are considered as functions of the number of all birds in the group. Both,

a = g(#intervals) and L = f(#intervals) are invariant with respect to the side the

birds show to the photographer (back or front, now shown graph).

We then investigated the dependence of the parameter −b/2a on the orientation of

the group. More precisely, we postulate that, if birds show a preference for one

direction (left or right), also called handedness, then the position of the vertex of the

parabola (the parameter −b/2a) should show consistent differences for groups facing

the photographer or facing the opposite side. Since in our pictures birds always face

the photographer, we measured the value −b/2a for all pictures organizing the

inter-animal distances from left to right and from right to left. The results are

summarized in Figure 16 for pigeons and Figure 17 for starlings. We notice that

handedness may be present but data are not sufficient for a definite claim.
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Figure 16: Pigeons: −b/(2a) as function of the intervals number.
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3.5 Analysis of movies and handedness

To further investigate our model validation and potential birds handedness, we

considered movies of groups with new birds joining flying to the wire. If the birds

lacked handedness, we assume the birds would shift in either direction without

preference. If they possessed handedness, one direction would be preferred. All the

movies taped starling groups.

We analyzed few movies of groups with a single new bird joining the group at a

given position (not on the boundary of the group). A typical result is shown in

Figure 18 where we represent the time intervals in which each bird moved. There is

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Bird # 

Time (sec) 

Time Movement Intervals of Birds  

Figure 18: Starlings: Movement showing intervals in which each bird moved during
movie, caused by bird number 20’s arrival into group.

a reasonable consistence of the time propagation of the signal of the new arrived

bird, which is compatible with the model proposed in Section 2 with a limited

number of interacting bird (i.e. finite d). Moreover, we notice that the number of

moving birds at each time varies between 2 and 5, thus suggesting that the range of

d should indeed be between these values. Such results were consistent over all

analyzed movies.

For handedness, we considered the direction of readjustments of birds already

sitting on the wire. More precisely, in all movies a new arriving bird generated no
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readjustment of the sitting birds or readjustment only towards one direction (w.r.t.

to the arriving bird). The results are reported in Figure 19. We notice that the

readjustments were always to the right or not present. Even if the data were
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Figure 19: Starlings: directions of readjustments.

completely consistent with handedness, some caution should be taken because of

additional potential factors, such as the direction of the wind and the direction of

the incoming bird. Therefore, we can not conclude for birds handedness without

further investigations.



25

4 A model with arrivals and departures of birds

As discussed in Section 3.5, in many cases the dynamics of birds on wires is affected

by arriving and leaving birds. Therefore, we further elaborated the model of

Section 2 by adding a stochastic description of the arrivals/departures of the birds.

The rest of this section illustrates the obtained model and provides a preliminary

analysis that is supported by simulations.

Let at time t ≥ 0 the animals be indexed in the finite, possibly empty, set

I(t) ⊂ Z≥0. We denote the cardinality of I(t) by N(t). At every time t ≥ 0, we

associate a position xi(t) ∈ R to every i ∈ I(t). Let there be an arrival Poisson

process {A(t)}t≥0 of intensity λ > 0 and, for each i ∈ I(t), a departure Poisson

process {Di(t)}t≥0 of intensity µi > 0: we assume that all µi are equal and denote

them by µ. Based on these processes, we construct the arrival-departure process as

follows. If t0 is a jump time of the arrival process, then a bird is added to the group

at time t0, that is I(t0) = I(t−0 )∪{j} with j ∈ Z≥0 \ I(t−0 ); clearly,

N(t0) = N(t−0 ) + 1. The position of the new animal is xj(t0) = z, where z is the

realization of a real-valued random variable Z, whose law should depend on x(t).

We choose

Z ∼





N (
∑

k xk(t−0 )

N(t−0 )
,
∑

h,k(xh(t−0 )−xk(t−0 ))2

N(t−0 )−1
) if N(t−0 ) ≥ 2

N (x1(t−0 ), ξ) if N(t−0 ) = 1

N (0, ξ) if N(t−0 ) = 0

(5)

where N (a, b) denotes a Gaussian distribution with mean a and variance b. This

choice ensures that the arriving birds join the group by approximately landing in

the area that is already occupied by the group. Correspondingly, if t is the first

jump time of the i-th departure process, then I(t+) = I(t) \ {i}, and in particular

N(t+) = N(t)− 1. Due to our assumptions, it is immediate to recognize that the

number of animals N(t) follows a birth-death process with birth rate α and death
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rate N(t)µ: consequently, standard deductions [11, Sect. 6.11] yield that the process

asymptotically converges to its unique stationary distribution, which is a Poisson

distribution with parameter λ
µ
: in particular, limt→∞ E[N(t)] = λ

µ
.

Between the jumps of the processes, we assume that the system evolves in RI(t)

according to (1). Clearly, if the rates λ and µ are very small, the process will behave

approximately like (1). In fact, simulations show that in spite of the disturbances

due to arrival and departures, the process is able to maintain a well-spaced

configuration, even when the rates are relatively large. Two sample simulations are

provided in Figure 20, which are qualitatively consistent with the behaviors

observed in the movies.
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Figure 20: Evolutions in time and final distributions of the spacings for two sample
runs of the model of Section 4; ξ = 1, d = 1, ma = 0, mr = −2, λ = 0.4, µ = 0.02.
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Part II

Second Project-Birds Take Off

1 Introduction

Starlings can form large flocks uo tp 300,000 birds and yet they manage to organize

themselves displaying intense coordinated behavior [23]. Specific interest lies in how

a flock begins on the ground and cohesively manages to take flight. These flocks

more extraordinarily well in a choesive unit called murmuration. Curiosity lies in

how the birds take off into flight as a whole group. Videos have shown that a whole

flock can be foraging on the ground, and then take off as a whole. If not all members

of the group take off, then the birds that did take off will promptly land again. The

flock may choose to try and take off again until all birds in the flock decide to join.

Animal collective behavior is observed in many different species such as fish, insects,

mammals, and birds. It is an impressive trait in these groups as it shows self

organization, or a lack of centralized control. That is, each agent acts only on the

limited amount of information that is available to it. However, the agents still

manage to act as a unified group [10]. Starlings are a powerful example of how

impressive animal collective behavior can be. European Starlings were released in

New York City in 1890 and 1891 where sixteen mating pairs survived. Since then

their population has expanded rapidly, with the North American population

estimated to be around 200 million. As an invasive species, starlings have caused

many problems such as an estimated $800 million in damages to agricultural crops

each year. It is important to understand starling flock behavior so that they can be

combatted more efficiently [19].

When the flock as a whole takes off, there seems to be an indicator bird that flies
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over the flock, signaling the birds to take off. This signal then propagates through

the flock until all of the birds end up in flight. Previous studies have determined

that starlings is affected by the six to seven birds around them when moving as a

flock [7]. Therefore, it seems as though after the indicator bird gives a signal to a

specific set of birds on the ground then the remaining birds on the ground take off

after each of them see enough of their neighbors.
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2 Methodology

Videos of starlings leaving the ground were taken using a camcorder from a side

view. From the videos several qualitative observations could be made. All of the

videos begin with the flock of starlings on the ground. Then, an indicator bird flies

in close to the flock and certain birds begin to take off. The indicator bird begins a

signal propagation through the flock. If all the birds take off, then they will all fly

away together as a whole. If enough of the birds fail to take off into flight, the ones

who did take off come back down and land. These observations led to a model

simulating the behavior of the flock which was constructed using Matlab software.

The contents of this model are described in the model section.

To analyze the videos quantitatively and measure the pixel of the videos, we used

ImageJ. ImageJ allowed us to crop the videos so that the birds were all seen but the

background was minimized. The videos were then thresholded so that only black

and white pixels were recognized. The black pixels in these videos represent the

birds or bigger objects, such as trees, and the white pixels represent the

background. The video was stacked to images so each time frame was able to be

observed. Following that, the black pixels in an image at one time step was

subtracted from black pixels in an image at the previous time step. This calculation

accounts for the change in number of black pixels as the video progresses. The data

of change in pixels was graphed. To obtain the graphs, we processed our video in

ImageJ that performs the following:

1. Crops the video to focus on birds part only.

2. Thresholds the video to make it black and white.

3. Crops the video 5 equal pieces from left to right. Figure 22
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Figure 21: Orginal video before cropped and substacked

4. For every other part of the video we cropped, uses the grayscale feature,then

histogram to list all the counts.

5. Calculates the stardart deviation by copying and pasting all the counts to the

Excel file.

Figure 22: Subtracted and cropped video

It was determined that the change in number of black pixels corresponds to the

recruitment of birds in the air. In the model a graph showing number of birds in the

air against time was created. Comparing the graph from the observed results in the

videos to the results from the model, it was determined that they both follow a

similar trend. This insinuates that the model accurately portrays the recruitment of

birds. Due to this, we were able to manipulate the varying constants we placed in



31

the model to find several different results which are believed to describe the actual

behavior of flocks.
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3 Model

Our model uses x,y,z to represent the position of the bird and t to represent time.

A constant Rmin was introduced as a minimum distance between birds. This

ensures that birds will not randomly be placed on top of each other.

The position of each bird is represented by the coordinates xj, yj, zj with

j ∈ {1, ..., N}

To denote the rate of change of position of each bird ẋj, ẏj, żj will be used.

ẋj, ẏj will remain 0 for the entire simulation because the main focus is the vertical

movement.

The vertical velocity is given by żj. żj represents the change in position of the bird

based upon ϕ which will be defined in what follows. δ is a time delay and will

indicate how fast a bird will react to its signal to take off or not take off. c is a

constant related to the vertical speed.

żj(t) =





ϕj(t− δ)c if ϕj(t− δ) > 0

0 if ϕj(t− δ) ≤ 0, zj(t) = 0

ϕj(t− δ)c if ϕj(t− δ) ≤ 0, zj(t) > 0

(6)

This model will use a stimulus variable, sj(t), that will determine which birds take

off first. There will be specific birds on the ground that will be stimulated based on

their position. These birds will react to an indicator bird, or a stimulus.

Ts is a set time that will represent the amount of time for the activation of the

stimulus. The stimulus will only be used for a short amount of time in order to start
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the flight of specific birds.

sj(t) = 0 for any bird if t> Ts

sj(t) = 1 for stimulated birds if t< Ts

sj(t) = 0 for non-stimulated birds if t< Ts

Once the stimulated birds have taken off, the birds that are not stimulated will rely

on their neighbors to decide whether or not it will take flight.

The variable that will assess whether a bird will take off or will not take off is ϕj:

ϕj(t) = ks ∗ sj(t) + ϕ̄j(t), (7)

where ks is a constant representing the birds for the stimulus. The function ϕj is

composed of two parts: the stimulus sj and ϕ̄j, which is defined as

ϕ̄j =
∑

i∈Nj

1zi>0 − km, (8)

where km is a constant corresponding to the minimum number of neighboring birds

necessary for a bird to decide to take off or land.

For the metric model a radius, R, is used. The area within radius R will be used by

an individual bird to assess the number of birds around it that have taken off or

not. If the number of birds that have taken off within the radius is greater than or

equal to km, the individual bird will take off. If the number of birds that have taken

off within the radius is less than km, the bird will not take off. Hence we define the

set of neighbors Nj as follows:

i ∈ Nj if
√

(xi − xj)2 − (yi − yj)2 < R. (9)
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In the topological model, each bird only considers a certain number, Ntopo, of its

closest neighbors. To do this we calculated the distance from each bird to every

other bird and then isolated the Ntopo shortest distances to determine which

neighbors each bird would consider.

The Runge-Kutta numerical scheme was used to solve the differential equation (6)

and was implemented in Matlab.

Figure 23: Display from the model.

Figure 23 is a sample of the images that the model creates. On the left is a

two-dimensional view of the model and on the right is a three-dimensional view.

Red circles indicate birds that have taken off and are in the air while blue circles

indicate birds that are on the ground and have not taken off. These images were

both created using the topological model. Enough time has passed so all the

stimulated birds have taken off as well as a portion of the non-stimulated birds.
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4 Results

4.1 Comparison to Observed Behavior

The data collected from ImageJ when analyzing the videos represents the change in

number of black pixels over time. This experimental data correlates to the

recruitment of birds in the air over time. Using the model, the number of birds in

the air over time was plotted. Figure 25 shows the relationship between the

experimental and simulated data. As time increases, the number of birds in the air

increases as well and then plateaus at a certain time once the whole flock gets into

the air.

Figure 24: Experimental and simulated data for recruited birds in the air.

The table below indicates the front velocities from the experimental data and the

model. The front velocity of the experimental data was calculated using the videos

obtained and ImageJ to estimate distances and observe the time. Once the velocity

of the experimental data was calculated, the unknown variable for the delay (δ) was

adjusted until the velocity of the model was close to the observed velocity. In the

topological model all constants were kept the same except for the delay. It was

found that δ = 0.1 seconds. This method for finding the delay was possible for the

metric model as well, however there were more unknowns, besides δ so it is harder
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to accurately match the data. Since the topological model was a better fit, the delay

that was found more accurately represents the behavior of the flock.

Figure 25: Experimental and simulated velocities.
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4.2 Effect of Constants on Front Velocity

The following graphs present the average velocity after ten runs for each data point,

at the different sets of parameters listed below. The metric model was used to

obtain this data. A linear equation was fit to a graph of distance as a function of

time to give the velocity of the signal propagation. All of the tables to the right of

the figures express the standard error of the slope for one run at each data point.

The results reveal that the error of the linear regression is small. This indicates that

the linear regression accurately fits the actual values. These velocities were

calculated using arbitrary units and were used to observe behaviors of the model.

The velocities only reflect the properties and not the actual velocity.

Figure 26: Speed and standard error for changing radius.

Figure 26 represents the change in front velocity as the radius increases from 1 to 5

at intervals of 0.5. As the radius increases the velocity also increases. This is due to

the fact that as the radius increases, there is a greater chance of a bird seeing its

neighbors in the air.

Figure 27 shows how the front velocity changes as N , the number of birds in the
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Figure 27: Speed and standard error for changing number of birds.

flock, increases. The front velocity increases as the number of birds increases.

However, once the number of birds becomes large enough, the front velocity reaches

an equilibrium point and stops increasing.

Figure 28 represents how the front velocity changes as ks, the constant in ϕ,

increases.ks affects the stimulated birds. This graph shows that as long as ks is

greater than km, it does not have a noticeable effect on the velocity.

Figure 29 represents how the front velocity changes as km increases. The constant

km is in ϕ̄, which tells the minimum number of neighboring birds necessary for a

bird to decide to take off or not take off. This graph shows that the front velocity

will be zero, so no birds take off, if km is greater than or equal to ks. While km is

less than ks, the velocity decreases slightly. In Figures 27 and 28 the data points

where ks is less than km, the birds do not take off therefore the front velocity is zero

and no error is computed.

Figure 30 is similar to Figure 28. This graph represents how the front velocity

changes as km increases. However, a large ks was chosen so that km would never be

greater than it. Thus, it is clear that as km increases, as long as it is less than ks,
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Figure 28: Speed and standard error for changing ks.

the front velocity slows.
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Figure 29: Speed and standard error for changing km.

Figure 30: Speed and standard error for changing km.
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5 Front Length

Figure 31: Front line propagating through the flock.

In the model a line that plots around the birds that have just taken off was created.

This line progresses through the flock as the signal propagates and the birds take

off. It splits the birds that are in the air from the ones that are on the ground. An

example of this line is shown in Figure 31. On the left of Figure 31 is the front

length shown on the metric model and the left is the front length on the topological

model.

Figure 32: Length of the front vs. number of birds in the air.

The length of this front line was measured for both the metric and topological

models. The topological and metric versions were created and a line of best fit was

placed to show the average of all the data points.
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Figure 32 shows the length of the front compared to the number of birds in the air

for metric and topological. Overall, the front length for the topological model is

longer than the front length of the metric model. The topological front line can be

more irregular which would lead to the longer front line.
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A Appendix: Proof of Proposition 2.1

First we focus on iii). Since j ∈ N (i) implies i ∈ N (j), then
∑N

i=1 ẋi = 0 and the

average of the position sis preserved along solutions.

We now prove i). The right-hand side of (1) is defined and continuous on D, thus

Peano’s Theorem ([13]) ensures existence of a local solution x(·) in RN \ D. Such

solution can be prolonged as long as it does not enter the region D or blows up.

Let us define d(x(t),D) = infx∈D ‖x− x(t)‖Rn and set:

t̄ = inf{τ : lim sup
t→τ−

(
max
i
|xi|+

1

d(x(t),D)

)
= +∞}

We will prove, by contradiction, that t̄ = +∞, splitting the proof in two steps.

Step 1. First we suppose that:

lim sup
t→t̄−

max
i
|xi| = +∞.

Then either lim supt→t̄− xN(t) = +∞ or lim inft→t̄− x1(t) = −∞. We deal with the

first case, the second being similar by symmetry. We can write:

ẋN =
∑

j∈N (N)

|xj−xN |ma−1(xj−xN)−
∑

j∈N (N)

ξma−mr|xj − xi1|mr−1(xj−xN)
.
= T1−T2.

(10)

We have T1 ≤ 0, thus we must have lim inft→t̄− T2 = −∞, which implies

lim inft→t̄−(xN(t)− xN−1(t)) = 0. Moreover, we deduce lim supt→t̄− xN−1(t) = +∞,

otherwise from (10) we would get ẋN(t) ≤ 0 when xN(t) > maxxN−1(t) + ξ, which

contradicts lim supt→t̄− xN(t) = +∞.
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Now we can write:

ẋN−1 = [|xN − xN−1|ma−1 − ξma−mr |xN − xN−1|mr−1](xN − xN−1)

+
∑

j∈N (N−1)\{N}
|xj − xN−1|ma−1(xj − xN−1)

−
∑

j∈N (N−1)\{N}
ξma−mr|xj − xN−1|mr−1(xj − xN−1)

.
= T1 + T2 − T3,

with lim inft→t̄− T1 = −∞ and T2 ≤ 0. Moreover T1 is bounded from above, which

implies lim inft→t̄− T3 = −∞ thus lim inft→t̄−(xN−1(t)− xN−2(t)) = 0. Moreover, we

claim that lim supt→t̄− xN−2(t) = +∞, otherwise the midpoint xM(t) = xN (t)+xN+1

2

would satisfy ẋM(t) ≤ 0 when xN(t) > supxN−2(t) + ξ, which contradicts

lim supt→t̄− xN−1(t) = +∞.

We can now reason by recursion and prove that lim inft→t̄−(xN(t)− x1(t)) = 0 and

lim supt→t̄− x1(t) = +∞, which contradicts iii).

Step 2. We proved that

lim sup
t→t̄−

max
i
|xi| < +∞,

then

lim inf
t→t̄−

d(x(t),D) = 0

and, by compactness, there exists y ∈ D such that lim inft→t̄− ‖x(t)− y‖RN = 0. Let

i be the minimal index such that yi = yi+1 for some y = y(i) ∈ D satisfying
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lim inft→t̄− ‖x(t)− y(i)‖RN = 0. Then we can write:

ẋi =
∑

j∈N (i),j<i

[|xj − xi|ma−1 − ξma−mr |xj − xi|mr−1](xj − xi)

+
∑

j∈N (i),j>i

|xj − xi|ma−1(xj − xi)

−
∑

j∈N (i),j>i

ξma−mr|xj − xi|mr−1(xj − xi)

.
= T1 + T2 − T3.

By definition of i we have that lim inft→t̄−(xi(t)− xi−1(t)) > 0, thus T1 remains

bounded. Moreover T2 is bounded by definition and T3 ≥ 0. This gives that

lim supt→t̄− ẋi(t) is bounded, thus there exists the limit of xi(t) for t→ t̄− and

limt→t̄− xi(t) = y(i)i. Now consider the index i+ 1 and assume

l = lim supt→t̄− xi+1(t) > y(i)i. For δ sufficiently small, xi(t) < y(i)i + 1
3
(l− y(i)i) for

t ≥ t̄− δ. But then ẋi+1(t) is uniformly bounded above whenever

xi+1(t) > y(i)i + 2
3
(l − y(i)i) and t ≥ t̄− δ, which contradicts the definition of l and

the fact that y(i)i+1 = y(i)i. Thus we deduce limt→t̄− xi+1(t) = y(i)i. More

generally, for every index ` > i such that lim inft→t̄− x`(t) = y(i)i we get that

limt→t̄− x`(t) = y(i)i. Now, let k > i be the greatest index such that

lim inft→t̄− xk(t) = y(i)i (and thus limt→t̄− xk(t) = y(i)i.) Then we have that either

k = N or lim inft→t̄−(xk+1(t)− xk(t)) > 0. In both cases we can write:

ẋk =
∑

j∈N (k),j>k

[|xj − xk|ma−1 − ξma−mr|xj − xk|mr−1](xj − xk)

+
∑

j∈N (k),j<k

|xj − xk|ma−1(xj − xk)

−
∑

j∈N (k),j<k

ξma−mr|xj − xk|mr−1(xj − xk)

.
= T1 + T2 − T3.
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From lim inft→t̄−(xk+1(t)− xk(t)) > 0 (or k = N) we deduce that T1 is bounded,

while T2 is bounded by definition and T3 < 0. Since limt→t̄− xk(t) = y(i)i we deduce

limt→t̄− ẋk(t) = +∞ which gives a contradiction.

We just proved i) and the fact that t̄ = +∞ implies also ii).
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MATLAB SCRIPT
1) Simulation wire.m

N=12; % # birds
Tmax=50; % final time for simulation
Nrun=30; % # random instances
xi=[1/3 1/2 1 2 3];
d=[1 2 3 4 5];
der=0.1;
colors='ymcrgbk';
% parameters of interaction law are in 'interactionRHS'
% running simulation
allDist=zeros(N-1,Nrun);
for j=1:length(xi)
    for i=1:length(d)
        sum_length=0;
        tfs=0;
        clear gra t;
        for r=1:Nrun
            
            x0=10*rand(N,1);
            x0=sort(x0);
            x0=[x0;d(i);xi(j)];
            [t,x]=ode45(@interactionRHS,[0,Tmax],x0);
            x=x(:,1:N);
            if sum(sum(isnan(x)))~=0 && r>1
                r=r-1;
            else
                for k=1:N
                    gra(:,k)=gradient(x(:,k),t);     
                end
                if r<Nrun
                    clear t gra;
                end
                [m,discard]=size(x);
                xfinal=x(m,:);
                xfinal=sort(xfinal);
                dist=zeros(N-1,1);
                for h=1:N-1
                    dist(h)=-xfinal(h)+xfinal(h+1);
                end
                total_length=xfinal(N)-xfinal(1);
                allDist(:,r)=dist/total_length;
                sum_length=sum_length+total_length;
            end
        end
        ave_length{j}(i,1)=sum_length/Nrun;
        ave_length{j}(i,2)=xi(j)*(N-1)/sqrt(d(i));
        
        
        meanDist=mean(allDist,2);
                figure(j+length(xi))
                hold on
                plot(meanDist, colors(i), 'marker', '.')
        data(:,i+(j-1)*length(d))=meanDist;
        legendStr{i}=['d=' num2str(d(i))];



        axis([0 N+1 0 2/(N-1)])
        
                figure(j+2*length(xi))
                loglog(ave_length{j}, '.-')
        
    end
    
        figure(j)
        plot(t, gra)
        xlabel('Time')
        ylabel('Derivative')
    
        figure(j+length(xi))
        xlabel('Intervals')
        ylabel('Sizes')
        legend(legendStr, 'location', 'best');
        titleStr=['$\xi=' num2str(xi(j)) ' N=' num2str(N), '$'];
        title(titleStr, 'interpreter', 'latex')
        hold off
    
        figure(j+2*length(xi))
        xlabel('d')
        ylabel('length')
        legend('Simulated', 'Theoretical')
        title(titleStr, 'interpreter', 'latex')
        axis([0 10 0 100])
        hold off
    
        figure(j+3*length(xi))
        plot(t,x)
        xlabel('Time')
        ylabel('Positions')
end

2) Interaction RHS Function

function [xdot]=interactionRHS(t,x)
% [xdot]=interactionRHS(t,x)
% Editing the function one can set the parameters of the interaction 
law

% parameters of the interaction law
% xi=1;   % desired distance
% d=20;
m=-1;    % attraction power law (nonnegative) (usually it is 0 or 1)
n=-2;   % repulsion power law (negative!) (usually it is -1)

% writing interaction matrix
xi=x(end);
d=x(end-1);
x=x(1:end-2);
N=length(x);
A=zeros(N,N);
for h=1:N



    for k=1:N
        if h~=k && abs(h-k)<=d
            A(h,k)=1;
        end
    end
end

x=sort(x);  

%%% computing rhs, keeping the right sign

X=ones(N,1)*x'-x*ones(1,N);

attrComp=X.^(m+1);
if mod(m,2)==1
    attrComp=attrComp.*sign(X);
end
if m<0
    for h=1:N, attrComp(h,h)=0; end
end

repComp=X.^(n+1);
if mod(n,2)==1
    repComp=repComp.*sign(X);
end
if n<0
    for h=1:N, repComp(h,h)=0; end
end

xdot=[sum(A.*attrComp-xi^(m-n)*A.*repComp,2)/(2*d);0;0];

3) Birds Taking-Off 2D and 3D

T=1; %end of time
Dview = 3;  % Choice of display (2 for 2D, 3 for 3D)
scheme = 'RK';  % 'EU' for Euler, 'RK' for Runge-Kutta
eps = 0;%10^(-5);
dt = 0.01;  % time-step 
t = 0:dt:T;  % time vector
Nt = length(t);  % Number of time-steps

global R;
R=1.5; %radius

global Ks;
Ks=5; %constant for the stimulus

global Km;
Km=3; %constant in phibar

global Ts;
Ts=.1; %threshold time

global c;



c=1; %constant in zdot

global N;
N=500; %total number of birds 

% Initial conditions
z0=zeros(N,1);
x0=10*rand(N,1);
y0=10*rand(N,1);
X0=[x0;y0;z0];

% Matrix of positions at each time
X = zeros(Nt,3*N);
X(1,:) = X0;

switch scheme
    case 'RK'
        for it = 1:Nt-1
            k1 = dyn(t(it), X(it,:));
            k2 = dyn(t(it)+dt/2, X(it,:)+dt/2*k1);
            k3 = dyn(t(it)+dt/2, X(it,:)+dt/2*k2);
            k4 = dyn(t(it)+dt, X(it,:)+dt*k3);
            X(it+1,:) = X(it,:) + dt/6*(k1 + 2*k2 + 2*k3 + k4);
        end

    case 'EU'
        for it = 1:Nt-1
            dX = dyn(t(it),X(it,:));
            X(it+1,:) = X(it,:) + dX *dt;
        end
end

if Dview == 3
    for i=1:length(t);
        x=X(i,1:N);
        y=X(i,N+1:2*N);
        z=X(i,2*N+1:3*N);
        color2 = zeros(N,3);
        for j = 1:N
            if z(j)>eps
                color2(j,:)=[1 0 0];
            else
                color2(j,:)=[0 0 1];
            end
        end
        scatter3(x,y,z,[], color2)
        %view([0 0])
        view([64.5 38])
        axis([0 10 0 10 0 10])
        str=sprintf('Time:%f',t(i));
        str=sprintf('Time step: %d',i);
        title(str)
        pause(1)
    end



end

if Dview == 2
    for i=1:length(t);
        x=X(i,1:N);
        y=X(i,N+1:2*N);
        z=X(i,2*N+1:3*N);
        color2 = zeros(N,3);
        for j = 1:N
            if z(j)>0
                color2(j,:)=[1 0 0];
            else
                color2(j,:)=[0 0 1];
            end
        end
        scatter(x',y',[],color2)
        str=sprintf('Time: %f',t(i));
        title(str)
        axis([0 10 0 10])
        pause(.75)
    end
end

4) Dynamics Function

function [ dX ] = dyn( t,X )
%   DYNAMICS function 
%   gives dX which is concatenated vector of 
%   zeros for xdot, ydot and values of zdot
global N;
global c;

eps = 10^(-5);

dy=zeros(N,1);
dx=zeros(N,1);
dz=zeros(N,1);
phi=ComputePhi(t,X);
z=X(2*N+1:3*N);

for i=1:N
    if phi(i)>eps
        dz(i)=c*phi(i);
    end
    if phi(i)<=eps
        if z(i)>eps
            dz(i)=-c*abs(phi(i));
        end
        if (abs(z(i))<=eps) || (z(i)<-eps)
            dz(i)=0;
        end
    end
end

dX=[dx;dy;dz]';



end

5) Compute PhiBar
function [ PhiBar ] = ComputePhiBar(X)
% Compute PhiBar
%   Number of birds it sees in flight
global N;
global Km;
global R;
IndSum=zeros(N,1);
x=X(1:N);
y=X(N+1:2*N);
z=X(2*N+1:3*N);

for i=1:N 
    for j=1:N
        if (sqrt(((x(j)-x(i))^2)+((y(j)-y(i))^2))<R) && (z(j)>0) 
            IndSum(i)=IndSum(i)+1;
        end
    end
end
    
VKm=Km*ones(N,1);

PhiBar=IndSum-VKm;
end

6) PhiBar Function
function [ output_args ] = PhiBar( input_args )
%UNTITLED6 Summary of this function goes here
%   Detailed explanation goes here

end


