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ABSTRACT OF THE THESIS

Geometric Manifold Approximation using Locally Linear

Approximations

by Talal Ahmed

Thesis Director: Prof. Waheed U. Bajwa

The design and analysis of methods in signal processing is greatly impacted by the

model being selected to represent the signals of interest. For many decades, the most

popular geometric models in signal processing have been the subspace and the union-

of-subspaces signal models. However, there are classes of signals that are not well-

represented by either the subspace or the union-of-subspaces model, but are mani-

fested in a low-dimensional non-linear manifold embedded in a high-dimensional am-

bient space. Though a lot of work has been done on low-dimensional embedding of

manifold sampled data, few works address the problem of approximating the manifold

geometry in the ambient space. There is value in capturing the geometric variations of

a non-linear manifold in the ambient space, as shown in this work.

In this work, the local linearity of a manifold is exploited to address the problem of

approximating the geometric structure of a non-linear non-intersecting manifold using a

union of tangent planes (affine subspaces). The number of approximating tangent planes

adapts with the varying manifold curvature such that the manifold geometry is always

well approximated within a given accuracy. Also, the local linearity of the manifold is

exploited to subsample the manifold data before using it to learn the manifold geometry,

with negligible loss of approximation accuracy. Owing to this subsampling feature,
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the proposed approach shows more than a 100-times decrease in the learning time

when compared to state-of-the-art manifold learning algorithms, while achieving similar

approximation accuracy.

Because the approximating tangent planes extend indefinitely in space, the data

encoding problem becomes complicated in the aforementioned learning approach. Thus,

in the second half of the thesis, the manifold approximation problem is reformulated

such that the geometry is approximated using a union of tangent patches, instead of

tangent planes. Then, the data encoding problem is formulated as a series of convex

optimization problems, and an efficient solution is proposed to solve each of the convex

problems. Last, the value of capturing manifold geometry is demonstrated by showing

the denoising performance of our proposed framework on both synthetic and real data.
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Chapter 1

Introduction

1.1 Data Models in Signal Processing

Data models play an increasingly important role in information processing. The data

model helps in distinguishing the class of interesting signals from the class of uninter-

esting ones. Furthermore, the chosen model has a major impact on the design and

analysis of signal processing tools and methods for the class of signals we are interested

in. One such prominent model is the bandlimited signal model where it is assumed

that the signal of interest can be represented as a linear combination of sinusoids. The

prominent Nyquist sampling theorem is derived under this bandlimited signal model

assumption.

1.2 Non-linear Manifold Signal Model

Owing to computational advances of recent years, classical linear models are slowly

but surely being replaced by their nonlinear generalizations. The union-of-subspaces

(UoS) model and the (nonlinear) manifold model in particular stand out among pop-

ular nonlinear data models [2]. In order to incorporate any nonlinear model into most

information processing tasks, one requires scalable algorithms for (i) data-adaptive

learning of geometric structure of the underlying model (structure learning) and (ii)

projecting arbitrary data onto the learned geometric structure (data encoding). Sig-

nificant progress has been made in this regard for the UoS model under the rubrics

of dictionary learning and sparse coding [3–5]. But relatively less progress has been

made toward these two goals for the manifold model. Our focus in this work is on the

(nonlinear) manifold model and we present novel algorithms for structure learning and
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data encoding under the manifold model assumption.

Though little work has been done on structure learning and data encoding algo-

rithms for manifold sampled data, there are classes of signals that are manifested in

a low-dimensional non-linear manifold embedded in a high-dimensional ambient space.

The manifestation is such that the intrinsic dimension of the manifold is equal to the

number of degrees of freedom for that class of signals which is much smaller than the

ambient dimension. Prominent examples of signal classes particularly well-represented

by a manifold signal model are face and handwritten images [6, 7]. In this thesis, we

address the structure learning and data encoding problem for similar classes of signals.

1.3 Relevant Prior Work

While manifold data models have been considered in the literature for more than a

decade now, most of the work in manifold learning is aimed towards finding a low-

dimensional embedding of data sampled from a high-dimensional non-linear manifold.

The popular nonlinear dimensionality reduction techniques can be divided into the

following three main types.

• There are techniques that attempt to preserve global properties of the original

data in the low-dimensional representation e.g. multidimensional scaling (MDS)

[8], ISOMAP [9], Maximum Variance Unfolding (MVU) [10].

• Then there are methods that are based on solely preserving properties of small

neighborhoods around the data samples. The main idea behind such set of tech-

niques is that the global layout of the data can be captured by preserving local

properties of the manifold data. Some of the popular local nonlinear techniques

for dimensionality reduction are: Local Linear Embedding (LLE) [11], Laplacian

Eigenmaps [12], Hessian LLE [13], and LTSA (Linear Tangent Space Alignment)

[14].

• Finally, there are techniques that combine the two aforementioned dimensionality

reduction approaches: they compute a number of locally linear models and per-

form a global alignment of these linear models. Locally linear coordination [15]
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and manifold charting [16] are examples of such methods.

Similarly, there are works that learn global parameterization of the manifold by

learning locally linear approximations of the manifold data. For example, in [17], the

manifold data is approximated using locally linear parameterizations of the manifold.

In [17], the manifold parametrization is learnt in two stages: first, the manifold data is

clustered into K groups and then each group is approximated using an affine subspace.

There are also other works that combine local probabilistic models to find a global

parameterization of the manifold [16, 18]. However, in this work, our objective is not

to learn a global parameterization of the manifold but to learn the geometry of the

underlying manifold structure.

There is also a lot of work on data representation using a union of affine subspaces

under the UoS model assumption. Such approaches often fall under the category of

subspace clustering or hybrid linear modeling. The popular iterative subspace cluster-

ing approach is to proceed by clustering the training data into groups and learning a

subspace representation for each group. Often, the clustering and subspace estimation

steps are performed iteratively such that the sum of approximation errors is minimized

[1, 19]. Then, there are also the algebraic methods for clustering data under the as-

sumption that the data is sampled from a union of subspaces [20–22]. In particular, the

subspace clustering problem is formulated as a problem of representing subspace data

using homogeneous polynomials in [20].

Note that, in principle, one can use the methods and algorithms developed under

the UoS model assumption to learn an approximation of the data sampled from a

nonlinear manifold (Remember that the Union of Subspace (UoS) model assumes that

the training data is actually sampled from a union of subspaces). However, while such

an approach will lead to small approximation error for the training data, it will fail to

capture the geometry of the underlying manifold. As shown in Fig. 1.3, the median K-

flats algorithm [1] does a good job at approximating the training data, but the K-flats

approximation fails to capture the manifold geometry. One of the goals of this thesis in

this regard is demonstrating there is value in preserving the manifold geometry while
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learning an approximation of the training data.

Figure 1.1: Learning a union of affine subspace approximation of swiss roll using median
K-flats algorithm [1].

In this thesis, we are interested in the following problem: we want to learn the

manifold structure in the ambient space that the manifold is originally embedded in.

We are interested in capturing the manifold geometry as we learn an approximation

of the manifold in the ambient space. Many other works that focus on learning man-

ifold structure in the ambient space assume parametric manifolds [23]. However, the

parametric approach won’t always work because real world data often lie on highly

non-linear manifold and it is unreasonable to assume that we will always be able to find

a parametric representation that encompasses all the non-linearities of the manifold.

Note that a manifold is locally euclidean, so the manifold geometry can be locally

approximated using linear approximations. The problem of approximating manifold

geometry using local linear approximations (affine subspaces) has been addressed in re-

cent papers using both bottom-up and top-down approaches to manifold approximation

[24, 25]. The work in [24] proposes a bottom-up approach to manifold approximation in

the embedding space: a tangent space is estimated at each sample in the dataset, and

pairs of tangent planes are merged based on the difference of tangents till the number of

approximating planes is reduced to a preset number. Considering that a tangent space
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is estimated for each sample in the dataset, such an algorithm becomes computation-

ally expensive as the sampling density on the manifold increases. Another limitation

of [24] is that it does not adapt to underlying manifold geometry; instead, it requires

as input the correct number of affine subspaces to approximate the manifold structure.

Furthermore, the work in [24] lacks algorithm for data encoding. Because the tangent

planes (affine subspaces) extend indefinitely in space, it’s not easy to address the data

encoding problem in the problem setting put forth by Karygianni and Frossard [26].

1.4 Our Approach and Contributions

In our work, we approximate the non-linear manifold structure locally only using linear

structures. We use linear approximations because the manifold is locally linear and

projecting samples onto linear structures is computationally cheaper. In Chapter 2,

we formulate the problem of manifold learning as the problem of finding a union of

d-dimensional tangent planes (affine subspaces) approximation of the training dataset

such that the set of planes captures the underlying manifold geometry with the least

number of planes possible for a given approximation accuracy. Our contributions in

Chapter 2 are as follows:

• The way we set up the manifold approximation problem makes the final number of

approximating planes adaptive to manifold curvature. This addresses the problem

of knowing the correct number of planes required for approximating the manifold

structure with a given accuracy [24].

• We propose a greedy subsampling procedure that makes the manifold approxi-

mation algorithm computationally feasible even when dealing with training sets

densely sampled from the manifold.

• We avoid the inherent expensive SVD computations when merging tangent planes

planes.

However, as discussed earlier, affine subspaces extend indefinitely in space which

complicates the data encoding process. In Chapter 3, we address the geometric manifold
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approximation problem by approximating the manifold using a union of tangent patches

(UoTP) instead of tangent planes. A tangent patch can be seen as that subset of an

approximating tangent plane that actually represents the local manifold geometry. This

problem reformulation enables us to propose a data encoding algorithm for the manifold

sampled data. Our contributions in Chapter 3 are as follows:

• We propose a data-adaptive procedure for approximating the manifold structure

using a union of tangent patches (UoTP) such that the union of tangent patches

represent the manifold geometry.

• The corresponding problem of encoding new data samples onto the learnt manifold

structure is formulated as a solution to a series of convex programs and we present

efficient means of solving these convex programs.

• We demonstrate the value in capturing manifold geometry by demonstrating the

denoising performance of the presented structure learning and data encoding pro-

cedure on synthetic and real data.
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Chapter 2

Manifold Approximation using Union of Tangent Planes

2.1 Introduction

We are interested in learning the geometry of a smooth d-dimensional Riemannian

manifold M embedded in RD, where it is assumed that d � D and the embedding is

such that the nonlinear structure is not self-intersecting. For the sake of this exposition,

we assume that the manifold dimension d is known a priori; see [27] for possible means

of estimating d from the data. In order to learn M in RD, we are given a collection of

N data points, X = {x1, x2, . . . , xN} ⊂ RD, that are sampled from M.

In the literature, both bottom-up [24] and top-down [25] approaches are adopted

to approximate manifold geometry in RD using tangent planes. In [24], the neighbor-

hood graph of each sample is constructed by connecting each sample to its K nearest

neighbors. The tangent space of each sample is formed by the d eigenvectors that cor-

respond to the d largest eigenvalues of the data samples in the neighborhood of the

selected sample. Once the tangent spaces are computed, they are merged in a greedy

fashion. Because the method in [24] uses difference of tangents to merge neighboring

tangent planes, we dub it as the ‘Merging based on Difference of Tangents’ (MDOT)

method.

However, considering a hypothetical scenario in which the dataset X is dense inM,

any bottom-up approach to manifold approximation that considers every sample of the

dataset would be computationally impractical. However, by exploiting the local linear-

ity of the manifold, the dataset X can be subsampled with minimal loss of information

to get a reduced version of the dataset, Xred, which can be used for manifold approx-

imation. Another shortcoming of the proposed manifold approximation approaches in
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[24] and [25] is that the final number of tangent planes required for manifold approxi-

mation needs to be somehow estimated and preset. We address these shortcomings in

the following bottom-up approach to manifold geometry approximation using a union

of tangent planes.

2.2 Overview of Our Approach

We propose a manifold-adaptive bottom-up approach to manifold learning inspired by

the work in [24]: we start by assigning a tangent plane Tj to each sample xj ∈ Xred

as a representation of the local manifold geometry about xj , and thus we start with

a collection of tangent planes {Tj}j∈A. Then, pairs of neighboring tangent planes

indexed by A are merged under the constraint that the approximation error of each

tangent plane Tj , j ∈ A, remains within a preset threshold ε where the approximation

error of Tj is defined as

ej =
1

|Cj |
∑
x∈Cj

‖x− Pjx‖
‖x− cj‖

. (2.1)

Here, Cj is the set of training data samples associated with Tj , Pj is a projection

operator for the tangent plane Tj , cj is the empirical mean of all the samples in Cj and

‖.‖ is the Euclidean norm. The error constraint ensures that while we merge neighboring

planes and try to minimize the number of planes approximating the manifold geometry,

each tangent plane in the reduced set of planes is an accurate approximation of the local

manifold geometry where accuracy of the approximation is controlled by the value of

ε: the lower the value of ε, the more accurate the approximation. Thus, the way we set

up the manifold learning problem makes our proposed algorithm – termed as Geometry

Preserving Union-of-Affine Subspaces (GP UoAS) – adaptive to the manifold curvature:

the final number of tangent planes representing the manifold geometry is a function of

the preset threshold ε and the manifold curvature.

In Section 2.3, we lay down the framework of our approach and then propose GP

UoAS. In Section 2.4, we show the performance of our algorithm using synthetic datasets

and the MNIST dataset [28].
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2.3 Approximating Manifold Geometry using Tangent Planes

We propose a manifold learning algorithm that first subsamples the dataset X by ex-

ploiting the local linearity of the manifold to get a subsampled version of the dataset,

Xred, as explained in Section 2.3.1. Then, the reduced dataset Xred is used to learn a

collection of tangent planes that approximate the manifold geometry, as explained in

Section 2.3.2.

2.3.1 Preprocessing: Subsampling the Dataset

The process of subsampling the dataset X starts by randomly selecting a data point

x ∈ X . A neighborhood set Nx that is a set of Kin nearest neighbors of x in X with

respect to the Euclidean metric and a plane of best-fit to all the points in this set

Nx are associated with the randomly selected point x. The associated plane, i.e., the

tangent plane, is characterized by an orthonormal basis matrix φx ∈ Rd×D, obtained via

Singular Value Decomposition (SVD) of all the points in Nx, and a vector cx ∈ RD×1,

which is the mean of all the samples in Nx. Next, the approximation error of the tangent

plane to the points in Nx is calculated. If this error is smaller than ε0, the neighborhood

size is incremented by K∆ samples. We keep on expanding the neighborhood size in

increments of K∆ samples as long as the approximation error of the samples in Nx by

the associated tangent plane remains within ε0. Finally, assuming ε0 is a very small

number, all samples in Nx are well-approximated by the associated tangent plane. At

this point, the samples in the final neighborhood set Nx are marked for deletion and

the original sample x is added to Xred. This process of randomly selecting a sample

x from X , associating a tangent plane with x, expanding the associated neighborhood

till the approximation error is within an acceptable bound, and marking the samples

in the final neighborhood set for deletion goes on till the training dataset is exhausted

(refer to Algorithm 1 for further details).
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2.3.2 Main Task: Approximation using Geometry-Preserving Union

of Affine Subspaces

The subsampling stage of our algorithm gives a downsampled version Xred of the original

dataset along with a collection of tangent planes: with each xj ∈ Xred, sampled in

stage 1 of the algorithm, is associated a tangent plane characterized by a basis matrix

φj ∈ RD×d and a subspace offset cj ∈ RD. A cluster of training data Cj = {xj} is also

initialized for the tangent plane associated with xj ∈ Xred.

Let A be a set of indices such that the initial set of tangent planes, T , learnt in

stage 1 of the algorithm, can formally be written as:

T = {Tj}j∈A such that Tj = {φj , cj , Cj}.

To minimize the number of tangent planes representing the manifold geometry, pairs

of tangent planes in T are fused till further fusion of any pair of tangent planes from T

will give an error (2.1) larger than ε in the merged tangent plane. However, to ensure

the fused planes adhere to the local manifold geometry, not every pair of planes in T

is eligible for fusion. Our definition of fusibility of tangent planes is inspired by the

definition of fusibility of clusters in [24]. Let NK(x) contain the K-nearest neighbors

of x ∈ Xred in Xred with respect to the Euclidean distance metric. Then, Ω is the set

of all pairs of fusible planes in T such that

Ω = {(i, j) : yi ∈ NK(yj) or yj ∈ NK(yi)

where yi ∈ Ci, yj ∈ Cj s.t. i, j ∈ A, i 6= j}. (2.2)

Among all the fusible pairs of planes, we define the best fusible pair as the one which

gives the least approximation error for the associated training dataset after fusion:

(i∗, j∗) = arg min
(i,j)∈Ω

eproj(Ti, Tj), (2.3)

where

eproj(Ti, Tj) =
1

|Ci ∪ Cj |
∑

x∈Ci∪Cj

‖x− Pk x‖
‖x− ck ‖

, (2.4)

where Tk is the tangent plane obtained from merging of Ti and Tj , Ci ∪ Cj is the set

of training data associated with Tk, Pk is the projection operator for projection onto
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Tk and ck is the empirical mean of all the samples in Ci ∪ Cj . Note that evaluation of

(2.4) and thus (2.3) is an expensive operation because (2.4) involves computing SVD

for the samples in Ci and Cj . Thus, (2.3) would require a SVD computation step for

each pair in Ω. To get rid of the SVD computation step for each fusible pair of planes,

we derive an upper bound on (2.4) that relies on the following lemma:

Lemma 1. If Ti ∈ T , Tj ∈ T , then

∑
x∈Ci

‖x− Pk x‖
‖x− ck ‖

≤
∑
x∈Ci

‖x− Pjx‖
‖x− ck ‖

, and (2.5)

∑
x∈Cj

‖x− Pk x‖
‖x− ck ‖

≤
∑
x∈Cj

‖x− Pix‖
‖x− ck ‖

. (2.6)

Proof. Each of (2.5) and (2.6) can be proved by contradiction. Suppose (2.5) is not

true, then
∑
x∈Ci

‖x−Pk x‖
‖x−ck ‖ >

∑
x∈Ci

‖x−Pjx‖
‖x−ck ‖ , which implies∑

x∈Ci∪Cj

‖x−Pk x‖
‖x−ck ‖ >

∑
x∈Ci

‖x−Pjx‖
‖x−ck ‖ +

∑
x∈Cj

‖x−Pk x‖
‖x−ck ‖ . From our construction of the tangent

planes,
∑
x∈Cj

‖x−Pk x‖
‖x−ck ‖ ≥

∑
x∈Cj

‖x−Pjx‖
‖x−ck ‖ , which leads to

∑
x∈Ci∪Cj

‖x−Pk x‖
‖x−ck ‖ >

∑
x∈Ci∪Cj

‖x−Pjx‖
‖x−ck ‖ .

This is a contradiction due to our construction of Tk and the Eckart-Young theorem

[29], thus (2.5) must be true. Inequality (2.6) can also be proved similarly.

Lemma 1 is next used in the derivation of the following theorem.

Theorem 1. If Ti ∈ T , Tj ∈ T , then

eproj(Ti, Tj) ≤
1

|Ci ∪ Cj |
(
∑
x∈Ci

‖x− Pix‖
‖x− ck ‖

+
∑
x∈Cj

‖x− Pjx‖
‖x− ck ‖

+
∑

x∈Ci∪Cj

‖Pix− Pjx‖
‖x− ck ‖

)

=: ēproj(Ti, Tj). (2.7)

Proof. Rewriting (2.4),

eproj(Ti, Tj) = 1
|Ci∪Cj |(

∑
x∈Ci

‖x−Pk x‖
‖x−ck ‖ +

∑
x∈Cj

‖x−Pk x‖
‖x−ck ‖ )

(a)

≤ 1
|Ci∪Cj |(

∑
x∈Ci

‖x−Pjx‖
‖x−ck ‖ +

∑
x∈Cj

‖x−Pix‖
‖x−ck ‖ )

= 1
|Ci∪Cj |(

∑
x∈Ci

‖x−Pjx+Pix−Pix‖
‖x−ck ‖ +

∑
x∈Cj

‖x−Pix+Pjx−Pjx‖
‖x−ck ‖ )

(b)

≤ 1
|Ci∪Cj |(

∑
x∈Ci

‖x−Pix‖
‖x−ck ‖ +

∑
x∈Cj

‖x−Pjx‖
‖x−ck ‖ +

∑
x∈Ci∪Cj

‖Pix−Pjx‖
‖x−ck ‖ )

where (a) follows from Lemma 1 and (b) follows from the triangular inequality.
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Note that in contrast to evaluation of eproj(Ti, Tj) in (2.4), evaluation of ēproj(Ti, Tj)

in (2.7) does not involve computing SVD of the data samples in Ci ∪Cj . Thus, instead

of solving (2.3), we minimize an upper bound to the objective in (2.3):

(i∗, j∗) = arg min
(i,j)∈Ω

ēproj(Ti, Tj). (2.8)

If ēproj(Ti∗ , Tj∗) ≤ ε, the best pair of planes (Ti∗ , Tj∗) is merged to obtain the tangent

plane Tk∗ , resulting in a new collection

T ← (T \ {Ti∗ , Tj∗}) ∪ {Tk∗}. (2.9)

Let us analyze the computational savings in skipping the SVD computation for each

fusible pair of planes. Let λ be the iteration number such that λ = 1, 2, . . ., let Cλ be

the set of clusters associated with the tangent planes at iteration λ, let Ωλ be the set

of fusible tangent plane pairs at iteration λ, let Ωtotal be the summation of Ωλ over all

iterations, and let L be the final number of tangent planes approximating the manifold

structure. Let n be the number of samples in the subsampled dataset Xred. Note that at

the initialization stage, a tangent plane is estimated at every sample in the subsampled

dataset Xred. Thus, n is also the size of the set of tangent planes at initialization. Then,

|Ωλ| ≤
∑
Ci∈Cλ

K|Ci| = K
∑
Ci∈Cλ

|Ci| = K(n− λ),

Ωtotal =

λ=n−L∑
λ=0

|Ωλ| ≤
λ=n−L∑
λ=0

K(n− λ) = O(n2).

Thus, the savings in the number of SVD computations are O(n2) where n is the number

of samples in the subsampled dataset Xred.

Summarizing our algorithm, once the set T is initialized by calculating the tangent

plane at each x ∈ Xred, the set of pairs of fusible tangent planes Ω is calculated as in

(2.2), the best pair (Ti∗ , Tj∗) from the set of fusible pairs of planes is selected using (2.8),

and the best pair of planes is merged as in (2.9) if the best pair of planes satisfies the

approximation error constraint ēproj(Ti∗ , Tj∗) ≤ ε. This process of evaluating (2.2), (2.8)

and (2.9) is repeated till ēproj(Ti∗ , Tj∗) gives a value greater than ε after the evaluation
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of (2.8). In other words, we keep on finding and merging the best pair of fusible

tangent planes till the best pair of fusible planes does not satisfy the approximation

error constraint. The accuracy of manifold geometry approximation by the final set of

tangent planes depends on the value of ε: the smaller the value of ε, the more accurate

the estimate and vice versa. Our algorithm is outlined in Algorithm 1.

2.4 Experimental Results

In all our experiments, we compare our algorithm with the state-of-the-art algorithm

for learning manifold geometry in the ambient space using tangent spaces [24]. The

algorithm was dubbed as the MDOT method at the start of this chapter. To compare

the performance of the two algorithms, we sample 1800 data points from different num-

ber of half-turns of a Swiss roll. An example of the different types of Swiss rolls used

in this experiment is shown in Fig. 2.1. With the increasing number of half turns, the

curvature of the manifold (Swiss roll) increases. With the increasing curvature of the

manifold, increasing number of tangent planes are required for Swiss roll approxima-

tion. Because the MDOT algorithm requires the correct number of planes required for

approximating the training data, we fix the final number of tangents planes for MDOT

algorithm at 10. In comparison, our algorithm adapts the number of planes required

to approximate manifold geometry with the manifold curvature. The following error is

used as an approximation accuracy metric:

error =
∑
j∈A

1

|Cj |
∑
x∈Cj

‖x− φjφ>j x‖
‖x− cj‖

.

The structure learning results for different half-turns of a Swiss roll are shown in

Table 2.1. Table 1 shows that the approximation error for MDOT algorithm increases

with the increasing number of turns of the swiss roll, whereas our algorithm adapts to

the increasing manifold curvature by increasing the number of tangent planes used to

learn the swiss roll geometry. An example of union of tangent planes approximation of

3 half turns of a swiss roll using our algorithm is shown in Fig. 2.2.

To compare the computational complexity of the two algorithms, 3 half turns of a

swiss roll are sampled with varying sampling density. For the MDOT algorithm, the
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number of tangent planes are set to 14. The results for this experiment are given in Ta-

ble 2.2. Results show more than 2 orders of magnitude difference in the computational

time of the two algorithms for similar approximation accuracy, and the computational

advantage of our algorithm becomes more significant as sampling density on the mani-

fold increases.

(a) (b) (c)

(d) (e)

Figure 2.1: Examples of Swiss rolls used in the structure learning experiment: (a) with
1 half-turn, (b) with 2 half-turns, (c) with 3 half-turns, (d) with 4 half-turns, and (e)
with 5 half-turns.

We also test our algorithm on a high-dimensional dataset – the MNIST database

[28]. Setting d = 5, we run both algorithms on 1000 images of digit zero randomly

selected from the MNIST database. For our algorithm, we set Kin = 5, K∆ = 1, K = 6

and we vary the value of ε to approximate the manifold of digits with different number

of tangent planes. The results in Fig. 2.3 show similar approximation performance for

both the algorithms for different number of planes.
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Figure 2.2: (a) Data sampled from a swiss roll projected onto the union of 17 tangent
planes learnt using our proposed algorithm. (b) Flat approximation of swiss roll using
median K-flats algorithm [1].

Half-turns
of Roll

Tangent
Planes
(MDOT)

Error
(MDOT)

Tangent
Planes
(GP UoAS)

Error
(GP UoAS)

1 10 0.027 5.8 0.078

2 10 0.066 10.9 0.084

3 10 0.137 16.4 0.084

4 10 0.187 21.3 0.089

5 10 0.247 26.7 0.091

Table 2.1: Approximation of the underlying structure of 1800 data points randomly
sampled from different turns of a swiss roll using the ‘MDOT’ algorithm with 10 planes
and our manifold adaptive ‘GP UoAS’ algorithm.

Points
sampled
from the
swiss roll

Time in
seconds
(MDOT)

Error
(MDOT)

Time in sec-
onds (GP
UoAS)

Error (GP
UoAS)

1800 2.3× 103 0.090 13.8 0.080

3000 1× 104 0.091 30.6 0.104

4200 3× 104 0.097 65.1 0.079

5400 5.5× 104 0.092 86.9 0.078

6600 9.6× 104 0.091 185.9 0.085

Table 2.2: Time taken to learn the manifold structure with respect to the sampling
density on the manifold, which is 3 half turns of a swiss roll in this experiment.
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Figure 2.3: Approximation of the underlying manifold structure of 1000 images of digit
‘0’ – extracted from the MNIST database – using different number of tangent planes.
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Algorithm 1: Learning Geometry-Preserving Union of Affine Subspaces

1: Input: Dataset: X ; maximum error in Stage 1: ε0; starting neighborhood size in
Stage 1: Kin; neighborhood increment size: K∆; neighborhood size in Stage 2: K;
maximum error in Stage 2: ε; dimension of tangent planes: d

2: Output: Final set of tangent planes representing the manifold: Tj = {φj , cj}j∈A
Stage 1 (Subsampling the dataset):

3: Initialize: Xred ← X , Xred1 ← X , φ← {}, c← {}
4: while Xred1 6= {} do
5: Uniformly at random select x ∈ Xred1

6: K0 ← Kin; Nx ← K0 nearest neighbors of x in X
7: cx ← 1

|Nx|
∑
y∈Nx

y; [N0
x ]← {y − cx : y ∈ Nx}

8: Ux ← left singular vectors of [N0
x ] corresponding to its d-largest singular values

9: error = 1
|Nx|

∑
y∈Nx

‖y−UxUTx y‖
‖y−cx‖ ; N∗x ← Nx

10: while error < ε0 do
11: Nx ← N∗x ; K0 ← K0 +K∆

12: N∗x ← K0 nearest neighbors of x in X
13: error = 1

|N∗x |
∑
y∈N∗x

‖y−UxUTx y‖
‖y−cx‖

14: end while
15: φ← {φ,Ux}; c← {c, cx}
16: Xred ← Xred \Nx; Xred1 ← Xred1 \ {Nx, x}
17: end while

Stage 2 (Merging the tangent planes):
18: NK(x)← {K nearest neighbors of x in Xred}, x ∈ Xred
19: C ← {{x} : x ∈ Xred}; Let A be a set of indices such that the set of tangent planes

from stage 1 can be written as
20: T ← {Tj}j∈A such that Tj = {φj ∈ φ, cj ∈ c, Cj ∈ C}
21: loop
22: Ω← {(i, j) : yi ∈ NK(yj) or yj ∈ NK(yi),

where yi ∈ Ci, yj ∈ Cj such that (i, j) ∈ A}
23: (i∗, j∗, ē∗proj) = arg min

(i,j)∈Ω
ēproj(Ci, Cj)

24: if ē∗proj < ε then
25: T ← (T \ {Ti∗ , Tj∗}) ∪ {Tk∗}, where Tk∗ is the plane obtained from merging

planes Ti∗ and Tj∗
26: else
27: break the loop
28: end if
29: end loop
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Chapter 3

Manifold Approximation using Union of Tangent Patches

3.1 Introduction

The manifold approximation problem was addressed in the previous chapter by approx-

imating the manifold structure using a union of tangent planes (affine subspaces). The

proposed Geometry Preserving Union-of-Affine Subspaces (GP UoAS) approach not

only adapts with the varying manifold curvature but also uses a greedy subsampling

procedure to decrease the size of the training dataset with negligible loss of informa-

tion. Though the approximation approach addressed many of the problems with similar

manifold approximation procedures in [24] and [25], the approximating tangent planes

extend indefinitely in the ambient space, which makes the data encoding process com-

plicated. In this chapter, we reformulate the manifold approximation problem such

that the manifold geometry is captured using a union of tangent patches (see Section

3.2). As mentioned before, a tangent patch is that subset of a tangent plane (or affine

subspace) that gives a local linear approximation of the manifold. The problem re-

formulation enables us to convert the data encoding problem into a series of convex

programs, each of which can be solved using an efficient algorithm (see Section 3.3.2.

Finally, we use the data encoding algorithm along with the proposed structure learning

approach in this chapter to show the value of capturing manifold geometry in denoising

synthetic as well as real data (see Section 3.4).

3.2 Problem Formulation

In this chapter, again, we address the problem of approximating the geometry of a

smooth d-dimensional Riemannian manifoldM embedded in RD but using a collection
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of tangent patches, where it is assumed that d� D and the embedding is such that the

nonlinear structure is not self-intersecting. Also, we address the problem of projecting

a new data sample x ∈ RD onto the learnt collection of tangent patches. For the sake

of this exposition, we assume that the manifold dimension d is known a priori; see [27]

for possible means of estimating d from the data. In order to learn M in RD, we are

given a collection of N data points, X ⊂ RD, that are sampled from M.

The objective is to use the manifold-sampled dataset X to find a set of tangent

patches, T , under constraint on the approximation error (defined later) of each tangent

patch. Let A be a set that indexes the set of tangent patches, T . Then the set of

patches can formally be written as:

T = {Tk}k∈A such that Tk = {φk, ck, Ck, rk, r
′
k}.

Here, φk ∈ RD×d is an orthonormal basis matrix that spans a tangent plane, ck ∈ RD

is the offset of the tangent plane, Ck ⊂ X is the training data associated with the patch

k ∈ A, rk, r
′
k ∈ RD define the subset of the tangent plane that forms the tangent patch

k ∈ A.

Mathematically, the set of points in tangent patch Tk, k ∈ A, can be expressed as:

M̂k = {y|y = φkw + ck, rk 4 y 4 r
′
k, w ∈ Rd}, k ∈ A, (3.1)

where 4 represents component-wise inequality. The union of tangent patches (UoTP)

approximation of M can be expressed as:

M̂ =
⋃
k∈A
M̂k. (3.2)

The approximation error associated with each tangent patch Tk, k ∈ A can be defined

as follows:

ek =
1

|Cj |
∑
x∈Cj

‖x− φkφ>k (x− ck)− ck‖
‖x− ck‖

, (3.3)

where ‖.‖ is the Euclidean norm.

Now, we have all the tools to define the manifold approximation problem more

concretely. The objective is to find a UoTP based GMA M̂ of the manifold M such

that the approximation error associated with each tangent patch Tk, k ∈ A is within ε.
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To reduce the storage cost of the learnt manifold structure M̂, another objective is to

minimize the number of tangent patches approximating M. The error constraint ε on

each tangent patch ensures that while the number of tangent patches approximating the

manifoldM is minimized, each tangent patch k ∈ A still remains an accurate estimate

of the local manifold geometry. Thus, we essentially minimize the number of tangent

patches capturing the manifold geometry under constraints on the accuracy of manifold

approximation. Note that the error constraint on each tangent patch makes the final

number of patches required for manifold approximation adaptive to the manifold cur-

vature, which addresses the problem of finding the number of linear structures required

for manifold approximation in [24–26]. Since M is approximated using a collection of

tangent patches where each tangent patch captures the local manifold geometry, we

name our proposed approach as Geometry Preserving Union-of-Tangent-Patches (GP

UoTP) algorithm.

3.3 Approximating Manifold Geometry using Tangent Patches

The proposed GP UoTP algorithm for learning a UoTP approximation of M is ex-

plained in Sect. 3.3.1. We formulate the data encoding problem and propose an effi-

cient algorithm for encoding new data samples onto the learnt manifold structure M̂

in 3.3.2.

3.3.1 Learning Geometry-Preserving Union of Tangent Patches Ap-

proximation

We begin by associating a neighborhood set NK(x) with each data sample x ∈ X . The

neighborhood set NK(x) is a set of K nearest neighbors of x in X with respect to

the Euclidean metric. Next, we initialize a collection of tangent patches T such that

a tangent patch Tx is associated with each x ∈ X . The associated tangent patch is

characterized by an orthonormal basis matrix φx ∈ RD×d, obtained via Singular Value

Decomposition (SVD) of all the points in NK(x), a vector cx ∈ RD×1, which is the mean

of all the samples in NK(x), and a training subset Cx, which is initialized as Cx = {x}.
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Also, we define the subset of the tangent plane {φkw + ck}, w ∈ Rd, k ∈ A, that forms

the tangent patch Tk by the radii rk and r
′
k. The radii are defined by rk,i = min

x∈Ck
xi, and

r
′
k,i = max

x∈Ck
xi, i ∈ {1, ..., D}, k ∈ A. Here, xi denotes the i-th element of x. Defining

rk = {rk,i} and r
′
k = {r′k,i}, and using A to be a set of indeces, the initial set of tangent

patches, T , can formally be written as:

T = {Tj}j∈A such that Tj = {φj , cj , Cj , rj , r
′
j}.

To minimize the number of tangent patches representing the manifold geometry,

pairs of tangent patches in T are fused till further fusion of any pair of tangent patches

from T will give an error (3.3) larger than ε in the merged tangent patch. However, to

ensure only neighboring tangent patches are fused together, not all pairs of patches in

T are eligible for merging. We use the definition of fusibility of clusters in [26] to define

the set of all pairs of fusible patches in T as

Ω← {(i, j) ∈ A : yi ∈ Ci, yj ∈ Cj such that

yi ∈ NK(yj) or yj ∈ NK(yi)}. (3.4)

Among all the fusible pairs of patches, we define the best fusible pair as the one which

gives the least approximation error for the associated training dataset after fusion under

error constraints:

(i∗, j∗) = arg min
(i,j)∈Ω

eproj(Ti, Tj), (3.5)

such that eproj(Ti, Tj) ≤ ε,

eproj(Ti, Tj) =
1

|Ck|
∑
x∈Ck

‖x− φkφ>k (x− ck )− ck ‖2
‖x− ck ‖2

. (3.6)

Here, if we use Tk to denote the tangent patch obtained from merging of Ti and Tj then

Ck = Ci ∪ Cj is the set of training data associated with Tk, ck is the empirical mean of

all the samples in Ck, and φk is computed by finding the d largest eigenvectors of the

matrix Uk = 1
2(φiφ

>
i + φjφ

>
j ). Note that Tk is essentially a mean tangent patch to the

patches Ti and Tj because Uk can be seen as a solution to the following:

Uk = arg min
U∈RD×D

1

2
(‖φiφ>i − U‖2F + ‖φjφ>j − U‖2F ).
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Finally, we merge the best pair of patches (Ti∗ , Tj∗) to obtain the tangent patch Tk∗ ,

resulting in a reduced set of patches

T ← (T \ {Ti∗ , Tj∗}) ∪ {Tk∗},

A ← (A \ {i∗, j∗}) ∪ {k∗}. (3.7)

Summarizing our algorithm, once the set T is initialized by calculating the tangent

patch at each x ∈ X , the set of pairs of fusible tangent patches Ω is calculated as in

(3.4), the best pair (Ti∗ , Tj∗) from the set of fusible pairs of patches is selected using

(3.5), and the best pair of patches is merged as in (3.7). This process of evaluating

(3.4), (3.5) and (3.7) is repeated till we keep on getting a solution for (3.5). In other

words, we keep on finding and merging the best pair of fusible tangent patches till the

best pair of fusible patches does not satisfy the approximation error constraint. The

final union-of-tangent-patches approximation of M is then obtained as:

M̂ =
⋃
k∈A
{y : y = φkw + ck, rk 4 y 4 r

′
k, w ∈ Rd}. (3.8)

The accuracy of manifold geometry approximation of M by M̂ depends on the value

of ε: the smaller the value of ε, the more accurate the approximation and vice versa.

The complete algorithm is outlined in Algorithm 2.

The radii are defined by rk,i = min
x∈Ck

xi, and r
′
k,i = max

x∈Ck
xi, i ∈ {1, ..., D}, k ∈ A.

Here, xi denotes the i-th element of x. Defining rk = {rk,i} and r
′
k = {r′k,i}

3.3.2 Encoding New Data Samples

In this section, we discuss how a point x ∈ RD can be projected onto the learnt manifold

structure M̂ to get x̂ such that x̂ = arg
z∈M̂

min ‖x − z‖2. In principle, we can project

the data sample x ∈ RD onto each of the tangent patches M̂k, k ∈ A, and then the

patch M̂k∗ , k
∗ ∈ A that minimizes the mean square error of projection onto M̂ can be

used for encoding x onto M̂. Mathematically, this problem can be formulated as the
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Algorithm 2: Learning Geometry-Preserving Union of Tangent Patches (GP
UoTP)

1: Input: Dataset: X ; neighborhood size: K; maximum error: ε; dimension of
tangent patches: d

2: Output: Final set of patches: Tj = {φj , cj , Cj , rj , r
′
j}j∈A

3: Initialization: Initializing a tangent patch with each x ∈ X :
4: NK(x)← {K nearest neighbors of x in X}, x ∈ X
5: cx ← 1

|Nx|
∑
y∈Nx

y

6: [N 0
x ]← {y − cx : y ∈ NK(x)}

7: φx ← left singular vectors of [N 0
x ] corresponding to its d-largest singular values

8: Cx ← {{x} : x ∈ X}
9: Let the set of all tangent patches be indexed by a set A such that T ← {Tj}j∈A

with Tj = {φj , cj , Cj}
Merging the tangent patches:

10: loop
11: Ω← {(i, j) ∈ A : yi ∈ Ci, yj ∈ Cj such that yi ∈ NK(yj) or yj ∈ NK(yi)}
12: (i∗, j∗) = arg min

(i,j)∈Ω
eproj(Ci, Cj)

13: if eproj(Ci∗ , Cj∗) < ε then
14: T ← (T \ {Ti∗ , Tj∗}) ∪ {Tk∗}, where Tk∗ is the patch obtained from merging

patches Ti∗ and Tj∗
15: else
16: break the loop
17: end if
18: end loop
19: rj = {min

x∈Cj
xi}i=Di=1 , r

′
j = {max

x∈Cj
xi}i=Di=1 , j ∈ A

following sequence:

wk = arg min
w∈Rd

‖φkw + ck − x‖22

subject to rk 4 φkw + ck 4 r
′
k, k ∈ A, and (3.9)

k∗ = arg min
k∈A

‖φkwk + ck − x‖22. (3.10)

Once the projection coefficients of x onto each patch in k ∈ A are calculated in (3.9),

the encoding patch can be selected using (3.10). The final solution of the encoding

procedure is then (k∗, wk∗) where k∗ is the tangent patch selected for projecting x onto

M and wk∗ represents the encoding coefficients. Thus, we have formulated the problem

of encoding x onto M̂ as a series of convex optimization problems, one for each k ∈ A

in (3.9). However, the problem of solving each of the convex optimization problems in
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(3.9) still needs to be addressed.

We note that each tangent patch M̂k, k ∈ A can be seen as the intersection of an

affine subspace Bk and a polyhedron Dk defined as: Bk = {y : y = φkw + ck, w ∈

RD}, and Dk = {y : rk 4 y 4 r
′
k}. Thus, the problem of projection onto patch Tk

can be seen as a problem of projection onto intersection of convex sets Bk and Dk.

This hints towards the possible use of projection onto convex sets (POCS) method [30].

POCS algorithm can be used for finding a point in the intersection of given closed

convex sets. However, to project x onto Tk, which is equivalent to solving (3.9) for a

given k ∈ A, we need the projection of x onto Bk ∪Dk.

To rewrite the encoding problem in a convenient form, we define the following

indicator functions for each tangent patch. For each k ∈ A, let fk be the indicator

function of set Bk and gk be the indicator function of set Dk such that:

fk(x) =


0, x ∈ Bk;

+∞, otherwise,

gk(x) =


0, x ∈ Dk;

+∞, otherwise.

Then (3.9) and (3.10) can be rewritten as:

yk = arg min
y∈RD

fk(y) + gk(y) + ‖y − x‖22, k ∈ A, (3.11)

k∗ = arg min
k∈A

‖yk − x‖22. (3.12)

Considering that, for each patch k ∈ A, the summation of indicator functions (fk +

gk)(y) 6= ∞ only when y ∈ Bk ∩ Dk, the solution to (3.11) for each k ∈ A is the

projection of x onto the set M̂k = Bk ∩ Dk. A recent paper [31] shows that (3.11)

has a unique solution: yk = proxfk+gk(x), where proxfk+gk(.) refers to the proximity

operator of the sum of the functions fk and gk. Proximity operator associated with

fk + gk can be looked upon as a generalization of the notion of projection onto the
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underlying convex set Bk ∩ Dk. To the best of our knowledge, there is no operator

for projection onto a subset of an affine subspace, which is Tk = Bk ∩Dk in this case.

Thus, yk = proxfk+gk(x) cannot be calculated directly. However, we can use one of the

proximal methods outlined in [31], mentioned as Dykstra’s projection algorithm [32],

to split the problem of projecting onto Bk ∩ Dk into projecting onto sets Bk and Dk

separately. In other words, (3.11) can be solved even if proxfk+gk(.) is unknown, but

the proximity operators for Bk and Dk are available. The projection operator for set

Bk is defined as:

PBk(z) = φkφ
T
k (z − ck) + ck, z ∈ RD. (3.13)

The projection operator for set Dk is defined as:

PDk(z) = {vi}i=Di=1 , z ∈ RD, (3.14)

where

vi =


zi, rk,i ≤ zi ≤ r

′
k,i;

arg min
q∈{rk,i,r

′
k,i}
|zi − q|, otherwise.

Given the projection operators for the sets Bk and Dk, Dykstra’s projection algorithm

for projecting x ∈ RD onto M̂k = Bk ∩Dk is outlined in Algorithm 3.

Algorithm 3: Dykstra’s Projection Algorithm

1: Initialize x0 = x, p0 = 0, q0 = 0
2: for n = 0, 1, 2, ... do
3: yn = PBk(xn + pn)
4: pn+1 = xn + pn − yn
5: xn+1 = PDk(yn + qn)
6: qn+1 = yn + qn − xn+1

7: end for

If we use Dykstra’s projection algorithm (Algorithm 3) to find the projection of x

onto M̂k, the sequence of output {xi}, i = 1, 2, 3, ... produced by Dykstra’s algorithm

is guaranteed to converge to the projection of x onto M̂k [33]. The final output of

the encoding procedure outlined by (3.11) and (3.12) is the encoding patch k∗ and the

projection of x ∈ RD onto the encoding patch yk∗ ∈ RD. The encoding coefficients,

wk∗ ∈ Rd, can be calculated using wk∗ = φ>k∗(y
∗
k − c∗k).
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3.4 Experimental Results

To demonstrate the value in preserving geometry of the underlying manifold struc-

ture when approximating manifold-sampled data, we perform denoising experiments

for manifold-sampled noisy data. In the experiments performed on synthetic data, the

training data is generated by uniformly at random sampling 1200 training data points

from 3 half-turns of a swiss roll in R3. The proposed Algorithm 1 is used to learn a

union of tangent patches approximation of the training data. The K-SVD algorithm

[5] is used to approximate the training data using an overcomplete dictionary such that

the number of dictionary atoms and sparsity level are set to 20 and 2, respectively.

We randomly sample 1200 test data points from 3 half-turns of a swiss roll where

the test data samples are arranged column-wise in a matrix Y . Additive white gaussian

noise (AWGN) is added to Y to get a noisy version of the test dataset: Yn. To denoise

the noisy test dataset using the GP UoTP framework, Yn is projected on the learnt

GP UoTP structure using Algorithm 3 to get the denoised dataset Ŷ . Similarly, when

denoising using K-SVD, Yn is sparse coded on the learnt dictionary using the Orthogonal

Matching Pursuit (OMP) algorithm [34]. The dataset Yn is also denoised using the Haar

wavelet basis at a scale of 2 and an optimized soft threshold of 1.05 to get the denoised

dataset Ŷ . The mean square error (MSE) of denoising the dataset Yn is defined as:

MSE =
1

N
‖Y − Ŷ ‖2F (3.15)

where N is the number of data samples. In the experiments involving the swiss roll,

N = 1200 and the SNR is set to 10dB, where SNR = 10 log
‖Y ‖2F

E[‖Y−Yn‖2F ]
. The noisy

test dataset Yn is shown in Fig. 3.1(a) and the denoised dataset from the GP UoTP,

K-SVD and wavelet based approaches can be seen in Fig. 3.1(b), 3.1(c) and 3.1(d),

respectively. Note the gain in denoising performance is possible because of following

a geometric approach to denoising, which hints towards the potential of working with

GMA-based information processing algorithms.

Denoising experiments are also performed on a real-world dataset: the MNIST

database [28]. The dataset Y is compiled by randomly selecting 1000 images of the

digit 0 from the MNIST database and arranging the images column-wise in the matrix
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(a) (b)

(c) (d)

Figure 3.1: (a) Noise added to data sampled from 3-half turns of a swiss roll (SNR =
10dB). Data is denoised using (b) GP UoTP (MSE = 9.69 dB), (c) K-SVD (MSE =
11.88 dB) and (d) Haar wavelet thresholding (MSE = 10.98 dB).

Y . The GP UoTP, Merging based on Difference of Tangents (MDoT) [24] and the

Median K-Flats (MKF) [1] algorithms are used to learn a union of tangent patches, a

union of tangent planes and a union of flats approximation of the dataset Y , respectively.

The dimension of the patch, plane or flat used for data approximation is set to 5 for

these experiments. Additive white gaussian noise is added to the dataset Y in the same

manner as before to get a noisy version of the dataset Yn. The dataset Yn is denoised

by projecting it on the learnt structure (union of patches, planes or flats) for each of the

aforementioned algorithms to get the denoised dataset Ŷ . The experiments described

above for denoising based on GP UoTP, MDoT and MKF algorithms are repeated for

varying number of patches, planes and flats respectively. The denoising performance

for each algorithm can be seen in Fig. 3.2 where the mean square error (MSE) is as

defined in (3.15).

Similar experiment for denoising Yn from the MNIST dataset is also repeated for
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K-SVD [5] algorithm. For K-SVD, the number of dictionary atoms are varied while the

sparsity level is set to 5 (the number of dictionary atoms have to be less than N = 1000).

The comparison between Fig. 3.2 and 3.3 shows that if we use the GP UoTP denoising

procedure with large enough number of patches, the GP UoTP algorithm gives better

denoising performance than the K-SVD algorithm.

We also display a few examples of noisy versions of images from the MNIST dataset,

and their corresponding denoised versions obtained using the aforementioned denoising

algorithms. In particular, AWGN is added to three different images of digit 0 from

the MNIST dataset. To denoise each of the three noisy images using the GP UoTP

framework, each image is projected on the learnt GP UoTP structure using Algorithm

3. For the K-SVD algorithm, the number of dictionary atoms are set at 200 and the

dictionary is learnt using the K-SVD algorithm on the dataset Y . Each noisy image is

sparse coded on the learnt dictionary using the Orthogonal Matching Pursuit (OMP)

algorithm [34]. Finally, we also denoise the three example noisy images using the Haar

wavelet basis at a scale of 2 and a threshold of
√

2 ∗ log(D) ∗ Pn where Pn is the noise

power and D = 28×28 in this case. The noisy images and their corresponding denoised

versions are displayed in Fig. 3.4.

From the figure, it can be seen the denoising results using the wavelet based method

are worst than the denoising results obtained via the GP UoTP encoding method.

The denoising performance of the K-SVD algorithm is comparable with the denoising

performance of the GP UoTP algorithm. However, note that the number of tangent

patches in the GP UoTP algorithm are set at 5; whereas, the number of dictionary

atoms for the K-SVD algorithm have to be set at much greater than 5 to get comparable

results.
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Figure 3.2: Noise is added to 1000 images of digit 0 extracted from the MNIST database
(SNR = 10dB). Noisy data is projected onto the learnt flats/planes/patches for denois-
ing.

Figure 3.3: Noise is added to 1000 images of digit 0 extracted from the MNIST database

(SNR = 10dB). For denoising, the noisy data is sparse coded on the dictionary learnt

using K-SVD.
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Figure 3.4: In column 1, three examples of digit 0 from the MNIST dataset are dis-
played. Noise is added to each image in column 1 such that the SNR is 5dB, and the
noisy images are shown in column 2. The noisy images in column 2 are encoded onto
the GP UoTP and the learnt dictionary atoms in column 3 and 5, respectively. The de-
noising results based on wavelet based thresholding method are given in column 4. The
average logarithm reconstruction error in column 3 is 5.521, in column 4 is 6.150 and
in column 5 is 5.789. The logarithm reconstruction error is defined as log of the energy
in the difference between the images in column 1 and images in columns 3, 4 and 5,
respectively.
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Chapter 4

Conclusions

Many real-world signals may not have a subspace or a union-of-subspace representation,

but they may be manifested in a low-dimensional non-linear manifold embedded in

a high-dimensional ambient space. In this thesis, we proposed structure learning as

well as data encoding algorithm for classes of signals well represented by the manifold

model. We showed the value in capturing manifold geometry while approximating

the manifold structure using a union of linear structures. Our experimental results

show that geometry preserving manifold approximations can pave way for information

processing algorithms for manifold sampled data that perform better than the state-of-

the-art methods for data processing.

In particular, in Chapter 2, we proposed a bottom-up approach to approximating

manifold structure using union of tangent planes. The manifold approximation stage

is cascaded with a subsampling stage that exploits the local linearity of the manifold

for gready subsampling of the training dataset. Owing to this preprocessing step, our

algorithm shows particularly impressive computational complexity performance when

learning manifold geometry using dense training dataset. More importantly, our algo-

rithm adapts the number of tangent planes required for manifold geometry approxima-

tion with curvature of the manifold to ensure the approximation error remains within

acceptable threshold even as the manifold curvature increases.

In Chapter 3, we proposed an algorithm for learning a union of tangent patches

approximation of a non-linear non-intersecting manifold. Moreover, we proposed an

efficient routine for encoding new data points onto the union of tangent patches ap-

proximating the manifold. We also demonstrated the value of preserving the manifold

geometry in manifold approximation by demonstrating the denoising performance of
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the proposed structure learning and data encoding algorithm.

4.1 Future Directions

The value of preserving manifold geometry in various information processing tasks needs

to be further explored. The value of capturing manifold geometry in denoising manifold

sampled data has been demonstrated in this work, but preserving geometry may lead

to better classification (or perhaps more efficient sampling paradigms) for classes of

signals living on a manifold.

An important direction is to characterize the relationship between various metrics

of interest in our approximation approach: manifold curvature, maximum local approx-

imation error ε, number of approximating planes, ambient space dimension, intrinsic

dimension of manifold, sampling density of the training dataset on the manifold. In

particular, the following are some interesting questions that need to be addressed:

• For a given value of ε, how do the number of approximating tangent planes scale

with the manifold curvature?

• For a given value of ε and manifold curvature, can we find an upper bound on the

approximation error of a sample from the true manifold?

• How do we need to scale the value of ε with the manifold curvature and the sam-

pling density of the training dataset on the manifold such that the approximation

error of the true manifold is within a given range?
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