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Thesis Director: 

Hoang Pham 

 

 

 

 

Accelerated life testing of manufactured units is performed in order to speed 

up testing through either reducing the time required for testing or establishing a 

predetermined number of failures to stop the test. In this research we develop 

two cost models for a Type-II censored testing for Weibull distribution life time 

units. We determine the optimal sample size on test which minimizes the 

expected total cost of performing the life testing when the parameters of the 

Weibull distribution are either fixed or unknown. Numerical examples are 

included to illustrate the cost models based on real data applications. 
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Chapter 1 

 

Introduction 

 

The Weibull distribution has an important position in the reliability and life 

testing fields due to its mobility in fitting time-to-failure distributions. The most 

general Weibull distribution has the following three parameters: the shape 

parameter also known as the Weibull slope ( ), the scale parameter ( ) and the 

location parameter ( ). However, the location parameter is rarely used and when 

set to zero reduces the most common Weibull distribution form to be the two-

parameter one. There is also the one-parameter Weibull distribution, known as 

Exponential distribution, where the value of   is assumed to be known and equal 

to 1 [1], [14]. 

In the literature, it can be found various techniques to estimate the 

parameters of the Weibull distribution, such as the method of moments, the 

method of maximum likelihood estimation (MLE), and probability plot. For the 

MLE technique, it is necessary the use of software to solve the equations since it 

is necessary to solve the likelihood equations numerically [2].  

Long testing times are required for highly reliable products before useful failure 

data becomes available, bringing the interest of manufacturing companies to 

speed up the required time for testing by a sample of units. Ways of accelerating 

the life test include: fixing the time that the test will be ended (Type-I censoring), 

fixing the number of failures as the premise to stop the test (Type-II censoring) or 
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fixing the number of withdrawals at failure time (progressive Type-II censoring) 

[3]. Regarding to Type-II censored data life test, the user needs to fix the number 

of failures,    before testing, which choice will depend on the balance of waiting 

time to finish the test and the risk of making an error in the product.  

The associated cost with performing a Type-II censoring test will depend on 

how long the test is expected to last, how many samples are going to be placed 

under test and how unreliable the test is. Thus finding a balance between all 

those features, such as the total cost is minimized, can be a competitive factor 

for the companies. In the literature it can be found many studies concerning 

software testing and its cost models [4], [5], [6], [7], [8], [9], [10]. 

In this work we consider the two-parameter Weibull distribution for the lifetime 

product and use the MLE technique to estimate the Weibull parameters 

considering a Type-II censored life testing. The aim of this research is to develop 

two different testing cost models for Weibull distribution lifetime units and to 

determine the optimum sample size on test, considering the fixed number of 

failures equal 2, for each proposed model. The optimal sample size is given by 

the number of samples that minimizes the expected total testing cost assuming 

that the cost of waiting the test end per unit time, the cost of placing a unit on 

test, the cost of the waiting variance per unit time, the cost to place the testing 

and the associated cost of test unreliability (risk) are given (this last cost is 

considered only in the second cost model). In this research, we also develop the 

optimum sample size policy that minimizes the expected total cost subject to the 
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unknown parameters of the Weibull distribution lifetime where some preliminary 

failure data is available.  

The thesis is structured as follows. In Chapter 2 a general problem definition 

is presented while in Chapter 3 a description of the first Cost Model for Type II 

censored data life test is made and the mathematical results for the optimal 

testing sample size is demonstrate and then illustrate by numerical examples. 

Chapter 4 describes the second Cost Model and its results for the optimal design 

of life testing and shows numerical examples in order to illustrate the theoretical 

results. Finally, the conclusion and future research are presented in Chapter 5.  
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Chapter 2 

 

Research Objectives 

 

Accelerated life testing has been widely used by manufacturing companies 

since it reduces the required time for testing by a sample of units. A Type-II 

censored data life test fixes the number of failures as the premise to stop the 

test, and its expected total testing time is minimized when the sample size is 

increased. On the other hand, placing more units to test also increases the total 

testing cost. 

When planning the test, besides the cost of the expected testing time and the 

cost of placing n units to test, engineers may want to consider some other cost 

factors such as the cost of the variance on the expected testing time and the cost 

of placing the test regardless the number of units (setup cost). Since there is a 

risk of testing units fail before the test time (test unreliability), it is also convenient 

to consider its associated cost in the total expected testing cost. 

Since a Type-II censored data life test has a predetermined number of 

failures, the sample size of units being tested has a great influence in the total 

expected testing cost then, determining an optimal sample size    to place on 

test that minimizes this cost is valuable information for manufacturing companies. 

In this work we develop two different testing cost models and determine the 

optimal sample size of Weibull distribution lifetime units that should be placed 

under test when the number of failures is fixed at 2. 
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Chapter 3 

 

Cost Model with Considerations of Life Testing Type II Censoring (Model 1) 

 

Assuming that the lifetime   of a product follows a Weibull distribution with 

parameters β and θ, the probability density function (pdf)      and the probability 

of an item failing before time   (cumulative distribution function)      are given in 

Eq. 1 and Eq. 2, respectively. The probability of the product not failing before time 

  is        and is also called product reliability (Eq. 3) [11]. 

 

       
 

           
 

 
  
 

             
 

 
  
 

           
 

 
  
 



A life test on a sample of   units is considered, in which the common 

underlying distribution of the length of a single unit is given by the Weibull 

probability density function as given in Eq. 1. The observed failures are denoted 

by  , where        , and have      defined as the time when the     failure 

occurs. The experiment is terminated at time      which means as soon as the     

failure occurs, known as Type-II censored data life test. To estimate the 

parameters   and   we performed the MLE method [3] where the following steps 

were taken: 



6 
 

 
 

1) Obtain the likelihood function as it is shown in Eq. 4; 

2) Take the derivative of the natural logarithm of the likelihood function (Eq. 

5) with respect to   and   (Eq. 6 and Eq. 7, respectively); 

3) Set them equal to 0 and solve for the parameters   and   (Eq. 8 and Eq. 

9, respectively). 
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 ∑   
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Let   be the number of units that are placed on test, the termination of the test 

be at the     failure and    be the length of the test time until the     failure 

occurs. Assuming that the unit lifetime follows a Weibull distribution with 
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parameters   and  , then the expected and the variance of the test time to end 

the test are given [12], respectively, as follows: 
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

3.1 Cost Model Formulation (     ) 

For the Cost Model 1, here referred as      , we consider the expected 

total cost of a Type II censored life testing as the sum of the: (i) expected cost 

of waiting the test to finish, (ii) cost of all   items placed into test, (iii) fixed 

cost of setting up the test, and (iv) cost of variance of the expected testing 

time. 

Let    be the cost of waiting per unit time until the test is ended,    be the 

cost of placing an item under test,    be the cost to set up the testing and    be 

the cost of expected testing time variance. The expected total cost proposed in 

this work is adapted from [6], [7] and [8], and it can be written as follows: 

 

                                                          



where      , and       are given in Eq. 10 and Eq. 11, respectively. 
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3.2 Modeling Results 

In this section, we present the mathematical solution for the optimal sample 

size that minimizes the total expected cost of testing (     ), with a fixed 

number of failures at    , considering both the cases where the Weibull 

parameters are given and where they are unknown and some preliminary failure 

data is available. 

 

3.2.1 Known Weibull Parameters 

Assume that all the costs and Weibull parameters are given, and that 

   . We can determine the optimal value  , say   , that minimizes the 

total expected cost       as shown in the following theorem. 

 

Theorem 1: For given values   ,   ,    and   , and   equal 2, there 

exists the optimum sample size   on test, say   , that minimizes the 

expected total cost,      , subject to the known parameters   and   

of the Weibull distribution lifetime and 

 

                   
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Proof: Define                     . From Eq. 12 we obtain: 
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Eq. 15 can be simplified as follows: 

 

                 



where      is as Eq. 14. 

One has         , if and only if,        . The function      can be 

empirically shown to be decreasing in   for all    , so there exists a value 

   such that        . This implies that 
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

3.2.2 Unknown Weibull Parameters 

Assume that all the costs are given, that   is equal 2, and that 

preliminary failure time data is available. We can determine the optimal 

value  , say   , that minimizes the total expected cost       as shown in 

the following theorem. 

 

Theorem 2: For given values   ,   ,    and   , and    , there 

exists the optimum sample size   on test, say   , that minimizes the 

expected total cost,      , subject to the unknown parameters   

and   of the Weibull distribution lifetime and 
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where   ,   ,    and   are given in Eq. 19, Eq. 20, Eq. 21, and Eq. 22, 

respectively. 

Eq. 23 can be simplified as follows: 

 

                 

 

where      is as Eq. 18. 
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One has         , if and only if,        . The function      can be 

empirically shown to be decreasing in   for all    , so there exists a value 

   such that        . This implies that 

                   

 

3.3 Numerical Examples 

To illustrate the results of the theorems presented in subsections 3.2.1 and 

3.2.2, in this section we show numerical examples where the optimal sample 

size of units, that should be placed under Type II censored data life test, is 

solved. All the calculations were made using MATLAB. 

For all the examples we will assume       per unit hour,        per 

item,        per testing and       per unit hour. 

 

3.3.1 Given Weibull parameters 

In this subsection, we present two different examples to illustrate the 

mathematical solution of the optimum sample size assuming that the 

Weibull parameters are given as showed in Theorem 1. 

Example 1 

In this first example we assume that the Weibull parameters   and    

are known and their respective values are       and      . The parameters 

and the cost values were used to obtain the values of the      function (Eq. 

14) in MATLAB. The obtained results are shown in Table I. 
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Table I: Example 1 obtained results of      and       

             

12 881.5184 16235.98 

13 741.5568 15854.46 

14 632.1418 15612.91 

15 545.0369 15480.77 

16 474.5974 15435.73 

17 416.8516 15461.13 

18 368.9402 15544.28 

19 328.7632 15675.34 

 

According to Theorem 1, and since       , we will search for the first 

value of   where its respective      value is less than or equal to 500. 

Thus, the optimum sample size is       units with a total expected testing 

cost of           . 

Fig 3.1. graphically shows that      is non-increasing in  , while Fig. 3.2 

shows a 3-D plot of     ,       and  . 
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Figure 3.1 –      function of example 1 

 

 

Figure 3.2 – 3-D plot (     x       x  ) of example 1 
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Example 2 

In this example we consider different Weibull parameter values, which 

are         and        . The obtained results can be seen in Table II. 

Since we assume       , we will search again for the first value of   

that satisfies         . As result, we can say that the optimum sample 

size is       units and the total expected testing cost is           . 

Table II: Example 2 obtained results of      and       

             

23 746.08 21,613.89 

24 660.94 21,367.81 

25 588.5 21,206.87 

26 526.46 21,118.37 

27 473.01 21,091.90 

28 426.69 21,118.90 

29 386.34 21,192.21 

30 351.02 21,305.87 

 

In Fig 3.3. it can be seen that      is non-increasing in  , while Fig. 3.4 

shows a 3-D plot of     ,       and  . 
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Figure 3.3 –      function of example 2 

 

Figure 3.4 – 3-D plot (     x       x  ) of example 2 
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3.3.2 Unknown Weibull parameters 

In this subsection we show two different numerical examples in order to 

illustrate the mathematical solution of the optimum sample size for the case 

were the Weibull parameters are unknown (Theorem 2) and some 

preliminary failure data is available. This preliminary data is used to 

estimate the Weibull parameters  ̂ and  ̂ since they will vary for each 

different possible sample size   as it can be seen in Eq. 8 and Eq. 9, 

respectively. 

Example 3 

Here we will use preliminary failure time data from a literature example 

[3], where the two first failure events occur at         and        . The 

failure times    and    are first used to obtain the   combinations of Weibull 

parameter estimators  ̂ and  ̂. The parameters and the cost values were 

used to obtain the values of the      function (Eq. 18). Thus, a sample of 

the obtained results of  ̂,  ̂ and      for each   are shown on Table III. 

According to Theorem 2, and since       , we will search for the first 

value of   that satisfies         . Thus, we can say that the optimum 

sample size is       units and the total expected testing cost is 

          . 
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Table III: Example 3 obtained results of  ̂,  ̂ and      

   ̂  ̂      

10 3.0763 182.42 692.62 

11 3.068 182.7 601.61 

12 3.0612 182.94 528.39 

13 3.0555 183.16 468.52 

14 3.0506 183.36 418.87 

15 3.0464 183.54 377.18 

16 3.0427 183.7 341.79 

17 3.0395 183.86 311.47 

 

In Fig 3.5. it can be graphically seen that      is non-increasing in  , 

while Fig. 3.6 shows a 3-D plot of      x  ̂ x   and      x  ̂ x  . 

 

 

Figure 3.5 –      function of example 3 
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Figure 3.6 – 3-D plot (    x ̂x  and     x ̂x  ) of example 3 

 

Example 4 

In this example we use real data as the preliminary failure time data [13] 

where the time of the first 2 failure events are       and        As in the 

previous example, the failures times (  ,   ) are first used to obtain the   

combinations of Weibull parameter estimators  ̂ and  ̂. The estimators and 

the cost values are then used to obtain the      values. The obtained 
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Table IV: Example 4 obtained results of  ̂,  ̂ and      

   ̂  ̂      

48 4.2796 712.55 536.025 

49 4.2791 712.58 520.628 

50 4.2786 712.61 505.965 

51 4.2781 712.64 491.988 

52 4.2777 712.67 478.651 

53 4.2773 712.7 465.915 

54 4.2769 712.73 453.742 

55 4.2765 712.75 442.098 

 

In Fig 3.7. it can be graphically seen that      is non-increasing in  , 

while in Fig. 3.8 it can be seen a 3-D plot of      x  ̂ x   and      x  ̂ x  . 

 

 

Figure 3.7 –      function of example 4 
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Figure 3.8 – 3-D plot of (    x ̂x  and     x ̂x  ) of example 4  
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Chapter 4 

 

Cost Model with Considerations of Life Testing Type II Censoring and Test 

Risk (Model 2) 

 

In this section we are going to present the second Cost Model where the cost 

associated to test unreliability is also taken into account for a Life Testing Type II 

Censoring, and also show its mathematical optimum testing sample size and 

numerical examples. 

 

4.1 Cost Model Formulation (     ) 

In Cost Model 2, denoted as        we consider the expected total cost of a 

Type II censored life testing as the sum of the expected cost of waiting the test 

to finish (  ), the cost of all items placed into test (  ), the fixed cost of setting 

up the test (  ), the cost of variance of the expected testing time (  ) and the 

cost of the risk of testing units fail before the expected test time (  ). The 

expected total cost model proposed is adapted from [6], [7] and [8], and can be 

written as follows: 

 

                                             



where         ,      ,       are given in Eq. 3, Eq. 10 and Eq. 11, 

respectively. 
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4.2 Modeling Results 

In this section we present the mathematical solutions of the optimal sample 

size that should be placed under test for the case where the Weibull parameters 

are given and for the case where they are unknown but some preliminary failure 

data is available. 

 

4.2.1 Known Weibull parameters 

Assuming that all the costs and the Weibull parameters are given, and 

that   is fixed at 2, we can determine the optimal value  , say   , which 

minimizes the total expected cost       as shown in Theorem 3. 

 

Theorem 3: For given values   ,   ,   ,   ,    and     there exists 

the optimum sample size   on test, say      that minimizes the 

expected total cost,      , subject to the known parameters   and   

of the Weibull distribution lifetime and 

 

                   

 

where 
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Proof: Define                     . From Eq. 25 we obtain: 
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)  



Eq. 28 can be simplified as follows: 

 

                 



where      is as Eq. 27. 

One has         , if and only if,        . The function      can be 

empirically shown to be decreasing in   for all    , so there exists a value 

   such that        . This implies that 
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4.2.2 Unknown Weibull parameters 

Assuming that all the costs are given, and that   is fixed at 2, we can 

determine the optimal value  , say   , that minimizes the total expected cost 

      as shown in the following theorem. 

 

Theorem 4: For given values   ,   ,   ,   ,    and     there exists 

the optimum sample size   on test, say    , that minimizes the 

expected total cost,      , subject to the unknown parameters   and 

  of the Weibull distribution lifetime and 

 

                   
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Proof: Define                     . From Eq. 25 we obtain: 
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where   ,   ,    and   are given in Eq. 32, Eq. 33, Eq. 34, and Eq. 35, 

respectively. 

Eq. 36 can be simplified as follows: 

 

                 

 

where      is as Eq. 31. 

One has         , if and only if,        . The function      can be 

empirically shown to be decreasing in   for all    , so there exists a value 

   such that        . This implies that 

                   

 

4.3 Numerical Examples 

To illustrate the results of the theorems 3 and 4, as showed in subsections 

4.2.1 and 4.2.2, respectively, we provide numerical examples where the optimal 

sample size is solved. All the calculations were made using MATLAB programs. 

For all the examples we will assume       per unit hour,        per 

item,        per testing,       per unit hour and        . 
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4.3.1 Given Weibull Parameters 

In this subsection we show two different numerical examples in order to 

illustrate Theorem 3 that shows the mathematical solution for the optimal 

sample size of a Type II censored life test with known Weibull parameters. 

Example 5 

In this example we assume that the Weibull parameter values are 

        and        . The values of the costs and of the parameters are 

used in order to obtain the results of the function  

     as in Eq. 27. Thus, the obtained results are shown in Table V. 

Considering that       , according to Theorem 3, we look for the first 

value of   that satisfies         . Thus, we can say that the optimum 

sample size is       units and the total expected testing cost is 

          . 

Table V: Example 5 obtained results of      and       

             

12 881.518413 16235.98 

13 741.556767 15854.46 

14 632.141762 15612.91 

15 545.036887 15480.77 

16 474.597413 15435.73 

17 416.851595 15461.13 

18 368.940204 15544.28 

19 328.763245 15675.34 
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Fig 4.1. graphically shows that      is non-increasing in   and Fig. 4.2 

shows a 3-D plot of     ,       and  . 

 

Figure 4.1 –      function of example 5 

 

Figure 4.2 – 3-D plot (     x       x  ) of example 5 
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Example 6 

In this example we consider different Weibull parameter values: 

        and        . The obtained results of      and  

      can be seen on Table VI. 

Table VI: Example 6 obtained results of      and       

             

22 846.8607 21960.75 

23 746.0766 21613.89 

24 660.9395 21367.81 

25 588.5027 21206.87 

26 526.4644 21118.37 

27 473.0079 21091.90 

28 426.6865 21118.90 

29 386.338 21192.21 

 

According to Theorem 3, and since       , we look for the first   value 

such that         is satisfied. We can say that the optimum sample size is 

      units with a total expected cost of           . 

In Fig 4.3. it can be graphically seen that      is non-increasing in  , 

while Fig. 4.4 shows a 3-D plot of     ,       and  . 
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Figure 4.3 –      function of example 6 

 

Figure 4.4 – 3-D plot (     x       x  ) of example 6 
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4.3.2 Unknown Weibull parameters 

In this subsection we show two different numerical examples in order to 

illustrate the mathematical solution of the optimum sample size, as in 

Theorem 4, for the case where the Weibull parameters are unknown but 

some preliminary failure data is available. The failure times are required to 

estimate the Weibull parameters  ̂ and  ̂ for each   as in Eq. 8 and Eq. 9, 

respectively. 

Example 7 

In this example we use the literature data [3],         and        , as 

preliminary failure time data. The times    and    are first used to obtain the 

  combinations of the Weibull parameter estimators  ̂ and  ̂. The cost 

values and the estimators are then used to obtain the values of the 

function      (Eq. 31). Thus, the obtained results for  ̂,  ̂ and      are 

shown on Table VII. 

Table VII: Example 7 obtained results of  ̂,  ̂ and      

   ̂  ̂      

10 3.0763 182.42 692.62 

11 3.068 182.7 601.61 

12 3.0612 182.94 528.4 

13 3.0555 183.16 468.52 

14 3.0506 183.36 418.87 

15 3.0464 183.54 377.18 

16 3.0427 183.7 341.79 
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Considering that        and according to Theorem 4, we look for the 

first value of   where          is satisfied. Thus, we can say that the 

optimum sample size is       with a total expected testing cost is 

          . 

In Fig 4.5. it can be graphically seen that      is non-increasing in  , 

while in Fig. 4.6 it can be seen a 3-D plot of      x  ̂ x   and      x  ̂ x  . 

 

 

Figure 4.5 –      function of example 7 
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Figure 4.6 – 3-D plot (    x ̂x  and     x ̂x ) of example 7 

Example 8 

In this example we use real failure time data [13] where the first 2 failure 

events occur at       and      . The times    and     are first used to 

obtain the   combinations of the Weibull parameter estimators  ̂ and  ̂. 

Then, the parameter and cost values are used to obtain the values of     . 

The obtained results can be seen on Table VIII. 

According to Theorem 4, we look for the first value of   that satisfies 

       . Since       ,               and              , we can 

say that the optimum sample size is       units with a total expected cost 

of           . 
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Table VIII: Example 8 obtained results of  ̂,  ̂ and      

   ̂  ̂      

48 4.2796 712.55 536.025 

49 4.2791 712.58 520.628 

50 4.2786 712.61 505.965 

51 4.2781 712.64 491.988 

52 4.2777 712.67 478.651 

53 4.2773 712.7 465.915 

54 4.2769 712.73 453.742 

55 4.2765 712.75 442.098 

 

Fig 4.7. graphically shows that      is non-increasing in  , while Fig. 4.8 

shows a 3-D plot of      x  ̂ x   and      x  ̂ x  . 

 

Figure 4.7 –      function of example 8  
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Figure 4.8 – 3-D plot (    x ̂x  and     x ̂x ) of example 8 
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Chapter 5 

 

Conclusion and Future Research 

 

The Weibull distribution has great importance to the reliability and life testing 

fields since it is versatile when fitting time-to-failure distributions. 

Long testing times are required for highly reliable products before useful failure 

data becomes available, bringing the interest of manufacturing companies to 

speed up the testing. Reducing the time of testing can be achieved through the 

widely used accelerated life testing methods namely: Type-I censoring, Type-II 

censoring, and progressive Type-II censoring. 

There is an associated cost when performing life testing, which will depend on 

the cost model’s factors such as: total expected time of testing, number of units 

placed under test, setup cost, and a cost associated to the risk of testing units fail 

before the testing time. 

In this work we developed two testing cost models for a Type-II censoring 

testing for units under Weibull distribution life time, and determined the optimal 

sample size on test, considering a fixed number of failures equal 2, that minimizes 

the total expected cost for both cost models considering two scenarios: when the 

Weibull parameters are given or predetermined and when they are unknown but 

a preliminary failure data is available. 
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This research can be extended to the cases where the optimum Weibull 

lifetime units sample size, that are placed under test, can be obtained for any 

predetermined number of failures to terminate the test. 

 

  



39 
 

 
 

REFERENCES 

 

[1] ReliaSoft Coorporation. Characteristics of the Weibull Distribution. 
Available at: http://www.weibull.com/hotwire/issue14/relbasics14.htm 

 
[2]  B. Dodson, 2006. The Weibull Analysis Handbook, 2nd ed., ASQ Quality 

Press, Milwaukee. 
 
[3] J. P. Klein, M. L. Moeschberger, 2003. Survival Analysis: Techniques for 

Censored and Truncated Data, 2nd ed., Springer-Verlag, New York. 
 
[4]  H. Pham, H. Wang, “A Quasi-Renewal Process for Software Reliability 

and Testing Costs,” IEEE Transactions on Systems, Man, and 
Cybernetics, vol. 31, n. 6, pp. 623-631, November 2001. 

 
[5]  X. Teng, H. Pham, “A Software Cost Model for Quantifying the Gain with 

Considerations of Random Field Environments,” IEEE Transactions on 
Computers, vol. 53, n. 3, pp. 380-384, March 2004. 

 
[6]  H. Pham, “Optimal Design of Life Testing for ULSI Circuit Manufacturing,” 

IEEE Transactions on Semiconductor Manufacturing, vol. 5, n. 1, pp. 68-
70, February 1992. 

 
[7]  H. Pham, X. Zhang, “A Software Cost Model with Warranty and Risk 

Costs,” IEEE Transactions on Computers, vol. 48, n. 1, pp. 71-75, January 
1999. 

 
[8] W. Ehrlich, B. Prasanna, J. Stampfel, J. Wu, “Determining the Cost of a 

Stop-test Decision,” IEEE Software, vol. 10, n. 2, pp. 33-42, March 1993. 
 
[9] C. Y. Huang, M. R. Lyu, “Optimal Release Time for Software Systems 

Considering Cost, Testing-Effort, and Test Efficiency,” IEEE Transactions 
on Reliability, vol. 54, n. 4, pp. 583-591, December 2005. 

 
[10] S. R. Huang, S. J. Wu, “Reliability Sampling Plans Under Progressive 

Type-I Interval Censoring Using Cost Functions,” IEEE Transactions on 
Reliability, vol. 57, n. 3, pp. 445-451, September 2008. 

 
[11] H. Pham, 2014. Reliability: Models, Statistical Methods, and Applications. 

Rutgers University. 
 
[12] H. Pham, 2006. Springer Handbook of Engineering Statistics, 1st ed., 

Springer-Verlag, London. 
 
[13] D. You, H. Pham, “Reliability Analysis of the CNC System Based on Field 

Failure Data in Operating Environments,” Quality and Reliability 

http://www.weibull.com/hotwire/issue14/relbasics14.htm


40 
 

 
 

Engineering International, John Wiley & Sons, December 2015, doi: 
10.1002/qre.1926. 

 
[14] H. Pham, C. -D. Lai, “On Recent Generalization of the Weibull 

Distribution,” IEEE Transactions on Reliability, vol. 56, n. 3, pp. 454-458, 
September 2007. 

http://dx.doi.org/10.1002/qre.1926

