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ABSTRACT OF THE DISSERTATION

An affine Weyl group interpretation of the “motivated proofs” of

the Rogers-Ramanujan and Gordon-Andrews-Bressoud identities

by Bud B. Coulson

Dissertation Director: James Lepowsky

A motivated proof of the Rogers-Ramanujan identities was given by G. E. Andrews and R. J.

Baxter. This proof was generalized to the odd-moduli case of Gordon’s identities by J. Lepowsky

and M. Zhu, and later to the even-moduli case of the Andrew-Bressoud identities by S. Kanade,

Lepowsky, M. C. Russell and A. Sills. We present a reinterpretation of these proofs, with new

motivation coming from the affine Weyl group of sl(2).

ii



Acknowledgements

I would like to express my sincere gratitude to my advisor Jim Lepowsky for his continual support

of my research and for his patience, motivation, and immense knowledge. His guidance has been

invaluable, and this thesis would not exist without his aid and encouragement.

I would also like to thank the rest of my thesis committee: Yi-Zhi Huang, Lisa Carbone, and

Corina Calinescu, for their insightful comments and advice.

Finally, I would like to thank my family: my parents and siblings for their love and support;

and my wonderful, loving, selfless wife Becky for being with me always.

iii



Dedication

Dedicated to my son, Iggy.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Background material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Affine Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Rogers-Ramanujan case - new interpretation . . . . . . . . . . . . . . . . . . . . . . 12

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2. Definitions and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3. Closed formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4. Empirical Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5. Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. Gordon-Andrews case - new interpretation . . . . . . . . . . . . . . . . . . . . . . . 30

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2. Definitions and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3. Closed formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4. Empirical Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5. Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. Andrews-Bressoud case - new interpretation . . . . . . . . . . . . . . . . . . . . . . 45

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



5.2. Definitions and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3. Closed formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4. Empirical Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5. Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



1

Chapter 1

Introduction

The classical Rogers-Ramanujan partition identities state that

∏
m≥1,

m 6≡ 0,±2 (mod 5)

1

1− qm
=
∑
n≥0

d1(n)qn, (1.1)

∏
m≥1,

m 6≡ 0,±1 (mod 5)

1

1− qm
=
∑
n≥0

d2(n)qn, (1.2)

where

d1(n) = the number of partitions of n for which adjacent parts have difference at least 2

and

d2(n) = the number of partitions of n for which adjacent parts have difference at least 2

and no part is equal to 1

The “product sides” (i.e., the left-hand sides above) of the Rogers-Ramanujan identities enu-

merate the partitions whose parts obey certain restrictions modulo 5, and the “sum sides” (the

right-hand sides) enumerate the partitions with certain difference-two and initial conditions. Gen-

eralizations of the Rogers-Ramanujan identities for all odd moduli were discovered by B. Gordon

[G1] and G. E. Andrews [A1]. Analogous identities for the even moduli of the form 4k+2 were dis-

covered by Andrews in [A2] and [A3], and subsequently, for all the even moduli, by D. M. Bressoud

in [Br].

In [AB], Andrews and A. Baxter gave an interesting “motivated proof” of these two Rogers-

Ramanujan identities, a variant of one of the original proofs by Rogers and Ramanujan and of

an earlier proof by Baxter himself. In their proof, they explained the difference-two condition
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appearing in the sum sides directly from the product sides, and in doing this, they were able to

both motivate the expressions on the sum sides and prove the two identities.

Their method was to start by rewriting the product sides of the two identities using the classical

Jacobi triple product identity (as in done is most proofs of the Rogers-Ramanujan identities), then

to take certain combinations of these series to generate an infinite tower of series. Once notices

empirically that these higher series converge to 1 in a suitable sense. They called this assertion the

“Empirical Hypothesis”, and they were able to prove it by giving closed-formed expressions for the

higher series. Then, solving for the base series in terms of these higher series exactly yields the

partition conditions present on the sum sides.

Recently, J. Lepowsky together with students and collaborators have given a series of analogous

“motivated proofs” for various identities of Rogers-Ramanujan type, in which the “motivation” has

been similar in spirit to the motivation in [AB]. Correspondingly, we will use the term “motivated

proof” as a technical term. In particular, in [LZ], Lepowsky and M. Zhu gave a “motivated proof” of

the Gordon-Andrews generalization of the Rogers-Ramanujan identities, and in [KLRS], S. Kanade,

Lepowsky, M. C. Russell and A. Sills gave a “motivated proof” of the Andrews-Bressoud identities.

It is well known that partition identities of Rogers-Ramanujan type are closely related to the

representation theory of vertex operator algebras. Early vertex operator theory was in fact moti-

vated by the successful attempt to realize the combinatorial sum sides of identities of this type -

exhibiting them as the graded dimensions of vector spaces constructed from certain natural ver-

tex operators. In a series of papers ([LW2]-[LW4]), Lepowsky and R.L. Wilson accomplished this

using the theory of “principally twisted Z-operators”, built out of the “twisted vertex operators”

starting from [LW1]. In fact, the Z-algebraic structure developed in [LW2]-[LW4] gave a vertex-

operator-theoretic interpretation of the whole family of Gordon-Andrews-Bressoud identities, as

well as a vertex-operator-theoretic proof of the Rogers-Ramanujan identities, in the context of the

affine Lie algebra A
(1)
1 . For the cases beyond Rogers-Ramanujan, A. Meurman and M. Primc, in

[MP], extended this vertex-operator-theoretic interpretation to a full proof of the higher identities.

This Z-algebra viewpoint (or an equivalent formulation) was later used by K. Misra [Mi1]-[Mi4],

M. Mandia [Ma], C. Xie [X], S. Capparelli [Cap1]-[Cap2], M. Tamba - Xie [TX], M. Bos - K. Misra

[BM], and D. Nandi [N] to give further interpretations and proofs of these same identities, as well

as to study new identities, in the context of a wider range of affine Lie algebras. A very different
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vertex-algebraic approach to the sum sides of the Rogers-Ramanujan and Gordon-Andrews identi-

ties was developed in [CLM1], [CLM2], [CalLM1] and [CalLM1] based on “untwisted” intertwining

operators.

These connections have been major incentives in seeking out “motivated proofs”. However,

in all of the “motivated proof” papers referenced above, the proofs have been based entirely on

the manipulation of q-series, while all of the vertex-operator-algebraic proofs have made use of

deep vertex algebraic theory. This distinction between the two approaches has made it difficult to

understand “motivated proofs” from a strictly vertex-operator theoretic viewpoint.

The present work was inspired by our desire to approach this ultimate goal, and we have

succeeded in making a significant step in this direction. We choose to view the Jacobi triple

product identity as the denominator identity for the affine Lie algebra A
(1)
1 = ŝl(2), in order to

recast the q-series entering into the proofs of the Gordon-Andrews-Bressoud identities in terms of

the affine Weyl group of sl(2). It turns out that this leads to surprising insights into the nature of

these series and into the algebraic and geometric structure underlying the “motivated proofs” of

these identities. In particular, most parts of the “motivated proofs” are made shorter and take on a

much more natural form, and the nature of certain contributions to the series becomes much more

transparent. While the proofs are still based on q-series manipulation, the ad hoc manipulations

used previously become motivated transformations that come directly from the Coxeter group. This

work should help to bridge the gap between the “motivated proof” papers and the vertex-algebraic

papers mentioned above.

We expect that this approach can be generalized to higher rank affine Lie algebras. Applying this

analysis to higher-rank affine Lie algebras should lead to many new identities of Rogers-Ramanujan

type, as well as to new proofs of known identities.

In this work, first we treat the special “test case” of the Rogers-Ramanujan identities. Once

having gone through all the proofs here, we handle the more general case of the Gordon-Andrews

identities. Finally, we deal with the Andrews-Bressoud identities, which exhibit some new behavior

but follow the same general paradigm.
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Chapter 2

Background material

2.1 Affine Lie algebras

We start with recalling basic theory of affine Lie algebras, and specifically information related to

the smallest affine Lie algebra

A
(1)
1 = ŝl(2).

This material is covered in many introductory texts - see for example [Ca] or [K]. After reviewing

some basic material, we will specify what we will be using in this work.

The general Weyl-Kac denominator formula states that given an affine Lie algebra g, we have

∑
w∈W

(−1)`(w)ewρ−ρ =
∏
α∈∆+

(1− e−α) (2.1)

whereW is the associated affine Weyl group, ∆+ is the set of positive roots, and ρ is the fundamental

weight.

For w ∈ W , the quantity wρ − ρ will be extremely important to us. As is well known, this

expression is equal to the sum of the positive roots made negative by w (see for example [Ca],

Chapter 20). The standard notation for this set of roots is ∆w, and correspondingly, we will denote

the wρ = ρ by the symbol

|∆w|

(where the “absolute value” is meant to indicate the sum of the enclosed set). This action can be

computed explicitly from the action of the generators (basic reflections): for any root γ,

siγ = γ − 〈αi, γ〉hi

where αi, hi are respectively the root and coroot corresponding to si.
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Remark 2.1. Although we have written the denominator formula above in its natural generality,

in this work, we will be exclusively concerned with the concrete affine Lie algebra A
(1)
1 . Hereafter,

whenever W appears, it is to be understood to refer to the Weyl group of this particular affine Lie

algebra (i.e., the affine Weyl group of A1 = sl(2)).

The group W can be viewed as the group of affine reflections on a one-dimensional lattice. It

has generators s0 and s1 (corresponding to the two simple roots, α0 and α1), with defining relations

s2
0 = s2

1 = e

(and no others).

The sum

δ = α0 + α1

is the basic imaginary root, and it is well known that there are three strings of positive roots: the

imaginary roots

kδ, k > 0

and the real roots

αp + kδ, p = 0, 1, k ≥ 0

When working in this context, given an element of the root lattice (for example, |∆w|), we will

denote its coordinates in the α0, α1 basis by the subscripts 0, 1. In particular, we have

|∆w| = |∆w|0α0 + |∆w|1α1 (2.2)

Remark 2.2. In this work, we will deal extensively with formal power series in a formal variable

q (i.e., formal series with non-negative integral powers of q), where the summands are indexed by

elements of W . The summand corresponding to w ∈ W will always be a polynomial in q, and the

data making up this polynomial will always be expressed in terms of the |∆w| quantities defined

above. Thus, it is of the utmost importance to know the exact dependence of |∆w| on w, and how

it changes under certain transformations of W .

We now compute the action of the generators s0, s1 on |∆w| . First, we recall the basic actions
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of of the Weyl group on the roots, which follow directly from the formula given above:

s0α0 = −α0 (2.3)

s0α1 = 2α0 + α1 (2.4)

s1α0 = α0 + 2α1 (2.5)

s1α1 = −α1 (2.6)

Applying these equations, we get:

|∆s0w|0 = −|∆w|0 + 2|∆w|1 + 1 (2.7)

|∆s0w|1 = |∆w|1 (2.8)

|∆s1w|0 = |∆w|0 (2.9)

|∆s1w|1 = 2|∆w|0 − |∆w|1 + 1. (2.10)

It is also direct from the definition that

|∆e| = 0 = 0α0 + 0α1

Using this initial condition and the above recursions, we see that the values assumed by the |∆w|

components are the triangle numbers. Specifically, the points |∆w| , w ∈W trace out the parabola

(|∆w|0 − |∆w|1)
2 = |∆w|0 + |∆w|1 (2.11)

in the α0α1 plane.

To clarify the above, and for later use, at this point we introduce special notation for Weyl

group elements: for h ≥ 0, let w0
h denote the Weyl element of length h whose shortest expression

(in the generators s0, s1) starts with s0 and w1
h denote the Weyl element of length h whose shortest

expression starts with s1.

Notice that

w0
0 = w1

0

both correspond to the identity element of the group.

Explicitly, for h ≥ 0, we write

w0
h =

length h︷ ︸︸ ︷
s0s1s0 · · · (2.12)

w1
h =

length h︷ ︸︸ ︷
s1s0s1 · · · (2.13)
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Then we can restate the conclusions above as

|∆w0
h
|
0

=

(
h+ 1

2

)
= |∆w1

h
|
1

(2.14)

|∆w0
h
|
1

=

(
h

2

)
= |∆w1

h
|
0

(2.15)

It follows that

|∆w0
h
|
0

= |∆w0
h+1
|
1

(2.16)

|∆w1
h
|
1

= |∆w1
h+1
|
0

(2.17)

Now we have developed enough background to revisit the denominator equation in the context

of A
(1)
1 . It becomes

∑
w∈W

(−1)`(w)e−|∆w| = (e−α0 , e−δ)∞(e−α1 , e−δ)∞(he−δ, e−δ)∞

where

(a; q)∞ =
∏
m≥0

(1− aqm)

(the q-Pochhammer symbol).

The technical proofs in this work all deal with the manipulation of formal power series of the

form described in Remark 2.2. The series will be different for the different classes of identities we

consider, but they will all have certain features in common.

Our basic tools for manipulating these series are the application of certain transformations of

W , will which act on the series as “changes of index”. Many times, we will need to make use of

how these transformations affect the common features of the series. For convenience, at this point

we record these results here, and then reference them later as appropriate.

Definition 2.3. Let s1∗ : W → W be the map of left-composition with the generator s1. This

map is an involution. In terms of the notation introduced above, this map acts on elements of W

by interchanging w0
h and w1

h+1. Its action on an expression of the form |∆w| is recorded above in

(2.9), (2.10).
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Definition 2.4. Let f : W → W be the outer automorphism which exchanges the two generators

s0 and s1. This map is an involution. In terms of the notation introduced above, this map acts on

elements of W by interchanging w0
h and w1

h (in particular, it fixes the identity element e ∈W ). Its

action on an expression of the form |∆w| is to switch its components in formula (2.2).

Notice that s1∗ changes the length of each element by ±1, while f(·) preserves the lengths of

elements.

Let w be an element of the affine Weyl group W . Consider the following expressions in the

formal variable q:

(q|∆w|1 − q|∆w|0−r), (q|∆w|0 − q|∆w|1−r)

It follows from the discussion above that the transformation s1· turns the first expression into

(q2|∆w|0−|∆w|1+1 − q|∆w|0−r) = q|∆w|0−|∆w|1+1(q|∆w|0 − q|∆w|1−(r+1))

and the second into

(q|∆w|0 − q2|∆w|0−|∆w|1+1−r) = q|∆w|0−|∆w|1(q|∆w|1 − q|∆w|0−(r−1))

On the other hand, the transformation f will clearly just interchange these two expressions. It

follows that:

Corollary 2.5. Applying the transformations s1∗, f(·) to W gives:

s1∗ : (q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1)(q|∆w|1 − q|∆w|0−1) · · · (q|∆w|0 − q|∆w|1−h)

7→ (q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1)(q|∆w|1 − q|∆w|0−1) · · ·

(q|∆w|0 − q|∆w|1−h)qh(2|∆w|0−2|∆w|1+1)

f(·) : (q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1)(q|∆w|1 − q|∆w|0−1) · · · (q|∆w|0 − q|∆w|1−h)

7→ −(q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1) · · · (q|∆w|1 − q|∆w|0−(h−1))(q|∆w|1 − q|∆w|0−h)
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s1∗ : (q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1)(q|∆w|1 − q|∆w|0−1) · · · (q|∆w|1 − q|∆w|0−h)

7→ (q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1) · · · (q|∆w|0 − q|∆w|1−h)(q|∆w|0 − q|∆w|1−(h+1))

· q(2h+1)(|∆w|0−|∆w|1)+(h+1)

f(·) : (q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1)(q|∆w|1 − q|∆w|0−1) · · · (q|∆w|1 − q|∆w|0−h)

7→ −(q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1)(q|∆w|1 − q|∆w|0−1) · · · (q|∆w|1 − q|∆w|0−h)

Remark 2.6. The result above can be made to look even more natural: when these factors

occur in our series, the values −r in the exponents actually arise as the following expressions:

|∆w1
r
|
0
− |∆w1

r
|
1

for those factors in parentheses with |∆w|0 first, and −|∆w0
r
|
0

+ |∆w0
r
|
1

for those

factors in parentheses with |∆w|1 first. Since s1 acts on W by interchanging w0
r ↔ w1

r+1, and the

map f interchanges w0
r ↔ w1

r , we see that the transformation of expressions calculated above work

even on this level of notation. This is another strong motivation for considering the series in this

light.

Remark 2.7. Note in particular that in two of the cases, the expression is only rescaled by a sign

and/or power of q. This fact will prove to be vital in the proofs of the “edge-matching” phenomena.

Remark 2.8. As has been indicated above, the series sums we consider will always be over the

full Weyl group. Frequently, we visualize the elements of the Weyl group as living on the parabola

traced out by the components of their respective |∆w| values. Because of this, it may seem natural

to view these sums as “two-sided infinite”, with the identity element (corresponding to the vertex of

the parabola) in the middle. However, what turns out to be best is to view the sum as “one-sided”

infinite, starting at w = e and continuing in a zig-zag up the parabola. This is akin to the the

appearance of the series in [LZ], but with the following important and fundamental difference: in

[LZ], the sum was made infinite by “folding” the Weyl group in two and pairing. Essentially, each

summand in the series in [LZ] corresponds to the combination of two different Weyl elements. In

our approach, we instead introduce a natural linear ordering on the Weyl group: starting with

w0
0 = e, we alternatingly apply the two transformations above in the order s1·, f(·). In terms of
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our notation, the ordering of the Weyl elements is

w0
0, w

1
1, w

0
1, w

1
2, w

0
2, · · ·

Remark 2.9. Of course, the analogous transformation s0∗ could have also been considered in

addition to or instead of s1∗. The fact that we prefer s1 over s0 is an arbitrary choice, made

to confirm to earlier works on motivated proofs. The origin of this distinction comes from the

choice of specializations of formula (2.1) we make to define initial “shelves” of series below - the

alternative choices (switching the specialization in each case) would correspond to working with

the s0 transformation throughout.

Remark 2.10. Although we have used the language of the Lie algebra A
(1)
1 in discussing the

material above, all of the analysis in this work takes place solely on the level of the affine Weyl

group. The relevant underlying theory is that of Coxeter groups, not that of Lie algebras.

2.2 Partitions

When we discuss the combinatorics of the “sum sides” of the identities, we will be using the following

terminology concerning partitions:

A partition of a non-negative integer n is a finite nonincreasing sequence of positive integers,

written as

π = (π1, . . . , πt)

such that π1 + · · ·+ πt = n. Each πs is called a part of π. The length `(π) of π is the number of

parts in π, and given a positive integer p, the multiplicity m(p) of p in π is the number of parts

of π equal to p. As is conventional, we say that the integer 0 admits the unique partition into no

parts (the empty partition).

Given a sequence (an), n ≥ 0, the corresponding generating function is the formal power

series ∑
n≥0

anq
n

in the formal variable q. In all of the identities we consider (and as was already seen in (1.1), (1.2)),

we will want to interpret the right-hand sides as generating functions of partitions satisfying certain
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restrictions. In other words, the coefficient of qn will be the number of partitions of n obeying the

given restrictions.
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Chapter 3

Rogers-Ramanujan case - new interpretation

3.1 Introduction

As was mentioned in the introduction, the Rogers-Ramanujan identities were the first identities to

be given a “motivated proof” (in [AB]). Here we give a brief summary of their “motivation” and

their proof technique.

Starting with the product sides of the identities (1.1), (1.2), one subtracts the second series

(which they denoted G2(q)) from the first one (denoted G1(q)), and divided by q to obtain a new

formal series G3(q). Next, one forms G4(q) = (G2(q)−G3(q))/q2. One repeats this process, giving

Gi(q) = (Gi−2(q) − Gi−1(q))/qi−2 for all i ≥ 3, and notices empirically that for each i ≥ 1, Gi(q)

is a power series in the formal variable q, it has constant term 1, and Gi(q) − 1 is divisible by qi.

This is the “Empirical Hypothesis” of Andrews-Baxter, and its truth easily leads to a proof the

two Rogers-Ramanujan identities.

To prove the Empirical Hypothesis directly from the product sides, one starts by transforming

the two initial Rogers-Ramanujan product sides into alternating sums using the Jacobi triple prod-

uct identity. By running these alternating sums through the recursion given above, one obtains

alternating sum formulas for the next several Gi series, and can conjecture and prove closed-formed

formulas for all of the higher series. However, the calculations necessary to establish these formulas

(formal manipulation and reindexing of q-series) are essentially ad-hoc.

We will be following [LZ] and the appendices to [CKLMQRS], which refined this argument.

These papers incorporate concepts not used in [AB], such as placing series on “shelves”, as we will

review. While the basic logic of the proof below is the same as in these earlier papers, we will go

through the motivated proof “from scratch” using our new perspective, highlighting the differences

between these prior works and our new approach, and giving new motivation for each step. Our
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approach leans heavily on the observation first made by Lepowsky and S. Milne in [LM], that the

Rogers-Ramanujan series arise as graded dimensions of the level-3 modules for the affine Lie algebra

A
(1)
1 .

3.2 Definitions and background

By specializing the quantities e−α0 , e−α1 in (2.1) to appropriate powers of a single variable q, we

obtain the product sides of the Rogers-Ramanujan identities (up to a factor), and can use the

identity above to express them in alternating-sum form.

Specifically, specializing e−α0 7→ q3, e−α1 7→ q2, we get

(q2, q5)∞(q3, q5)∞(q5, q5)∞ = (q, q)∞(q, q5)−1
∞ (q4, q5)−1

∞

=
∑
w∈W

(−1)`(w)q3|∆w|0+2|∆w|0
(3.1)

Specializing e−α0 7→ q4, e−α1 7→ q, we get

(q, q5)∞(q4, q5)∞(q5, q5)∞ = (q, q)∞(q2, q5)−1
∞ (q3, q5)−1

∞

=
∑
w∈W

(−1)`(w)q4|∆w|0+|∆w|0
(3.2)

Denote by F (q) the series

(q, q)∞ =
∏
n≥1

(1− qn)

Dividing these equations through by F (q), we recognize on the left-hand sides the Rogers-Ramanujan

product expressions from (1.1), (1.2). In the proofs, we will work with the right-hand sides, which

we denote as

R1(q) =
1

F (q)

∑
w∈W

(−1)`(w)q3|∆w|0+2|∆w|1

R2(q) =
1

F (q)

∑
w∈W

(−1)`(w)q4|∆w|0+|∆w|1

respectively (we choose the symbol R instead of G for these series to distinguish between these and

the more general Gordon-Andrews series of the next chapter).

We emphasize that these two expressions are our definition of a “zeroth shelf” of series, which

we will subsequently use to generate infinitely many higher shelves of series.
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Starting with these two series, we inductively define an infinite sequence of series by the equation

Ri+2(q) =
Ri(q)−Ri+1(q)

qi
(3.3)

As mentioned above, this recursion was originally motivated (in [AB]) by the empirically evident

fact that the resulting Ri series are always of the form 1 + qi + · · · , with all positive coefficients. A

new feature seen here for the first time is that this recursion also aligns naturally to the recursion for

the |∆w| terms. This provides a new motivation coming directly from the Coxeter group structure.

We arrange these series into shelves of two series each. The two series on shelf j are Rj+1 and

Rj+2. In particular, the zeroth shelf consists of the series R1 and R2 given above, and the second

series on each shelf is the same as the first series on the next shelf.

In order to use the recursion, it is necessary that all the series on a given shelf must share a

similar form. We demonstrate how this works for the first few shelves:

The zeroth shelf consists of the two series

R0+1(q) =
1

F (q)

∑
w∈W

(−1)`(w)q3|∆w|0+2|∆w|1

R0+2(q) =
1

F (q)

∑
w∈W

(−1)`(w)q4|∆w|0+|∆w|1

Substituting these series into the recursion yields

R1+2(q) =
R0+1(q)−R0+2(q)

q
=

1

qF (q)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0)q3|∆w|0+|∆w|1

To complete shelf j = 1, we need a similarly-shaped formula for the R2 series. The natural thing

to try is to have the same factor in parentheses and ensure that after distributing the parentheses,

the positive part is identical with our previous R2 formula. This approach yields:

R1+1(q) =
1

F (q)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0)q4|∆w|0

In order for this formula to be valid, we need the difference R0+2−R1+1 to be 0. This difference

is the series

1

F (q)

∑
w∈W

(−1)`(w)q5|∆w|0

which is in fact 0, as can be seen by applying the “change of index” w 7→ s1w. This has the effect

of changing the length by 1, but has no effect on the value of |∆w|0. Hence the overall effect is to

negate each term of the series, which in turn implies that the whole sum is 0.
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Next, we recursively compute

R2+2(q) =
R1+1(q)−R1+2(q)

q2
=

1

q2F (q)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1)q3|∆w|0

To complete shelf j = 2, we need a similarly-shaped formula for the R3 series. Again, we

attempt to match the parentheses, which gives

R2+1(q) =
1

qF (q)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1)q2|∆w|0+|∆w|1

As before, in order to verify that this series expression is identical to the previous expression

for R3(q), we need to consider the difference R1+2 −R2+1. This is given by

1

q2F (q)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0)q2|∆w|0+2|∆w|1

This time, we apply the change of index w 7→ f(w). Clearly the length of a Weyl group element is

invariant under this transformation, and its effect on |∆w| is to interchange the components |∆w|0
and |∆w|1.

Hence the transformed expression is

1

q2F (q)

∑
f(w)∈W

(−1)`(w)(q|∆w|0 − q|∆w|1)q2|∆w|1+2|∆w|0

which is once again precisely the negation of the original difference series. As above, this implies

that the sum is 0, and that the two forms of the R3 series are both valid.

Notice that in this last computation, the bijection w ↔ f(w) fixes the identity element of the

Weyl group, w = e. However, this does not cause any problems: the summand corresponding to

the identity element is 0 because the factor (q|∆e|0 − q|∆e|1) is (q0 − q0) = 0.

Although it is not readily apparent yet at this early stage, it is also the case that the powers

of q appearing in the denominator before the sum can be nicely expressed in terms of Weyl data.

This will be made explicit below in the general series formulas.

3.3 Closed formulas

We have the following remarkable closed-form formulas for these series:



16

Theorem 3.1. Let j ≥ 0 and i = 1, 2. If j = 2h is even, then

R2h+i(q) =
1

F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(2−i)

·
∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

q(2+i−h)|∆w|0+(3−i−h)|∆w|1 (3.4)

If j = 2h+ 1 is odd, then

R(2h+1)+i(q) =
1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(2−i)

·
∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

q(5−i−h)|∆w|0+(i−1−h)|∆w|1 (3.5)

Remark 3.2. We mentioned in Remark 2.8 that one way in which our formulas differ from those

in earlier works is that ours are “unfolded”. Now that we have stated this theorem, we can justify

this claim by comparing our formulas (3.4), (3.5) to the corresponding formulas from Theorem 2.1

in [LZ] (in the special case k = 2, which gives the Rogers-Ramanujan series). Each summand of

the series there corresponds to two terms of our series as given above. In fact, the pairings of terms

on even and odd shelves (values of j) correspond exactly to the involutions defined in Definitions

2.3, 2.4 respectively. However, this disparity between even and odd shelves is invisible in [LZ].

Remark 3.3. By replacing some of the expressions in terms of |∆w| data with their numerical

values, we can write the above formulas in a much more compact form:

R2h+i(q) =
1

qh(h+1)(i−1)+h2(2−i)F (q)

·
∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1) · · · (q|∆w|0 − q|∆w|1−h)

q(2+i−h)|∆w|0+(3−i−h)|∆w|1 (3.6)

R(2h+1)+i(q) =
1

q(h+1)2(i−1)+h(h+1)(2−i)F (q)

·
∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0)(q|∆w|0 − q|∆w|1−1) · · · (q|∆w|1 − q|∆w|0−h)

q(5−i−h)|∆w|0+(i−1−h)|∆w|1 (3.7)
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In the statement of the theorem, we have chosen to write out the expanded version for several

reasons: first of all, this is the form in which the exponents actually arise out of the recursions. It

also makes it clearer how the transformations s1·, f(·) act on these factors. Finally, in the proof of

the Empirical Hypothesis in the next section, this formulation makes it evident how cancellations

arise in the exponents for the smallest non-zero contribution. However, choosing to write the

formulas this way does necessitate an extra step in the proofs of the edge-matching, invoking

certain identities of the |∆w| components in order to properly compare the two different series. In

this section we will point out these shifts whenever they occur, but in later sections we will suppress

these reminders.

Proof. The expressions above give two different formulas for the “edge” cases — i.e., i = 1 on shelf

j ≥ 1 and i = 2 on shelf j − 1 — so we first prove that they are compatible.

Let Rj,i(q) denote the right-hand side of the formulas above. We will verify that the difference

Rj,2(q)−Rj+1,1(q) = 0

We do this by performing a suitable “change of index” on the sum, namely, the two transformations

defined above in Definitions 2.3 and 2.4. The calculation will depend on the parities of the shelves

involved.

Let j = 2h (so that j + 1 = 2h+ 1). Then we have:

R2h,2(q)−R2h+1,1(q)

=
1

F (q)
q
−2|∆

w0
h
|
0

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q(4−h)|∆w|0+(1−h)|∆w|1

− 1

F (q)
q
−2|∆

w1
h+1
|
0

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1) · q(4−h)|∆w|0−h|∆w|1

=
1

F (q)
q
−3|∆

w0
h
|
0
+|∆

w0
h
|
1

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q(5−h)|∆w|0−h|∆w|1

Above, we have implicitly made the identification

|∆w0
h
|
0

= |∆w1
h+1
|
0
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for the leading exponents.

We now apply the transformation s1∗ (from Definition 2.3) to the Weyl group. This is a bijection

of the Weyl group, so must leave the above sum invariant. Recall from (2.7) that the effect of this

transformation on the components |∆w|0 and |∆w|1:

|∆w| = |∆w|0α0 + |∆w|1α1 7→ |∆s1w| = |∆w|0α0 + (2|∆w|0 − |∆w|1 + 1)α1

Also recall that it changes the length of each Weyl element by one. We have already computed

above in Corollary 2.5 the effect of this transformation on the factors in parentheses. Hence the

above sum is transformed into:

R2h,2(q)−R2h+1,1(q)

=
1

F (q)
q
−3|∆

w0
h
|
0
+|∆

w0
h
|
1

∑
s1w∈W

(−1)`(s1w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· qh(2|∆w|0−2|∆w|1+1)+(5−h)|∆w|0−h(2|∆w|0−|∆w|1+1)

= − 1

F (q)
q
−3|∆

w0
h
|
0
+|∆

w0
h
|
1

∑
s1w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q(5−h)|∆w|0−h|∆w|1

This final expression is exactly the negation of the starting series. The anti-commutativity of this

expression proves that it must be 0.

Next, let j = 2h+ 1 (so that j + 1 = 2(h+ 1)). Then we have:

R2h+1,2(q)−R2(h+1),1(q)

=
1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

] ∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· q(3−h)|∆w|0+(1−h)|∆w|1

− 1

F (q)
q
−

[
|∆

w0
h+1
|
0

+|∆
w0
h+1
|
1

] ∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· (q|∆w|0 − q
|∆w|1+|∆

w1
h+1
|
0

−|∆
w1
h+1
|
1)q(2−h)|∆w|0+(1−h)|∆w|1

=
1

F (q)
q
−2|∆

w1
h+1
|
1

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· q(2−h)|∆w|0+(2−h)|∆w|1



19

Above, we have implicitly made the identification

|∆w0
h+1
|
0

+ |∆w0
h+1
|
1

= |∆w1
h+1
|
0

+ |∆w1
h+1
|
1

for the leading exponents.

We now apply to the Weyl group the transformation f , defined in Definition 2.4. This is a

bijection of the Weyl group, so must leave the above sum invariant. Recall that the effect of this

transformation is to interchange the components |∆w|0 and |∆w|1, and that it leaves invariant the

length of the Weyl element. Invoking Corollary 2.5, we see that the above series is transformed

into:

R2h+1,2(q)−R2(h+1),1(q)

= − 1

F (q)
q
−2|∆

w1
h+1
|
1

∑
f(w)∈W

(−1)`(f(w))(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· q(2−h)|∆w|1+(2−h)|∆w|0

Again the overall effect of this transformation is to negate the sum, and the anti-commutativity of

this expression proves that it must be 0.

Remark 3.4. The calculations in this proof are simpler and more philosophically satisfying than

the corresponding steps in the proof in [LZ] (or [CKLMQRS] for the edge-matching, which was

suppressed in [LZ]). Because the series there were “folded” (see Remark 3.2), it was necessary in

the proofs to break up each series and reindex different halves separately in order to match up terms

appropriately. Here, the sums are always over the full Weyl group W and terms always match up

naturally. Moreover, the “reindexing” now comes from a natural transformation of the indexing

group W , instead of an ad hoc shifting.

Now that we have verified the edge-matching, it remains to show that these formulas satisfy the

recursion. We handle this in two cases once more. In both cases, we take the difference of the two

shelf j series formulas to get the i = 2 entry on shelf j + 1.
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First, let j = 2h, j + 1 = 2h+ 1:

R2h+1(q)−R2h+2(q)

q2h+1

=
1

q2h+1

[
1

F (q)
q
−|∆

w0
h
|
0
−|∆

w0
h
|
1

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q(3−h)|∆w|0+(2−h)|∆w|1

− 1

F (q)
q
−2|∆

w0
h
|
0

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q(4−h)|∆w|0+(1−h)|∆w|1

]

=
1

F (q)
q
−|∆

w0
h
|
0
−|∆

w0
h
|
1
−(2h+1) ∑

w∈W
(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q

|∆w|1+|∆
w1
h
|
0
−|∆

w1
h
|
1)

· (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)q(3−h)|∆w|0+(1−h)|∆w|1

= R(2h+1)+2(q)

Secondly, let j = 2h+ 1, j + 1 = 2(h+ 1):

R(2h+1)+1(q)−R(2h+1)+2(q)

q2h+2

=
1

q2h+2

[
1

F (q)
q
−2|∆

w1
h+1
|
0

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· q(4−h)|∆w|0−h|∆w|1

− 1

F (q)
q
−|∆

w1
h+1
|
0

−|∆
w1
h+1
|
1

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· q(3−h)|∆w|0+(1−h)|∆w|1

]

=
1

F (q)
q
−2|∆

w1
h+1
|
0

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· (q|∆w|0 − q
|∆w|1+|∆

w1
h+1
|
0

−|∆
w1
h+1
|
1)q(3−h)|∆w|0−h|∆w|1

= R(2h+2)+2(q)

Remark 3.5. From these calculations, we see that the most natural way to express the denomi-

nators of the recursions (3.3) is as

q2h+1 = q
(|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

)−(|∆
w0
h
|
0
+|∆

w0
h
|
1
)

= q
|∆

w1
h+1
|
1

−|∆
w0
h
|
1
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when j = 2h and

q2(h+1) = q
2[|∆

w0
h+1
|
0

−|∆
w1
h+1
|
0

]

when j = 2h + 1 (indeed, we have already implicitly made use of these expressions to obtain the

final lines of the equations above).

Remark 3.6. In previous works on motivated proofs, the sum was always reindexed at each stage

of the recursion to ensure that all summands were nonzero. This was natural, because there was

no visible reason for preserving the information of having terms equal to zero at the beginning of

the sum. However, our sums are never “reindexed” (they are always over the full Weyl group), so

we do end up with a finite number of summands equal to zero at the start of every R series past

the first shelf.

Remark 3.7. It is important to note that the common factor F (q) plays no role in the proof here,

except for the identification with the original Ri(q), i = 1, . . . , k. The factor F (q) could have been

replaced with any nonzero formal power series in q, and every step of the proof would have been

identical (beyond the identification with the original Ri (q), i = 1, . . . , k), and equivalent to the

existing step. However, F (q) is crucial for the “Empirical Hypothesis,” which in fact, as we shall

see, uniquely determines this factor.

3.4 Empirical Hypothesis

As a consequence of Theorem 3.1, we are now in a position to formulate and prove the Empirical

Hypothesis. This is the main ingredient needed to complete the motivated proof.

Theorem 3.8 (Empirical Hypothesis). For any j ≥ 0 and i = 1, 2,

Rj+i(q) = 1 + qj+1γ(q)

for some

γ(q) ∈ C[[q]].

Remark 3.9. Note that since Rj+2(q) = R(j+1)+1(q), Theorem 3.8 implies that we can write

Rj+2(q) = 1 + qj+2γ(q) where γ(q) is some formal power series.
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Remark 3.10. The proof of this theorem is a more involved argument than for the corresponding

result in [LZ] and [CKLMQRS], because it is necessary to “translate” the data of the series from

Weyl notation to integers in order to compare the term of the series to the shape of the proposed

Empirical Hypothesis.

An overview of the proof: Recall the linear order on W introduced above, in Remark 2.8. In

general, for each R series, the first few summands in this ordering will be equal to 0. The first term

which is nonzero will contribute the initial 1 + qj+1 in the Empirical Hypothesis, and in general, all

other contributions from it and all subsequent terms will involve only greater powers of q. In the

special case i = 2, a closer analysis shows that the next term after the least nonzero contributor

contributes exactly what is needed to make the series of the form 1 + qj+2.

Proof. First, we consider the even-shelf series, which from Theorem 3.1 are of the form

R2h+i(q) =
1

F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(2−i)

·
∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1) · q(2+i−h)|∆w|0+(3−i−h)|∆w|1

First suppose that w is one of the first 2h elements (with respect to the linear order)- i.e., w is

either of the form w0
r for r < h, or w1

r for r ≤ h. It follows from (2.14), (2.15) that

|∆w0
r
|
0
− |∆w0

r
|
1

= r = |∆w1
r
|
1
− |∆w1

r
|
0

(3.8)

Considering the corresponding term, we see that exactly one of these factors inside the parentheses

will be zero in this case. Specifically, if w = w0
r for some for r < h, then

(q|∆w|1 − q|∆w|0−|∆w0
r
|
0
+|∆

w0
r
|
1) = (q|∆w|1 − q|∆w|0−r) = 0 (3.9)

while if w = w1
r for some r ≤ h, then

(q|∆w|0 − q|∆w|1+|∆
w1
r
|
0
−|∆

w1
r
|
1) = (q|∆w|0 − q|∆w|1−r) = 0 (3.10)

We claim that the first nonzero contribution to the series is from the term w = w0
h, and that this

contribution is of the shape 1 + q2h+1 +O(q2h+2). This claim is justified by the following sequence
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of computations, starting with the w = w0
h term from the series referenced above:

1

F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(2−i)

(−1)`(w
0
h)(q

|∆
w0
h
|
1 − q

|∆
w0
h
|
0) · · · (q

|∆
w0
h
|
0 − q

|∆
w0
h
|
1
+|∆

w1
h
|
0
−|∆

w1
h
|
1) · q

(2+i−h)|∆
w0
h
|
0
+(3−i−h)|∆

w0
h
|
1

=
1

F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(2−i)

(−1)h{q
|∆

w0
h
|
1(1− q

|∆
w0
h
|
0
−|∆

w0
h
|
1)} · · · {−q

|∆
w0
h
|
1
−h

(1− q
|∆

w0
h
|
0
−|∆

w0
h
|
1
+h

)}

· q
(2+i−h)|∆

w0
h
|
0
+(3−i−h)|∆

w0
h
|
1

=
1

F (q)
(−1)2h(1− q) · · · (1− q2h)

q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(2−i)+2h|∆

w0
h
|
1
−|∆

w0
h
|
0
+(2+i−h)|∆

w0
h
|
0
+(3−i−h)|∆

w0
h
|
1

In the middle of the calculation, we used the fact that in the factors −q|∆w|1−r for r = 1, . . . , h,

each r is really |∆w1
r
|
1
− |∆w1

r
|
0
. Then the relations (2.14) - (2.17) allow us to collapse the sum

1 + · · ·+ h into a telescoping sum which yields the singleton −|∆w0
h
|
0

in the exponent on the next

line.

Looking more closely at the exponent of q, we can regroup it as

2

[
(|∆w0

h
|
0

+ |∆w0
h
|
1
)− (|∆w0

h
|
0

+ |∆w0
h
|
1
)

]
+ i

[
(|∆w0

h
|
0
− |∆w0

h
|
1
)− (|∆w0

h
|
0
− |∆w0

h
|
1
)

]
+ |∆w0

h
|
0

+ |∆w0
h
|
1
− h(|∆w0

h
|
0
− |∆w0

h
|
1
)

= 0 + 0 + h2 − h2

= 0

Moreover, expanding

F (q) = (1− q)(1− q2)(1− q3) · · ·

we see that we can cancel the first 2h factors of F (q) with the remaining factors in the term. Hence

this term is in fact equal to

(q2h, q)−1
∞ = 1 + q2h+1 + · · ·

(as can be seen by using the standard expansion (1− q)−1 = 1 + q + q2 + q3 + · · · )
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To verify that all subsequent contributions are O(q2h+1), we will once again make use of the

two bijective transformations of the Weyl group using Corollary 2.5.

The proof here is essentially by induction: starting with w0
h (for which we have explicitly

calculated the contribution), we compute how the minimal power of q in the next (with respect to

the linear order) term is related to the powers present in the previous term. We will perform two

calculations, one for each of our the transformations (and corresponding respectively to those w of

each of the two forms w0
r , w

1
r). For these calculations, the part of the data that is the same across

all terms (i.e., the leading factors written in terms of F (q) and the components of |∆w0
h
|) will not

be affected, and hence can be neglected in the computations.

First, suppose that w is of the form w0
r for some r ≥ h. Using Definition 2.3 and Corollary 2.5,

we are able to express the term corresponding to s1w = s1w
0
r = w1

r+1 in terms of the w0
r data. The

overall effect is to scale the term by a certain power of q. By combining the factor from Corollary

2.5 and taking the difference of the original and transformed ending exponents, we calculate that

this power of q is equal to

h

(
2|∆w|0 − 2|∆w|1 + 1

)
+ (2 + i− h)|∆w|0 + (3− i− h)(2|∆w|0 − |∆w|1 + 1)

− (2 + i− h)|∆w|0 + (3− i− h)|∆w|1

= h

(
2|∆w|0 − 2|∆w|1 + 1

)
+ (3− i− h)(2|∆w|0 − 2|∆w|1 + 1)

= (3− i)(2|∆w|0 − 2|∆w|1 + 1)

≥ 2h+ 1

where for the last inequality holds, we have used the facts that i ≤ 2 and that for elements of the

form w0
r with r ≥ h, we have |∆w|0 − |∆w|1 ≥ h. (Notice that in particular, we get equality in

the last line only when i = 2 and r = h, and in this case the least contribution from this term

is −q2h+1, which precisely cancels out the q2h+1 from the previous term, giving us a series of the

form 1 + q2h+2 + · · · . This shows the agreement between the edge-matching and the Empirical

Hypothesis). In general, this confirms that all higher contributions are O(q2h+1).

Next, suppose that w = w1
r for some r ≥ h+ 1. Here the next Weyl element in the linear order
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is f(w1
r) = w0

r . From Definition 2.4 and Corollary 2.5, the relevant parts of the terms that we need

to compare are

(q|∆w|0 − q|∆w|1−h) · q(2+i−h)|∆w|0+(3−i−h)|∆w|1

= q(3+i−h)|∆w|0+(3−i−h)|∆w|1 − q(2+i−h)|∆w|0+(4−i−h)|∆w|1−h

for the w1
r term and

− (q|∆w|1 − q|∆w|0−h)q(2+i−h)|∆w|1+(3−i−h)|∆w|0

q(3+i−h)|∆w|0+(3−i−h)|∆w|1 − q(2+i−h)|∆w|0+(4−i−h)|∆w|1−h

The ratios between the parts of these expressions is

q(−2i+1)|∆w|0+(2i−1)|∆w|1−h

for the positive parts and

q(−2i+1)|∆w|0+(2i−1)|∆w|1+h

for the negative parts. The ratio between positive parts is the smaller of the two, and we can bound

its exponent as

(2i− 1)

[
|∆w|1 − |∆w|0

]
− h ≥ (2i− 1)(h+ 1)− h ≥ 1

Hence the power of q must increase, and here, too, the contribution is O(q2h+1).

Combining these results, we have verified the Empirical Hypothesis for even shelves.

For odd shelves, from Theorem 3.1, the series are of the form

R(2h+1)+i(q) =
1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(2−i)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· q(5−i−h)|∆w|0+(i−1−h)|∆w|1

First suppose that w is one of the first 2h+ 1 elements (with respect to the linear order) - i.e.,

that w is either of the form w0
r for r ≤ h, or w1

r for r ≤ h. Then reasoning as above, it follows from

the formulas (3.8), (3.9), and (3.10) that the terms corresponding to these elements are 0.
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We claim that the first nonzero contribution to the series is from the term w = w1
h+1, and that

this contribution is of the shape 1 + q2h+2 + O(q2h+3). This claim is justified by the following

sequence of computations, starting with the w = w1
h+1 term from the series referenced above:

1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w0
h+1
|
0

(2−i)

(−1)`(w
1
h+1)(q

|∆
w1
h+1
|
1 − q

|∆
w1
h+1
|
0) · · · (q

|∆
w1
h+1
|
1 − q

|∆
w1
h+1
|
0

−|∆
w0
h
|
0
+|∆

w0
h
|
1)

· q
(5−i−h)|∆

w1
h+1
|
0

+(i−1−h)|∆
w1
h+1
|
1

=
1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w0
h+1
|
0

(2−i)

(−1)h+1{−q
|∆

w1
h+1
|
0(1− q

|∆
w1
h+1
|
1

−|∆
w1
h+1
|
0)} · · · {−q

|∆
w1
h+1
|
0

−h
(1− q

|∆
w1
h+1
|
1

−|∆
w1
h+1
|
0

+h
)}

· q
(5−i−h)|∆

w0
h
|
0
+(i−1−h)|∆

w0
h
|
1

=
1

F (q)
(−1)2h+2(1− q) · · · (1− q2h+1)

q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w0
h+1
|
0

(2−i)+(2h+1)|∆
w0
h
|
1
−|∆

w1
h+1
|
0

+(5−i−h)|∆
w0
h
|
0
+(i−1−h)|∆

w0
h
|
1

As above, the relations (2.14) - (2.17) allow us to collapse the telescoping sum −(1 + · · ·+ h) into

the singleton −|∆w1
h+1
|
0

in the exponent on the next line.

Looking more closely at the exponent of q, we can regroup it as

4

[
|∆w1

h+1
|
0
− |∆w1

h+1
|
0

]
+ i

[
(|∆w1

h+1
|
1
− |∆w1

h+1
|
0
)− (|∆w1

h+1
|
1
− |∆w1

h+1
|
0
)

]
+ |∆w1

h+1
|
0

+ |∆w1
h+1
|
1
− (h+ 1)(|∆w1

h+1
|
1
− |∆w1

h+1
|
0
)

= 0 + 0 + (h+ 1)2 − (h+ 1)2

= 0

Moreover, expanding F (q) = (1− q)(1− q2)(1− q3) · · · , we see that we can cancel the first 2h+ 1

factors of F (q) with the remaining factors in the term. Hence this term is in fact equal to

(q2h+1, q)−1
∞ = 1 + q2h+2 + · · ·

To verify that all subsequent contributions are O(q2h+2), we use the same technique as for the
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even shelves: applying the two transformations to terms coming from the above series and verifying

that exponents always increase.

First suppose w is of the form w1
r for some r ≥ h + 1, so that the next Weyl element in the

linear order is f(w1
r) = w0

r . By Definition 2.4 and Corollary 2.5, the f(·) transformation acts as

negation on the factors in parentheses, and its effect on the ending exponents results in rescaling

by a power of q, whose exponent is:

(i− 1− h)|∆w|0 + (5− i− h)|∆w|1

− (5− i− h)|∆w|0 − (i− 1− h)|∆w|1

= (2i− 6)|∆w|0 + (−2i+ 6)|∆w|1

= 2(3− i)[|∆w|1 − |∆w|0]

≥ 2h+ 2

with equality only when i = 2 and w = w1
h+1. Since we have made the assumption that the

preceding term is at least 1 + O(q2h+2), and the minimal exponent here is at least 2h + 2 higher,

we conclude that the contribution here is O(q2h+2).

Next suppose w is of the form w0
r for some r ≥ h+ 1, so that the next Weyl element is s1w

0
r =

w1
r+1. Using Definition 2.3 and Corollary 2.5, the relevant difference in the two corresponding terms

is the replacement of

(q|∆w|1 − q|∆w|0−h)q(5−i−h)|∆w|0+(i−1−h)|∆w|1

= q(5−i−h)|∆w|0+(i−h)|∆w|1 − q(6−i−h)|∆w|0+(i−1−h)|∆w|1−h

from the w0
r term with

− (q|∆w|0 − q|∆w|1−(h+1))q(2h+1)(|∆w|0−|∆w|1)+(h+1)+(5−i−h)|∆w|0+(i−1−h)(2|∆w|0−|∆w|1+1)

= q(4+i−h)|∆w|0+(−i+1−h)|∆w|1−h − q(5+i−h)|∆w|0+(−i−h)|∆w|1

for the w1
r+1 term.

The ratios of the positive and negative parts here are respectively

q(2i−1)|∆w|0+(−2i+1)|∆w|1+i−h, q(2i−1)|∆w|0+(−2i+1)|∆w|1+i+h
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The lower ratio is between the positive parts, with exponent

(2i− 1)

[
|∆w|0 − |∆w|1

]
+ i− h ≥ i+ 1

(using the fact that |∆w|0 − |∆w|1 ≥ h + 1 for w in the range we’re considering). Therefore it is

also true in this situation that the power of q increases, and the contribution to the series remains

O(q2h+2).

Having done both cases, we see that all higher contributions are O(q2h+2), and we have verified

the Empiricial Hypothesis for odd shelves.

Remark 3.11. Our proof of the Empirical Hypothesis provides justification for the linear order we

have defined on W (see Remark 2.8). Also, compared to the proof of the corresponding Empirical

Hypothesis in [LZ], here we get additional information as to the contributions to the series from

each term, in terms of its Weyl index. This was hidden before because of how the series were

written without leading 0s (see Remark 3.6).

3.5 Combinatorics

To complete the motivated proof, we now recall Theorem 2.2 from [LZ].

Remark 3.12. The proof we give here (which is in the spirit of [LZ], Remark 4.1) is not the

most satisfying philosophically because it requires us to have “known in advance” the shape of the

sum sides. In [LZ], the primary proof of the theorem is much more detailed and interesting. In

particular, the polynomials ih
(j)
l below are computed explicitly, and the combinatorics of the sum

sides are derived directly from just the R series we have been working with. However, since our

new viewpoint in this work has nothing to add to this argument, we just give the shorter proof

here for the sake of convenience.

Theorem 3.13. For each j = 0, 1, . . ., Rj+1(q) is the generating function of partitions in which

subsequent parts differ by at least 2, such that the smallest part is greater than or equal to j + 1.

Proof. Suppose J1, J2, . . . is an infinite sequence of formal power series in q which satisfy the

recursions (3.3) (with J in place of R) and the Empirical Hypothesis. By rewriting (3.3) to solve
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for the lowest-indexed series and applying this formula iteratively, we see that for each i = 1, . . . , 2,

we have expressions

Ji(q) =

2∑
p=1

ih
(j)
p (q)Jj+p(q)

for some polynomials ih
(j)
p (q) ∈ C[q]. Notice that the coefficients ih

(j)
p (q) of these combinations

depend only on the recursions, not directly on the Js. It follows from the Empirical Hypothesis

that the series J1, . . . , Jk are uniquely determined (considering the combination at shelf j determines

the first j terms of the series Ji just in terms of the ih
(j)
p (q)). Hence, the whole sequence J1, J2, . . .

is uniquely determined.

By our work in the earlier sections (the definition of the Ri series in (3.3) and Theorem 3.8),

the series Ri above satisfy these conditions. Let Si denote the generating functions of the classes

of partitions described in the statement of the theorem. By uniqueness, it is now enough to check

that the Si also satisfy the recursions and Empirical Hypothesis.

The Empirical Hypothesis (that Si = 1+qi+1 + · · · ) follows directly from the definition. (Recall

from earlier that the empty partition of 0 is valid, and vacuously satisfies the conditions).

To check the recursions, we consider the series

Si(q)− Si+1(q)

qi

The series in the numerator counts partitions satisfying the difference 2 condition, and for which

the smallest part is exactly i. The denominator has the effect of deleting this part, and the next

smallest part must be no less than i+2. Hence this is the generating function Si+2(q), and we have

verified the recursions.
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Chapter 4

Gordon-Andrews case - new interpretation

4.1 Introduction

The Rogers-Ramanujan identities admit a natural generalization, the Gordon-Andrews odd-modulus

identities. In explicit power-series form, the identities state that for any k ≥ 2, i = 1, · · · , k

∏
m≥1,

m 6≡ 0,±(k−i+1) (mod 2k+1)

1

1− qm
=
∑
n≥0

dk,i(n)qn, (4.1)

dk,i(n) = the number of partitions of n for which parts at distance k − 1 have

difference at least 2, and 1 appears as a part at most k − i times

It is clear that when k = 2, these identities reduce to the Rogers-Ramanujan identities.

From our perspective, this generalization comes from a different choice of specialization of the

same denominator identity. Ultimately, it corresponds to the graded dimensions of the A
(1)
1 modules

at odd level, extending the special case of Rogers-Ramanujan at level 3.

As mentioned in the introduction, in [LZ], Lepowsky and Zhu gave a motivated proof of these

identities. Concepts developed in later works on motivated proofs (in particular, the shelf picture)

were not explicitly present in this work, but in the appendices to [CKLMQRS], the appropriate

structure was made explicit. We largely follow that appendix here, but use our new viewpoint and

notation to highlight the underlying algebraic structure at play. In anticipation of this section,

much of the work in the Rogers-Ramanujan special case we did out above was written in a form

that allows for straightforward extension to this level of generality.

Although we will not stress these points in this chapter, remarks analogous to Remarks 3.2, 3.3,

3.4, 3.6, 3.10, and 3.11 are true in this setting as well.
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4.2 Definitions and background

Fix an integer k ≥ 2, and allow the parameter i to range over the values 1, · · · , k. Consider the

following specializations of (2.1): e−α0 7→ qk+i, e−α1 7→ qk+1−i

These yield

(qk+1−i, q2k+1)∞(qk+i, q5)∞(q2k+1, q2k+1)∞ = (q, q)∞
∏

m=1,··· ,2k+1,
m6≡k+i,k+1−i,2k+1 mod 2k+1

(qm, q2k+1)−1
∞

=
∑
w∈W

(−1)`(w)q(k+i)|∆w|0+(k+1−i)|∆w|1

(4.2)

Let F (q) denote the series (q, q)∞ =
∞∏
n=1

(1 − qn), as above. Again we divide through these

equations by F (q), and recognize on the product sides of the Gordon-Andrews identities (4.1) on

the left-hand sides. Taking the right-hand sides, we define a zeroth shelf of series by

Gi(q) =
1

F (q)

∑
w∈W

(−1)`(w)q(k+i)|∆w|0+(k+1−i)|∆w|1

After defining this zeroth shelf, we recursively generate higher shelves of series according to the

following rules: given the k series on the jth shelf, G(k−1)j+i(q), i = 1, · · · , k we tautologically have

G(k−1)(j+1)+1 = G(k−1)j+k

and for i = 2, · · · , k, we define

G(k−1)(j+1)+i(q) =
G(k−1)j+(k−i+1)(q)−G(k−1)j+(k−i+2)

q(j+1)(i−1)
(4.3)

We write out these formulas explicitly for the first shelf, for expository purposes. For i =

2, · · · , k:

G(k−1)+i(q) =
1

F (q)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0)q(2k−i+1)|∆w|0+(i−1)|∆w|1 (4.4)

Remark 4.1. If we allow i = 1 in the expression (4.4), it stands to reason that the series we get

should be G(k−1)+1, and hence the same as Gk(q) = G(k−1)0+k from the zeroth shelf. In fact, this

is the case - this is an example of the edge-matching phenomenon which will be expounded upon

in the next section.
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Let us see how this equality comes about in this instance: the zeroth-shelf formula for Gk(q) is

Gk(q) =
1

F (q)

∑
w∈W

(−1)`(w)q2k|∆w|0+|∆w|1

while the extrapolated first-shelf formula is

G(k−1)+1(q) (4.5)

=
1

F (q)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0)q2k|∆w|0 (4.6)

=
1

F (q)

∑
w∈W

(−1)`(w)[q2k|∆w|0+|∆w|1 − q(2k+1)|∆w|0 ] (4.7)

The difference between these two expressions is thus

1

F (q)

∑
w∈W

(−1)`(w)q(2k+1)|∆w|0

However, we know that in the affine Weyl group W , the effect of left-composing with the funda-

mental reflection s1 will not change the value of |∆w| but will change the length by 1. Hence this

sum is zero because the terms cancel in pairs: w, s1w.

4.3 Closed formulas

We have the following closed-form formulas for these series:

Theorem 4.2. Let j ≥ 0 and i = 1, · · · , k. If j = 2h is even, then

G(k−1)2h+i(q) =
1

F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1) · q(k+i−h)|∆w|0+(k−i+1−h)|∆w|1

(4.8)

If j = 2h+ 1 is odd, then

G(k−1)(2h+1)+i(q) =
1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)+2|∆

w1
h+1
|
0

(k−i)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1) · q(2k−i+1−h)|∆w|0+(i−1−h)|∆w|1

(4.9)
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Proof. The expressions above give two different formulas for the “edge” cases — i = k for shelf

j ≥ 0 and i = 1 for shelf j + 1 — so we first prove that they are compatible.

Let Gj,i(q) denote the right-hand side of the formulas above. We will verify that the difference

Gj,k(q)−Gj+1,1(q) = 0

This works in the same way as in the Rogers-Ramanujan case: the involutions s1∗, f(·) (from

Definitions 2.3, 2.4) of the Weyl group are applied to the series as “changes of basis”, and these

have the effect of negating the difference series.

Let j = 2h (so that j + 1 = 2h+ 1). Then we have:

G2h,k(q)−G2h+1,1(q)

=
1

F (q)
q
−2|∆

w0
h
|
0
(k−1) ∑

w∈W
(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q

|∆w|1+|∆
w1
h
|
0
−|∆

w1
h
|
1)

· q(2k−h)|∆w|0+(1−h)|∆w|1

− 1

F (q)
q
−2|∆

w1
h+1
|
0

(k−1) ∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1) · q(2k−h)|∆w|0−h|∆w|1

=
1

F (q)
q
−|∆

w0
h
|
0
(2k−1)+|∆

w0
h
|
1

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q(2k+1−h)|∆w|0−h|∆w|1

We now apply the transformation s1∗ to the Weyl group. This is a bijection of the Weyl group,

so must leave the above sum invariant. Using Corollary 2.5, we get:

1

F (q)
q
−|∆

w0
h
|
0
(2k−1)+|∆

w0
h
|
1

∑
s1w∈W

(−1)`(s1w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q(2h+1)(|∆w|0−|∆w|1)+(h+1)+(2k+1−h)|∆w|0−h(2|∆w|0−|∆w|1+1)

= − 1

F (q)
q
−|∆

w0
h
|
0
(2k−1)+|∆

w0
h
|
1

∑
s1w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q(2k+1−h)|∆w|0−h|∆w|1

This final expression is exactly the negation of the starting sum. The anti-commutativity of this

expression proves that it must be 0.
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Next, let j = 2h+ 1 (so that j + 1 = 2(h+ 1)). Then we have:

G2h+1,k(q)−G2(h+1),1(q)

=
1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(k−1)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1) · q(k+1−h)|∆w|0+(k−1−h)|∆w|1

− 1

F (q)
q
−

[
|∆

w0
h+1
|
0

+|∆
w0
h+1
|
1

]
(k−1)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h+1
|
0

−|∆
w1
h+1
|
1) · q(k−h)|∆w|0+(k−1−h)|∆w|1

=
1

F (q)
q
−|∆

w1
h+1
|
0

(k−2)−|∆
w1
h+1
|
1

k ∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h+1
|
0

+|∆
w0
h+1
|
1)

· q(k−h)|∆w|0+(k−h)|∆w|1

We now apply to the Weyl group the outer automorphism f(·). This is a bijection of the Weyl

group, so must leave the above sum invariant. Using Corollary 2.5, we get

1

F (q)
q
−|∆

w1
h+1
|
0

(k−2)−|∆
w1
h+1
|
1

k

−
∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h+1
|
0

+|∆
w0
h+1
|
1) · q(k−h)|∆w|1+(k−h)|∆w|0

Again the overall effect of this transformation is to negate the sum, and the anti-commutativity of

this expression proves that it must be 0.

Once we have verified the edge-matching, it remains to show that these closed formulas satisfy

the recursion. We do this in two cases once more. In both cases, we take the difference of two shelf

j series formulas to get the ith entry on shelf j+1. As in Remark 3.5, we express the denominators

of the recursions in terms of appropriate Weyl data.
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First, let j = 2h, j + 1 = 2h+ 1:

G2h(k−1)+(k−i+1)(q)−G2h(k−1)+(k−i+2)(q)

q
(|∆

w1
h+1
|
1

−|∆
w0
h
|
1
)(i−1)

= q
−

[
|∆

w1
h+1
|
1

−|∆
w0
h
|
1

]
(i−1)

[
1

F (q)
q
−2|∆

w0
h
|
0
(k−i)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(i−1)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1) · q(2k−i+1−h)|∆w|0+(i−h)|∆w|1

− 1

F (q)
q
−2|∆

w0
h
|
0
(k−i+1)+

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(i−2)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1) · q(2k−i+2−h)|∆w|0+(i−1−h)|∆w|1

]

=
1

F (q)
q
−2|∆

w0
h
|
0
(k−i)−

[
|∆

w0
h
|
0
+|∆

w1
h+1
|
1

]
(i−1)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1) · (q|∆w|1 − q

|∆w|0−|∆w0
h
|
0
+|∆

w0
h
|
1)

· q(2k−i+1−h)|∆w|0+(i−1−h)|∆w|1

=
1

F (q)
q
−2|∆

w1
h+1
|
0

(k−i)−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1) · (q|∆w|1 − q

|∆w|0−|∆w0
h
|
0
+|∆

w0
h
|
1)

· q(2k−i+1−h)|∆w|0+(i−1−h)|∆w|1

= G(2h+1)(k−1)+i(q)
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Next, let j = 2h+ 1, j + 1 = 2(h+ 1):

G(2h+1)(k−1)+(k−i+1)(q)−G(2h+1)(k−1)+(k−i+2)(q)

q
2(|∆

w0
h+1
|
0

−|∆
w1
h+1
|
0

)(i−1)

= q
−2

[
|∆

w0
h+1
|
0

−|∆
w1
h+1
|
0

]
(i−1)

[
1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(k−i)−2|∆

w1
h+1
|
0

(i−1)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1) · q(k+i−h)|∆w|0+(k−i−h)|∆w|1

− 1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(k−i+1)−2|∆

w1
h+1
|
0

(i−2)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1) · q(k+i−1−h)|∆w|0+(k−i+1−h)|∆w|1

]

=
1

F (q)
q
−2|∆

w0
h+1
|
0

(i−1)−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(k−i)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· (q|∆w|0 − q
|∆w|1−|∆w1

h+1
|
0

+|∆
w1
h+1
|
1)q(k+i−1−h)|∆w|0+(k−i−h)|∆w|1

=
1

F (q)
q
−2|∆

w0
h+1
|
0

(i−1)−

[
|∆

w0
h+1
|
0

+|∆
w0
h+1
|
1

]
(k−i)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· (q|∆w|0 − q
|∆w|1−|∆w1

h+1
|
0

+|∆
w1
h+1
|
1)q(k+i−1−h)|∆w|0+(k−i−h)|∆w|1

= G(2h+2)(k−1)+i(q)

4.4 Empirical Hypothesis

As a consequence of Theorem 4.2, we are now in a position to formulate and prove the Empirical

Hypothesis. This is the main ingredient needed to complete the motivated proof.

Theorem 4.3 (Empirical Hypothesis). For any j ≥ 0 and i = 1, · · · , k,

G(k−1)j+i(q) = 1 + qj+1γ(q)
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for some

γ(q) ∈ C[[q]].

Remark 4.4. Note that since G(k−1)j+k(q) = G(k−1)(j+1)+1(q), Theorem 4.3 implies that we can

write G(k−1)j+k(q) = 1 + qj+2γ(q) where γ(q) is some formal power series.

The structure of the proof is largely unchanged from the Rogers-Ramanujan special case. In

general, for each G series, the first few summands in the linear ordering will be equal to 0. The

first term which is nonzero will contribute the initial 1 + qj+1 in the Empirical Hypothesis, and all

other contributions from it and all subsequent terms will contribute only higher powers of q. In the

special case i = k, a closer analysis shows that the next term after the least nonzero contributor

contributes exactly what is needed to push the Empirical Hypothesis up to the shape it needs to

be for the next shelf.

Unless otherwise noted, the justification for individual steps in the calculations are identical

to what they were for the Rogers-Ramanujan case. Hence we will largely suppress explanatory

comments for these proofs (but see Remark 3.3 for more details).

Proof. First, we consider the even-shelf series, which from Theorem 4.2 are of the form

G2h(k−1)+i(q) =
1

F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|0 − q
|∆w|1+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q(k+i−h)|∆w|0+(k−i+1−h)|∆w|1

First suppose that w is one of the first 2h elements (with respect to the linear order) - i.e., w is

either of the form w0
r for r < h, or w1

r for r ≤ h. Then as before, it follows from the formulas (3.8),

(3.9), (3.10) that the corresponding terms of the series are 0.

We claim that the first nonzero contribution to the series is from the term w = w0
h, and that this

contribution is of the shape 1 + q2h+1 +O(q2h+2). This claim is justified by the following sequence

of computations, starting with the w = w0
h term from the series referenced above:
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1

F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)

(−1)`(w
0
h)(q

|∆
w0
h
|
1 − q

|∆
w0
h
|
0) · · · (q

|∆
w0
h
|
0 − q

|∆
w0
h
|
1
+|∆

w1
h
|
0
−|∆

w1
h
|
1)

· q
(k+i−h)|∆

w0
h
|
0
+(k−i+1−h)|∆

w0
h
|
1

=
1

F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)

(−1)h{q
|∆

w0
h
|
1(1− q

|∆
w0
h
|
0
−|∆

w0
h
|
1)} · · · {−q

|∆
w0
h
|
1
−h

(1− q
|∆

w0
h
|
0
−|∆

w0
h
|
1
+h

)}

· q
(k+i−h)|∆

w0
h
|
0
+(k−i+1−h)|∆

w0
h
|
1

=
1

F (q)
(−1)2h(1− q) · · · (1− q2h)

q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)+2h|∆

w0
h
|
1
−|∆

w0
h
|
0
+(k+i−h)|∆

w0
h
|
0
+(k−i+1−h)|∆

w0
h
|
1

As in the corresponding part of the proof in the Rogers-Ramanujan case, the singleton |∆w0
h
|
0

com-

ponent of the exponent on the ending line comes from the sum 1+· · ·+h (interpreted appropriately)

on the previous line.

Looking more closely at the exponent of q, we can regroup it as

k

[
(|∆w0

h
|
0

+ |∆w0
h
|
1
)− (|∆w0

h
|
0

+ |∆w0
h
|
1
)

]
+ i

[
(|∆w0

h
|
0
− |∆w0

h
|
1
)− (|∆w0

h
|
0
− |∆w0

h
|
1
)

]
+ |∆w0

h
|
0

+ |∆w0
h
|
1
− h(|∆w0

h
|
0
− |∆w0

h
|
1
)

= k ∗ 0 + i ∗ 0 + h2 − h2

= 0

Moreover, expanding F (q) = (1 − q)(1 − q2)(1 − q3) · · · , we see that we can cancel the first 2h

factors of F (q) with the remaining factors in the term. Hence this term is in fact equal to

(q2h, q)−1
∞ = 1 + q2h+1 + · · ·

To verify that all subsequent contributions are O(q2h+1), we argue as in the previous chapter.

First, suppose that w is of the form w0
r for some r ≥ h, so that the next Weyl element in the

linear order is s1w
0
r = w1

r+1. As was the case earlier, the effect of applying the transformation s1∗ is
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to rescale the term by a power of q, whose exponent can be computed by summing the contributions

from Definition 2.3 and Corollary 2.5. We get:

h

(
2|∆w|0 − 2|∆w|1 + 1

)
+ (k + i− h)|∆w|0 + (k − i+ 1− h)(2|∆w|0 − |∆w|1 + 1)

− (k + i− h)|∆w|0 + (k − i+ 1− h)|∆w|1

= h

(
2|∆w|0 − 2|∆w|1 + 1

)
+ (k − i+ 1− h)(2|∆w|0 − 2|∆w|1 + 1)

= (k − i+ 1)(2|∆w|0 − 2|∆w|1 + 1)

≥ 2h+ 1

For the last inequality, we have used the facts that i ≤ k and that for elements of the form w0
r

with r ≥ h, we have |∆w|0 − |∆w|1 ≥ h. (Notice that in particular, we get equality in the last line

only when i = k and r = h, and in this case the least contribution from this term is −q2h+1, which

precisely cancels out the q2h+1 from the previous term, giving us a series of the form 1+q2h+2 + · · · .

This shows the agreement between the edge-matching and the Empirical Hypothesis). In general,

this confirms that all higher contributions are O(q2h+1).

Next, suppose w is of the form w1
r for some r ≥ h + 1, so that the next Weyl element is

f(w1
r) = w0

r . From Definition 2.4 and Corollary 2.5, the factors that are different between these

two terms are

(q|∆w|0 − q|∆w|1−h)q(k+i−h)|∆w|0+(k−i+1−h)|∆w|1

= q(k+i+1−h)|∆w|0+(k−i−1−h)|∆w|1 − q(k+i−h)|∆w|0+(k−i+2−h)|∆w|1−h

for the w1
r term versus

(q|∆w|1 − q|∆w|0−h) · q(k+i−h)|∆w|1+(k−i+1−h)|∆w|0

= q(k−i+2−h)|∆w|0+(k+i−h)|∆w|1−h − q(k−i+1−h)|∆w|0+(k+i+1−h)|∆w|1−h

for the w0
r term.

The ratios between the parts of these expressions is

q(−2i+1)|∆w|0+(2i−1)|∆w|1−h
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for the positive parts and

q(−2i+1)|∆w|0+(2i−1)|∆w|1+h

for the negative parts. The ratio between positive parts is the smaller of the two, and we can bound

its exponent as

(2i− 1)

[
|∆w|1 − |∆w|0

]
− h ≥ (2i− 1)(h+ 1)− h ≥ 1

Hence the power of q must increase, and here, too, the contribution is O(q2h+1).

Combining these results, we have verified the Empirical Hypothesis for even shelves.

For odd shelves, from Theorem 4.2 the series are of the form

G(2h+1)(k−1)+i(q) =
1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)

∑
w∈W

(−1)`(w)(q|∆w|1 − q|∆w|0) · · · (q|∆w|1 − q
|∆w|0−|∆w0

h
|
0
+|∆

w0
h
|
1)

· q(2k−i+1−h)|∆w|0+(i−1−h)|∆w|1

First suppose that w is one of the first 2h+ 1 elements (with respect to the linear order) - i.e.,

w is either of the form w0
r for r ≤ h, or w1

r for r ≤ h. Then as before, it follows from formulas (3.8),

(3.9), (3.10) that the corresponding terms of the series are 0.

We claim that the first nonzero contribution to the series is from the term w = w1
h+1, and that

this contribution is of the shape 1 + q2h+2 + O(q2h+3). This claim is justified by the following

sequence of computations, starting with the w = w1
h+1 term from the series referenced above:
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1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w0
h+1
|
0

(k−i)

(−1)`(w
1
h+1)(q

|∆
w1
h+1
|
1 − q

|∆
w1
h+1
|
0) · · · (q

|∆
w1
h+1
|
1 − q

|∆
w1
h+1
|
0

−|∆
w0
h
|
0
+|∆

w0
h
|
1)

· q
(2k−i+1−h)|∆

w1
h+1
|
0

+(i−1−h)|∆
w1
h+1
|
1

=
1

F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w0
h+1
|
0

(k−i)

(−1)h+1{−q
|∆

w1
h+1
|
0(1− q

|∆
w1
h+1
|
1

−|∆
w1
h+1
|
0)} · · · {−q

|∆
w1
h+1
|
0

−h
(1− q

|∆
w1
h+1
|
1

−|∆
w1
h+1
|
0

+h
)}

· q
(2k−i+1−h)|∆

w0
h
|
0
+(i−1−h)|∆

w0
h
|
1

=
1

F (q)
(−1)2h+2(1− q) · · · (1− q2h+1)

q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w0
h+1
|
0

(k−i)+(2h+1)|∆
w0
h
|
1
−|∆

w1
h+1
|
0

+(2k−i+1−h)|∆
w0
h
|
0
+(i−1−h)|∆

w0
h
|
1

Looking more closely at the exponent of q, we can regroup it as

2k

[
|∆w1

h+1
|
0
− |∆w1

h+1
|
0

]
+ i

[
(|∆w1

h+1
|
1
− |∆w1

h+1
|
0
)− (|∆w1

h+1
|
1
− |∆w1

h+1
|
0
)

]
+ |∆w1

h+1
|
0

+ |∆w1
h+1
|
1
− (h+ 1)(|∆w1

h+1
|
1
− |∆w1

h+1
|
0
)

= 2k ∗ 0 + i ∗ 0 + (h+ 1)2 − (h+ 1)2

= 0

Moreover, expanding F (q) = (1− q)(1− q2)(1− q3) · · · , we see that we can cancel the first 2h+ 1

factors of F (q) with the remaining factors in the term. Hence this term is in fact equal to

(q2h+1, q)−1
∞ = 1 + q2h+2 + · · ·

To verify that all subsequent contributions are O(q2h+2), we argue as before.

First, suppose w is of the form w1
r for some r ≥ h + 1, so that the next Weyl element is

f(w1
r) = w0

r . By Corollary 2.5, the action of this transformation on the w1
r term is by negation on

the group of factors in parentheses. Hence to study the change in the power of q, it is enough to
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just consider the change in the ending exponent, which is

(i− 1− h)|∆w|0 + (2k − i+ 1− h)|∆w|1

− (2k − i+ 1− h)|∆w|0 − (i− 1− h)|∆w|1

= (−2k + 2i− 2)|∆w|0 + (2k − 2i+ 2)|∆w|1

= 2(k − i+ 1)
[
|∆w|1 − |∆w|0

]
≥ 2h+ 2

with equality only when i = k and w = w1
h+1. Since we have made the assumption that the

preceding term is at least 1 + O(q2h+2), and the minimal exponent here is at least 2h + 2 higher,

we conclude that the contribution here is O(q2h+2).

Now assume w is of the form w0
r for r ≥ h+ 1, so that the next Weyl element is s1w

0
r = w1

r+1.

By Corollary 2.5, the overall change in factors when applying s1∗ to the w0
r term is the shift from

(q|∆w|1 − q|∆w|0−h)q(2k−i+1−h)|∆w|0+(i−1−h)|∆w|1

= q(2k−i+1−h)|∆w|0+(i−h)|∆w|1 − q(2k−i+2−h)|∆w|0+(i−1−h)|∆w|1−h

in the w0
r term to

− (q|∆w|0 − q|∆w|1−(h+1))q(2h+1)(|∆w|0−|∆w|1)+(h+1)+(2k−i+1−h)|∆w|0+(i−1−h)(2|∆w|0−|∆w|1+1)

= q(2k+i−h)|∆w|0+(−i+1−h)|∆w|1−h − q(2k+i+1−h)|∆w|0+(−i−h)|∆w|1

in the w1
r+1 term.

The ratios between the positive and negative parts are respectively

q(2i−1)|∆w|0+(−2i+1)|∆w|1+i−h, q(2i−1)|∆w|0+(−2i+1)|∆w|1+i+h

The lower ratio is that between the positive parts, and there the exponent is

(2i− 1)

[
|∆w|0 − |∆w|1

]
+ i− h ≥ i+ 1

(using the fact that |∆w|0 − |∆w|1 ≥ h+ 1 in the region specified). Therefore in this situation too

the power of q increases, and the contribution to the series remains O(q2h+2).

Having done both cases, we see that all higher contributions are O(q2h+2), and we have verified

the Empiricial Hypothesis for odd shelves.
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4.5 Combinatorics

To complete the motivated proof, we now recall Theorem 2.2 from [LZ].

Remark 4.5. As in Remark 3.12, the proof we give here is much simpler than the main proof in

[LZ], but not as deep because it requires us to “know in advance” the combinatorics. Essentially,

we are performing a verification rather than a proof from scratch. Again, see Remark 4.1 in [LZ]

for more details.

Theorem 4.6. For each i = 1, . . . , k, j = 0, 1, 2, . . ., G(k−1)j+i(q) is the generating function of

partitions satisfying

1. difference at least 2 at distance k − 1

2. smallest part is at least j + 1

3. j + 1 appears as a part at most k − i times

Proof. Suppose K1,K2, . . . is an infinite sequence of formal power series in q which satisfy the

recursions (4.3) (with K in place of G) and the Empirical Hypothesis. By rewriting (4.3) to solve

for the lowest-indexed series and applying this formula iteratively, we see that for each i = 1, · · · , k,

we have expressions

Ki(q) =

k∑
p=1

ih
(j)
p (q)K(k−1)j+p(q)

for some polynomials ih
(j)
p (q) ∈ C[q]. Notice that the coefficients ih

(j)
p (q) of these combinations

depend only on the recursions, not directly on the Ks. It follows from the Empirical Hypothesis

that the series K1, . . . ,Kk are uniquely determined (for example, considering the combination at

shelf j determines the first j terms of the series Ki just in terms of the ih
(j)
p (q)). Hence, the whole

sequence K1,K2, . . . is uniquely determined.

By our work in the earlier sections (the definition of the Gi series in (4.3) and Theorem 4.3),

the series Gi above satisfy these conditions. Let Hi denote the generating functions of the classes

of partitions described in the statement of the theorem. By uniqueness, it is now enough to check

that the Hi also satisfy the recursions and Empirical Hypothesis.

The Empirical Hypothesis (that H(k−1)j+i = 1 + qj+1 + · · · ) follows directly from the definition.
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To check the recursions, we consider the series

H(k−1)j+(k−i+1)(q)−H(k−1)j+(k−i+2)(q)

q(j+1)(i−1)

The series in the numerator counts partitions satisfying the first two conditions of the theorem, and

for which the part j+ 1 appears with multiplicity i− 1. The denominator has the effect of deleting

all of these parts. In order to satisfy condition 1, the there can be at most k− i parts equal to j+2.

Hence this is the generating function H(k−1)(j+1)+i(q), and we have verified the recursions.
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Chapter 5

Andrews-Bressoud case - new interpretation

5.1 Introduction

Another set of identities closely related to the Rogers-Ramanujan identities are the Andrews-

Bressoud even-modulus identities, whose product sides correspond to the graded dimensions of

modules for A
(1)
1 at even level.

These identities state that for every k ≥ 2 and i = 1, · · · , k:∏
m≥1(1− q2km)(1− q2km−k+(i−1))(1− q2km−k−(i−1))∏

m≥1(1− qm)
=
∑
n≥0

bk,i(n)qn, (5.1)

where bk,i(n) is the number of partitions π = (π1, · · · , πs) of n (with πt ≥ πt+1) satisfying

1. difference at least 2 at distance k − 1

2. πt − πt+k−2 ≤ 1 only if πt + · · ·+ πt+k−2 ≡ k + i mod 2

3. at most k − i parts equal to 1

In other words, the partitions satisfy difference (at least) 2 at distance k− 1, and in fact difference

2 at distance k − 2 unless a certain parity condition is met.

As in the odd-modulus case, it is possible to define higher shelves of B series by recursion.

However, if we do this just in terms of the Bis, we are forced to encounter the undesirable behavior

of having non-pure powers of q in the denominators of the recursions, which is not “motivated”

and would not admit a description from our viewpoint. In [KLRS], which we follow below, this

difficulty was dealt with by introducing intermediate “ghost shelves” of series. Combining the true

and ghost series lead to recursions which do involve only pure powers of q. In this section, we

reinterpret the proof from [KLRS] using our new viewpoint and Weyl-theoretic notation, and see

how it fits the paradigm we have established.
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As in the previous chapter, remarks analogous to those given in the Rogers-Ramanujan case are

true here as well.

5.2 Definitions and background

Fix an integer k ≥ 2, and allow the parameter i to range over the values 1, · · · , k. Consider the

following specializations of (2.1): e−α0 7→ qk+i−1, e−α1 7→ qk−i+1. This yields

(qk−i+1, q2k)∞(qk+i−1, q2k)∞(q2k, q2k)∞ = (q, q)∞
∏

m=1,··· ,2k+1,
m6≡k+i−1, k+−i+1, 2k mod 2k

(qm, q2k)−1
∞

=
∑
w∈W

(−1)`(w)q(k+i−1)|∆w|0+(k+1−i)|∆w|1

(5.2)

As above, let F (q) denote the series

(q, q)∞ =

∞∏
n=1

(1− qn)

Once again we divide through these equations by F (q), and recognize the Andrews-Bressoud prod-

uct sides from (5.1) on the left. We define a zeroth shelf of series to be the right-hand sides:

Bi(q) =
1

F (q)

∑
w∈W

(−1)`(w)q(k+i)|∆w|0+(k+1−i)|∆w|1

for i = 1, · · · , k.

Let us see how appropriate recursions (from [KLRS]) simultaneously define the the zeroth ghost

shelf and the true first shelf. Define:

Bk+1(q) =
Bk−1 − B̃k

q
= B̃k (5.3)

Bk+p =
Bk−p − B̃k−p+1

qp
=
B̃k−p+1 −Bk−p+2

qp−1
(5.4)

for p = 2, · · · , k − 1 In these recursions, the right-hand equality is used to define the ghost series

B̃i for i = 2, · · · , k, and then either equality serves to define the next shelf of true series B(k−1)+i.

Solving these equations yield the definitions of the zeroth shelf of ghost series:

B̃k =
1

(1 + q)F (q)

∑
w∈W

(−1)`(w)q(2k−2)|∆w|0+2|∆w|1 (5.5)

B̃i =
1

(1 + q)F (q)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0+1)q(k+i−2)|∆w|0+(k−i)|∆w|1 (5.6)

for i = 2, · · · , k − 1.
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Remark 5.1. Notice that allowing i = k in the second expression gives

B̃k =
1

(1 + q)F (q)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0+1)q(2k−2)|∆w|0

which is valid because its difference from the defined B̃k is

q

(1 + q)F (q)

∑
w∈W

(−1)`(w)q2k|∆w|0

which cancels to 0 under the pairing of Weyl elements w, s1w.

Using these expressions, the next shelf of true series is defined as:

Bk+p =
1

(1 + q)qp−1F (q)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0)q(2k−p−1)|∆w|0+(p−1)|∆w|1

The general recursions are as follows:

B(k−1)(j+1)+2(q) =
B(k−1)j+(k−1) − B̃(k−1)j+k

qj+1
= B̃(k−1)j+k (5.7)

B(k−1)(j+1)+i =
B(k−1)j+(k−i+1) − B̃(k−1)j+(k−i+2)

q(j+1)(i−1)
=
B̃(k−1)j+(k−i+2) −B(k−1)j+(k−i+3)

q(j+1)(i−2)
(5.8)

for i = 3, · · · , k.

Solving these recursions for the ghost series leads to the following definitions: For i = 2, · · · , k−1,

B̃(k−1)j+i(q) =
B(k−1)j+(i−1) + qj+1B(k−1)j+(i+1)

1 + qj+1
(5.9)

For i = k,

B̃(k−1)j+k(q) =
B(k−1)j+(k−1)

1 + qj+1
(5.10)

5.3 Closed formulas

We have the following closed-form formulas for these series:

Theorem 5.2. Let j ≥ 0 and i = 1, · · · , k.

If j = 2h is even, then

B(k−1)2h+i(q) =
1

(1 + q) · · · (1 + q2h)F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1−q2|∆w|0) · · · (q2|∆w|0−q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)·q(k+i−1−2h)|∆w|0+(k−i+1−2h)|∆w|1

(5.11)
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If j = 2h+ 1 is odd, then

B(k−1)(2h+1)+i(q) =
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1−q2|∆w|0) · · · (q2|∆w|1−q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)·q(2k−i−2h)|∆w|0+(i−2−2h)|∆w|1

(5.12)

Theorem 5.3. Let j ≥ 0 and i = 2, · · · , k.

If j = 2h is even, then

B̃(k−1)2h+i(q) =
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)+2h(h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· (q2|∆w|1 + q2|∆w|0+1)q(k+i−2−2h)|∆w|0+(k−i−2h)|∆w|1 (5.13)

If j = 2h+ 1 is odd, then

B̃(k−1)(2h+1)+i(q) =
1

(1 + q) · · · (1 + q2h+2)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)+2(h+1)2

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

· (q2|∆w|0 + q2|∆w|1)q(2k−i−1−2h)|∆w|0+(i−3−2h)|∆w|1 (5.14)

Remark 5.4. There is a subtle point here that bears mentioning: for the Gordon-Andrews series,

the edge-matching was logically needed for the generation of new shelves of series. Specifically, in or-

der to obtain the formula forG(k−1)(j+1)+k(q), one needs the “shelf j” formulas for bothG(k−1)j+1(q)

and G(k−1)j+2(q). Since the series G(k−1)j+1(q) was originally defined as G(k−1)(j−1)+k(q) (i.e., given

in its shelf j − 1 form), this requires edge-matching.

For the Andrews-Bressoud identities, the only time the ghost series appear in the recursions,

they are always in the form B̃(k−1)j+i(q) for i = 2, · · · , k. Hence there is no need to prove an edge-

matching result for these series (although it certainly does hold!). Edge-matching is still required

for the true series, however, for the same reason as in the Gordon-Andrews case.

Proof. We will once again have to check that these formulas obey edge-matching and the recursions.
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Let Bj,i(q) denote the right-hand sides of the formulas for the true series above. We will verify

that the differences

Bj,k(q)−Bj+1,1(q) = 0

We do this by performing suitable “changes of index” on the sum, namely, the transformations s1∗,

f(·).

Let j = 2h (so that j + 1 = 2h+ 1). Then we have:

B2h,k(q)−B2h+1,1(q)

=
1

(1 + q) · · · (1 + q2h)F (q)
q
−2|∆

w0
h
|
0
(k−1)+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1) · q(2k−1−2h)|∆w|0+(1−2h)|∆w|1

− 1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w1
h+1
|
0

(k−1)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1) · q(2k−1−2h)|∆w|0+(−1−2h)|∆w|1

=
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(k−1)+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· [(1 + q2h+1)q(2k−1−2h)|∆w|0+(1−2h)|∆w|1 − q2h+1(q2|∆w|1 − q2|∆w|0−2h)q(2k−1−2h)|∆w|0+(−1−2h)|∆w|1 ]

=
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(k−1)+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· [q(2k−1−2h)|∆w|0+(1−2h)|∆w|1 + q(2k+1−2h)|∆w|0+(−1−2h)|∆w|1+1]

=
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(k−1)+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· (q2|∆w|1 + q2|∆w|0+1)q(2k−1−2h)|∆w|0+(−1−2h)|∆w|1

When we apply the transformation s1∗ and use Corollary 2.5 (with q2 in place of q), the series
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becomes:

1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(k−1)+h(2h+1)

∑
s1w∈W

(−1)`(s1w)q2h(2|∆w|0−2|∆w|1+1)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· (q2(2|∆w|0−|∆w|1+1) + q2|∆w|0+1)q(2k−1−2h)|∆w|0+(−1−2h)(2|∆w|0−|∆w|1+1)

1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(k−1)+h(2h+1)

∑
s1w∈W

−(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)(q2|∆w|0+1 + q2|∆w|1)

· q2h(2|∆w|0−2|∆w|1+1)+(2|∆w|0−2|∆w|1+1)+(2k−1−2h)|∆w|0+(−1−2h)(2|∆w|0−|∆w|1+1)

= − 1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(k−1)+h(2h+1)

∑
s1w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· (q2|∆w|1 + q2|∆w|0+1)q(2k−1−2h)|∆w|0+(−1−2h)|∆w|1

Comparing this to the last line of the series of equations above, we see that this transformation

has exactly negated the expression. This anti-commutativity proves that the difference is 0.
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Next, let j = 2h+ 1, j + 1 = 2(h+ 1). Then:

B2h+1,k(q)−B2(h+1),1(q)

=
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(k−1)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1) · q(k−2h)|∆w|0+(k−2−2h)|∆w|1

− 1

(1 + q) · · · (1 + q2(h+1))F (q)
q
−

[
|∆

w0
h+1
|
0

+|∆
w0
h+1
|
1

]
(k−1)+(h+1)(2h+3)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h+1
|
0

−2|∆
w1
h+1
|
1)

· q(k−2−2h)|∆w|0+(k−2−2h)|∆w|1

=
1

(1 + q) · · · (1 + q2(h+1))F (q)
q
−

[
|∆

w0
h+1
|
0

+|∆
w0
h+1
|
1

]
(k−1)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

·
[
(1 + q2(h+1))q(k−2h)|∆w|0+(k−2−2h)|∆w|1

− q2(h+1)(q2|∆w|0 − q2|∆w|1−2(h+1))q(k−2−2h)|∆w|0+(k−2−2h)|∆w|1
]

=
1

(1 + q) · · · (1 + q2(h+1))F (q)
q
−

[
|∆

w0
h+1
|
0

+|∆
w0
h+1
|
1

]
(k−1)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

· [q(k−2h)|∆w|0+(k−2−2h)|∆w|1 + q(k−2−2h)|∆w|0+(k−2h)|∆w|1 ]

=
1

(1 + q) · · · (1 + q2(h+1))F (q)
q
−

[
|∆

w0
h+1
|
0

+|∆
w0
h+1
|
1

]
(k−1)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

· (q2|∆w|0 + q2|∆w|1)q(k−2(h+1))|∆w|0+(k−2(h+1))|∆w|1

It is simple to see that the transformation f(·) negates this sum (Corollary 2.5, with q2 in place of

q, describes how it acts on the factors in parentheses, and it is clear that it leaves the exponent at

the end invariant). Hence, as above, the difference is 0.

This finishes the proof of the edge-matching.
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Now, we verify that these formulas obey the required recursions. First, we deal with the ghost

series.

For the ghost series on shelf j = 2h, i = 2, · · · , k − 1:

B(k−1)2h+(i−1) + q2h+1B(k−1)2h+(i+1)

1 + q2h+1

=
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

·
[
q

2|∆
w0
h
|
0
−[|∆

w0
h
|
0
+|∆

w0
h
|
1
]+(k+i−2−2h)|∆w|0+(k−i+2−2h)|∆w|1

+ q
(2h+1)−2|∆

w0
h
|
0
+[|∆

w0
h
|
0
+|∆

w0
h
|
1
]+(k+i−2h)|∆w|0+(k−i−2h)|∆w|1

]
=

1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)+2h(h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· (q2|∆w|1 + q2|∆w|0+1)q(k+i−2−2h)|∆w|0+(k−i−2h)|∆w|1

= B̃(k−1)2h+i(q)

When i = k, the recursive definition of the new series takes a slightly different form, and we

instead compute:

B(k−1)2h+(k−1)

1 + q2h+1

=
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(k−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· q(2k−2−2h)|∆w|0+(2−2h)|∆w|1

This is not identical to the result of substituting i = k into Theorem 5.3, but the difference is equal
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to

1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(k−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· q(2k−2h)|∆w|0+(−2h)|∆w|1+1

Applying Corollary 2.5, we see that the s1∗ transformation exactly negates this last expression,

which forces it to be zero. This, in turn, verifies the above formula for B̃(k−1)2h+k(q).

For the ghost series on shelf j = 2h+ 1, i = 2, · · · , k − 1:

B(k−1)(2h+1)+(i−1) + q2h+2B(k−1)(2h+1)+(i+1)

1 + q2h+2

=
1

(1 + q) · · · (1 + q2h+2)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

·
[
q

[|∆
w1
h+1
|
0

+|∆
w1
h+1
|
]

−2|∆
w1
h+1
|
+

(2k−i+1−2h)|∆w|0+(i−3−2h)|∆w|1

+ q
2h+2−[|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]+2|∆
w1
h+1
|
+

(2k−i−1−2h)|∆w|0+(i−1−2h)|∆w|1]
=

1

(1 + q) · · · (1 + q2h+2)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)+2(h+1)2

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

· (q2|∆w|0 + q2|∆w|1)q(2k−i−1−2h)|∆w|0+(i−3−2h)|∆w|1

= B̃(k−1)(2h+1)+i(q)

When i = k, the recursive definition of the new series takes a slightly different form, and we
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instead compute:

B(k−1)(2h+1)+(k−1)

1 + q2h+2

=
1

(1 + q) · · · (1 + q2h+2)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(k−2)−2|∆

w1
h+1
|
0

+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

· q(k−1−2h)|∆w|0+(k−3−2h)|∆w|1

This is not identical to the result of substituting i = k into Theorem 5.3, but the difference is equal

to

1

(1 + q) · · · (1 + q2h+2)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(k−2)−2|∆

w1
h+1
|
0

+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

· q(k−1−2h)|∆w|0+(k−1−2h)|∆w|1

Applying Corollary 2.5, we see that the f(·) transformation exactly negates this last expression,

which forces it to be zero. This, in turn, verifies the above formula for B̃(k−1)(2h+1)+k(q).
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Next, for the true series on shelf j = 2h:

B(k−1)2h+(k−i+1) − B̃(k−1)2h+(k−i+1)

q(2h+1)(i−1)

=
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(k−i)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(i−1)+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

·
[
(1 + q2h+1)q(2k−i−2h)|∆w|0+(i−2h)|∆w|1

− (q2|∆w|1 + q2|∆w|0+1)q
−2|∆

w0
h
|
0
+[|∆

w0
h
|
0
+|∆

w0
h
|
1
]+(h+1)+(2k−i−2h)|∆w|0+(i−2−2h)|∆w|1

]
=

1

(1 + q) · · · (1 + q2h+1)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

· q(2k−i−2h)|∆w|0+(i−2−2h)|∆w|1

= B(k−1)(2h+1)+i(q)

For the true series on shelf j = 2h+ 1:

B(k−1)(2h+1)+(k−i+1) − B̃(k−1)(2h+1)+(k−i+2)

q2(h+1)(i−1)

=
1

(1 + q) · · · (1 + q2h+2)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(k−i)−2|∆

w1
h+1
|
0

(i−1)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

·
[
(1 + q2h+2)q(k+i−1−2h)|∆w|0+(k−i−1−2h)|∆w|1

− (q2|∆w|0 + q2|∆w|1)q
−[|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]+2|∆
w1
h+1
|
0

+(h+1)+(k+i−3−2h)|∆w|0+(k−i−1−2h)|∆w|1
]

=
1

(1 + q) · · · (1 + q2(h+1))F (q)
q
−2|∆

w0
h+1
|
0

(i−1)−

[
|∆

w0
h+1
|
0

+|∆
w0
h+1
|
1

]
(k−i)+(h+1)(2h+3)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h+1
|
0

−2|∆
w1
h+1
|
1)

· q(k+i−1−2(h+1))|∆w|0+(k−i+1−2(h+1))|∆w|1

= B(k−1)(2(h+1))+i(q)

This finishes the proof.



56

5.4 Empirical Hypothesis

The only Empirical Hypothesis logically needed to complete the proof is that for the true series.

However, the ghost series also obey a Empirical Hypothesis, with an entirely analogous statement

and proof. We include it here for completeness, and because we use it to simplify the proof of the

combinatorics in the next section.

As in the other Empirical Hypotheses proved earlier, the behavior of the terms here will follow

the same pattern: finitely many terms at the beginning of the order contribute 0, the first nonzero

contribution is what provides the first two elements of the series (giving the proper “shape” to the

series as predicted by the Empirical Hypothesis), and all subsequent terms only contribute higher

powers. However, we do encounter a new phenomenon here not seen in the Gordon-Andrews proofs:

the minimal power of q coming from each term are no longer always strictly increasing with respect

to the linear order. Instead, when i = 1, it is possible for there to be a decrease instead, just not

so great a one as to disturb the shape of the Empirical Hypothesis.

Theorem 5.5 (Empirical Hypothesis). For any j ≥ 0 and i = 1, · · · , k,

B(k−1)j+i(q) = 1 + qj+1γ(q)

for some

γ(q) ∈ C[[q]].

Remark 5.6. The proof of this theorem actually establishes a stronger result:

B(k−1)j+i(q) = 1 + qj+1 + · · ·

for i = 1, · · · , k − 1 and

B(k−1)j+k(q) = 1 + qj+2 + · · ·

Proof. Consider

B(k−1)2h+i(q) =
1

(1 + q) · · · (1 + q2h)F (q)
q
−2|∆

w0
h
|
0
(i−1)+−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)+h(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
+2|∆

w1
h
|
1)

· q(k+i−1−2h)|∆w|0+(k−i+1−2h)|∆w|1
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First suppose that w is one of the first 2h elements (with respect to the linear order) - i.e., w

is either of the form w0
r for r < h, or w1

r for r ≤ h. Then as in the earlier proofs, formulas (3.8),

(3.9), and (3.10) (with q2 in place of q) prove that the corresponding terms of the series are 0.

The first nonzero contribution to the series comes at the term w = w0
h, and that this contribution

is of the shape 1+q2h+1+O(q2h+2). This claim is justified by the following sequence of computations,

starting with the w = w0
h term from the series referenced above:

1

(1 + q) · · · (1 + q2h)F (q)
q
−2|∆

w0
h
|
0
(i−1)+−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)+h(2h+1)

(−1)`(w
0
h){q

2|∆
w0
h
|
1(1− q

2(|∆
w0
h
|
0
−|∆

w0
h
|
1
)
)} · · · {−q

2|∆
w0
h
|
1
−2h

(1− q
2(|∆

w0
h
|
0
−2|∆

w0
h
|
1
+h)

)}

· q
(k+i−1−2h)|∆

w0
h
|
0
+(k−i+1−2h)|∆

w0
h
|
1

=
(−1)2h

(1 + q) · · · (1 + q2h)F (q)

(1− q2) · · · (1− q4h)q
4h|∆

w0
h
|
1
−2|∆

w0
h
|
0
−2|∆

w0
h
|
0
(i−1)−[|∆

w0
h
|
0
+|∆

w0
h
|
1
](k−i)+h(2h+1)

· q(k+i−1−2h)|∆w|0+(k−i+1−2h)|∆w|1

Looking more closely at the ending exponent of q, we can regroup it as

k

[
(|∆w0

h
|
0

+ |∆w0
h
|
1
)− (|∆w0

h
|
0

+ |∆w0
h
|
1
)

]
+ i

[
− 2|∆w0

h
|
0

+ |∆w0
h
|
0

+ |∆w0
h
|
1

+ |∆w0
h
|
0
− |∆w0

h
|
1

]
+ h(2h+ 1)− (2h+ 1)(|∆w0

h
|
0
− |∆w0

h
|
1
)

= 0 + 0 + h(2h+ 1)− (2h+ 1)h

= 0

Moreover, writing F (q) = (1− q) · · · (1− q2h)(q2h, q)∞, we see that by combining all the factors in

parentheses with the first 2h factors of F (q), we can cancel all these factors leaving just

(q2h, q)−1
∞ = 1 + q2h+1 + · · ·

To see that all higher contributions fall within the specified range, we again use the techniques

of applying our two transformations to individual terms and proving inductively that the resulting

expression involves sufficiently high powers of q. (As mentioned earlier, there are some cases here

in which the power of q actually does decrease when applying these transformations).
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First, assume w is of the form w0
r for some r ≥ h, so that the next Weyl element is s1w

0
r = w1

r+1.

Corollary 2.5 (with q2 in place of q) tells us the effect of the transformation s1∗ on this term is to

rescale it by a power of q, and that the exponent of this scaling power is:

2h[|∆w|0 − |∆w|1 + 1] + 2h[|∆w|0 − |∆w|1] + (k + i− 1− 2h)|∆w|0

+ (k − i+ 1− 2h)[2|∆w|0 − |∆w|1 + 1]− (k + i− 1− 2h)|∆w|0 + (k − i+ 1− 2h)|∆w|1

= 2h[2|∆w|0 − 2|∆w|1 + 1] + (k − i+ 1− 2h)[2|∆w|0 − 2|∆w|1 + 1]

= (k − i+ 1)[2|∆w|0 − 2|∆w|1 + 1]

≥ 2h+ 1

with equality only when i = k, w = w0
h. This is large enough to make this contribution O(q2h+1)

(and is exactly what is needed to match the more precise Empirical Hypothesis in the edge case).

Next, assume w is of the form w1
r for some r ≥ h + 1, so that the next Weyl element is

f(w1
r) = w0

r . From Corollary 2.5 (with q2 in place of q), when applying the transformation f(·) to

this term, the overall difference is the replacement of the factor

(q2|∆w|0 − q2|∆w|1−2h)q(k+i−1−2h)|∆w|0+(k−i+1−2h)|∆w|1

= q(k+i+1−2h)|∆w|0+(k−i+1−2h)|∆w|1 − q(k+i−1−2h)|∆w|0+(k−i+3−2h)|∆w|1−2h

from the original term with

− (q2|∆w|1 − q2|∆w|0−2h)q(k−i+1−2h)|∆w|0+(k+i−1−2h)|∆w|1

= q(k−i+3−2h)|∆w|0+(k+i−1−2h)|∆w|1−2h − q(k−i+1−2h)|∆w|0+(k+i+1−2h)|∆w|1

from the transformed term.

The ratios between the positive and negative expressions here are respectively

q(−2i+2)|∆w|0+(2i−2)|∆w|1−2h and q(−2i+2)|∆w|0+(2i−2)|∆w|1+2h

which means that the minimum change in the power of q is

2[(i− 1)(|∆w|1 − |∆w|0)− h] ≥ 2h

with equality only when i = 1. If i > 1, this is ≥ 2 because we are assuming w = w1
r for some

r ≥ h + 1, so certainly the result holds for all of these i. However, looking above, when i = 1 the
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minimal power of q appearing in the original w term is at least

k(2h+ 1) ≥ 4h+ 2

so even in the i = 1 case the exponent will still be O(q2h+1).

Now consider

B(k−1)(2h+1)+i(q) =
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)+(h+1)(2h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1) · q(2k−i−2h)|∆w|0+(i−2−2h)|∆w|1

Suppose that w is one of the first 2h + 1 elements (with respect to the linear order) - i.e., w

is either of the form w0
r or w1

r for r ≤ h. Once again, formulas (3.8), (3.9), and (3.10) (with q2 in

place of q) prove that the corresponding terms of the series are 0.

The first nonzero contribution to the series comes at the term w = w1
h+1, and that this contri-

bution is of the shape 1 + q2h+2 + O(q2h+3). This claim is justified by the following sequence of

computations, starting with the w = w1
h+1 term from the series referenced above:

1

(1 + q) · · · (1 + q2h+1)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)+(h+1)(2h+1)

(−1)`(w
1
h+1){−q

2|∆
w1
h+1
|
0(1− q

2(|∆
w1
h+1
|
1

−|∆
w1
h+1
|
0

)
)} · · · {−q

2|∆
w1
h+1
|
0

−2h
(1− q

2(|∆
w1
h+1
|
1

−2|∆
w1
h+1
|
0

+h)
)}

· q
(2k−i−2h)|∆

w1
h+1
|
0

+(i−2−2h)|∆
w1
h+1
|
1

=
(−1)2h+2

(1 + q) · · · (1 + q2h+1)F (q)

(1− q2) · · · (1− q4h+2)q
(4h+2)|∆

w1
h+1
|
0

−2|∆
w1
h+1
|
0

−[|∆
w1
h+1
|
0

+|∆
w1
h+1
|
1

](i−1)−2|∆
w1
h+1
|
0

(k−i)+(h+1)(2h+1)

· q
(2k−i−2h)|∆

w1
h+1
|
0

+(i−2−2h)|∆
w1
h+1
|
1

Looking more closely at the ending exponent of q, we can regroup it as

2k

[
|∆w1

h+1
|
0
− |∆w1

h+1
|
0

]
+ i

[
(|∆w1

h+1
|
0
− |∆w1

h+1
|
1
)− (|∆w1

h+1
|
0
− |∆w1

h+1
|
1
)

]
+ (h+ 1)(2h+ 1) + (2h+ 1)(|∆w1

h+1
|
0
− |∆w1

h+1
|
1
)

= 0 + 0 + (h+ 1)(2h+ 1)− (2h+ 1)(h+ 1)

= 0
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Moreover, writing F (q) = (1−q) · · · (1−q2h+1)(q2h+1, q)∞, we see that by combining all the factors

in parentheses with the first 2h+ 1 factors of F (q), we can cancel all these factors leaving just

(q2h+1, q)−1
∞ = 1 + q2h+2 + · · ·

Now we apply our same two transformations to individual terms to prove inductively that the

remaining contributions all involve only sufficiently high powers of q.

First, assume w is of the form w1
r for some r ≥ h + 1, so that the next Weyl element is

f(w1
r) = w0

r . By Corollary 2.5, the overall effect of the f(·) transformation on this term is to negate

the factors in parentheses, and rescale the ending power of q. We compute that the exponent of

this scaling power is

[(i− 3)− (2k − i− 1)]|∆w|0 + [(2k − i− 1)− (i− 3)]|∆w|1

= 2(k − i+ 1)(|∆w|1 − |∆w|0)

≥ 2h+ 2

with equality only when i = k, w = w1
h+1. This is large enough to make this contribution O(q2h+2)

(and is exactly what is needed to match the more precise Empirical Hypothesis in the edge case).

Next, assume w is of the form w0
r for some r ≥ h + 1, so that the next Weyl element is

s1w
0
r = w1

r+1. By Corollary 2.5, applying the s1 transformation, the difference between the original

and transformed terms is the replacement of

(q2|∆w|1 − q2|∆w|0−2h)q(2k−i−2h)|∆w|0+(i−2−2h)|∆w|1

= q(2k−i−2h)|∆w|0+(i−2h)|∆w|1 − q(2k−i+2−2h)|∆w|0+(i−2−2h)|∆w|1−2h

from the original term with

− (q2|∆w|0 − q2|∆w|1−2(h+1))

· q2(h+1)(|∆w|0−|∆w|1+1)+2h(|∆w|0−|∆w|1)+(2k−i−2h)|∆w|0+(i−2−2h)(|∆w|0−|∆w|1+1)

= (q2|∆w|1−2(h+1) − q2|∆w|0)q(2k−i−2−2h)|∆w|0+(−i−2h)|∆w|1+i

= q(2k−i−2−2h)|∆w|0+(−i+2−2h)|∆w|1+i−2(h+1) − q(2k−i−2h)|∆w|0+(−i−2h)|∆w|1+i

in the transformed term.
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The ratios between the positive and negative expressions here are respectively

q(2i−2)|∆w|0+(−2i+2)|∆w|1−2(h+1)+i and q(2i−2)|∆w|0+(−2i+2)|∆w|1−2(h+1)+i+2h

which means that the minimum change in the power of q is

2[(i− 1)(|∆w|0 − |∆w|1)− (h+ 1)] + i

This is greater than or equal to −(2h+ 1), with equality only when i = 1. If i > 1, this is at least

2 because we are assuming w = w0
r for some r ≥ h+ 1, so certainly the result holds for all of these

i. However, looking above, when i = 1 the minimal power of q appearing in the original w term is

at least

2k(h+ 1) ≥ 4h+ 4

so even in the i = 1 case the exponent will still be O(q2h+2).

This finishes the proof of the Empirical Hypothesis for the true series.

Theorem 5.7 (Empirical Hypothesis). For any j ≥ 0 and i = 2, · · · , k,

B̃(k−1)j+i(q) = 1 + qj+1γ(q)

for some

γ(q) ∈ C[[q]].

Remark 5.8. The proof of this theorem actually establishes a stronger result:

B̃(k−1)j+i(q) = 1 + qj+1 + · · ·

for i = 2, · · · , k − 1 and

B̃(k−1)j+k(q) = 1 + qj+2 + · · ·

Proof. Consider

B̃(k−1)2h+i(q) =
1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)+2h(h+1)

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|0 − q
2|∆w|1+2|∆

w1
h
|
0
−2|∆

w1
h
|
1)

· (q2|∆w|1 + q|∆w|0+1)q(k+i−2−2h)|∆w|0+(k−i−2h)|∆w|1



62

First suppose that w is one of the first 2h elements (with respect to the linear order) - i.e., w is

either of the form w0
r for r < h, or w1

r for r ≤ h. Then formulas (3.8), (3.9), and (3.10) force these

terms to be 0.

The first nonzero contribution to the series comes at the term w = w0
h, and this contribution is

of the shape 1+q2h+1 +O(q2h+2). This claim is justified by the following sequence of computations,

starting with the w = w0
h term from the series referenced above:

1

(1 + q) · · · (1 + q2h+1)F (q)
q
−2|∆

w0
h
|
0
(i−1)−

[
|∆

w0
h
|
0
+|∆

w0
h
|
1

]
(k−i)+2h(h+1)

(−1)`(w
0
h){q

2|∆
w0
h
|
1(1− q

2(|∆
w0
h
|
0
−|∆

w0
h
|
1
)
)} · · · {−q

2|∆
w0
h
|
1
−2h

(1− q
2(|∆

w0
h
|
0
−2|∆

w0
h
|
1
+h)

)}

· {q2|∆w|1(1− q
2(|∆

w0
h
|
0
−|∆

w0
h
|
1
)+1

)}q
(k+i−2−2h)|∆

w0
h
|
0
+(k−i−2h)|∆

w0
h
|
1

=
(−1)2h

(1 + q) · · · (1 + q2h+1)F (q)

(1− q2) · · · (1− q4h)(1 + q2h+1)q
2(2h+1)|∆

w0
h
|
1
−2|∆

w0
h
|
0
−2|∆

w0
h
|
0
(i−1)−[|∆

w0
h
|
0
+|∆

w0
h
|
1
](k−i)+2h(h+1)

· q(k+i−1−2h)|∆w|0+(k−i+1−2h)|∆w|1

Looking more closely at the ending exponent of q, we can regroup it as

k

[
(|∆w0

h
|
0

+ |∆w0
h
|
1
)− (|∆w0

h
|
0

+ |∆w0
h
|
1
)

]
+ i

[
(|∆w0

h
|
0
− |∆w0

h
|
1
)− (|∆w0

h
|
0
− |∆w0

h
|
1
)

]
+ 2h(h+ 1)− 2(h+ 1)(|∆w0

h
|
0
− |∆w0

h
|
1
)

= 0 + 0 + 2h(h+ 1)− 2h(h+ 1)

= 0

Moreover, writing F (q) = (1− q) · · · (1− q2h)(q2h, q)∞, we see that by combining all the factors in

parentheses with the first 2h factors of F (q), we can cancel all these factors leaving just (q2h, q)−1
∞ .

The factor (1 + q2h+1) is cancelled by the same factor appearing explicitly in the term. Hence this

term is in fact equal to

(q2h, q)−1
∞ = 1 + q2h+1 + · · ·

To see that all higher contributions fall within the specified range, we again use the techniques

of applying our two transformations to individual terms and proving inductively that the resulting
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expression involves sufficiently high powers of q. (As mentioned earlier, there are some cases here

in which the power of q actually does decrease when applying these transformations).

First, assume w is of the form w0
r for r ≥ h, so that the next Weyl element is s1w

0
r = wr + 11.

By Corollary 2.5 (with q2 in place of q), the effect of the s1∗ transformation on this term is to

negate it and rescale by a power of q whose exponent is

(2h+ 1)(2|∆w|0 − |∆w|1 + 1) + (k − i− 2h)(2|∆w|0 − |∆w|1 + 1)

= (k − i+ 1)[2|∆w|0 − 2|∆w|1 + 1]

≥ 2h+ 1

with equality only when i = k, w = w0
h. This is large enough to make this contribution O(q2h+1)

(and is exactly what is needed to match the more precise Empirical Hypothesis in the edge case).

Next, assume w is of the form w1
r for some r ≥ h + 1, so that the next Weyl element is

f(w1
r) = w0

r . From Corollary 2.5, the transformation f(·) has the effect of negating the term and

replacing

(q2|∆w|0 − q2|∆w|1−2h)(q2|∆w|1 + q2|∆w|0+1)q(k+i−2−2h)|∆w|0+(k−i−2h)|∆w|1

= (q2|∆w|0+2|∆w|1 + q4|∆w|0+1 − q4|∆w|1−2h − q2|∆w|0+2|∆w|1−2h+1)q(k+i−2−2h)|∆w|0+(k−i−2h)|∆w|1

from the original term with

− (q2|∆w|1 − q2|∆w|0−2h)(q2|∆w|0 + q2|∆w|1+1)q(k−i−2h)|∆w|0+(k+i−2−2h)|∆w|1

= −(q2|∆w|0+2|∆w|1 + q4|∆w|1+1 − q4|∆w|0−2h − q2|∆w|0+2|∆w|1−2h+1)q(k−i−2h)|∆w|0+(k+i−2−2h)|∆w|1

from the transformed term.

The ratios between corresponding parts here are respectively

q(−2i+2)|∆w|0+(2i−2)|∆w|1 , q(−2i+2)|∆w|0+(2i−2)|∆w|1−(2h+1),

q(−2i+2)|∆w|0+(2i−2)|∆w|1+(2h+1), q(−2i+2)|∆w|0+(2i−2)|∆w|1

which means that the minimum change in the power of q is

2[(i− 1)(|∆w|1 − |∆w|0)]− (2h+ 1)
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This is at least −(2h + 1), with equality only when i = 1. If i > 1, this is at least 1 because we

are assuming w = w1
r for some r ≥ h+ 1, so certainly the result holds for all of these i. However,

looking above, when i = 1 the minimal power of q appearing in the original w term is at least

k(2h+ 1) ≥ 4h+ 2

which outweighs this potential negative shift, so even in the i = 1 case the exponent will still be

O(q2h+1).

Now consider

B̃(k−1)(2h+1)+i(q) =
1

(1 + q) · · · (1 + q2h+2)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)+2(h+1)2

∑
w∈W

(−1)`(w)(q2|∆w|1 − q2|∆w|0) · · · (q2|∆w|1 − q
2|∆w|0−2|∆

w0
h
|
0
+2|∆

w0
h
|
1)

· (q2|∆w|0 + q2|∆w|1)q(2k−i−1−2h)|∆w|0+(i−3−2h)|∆w|1

Suppose that w is one of the first 2h + 1 elements (with respect to the linear order) - i.e., w

is either of the form w0
r or w1

r for r ≤ h. Once again, formulas (3.8), (3.9), and (3.10) (with q2 in

place of q) prove that the corresponding terms of the series are 0.

The first nonzero contribution to the series comes at the term w = w1
h+1, and that this contri-

bution is of the shape 1 + q2h+2 + O(q2h+3). This claim is justified by the following sequence of

computations, starting with the w = w1
h+1 term from the series referenced above:

1

(1 + q) · · · (1 + q2h+2)F (q)
q
−

[
|∆

w1
h+1
|
0

+|∆
w1
h+1
|
1

]
(i−1)−2|∆

w1
h+1
|
0

(k−i)+2(h+1)2

(−1)`(w
1
h+1){−q

2|∆
w1
h+1
|
0(1− q

2(|∆
w1
h+1
|
1

−|∆
w1
h+1
|
0

)
)} · · ·

{−q
2|∆

w1
h+1
|
0

−2h
(1− q

2(|∆
w1
h+1
|
1

−2|∆
w1
h+1
|
0

+h)
)}

· {q
2|∆

w1
h+1
|
0(1− q

2(|∆
w1
h+1
|
1

−|∆
w1
h+1
|
0

)
)}q

(2k−i−1−2h)|∆
w1
h+1
|
0

+(i−3−2h)|∆
w1
h+1
|
1

=
(−1)2h+2

(1 + q) · · · (1 + q2h+2)F (q)

(1− q2) · · · (1− q4h+2)(1 + q2h+2)q
2(2h+1)|∆

w1
h+1
|
0

−[|∆
w1
h+1
|
0

+|∆
w1
h+1
|
1

](i−1)−2|∆
w1
h+1
|
0

(k−i)+2(h+1)2

· q
(2k−i−1−2h)|∆

w1
h+1
|
0

+(i−3−2h)|∆
w1
h+1
|
1
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Looking more closely at the ending exponent of q, we can regroup it as

2k

[
|∆w1

h+1
|
0
− |∆w1

h+1
|
0

]
+ i

[
(|∆w1

h+1
|
1
− |∆w1

h+1
|
0
)− (|∆w1

h+1
|
1
− |∆w1

h+1
|
0
)

]
+ 2(h+ 1)2 + 2(h+ 1)(|∆w1

h+1
|
1
− |∆w1

h+1
|
0
)

= 0 + 0 + 2(h+ 1)2 − 2(h+ 1)2

= 0

Moreover, writing F (q) = (1−q) · · · (1−q2h+1)(q2h+1, q)∞, we see that by combining all the factors

in parentheses with the first 2h+ 1 factors of F (q) together with the other factors appearing in the

denominator, we can cancel all these factors. Moreover, the remaining factor of (1 + q2h+2) exactly

cancels the remaining factor in the denominator. Hence this term is in fact equal to

(q2h+1, q)−1
∞ = 1 + q2h+2 + · · ·

Now we apply our same two transformations to individual terms to prove inductively that the

remaining contributions all involve only sufficiently high powers of q.

First, assume w is of the form w1
r for some r ≥ h + 1, so that the next Weyl element is

f(w1
r) = w0

r . From Corollary 2.5, the transformation f(·) has the effect of rescaling the term by a

power of q whose exponent is

[(i− 3)− (2k − i− 1)]|∆w|0 + [(2k − i− 1)− (i− 3)]|∆w|1

= 2(k − i+ 1)(|∆w|1 − |∆w|0)

≥ 2h+ 2

with equality only when i = k, w = w1
h+1. This is large enough to make this contribution O(q2h+2)

(and is exactly what is needed to match the more precise Empirical Hypothesis in the edge case).

Next, assume w is of the form w0
r for r ≥ h, so that the next Weyl element is s1w

0
r = wr + 11.

By Corollary 2.5, the s1∗ transformation has the overall effect of replacing the factors

(q2|∆w|1 − q2|∆w|0−2h)(q2|∆w|0 + q2|∆w|1)q(2k−i−1−2h)|∆w|0+(i−3−2h)|∆w|1
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from the original term with

− (q2|∆w|0 − q2|∆w|1−2(h+1))(q2|∆w|1 + q2|∆w|0+2)

q4(h+1)(|∆w|0−|∆w|1)+2(h+1)+(2k+i−7−6h)|∆w|0+(−i+3+2h)|∆w|1+(i−3−2h)

for the transformed term.

As above, when we distribute the factors in parentheses and compare like terms, we find there

are three possible ratios between corresponding parts:

q(2i−2)|∆w|0+(−2i+2)|∆w|1+i−1±2(h+1), q(2i−2)|∆w|0+(−2i+2)|∆w|1+i−1

Thus, the minimum change in the power of q is

2[(i− 1)(|∆w|0 − |∆w|1)− (h+ 1)] + i− 1

This is at least −2(h + 1), with equality only when i = 1. If i > 1, this is at least 1 because we

are assuming w = w0
r for some r ≥ h+ 1, so certainly the result holds for all of these i. However,

looking above, when i = 1 the minimal power of q appearing in the original w term is at least

2k(h+ 1) ≥ 4h+ 4

so even in the i = 1 case the exponent will still be O(q2h+2).

This finishes the proof of the Empirical Hypothesis for the ghost series.

5.5 Combinatorics

To finish the proof of the Andrews-Bressoud identities, we recall Theorem 7.3 from [KLRS].

Remark 5.9. As in for the Gordon-Andrews series, the proof we give here is not the main proof

from [KLRS]. Instead, it is in the spirit of Remark 7.6 there.

Theorem 5.10. For each i = 1, . . . , k, j = 0, 1, 2, . . ., B(k−1)j+i(q) is the generating function of

partitions π = (π1, · · · , πs) satisfying

1. difference at least 2 at distance k − 1
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2. πt − πt+k−2 ≤ 1 only if πt + · · ·+ πt+k−2 ≡ (k − 1)j + i+ k mod 2

3. smallest part is at least j + 1

4. j + 1 appears as a part at most k − i times

and B̃(k−1)j+i(q) is the generating function of partitions satisfying

1. difference at least 2 at distance k − 1

2. πt − πt+k−2 ≤ 1 only if πt + · · ·+ πt+k−2 ≡ (k − 1)j + i+ k + 1 mod 2

3. smallest part is at least j + 1

4. j + 1 appears as a part at most k − i times

Proof. Suppose L1, L2, . . . is an infinite sequence of formal power series in q which satisfy the

recursions (5.7) (with L in place of B) and the Empirical Hypothesis. By rewriting (5.7) to eliminate

the ghost series and to solve for the lowest-indexed series and applying this formula iteratively, we

see that for each i = 1, . . . , k, we have expressions

Li(q) =
k∑
p=1

ih
(j)
p (q)L(k−1)j+p(q)

for some polynomials ih
(j)
p (q) ∈ C[q]. Notice that the coefficients ih

(j)
p (q) of these combinations

depend only on the recursions, not directly on the Ls. It follows from the Empirical Hypothesis

that the series L1, . . . , Lk are uniquely determined (for example, considering the combination at

shelf j determines the first j terms of the series Ji just in terms of the ih
(j)
p (q)). Hence, the whole

sequence L1, L2, . . . is uniquely determined.

By our work in the earlier sections (the definition of the Bi and B̃i series in (5.7) and Theorems

5.5, 5.7), the series Bi, B̃i above satisfy these conditions. Let Di, D̃i denote the generating functions

of the classes of partitions described in the statement of the current theorem. By uniqueness, it is

now enough to check that the Di and D̃i also satisfy the recursions and Empirical Hypothesis.

The Empirical Hypotheses for the Di and D̃i follow directly from the definitions.

To check the recursions, first we consider

D(k−1)j+(k−1) − D̃(k−1)j+k

qj+1
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The indices of the two series in the numerator differ by 1, but because the parity condition is offset

for the true series versus the ghosts, they agree on the parity condition. Hence, the numerator is the

generating function of partitions satisfying the first three conditions above (with parity (k−1)j+1),

and such that the part j+1 has multiplicity one. Once that part is eliminated by the denominator,

the next smallest part must be at least j + 2. It can occur no more than k − 2 times to satisfy the

first (difference at distance) condition, and this is allowed by the second (parity) condition because

(j + 1) + (k − 2)(j + 2) = (k − 1)(j + 1) + (k − 2) ≡ (k − 1)j + (k − 1) + k mod 2

Hence expression is identical to the series D(k−1)(j+1)+2(q). A similar argument shows that it also

agrees with D̃(k−1)j+k (in this case, the parity condition is violated, so we end up with the smaller

upper bound of k − 2 for the multiplicity of j + 2).

Next, we consider
D(k−1)j+(k−i+1) − D̃(k−1)j+(k−i+2)

q(j+1)(i−1)

Again the parity conditions match, so the numerator counts partitions satisfying conditions 1 to 3

above and such that the part j+ 1 appears with multiplicity i− 1. By condition 1, such parititions

can have at most k − i parts equal to j + 2, and the maximum number is allowed by condition 3

because

(i− 1)(j + 1) + (k − i)(j + 2) = (k − 1)(j + 1) + (k − i) ≡ (k − 1)(j + 1) + i+ k mod 2

Hence, once we have shifted these partitions by the effect of the denominator, we are left with the

series D(k−1)(j+1)+i(q) A similar argument shows that we get the same series by considering

D̃(k−1)j+(k−i+2) −D(k−1)j+(k−i+3)

q(j+1)(i−2)

(as in the second case above, the parity condition forces a lower upper bound).



69

References

[A1] G. E. Andrews, An analytic proof of the Rogers-Ramanujan-Gordon identities, Amer.
J. Math. 88 (1966), 844-846.

[A2] G. E. Andrews, A generalization of the Göllnitz-Gordon partition theorems, Proc.
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[Göl] H. Göllnitz, Partitionen mit Differenzenbedingungen (German), J. Reine Angew.
Math. 225 (1967), 154-190.

[G1] B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities,
Amer. J. Math. 83 (1961), 393-399.

[G2] B. Gordon, Some continued fractions of the Rogers-Ramanujan type, Duke Math. J.
32 (1965), 741-748.

[GOW] M. Griffin, K. Ono, S. O. Warnaar, A framework of Rogers-Ramanujan identities and
their arithmetic properties, arXiv:1401.7718 [math.NT].

[H] C. Husu, Extensions of the Jacobi identity for vertex operators, and standard A
(1)
1 -

modules, Mem. Amer. Math. Soc. 106 (1993), no. 507.

[K] V. Kac, Infinite Dimensional Lie Algebras. Cambridge University Press, 1990.

[Ka] S. Kanade, Structure of certain level 2 standard modules for A
(2)
5 and the Göllnitz-
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