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ABSTRACT OF THE DISSERTATION

Optimal Data Utilization for Goal-Oriented Learning

by Charles Wesley Cowan

Dissertation Director: Michael Katehakis

We are interested in the problem of utilizing collected data to inform and direct learning towards

a stated goal. In this work, a controller is presented with a finite set of actions that may be

sequentially (and repeatedly) taken towards the achievement of some goal. While the outcome

of any action is stochastic, the result provides information about future results of that action, and

potentially others. By following a rule or control policy, the controller wishes to sequentially

take actions, collect information, and utilize it towards future action decisions, in such a way as

to approach the stated goal.

In the first model, at least one action is ‘best’, and the goal is to identify and take such an action

as frequently as possible. This requires learning the actions’ underlying dynamics based on

repeated observations of the stochastic results of those actions; this encapsulates the classic

‘exploration vs exploitation’ dynamic, to test many actions, or to take only the action currently

believed to be best. We derive asymptotic lower bounds on how effective any universally good

policy can be, as a function of initial knowledge. Additionally, we define a generic control

policy and conditions under which it is provably asymptotically optimal, and give a number of

examples to illustrate the scope and application of the model.

In the second model, the goal is to maximize some utility of all actions taken, e.g., total expected

rewards collected. Additionally, each action has an associated breaking or halting time, which if
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reached ends the control process. This again captures the ‘exploration vs exploitation’ dynamic,

as the controller must balance the reward of any one action against the risk of halting and loss

of opportunity for future rewards. As the goal depends on the actual results achieved, there

is generally no single ‘best’ action as in the previous model. In many contexts, we derive a

dynamic ‘action valuation’ scheme that gives rise to an optimal control policy.
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Chapter 1

Introduction: Bandits, Models for Learning

In this work, we are interested in the problem of learning, specifically in terms of collecting

and utilizing data towards the achievement of some stated goal in the presence of uncertainty.

The primary model under consideration is a Multi-Armed Bandit model, in which a controller

is presented with a finite set of actions, e.g. ‘arms’ or ‘bandits’, that may be sequentially (and

repeatedly) taken, with the results of the actions taken to contribute towards some goal. In gen-

eral, the outcome of taking any action, while random, provides information about the underlying

state or future results of that action - and potentially other actions, depending on what is known

about how the actions relate to each other. The problem the controller faces is in utilizing this

collected data as effectively as possible towards her goal. We are therefore interested in i) the

development of decision rules or control policies for determining which action to take given the

data available to optimally contribute to the controller’s goal, and ii) analyzing the performance

and behavior of such policies.

We consider two primary models in this work. In the first model, the subject of Chapters 2

and 3, at least one action is thought of as ‘best’ in some regard, and the controller’s goal is to

identify and take such an action as frequently as possible. This requires that the controller learn

each action’s underlying dynamics through repeated use and observation, but only to the extent

necessary to identify and utilize the best of the available actions; this is the classic ‘exploration

vs exploitation’ dilemma, balancing testing multiple actions for the purpose of learning and

discovery against focusing exclusively on the single action currently believed to be best. Chapter

2 presents results bounding how efficiently any policy can discover and utilize the ‘best’ actions

as a function of i) what is initially known about the nature of the actions and ii) the definition

of ‘best’, as set by the controller. Chapter 3 develops a family of generic decision rules that can
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be applied in a variety of contexts, and additionally gives a set of sufficient conditions under

which such policies are optimal, i.e., achieving the efficiency bounds as laid out in Chapter 2.

Additionally, Chapter 3 gives a number of examples illustrating a breadth of application of this

model. The main results of Chapter 3, the control policy defined therein and the asymptotic

optimality result of Theorem 5, represent generalizations of the work of Cowan and Katehakis

in [13] to non-i.i.d. observation processes.

The second model, which we refer to as the Halting Bandits model, is the subject of Chapter 4.

In this model, the controller’s goal is to take actions in such a way as to maximize some specified

utility of the results of all actions taken, e.g., total expected rewards collected. Additionally, we

take each action as having an associated ‘halting’ or breaking point, past which no further action

can be taken; we view this as representing some conclusion, either a failure or success, and wish

to maximize total utility up to this point. This halting bandit model differs significantly from

the previous model in an important way: In the first model, there was (at least) one action that

was ‘best’ to take for all time, and the results of actions taken mattered only in terms of the

information they provided about which action was best. However, in this halting bandit model,

because the stated goal depends on the actual results achieved, there is no one universally ‘best’

action - the best action to take at any time may depend on what is currently known about each

action and the risk of halting, and may in fact change over time. We develop a scheme by

which any action may be ‘dynamically valued’ based on what is currently known, and show in a

variety of contexts that an optimal decision rule may be given by always taking the action with

the largest current dynamic value. The results of this chapter are related to and can be seen as a

generalization and extension of the model considered by Cowan and Katehakis in [15], as well

as providing both a dramatic simplification of and greater intuition for the underlying optimality

results of that paper.



3

Chapter 2

A Bound On Efficient Learning

In this chapter, we consider the following problem: a controller is faced with a finite set of

actions, which may be taken (repeatedly) over time - the classic example is levers or arms to be

pulled. At least one of the arms is considered ‘best’ to pull, relative to some stated goal, and the

controller wishes to pull this arm as frequently as possible over some time horizon. However,

the controller initially cannot be certain which of the arms is best. The controller must learn

from the results of successive arm-pulls which arm is best. This is the classic ‘exploration vs

exploitation’ dilemma: to what extent ought the controller experiment with various arms and

learn more about them, versus sticking with or exploiting the arm she currently believes to be

best?

We consider the problem of maximizing the expected number of ‘best’ actions, i.e. ‘optimal’

arm-pulls, over a given time horizon, or equivalently minimizing the expected number of ‘mis-

takes’ or sub-optimal pulls taken over that period. In particular, we wish to consider policies

for sequentially deciding which arm to pull based on data collected, that minimize the expected

number of mistakes ‘universally’ - for any set of arms with which the controller might be con-

fronted. The primary result of this chapter is that for any such policy, subject to reasonable

constraints on the set of potential arms, the expected number of mistakes must grow at least

logarithmically with the total number of pulls. This represents a bound on how quickly or ef-

ficiently (in terms of the number of pulls taken) the identity of the best arm can be learned,

depending on what is initially known about the arms, and how they relate to each other.
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2.1 Formulation and Prior Work

The controller faces N (2≤ N < ∞) arms, arm i represented by a sequence of random variables

{X i
t }t>1 on some Borel space X . The t-th time arm i is pulled, the controller observes the

value or state X i
t . In this way, successive pulls reveal successively more information about the

arm processes. We define an arm-pulling policy π as a stochastic process {π(n)}n>1 where

π(n) = i indicates that for the n-th pull, the controller pulls arm i. Given a policy π , we define

T i
π(n) = ∑

n
t=11{π(t) = i}, denoting the total number of pulls of arm i in the first n periods. We

take π(n+1) as dependent only on information available to the controller through the n-th pull,

i.e., the decision of which arm to pull cannot depend on the results of arm pulls that have not

happened yet.

The controller wishes to learn, via the results of pulls performed, about the underlying stochas-

tic dynamics governing the arm processes, which are unknown to the controller. We consider

‘learning’ here to be the ability to increasingly differentiate between alternative hypotheses. To

that end, we consider F as a known family of probability laws on X ∞, taking F to be the set of

all plausible or potential hypotheses that might govern a given arm-process. For each i, we take

the ‘true’ law governing {X i
t }t>1 to be some element Fi ∈F , and denote F = (F1, . . . ,FN)∈F N

as a full (ordered) set of arm laws. While F N represents the full universe of potential arm laws,

we restrict consideration in the following way: the controller may have additional information

about the underlying structure of the arms and how they relate to each other, in particular that

the laws F1, . . . ,FN satisfy some property P. We may then define the full universe of plausible

arm laws under consideration as

F N
P = {(F1, . . . ,FN) ∈F N : F1, . . . ,FN satisfy P}. (2.1)

In the case that the arms are unrelated to each other, we simply take P as being trivially satisfied,

so F N
P = F N . For a given set of laws F , we denote PF(A) as the probability of event A when

the true underlying arm laws are given by F . As the controller observes more terms from arm

i, she should hope to be increasingly able to distinguish Fi in F .

We define the ‘best’ arm in the following way: we equip F with a ‘score functional’ s : F 7→R,

providing a (problem specific) means of ranking the probability laws in F . The classical score



5

functional of interest is the long term average, s(F) = F-limn(1/n)∑
n
t=1Yt , but we might also

consider alternative scoring, such as other measures like a limiting median, or frequency of

exceeding a given threshold. For a given set of arm laws F = (F1, . . . ,FN), let s∗(F) =maxi s(Fi)

be the maximal score of any arm. We may then define the best or ‘optimal’ arms as the set O(F)

where for i∈O(F), s(Fi) = s∗(F). The expected total number of ‘mistakes’ or sub-optimal pulls

out of n pulls for a given policy is then

MF
π (n) = EF

[
∑

i/∈O(F)

T i
π(n)

]
. (2.2)

For a given set of laws F , it is reasonable to try to find π to minimize the above quantity (relative

to the total number of pulls n) - consider, for instance, a policy that only pulls the optimal arms

of F! Implementing such a policy, however, depends on the controller initially knowing F .

The controller will not initially know what set of arms she faces. We may then ask, are there

policies that minimize mistakes ‘universally’ over F N
P , so that the controller may be confident

in the performance of the policy regardless of the specific arms she faces?

To begin, the number of mistakes is certainly bound by the total number of pulls, yielding the

inequality MF
π (n) ≤ n for any F ∈ F N

P . Hence, the expected number of mistakes can grow

no worse than linearly with the number of pulls, universally. It is easy enough to establish

policies such that MF
π (n) = O(n) for all F : consider for instance a policy that pulls every arm

equally often - in this case, mistakes accumulate at a linear rate. Our primary interest is therefore

policies for which the mistake rate is universally sub-linear, i.e., MF
π (n) = o(n) for all F ∈F N

P .

In particular, we define a policy π as F N
P -Uniformly Fast if for all α > 0,

MF
π (n) = o(nα) for all F ∈F N

P . (2.3)

That is, a policy is uniformly fast if for any plausible choice of arms, the expected mistakes by

time n accumulate slower than any power of n.

In the remainder of this chapter, we look at the implications of a policy being uniformly fast.

In particular, in order to achieve slow mistake accumulation for all plausible choices of arms,

such a policy must pull every arm sufficiently many times - and in doing so incur at least some

mistakes - to be reasonable sure of identifying the best arms. It will be shown that enforcing

such a slow rate of mistake accumulation in fact ensures that mistakes will accumulate at least
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at a logarithmic rate. We derive this minimum rate, and its dependence on F , P, and s in the

next section.

2.1.1 Prior Work

The problem as formulated here represents an important generalization of past work. Histori-

cally, the interest has centered on viewing the arm processes as a sequence of real-valued rewards

to be collected. Hence for a given policy π , the value of a policy over a time horizon of n may

be defined as

V F
π (n) =

N

∑
i=1

EF

[
T i

π (n)

∑
t=1

X i
t

]
. (2.4)

Taking the processes to be i.i.d., arm i having mean µi, the above can be simplified to

V F
π (n) =

N

∑
i=1

µi EF
[
T i

π(n)
]
. (2.5)

Comparing the above value to an idealized ‘optimal’ policy that always pulls the arm with max-

imal mean µ∗ = maxi µi motivates the definition of regret or expected loss,

RF
π (n) = µ

∗n−V F
π (n) =

N

∑
i=1

(µ∗−µi)EF
[
T i

π(n)
]
. (2.6)

The focus has generally been on establishing policies that minimize regret, as a proxy for maxi-

mizing value. The following examples all consider cases where there is no known shared struc-

ture between the arms: In the N = 2 case, Robbins in [60] constructed policies that achieved

regret as o(n) universally, by ‘playing the current winner’ except for a sparse sequence of ‘forced’

exploratory pulls. Lai and Robbins in [44] introduced the idea of ‘uniformly fast’ policies, for

which regret grew slower than any power of n, universally over arm laws. In the case of F as

a one parameter family of densities, they proved that under mild regularity conditions, for any

uniformly fast policy it must be that RF
π (n)> Ω(lnn) for all F , where the order constant depends

on the specific F . This logarithmic lower bound was generalized to the multi-parameter case by

Katehakis and Burnetas in [9]. In general, policies that perform well cannot perform too well,

as they must pull sub-optimal arms sufficiently many times (and in doing so, incur regret) so as

to correctly identify the best arm.

The work presented here represents an extension and generalization of these previous works. In

particular: we consider more general arm processes, relaxing the i.i.d. requirement; introduce
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potential shared structure relating the arms to each other, potentially allowing for faster learning

due to greater knowledge; and introduce the idea of the ‘general’ score functional, allowing this

learning framework to be applied in a wider variety of contexts. A key point in this general-

ization is the switch from regret minimization to mistake minimization. The two models are

related, however: viewing the ‘score’ of an arm under this regret minimization model as the

expected value, s(F) = F-limk1/k ∑
k
t=1Yt = EF [Y ] = µ(F), regret can be seen as a weighted

sum of expected ‘mistakes’ for each sub-optimal arm, weight given by the expected loss for that

arm.

Note that in the model of regret minimization, pulling arms that are ‘close’ to the optimal arm

incurs less of a cost than distinctly less-optimal arms. Generalizing to the idea of a ‘general’

score functional, however, it is not immediately clear in the model presented here what is ‘lost’

via a sub-optimal pull: what is lost via a sub-optimal pull if arms are ranked according to median,

or have infinite expected values? Hence we focus on ‘total mistakes’ rather than a notion of loss

(though this model of mistakes is effectively imposing a 0-1 loss function). This becomes a

natural generalization of the mentioned previous work, based on the following observation: the

core of these previous results on bounding regret was first and foremost bounds on the individual

mistake rates for sub-optimal arms, which were then combined via a weighted sum to produce a

bound on regret. In this way, these past results are somewhat subsumed in and extended by the

results to follow. Additionally, many of the results to follow may be applied to bound any loss

function taking the form of a positive linear combination of the expected mistakes from each

sub-optimal arm.

Additionally, it is interesting to note that the approach taken in this work, one might call it ‘best

arm utilization’, seems to sit at a midpoint between the classical goals of ‘regret minimization’

as outlined above, and ‘best arm identification’, in which the focus is not on minimizing loss but

rather maximizing the probability of correctly identifying the optimal arm after some period.

In this model of ‘best arm utilization’, we abandon the goal of knowing which arm is truly best

for the assurance that we will pull it as frequently as possible.
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2.2 Preliminary Results for General Stochastic Processes

We begin with some notation and initial results relating to distinguishing, based on data, between

two hypothesized probability laws in F . To begin, we consider a fixed measure λ on X , with

λ k the natural product measure on X k. For F ∈ F , we characterize F by a family of finite

dimensional density functions f , such that if {Yt}t>1∼F , for any k> 0, (Y1, . . . ,Yk) is distributed

according to density f (y1, . . . ,yk) over X k, relative to λ k. Note, in the case that F represents an

i.i.d. sequence, we have that f (y1, . . . ,yk) = ∏
k
t=1 f (yt). In general, the central restriction on f

is that it be consistent with respect to the finite dimensional marginal distributions, for instance

satisfying the following for any k > 0,

f (y1,y2, . . . ,yk) =
∫

X
f (y1,y2, . . . ,yk,yk+1)λ (dyk+1). (2.7)

An important result of this property is the following:

Lemma 1 For any k > 0, if f (y1, . . . ,yk) = 0, then for any k′ > k, f (y1, . . . ,yk,yk+1, . . . ,yk′) = 0

for all (yk+1, . . . ,yk′) ∈X k′−k, λ k′−k-almost everywhere.

Proof. Without loss of generality, we may take k′ = k+1. Note that f is strictly non-negative.

If f (y1, . . . ,yk,yk+1) were positive for a set of yk+1-values of positive measure (w.r.t. λ ), then∫
X f (y1,y2, . . . ,yk,yk+1)λ (dyk+1)> 0. By the above remark on consistent marginals, we have

f (y1, . . . ,yk)> 0, a contradiction.

The implication of this is that if a sequence of values (y1, . . . ,yk) is ‘unlikely’ relative to f , i.e., f

gives a density of 0 at that point, then any sequence of values that begins with that sub-sequence

is also unlikely.

Let F and G be two probability laws in F . We define the following quantity as useful for

‘hypothesis testing’, determining whether a given process might be governed by F or by G:

I(F,G) = lim
k→∞

1
k

ln
(

f (Y1, . . . ,Yk)

g(Y1, . . . ,Yk)

)
where {Yt}t>1 ∼ F , (2.8)

interpreting the above limit as almost sure. The quantity I represents the ‘limiting average log

likelihood ratio’. If such a limit does not exist almost surely, it is convenient to take I(F,G) as

infinite, to maintain consistency of the results to follow in that case.

An important property of this limit is the following:
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Lemma 2 For probability laws F,G, it holds that I(F,G)> 0.

Proof. This result follows naturally from the following result, that

liminf
n

1
n

ln
(

f (Y1, . . . ,Yn)

g(Y1, . . . ,Yn)

)
> 0 (PF -a.s.). (2.9)

To see this, observe that for any ε > 0,

PF

(
1
n

ln
(

f (Y1, . . . ,Yn)

g(Y1, . . . ,Yn)

)
+ ε < 0

)
= PF

(
f (Y1, . . . ,Yn)< g(Y1, . . . ,Yn)e−εn)

= EF
[
1
{

f (Y1, . . . ,Yn)< g(Y1, . . . ,Yn)e−εn}]
≤ EG

[
1
{

f (Y1, . . . ,Yn)< g(Y1, . . . ,Yn)e−εn}e−εn]
≤ EG

[
1e−εn]

= e−εn.

(2.10)

It follows that
∞

∑
n=1

PF

(
1
n

ln
(

f (Y1, . . . ,Yn)

g(Y1, . . . ,Yn)

)
+ ε < 0

)
< ∞. (2.11)

By the Borel-Cantelli lemma, we have that for any ε > 0, (1/n) ln( f (Y1, . . . ,Yn)/g(Y1, . . . ,Yn))<

−ε only finitely often, PF -almost surely. This verifies Eq. (2.9). It follows then in the case that

the limit exists almost surely, it must be that I(F,G)> 0. In the case that the limit does not exist,

we take I(F,G) as infinite, in which case the claim is trivially true.

We observe that, trivially, I(F,G) = 0 if F = G. The function I(F,G) can be thought of as

measuring a similarity - at least, in the limit for non-i.i.d. processes - between the distributions

defined by F and G; the more similar F and G are, the smaller I(F,G) should be. If given data

is likely to be generated under F , but unlikely to occur under G, the larger the likelihood ratio

for that data, and the larger the resulting limit I(F,G) (typically). In particular, I(F,G) can be

thought of in terms of the rate at which F is distinguished from G as more observations from F

are made.

The following property will be useful for the results to follow:

Lemma 3 For probability laws F and G, if I(F,G)< ∞, then taking {Yt}t>1 ∼ F , for all k,

1
k

ln
(

f (Y1, . . . ,Yk)

g(Y1, . . . ,Yk)

)
< ∞ PF -almost surely. (2.12)
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Proof. The assumption that I(F,G) < ∞ implies that the limit of the average log likelihood

exists and is finite almost surely (relative to PF ). Suppose that the conclusion is false, that for

some finite k0, (1/k0) ln( f (Y1, . . . ,Yk)/g(Y1, . . . ,Yk)) is infinite with non-zero probability (rel-

ative to PF ). In that case, we have that g(Y1, . . . ,Yk0) = 0 with non-trivial probability (rela-

tive to PF ). However, Lemma 1 therefore implies that for any k > k0, given such Y1, . . . ,Yk0 ,

g(Y1, . . . ,Yk0 ,yk0+1, . . . ,yk) = 0 for almost every choice of (yk0+1, . . . ,yk) (relative to λ k−k0). This

implies that, given such Y1, . . . ,Yk0 , (1/k) ln( f (Y1, . . . ,Yk)/g(Y1, . . . ,Yk)) is infinite PF -almost

surely, and hence given the nontrivial probability of such Y1, . . . ,Yk0 , I(F,G) is infinite with

non-trivial probability (relative to PF ). This contradicts the existence of a finite I(F,G).

We establish this general framework so that the results to follow will be as broadly applicable

as possible; the one central restriction in applying the results of the following sections is the

assumption that for any F,G in the set of potential arm hypotheses F , the limit I(F,G) exists

almost surely, i.e., is a non-random constant value, depending only on F and G. This is not a

small requirement. However, many models of interest do satisfy this requirement:

• F as i.i.d. processes: In this case, F and G represent i.i.d. sequences, and I reduces to

I(F,G) = lim
k

1
k

k

∑
t=1

ln
(

f (Yt)

g(Yt)

)
, (2.13)

which may be computed via the Strong Law as I(F,G) = EF [ln( f (Y )/g(Y ))], the usual

Kullback-Leibler divergence, when the limit exists.

• F as finite state Markov chains: Let X be some finite state space, and consider the set

of ergodic Markov chains on this space. In this case, any F ∈F can be represented as an

initial distribution pF
0 on X , and a transition matrix PF . In this case, I reduces to

I(F,G) = lim
k

1
k

(
ln
(

pF
0 (Y1)

pG
0 (Y1)

)
+

k

∑
t=2

ln
(

PF(Yt |Yt−1)

PG(Yt |Yt−1)

))

= lim
k

1
k

k

∑
t=2

ln
(

PF(Yt |Yt−1)

PG(Yt |Yt−1)

)
.

(2.14)

This can be computed explicitly, based on the ergodic property of Markov chains. For

any F , let wF be the limiting distribution vector on X . The above can be given explicitly
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as

I(F,G) = ∑
x∈X

wF
x ∑

y∈X
PF(y|x) ln

(
PF(y|x)
PG(y|x)

)
. (2.15)

We note additionally that this extends naturally to k-th order finite state Markov processes

as well.

• F as hidden Markov models: The quantity I can also be shown to exist in the case

of taking F as a family of hidden Markov models, under certain regularity conditions

on F such as stationarity of the underlying Markov chain [46]. There is no convenient

formula to give for I, but the existence of it proves that the results to follow, as bounds on

a controller’s ability to learn, are relevant to a number of applications.

2.3 A Lower Bound on Expected Mistakes

We can view learning in terms of differentiating between hypotheses as data is collected, for

instance comparing two competing hypotheses that the arms are governed by F or G, for F ,G ∈

F N
P . In particular however, learning in this framework is modulated by the overarching goal:

pulling the optimal arms (given the true underlying distributions). The following theorem can

be thought of as bounding the minimum number of pulls needed to discern between the ‘correct’

hypothesis F , and an alternative hypothesis G. The case when s∗(G) > s∗(F) is of particular

importance - if the correct hypothesis is F , but the controller believes it to be G, maximizing

G-optimal pulls would incur many mistakes!

The primary restriction we introduce here is taking the score functional to satisfy the following:

for any F,G ∈F , if I(F,G) = 0, then s(F) = s(G). Essentially, this restricts F and s to say

that if two process laws are indistinguishable in the limit, then they have the same score; this is

reasonable: if a given arm is to be ‘best’ for all time, the property of being best will frequently

be asymptotic in nature. This is frequently not a serious restriction, and is often satisfied for

score functionals of interest such as those considered herein.

Theorem 1 Let π be F N
P -Uniformly Fast. For any F ∈F N

P , let G = (G1, . . . ,GN)∈F N
P satisfy

the following: i) s∗(G)> s∗(F), and ii) Gi = Fi for all i ∈O(F). For any such F ,G, let D(F ,G)
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be the set of all i such that Fi 6= Gi. Then the following holds:

liminf
n

EF
[
∑i∈D(F ,G) T i

π(n)
]

lnn
>

1
I(F ,G)

, (2.16)

where I(F ,G) = ∑i I(Fi,Gi).

The proof is given in Section 2.5.

By choosing G to maximize the lower bound, the above may be utilized to bound the expected

number of F-mistakes, asymptotically, as G and F are taken to differ only on the sub-optimal

arms of F . By choosing specific G to agree or disagree with F on certain arms, the mistake rate

relative to specific groups of arms can be bound as well. In the subsections to follow, we apply

these notions to various specific instances of arms of interest. Note that the more restrictive the

condition P (and hence the smaller F N
P ), the fewer G there are that satisfy the conditions of

Theorem 1 for a given F , which reduces the maximal lower bound in Eq. (2.16). This has the

following satisfying intuition: the more that is initially known about the arms (through P), the

fewer mistakes that need to be made in learning and utilizing the optimal arms.

It is worth noting, however, that on occasion feasible G fail to exist: consider an F ∈F N
P that

realizes the a maximal value of s, for instance, in which case there is no G∈F N
P that has a better

score than F . Such F are somewhat privileged, and learning can on occasion be performed faster

than logarithmically in these contexts [45]. This will not generally be the case in the models

considered here, however.

2.3.1 Unrelated Arms

In this subsection, we consider applying Theorem 1 to the case of trivial P, which is to say that

the individual arms share no known relationship with each other. This recovers and extends

many classical results. We have the following general result:

Theorem 2 Let π be F N-Uniformly Fast. For any F ∈F N , the following holds whenever the

infima are taken over non-empty sets:

liminf
n

MF
π (n)
lnn

> ∑
i/∈O(F)

1
infG∈F{I(Fi,G) : s(G)> s∗(F)}

. (2.17)
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Proof. The proof proceeds by bounding the mistakes relative to any given sub-optimal arm

i /∈ O(F). For such an i, consider a G = (G1, . . . ,GN) ∈ F N where G j = Fj for j 6= i, and

s(Gi)> s∗(F). Applying the result of Theorem 1, we have that

liminf
n

EF
[
T i

π(n)
]

lnn
>

1
I(Fi,Gi)

. (2.18)

Maximizing the above lower bound relative to feasible Gi, and summing the resulting bound

over all sub-optimal arms i /∈ O(F), completes the proof.

Note, the above proof can be extended to put a lower bound on any linear combination (with

positive coefficients) of the individual sub-optimal mistakes as well. Taking the underlying arm

processes to be i.i.d., and the score functional to be the expected value, s(F)=EF [X ], we recover

Eq. (2.47) from the above, that for any F , for any sub-optimal i, maximizing the bound over

feasible G,

liminf
n

EF
[
T i

π(n)
]

lnn
>

1
infG∈F{I(Fi,G) : µ(G)> µ∗(F)}

. (2.19)

Weighting the mistakes of each sub-optimal arm by the expected loss, µ∗(F)− µ(Fi), we can

combine the above bounds to recover a non-parametric version of the lower bounds of [44, 9].

liminf
n

RF
π (n)
lnn

> ∑
i/∈O(F)

µ∗(F)−µ(Fi)

infG∈F{I(Fi,G) : µ(G)> µ∗(F)}
. (2.20)

2.3.2 Related Arms

In this subsection, we consider applying Theorem 1 to the case of non-trivial P - when arms are

known to share a relationship. In this case, knowledge gained about one arm (through pulling

it) can be informative not only about the law underlying that arm itself, but also about the other

arms. As a given pull may therefore be more informative than in the unrelated case, we gener-

ally expect to be able to require fewer mistakes (and hence, a smaller lower bound) than in the

unrelated arm case.

Note, the proof in the unrelated arm case bounded the total number of mistakes by first bounding

the number of mistakes relative to each individual sub-optimal arm, through the construction

of hypotheses G that differed from F only on a given arm. For non-trivial P - especially very

restrictive P - given F , it may not be possible to construct such a G. As such, the following

theorem provides several potential lower bounds:
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Theorem 3 Let π be F N
P -Uniformly Fast. For any F ∈F N

P , the following holds whenever the

infimum is taken over a non-empty set:

liminf
n

MF
π (n)
lnn

>
1

infG∈F N
P
{I(F ,G) : s∗(G)> s∗(F), ∀i ∈ O(F) : Gi = Fi}

. (2.21)

Additionally, for any set S of sub-optimal arms in F , i.e., if i ∈ S then i /∈ O(F), the following

holds whenever the infimum is taken over a non-empty set:

liminf
n

EF
[
∑i∈S T i

π(n)
]

lnn
>

1
infG∈F N

P
{I(F ,G) : s∗(G)> s∗(F), ∀i /∈ S : Gi = Fi}

. (2.22)

As an application of the above, the following holds whenever the infima are taken over non-empty

sets:

liminf
n

MF
π (n)
lnn

> ∑
i/∈O(F)

1
infG∈F N

P
{I(F ,G) : s∗(G)> s∗(F), ∀ j 6= i : G j = Fj}

. (2.23)

Proof. All three bounds are natural results of Theorem 1. In particular, noting that for any

feasible G (in the manner of Theorem 1) we have for i ∈ D(F ,G) that i /∈ O(F), we have

liminfn MF
π (n)/ lnn > 1/I(F ,G). Maximizing this lower bound over feasible G produces Eq.

(2.21).

However, it is not immediately clear that Eq. (2.21) should be expected to be tight, especially in

comparison to Theorem 2, which bounds the mistakes due to each sub-optimal arm individually.

As it is not immediately clear mistakes can be bound on a per-arm basis (due to the restrictions

of P), Eq. (2.22) considers a set of sub-optimal arms S, and follows from Theorem 1 in the same

manner as Eq. (2.21), restricting in this case to G that differ from F only on S.

The bound in Eq. (2.23) is perhaps the most optimistic of the three, and the most likely to not

exist (due to the restrictions of P). It follows in the same manner as Theorem 2.

2.3.3 Examples

We consider three examples to illustrate the above bounds. In each case, the results of a given

arm are taken to be i.i.d., with normal distributions. This is to say, we restrict to the case of

F as the set of normal, i.i.d. processes, with finite means and variances. Note, F can be
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parameterized in terms of the underlying mean (µ) and variance (σ2). In this subsection, we

consider the score functional on F as the expected value of the underlying distribution, s(F) =

EF [X ] = µF . When the dependence on F is clear, we denote the maximal score s∗(F) as µ∗, and

the expected value and variance of Fi as µi and σ2
i , respectively. It is straightforward to show,

based on the previous commentary for I on i.i.d. processes, that

I(F,G) =
(µF −µG)

2

2σ2
G

+
1
2

(
σ2

F

σ2
G
− ln

(
σ2

F

σ2
G

)
−1
)
. (2.24)

Given this formula, it follows that if I(F,G)= 0, it must be that µF = µG, and hence s(F)= s(G).

We apply this model, and the previous bounds, to the following cases:

• Normal Arms with Unknown Means and Unknown Variances: In this case, the set

of feasible arm hypotheses is the full unrestricted space F N , i.e., P is taken to be trivial.

Applying the results of Theorem 2, the bound may be computed explicitly as:

liminf
n

MF
π (n)
lnn

> ∑
i:µi 6=µ∗

2

ln
(

1+ (µ∗−µi)
2

σ2
i

) . (2.25)

Note, this is effectively the ‘mistake’ version of the regret bound addressed in [12].

• Normal Arms with Unknown Means and Known Variances: In this case, the set of

feasible arm hypotheses is restricted, so that the variance of each arm is known in advance,

i.e., P is taken to be the condition that for each i, VarFi(X) = σ2
i for some known constant

σ2
i . Note that as P does not express a relationship between the individual arms, this model

can actually be thought of as an extension of the case of unrelated arms, taking each arm

i as having its own family of plausible hypotheses Fi. Alternately, the bound of Theorem

3, Eq. (2.23) applies here as well:

liminf
n

MF
π (n)
lnn

> ∑
i:µi 6=µ∗

2σ2
i

(µ∗−µi)
2 . (2.26)

Note, this is effectively the ‘mistake’ version of the regret bound addressed in [41].

• Normal Arms with Unknown Means and Unknown, but Common, Variances: In this

case, the set of feasible arm hypotheses is restricted, so that the variance of each arm must

be equal, i.e., P is taken to be the condition that for any feasible F , VarF1(X) =VarF2(X) =

. . .=VarFN (X). Unlike the previous example, this condition explicitly relates each arm to
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the other. Because the means (and hence the potential scores) are unrestricted, however,

the bound of Theorem 3, Eq. (2.23) may again be computed explicitly:

liminf
n

MF
π (n)
lnn

> ∑
i:µi 6=µ∗

2σ2

(µ∗−µi)
2 , (2.27)

where σ2 is understood to be the common variance of F .

Note that for a given F , the bound in the case of unknown variances is strictly greater than or

equal to the bound in the case of known variances. The greater knowledge afforded by the known

variances potentially reduces the expected number of mistakes that a uniformly fast policy must

incur. Further, it is interesting to note that the lower bound in the case of unknown, but common,

variance is equal to that for the case of known variances, taking the known variances as equal.

Simply knowing that the variance is common between arms is potentially (and in fact, will be

shown to be in the next chapter) as useful in minimizing expected mistakes (asymptotically) as

knowing what the variance actually is.

These examples will be explored in greater detail in the next chapter, where these bounds are

shown to be tight.

2.4 When Efficient Learning is Impossible

The results of the previous sections, in particular Theorems 2, 3, demonstrate that for a univer-

sally good policy (i.e., uniformly fast), mistakes must accumulate at least logarithmically with

the number of pulls, i.e., mistakes happen at best exponentially rarely over time. Such a policy

is said to be efficient, efficiently learning and utilizing the best of the available arms.

However, there are models (choices of F ,P,s) such that efficient learning is impossible. This

frequently arises in the following context: when, for a given set of arms, no matter how much

data is accumulated about a sub-optimal arm through pulling, there always remain plausible

alternative arm hypotheses which would make that arm the best arm of the set. The controller

is essentially never willing to give up focus on an arm, no matter how poor the results of pulling

it, for fear that at any moment it might yield something (however unlikely) that would make it

the best arm. In such a case, mistakes accumulate strictly worse than logarithmically with the

number of pulls. We have the following result,
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Proposition 1 There exist models (choices of F ,P,s), such that for any F N
P -Uniformly Fast

policy π , for any F ∈F N
P , limn MF

π (n)/ lnn = ∞.

The proof is given in Section 2.5.

Analytically, the failure of efficient learning can be seen as caused in the following way: when

for a given F ∈F , there are G ∈F that are arbitrarily similar to F but arbitrarily better than F ,

i.e., I(F,G) is very small, but s(G) is much larger than s(F). This motivates the idea of imposing

a continuity restriction on s relative to I over F . While I is generally not a true metric, we can

define a notion of continuity in the following way:

Definition 1 A functional s : F 7→R is continuous relative to I if for every F ∈F , for all ε > 0

there exists a δ > 0 such that for any G ∈F , I(F,G)< δ implies |s(F)− s(G)|< ε .

Note, this definition of continuity is not symmetric with regards to the arguments of I; in the

definition of I, the first argument is somewhat privileged, as it is taken to be the ‘true’ underlying

probability law.

Restricting s to be continuous relative to I ensures that as more information is gained about the

underlying arm laws, the controller may be increasingly sure that a given arm is sub-optimal.

This notion of continuity is frequently satisfied by the score functionals of interest, such as the

ones considered in this work.

2.5 Proofs

Proof. [of Theorem 1.] Let F ∈F , and G ∈F be as hypothesized. Again, D(F ,G) is the set

of i such that Fi 6= Gi. Note, the above is trivially true if I(F ,G) = ∞, hence we may assume

I(F ,G) is finite, and therefore I(Fi,Gi)< ∞ for each i. Additionally, the restriction on the score

functional implies that since s∗(G)> s∗(F), we have that I(F ,G)> 0, and I(Fi,Gi)> 0 for some

i.

Noting that

EF

[(
∑

i∈D(F ,G)

T i
π(n)

)
I(F ,G)

]
/ lnn > PF

((
∑

i∈D(F ,G)

T i
π(n)

)
I(F ,G)> lnn

)
, (2.28)
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it would suffice to show that

liminf
n

PF

(
∑i∈D(F ,G) T i

π(n)
lnn

>
1

I(F ,G)

)
= 1, (2.29)

or equivalently that for 0 < δ < 1,

limsup
n

PF

(
∑i∈D(F ,G) T i

π(n)
lnn

≤ 1−δ

I(F ,G)

)
= 0. (2.30)

Define the following events:

Aδ
n =

{
∑

i∈D(F ,G)

T i
π(n)≤

1−δ

I(F ,G)
lnn

}
, (2.31)

Cδ
n =

 ∑
i∈D(F ,G)

ln

 fi

(
X i

1, . . . ,X
i
T i

π (n)

)
gi

(
X i

1, . . . ,X
i
T i

π (n)

)
≤ (1−δ/2) lnn

 . (2.32)

It is additionally convenient to define the sequence of constants bn = (1− δ )/I(F ,G) lnn and

random variables Si
k = ln

(
fi(X i

1, . . . ,X
i
k)/gi(X i

1, . . . ,X
i
k)
)
. Note that for i ∈ D(F ,G), we have in

the case of Aδ
n , T i

π(n,)≤ bn. Hence we have the following bounds:

PF

(
Aδ

nC̄δ
n

)
≤ PF

(
∑

i∈D(F ,G)

max
k≤bbnc

Si
k > (1−δ/2) lnn

)

= PF

(
∑

i∈D(F ,G)

max
k≤bbnc

Si
k/bn > (1−δ/2) lnn/bn

)

= PF

(
∑

i∈D(F ,G)

max
k≤bbnc

Si
k/bn >

(
1+

δ/2
1−δ

)
I(F ,G)

)

≤ PF

(
∑

i∈D(F ,G)

max
k≤bbnc

Si
k/bn >

(
1+

δ

2

)
I(F ,G)

)
.

(2.33)

Let D0 ⊂D(F ,G) such that for i∈D0, I(Fi,Gi) = 0. Note, I(F,G) = ∑i∈D(F ,G)\D0 I(Fi,Gi). The

set D0 may be empty, but we have that |D0| ≤ N. From the above,

PF

(
Aδ

nC̄δ
n

)
≤ PF

(
∑

i∈D(F ,G)\D0

max
k≤bbnc

Si
k/bn >

(
1+

δ

4

)
I(F ,G)

)

+PF

(
∑

i∈D0

max
k≤bbnc

Si
k/bn >

δ

4
I(F ,G)

)

≤ ∑
i∈D(F ,G)\D0

PFi

(
max

k≤bbnc
Si

k/bn >

(
1+

δ

4

)
I(Fi,Gi)

)
+ ∑

i∈D0

PFi

(
max

k≤bbnc
Si

k/bn >
δ

4N
I(F ,G)

)
.

(2.34)
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We may now make use of the following result: note that for i ∈D(F ,G)\D0, Si
m/m→ I(Fi,Gi)

almost surely (relative to Fi), and for i ∈ D0, Si
m/m→ 0 almost surely (relative to Fi). We may

then utilize the following proposition, the proof of which is given following the conclusion of

this proof:

Proposition 2 Let {Sm}m>1 be a sequence of almost surely finite random variables such that

Sm/m→ µ almost surely, with µ > 0. In that case, maxk≤m Sk/m→ µ almost surely as well.

Note, we have that I(Fi,Gi)<∞, hence by Lemma 3, we have that the Si
m are finite almost surely.

Applying this to the above, we have that maxk≤m Si
k/m converges almost surely to I(Fi,Gi),

which implies convergence in probability, and (recalling that I(F ,G)> 0) yields the following

bound:

limsup
m

PF

(
Aδ

mC̄δ
m

)
≤ ∑

i∈D(F ,G)\D0

limsup
m

PFi

(
max
k≤m

Si
k/m >

(
1+

δ

4

)
I(Fi,Gi)

)
+ ∑

i∈D0

limsup
m

PFi

(
max
k≤m

Si
k/m >

δ

4N
I(F ,G)

)
= 0.

(2.35)

At this point, recall that PF has been defined by the choice of arm distributions F ∈F . Con-

sider defining the underlying probability space relative to G instead, with common probability

measure PG. The following holds:

PF

(
Aδ

nCδ
n

)
= PF

 ∑
i∈D(F ,G)

T i
π(n)≤

1−δ

I(F ,G)
lnn, ∏

i∈D(F ,G)

fi

(
X i

1, . . . ,X
i
T i

π (n)

)
gi

(
X i

1, . . . ,X
i
T i

π (n)

) ≤ n1−δ/2


≤ PG

(
∑

i∈D(F ,G)

T i
π(n)≤

1−δ

I(F ,G)
lnn

)
n1−δ/2.

(2.36)

This change of measure argument follows, as Cδ
n restricts the region of probability space of

interest to that where the comparison of laws that differ between F and G hold, i.e., ∏i fi ≤

n1−δ/2
∏i gi. Note that since s∗(G)> s∗(F) and F and G agree on O(F), we have that O(G)⊂

D(F ,G), hence

PF

(
Aδ

nCδ
n

)
≤ PG

(
∑

i∈O(G)

T i
π(n)≤

1−δ

I(F ,G)
lnn

)
n1−δ/2, (2.37)
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or

PF

(
Aδ

nCδ
n

)
≤ PG

(
n− 1−δ

I(F ,G)
lnn≤ ∑

i/∈O(G)

T i
π(n)

)
n1−δ/2. (2.38)

For n sufficiently large, so that n > (1− δ )/I(F ,G) lnn, we may apply Markov’s inequality to

the above:

PF

(
Aδ

nCδ
n

)
≤

EG
[
∑i/∈O(G) T i

π(n)
]

n− 1−δ

I(F ,G) lnn
n1−δ/2 =

EG
[
∑i/∈O(G) T i

π(n)
]

n−δ/2

1− 1−δ

I(F ,G)
lnn
n

. (2.39)

Observing that under the assumption that π is F P
N -UF, EG[∑i/∈O(G) T i

π(n)] = o(nδ/2), it follows

from the above that limsupnPF
(
Aδ

nCδ
n
)
= 0. Hence,

limsup
n

PF

(
∑i∈D(F ,G) T i

π(n)
lnn

≤ 1−δ

I(F ,G)

)

≤ limsup
n

P
(

Aδ
nCδ

n

)
+ limsup

n
P
(

Aδ
nC̄δ

n

)
= 0.

(2.40)

Proof. [of Prop. 2] We have that Sm/m converges to µ > 0 almost surely. First, we have that

for m > 1,
Sm

m
≤ maxk≤m Sk

m
, (2.41)

hence µ ≤ liminfm maxk≤m Sk/m.

Consider the case of µ > 0: For a given m, define k(m) to be the k that realizes maxk≤m Sk,

so maxk≤m Sk/m = Sk(m)/m. Note the obvious result, 0 < k(m) ≤ m almost surely. The k(m)

sequence must exist for m = 1,2, . . ., and in fact must almost surely increase without bound as

m→ ∞, otherwise limsupm Sk(m)/m ≤ 0 < µ , contradicting the previous liminf result. Since

Sm/m converges to µ > 0 almost surely, almost surely there exists some finite M for which Sm

is positive for all m > M. For m such that k(m)> M, it then follows that

Sk(m)

m
=

Sk(m)

k(m)

k(m)

m
≤

Sk(m)

k(m)
. (2.42)

From the above, and that Sm/m→ µ almost surely, it follows that limsupm maxk≤m Sk/m ≤ µ

almost surely.

In the case that µ = 0: Let k(m) be defined as in the previous case. Again the k(m) sequence

must exist for m = 1,2, . . .. If the k(m) sequence does not increase without bound, trivially
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Sk(m)/m→ 0. If the k(m) sequence does increase without bound, but Sk(m) ≤ 0 for all m, then

limsupm Sk(m)/m≤ 0. If the k(m) sequence does increase without bound, but the previous case

does not hold, then Sk(m) > 0 for all sufficiently large m, and the argument from the previous

µ > 0 case applies. In all cases, limsupm Sk(m)/m≤ 0.

Combining the limsup and liminf results complete the proof.

Proof. [of Proposition 1.] The proof proceeds by example. Define S as the set of all finite

unions of finite intervals on R,

S =

{
k⋃

j=1

[a j,b j] : 0 < k < ∞, −∞ < a1 < b1 < .. . < ak < bk < ∞

}
. (2.43)

For S ∈S , it is convenient to define |S|= ∑ j(b j−a j) as the measure of S.

We may then take F as the set of i.i.d. process laws FS, with underlying distribution Unif(S),

for any S ∈S . It is convenient to define fS(x) = 1{x ∈ S}/|S|, the uniform density over S. We

take P as trivially satisfied, which is to say we consider the arms as unrelated to each other in

any known way. Additionally, we define the score functional s : F 7→ R as the expected value,

s(FS) = µ(FS) =
∫
R

x fS(x)dx. (2.44)

Under such a model, we have the following result,

I(FS,FT ) =


ln|T |− ln|S| if S⊂ T

∞ else.
(2.45)

Note, if I(F,G) = 0, it implies that F and G have the same support (up to a set of measure 0),

and therefore µ(F) = µ(G).

For a given choice of arm laws F ∈F N , let Si be the support of Fi, and let µ∗ = maxi µ(Fi).

For any sub-optimal i and ε > 0, let S̃i = Si ∪ Iε , where Iε is an interval of width epsilon. For

Iε sufficiently far to the right, i.e., so that Si does not intersect Iε , we have that µ(FS̃i
)> µ∗, and

additionally that

I(Fi,FS̃i
) = ln(|Si|+ ε)− ln|Si|. (2.46)

We therefore have, applying Eq. (2.47)

liminf
n

EF
[
T i

π(n)
]

lnn
>

1
ln(|Si|+ ε)− ln|Si|

. (2.47)
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Taking the limit, as ε → 0, we have that for any sub-optimal i, liminfn EF
[
T i

π(n)
]
/ lnn = ∞,

i.e., the number of mistakes for arm i grows super-logarithmically in expectation. The result

follows from this, applying it to each sub-optimal arm.



23

Chapter 3

UCB Policies for Maximizing Optimal Utilization

In the previous chapter, we derived limits on how efficiently ‘universally good’ policies can

learn the best arm of a set of arms. This chapter builds on that premise, demonstrating that

in many contexts these limits are ‘tight’, in the sense of being realized by implementable arm-

pulling policies. We demonstrate such a policy, showing how the data collected from each arm

can be utilized to assign a value or index to each arm, such that always pulling the arm with the

current highest index is an asymptotically optimal policy, in the sense of the previous chapter.

The primary focus in this chapter is on arms that are unrelated to each other, but the case of

arms restricted by some common structure is also discussed.

3.1 Formulation and Prior Work

We adopt the notation of the previous chapter, that the controller faces N (2 ≤ N < ∞) arms,

each represented by a sequence {X i
t }t>1 of random variables on some space X , with underlying

probability laws F = (F1, . . . ,FN)∈F N . We focus primarily on the case of unrelated arms, i.e.,

the full set of plausible arm hypotheses is taken to be F N .

Given the results of the previous section, we are generally interested in establishing policies π

such that for all F ∈F N , MF
π (n) = O(lnn). In particular, defining the function

KF(ρ) = inf
F̃∈F
{I(F, F̃) : s(F̃)> ρ}, (3.1)

we are interested in policies that achieve the limit of Theorem 2, i.e.,

lim
n

MF
π (n)
lnn

= ∑
i/∈O(F)

1
KFi(s∗(F))

. (3.2)

Such policies are referred to as Asymptotically Optimal.
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3.1.1 Prior Work

As in the previous chapter, prior work in this area has focused on policies that minimize regret

in the i.i.d., unrelated arm case, i.e., expected mistakes weighted according to expected loss,

RF
π (n) = ∑

i/∈O(F)

(µ∗(F)−µ(Fi))EF
[
T i

π(n)
]
. (3.3)

A variety of policies have been introduced to try to address the problem of regret minimization.

Broadly, there are roughly two classes of techniques and effects that are generally utilized: upper

confidence bound (UCB) index policies that compute a ranking of arms based on current data

by placing a confidence interval on the true underlying expected value for an arm, and pull the

highest ranked arm; and Bayesian (Thompson Sampling) policies that pull arms according to

the posterior probabilities of which arm is best. While there has been some notable success

in analyzing the behavior of Thompson Sampling policies [43, 36, 3], the focus of this current

work and this current chapter is on a generalization of UCB index policies.

The results of prior work on regret minimization (e.g., Section 2.1.1) generally indicate that

universally good policies can do no better than incurring logarithmic regret for any F ∈F N .

As such, much effort has been spent demonstrating simple policies that satisfy RF
π (n) = O(lnn).

For example, in [5], Auer et al. present a policy which is provably logarithmic in regret under

very weak conditions on F . However, as the result of the previous chapter and the related

prior work indicate, such policies have an asymptotic lower bound on how small regret can

be. Policies that achieve minimal regret asymptotically have been established in a variety of

contexts, such as normal arms with known variances [41], normal arms with unknown variances

[12, 36], and arms with multinomial returns [9, 35].

Generic policies, ones that might be applied in a variety of contexts, have also been estab-

lished and proven asymptotically optimal under mild regularity conditions in the case of F as

a one-parameter family of distributions [44], or multi-parameter / potentially mixed family of

distributions [9]. The policy developed in [9] was independently developed and applied in [11].

The results presented in this work can in fact be seen as an extension and generalization of

the UCB policy established in [9]; we introduce a correction to the policy presented there to

render it provably asymptotically optimal in more contexts, as well as generalizing that policy
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to non-i.i.d. arm processes and generic score functions. Additionally, we generalize and expand

the ‘mild regularity conditions’ of [9] on which the asymptotic optimality of the policy relies,

allowing for both broader applicability, and simplified proofs of optimality.

3.2 An Asymptotically Optimal UCB Policy

In this section, we construct a policy, in the spirit of classical UCB policies, for determining

which arm to pull next give the data currently available. The policy constructed here will gen-

erally perform well, but under certain conditions can be shown to be asymptotically optimal.

For a given F ∈F , let F̂t = F̂t [X1, . . . ,Xt ]∈F be an estimator of F given t samples from F . We

make few restrictions on the nature of these estimators, except to say that F̂t should converge to

F with t, in a manner that will be made more clear shortly. To define convergence in F , we need

some notion of a distance in F . While I can frequently serve as a similarity measure on F ,

it is often convenient to consider alternative similarity measures. Let ν be a (context-specific)

measure of similarity on F ; for instance, if F is parameterized, ν might be the `2-norm on the

parameter space. We restrict F , s, F̂t , ν , by assuming the following conditions hold, for any

F ∈F , and all ε,δ > 0:

• Condition 1: KF(ρ) is continuous with respect to ρ , and with respect to F under ν (in

the manner of Def. 1).

• Condition 2: PF
(
ν(F̂t ,F)> δ

)
≤ o(1/t).

• Condition 3: For some sequence dt = o(t)> 0 (independent of ε,δ ,F),

PF
(
δ <KF̂t

(s(F)− ε)
)
≤ e−Ω(t)e−(t−dt)δ , (3.4)

where the dependence on ε and F are suppressed into the Ω(t) term.

Condition 1 in some sense characterizes the structure of F as smooth relative to s; while I is

not a metric on F , to the extent that it can be thought of as a measure of similarity, KF(ρ)

can be thought of as a Hausdorff distance on F , and hence Condition 1 additionally restricts

the ‘shape’ of F relative to s. Condition 2 in some sense merely states that the estimators
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F̂t are ‘honest’, and converge to F sufficiently quickly with t. Condition 3 often seems to be

satisfied by F̂t converging to F sufficiently quickly, as well as F̂t being ‘useful’, in that s(F̂t)

converges sufficiently quickly to s(F) as well. The bound in Condition 3, while oddly specific

in its dependence on t,δ , can be relaxed somewhat, but such a bound frequently seems to exist

in practice, for natural choices of F̂t .

With these restrictions in mind, we define the following policy:

Let d̃(t) > 0 be a non-decreasing, sub-linear function. Define, for any t such that t > d̃(t), the

following index function:

ui(n, t) = sup
G∈F

{
s(G) : I(F̂ i

t ,G)<
lnn

t− d̃(t)

}
. (3.5)

For a given d̃, let n0 > min{n : n > d̃(n)}. We then define the following generic policy,

Policy π∗: UCB-(F ,s, d̃):

• i) For n = 1,2, . . . ,n0×N, pull each arm n0 times to construct initial estimators,

• ii) For n > n0×N, pull arm π∗(n+1) = argmaxi{ui(n,T i
π∗(n))}, breaking ties uniformly

at random.

The following theorem characterizes the sub-optimal pulls of policy π∗:

Theorem 4 Let F ∈ F N be a choice of arm laws. Under the above policy π∗, for any sub-

optimal i /∈ O(F), and optimal i∗ ∈ O(F), the following result holds for any ε > 0 such that

s∗(F)− ε > s(Fi), and δ > 0 such that infG∈F {KG(s∗(F)− ε) : ν(G,Fi)≤ δ}> 0:

EF
[
T i

π∗(n)
]
≤ lnn

infG∈F {KG(s∗(F)− ε) : ν(G,Fi)≤ δ}
+o(lnn)

+
n

∑
t=n0N

PFi

(
ν(F̂ i

t ,Fi)> δ
)

+
n

∑
t=n0N

t

∑
k=n0

PFi∗ (ui∗(t,k)≤ s∗(F)− ε) .

(3.6)

The proof is given in Section 3.5.

The above holds generally, but when Conditions 1-3 are additionally met, the above theorem

can be utilized to demonstrate asymptotic optimality of π∗.
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Theorem 5 Let F , s, F̂t , and ν satisfy Conditions 1-3, and additionally that s is continuous

over F with respect to I. Let d be as in Condition 3. If d̃(t)−dt > ∆ > 0 for some ∆, for all t,

then π∗ is asymptotically optimal, i.e., for all F ∈F N where the infima are defined,

lim
n

MF
π (n)
lnn

= ∑
i/∈O(F)

1
KFi(s∗(F))

. (3.7)

Proof. Consider a given F ∈F N , and let i /∈O(F) be a sub-optimal arm, and i∗ ∈O(F) be an

optimal arm. There trivially exist feasible ε as in Theorem 4. By the continuity of s with respect

to I, KF(ρ)> 0 for all ρ > s(F). It follows from this, and the continuity of KF(ρ) with respect

to F under ν that all sufficiently small δ > 0 are feasible. Let ε,δ be feasible as in Theorem 4.

Note, by Condition 2,

n

∑
t=1

PFi(ν(F̂
i

t ,Fi)> δ )≤
n

∑
t=1

o(1/t)≤ o(lnn). (3.8)

Similarly, by Condition 3, for k > n0, (noting that s(Fi∗) = s∗(F) = s∗),

PFi∗ (ui∗(t,k)≤ s∗− ε) = PFi∗

(
sup

G∈F

{
s(G) : I(F̂ i∗

k ,G)<
ln t

k− d̃(k)

}
≤ s(Fi∗)− ε

)
≤ PFi∗

(
inf

G∈F

{
I(F̂ i∗

k ,G) : s(G)> s(Fi∗)− ε

}
>

ln t
k− d̃(k)

)
≤ e−Ω(k)e−(k−d(k)) ln t

k−d̃(k)

=
1
t

t−
d̃(k)−dk
k−d̃(k) e−Ω(k)

≤ 1
t

t−
∆

k−d̃(k) e−Ω(k)

(3.9)

Hence,
t

∑
k=n0

PFi∗ (ui∗(t,k)≤ s∗(F)− ε)≤ 1
t

∞

∑
k=1

t−
∆

k−d̃(k) e−Ω(k) ≤ 1
t

O(1/ ln t). (3.10)

The last step is proven as Proposition 3 in Section 3.5.

From Theorem 4,

EF
[
T i

π∗(n)
]
≤ lnn

infG∈F{KG(s∗(F)− ε) : ν(G,Fi)≤ δ}
+

n

∑
t=1

1
t

O(1/ ln t)+o(lnn)

=
lnn

infG∈F{KG(s∗(F)− ε) : ν(G,Fi)≤ δ}
+O(ln lnn)+o(lnn).

(3.11)

Hence it follows,

limsup
n

EF
[
T i

π∗(n)
]

lnn
≤ 1

infG∈F{KG(s∗(F)− ε) : ν(G,Fi)≤ δ}
. (3.12)
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By the continuity of K as under Condition 1, minimizing the above bound first with respect to

δ , then ε , yields

limsup
n

EF
[
T i

π∗(n)
]

lnn
≤ 1

KFi(s∗(F))
. (3.13)

By the continuity of s with respect to I, the lower bound on the limit is given with the liminf via

Theorem 2, hence for each sub-optimal i,

lim
n

EF
[
T i

π∗(n)
]

lnn
=

1
KFi(s∗(F))

. (3.14)

Summing over sub-optimal i completes the result.

For specific contexts, i.e., choices of F , s, verifying π∗ as asymptotically optimal is reduced to

finding F̂t , ν to verify Conditions 1-3, as well as verifying the continuity of s with respect to

I. The continuity of s, as well as Conditions 1 & 2, generally seem easy to verify, particularly

when F is parameterized and those parameters can be efficiently estimated. The difficulty

frequently lies in verifying Condition 3 - verifying similar conditions have been the brunt of

the work in verifying asymptotically optimal policies for regret minimization in many contexts

[9, 12, 14, 36, 41]. However, advance knowledge of the specific form of the bound as given in

Condition 3 is frequently helpful in finding and verifying such a bound in practice.

Noting that Theorem 5 is essentially just an asymptotic upper bound on the results of Theorem

4, we observe that for specific contexts, the bound of Theorem 4 can often be computed more

precisely, yielding finite horizon bounds, as well as estimates of the asymptotic remainder term

on MF
π∗(n). We do not focus on this in this work, however, and the remainder of this chapter

is primarily devoted to demonstrating the asymptotic optimality of π∗ in a variety of contexts.

Section 3.3 is devoted to i.i.d., unrelated arm processes in various frameworks of interest, while

Section 3.4 demonstrates the asymptotic optimality of a related UCB Index policy on an example

with related arm processes.

3.3 Examples of Interest

In this section, we continue the focus on unrelated arms, i.e., taking P as trivial, so F N represents

the full space of plausible arm hypotheses. Additionally, we restrict to the case of i.i.d. arms, in
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which case F may be identified with the densities of the underlying i.i.d. processes, which we

represent with a lower case f . The i.i.d. assumption is not necessary, as the results of Theorems

4, 5 hold in the general case, but many examples of interest arise in the i.i.d. case.

3.3.1 Pareto Arms with Separable Scores

In this section, we consider a model that demonstrates the utility of this generalized score func-

tional approach. We take F = F`, for `> 0, as the family of Pareto distributions defined by:

F` =

{
fα,β (x) =

αβ α

x1+α
: α > `,β > 0

}
. (3.15)

Taking X as distributed according to fα,β ∈F`, e.g., X ∼ Pareto(α,β ), X is distributed over

[β ,∞), with E[X ] = αβ/(α − 1) if α > 1, and E[X ] as infinite or undefined if α ≤ 1. We are

particularly interested in F0, the family of unrestricted Pareto distributions, and F1, the family

of Pareto distributions with finite means.

Under the general goal of obtaining large rewards from the arms pulled, there are two effects of

interests: rewards from a given arm will be biased towards larger values for increasing β and

decreasing α . Hence, any score function s( fα,β ) = s(α,β ) of interest should be an increasing

(or at least non-decreasing) function of β , and a decreasing (or at least non-increasing) function

of α . In particular, we restrict our attention to score functions that are ‘separable’ in the sense

that

s(α,β ) = a(α)b(β ), (3.16)

where we take a to be a positive, continuous, decreasing, invertible function of α for α > `, and

b to be a positive, continuous, non-decreasing function of β .

Remark 1. This general Pareto model of Eq. (3.16) includes several natural score functions of

interest, in particular:

i) In the case of the restricted Pareto distributions with finite mean, we may take s as the

expected value, and s(α,β ) = αβ/(α−1), with a(α) = α/(α−1) and b(β ) = β .

ii) In the case of unrestricted Pareto distributions, various asymptotic considerations give rise

to considering the score function s(α,β ) = 1/α , i.e., the controller attempts to find the
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arm with minimal α . In this case, a(α) = 1/α and b(β ) = 1. This arises for instance in

comparing the asymptotic tail distributions of arms, P(X > k) as k→∞, or the conditional

restricted expected values, E[X |X ≤ k] as k→ ∞.

iii) A third score function to consider is the median, defined over unrestricted Pareto distri-

butions, with s(α,β ) = β21/α , taking a(α) = 21/α , b(β ) = β .

Given the above special cases, it is convenient to take the assumption when operating over F`

that a(α)→ ∞ as α → `.

For f = fα,β ∈ F`, and a sample of size t of i.i.d. samples under f , we take the estimator

f̂t = f
α̂t ,β̂t

where

β̂t = min
n=1,...,t

Xn,

α̂t =
t−1

∑
t
n=1 ln

(
Xn

β̂t

) . (3.17)

The following result characterizes the distributions of these estimators; the proof is given in

Section 3.5:

Lemma 4 With α̂t , β̂t as in Eq. (3.17), α̂t and β̂t are independent, with

α

α̂t
(t−1)∼ Gamma(t−1,1),

β̂t

β
∼ Pareto(αt,1).

(3.18)

It is convenient to define the following functions, L+(δ ), L−(δ ), as respectively the smallest and

largest positive solutions to L− lnL−1 = δ for δ > 0. In particular, L−(δ ) may be expressed in

terms of the Lambert-W function, L−(δ ) =−W (e−1−δ ), taking W (x) be the principal solution

to WeW = x for x ∈ [−1/e,∞). An important property will be that L±(δ ) is continuous as a

function of δ , and L±(δ )→ 1 as δ → 0.

Given the above, we may define the following policy as a specific instance of policy π∗ under

this model:

Policy π∗ : UCB-PARETO(`)

i) For n = 1,2, . . .3N, pull each arm 3 times to construct initial estimators, and
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ii) for n> 3N, pull arm π∗(n+1)= argmaxiui
(
n,T i

π∗(n)
)

breaking ties uniformly at random,

where

ui(n, t) =


∞ if α̂ i

t L
− ( lnn

t−2

)
≤ `,

b
(

β̂ i
t

)
a
(
α̂ i

t L
− ( lnn

t−2

))
else.

(3.19)

Theorem 6 Policy π∗-UCB-PARETO(`), as defined above is asymptotically optimal. In par-

ticular, for any choice of f ∈F N
` , with fi = fαi,βi , with s∗ = maxi s(αi,βi) = maxi a(αi)b(βi),

for each sub-optimal arm i the following holds:

lim
n

E f
[
T i

π∗(n)
]

lnn
=

1
1
αi

a−1
(

s∗
b(βi)

)
− ln

(
1
αi

a−1
(

s∗
b(βi)

))
−1

. (3.20)

Proof. It suffices to verify Conditions 1-3, and the continuity of s with respect to I. To begin,

it can be shown that

I( fα,β , f
α̃,β̃ ) =


α̃

α
− ln

(
α̃

α

)
−1+ α̃ ln

(
β

β̃

)
if β̃ ≤ β

∞ else,
(3.21)

K fα,β
(ρ) =


1
α

a−1
(

ρ

b(β )

)
− ln

(
1
α

a−1
(

ρ

b(β )

))
−1 if ρ > s(α,β )

0 else.
(3.22)

The verification is simply computation and somewhat tedious, and is therefore relegated to Sec-

tion 3.5. There are various choice of similarity measure ν that might be utilized to verify the

relevant conditions; we take in this case the choice of ν = I.

3.3.2 Uniform Arms with (Semi)-Arbitrary Support

In this section, we consider an arm model that demonstrates the necessity of the general form of

Condition 3. In particular, consider the set of distributions that are uniform over finite disjoint

unions of closed sub-intervals of [0,1], i.e.,

F =

{
fS = 1{x ∈ S}/|S| : S =

k⋃
i=1

[ai,bi] ,0≤ a1 < b1 < .. . < ak < bk < 1,k < ∞

}
. (3.23)

For S as in the above, we define |S| = ∑
k
i=1(bi− ai) as the measure of S. We take as the score

functional for this model s( fS) = |S|, the measure of the support of the density fS ∈ F . To
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ensure that all relevant infima are defined, it is convenient to remove the complete interval [0,1]

from consideration, so we take F ′ = F \{ f[0,1]}.

Given t i.i.d. samples from fS ∈F ′, we construct an estimator f̂t of the form f̂t = fŜt
, where

Ŝt is an estimator of S constructed in the following way: Let dk be a positive, integer valued,

non-decreasing function that is unbounded and sub-linear in k. Consider a partition of [0,1]

into a sequence of intervals of width εt = 1/dt . The estimator Ŝt is then taken to be the union

of partition intervals that contain at least one sample of the t samples.

Given the above, we may define the following policy as a specific instance of policy π∗ under

this model: Defining d̃(t) = dt +1, let n0 = min{n : n > d̃(n)}.

Policy π∗: UCB-COVERAGE

i) For n = 1,2, . . .n0×N, pull each arm n0 times, and

ii) for n > n0×N, pull arm π∗(n+ 1) = argmaxiui
(
n,T i

π∗(n)
)

breaking ties uniformly at

random, where

ui(n, t) = max
(
|Ŝt |n

1
t−d̃(t) ,1

)
(3.24)

Theorem 7 Policy π∗-UCB-COVERAGE as defined above is asymptotically optimal. In par-

ticular, for any choice of f ∈ (F ′)N , with fi = fSi , with s∗ = maxi s( fSi) = maxi|Si|, for each

sub-optimal arm i the following holds:

lim
n

E f
[
T i

π∗(n)
]

lnn
=

1
lns∗− ln|Si|

. (3.25)

Proof. It suffices to verify Conditions 1-3 and the continuity of s relative to I for the indicated

Uniform model. To begin, it can be shown that

I( fS, fT ) =


ln|T |− ln|S| if S⊂ T

∞ else
. (3.26)

It follows easily from this that s is continuous under I. Additionally, noting we are only interested
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in ρ ≤ 1,

K fS(ρ) =


lnρ− ln|S| if ρ > |S|

0 else
. (3.27)

In this case, we take as choice of similarity measure ν( fS, fT ) = ||S|− |T ||. Given the form of

K fS above, Condition 1 is easily verified. The remainder of the verification, Conditions 2 &

3, is largely computation, though the verification of these conditions is of some interest in its

dependence on the underlying distribution of Ŝt as an estimator. The full details are given in

Section 3.5.

3.3.3 Uniform Arms of Interval Support

In this section, the uniform distributions are taken to be over single intervals, with finite but

otherwise unconstrained bounds. This restriction to single intervals is necessary to ensure that

the score functionals considered will be continuous with respect to I. We take F as the family

of Uniform distributions with interval support:

F = { fa,b(x) = 1{x ∈ [a,b]}/(b−a) :−∞ < a < b < ∞} . (3.28)

Taking X as distributed according to fa,b ∈F , e.g., X ∼ Unif[a,b], X is distributed over [a,b],

with E[X ] = (a+b)/2. As this is a well defined function over all of F , it makes for a reasonable

(and traditional) score functional. However, we are aiming for greater generality. Taking the

controller’s goal as achieving large rewards from the pulled arms, any score functional s( fa,b) =

s(a,b) of interest should be an increasing function of a, and an increasing function of b. We

additionally take s to be continuous in a and b. Note, this is satisfied taking s as the expected

value, sµ(a,b) = (a+b)/2.

For f = fa,b ∈F , and t many i.i.d. samples under f , we take the estimator f̂t = fât ,b̂t
∈F ,

where

ât = min
n=1,...,t

Xn,

b̂t = max
n=1,...,t

Xn.

(3.29)
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Given the above, we may define the following policy as a specific instance of policy π∗ under

this model:

Policy π∗ : UCB-UNIFORM

i) For n = 1,2, . . .3N, pull each arm 3 times, and

ii) for n> 3N, pull armπ∗(n+1) = argmaxiui
(
n,T i

π∗(n)
)

breaking ties uniformly at random,

where

ui(n, t) = s(âi
t , â

i
t +n

1
t−2 (b̂i

t − âi
t)). (3.30)

Theorem 8 For general s as outlined above, policy π∗-UNIFORM as defined above is asymptot-

ically optimal. In particular, for any choice of f ∈F N , with fi = fai,bi , with s∗ = maxi s(ai,bi),

for each sub-optimal arm i the following holds:

lim
n

E f
[
T i

π∗(n)
]

lnn
=

1
minbi≤b {ln(b−ai) : s(ai,b)> s∗}− ln(bi−ai)

. (3.31)

Taking the particular choice of sµ(a,b) = (a+b)/2, this yields for all sub-optimal i,

lim
n

E f
[
T i

π∗(n)
]

lnn
=

1

ln
(

2s∗−2ai
bi−ai

) . (3.32)

This uniform case, in terms of regret minimization, appears in more detail with additional finite

horizon regret bounds in [14].

Proof. It suffices to verify Conditions 1-3, and the continuity of s under I. It can be shown

that

I( fa,b, fã,b̃) =


ln
(

b̃−ã
b−a

)
if ã≤ a,b≤ b̃

∞ else,

K fa,b(ρ) = min
b≤b̃

{
ln
(
b̃−a

)
: s(a, b̃)> ρ

}
− ln(b−a).

(3.33)

The remainder of the verification is simply computation and somewhat tedious, and is therefore

relegated to Section 3.5. There are various choice of similarity measure ν that might be utilized

to verify the relevant conditions; we take in this case the choice of ν = I.
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3.3.4 Normal Arms of Unknown Mean, Unknown Variance

In this section, we consider the results of a given arm to be i.i.d., normally distributed, with

unknown mean and unknown variance. That is, we take

F =

{
fµ,σ (x) =

1
σ
√

2π
exp
(
− 1

2σ2 (x−µ)2
)

:−∞ < µ < ∞,0 < σ
2 < ∞

}
. (3.34)

Additionally, we take the score functional of interest to be the mean or expected value, s( fµ,σ ) =

s(µ,σ) = µ . Given t i.i.d. samples from fµ,σ , we take as an estimator f̂t = fµ̂t ,σ̂2(t), where

µ̂t = X̄t =
1
t

t

∑
k=1

Xk,

σ̂
2(t) =

1
t−1

t

∑
k=1

(Xk− µ̂t)
2.

(3.35)

The problem of normal arms with unknown mean but known variances, i.e., arm i is known to

have variance σ2
i , was solved in [41], with regards to regret minimization, where a policy based

on the index

uKR
i (n, t) = X̄ i

t +σi

√
2lnn

t
(3.36)

was shown to be asymptotically optimal. It additionally follows from that proof (and can be

shown from Theorem 5), that such a policy also is asymptotically optimal with respect to mis-

take minimization, i.e., achieves the lower bound given in Eq. (2.26). The problem of regret

minimization with respect to unknown variances remained open for some time, however, [9]

conjecturing that an index policy based on

uBK
i (n, t) = X̄ i

t + σ̂i(t)
√

n
2
t −1, (3.37)

would be asymptotically optimal. However, it was shown in [12] that such a policy is not asymp-

totically optimal, incurring regret that grew as a power of n, rather than logarithmically. It was

additionally shown in [12] that a policy based on an index of the form

uCHK
i (n, t) = X̄ i

t + σ̂i(t)
√

n
2

t−2 −1, (3.38)

was in fact asymptotically optimal, achieving a minimal logarithmic growth of regret. Cowan

et al. in [12] present a more detailed analysis of this policy. Applying the policy to mistake
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minimization, and noting however that uCHK
i is precisely of the form given in Eq. (3.5), we

produce a concise proof of asymptotic optimality here, as an application of Theorem 5.

Policy πCHK: UCB-NORMAL

i) For n = 1,2, . . .3N, pull each arm 3 times, and

ii) for n > 3N, pull arm πCHK(n+ 1) = argmaxiu
CHK
i

(
n,T i

πCHK(n)
)

breaking ties uniformly

at random.

Theorem 9 For s( fµ,σ ) = µ in the above model, policy πCHK as defined above is asymptotically

optimal. In particular, for any choice of f ∈F N , with fi = fµi,σi , with µ∗ = maxi µi, for each

sub-optimal arm i the following holds:

lim
n

E f
[
T i

πCHK
(n)
]

lnn
=

2

ln
(

1+ (µ∗−µi)2

σ2
i

) . (3.39)

Proof. It suffices to verify Conditions 1-3, and the continuity of s under I. For this model, it

can be shown that

I( f ,g) =
(µ f −µg)

2

2σ2
g

+
1
2

(
σ2

f

σ2
g
− ln

(
σ2

f

σ2
g

)
−1

)
,

K fµ,σ (ρ) =


1
2 ln
(

1+ (ρ−µ)2

σ2

)
if ρ > µ

0 else.

(3.40)

Let L−(δ ) and L+(δ ) be the smallest and largest positive solutions to L− lnL−1 = δ , respec-

tively. It follows then that if I( f ,g)< δ ,

(µ f −µg)
2

2σ2
g

< δ ,

1
2

(
σ2

f

σ2
g
− ln

(
σ2

f

σ2
g

)
−1

)
< δ .

(3.41)

From this, we have that

σ
2
f /L+(2δ )< σ

2
g < σ

2
f /L−(2δ ),

|µ f −µg|< σg
√

2δ < σ f

√
2δ/L−1(2δ ).

(3.42)

Since L±(2δ )→ 1 and δ/L−(2δ )→ 0 as δ → 0, the above implies that any functional of normal

densities that is continuous with respect to the parameters will be continuous with respect to f
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under I. This immediately verifies the continuity of s( fµ,σ ) = µ under I. Additionally, K fµ,σ is

continuous with respect to ρ by inspection, and continuous with respect to f under I as well, by

the previous remarks. Taking ν = I, this verifies Condition 1. To verify Condition 2, note that

from similar analysis to the above,

P f
(
I( f̂t , f

)
> δ )≤ P f

(
(µ̂t −µ)2

σ2 > 2δ

)
+P f

(
σ̂2(t)

σ2 < L−(2δ )

)
+P f

(
σ̂2(t)

σ2 > L+(2δ )

)
.

(3.43)

Recalling that in the case of normals, µ̂t ∼ µ +Zσ/
√

t, and σ̂2(t)∼ σ2Ut−1/(t−1) where Z is

a standard normal random variable, and Ut−1 is an independent, χ2
t−1 random variable,

P f
(
I( f̂t , f

)
> δ )≤ P f

(
Z2 > 2δ t

)
+P f

(
Ut−1

t−1
< L−(2δ )

)
+P f

(
Ut−1

t−1
> L+(2δ )

)
≤ e−Ω(t)+ e−Ω(t)+ e−Ω(t) ≤ e−Ω(t)

(3.44)

The exponential concentration results for each of the three terms are proven as Lemma 7 in

Section 3.5, but are simply standard Chernoff-type bounds. This verifies Condition 2.

It remains to verify Condition 3, perhaps the most interesting of the three. Note that

P f

(
δ <K f̂t (ρ)

)
= P f

(
δ <

1
2

ln
(

1+
(ρ− µ̂t)

2

σ̂2
t

)
and ρ > µ̂t

)
= P f

(
σ̂t

√
e2δ −1 < |ρ− µ̂t | and ρ > µ̂t

)
= P f

(
µ̂t + σ̂t

√
e2δ −1 < ρ

)
.

(3.45)
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Hence,

P f

(
δ <K f̂t (µ− ε)

)
= P f

(
µ̂t + σ̂t

√
e2δ −1 < µ− ε

)
= P f

(
Zσ/
√

t + σ̂t

√
e2δ −1 <−ε

)
= P f

(
ε

σ

√
t +

σ̂t

σ

√
t
√

e2δ −1 < Z
)

≤ E f

[
e−

1
2

(
ε

σ

√
t+ σ̂t

σ

√
t
√

e2δ−1
)2
]

≤ e−
1
2

ε2

σ2 tE f

[
e−

1
2

σ̂2
t

σ2 t(e2δ−1)
]

= e−
1
2

ε2

σ2 tE
[
e−

1
2Ut−1

t
t−1(e2δ−1)

]
= e−

1
2

ε2

σ2 t
(

t−1
e2δ t−1

) t−1
2

≤ e−
1
2

ε2

σ2 te−δ (t−1).

(3.46)

The last step follows, taking δ > 0. This verifies Condition 3, with dt = 1, producing a bound

of the correct order. This in turn verifies the policy as optimal, taking d̃(t) = 2. Equation (3.39)

follows from Eq. (3.40), the definition of K f (ρ) for this model.

3.4 Normal Arms and a Joint UCB Sampling Policy

In the previous sections, the focus has been on contexts in which the arms shared no known

relationship or structure. This proved an advantage in the analysis of the UCB Index policy π∗,

as the index of one arm could be considered without regards to the data collected on the other

arms, and thus each arm could effectively be considered in isolation. In this section, we consider

generalizing the results of the previous sections to construct a UCB Index policy for arms with

known structure, i.e., taking the set of plausible arm hypotheses to be F N
P , with non-trivial P.

While we do not prove a general optimality result as done for the trivial-P case, we demonstrate

asymptotic optimality for an interesting case involving normal arms.

Ignoring the o(t) term for now - it will be dealt with shortly - the constraint on the optimization

problem defined by ui(n, t) in Eq. (3.5) is t I(F̂ i
t ,G)≤ lnn. Interpreting I as the limiting average

log likelihood ratio, this condition can be approximated as the likelihood ratio between F̂ i
t and G
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is at most n. Taking F̂ i
t as the maximum likelihood estimator for Fi given the collected samples,

this offers the (approximate) interpretation of ui(n, t) as given the current data, the largest score

of any hypothesis G∈F no less likely than a fraction of the maximal likelihood of any hypothe-

sis for i. This suggests an immediate extension to the structured arm case: given t = (t1, . . . , tN)

pulls from each arm, let F̂(t) ∈F N
P be the maximum likelihood estimator for F ∈F N

P , then

take the index to be given the current data, the largest i-score for any arm hypotheses G ∈F N
P

no less likely than a fraction of the likelihood of F̂(t). Using I to approximate the average log

likelihood ratios again, and reintroducing the sub-linear terms, this leads to the following ‘joint’

index:

vi(n, t) = sup
G∈F N

P

{
s(Gi) :

N

∑
j=1

(t j−o(t j))I
(
F̂(t) j,G j

)
≤ lnn

}
. (3.47)

Remark 2. In the case that P is trivial, the above recovers the previous UCB index for the

unrelated case, vi(n, t) = ui(n, ti), as we may take G j = F̂(t) j for each j 6= i.

Remark 3. Additionally, we include the sub-linear o(t j) terms, due to the proven necessity

in the unrelated arm case (Section 3.3). While t I(F̂t ,G) more directly approximates the log

likelihood ratio, the inclusion of the −o(t) term seems necessary as an ‘unbiasing’ effect, to

ensure the correct mistake rates are achieved. The above is the natural generalization to the

related arm, non-trivial P case.

Analysis of a policy based on the above index vi is complicated by the fact that the index for arm

i depends explicitly on the data from the other arms. While we expect an index policy based on

vi to generally perform quite well - perhaps even optimally, given the appropriate choices of the

o(ti) terms, we present no general optimality result, but consider the following special case:

We again restrict to the i.i.d. case, and in doing so may identify F with the underlying density

functions for a single pull. Consider the case where the arms are known to be i.i.d. normals,

with finite means and unknown variance, and additionally the variances are known to be equal

between arms. That is, we take F as the set of i.i.d. normal densities with finite mean and

variance, and take f to satisfy P as Var f1(X) = Var f2(X) = . . .= Var fN (X). In this context, we

take the score function to be the mean, s( f ) = µ( f ) = E f [X ].

Note, in this case, we have already shown as an application of Theorem 3, and Eq. (2.27), that

for any uniformly fast policy π we have the following bound, taking f ∈F N
P , with fi = fµi,σ
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and µ∗ = maxi µi,

liminf
n

M
f
π (n)
lnn

> ∑
i:µi 6=µ∗

2σ2

(µ∗−µi)
2 . (3.48)

We will show that an index policy in this case based on vi is in fact asymptotically optimal,

achieving this indicated bound. In this framework, we construct the following estimators, given

t = (t1, . . . , tN) samples from each arm:

µ̂
i
ti =

1
ti

ti

∑
k=1

X i
k

σ̂
2
i (ti) =

1
ti

ti

∑
k=1

(
X i

k− µ̂
i
ti

)2

σ̂
2(t) =

∑
N
i=1 tiσ̂2

i (ti)

∑
N
i=1(ti−1)

.

(3.49)

That is, for each arm i we estimate the mean and variance with the sample mean and sample

variance for that arm, and we additionally construct a pooled estimate of the common variance

from the estimators for each arm. We then define the following policy, based on the specific

instance of vi above in this case, taking each for each i the o(ti) = 1:

Policy π∗: UCB-NORMAL-COMMON-VARIANCE

i) For n = 1,2, . . .2N, pull each arm 2 times, and

ii) for n > 2N, pull arm π∗(n+ 1) = argmaxivi
(
n,(T 1

π∗(n), . . . ,T
N

π∗(n))
)

breaking ties uni-

formly at random, where

vi(n, t) = µ̂
i
ti +

σ̂(t)√
ti−1

√
(n−N)

(
n

2
n−N −1

)
. (3.50)

Theorem 10 In the context outlined above, policy π∗-NORMAL-COMMON-VARIANCE as de-

fined above is asymptotically optimal. In particular, for any choice of f ∈F N
P , with fi = fµi,σ ,

with µ∗ = maxi µi, the following holds:

lim
n

M
f
π∗(n)
lnn

= ∑
i:µi 6=µ∗

2σ2

(µ∗−µi)
2 . (3.51)

The proof is given in Section 3.5. It is similar to the proof of Theorem 4, but differs in significant

ways due to the index depending on the pooled data of all arms, rather than a single arm alone.
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Remark 4. This is a remarkable result: this optimal asymptotic mistake rate for the indicated

policy is identical to the optimal asymptotic mistake rate in the case of normal arms with un-

known means and known variances (Eq. (2.26)). That is, correctly utilized (through the form

of the index function), the knowledge that the variances are equal is as useful in asymptoti-

cally minimizing the mistakes as knowing exactly what that variance is. Any cost due to the

additional uncertainty of not knowing the true variance is restricted to sub-logarithmic order

mistakes. This is a delightful result.

3.5 Proofs

Proof. [of Theorem 4.] We recall the definition of KF(ρ), and introduce a companion function,

CF(δ ):

KF(ρ) = inf
G∈F
{I(F,G) : s(G)> ρ} ,

CF(δ ) = sup
G∈F
{s(G) : I(F,G)< δ} .

(3.52)

Thinking of KF(ρ) as the minimal distance (relative to I) from F to a law better than ρ , we may

consider CF(δ ) to be the best score achieved within distance δ of F . Note, we have the following

relationship: ui(n, t) =CF̂ i
t
(lnn/(t− d̃(t))). Note as well, KF(ρ) is an increasing function with

ρ , and KF(CF(δ ))≤ δ .

Fix F = (F1, . . . ,FN) ∈F N , with i /∈ O(F) as sub-optimal arm relative to F , and i∗ ∈ O(F) an

optimal arm. For convenience, we take s∗ = s∗(F). Let ε,δ be feasible as in the statement of

the Theorem. We define the following functions, for n > n0N:

ni
1(n,ε,δ ) =

n

∑
t=n0N

1

{
π
∗(t +1) = i,ui(t,T i

π∗(t))> s∗− ε,ν(F̂ i
T i

π∗ (t)
,Fi)≤ δ

}
ni

2(n,ε,δ ) =
n

∑
t=n0N

1

{
π
∗(t +1) = i,ui(t,T i

π∗(t))> s∗− ε,ν(F̂ i
T i

π∗ (t)
,Fi)> δ

}
ni

3(n,ε) =
n

∑
t=n0N

1
{

π
∗(t +1) = i,ui(t,T i

π∗(t))< s∗− ε
}
.

(3.53)

Note the relation that T i
π∗(n+1) = n0 +ni

1(n,ε,δ )+ni
2(n,ε,δ )+ni

3(n,ε).
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We have the following relation:

{
ui(t,k)> s∗− ε,ν(F̂ i

k ,Fi)≤ δ
}

=
{

CF̂ i
k
(ln t/(k− d̃(k)))> s∗− ε,ν(F̂ i

k ,Fi)≤ δ

}
=
{
KF̂ i

k
(CF̂ i

k
(ln t/(k− d̃(k))))>KF̂ i

k
(s∗− ε),ν(F̂ i

k ,Fi)≤ δ

}
⊂
{

ln t/(k− d̃(k))>KF̂ i
k
(s∗− ε),ν(F̂ i

k ,Fi)≤ δ

}
⊂
{

ln t/(k− d̃(k))> inf
G∈F
{KG(s∗− ε) : ν(G,Fi)≤ δ}

}
=

{
ln t/ inf

G∈F
{KG(s∗− ε) : ν(G,Fi)≤ δ}+ d̃(k)> k

}

(3.54)

This gives us the following bounds:

ni
1(n,ε,δ )

≤
n

∑
t=n0N

1

{
π
∗(t +1) = i,

ln t
infG∈F {KG(s∗− ε) : ν(G,Fi)≤ δ}

+ d̃(T i
π∗(t))> T i

π∗(t)
}

≤
n

∑
t=n0N

1

{
π
∗(t +1) = i,

lnn
infG∈F {KG(s∗− ε) : ν(G,Fi)≤ δ}

+ d̃(T i
π∗(t))> T i

π∗(t)
}

≤
n

∑
t=0

1

{
π
∗(t +1) = i,

lnn
infG∈F {KG(s∗− ε) : ν(G,Fi)≤ δ}

+ d̃(T i
π∗(t))> T i

π∗(t)
}

≤max
{

T : T − d̃ (T )≤ lnn
infG∈F {KG(s∗− ε) : ν(G,Fi)≤ δ}

}
+1.

(3.55)

The last bounds in the above hold with the following reasoning: Viewing T i
π∗(t) as the sum of

1{π∗(t) = i} terms, the added conditioning in the above indicators restrict how many terms

of the above sum can be non-zero, hence how large T i
π∗(t) can be for any t. The inclusion

of the +1 term in the last step accounts for the π∗(n+ 1) term present in the above sum, not

present in the sum for T i
π∗(n). Note, this bound holds almost surely, independent of outcomes.

Further then, taking d̃ as positive and increasing, for any positive C, we have the relation that

max{T : T − d̃(T )≤C} ≤C+O(d̃(C)). Hence, since d̃ is taken to be sub-linear,

ni
1(n,ε,δ )≤

lnn
infG∈F {KG(s∗− ε) : ν(G,Fi)≤ δ}

+o(lnn). (3.56)
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To bound the ni
2 term, observe the following:

ni
2(n,ε,δ )≤

n

∑
t=n0N

1

{
π
∗(t +1) = i,ν(F̂ i

T i
π∗ (t)

,Fi)> δ

}
=

n

∑
t=n0N

t

∑
k=n0

1
{

π
∗(t +1) = i,ν(F̂ i

k ,Fi)> δ ,T i
π∗(t) = k

}
=

n

∑
t=n0N

t

∑
k=n0

1
{

π
∗(t +1) = i,T i

π∗(t) = k
}
1
{

ν(F̂ i
k ,Fi)> δ

}
≤

n

∑
k=n0

1
{

ν(F̂ i
k ,Fi)> δ

} n

∑
t=k

1
{

π
∗(t +1) = i,T i

π∗(t) = k
}

≤
n

∑
k=n0

1
{

ν(F̂ i
k ,Fi)> δ

}
.

(3.57)

The last step of the above follows, as for any k, π∗(t +1) = i,T i
π∗(t) = k can be true for at most

one t.

To bound the ni
3 term, note that by the structure of the policy, if π∗(t+1) = i, then ui(t,T i

π∗(t)) =

max j u j(t,T
j

π∗(t)). Hence, if i∗ is an optimal arm, π∗(t+1) = i, and ui(t,T i
π∗(t))< s∗−ε , it must

also be that ui∗(t,T i∗
π∗(t))< s∗− ε . Hence we have the following bound:

ni
3(n,ε)≤

n

∑
t=n0N

1

{
π
∗(t +1) = i,ui∗(t,T i∗

π∗(t))< s∗− ε

}
≤

n

∑
t=n0N

1

{
ui∗(t,T i∗

π∗(t))< s∗− ε

}
≤

n

∑
t=n0N

1{ui∗(t,k)< s∗− ε for some k = n0, . . . , t }

≤
n

∑
t=n0N

t

∑
k=n0

1{ui∗(t,k)< s∗− ε} .

(3.58)

Combining each of the above bounds, and observing that T i
π∗(n) ≤ T i

π∗(n + 1), we have for

n > n0N:

T i
π∗(n)≤

lnn
infG∈F {KG(s∗− ε) : ν(G,Fi)≤ δ}

+o(lnn)

+
n

∑
k=n0

1
{

ν(F̂ i
k ,Fi)> δ

}
+

n

∑
t=n0N

t

∑
k=n0

1{ui∗(t,k)< s∗− ε} .

(3.59)

Taking expectations completes the proof.
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Proposition 3 For ∆ > 0, d̃(k) = o(k), t > 1,
∞

∑
k=1

t−∆/(k−d̃(k))e−Ω(k) ≤ O(1/ ln t). (3.60)

Proof. Let 1 > p > 0. We have
∞

∑
k=1

t−∆/(k−d̃(k))e−Ω(k) =
bln(t)pc

∑
k=1

t−∆/(k−d̃(k))e−Ω(k)+
∞

∑
k=dln(t)pe

t−∆/(k−d̃(k))e−Ω(k)

≤
bln(t)pc

∑
k=1

t−∆/(k−d̃(k)) +
∞

∑
k=dln(t)pe

e−Ω(k)

= ln(t)pe−Ω(ln(t)1−p)+ e−Ω(ln(t)p).

(3.61)

As the exponential function decays faster than any polynomial of its argument, we have from

the above immediately that both of the above terms are o((ln t)−α) for any α > 0. Hence, taking

α = 1,
∞

∑
k=1

t−∆/(k−d̃(k))e−Ω(k) ≤ O(1/ ln(t)). (3.62)

Proof. [of Lemma 4.] To see the distribution of α̂n, consider the event that X1 = mint Xt . This

can be generated in the following way, by first generating X1 according to Pareto(α,β ), then for

each j 6= 1, generating each X j independently as Pareto(α,β ) conditioned on X j > X1, in which

case X j ∼ Pareto(α,X1), by the self-similarity of the Pareto distribution. Using the standard fact

that if X ∼ Pareto(α,β ), then ln(X/β )∼ Exp(α), we have that
n

∑
t=1

ln
(

Xt

X1

)
(3.63)

is distributed as the sum of n−1 many i.i.d. exponential random variables with parameter α , or

Gamma(n−1,α). Note, this holds independent of the value of X1. The same argument holds,

taking any of the Xt as the minimum. Hence, independent of which Xt is the minimum, and

independent of the value of that minimum (i.e., independent of β̂n, the above sum is distributed

like Gamma(n− 1,α) ∼ Gamma(n− 1,1)/α . This gives the above representation of α̂n and

demonstrates the independence of α̂n and β̂n.

To see the distribution of β̂n, note that β̂n > β , and for x > 1,

P(β̂n/β > x) = P(β̂n > βx) =
n

∏
t=1

P(Xt > βx) =
(

β

βx

)nα

=

(
1
x

)nα

, (3.64)
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which shows that β̂n/β ∼ Pareto(αn,1).

Proof. [of Theorem 6.] Note that I( fα,β , f
α̃,β̃ )< δ implies that

β̃ ≤ β

α̃

α
− ln

(
α̃

α

)
−1≤ δ

α̃ ln
(

β

β̃

)
≤ δ .

(3.65)

The above gives us that αL−(δ )≤ α̃ ≤αL+(δ ) and βe−αδL+(δ )≤ β̃ ≤ β . Given that δL+(δ )→

0 as δ → 0, these bounds and the continuity of a,b, give the continuity of s with respect to I.

It is convenient to take as similarity measure on F`, ν = I. Condition 1 is then easily verified,

the continuity of K f (ρ) with respect to ρ from the given formula for K, and the continuity with

respect to f under I from the previous bounds.

In verifying Condition 2, it is interesting to note that for ` > 0, the estimator f̂t = f
α̂t ,β̂t

of

f = fα,β may not be in F` even if f is, i.e., even if α > `, there is no immediate guarantee that

α̂t is. Hence, I( f̂t , f ) may not be well defined over F`. However, this is not a serious issue as

in the case that ` > 0, we may view this as embedded in F0, which will contain f̂t , and hence

allow us to compute I( f̂t , f ). Hence, for δ > 0, since β̂t > β ,

P f
(
I( f̂t , f )> δ

)
= P f

(
α

α̂t
− ln

(
α

α̂t

)
−1+α ln

(
β̂t

β

)
> δ

)

≤ P f

(
α

α̂t
− ln

(
α

α̂t

)
−1 >

δ

2

)
+P f

(
α ln

(
β̂t

β

)
>

δ

2

)

= P f

(
α

α̂t
< L−

(
δ

2

))
+P f

(
α

α̂t
> L+

(
δ

2

))
+P f

(
β̂t

β
> e

δ

2α

)
.

(3.66)

Recalling the characterizations of the distributions of α̂t and β̂t (Lemma 4), letting Gt ∼Gamma(t,1),

P f
(
I( f̂t+1, f )> δ

)
≤ P

(
Gt < (t)L− (δ/2)

)
+P

(
Gt > tL+ (δ/2)

)
+ e−

δ

2 (t+1). (3.67)

Here we apply the following result, bounding the tails of the Gamma distributions:
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Lemma 5 Let Gt ∼ Gamma(t,1). For 0 < γ− < 1 < γ+ < ∞, the following bounds hold:

P
(
Gt < tγ−

)
≤
(

γ
−e1−γ−

)t

P
(
Gt > tγ+

)
≤
(

γ
+e1−γ+

)t
.

(3.68)

These are standard Chernoff bounds, the proof given following this one. Applying them to the

above, taking γ± = L±(δ/2), note that γ±e1−γ± = e−δ/2. Hence,

P
(
I( f̂t , f )> δ

)
≤ 2e−

δ

2 (t−1)+ e−
δ

2 t = (2e
δ

2 +1)e−
δ

2 t = e−Ω(t). (3.69)

This verifies Condition 2 - to a much faster rate than is in fact required. It remains to verify

Condition 3. For δ > 0,

P f (δ <K f̂t (ρ))

= P f

(
δ <

1
α̂t

a−1

(
ρ

b(β̂t)

)
− ln

(
1
α̂t

a−1

(
ρ

b(β̂t)

))
−1 and

ρ

b(β̂t)
> a(α̂t)

)

= P f

(
ρ

b(β̂t)
> a(α̂tL−(δ )) and

ρ

b(β̂t)
> a(α̂t)

)

+P f

(
ρ

b(β̂t)
< a(α̂tL+(δ )) and

ρ

b(β̂t)
> a(α̂t)

)
.

(3.70)

The above bound can be simplified a great deal. In the second term, the conditions in fact

contradict: since a is taken to be a decreasing function of α , and L+(δ ) > 1 for δ > 0, the

probability is 0. In the first term, since 0 < L−(δ ) < 1 for δ > 0, and a is decreasing, the

conditions may be combined to yield

P f (δ <K f̂t (ρ)) = P f

(
ρ

b(β̂t)
> a(α̂tL−(δ ))

)
. (3.71)

Let ρ = s( f )− ε = a(α)b(β )− ε . It is convenient to take ε = a(α)b(β )ε̃ with 0 < ε̃ < 1, so

ρ = a(α)b(β )(1− ε̃). Recall that b is non-decreasing, and β ≤ β̂t . Hence,

P f (δ <K f̂t (s( f )− ε)) = P f

(
a(α)b(β )(1− ε̃)

b(β̂t)
> a(α̂tL−(δ ))

)

≤ P f
(
a(α)(1− ε̃)> a(α̂tL−(δ ))

)
= P f

(
α

α̂t
<

α

a−1 (a(α)(1− ε̃))
L−(δ )

) (3.72)
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Let σ = α/a−1(a(α)(1− ε̃)), and note that by Condition on a, 0 < σ < 1. Letting Gt ∼

Gamma(t,1), we may apply Lemma 5 for

P f (δ <K f̂t (s( f )− ε))≤ P f
(
Gt−1 < (t−1)σL−(δ )

)
≤
(

σL−(δ )e1−σL−(δ )
)t−1

(3.73)

Noting that L−(δ )− lnL−(δ )−1 = δ , we have L−(δ )e = eL−(δ )−δ , and

P f (δ <K f̂t (s( f )− ε))≤
(

σeL−(δ )(1−σ)−δ

)t−1
≤
(
σe1−σ

)t−1
e−δ (t−1). (3.74)

The last step follows as 0 < L−(δ )< 1 for δ > 0. This verifies Condition 3, with dt = 1, pro-

ducing a bound of the correct order. This in turn verifies the policy as optimal, taking d̃(t) = 2,

and Eq. (3.20) follows from Eq. (3.22), the definition of K f (ρ) for this model.

Proof. [of Lemma 5.] Let Y1, . . . ,Yt be i.i.d. Exp(1) random variables, and let G =Y1+ . . .+Yt .

For 0 < γ− < 1 < γ+ < ∞,

P
(
G < γ

−t
)

= P
(

e−
(

1
γ−−1

)
G
> e−

(
1

γ−−1
)

γ−t
)

= P
(

e−(
1

γ−−1)G
> e−(1−γ−)t

)
≤

E
[
e−(

1
γ−−1)G

]
e−(1−γ−)t

=
∏

t
s=1E

[
e−(

1
γ−−1)Ys

]
e−(1−γ−)t

=
(γ−)t

e−(1−γ−)t
=
(

γ
−e1−γ−

)t
.

(3.75)

The result for P(G > γ+t) follows similarly.

Proof. [of Theorem 7.] It remains to verify Conditions 2 & 3. Condition 2 now takes the

following form:

P fS

(
||Ŝt |− |S||> δ

)
= o(1/t). (3.76)

Observe the decomposition,

P fS

(
||Ŝt |− |S||> δ

)
= P fS

(
|Ŝt |> |S|+δ

)
+P fS

(
|Ŝt |< |S|−δ

)
. (3.77)

We have the following bound, almost surely, on the size of Ŝt : Letting #S denote the number of

disjoint intervals in S, |Ŝt | ≤ |S|+2εt#S. As this is almost sure, and εt → 0 with t, the first term

in the decomposition above is 0 for all sufficiently large t. To bound the other term, note that
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without loss of generality, we may take δ < |S|. For notational convenience, let α = 1−δ/|S|,

and note that 0 < α < 1.

In the event that |Ŝt | < α|S|, there exists a set of εt-intervals of those that intersect S that both

cover a total measure of α|S|, and contain all t samples from fS. The number of εt-intervals

intersecting S is at most d|S|/εte+2#S. The number of εt-intervals needed to cover an area of

α|S| is dα|S|/εte. Noting that the fS samples are independent, and each falls in a given set of

α|S|-covering εt-intervals with probability at most α , we have

P fS

(
|Ŝt |< α|S|

)
≤
(
d|S|dte+2#S
dα|S|dte

)
α

t

≤
(

e
d|S|dte+2#S
dα|S|dte

)dα|S|dte
α

t

≤
(

e
|S|dt +2#S+1

α|S|dt

)dt

α
t

=

(
1+

2#S+1
|S|dt

)dt

edt α
t−dt = eO(dt)α

t−dt .

(3.78)

It follows from this and the previous analysis that P fS

(
||Ŝt |− |S||> δ

)
= e−Ω(t) in fact, verifying

Condition 2. To verify Condition 3, note

P fS(δ <K f̂t (s( fS)− ε))≤ P fS

(
δ < ln

(
|S|− ε)/|Ŝt |

))
= P fS

(
|Ŝt |< (|S|− ε)e−δ

)
. (3.79)

The additional case in K f may be dispensed with observing that δ > 0. Taking ε < |S|, it is

convenient to define ε̃ = 1− ε/|S|. In which case,

P fS(δ <K f̂t (s( fS)− ε))≤ P fS

(
|Ŝt |< |S|(1− ε̃)e−δ

)
. (3.80)

Applying the previously established bound therefore yields,

P fS(δ <K f̂t (s( fS)− ε))≤ eO(dt)(1− ε̃)t−dt e−δ (t−dt), (3.81)

verifying Condition 3. Equation (3.25) follows from Eq. (3.27), the definition of K f (ρ) for

this model.

Proof. [of Theorem 8.] It remains to verify Conditions 1-3, and the continuity of s under I.
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Note that if I( fa,b, fã,b̃)< δ , it follows that

ã≤ a

b≤ b̃

b̃− ã < (b−a)eδ .

(3.82)

It follows that 0 ≤ b̃− b < (b− a)(eδ − 1) and 0 ≤ a− ã < (b− a)(eδ − 1). From this, we

may conclude that any function of f ∈F that is continuous with respect to the parameters is

continuous with respect to f under I. It follows, given the assumptions on s, that s is continuous

under I. Again, we take in this case that ν = I. Note that the continuity of s with respect to b

makes K f (ρ) continuous with respect to ρ . This, and the previous analysis, verifies Condition

1.

To verify Condition 2, note that a≤ ât ≤ b̂t ≤ b. Hence, we have the following:

P f
(
I( f̂t , f )> δ

)
= P f

(
(b−a)> (b̂t − ât)eδ

)
= P f

(
e−δ >

b̂t − ât

b−a

)
(3.83)

Here, we utilize the following Lemma, characterizing the distribution of ât , b̂t :

Lemma 6 For t > 2,0 < λ < 1:

P fa,b

(
b̂t − ât

b−a
< λ

)
= (t(1−λ )+λ )λ

t−1 ≤ (t +1)λ t−1. (3.84)

The proof is given following this one. Hence we see that

P f
(
I( f̂t , f )> δ

)
≤ (t +1)e−δ (t−1) = e−Ω(t), (3.85)

verifying Condition 2.

For Condition 3, note that

P f (δ <K f̂t (ρ)) = P f

(
δ < min

b̂t≤b̃

{
ln
(

b̃− ât

b̂t − ât

)
: s(ât , b̃)> ρ

})
= P f

(
max
b̂t≤b̃

{
s(ât , b̃) : ln

(
b̃− ât

b̂t − ât

)
≤ δ

}
< ρ

)
= P f

(
max
b̂t≤b̃

{
s(ât , b̃) : b̃≤ ât + eδ (b̂t − ât)

}
< ρ

)
= P f

(
s(ât , ât + eδ (b̂t − ât))< ρ

)
≤ P f

(
s(a,a+ eδ (b̂t − ât))< ρ

)
.

(3.86)
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Hence we have that

P f (δ <K f̂t (s( f )− ε))≤ P f

(
s(a,a+ eδ (b̂t − ât))< s(a,b)− ε

)
. (3.87)

Given the continuity of s, let ε̃ > 0 be such that s(a,b− ε̃)> s(a,b)− ε .

P f (δ <K f̂t (s( f )− ε))≤ P f

(
s(a,a+ eδ (b̂t − ât))< s(a,b− ε̃)

)
= P f

(
a+ eδ (b̂t − ât)< b− ε̃

)
= P f

(
b̂t − ât

b−a
< e−δ

(
1− ε̃

b−a

))

≤ (t +1)e−δ (t−1)
(

1− ε̃

b−a

)t−1

= e−Ω(t)e−δ (t−1).

(3.88)

This verifies Condition 3, with dt = 1, producing a bound of the correct order. This in turn ver-

ifies the policy as optimal, taking d̃(t) = 2, and Eq. 3.31 follows from the definition of K f (ρ)

for this model.

Proof. [of Lemma 6.] Let X1, . . . ,Xt be i.i.d. Uniform[0,1] random variables. Note that we may

then take ât = a+(b−a)minn Xn, b̂t = a+(b−a)maxn Xn. Hence,

P fa,b

(
b̂t − ât

b−a
< λ

)
= P

(
max

n
Xn−min

n
Xn < λ

)
(3.89)

Let M = maxn Xn and m = minn Xn. Note that, conditioned on m, M−m is distributed like

the maximum of t − 1 many Uniform[0,1−m] random variables. Let Y1, . . . ,Yt−1 be i.i.d.

Uniform[0,1] random variables, so we may take M−m = (1−m)maxsYs.

P(M−m < λ |m) = P
(
(1−m)max

s
Ys < λ |m

)
= 1{1−m≤ λ}+ λ t−1

(1−m)t−11{1−m > λ}
(3.90)

Note that m is distributed with a density of t(1− x)t−1 for x ∈ [0,1]. From the above then

P fa,b

(
b̂t − ât

b−a
< λ

)
= P(M−m < λ )

= E [P(M−m < λ |m)]

= P(1−λ ≤ m)+E
[

λ t−1

(1−m)t−11{1−λ > m}
]

= λ
t + t(1−λ )λ t−1.

(3.91)
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The result follows immediately.

Lemma 7 Let Ut ∼ χ2
t , and Z be a standard normal. For z > 0, and 0 < u− < 1 < u+ < ∞, the

following bounds hold:

P
(
Ut > u+t

)
≤
(

u+e1−u+
) t

2

P
(
Ut < u−t

)
≤
(

u−e1−u−
) t

2

P(Z > z)≤ e−z2/2.

(3.92)

Proof. [of Lemma 7.] For the normal bound, note that for any z > 0,

P(Z > z) = P
(

ezZ > ez2
)
≤ E

[
ezZ]e−z2

= ez2/2−z2
= e−z2/2. (3.93)

For the χ2
t bounds, let 0 < u− < 1 < u+, and let Z1, . . . ,Zt be i.i.d. standard normal random

variables. Let Ut = ∑
t
i=1 Z2

i . Observe that

P
(
Ut > u+t

)
= P

(
e(

1
2−

1
2u+ )Ut > e(

1
2−

1
2u+ )u+t

)
= P

(
e(

1
2−

1
2u+ )Ut > e(u

+−1)t/2
)

≤ E
[
e(

1
2−

1
2u+ )Ut

]
e−(u

+−1)t/2

= E
[
e(

1
2−

1
2u+ )Z2

]t
e−(u

+−1)t/2

=
(√

u+
)t

e−(u
+−1)t/2.

(3.94)

The result follows immediately as a rearrangement of the above. The result for P(Ut < u−t)

follows similarly.

Proof. [of Theorem 10.]

Let f ∈F N
P be fixed, with fi as a normal density with mean µi, variance σ2. Let µ∗ = maxi µi.

It is convenient to denote T π(n) =
(
T 1

π (n), . . . ,T
N

π (n)
)
. Let i be a sub-optimal arm, and note the

following relationship:

T i
π(n+1) = 2+

n

∑
t=2N

1{π(t +1) = i}

≤ 2+ni
1(n,ε)+ni

2(n,ε)+ni
3(n,ε)+ni

4(n,ε),

(3.95)
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where

ni
1(n,ε)

=
n

∑
t=2N

1

{
π(t +1) = i;vi(t,T π(t))> µ

∗− ε, µ̂ i
T i

π (t)
≤ µi + ε,

σ̂2(T π(t))
σ2 ≤ 1+ ε

}
,

(3.96)

and

ni
2(n,ε) =

n

∑
t=2N

1{π(t +1) = i;vi(t,T π(t))> µ
∗− ε, µ̂ i

T i
π (t)

> µi + ε},

ni
3(n,ε) =

n

∑
t=2N

1

{
π(t +1) = i;vi(t,T π(t))> µ

∗− ε,
σ̂2(T π(t))

σ2 > 1+ ε

}
,

ni
4(n,ε) =

n

∑
t=2N

1{π(t +1) = i;vi(t,T π(t))≤ µ
∗− ε}.

(3.97)

The proof proceeds by bounding the expectation of each of the four terms. Let ε > 0 be such

that 2ε < ∆ j = µ∗−µ j for each sub-optimal j.

To bound ni
1(n,ε), note

ni
1(n,ε)≤

n

∑
t=2N

1{π(t +1) = i; µi + ε +
σ
√

1+ ε√
T i

π(t)−1

√
(t−N)

(
t

2
t−N −1

)
> µ

∗− ε}

=
n

∑
t=2N

1{π(t +1) = i;
σ2(1+ ε)

(∆i−2ε)2 (t−N)
(

t
2

t−N −1
)
+1 > T i

π(t)}

≤
n

∑
t=2N

1{π(t +1) = i;
σ2(1+ ε)

(∆i−2ε)2 (n−N)
(

n
2

n−N −1
)
+1 > T i

π(t)}.

(3.98)

The last step follows, as the function inside the indicator is an increasing function of t over the

indicated ranges. It follows then that

ni
1(n,ε)≤ 4+

σ2(1+ ε)

(∆i−2ε)2 (n−N)
(

n
2

n−N −1
)
. (3.99)

This follows from the previous bound, viewing T i
π(n) as a sum of indicators 1{π(n) = i}, and

seeing that the conditioning restricts how many of these indicators in the above sum can be non-

zero - the +4 catches the π(n+1) = i indicator term that is not included in the sum for T i
π(n),

and the two pulls of arm i that occurred for t ≤ 2N. Note, this bound is almost sure.
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To bound ni
2(n,ε), note

ni
2(n,ε)≤

n

∑
t=2N

1{π(t +1) = i; µ̂
i
T i

π (t)
> µi + ε}

=
n

∑
t=2N

t

∑
ki=2

1{π(t +1) = i; µ̂
i
ki
> µi + ε,T i

π(t) = ki}

=
n

∑
t=2N

t

∑
ki=2

1{π(t +1) = i;T i
π(t) = ki}1{µ̂ i

ki
> µi + ε}

≤
n

∑
ki=2

1{µ̂ i
ki
> µi + ε}

n

∑
t=ki

1{π(t +1) = i;T i
π(t) = ki}

≤
n

∑
ki=2

1{µ̂ i
ki
> µi + ε}.

(3.100)

The last inequality follows as, for fixed ki, π(t +1) = i;T i
π(t) = ki may be true for at most one

value of t, sample-path-wise. Noting that µ̂ i
k ∼ µi +(σ/

√
k)Z for Z a standard normal random

variable, we have that

E f
[
ni

2(n,ε)
]
≤

n

∑
ki=2

P f
(
µ̂

i
ki
> µi + ε

)
=

n

∑
ki=2

P
(

Z >
ε

σ

√
ki

)
≤

∞

∑
ki=1

e−ki(ε/σ)2/2

=
1

e(ε/σ)2/2−1
.

(3.101)

This follows from the bound of Lemma 7 on the tail probabilities for standard normals.

To bound ni
3(n,ε), note

ni
3(n,ε)≤

n

∑
t=2N

1{σ̂2(T π(t))> σ
2(1+ ε)}, (3.102)

hence

E f
[
ni

3(n,ε)
]
≤

n

∑
t=2N

P f
(
σ̂

2(T π(t))> σ
2(1+ ε)

)
=

n

∑
t=2N

E f

[
P f
(
σ̂

2(T π(t))> σ
2(1+ ε)

∣∣T 1
π (t), . . . ,T

N
π (t)

)]
.

(3.103)

At this point, note that for each i, σ̂2
i (ki) ∼ σ2U i

ki−1/ki where U i
d is a χ2-random variable of

degree d. And as the arms are independent, we have

σ̂
2(k)∼

∑
N
i=1 σ2U i

ki−1

∑
N
i=1(ki−1)

∼ σ2

∑
N
i=1 ki−N

U
∑

N
i=1 ki−N , (3.104)
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again taking Ud as χ2 with degree d. Noting that ∑
N
i=1 T i

π(t) = t, always, we have that

E f
[
ni

3(n,ε)
]
≤

n

∑
t=2N

E f

[
P f

(
σ2

t−N
Ut−N > σ

2(1+ ε)
∣∣T 1

π (t), . . . ,T
N

π (t)
)]

=
n

∑
t=2N

P
(

σ2

t−N
Ut−N > σ

2(1+ ε)

)
=

n

∑
t=2N

P(Ut−N > (1+ ε)(t−N))

≤
∞

∑
t=1

P(Ut > (1+ ε)t)

≤
∞

∑
t=1

(
(1+ ε)e−ε

)t/2
.

(3.105)

The last step utilizes the Chernoff bound of Lemma 7 on χ2-tail probabilities. It follows from

this that:

E f
[
ni

3(n,ε)
]
≤

√
(1+ ε)e−ε

1−
√
(1+ ε)e−ε

. (3.106)

To bound ni
4(n,ε), note that in the event that π(t + 1) = i, from the structure of the policy it

must be true that vi(t,T π(t)) = max j v j(t,T π(t)). Hence, in the event that vi(t,T π(t))≤ µ∗−ε ,

it must also be true that for any optimal arm i∗, vi∗(t,T π(t)) ≤ µ∗− ε . Hence the following

bounds:

ni
4(n,ε)≤

n

∑
t=2N

1{π(t +1) = i;vi∗(t,T π(t))≤ µ
∗− ε}

≤
n

∑
t=2N

1

{
µ̂

i∗

T i∗
π (t)+

σ̂(T π(t))√
T i∗

π (t)−1

√
(t−N)

(
t

2
t−N −1

)
≤ µ

∗− ε

}
,

(3.107)

hence,

E f
[
ni

4(n,ε)
]
≤

n

∑
t=2N

P f

(
µ̂

i∗

T i∗
π (t)+

σ̂(T π(t))√
T i∗

π (t)−1

√
(t−N)

(
t

2
t−N −1

)
≤ µ

∗− ε

)
. (3.108)

Performing the same conditioning on (T 1
π (t), . . . ,T

N
π (t)) as in Eq. (3.103), note that µ̂ i∗

T i∗
π (t)

and

σ̂(T π(t)) are in fact independent of each other, given the underlying normal distributions of the

arm pulls - µ̂ i∗
ki

is independent of σ̂2
i (ki), and sample variances of the other arms combined in

σ̂2(k) are independent of each other. Further, as noted previously, σ̂2(T π(t))∼σ2/(t−N)Ut−N ,

and µ̂ i∗

T i∗
π (t)
∼ µ∗−(σ/

√
T i∗

π (t))Z (the− sign is convenient for the manupations to follow), with
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Ut−N ,Z as independent χ2
t−N and standard normal random variables, respectively. Hence,

E f
[
ni

4(n,ε)
]

≤
n

∑
t=2N

P f

(
− σ√

T i∗
π (t)

Z +
σ√

t−N

√
Ut−N√

T i∗
π (t)−1

√
(t−N)

(
t

2
t−N −1

)
≤−ε

)

=
n

∑
t=2N

P f

(
ε

σ
+

√
Ut−N√

T i∗
π (t)−1

√
t

2
t−N −1≤ Z√

T i∗
π (t)

)
.

(3.109)

Given that it must be that, for any t, T i∗
π (t) ∈ {3,4, . . . , t}, we may apply a union bound to the

above, yielding

E f
[
ni

4(n,ε)
]
≤

n

∑
t=2N

t

∑
s=2

P
(

ε

σ

√
s+

√
s√

s−1

√
Ut−N

√
t

2
t−N −1≤ Z

)
. (3.110)

Note, the f subscript has been dropped, as the remaining random variables no longer depend in

distribution on the {µ j} or σ . It remains to bound the above double sum.

Note the following bounds, for α,β > 0:

P
(

α
√

s+β
√

Uk/k ≤ Z
)
≤ E

[
exp
(
−1

2

(
α

2s+2αβ
√

s
√

Uk/k+β
2(Uk/k)

))]
≤ e−α2s/2E

[
exp
(
−1

2
(
β

2(Uk/k)
))]

= e−α2s/2
(

1+
β 2

k

)−k/2

.

(3.111)

Applying this to the above,

E f
[
ni

4(n,ε)
]
≤

n

∑
t=2N

t

∑
s=2

e−(ε/σ)2s/2(
1+
( s

s−1

)(
t

2
t−N −1

)) t−N
2

=
n

∑
t=2N

1
t

t

∑
s=2

e−(ε/σ)2s/2(
1+ 1

s−1

(
1− t−

2
t−N

)) t−N
2

≤
n

∑
t=2N

1
t

∞

∑
s=2

e−(ε/σ)2s/2(
1+ 1

s

(
1− t−

2
t−N

)) t−N
2
.

(3.112)

It is proven following this proof, as Lemma 8, that for any t, the s-sum is O(1/ ln t), hence we

have that

E f
[
ni

4(n,ε)
]
≤

n

∑
t=2N

1
t

O
(

1
ln t

)
= O(ln lnn). (3.113)
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Combining the four terms, we have from Eq. (3.95) (noting that T i
π(n)≤ T i

π(n+1)) that

E f
[
T i

π(n)
]
≤ 2+E f

[
ni

1(n,ε)
]
+E f

[
ni

2(n,ε)
]
+E f

[
ni

3(n,ε)
]
+E f

[
ni

4(n,ε)
]

=
σ2(1+ ε)

(∆i−2ε)2 (n−N)
(

n
2

n−N −1
)
+O(ln lnn)+O(1).

(3.114)

It follows that for each sub-optimal i,

limsup
n

E f
[
T i

π(n)
]

lnn
≤ σ2(1+ ε)

(∆i−2ε)2 limsup
n

(n−N)
(

n
2

n−N −1
)

lnn
=

2σ2(1+ ε)

(∆i−2ε)2 . (3.115)

Summing this bound over all sub-optimal i, we have the following bounds on total expected

mistakes,

limsup
n

M
f
π (n)
lnn

≤ ∑
i:µi 6=µ∗

2σ2(1+ ε)

(∆i−2ε)2 ≤ ∑
i:µi 6=µ∗

2σ2

∆2
i
. (3.116)

To complete the proof, it is enough to observe the lower bound bound provided by Theorem 3,

as in Eq. (2.27).

Lemma 8 For α > 0,

∞

∑
s=2

e−αs(
1+ 1

s

(
1− t−

2
t−N

)) t−N
2

= O
(

1
ln t

)
. (3.117)

Proof. [of Lemma 8.] Let ν(t) be an increasing function of t. For t such that ν(t)> 2, we have

∞

∑
s=2

e−αs(
1+ 1

s

(
1− t−

2
t−N

)) t−N
2

=
bν(t)c

∑
s=2

e−αs(
1+ 1

s

(
1− t−

2
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)) t−N
2

+
∞
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e−αs(
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s
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2
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)) t−N
2

≤
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∑
s=2

1(
1+ 1

s

(
1− t−

2
t−N

)) t−N
2

+
∞

∑
s=dν(t)e

e−αs

≤ bν(t)c(
1+ 1

bν(t)c

(
1− t−

2
t−N

)) t−N
2

+
e−αdν(t)e

1− e−α

≤ ν(t)(
1+ 1

ν(t)

(
1− t−

2
t−N

)) t−N
2

+
e−αν(t)

1− e−α
.

(3.118)
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For all t sufficiently large, we have 1− t−2/(t−N) > (ln t)/(t−N). Applying this to the above,

and taking ν(t) = (ln t)p for 0 < p < 1, we have

∞

∑
s=2

e−αs(
1+ 1

s

(
1− t−

2
t−N

)) t−N
2
≤ (ln t)p(

1+ (ln t)1−p

t−N

) t−N
2

+
e−α(ln t)p

1− e−α

≤ O(1)
(
(ln t)pe−

1
2 (ln t)1−p

+ e−α(ln t)p
) (3.119)

Note, the bound on the first term can be derived from the asymptotics of

t−N
2

ln
(

1+
(ln t)1−p

t−N

)
. (3.120)

As the exponential function grows faster than any polynomial of its argument, the above bounds

can in fact be utilized to prove that for any δ > 0,

∞

∑
s=2

e−αs(
1+ 1

s

(
1− t−

2
t−N

)) t−N
2

= o
(

1
(ln t)δ

)
. (3.121)
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Chapter 4

Halting Bandits

The models of the previous two chapters have a number of significant restrictions, which will be

explored to some extent by a new model in this chapter. In particular, in the previous chapters:

i) of the arms the controller faced, one or more were identified as ‘best’ and remained so through

all time - the goal was pulling these as frequently as possible, ii) the actual results of the arm

pulling did not matter in themselves (or for the goal), they only served to inform future arm

pulling decisions.

In this chapter, the controller wishes to maximize some utility function of the actual results

returned by the arms pulled, for instance the total expected reward returned by all pulls over some

time horizon - slot machines being the classic example. Because the utility function depends

on the results of each arm pull, and because the results for a given arm may evolve as that arm

is repeatedly pulled - the classic example being an arm slowly breaking down as it is used - the

idea of a constant ‘best’ arm to pull is no longer applicable. At any time, the best arm to pull

next will depend on the current state of each arm, and what is known to the controller about the

future trajectories of each arm.

In particular, each arm is taken to return a sequence of (potentially stochastic) rewards or losses

as it is pulled. We consider the problem of maximizing several utility functions of the total re-

wards gained or losses incurred by the controller’s arm-pulling, over some time horizon defined

by the first arm to break down (potentially randomly) from overuse. Note, this adds an interest-

ing element to the classic ‘exploration vs exploitation’ dilemma previously mentioned, as the

choice to pull a given arm may (through breaking that arm) exclude possible future exploitation

of other arms! The value of a given arm pull cannot therefore be considered purely in terms

of the reward or loss associated with that pull, the effects of the decision itself must also be



59

considered. For the utility functions considered, we derive a formula for considering the ‘true

value’ of the decision to pull an arm, as a function of what is currently known about that arm,

and show that the optimal policy for maximizing the expected utility is myopic, in the sense of

always pulling the arm with the current largest ‘value’.

4.1 Formulation and Prior Work

The formulation of the problem in this chapter differs in several key ways from that of the previ-

ous, and as such it is worth rehashing some established notation while additionally giving some

new. In particular, the primary uncertainty associated with each arm in the previous chapters

regarded the true underlying dynamics of the arm processes the controller faced. In this chap-

ter, the underlying laws are taken to be known in advance - the primary uncertainty therefore is

simply due to the stochastic evolution of the arm processes themselves.

A controller is presented with a finite collection of N > 2 filtered probability spaces, (Ωi,F i,Pi,Fi),

for 1 ≤ i ≤ N < ∞, representing N environments in which experiments will be performed or

rewards collected - the ‘bandits’. To each space, we associate an Fi-adapted reward process

X i = {X i
t }t>0. For t ∈ {0,1, . . .}, we take X i

t (= X i
t (ω

i)) ∈ R to represent the reward available

from the ith bandit on its tth activation. We restrict the reward process of each bandit in the

following way, that

Ei
[

sup
n>0
|X i

n|
]
< ∞. (4.1)

We denote the collection of reward processes as X.

Remark 5. In this chapter, unlike the previous, it is notationally convenient in terms of the

formulas involved to take the arm processes as starting at time t = 0. Note, because the reward

processes are taken to be Fi-adapted, at the conclusion of the first t pulls (representing rewards

X i
0, . . . ,X

i
t−1), the value X i

t is determined, and known to the controller. Future rewards, however,

are only known to the extent allowed by conditioning on the available information.

Additionally, to each bandit, we associate an Fi-stopping time σ i > 0, the ‘halting time’ of the

bandit. At time σ i, we take the bandit to be stopped, and no longer capable of being activated.

We take the following restriction on σ i, that Pi(σ i < ∞) = 1 and that for all t < σ i, we have
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almost surely that

Pi(σ i = t +1|F i(t))> 0. (4.2)

That is, at every point in time t prior to stopping, there is a positive probability of halting in

the next round. In the models we consider, the controller will activate bandits until the first

time some bandit halts, at which point a reward based on the final state of each bandit will be

collected. Hence we refer to these as ‘single payout’ bandits, as rewards are assigned at only

one time, rather than collected cumulatively as in the previous chapters.

We embed these bandits in a larger ‘global’ probability space

(Ω,G ,P) =
(
⊗N

i=1Ω
i,⊗N

i=1F
i,⊗N

i=1Pi) ,
a standard product-space construction, representing the environment of the controller - aware

information from all bandits. This model captures the first key assumption: the bandits are

mutually independent (e.g., X i,X j are independent relative to P for i 6= j). Expectations relative

to the local space, i.e., bandit i, will be denoted Ei, while expectations relative to the global

space are simply E.

In what follows, we reserve the term ‘round’ to differentiate global, controller time, denoted

with s, from local bandit times, denoted by t. In each round, the controller activates a bandit,

advancing its local time by one time step. All bandits begin at local time 0, and advance only on

activation. This is the second key assumption, that in every round unactivated bandits remain

frozen. This proceeds until one of the bandits halts, which in turn halts the control process. At

this round, the controller receives a reward that is a function of the current state of each bandit

- again, justifying the descriptor ‘single payout’.

The controller needs a control policy π , a stochastic process on (Ω,G ,P) that specifies, at each

round s of global time, which bandit to activate and collect from, e.g., π(s)(= π(s,ω)) = i

activates bandit i at round s. We restrict ourselves to the set of policies P defined to be non-

anticipatory. A policy π is non-anticipatory if the choice of which bandit to activate at round s

does not depend on outcomes that have not yet occurred, or information not yet available.

Remark 6. We adopt the following notational liberty, allowing a random variable Z defined

on a local space Ωi to also be considered as a random variable on the global space Ω, taking



61

Z(ω) = Z(ω i), where ω = (ω1, . . . ,ωN) ∈ Ω. Via this extension, we may take expectations

involving a process X i, or Fi-stopping times, relative to P or Pi, without additional notational

overhead.

Given a policy π , it is convenient to be able to translate between global time and local time.

Define Si
π(t) to be the round at which bandit i is activated for the tth time when the controller

operates according to policy π . This may be expressed as

Si
π(0) = inf{s > 0 : π(s) = i},

Si
π(t +1) = inf{s > Si

π(t) : π(s) = i}.
(4.3)

Utilizing this notation, we may define a global halting time σπ , i.e., the first round under policy

π at which one of the bandits has halted, ending the control process:

σπ = min
i
{Si

π(σ
i−1)}+1. (4.4)

We may also define T i
π(s) denote the local time of bandit i just prior to the sth round under a

policy π , i.e., T i
π(0) = 0, and for s > 0,

T i
π(s) =

s−1

∑
s′=0

1{π(s′) = i}. (4.5)

It is convenient to define the global time analog, Tπ(s) = T π(s)
π (s) to denote the current local

time of the bandit activated at round s under policy π . This will allow us to define concise

global time analogs of several processes. For instance, we define the global reward process Xπ

on (Ω,G ,P) as

Xπ(s) = Xπ(s)
Tπ (s)

,

giving the reward available from collection X under policy π at round s.

In what follows, for a given policy π , we take the final reward the controller receives to be a

function of the final state of the bandits, generally a linear combination of {X i
T i

π (σπ )
}1≤i≤N . The

most important model considered will be the problem of maximizing the total collective payout

on halting,
N

∑
i=1

E
[
X i

T i
π (σπ )
|G0

]
. (4.6)
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To maximize her expected reward, in every round the controller’s decision of which bandit to

activate must balance not only the current state of each bandit, but also the probability of halting

that bandit and in doing so ending the process, and losing all potential future rewards.

The remainder of the chapter proceeds in the following way: as a starting point, we develop an

optimal policy for maximizing expected total reward in the case that the bandits are known to

have non-increasing rewards, and payout is received only from the bandit that halts; we then

consider a model of general reward processes, under which payout is received at the time of first

halting, based on the states of all bandits; we develop an optimal policy for maximizing expected

payout under this ‘collective payout’ model by transforming it to an equivalent instance of the

previous ‘monotone, solo-payout’ model; we then utilize this collective payout model to solve

for optimal policies under additional payout models, based on singling out bandits that did or

did not halt, i.e., costs are incurred for bandits that did not halt, while rewards are collected from

those that did (or vice versa).

4.1.1 Global Information vs. Local Information

One of the intricacies of the results to follow is in properly distinguishing and determining what

information is available to the controller to act on at a given time. For each bandit i, the filtration

Fi = {F i(t)}t>0 represents the progression of information available about that bandit - the σ -

algebra F i(t) representing the local information available about bandit i at local time t, such as

the process history of X i. Taking X i as Fi-adapted as we do, we have σ(X i
0,X

i
1, . . . ,X

i
t )⊂F i(t).

At round s, the total, global information available to the controller is determined by the state of

each bandit at that round, i.e. acting under a given policy π until round s, the global information

available at round s is given by the σ -algebra
⊗N

i=1 F i(T i
π(s)). We may therefore refine the prior

definition of non-anticipatory policies to be the set of policies P such that for each s > 0, π(s)

is measurable with respect to the prior σ -algebra, i.e., determined by the information available

at round s. Weaker definitions of non-anticipatory, such as allowing dependence on random

events, e.g., coin flips, are addressed in Section 4.3.4. It is convenient to define the initial global

σ -algebra G0 =
⊗N

i=1 F i(0), representing the initial information available from each bandit,

which is independent of policy π .
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Additionally, given a policy π , it is necessary to define a set of policy-dependent filtrations in

the following way: let Hi
π = {H i

π (t)}t>0, where H i
π (t) =

⊗N
j=1 F j(T j

π (Si
π(t))) represents the

total information available to the controller about all bandits, prior to the tth activation of bandit

i under π . It is indexed by the local time of bandit i, but at each time t gives the current state

of information of each bandit. Note that, since T i
π(S

i
π(t)) = t, H i

π (t) contains the information

available in F i(t). This filtration is necessary for expressing local stopping times, i.e., con-

cerning X i, from the perspective of the controller - Fi-stopping times no longer suffice, since

the controller has access to information from all the other processes as well. Note though, Fi-

stopping times may be viewed as Hi
π -stopping times, cf. Remark 4.1. Ultimately, the optimal

policy result demonstrates that any decision about a given bandit depends only on information

from that bandit, thus rendering these filtrations unnecessary in practice. However, they are a

technical necessity for the proof of that result.

When discussing stopping times, we will utilizing the following notation: For a general filtration

J (e.g., J= Fi,Hi
π ), we denote by Ĵ(t) the set of all J-stopping times strictly greater than t (Pi,P-

a.e.). For a J-stopping time τ , Ĵ(τ) is similarly defined.

4.1.2 Prior Work

Consider a model in the above framework, in which rewards are collected on every activation,

rather than at the time of halting. In that case, the value function may be written as

Vπ(X) =
N

∑
i=1

E

[
T i

π (σπ )−1

∑
t=0

X i
t

∣∣G0

]
, (4.7)

taking empty sums to be equal to 0. Comparing the above with the value function described

in Eq. (2.4), this model can be seen as a natural extension of the model considered in Section

2.1.1 (which inspired the models of the previous two chapters) to a bandit-defined time horizon

through this halting mechanism. Framing the problem in terms of ‘single payouts’ instead of

cumulative, as in the above value function, both simplifies the presentation of the results to

follow, and allows for convenient extension to alternative payout models as well.

With this cumulative payout model in mind, however, the inspiration for the model considered

in this chapter largely comes from Gittins and Jones [25] (see [26] for a modern treatment), who
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considered the problem of maximizing the expected present value of the total reward collected

from finite state Markov chain bandits with a constant discount factor, i.e., maximizing total

expected (discounted) reward over an infinite time horizon. This seminal work provided a dy-

namic allocation index policy for directing bandit activations, based on a formula that may be

computed for each bandit depending only on the state of that bandit, effectively decoupling the

bandits from each other in the decision process. The derivation of this optimal index policy in

that work depended on an intricate exchange argument, considering ‘policy improvement’ by

exchanging activations of various bandits under a given policy according to the so called ‘Gittins

index’. Many works followed this (see [23] for a general overview), providing alternative proofs

of the same results - worth mention in particular is Whittle [77], which provided the interpre-

tation of the Gittins index of a bandit in terms of the equivalent lump sum worth permanently

abandoning a bandit for.

It will be shown in the sections to follow that the model presented here subsumes and extends the

classical Gittins model of maximizing total expected discounted reward over an infinite horizon.

Some proofs of the Gittins result also depend on various restrictions of the underlying bandit

processes, for instance taking them to not only be Markov chains, but having finite state space as

well [72]. The work presented here represents a considerable extension in this case, generalizing

to essentially arbitrary reward processes, limited only in not admitting infinite expected rewards.

Most directly, this present work is an extension of the results of Cowan and Katehakis [15] in

the Gittins model, the results of which extended the Gittins model to sequences of non-uniform

discounts and arbitrary depreciation, and [18] which considered a similar halting model in the

case of Markov chains. Additionally, in these prior works, the bandits were generally treated as

of equal importance in the reward collection process. In this work, we use the mechanism of

halting to single out certain bandits - for instance, viewing halted bandits as ‘successful’ and

un-halted bandits as unsuccessful - and in doing may treat payout models beyond the scope of

the original Gittins formulation.

We find the derivation and proof presented here of the optimal index policy particularly sat-

isfying, in terms of both clarity and intuition. In particular, as will become clear, the relative

simplicity of the proof suggests the importance of viewing the decision process not as decisions
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over ‘space’, e.g., solving for the optimal decision for each potential state of the bandits, but

rather as decisions over ‘time’, e.g., viewing the decision to activate a given bandit in terms

of a duration of activation. Additionally, we view the correspondence established between the

solo-payout (rewards collected only from the bandit that halts) and collective-payout (rewards

collected from all bandits on halting) models as illustrative of why the optimal decision pro-

cess in the Gittins formulation decomposes into treating the bandits individually, through the

computation of the indices.

4.2 Maximizing Solo Payouts: Non-Increasing Rewards

In this section, we consider the problem of maximizing the expected penultimate reward from the

bandit that halts and ends the process. That is, if a bandit is activated and halts, stopping the con-

trol process, the controller receives the reward that bandit offered when it was activated, rather

than the reward it halts on. Additionally in this section, we assume that the reward processes

from each bandit are non-increasing. In fact, under this restriction, we may even maximize the

reward almost surely. This result, while intuitive, acts as the workhorse for future optimality

results.

We define the penultimate solo payout value of a policy π as,

V PSP
π (X) = E [Xπ(σπ −1)|G0]

=
N

∑
i=1

E
[
1{i = π(σπ −1)}X i

T i
π (σπ−1)|G0

]
.

(4.8)

Theorem 11 (A Greedy Result for Non-Increasing Solo Payout Processes) Given a collec-

tion of reward processes X such that for each i, X i is almost surely non-increasing for t < σ i,

there exists a policy π∗ ∈P such that for any policy π ∈P ,

Xπ(σπ −1)≤ Xπ∗(σπ∗−1) (P-a.e.). (4.9)

In particular, such a π∗ is given by the following greedy rule: In each round s > 0, activate the

bandit with the largest current value of X i, π∗(s) = argmaxi X i
T i

π∗ (s)
.

Proof. The proof proceeds by incremental improvements on an arbitrary policy.
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Let X i
0 = max j X j

0 . Let π ∈P be arbitrary, and define S = Si
π(0), the first round bandit i is

activated under π . If i is never activated, we take S to be infinite.

From π , we construct a policy π ′ ∈P as follows: π ′ activates bandits in the same order as π ,

but it advances the first activation of bandit i from round s = S to round s = 0. That is,

π
′(s) =


i for s = 0,

π(s−1) for s = 1,2, . . .S,

π(s) for s > S+1.

(4.10)

It is important to observe that π ′ is in P , as at every round s, the information available under π ′

is greater than or equal to the information available for the corresponding activation under π .

In the case that σπ > S+1, that is π halts after the first activation of bandit i, then there is no

difference between the rewards returned by either policy. Similarly, if σπ = S+1, that is π halts

due to the first activation of bandit i, the reward returned under π is X i
0, and as bandit i halted

on its first activation, the reward returned under π ′ is also X i
0. In fact, it follows similarly that

the only situation in which π and π ′ differ in their returned rewards is when σπ ≤ S and σ i = 1.

Therefore,

Xπ ′(σπ ′−1)−Xπ(σπ −1) = (Xπ ′(σπ ′−1)−Xπ(σπ −1))1{σπ≤S}1{σ i=1}

= (X i
0−Xπ(σπ −1))1{σπ≤S}1{σ i=1}

> 0 (P-a.e.).

(4.11)

The last step follows taking X i
0 as the initial largest reward, and that all bandits are non-increasing.

It follows that advancing the activation of the initial maximal bandit improves or at least does

not change the value of a policy. This same argument can be applied at every round that follows,

that at every step, activation of the current initial maximal bandit is an improvement over (or

at least does not change the value) of any other policy. Note, collisions may occur if at a given

round two bandits have equal rewards. This may be resolved at the discretion of the controller,

such as by always taking the bandit with the smaller index i.

As each bandit halts in a finite time, almost surely, for sufficiently many greedy improvements

as outlined above, the resulting improvement of any policy π will return the same value as the
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completely greedy strategy π∗. Hence,

Xπ(σπ −1)≤ Xπ∗(σπ∗−1) (P-a.e.). (4.12)

4.2.1 The Necessity of Finite Halting Times

This model is restricted in few ways, but one significant restriction is the assumption that σ i <∞

almost surely, for each bandit i. This assumption excludes cases such as the following, in which

no optimal policy exists:

Consider two bandits, Bandit A offering a potential reward of $100 in each time step, and Bandit

B offering a potential reward of $50 in each time step. Further, suppose that PA(σA < ∞) = 0.5,

and σB = 1 almost surely - that is, Bandit B halts after its first activation.

Any policy on these bandits may be described in the following way: For τ > 0 as a finite FA-

stopping time, πτ activates Bandit A until τ , then Bandit B, ending the process. The value of

such a policy is given by

V PSP
τ (A,B) = $100 PA(σA < τ)+$50 PA(σA > τ)≤ 75. (4.13)

This upper bound may be achieved within an arbitrary amount by choosing a finite, sufficiently

large τ - the larger the τ , the closer to achieving the upper bound of $75. However, taking τ to

be infinite, the $100 is only collected with probability 0.5, and Bandit B is never activated at all,

yielding a total expected value of $100× 0.5 = $50 < $75. In this case, there exist ε-optimal

policies, but no optimal policy.

4.3 Maximizing Collective Payouts

In this section, we consider a model where rewards are collective, received from all bandits, at

the final round of the process. We define the collective payout value of a policy π as,

VCP
π (X) =

N

∑
i=1

E
[
X i

T i
π (σπ )
|G0

]
, (4.14)
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the expected total reward from all bandits at the end of the process. In the following subsections,

we develop a policy π∗ ∈P such that for all π ∈P ,

VCP
π (X)≤VCP

π∗ (X) (P-a.e.). (4.15)

Remark 7. For algebraic convenience, we take X i
0 = 0 for all i. For a more arbitrary reward

processes {X̂ i}, recall that the initial X̂ i
0 are taken to be constant and known at the initial round

by assumption. Hence, defining X i
t = X̂ i

t − X̂ i
0, maximizing the total expected reward from the

{X̂ i} processes is equivalent to maximizing the total expected reward from the {X i} processes.

4.3.1 Block Values

This section introduces a way of considering the ‘value’ of a set of activations of a bandit.

The ‘true’ value of a decision to activate a bandit is not simply the reward gained through that

decision, but instead must balance the immediate reward with the incurred probability of ending

the control process through that decision, and the resulting loss of potential future rewards.

For each bandit i, for a given policy π we define τ i
π to be the first activation of bandit i that does

not occur under π . That is,

τ
i
π = min{t > 0 : Si

π(t)> σπ}. (4.16)

With this, we state the following definitions:

Definition 2 (Process Blocks and their Values) Given times t ′ < t ′′ with t ′ < σ i, and a policy

π ∈P with Si
π(t
′)< σπ :

1. The solo-payout value of the [t ′, t ′′) - block of X i as:

ρ
i(t ′, t ′′) =

Ei
[
X i

σ i∧t ′′−X i
t ′
∣∣F i(t ′)

]
Pi
(
t ′ < σ i ≤ t ′′

∣∣F i(t ′)
) . (4.17)

2. The π-value of the [t ′, t ′′) - block of X i as:

ν
i
π(t
′, t ′′) =

E
[
X i

T i
π (σπ )∧t ′′−X i

t ′
∣∣H i

π (t
′)
]

P
(
t ′ < σ i ≤ τ i

π ∧ t ′′
∣∣H i

π (t ′)
) . (4.18)
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The denominator of ν i
π may be interpreted as the probability that the process ends due to bandit

i, halting during activation of the [t ′, t ′′)-block. Due to Eq. (4.2), the denominators of both

block values are non-zero. The above quantities are all measurable with respect to the indicated

σ -fields, and finite (Pi,P -a.e.), due to (4.1).

Remark 8. The above might be justified as the ‘value’ of a block of activations in the following

way: even if the incremental reward gained due to an activation block (the numerators) is small,

if the probability of halting due to those activations (the denominators) is sufficiently small,

there is very little risk in attempting to gain that increment through that activation. In fact, there

might be more to gain in such a case than if the incremental reward were slightly larger, but the

probability of halting were also larger. The above values captures this trade-off between risk of

halting and reward gained.

Notionally, ρ i can be thought of as the value of a block under sequential, consecutive activation,

while ν i
π is, correspondingly, the value of a block potentially ‘diluted’ or broken up by activa-

tions of other bandits under π . The following theorem illustrates the relationship between ρ i

and ν i
π , essentially stating that the value of any block under some policy π is at most the value

of some block activated consecutively.

Theorem 12 (Block Value Comparison) For bandit i under policy π , for any time t0 such that

Si
π(t0)< σπ , the following holds for any Hi

π -stopping time τ with t0 < τ:

ν
i
π(t0,τ)≤ ess sup

τ̂∈F̂i(t0)
ρ

i(t0, τ̂) (P-a.e.). (4.19)

Note that it follows from Eqs. (4.1, 4.2) that the essential supremum is finite (P-a.e).

Proof. For each bandit i and any π ∈P , it can be shown by cases (whether the control process

does or does not end due to an activation of i) that T i
π(σπ) = σ i∧ τ i

π .
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Therefore, for a given τ ∈ Ĥi
π(t0),

ν
i
π(t0,τ) =

E
[
X i

σ i∧τ i
π∧τ
−X i

t0

∣∣H i
π (t0)

]
P
(
t0 < σ i ≤ τ i

π ∧ τ
∣∣H i

π (t0)
)

=
E
[
X i

σ i∧(τ i
π∧τ)
−X i

t0

∣∣H i
π (t0)

]
P
(
t0 < σ i ≤ (τ i

π ∧ τ)
∣∣H i

π (t0)
)

≤ ess sup
τ̂∈Ĥi

π (t0)

E
[
X i

σ i∧τ̂
−X i

t0

∣∣H i
π (t0)

]
P
(
t0 < σ i ≤ τ̂

∣∣H i
π (t0)

) (P-a.e.).

(4.20)

The last step above follows as, given that τ i
π and τ are both in Ĥi

π(t0) by assumption, so too is

τ i
π ∧ τ .

Defining a ‘global’ π-analog of ρ i,

ρ
i
π(t
′, t ′′) =

E
[
X i

σ i∧t ′′−X i
t ′
∣∣H i

π (t
′)
]

P
(
t ′ < σ i ≤ t ′′

∣∣H i
π (t ′)

) , (4.21)

we have the following relations:

ν
i
π(t0,τ)≤ ess sup

τ̂∈Ĥi
π (t0)

ρ
i
π(t0, τ̂)≤ ess sup

τ̂∈F̂i(t0)
ρ

i(t0, τ̂) (P-a.e.). (4.22)

The first is simply a restatement of Eq. (4.20). The second relation, the exchange from Hi
π -

stopping times to Fi-stopping times, is intuitive: as the X i process and σ i are independent of

the non-i bandits, information about those independent bandits (through the Hi
π -stopping times)

cannot assist in maximizing the quotient. Rigorously, this amounts to integrating out the inde-

pendent bandits, and is done in more detail in Section 4.6 as Proposition 10.

The following proposition provides, using ρ i and ν i
π , alternative expressions for the incremental

reward gained through the activation of a block.

Proposition 4 For each bandit i, the following hold for any Fi-stopping times τ ′ < τ ′′ where

the quantities are defined. Equality also holds when conditioning with respect to the initial

information, F i(0), G0 respectively via the tower property.

Ei [X i
σ i∧τ ′′−X i

τ ′
∣∣F i(τ ′)

]
= Ei

[
τ ′′−1

∑
t=τ ′

ρ
i(τ ′,τ ′′)1{σ i=t+1}

∣∣F i(τ ′)

]
(4.23)

E
[
X i

T i
π (σπ )∧τ ′′−X i

τ ′
∣∣H i

π (τ
′)
]
= E

[
τ ′′−1

∑
t=τ ′

ν
i
π(τ
′,τ ′′)1{σπ=Si

π (t)+1}
∣∣H i

π (τ
′)

]
(4.24)
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Proof. The above equations follow directly from Eqs. (4.17, 4.18), observing the following

relations:

Pi (t ′ < σ
i ≤ t ′′

∣∣F i(t ′)
)
= Ei

[
t ′′−1

∑
t=t ′

1{σ i=t+1}
∣∣F i(t ′)

]
,

P
(
t ′ < σ

i ≤ τ
i
π ∧ t ′′

∣∣H i
π (t
′)
)
= E

[
t ′′−1

∑
t=t ′

1{σπ=Si
π (t)+1}

∣∣H i
π (t
′)

]
.

(4.25)

4.3.2 Solo Payout Indices and Times

Theorem 12 indicates the significance of the following quantity.

Definition 3 (The Solo-Payout Index) For any t < σ i, the incremental Solo-Payout Index at t

is defined to be

ρ
i(t) = ess sup

τ∈F̂i(t)
ρ

i(t,τ). (4.26)

This index, interpreted as the maximal quotient of ‘incremental reward’ over ’probability of

termination/halting’ as in Eq. (4.17) was anticipated by Sonin in [66], who defined it over

Markov chain reward processes as a generalization of the Gittins index.

The following result demonstrates that ρ i(t) is realized as the value of some block from time

t, that is for some τ > t, ρ i(t) = ρ i(t,τ) (Pi-a.e.). As such, ρ i(t) represents the maximal block

value achievable from process i from time t.

Proposition 5 For any time t0 <σ i, there exists a τ ∈ F̂i(t0) such that ρ i(t0)= ρ i(t0,τ) (Pi-a.e.).

The proof is somewhat technical and not the focus, and hence is relegated to Section 4.6.

The solo-payout indices and their realizing blocks provide a natural time scale with which to

view a process, in terms of a sequence of blocks. In particular, we define the following sequence:

Definition 4 (Solo-Payout Index Times) Define a sequence ofFi-stopping times {τ i
k}k>0 in the

following way, that τ i
0 = 0, and for k > 0,

τ
i
k+1 = arg ess sup{ρ i(τ i

k,τ) : τ ∈ F̂i(τ i
k)}. (4.27)
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In the case that τ i
k = σ i for some k, then τ i

k′ is taken to be infinite for all larger k′. In the case

that τ i
k < σ i, we have that ρ i(τ i

k) = ρ i(τ i
k,τ

i
k+1). The question of whether the ‘arg ess sup’ exists

is resolved in the positive by Proposition 5; if there is more than one stopping time that attains

the ‘arg ess sup’, we take τ i
k+1 to be the one demonstrated by the application of Lemma 9 in the

proof of Proposition 5.

Using this sequence of stopping times, we partition the local process times Ni = {0,1,2, . . .}

into

Ni = [0,τ i
1)∪ [τ i

1,τ
i
2)∪ [τ i

2,τ
i
3)∪ . . . .

One important property of this partition is the following:

Proposition 6 (Solo-Payout Indices Non-Increasing over Index Times) For any k > 0 such

that τ i
k < σ i, the following is true: ρ i(τ i

k−1)> ρ i(τ i
k) (Pi-a.e.).

For intuition, recall the {τ i
k}k are meant to realize successively the maximal indices of the pro-

cess {X i
t }t . If ρ i(τ i

k−1) = ρ i(τ i
k−1,τ

i
k)< ρ i(τ i

k), the index from τ i
k−1 may be increased by taking

a block that extends from τ i
k−1 past τ i

k. This contradicts the idea of the {τ i
k}k as realizing the

maximal indices. The proof is relegated to the Section 4.6 as technical, and not the focus of this

work.

4.3.3 Equivalent Solo Payout Processes

For each bandit, we have developed a partition of local time into blocks of activations via the

solo payout index stopping times. With Proposition 4 in mind, we use these blocks to define a

set of reward equivalent solo payout processes, and π-equivalent solo payout processes.

Definition 5 Given the collection of reward processes X= (X1, ...,XN), and {τ i
k}k>0 for each

i as in Definition 4, we define:

1. The reward-equivalent solo payout collection YX = (Y 1, ...,Y N) by

Y i(t) = ρ
i(τ i

k), if τ
i
k ≤ t < τ

i
k+1. (4.28)
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2. For π ∈P , the π-equivalent solo payout collection YX
π = (Y 1

π , ...,Y
N
π ), by

Y i
π(t) = ν

i
π(τ

i
k,τ

i
k+1), if τ

i
k ≤ t < τ

i
k+1. (4.29)

Like X i, the process Y i is defined on (Ωi,F i,Pi,Fi) and is Fi-adapted, as the ρ i(τ i
k) is defined by

the information available locally at time τ i
k. However, as the ν i

π(τ
i
k,τ

i
k+1) depend on the specifics

of policy π , so do the Y i
π processes; the Y i

π processes are Hi
π -adapted, but not Fi-adapted. Note,

Y i is only really defined for t < σ i, and Y i
π is only defined for t such that Si

π(t)< σπ . However,

since no rewards are collected from bandit i after these times, this lack of definition is of no

concern.

The following are simple, but important properties of the YX ,YX
π processes.

Proposition 7 For π ∈P , for each i, and any k where the following quantities are defined,

Ei
[
X i

σ i∧τ i
k+1
−X i

τ i
k

∣∣F i(τ i
k)
]
= Ei

τ i
k+1−1

∑
t=τ i

k

Y i(t)1{σ i=t+1}
∣∣F i(τ i

k)

 , (4.30)

E
[
X i

T i
π (σπ )∧τ i

k+1
−X i

τ i
k

∣∣H i
π (τ

i
k)
]
= E

τ i
k+1−1

∑
t=τ i

k

Y i
π(t)1{σπ=Si

π (t)+1}
∣∣H i

π (τ
i
k)

 . (4.31)

As with Proposition 4, equality also holds when conditioning with respect to F i(0),G0.

Proof. This follows as an application of Proposition 4 and the definitions of Y i, Y i
π .

The following proposition serves as justification of the term ‘equivalent’ in describing theYX ,YX
π

collections.

Proposition 8 For each i, for any policy π ∈P ,

Ei [X i
σ i

∣∣F i(0)
]
= Ei [Y i(σ i−1)

∣∣F i(0)
]
, (4.32)

E
[
X i

T i
π (σπ )

∣∣G0

]
= E

[
1{i=π(σπ−1)}Y

i
π(T

i
π(σπ −1))

∣∣G0
]
. (4.33)

Proof. Each follows from the corresponding equation in Prop. 7, summing over k and taking

expectations from the initial time, via the tower property. On the right hand sides, the X i terms

telescope in the sum, and X i
0 is taken to be 0. On the left hand sides, the sums over Y may be
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expressed as single terms, due to the indicators.

Proposition 9 For each i, for each time t > 0 such that Y i(t) is defined,

Y i(t−1)> Y i(t) (Pi-a.e.) . (4.34)

Proof. This follows immediately from Proposition 6, and Definition 5.1.

Theorem 13 (Comparison of Equivalent, π-Equivalent Solo Payout Processes) For any π ∈

P , for each i and all time t where both are defined, we have:

Y i
π(t)≤ Y i(t) (P-a.e.). (4.35)

Proof. For such a t, we have for some k that τ i
k ≤ t < τ i

k+1, and as an application of Theorem

12,

Y i
π(t) = ν

i
π(τ

i
k,τ

i
k+1)≤ ess sup

τ ′∈Ĥi
π (τ

i
k)

ν
i
π(τ

i
k,τ
′)

≤ ess sup
τ̂∈F̂i(τ i

k)

ρ
i(τ i

k, τ̂) = ρ
i(τ i

k) = Y i(t) (P-a.e.).
(4.36)

4.3.4 The Optimal Policy for Collective Payout Bandits

The derivation of the optimal control policy for an arbitrary collection of reward processes X

under a collective reward structure is all but immediate now.

Theorem 14 (The Optimal Collective Payout Control Policy) For a collection of reward pro-

cesses X= (X1,X2, . . . ,XN), and the associated stopping times {σ i}i=1,...,N , there exists a strat-

egy π∗ ∈P such that for all π ∈P ,

VCP
π (X)≤VCP

π∗ (X) (P-a.e.). (4.37)
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In particular, such an optimal policy π∗ can be described in the following way: successively

activate the bandit with the largest current solo payout index,

ρ
i(t) = ess sup

τ∈F̂i(t)

Ei
[
X i

σ i∧τ
−X i

t

∣∣F i(t)
]

Pi
(
t < σ i ≤ τ

∣∣F i(t)
) , (4.38)

for the duration of the corresponding index block.

Before giving the proof of this theorem, we give a corollary, which gives a useful alternative

characterization of the policy π∗.

Corollary 1 An alternative characterization of the policy π∗ in Theorem 14 is the following: at

every round, activate the bandit with the largest current solo payout index.

Proof. From Theorem 14, it follows that the optimal first activation is to activate a bandit

with the largest current solo payout index. If that activation does not halt the bandit and end

the process, the controller is faced with a structurally identical decision problem. It follows that

again, the optimal action is to activate a bandit with the largest current solo payout index. This ar-

gument may be iterated until halting, which will occur in finite time by assumption on the {σ i}.

Proof. [of Theorem 14.] For an arbitrary policy π , and π∗ as indicated above, we establish the

following relations:

VCP
π (X) =V PSP

π (YX
π )≤V PSP

π (YX)≤V PSP
π∗ (YX) =VCP

π∗ (X) (P-a.e.), (4.39)

i.e., for any policy π , we have that VCP
π (X) ≤ VCP

π∗ (X) (P-a.e.) and therefore π∗ is an optimal

policy.

In the following steps we prove relations (4.39).

Step 1: VCP
π (X) =V PSP

π (YX
π ), (P-a.e.).

We have, via Prop. 8, Eq. (4.33),

VCP
π (X) =

N

∑
i=1

E
[
X i

T i
π (σπ )

∣∣G0

]
=

N

∑
i=1

E
[
1{i=π(σπ−1)}Y

i
π(T

i
π(σπ −1))

∣∣G0
]
=V PSP

π (YX
π ).

(4.40)
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Note, because the Y i
π processes are defined in terms of π , they are not Fi-adapted, and cannot

be utilized under any other policy. However, the value V PSP
π (YX

π ) is well defined via the above

equation.

Step 2: V PSP
π (YX

π )≤V PSP
π (YX) (P-a.e.).

This follows from the point-wise inequality of Theorem 13, Y i
π(t)≤Y i(t) for all t. Note that for

any t where Y i
π(t) is not defined, the tth activation of i does not occur under π , and no comparison

is necessary.

Step 3: V PSP
π (YX)≤V PSP

π∗ (YX) (P-a.e.).

This follows simply from Theorem 11: by construction, the terms of each Y i process are equal

to the solo payout indices of X i, piecewise constant over blocks, and non-increasing.

Step 4: V PSP
π∗ (YX) =VCP

π∗ (X) (P-a.e.).

Note that π∗ activates bandits consecutively over the duration of their index blocks. For a given

i, define

k∗i = min
k>0
{Si

π∗(τ
i
k)> σπ}, (4.41)

the first block of i that is not activated under π∗. Note then that for each i, we have the following

relation

T i
π∗(σπ∗) = σ

i∧ τ
i
k∗i
. (4.42)

Expressing the value of policy π∗ relative to activations over blocks, and utilizing the tower

property, we have the following equivalences:

V PSP
π∗ (YX) =

N

∑
i=1

∞

∑
k=0

E

1{k∗i >k}

τ i
k+1−1

∑
t=τ i

k

Y i(t)1{σ i=t+1}
∣∣G0


=

N

∑
i=1

∞

∑
k=0

E

1{k∗i >k}E

τ i
k+1−1

∑
t=τ i

k

Y i(t)1{σ i=t+1}
∣∣H i

π (τ
i
k)

∣∣G0


=

N

∑
i=1

∞

∑
k=0

E
[
1{k∗i >k}E

[
X i

σ i∧τ i
k+1
−X i

τ i
k

∣∣H i
π (τ

i
k)
]∣∣G0

]
=

N

∑
i=1

E
[

X i
σ i∧τ i

k∗i
−X i

0
∣∣G0

]
=

N

∑
i=1

E
[
X i

T i
π∗ (σπ∗ )

∣∣G0

]
=VCP

π∗ (X).

(4.43)
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Note the exchange over blocks of the Y i rewards for the X i rewards is due to Proposition 7, Eq.

(4.30), taking the extension to H i
π∗(τ

i
k) in place of F i(τ i

k).

Remark 9. The above theorem demonstrates a policy π∗ ∈P that is P-a.e. superior (or equiva-

lent) to every other policy π ∈P . However, the set of non-anticipatory policies P was defined

in a fairly restrictive sense in Section 4.1.1, so that the decision in any round was completely

determined by the results of the past. This might be weakened to allow for randomized poli-

cies, so that the decision in a given round might depend on the results of independent events,

e.g., coin flips. However, such a construction simply amounts to placing a distribution on P .

Since π∗ is P-a.e. superior to any π ∈P , π∗ would be similarly superior to any policy sampled

randomly from P .

4.4 Alternative Payout Schemes

Utilizing the results of the previous section, we may provide index policies for optimizing the

rewards/costs from a number of alternative payout models, by reducing them to the model of

the previous section.

4.4.1 Maximizing Solo Payouts

In this section, we consider the problem of maximizing the final reward from the bandit that

halts the process. We define the solo payout value of a policy π as,

V SP
π (X) = E [Xπ(σπ)|G0]

=
N

∑
i=1

E
[
1{i=π(σπ−1)}X

i
T i

π (σπ )
|G0

]
.

(4.44)

To provide an index policy to maximize this value function, we reduce it to the previous model

in the following way: define a collection of reward processes Z= {Zi}1≤i≤N by for each i, each

t > 0,

Zi
t = 1{σ i=t}X

i
t . (4.45)

Notice that at round σπ , Zi
t = 0 for all bandits that did not halt the process, and Zi

t = X i
σ i for the
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bandit that did halt the process. Hence the collective payout under Z is equal to the solo payout

under X, VCP
π (Z) = V SP

π (X). Applying the previous results in this case, the optimal policy for

the collective payout under Z yields an optimal policy for the solo payout under X, given by a

policy that always activates bandits according to the maximum solo payout index:

ρ
i
SP(t) = ess sup

τ∈F̂i(t)

Ei
[
1{τ>σ i}X i

σ i

∣∣F i(t)
]

Pi
(
t < σ i ≤ τ

∣∣F i(t)
) . (4.46)

It is interesting to observe that the policy based on the above index has a very natural interpre-

tation: viewing the index as the maximal conditional expected payout of a bandit on its halting,

the policy always activates the bandit with the largest potential payout - should it pay out.

4.4.2 Minimizing Non-Halting Cost

In this section, we consider the case in which the controller pays a cost based on the bandits

that did not halt the process, and wishes to minimize this cost. We define the halting cost of a

policy π as:

CH
π (X) = E

[
∑

i 6=π(σπ−1)
X i

T i
π (σπ )
|G0

]

=
N

∑
i=1

E
[
1{i 6=π(σπ−1)}X

i
T i

π (σπ )
|G0

]
.

(4.47)

To provide an index policy to minimize this value function, we reduce it to a previous model in

the following way: define a collection of reward processes Z = {Zi}1≤i≤N by for each i, each

t > 0,

Zi
t =−1{σ i 6=t}X

i
t . (4.48)

Notice that at round σπ , if bandit i was activated to halt the process (π(σπ − 1) = i), Zi
t =

0, otherwise Zi
t = −X i

t . Hence, the collective payout under Z is equal to the negative of the

halting cost under X, VCP
π (Z) =−CH

π (X). Maximizing the collective payout under Z therefore

minimizes the halting cost under X. Applying the results of the previous section, the optimal

policy for the collective payout under Z yields an optimal policy for the halting cost under X,

given by a policy that always activates bandits according to the maximum halting cost index:

ρ
i
HC(t) =− ess sup

τ∈F̂i(t)

Ei
[
1{σ i>τ}X i

τ −X i
t

∣∣F i(t)
]

Pi
(
t < σ i ≤ τ

∣∣F i(t)
) . (4.49)
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4.4.3 Maximizing Collective Profit

We may combine the results of the previous two subsections in the following way: to each bandit

i we associate a reward process {Ri
t}t>0 and a cost process {Ci

t}t>0. In this section, we consider

the case where the controller gains a reward from the bandit that halts the process, and pays a

cost for each bandit that does not halt. The controller wishes to maximize her total profit. We

define the collective profit of a policy π as,

V PC
π (R,C) =

N

∑
i=1

E
[
1{i=π(σπ−1)}R

i
T i

π (σπ )
−1{i 6=π(σπ−1)}C

i
T i

π (σπ )
|G0

]
. (4.50)

To provide an index policy to maximize this value function, we reduce it to a previous model

in the following way: define a collection of reward processes Z= {Zi}1≤i≤N by for each i, each

t > 0,

Zi
t = 1{σ i=t}R

i
t −1{σ i 6=t}C

i
t . (4.51)

Notice that at round σπ , Zi
t = −Ci

t for all bandits that did not halt the process, and Zi
t = Ri

t

for the bandit that did halt the process. Hence the collective payout under Z is equal to the

collective profit under (R,C), VCP
π (Z) =V PC

π (R,C). Applying the previous results in this case,

the optimal policy for the collective payout under Z yields an optimal policy for the collective

profit under (R,C), given by a policy that always activates bandits according to the maximum

collective profit index:

ρ
i
PC(t) = ess sup

τ∈F̂i(t)

Ei
[
1{σ i≤τ}Ri

σ i−1{σ i>τ}Ci
τ +Ci

t

∣∣F i(t)
]

Pi
(
t < σ i ≤ τ

∣∣F i(t)
) . (4.52)

4.5 Cumulative Payouts and Recovering the Gittins Index

In this section, we consider the case in which the controller gains a bandit’s current reward each

time that bandit is chosen to be activated. Bandits that are never activated give no rewards.

The controller wishes to maximize her total payout. We define the cumulative collective payout

value of a policy π as,

VCCP
π (X) =

N

∑
i=1

E

[
T i

π (σπ )−1

∑
t=0

X i
t

∣∣G0

]
. (4.53)

Note, in the above expression we take empty sums, i.e., when T i
π(σπ) = 0, to be 0. To provide an

index policy to maximize this value function, we reduce it to the previous model in the following
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way: define a collection of reward processes Z= {Zi}1≤i≤N by, for each i, each t > 0,

Zi
t =

t−1

∑
t ′=0

X i
t ′ . (4.54)

It follows easily that the collective payout under Z is equal to the collective cumulative payout

under X, VCP
π (Z) = VCCP

π (X). Applying the previous results in this case, the optimal policy

for the collective payout under Z yields an optimal policy for the collective cumulative payout

under X, given by a policy that always activates bandits according to the maximum collective

cumulative payout index:

ρ
i
CCP(t) = ess sup

τ∈F̂i(t)

Ei
[
∑

σ i∧τ−1
t ′=t X i

t ′
∣∣F i(t)

]
Pi
(
t < σ i ≤ τ

∣∣F i(t)
) . (4.55)

This extension of the collective payout model is not necessarily interesting in its own right, but

consider the following: each time the controller activates a bandit, all potential future rewards

are effectively reduced or discounted by a factor equal to the probability of that decision halting

the process. In the special case that each halting time σ i > 0 is a Geometric random variable

with a constant parameter 0 < β < 1, i.e., probability of survival, independent of the reward

processes X, this results in every activation discounting all future rewards by a factor of β . It

follows that

VCCP
π (X) =

N

∑
i=1

E

[
T i

π (σπ )−1

∑
t=0

X i
t

∣∣G0

]
= E

[
∞

∑
s=0

β
sXπ(s)

∣∣G0

]
. (4.56)

Maximizing the collective cumulative payout under this model is then equivalent to maximiz-

ing the total expected discounted reward of X under constant discount factor β , precisely the

framework outlined by Gittins in the Markov case [25]. In this case, the collective cumulative

payout index reduces to

ρ
i
CCP(t) = ess sup

τ∈F̂i(t)

Ei
[
∑

τ−1
t ′=t β t ′−tX i

t ′
∣∣F i(t)

]
Ei
[
1−β τ−t

∣∣F i(t)
] =

1
1−β

ess sup
τ∈F̂i(t)

Ei
[
∑

τ−1
t ′=t β t ′X i

t ′
∣∣F i(t)

]
Ei
[
∑

τ−1
t ′=t β t ′

∣∣F i(t)
] , (4.57)

where the essential supremum on the right is precisely the Gittins index for bandit i. As 1/(1−

β ) is a constant, positive factor, activating according to the maximal collective cumulative pay-

out index and activating according to the maximal Gittins index result in equivalent, optimal

policies.

We may extend this equivalence of discounting and probabilities of survival in the following
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way: although in the Geometric case as above, β essentially represents the probability of sur-

vival / non-halting for a given bandit activation, we may consider an arbitrary, bandit-specific

discounting sequence {β i
0,β

i
1, . . .}. We may interpret β i

t as the probability of bandit i not halting

on its t th activation, or the depreciation incurred on rewards due to the t th activation of bandit i.

In this second case, if the {β i
t }t>0 are taken to be unequal, this may be interpreted as the acti-

vations of a given bandit having potentially non-uniform durations. This model of non-uniform

activation duration, as a generalization of the Gittins formulation, was considered in [15], and

served as much of the inspiration for this present work.

4.6 Proofs

Proposition 10 For bandit i under policy π , for any time t0 such that Si
π(t0)< σπ , the following

holds:

ess sup
τ̂∈Ĥi

π (t0)
ρ

i
π(t0, τ̂)≤ ess sup

τ̂∈F̂i(t0)
ρ

i(t0, τ̂) (P-a.e.). (4.58)

Proof. Without loss of generality, we may take t0 = 0. Recall the definition of ρ i
π ,ρ

i:

ρ
i
π(t
′, t ′′) =

E
[
X i

σ i∧t ′′−X i
t ′
∣∣H i

π (t
′)
]

P
(
t ′ < σ i ≤ t ′′

∣∣H i
π (t ′)

) ,
ρ

i(t ′, t ′′) =
Ei
[
X i

σ i∧t ′′−X i
t ′
∣∣F i(t ′)

]
Pi
(
t ′ < σ i ≤ t ′′

∣∣F i(t ′)
) . (4.59)

Letting R denote the R.H.S. of Eq. (4.58), observe (by the definition of the essential supremum)

that for any τ̂ ∈ F̂i(0),

E
[
X i

σ i∧τ̂
−X i

0−R1{0 < σ
i ≤ τ̂}

∣∣F i(0)
]
≤ 0 (P-a.e.). (4.60)

To prove the proposition, it suffices to show that for any τ̂ ∈ Ĥi
π(0),

E
[
X i

σ i∧τ̂
−X i

0−R1{0 < σ
i ≤ τ̂}

∣∣H i
π (0)

]
≤ 0 (P-a.e.). (4.61)

For compactness of argument, we take N = 2 and i = 1, though the following argument gen-

eralizes to arbitrary bandits in the obvious way. For notational compactness, we define W i
t =

X i
σ i∧t −X i

0−R1{0 < σ i ≤ t}.

Note that for any set A ∈H 1
π (0), and any τ ∈ Ĥ1

π(0),

E
[
1AE

[
W 1

τ

∣∣H 1
π (0)

]]
= E

[
1AW 1

τ

]
. (4.62)
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Taking A as a rectangle in H 1
π (0), A = A1×A2, observe that A1 ∈F 1(0). The indicator may

be decomposed as 1A(ω) = 1A1(ω
1)1A2(ω

2). It follows as a result of the initial integrability

assumptions on the bandits, Eqs. (4.1), (4.2), that we may exchange the expectation over the

product space for an iterated expectation:

E
[
1AW 1

τ

]
= E2 [E1 [

1A11A2W
1
τ

]]
= E2 [

1A2E
1 [
1A1W

1
τ

]]
= E2 [

1A2E
1 [
1A1E

1 [W 1
τ

∣∣F 1(0)
]]]

.

(4.63)

Observe that, while τ (begin an H1
π -stopping time) may have a dependence on Ω2, inside the

iterated integral with the dependence on Ω2 fixed, it is an Fi-stopping time. Hence, as an appli-

cation of Eq. (4.60), we have the bound

E
[
1AW 1

τ

]
= E2 [

1A2E
1 [
1A1E

1 [W 1
τ

∣∣F 1(0)
]]]
≤ E2 [

1A2E
1 [1A10]

]
= 0. (4.64)

Hence, for all rectangles A ∈H 1
π (0), E

[
1AE

[
W 1

τ

∣∣H 1
π (0)

]]
≤ 0. This extends via the usual

monotone-class type argument to all A ∈H 1
π (0). Hence, it follows that for all τ ∈ Ĥ1

π(0),

E
[
W 1

τ

∣∣H 1
π (0)

]
≤ 0 (P-a.e.). (4.65)

This establishes the result.

Proof. [of Proposition 5.]

The proof of Proposition 5 requires the following technical lemma, which follows from/in par-

allel with Proposition VI-1-3 in [65].

Lemma 9 In an arbitrary probability space with a filtration J= {Jt}t>0, consider an adapted

discrete-time process {Zt}t>0 such that E
[
supN|Zt |

∣∣J0
]
< ∞. If the J-stopping time τ∗ ∈ Ĵ(0)

defined by

τ
∗ = inf{n > 0 : ess sup

τ∈Ĵ(n)
E
[
Zτ

∣∣Jn
]
≤ Zn} (4.66)

is almost surely finite, then

E
[
Zτ∗
∣∣J0

]
= ess sup

τ∈Ĵ(0)
E
[
Zτ

∣∣J0
]

(P-a.e.). (4.67)
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We have that for all τ̂ ∈ F̂i(t0), ρ i(t0, τ̂)≤ ρ i(t0) (Pi-a.e.). Taking

Pi(t0 < σ
i ≤ τ̂

∣∣F i(t0)) = Ei [
1{t0<σ i≤τ̂}

∣∣F i(t0)
]
,

we have in parallel with Eq. (4.23),

Ei [X i
σ i∧τ̂
−X i

t0−ρ
i(t0)1{t0<σ i≤τ̂}

∣∣F i(t0)
]
≤ 0 (Pi-a.e.). (4.68)

Defining

ε =− ess sup
τ̂∈F̂i(t0)

Ei [X i
σ i∧τ̂
−X i

t0−ρ
i(t0)1{t0<σ i≤τ̂}

∣∣F i(t0)
]
, (4.69)

we have that ε > 0 (Pi-a.e.). We may use −ε as an improved upper bound in Eq. (4.68). This

may be rearranged to yield

ρ
i(t0, τ̂)≤ ρ

i(t0)−
ε

Ei
[
1{t0<σ i≤τ̂}

∣∣F i(t0)
] ≤ ρ

i(t0)− ε (Pi-a.e.). (4.70)

Since the above property holds for all such τ̂ , it extends to the essential supremum, yielding

ρ
i(t0)≤ ρ

i(t0)− ε (Pi-a.e.), (4.71)

or equivalently that ε ≤ 0 (Pi-a.e.). In conjunction with the first observation, that ε > 0 (Pi-a.e.),

we have ε = 0 (Pi-a.e.), i.e.,

ess sup
τ̂∈F̂i(t0)

Ei [X i
σ i∧τ̂
−X i

t0−ρ
i(t0)1{t0<σ i≤τ̂}

∣∣F i(t0)
]
= 0 (Pi-a.e.). (4.72)

Define Zi
t = X i

σ i∧t −X i
t0 −ρ i(t0)1{t0<σ i≤t}. Note that the integrability condition of Lemma 9 is

satisfied due to Eq. (4.1). For t > σ i, Zi
t is constant, hence τ∗ ≤ σ i < ∞ almost surely. Hence

we may apply Lemma 9 here to yield a stopping time τ∗ ∈ F̂i(t0) such that

Ei [X i
σ i∧τ∗−X i

t0−ρ
i(t0)1{t0<σ i≤τ∗}

∣∣F i(t0)
]
= 0 (Pi-a.e.), (4.73)

or

ρ
i(t0) =

Ei
[
X i

σ i∧τ∗−X i
t0

∣∣F i(t0)
]

Pi
(
t0 < σ i ≤ τ∗

∣∣F i(t0)
) = ρ

i(t0,τ∗) (Pi-a.e.). (4.74)

Hence, the solo-payout index ρ i(t0) is realized (Pi-a.e.) for some Fi-stopping time τ∗ > t0.
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Proof. [of Proposition 6.] For k > 0, let τ i
k < σ i, and therefore τ i

k−1 < σ i. Defining

Zi
t = X i

σ i∧t −X i
τ i

k−1
−ρ

i(τ i
k−1)1{τ i

k−1<σ i≤t},

note that for t > τ i
k: Zi

t −Zi
τ i

k
= X i

σ i∧t −X i
τ i

k
−ρ i(τ i

k−1)1{τ i
k<σ i≤t}.

It follows from the proof of Proposition 5 that the solo-payout index from time τ i
k−1 is realized

by a τ i
k such that

ess sup
τ ′∈F̂i(τ i

k)

Ei [Zi
τ ′
∣∣F i(τ i

k)
]
≤ Zi

τ i
k

(Pi-a.e.), (4.75)

or

ess sup
τ ′∈F̂i(τ i

k)

Ei
[
X i

σ i∧τ ′−X i
τ i

k
−ρ

i(τ i
k−1)1{τ i

k<σ i≤τ ′}
∣∣F i(τ i

k)
]
≤ 0 (Pi-a.e.). (4.76)

From the above, for any τ ′ ∈ F̂i(τ i
k), we have

Ei
[
X i

σ i∧τ ′−X i
τ i

k

∣∣F i(τ i
k)
]

Pi
(
τ i

k < σ i ≤ τ ′
∣∣F i(τ i

k)
) ≤ ρ

i(τ i
k−1) (Pi-a.e.). (4.77)

Taking the essential supremum over such τ ′ establishes that ρ i(τ i
k)≤ ρ i(τ i

k−1), (Pi-a.e.).
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