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ABSTRACT OF THE DISSERTATION

New Nonparametric Approaches for Multivariate and

Functional Data Analysis in Outlier Detection, Construction

of Tolerance Tubes, and Clustering

by Yi Fan

Dissertation Director: Regina Y. Liu

Recent advances of powerful computing and data acquisition technologies have made large

complex datasets ever-present, including high-dimensional or functional data. Most exist-

ing statistical approaches for multivariate or functional data rely on parametric assump-

tions such as normality. In reality, such assumptions are either difficult to justify or verify.

The goal of this dissertation is to develop general nonparametric statistical approaches for

outlier detection, tolerance tubes construction, and clustering for multivariate and func-

tional data.

1. In Chapter 3, we propose a general approach named Antipodal Reflection Depth

(ARD), to refine any existing function of depth (henceforth base depth) to form a

class of new depth functions. ARD has the advantage over its base depth in capturing
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the relative magnitude of deviation from all data points to the deepest one. This

desirable property is key in making ARD particularly useful in many applications.

Here, we focus primarily on its utility in outlier detection.

2. In Chapter 4, we introduce tolerance tubes, which can be viewed as generalizations of

tolerance intervals/regions to functional settings. A tolerance tube ensures a specified

portion of the functional dataset be contained within the tolerance limits with some

confidence. In addition to extending the commonly accepted definitions of β−content

and β−expectation, we introduce modifications by incorporating an exempt level

α. The latter relaxes the definitions by allowing α portion of each functional to

be exempt from the requirements and is thus particularly useful to offset allowable

occasional aberrations.

3. In Chapter 5, we propose a new clustering approach named K-means on Pairwise

Distance (KMPD), and show it to be effective in detecting clusters with different

sizes. Moreover, KMPD has the capability of grouping anomalous sample points into

a single cluster, and therefore is an effective approach for outlier detection as well.

All these approaches are completely non-parametric and data-driven, and thus can be

broadly applicable. Relevant theoretical properties are investigated and justified. These

approaches are also illustrated and tested using data from both simulations and a real

application on a medical study of continuous glucose monitoring.
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Chapter 1

Introduction

With the recent advances in computing and storage technologies, complex data such as

multivariate and functional data are routinely collected in many fields. There is a strong

demand for effective statistical tools for the analysis of these complex data sets, especially

functional data sets. Roughly speaking, a functional data point contains continuous mea-

surements of the same object over time or other continuum, but is observed or recored

only on finite discrete indices. The book Ramsay and Silverman (2005) and Ferraty and

Vieu (2006) provide excellent treaties of this subject. Other more recent studies include

functional PCA in Yao et al. (2005), functional regression in Muller and Stadtmuller (2005)

and Delaigle and Hall (2012), just to name a few. However, most of existing approaches

for functional data rely heavily on parametric assumptions such as normality. However,

these assumptions are often difficult to verify or justify in practice. In this dissertation, we

develop general nonparametric approaches for multivariate and functional data, which are

useful to solve problems in outlier detection, tolerance tubes construction, and clustering.

Data depth, or depth for short, measures the centrality of any data point with respect to

its underlying distribution or a data cloud, and thus gives rise to a natural center-outward

ordering to data points in any given sample. Depth has been used to develop a class of

effective nonparametric approaches to solve many problems in multivariate and functional

data analysis (e.g., see Liu et al. (1999)). Nevertheless, due to the location-scale free nature,
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many of them are incapable of reflecting the magnitude of deviation from each sample point

to the deepest one, which can be used as an estimator of the “center”. This shortcoming

restricts severely the utility of depth, especially in the context of outlier detection. Thus,

we proposed a general approach, referred to as Antipodal Reflection Depth (ARD), to refine

any well-defined depth notion to gain the capability of capturing the relative magnitude

of deviations from any data point to the center. The idea of ARD is to combine the

antipodal reflection of the original sample data in the calculation of depth values but draw

inferences using only the original sample with their associated depth values. This approach

is completely data driven and nonparametric. It is illustrated by simulated studies and

the risk management project on tracking aircraft landing performance to identify possible

anomalous landings.

Tolerance intervals and tolerance regions are important tools for statistical quality con-

trol and process monitoring of univariate and multivariate data, respectively. Guttman

(1970) and a recent monograph Krishnamoorthy and Mathew (2009) provide detailed dis-

cussion about this topic. Li and Liu (2008) proposed an effective approach to construct

nonparametric tolerance regions using multivariate spacings derived from data depth. In

this dissertation, we generalize the tolerance intervals/regions to tolerance tubes in the

infinite dimensional setting for functional data. In addition to the generalizations of the

commonly accepted definitions of the tolerance level of β−content or β−expectation, we

introduce a modification of β−expectation tolerance tube by coupling it with an exempt

level α. The latter relaxes the definition of β−expectation tolerance tube by allowing α

(usually pre-set by domain experts) portion of each functional be exempt from the require-

ment. Specifically, a β−expectation tolerance tube with exempt level α of a sample of n

functional data is expected to contain nβ functionals such that each of these functionals

has at least (1− α) portion falling within the limits of the tube.
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The proposed tolerance tubes are completely nonparametric and thus broadly applicable.

We investigate their theoretical properties and justifications. We also show that this exempt

tolerance tube is particularly useful in the setting where occasional short term aberrations

of functional data are deemed acceptable if those aberrations do not cause substantive

deviation of the norm. This desirable property is elaborated and tested further with both

simulation and real applications in continuous monitoring of blood glucose levels in diabetes

patients as well as of aviation risks during aircraft landing operations.

Cluster analysis plays an important role in many research areas, such as artificial intelli-

gence, recommendation system, natural language processing, etc. In this dissertation, we

propose a new clustering method for functional data, and this method is referred to as

K-mean on Pairwise Distance (KMPD) method. Roughly speaking, KMPD performs clus-

tering by evaluating the pairwise distances of each point with respect to the whole data set.

It mitigates the well-known shortcoming of the popular K-means (which was introduced

and studied in (Lloyd, 1957; Forgy, 1965; MacQueen, 1967; Hartigan and Manchek, 1979)

that i) it tends to produce clusters with similar sizes; ii) its effectiveness relies heavily on

the assumption of spherical data structure. In contrast, KMPD outperforms K-means in

that i) it is able to identify small clusters if exist; ii) it recovers the true data structure

when data points are not distributed in separated spheres. The method has been tested

and verified using simulated data and a real aircraft landing data set.

The rest of this dissertation is organized as follows. Chapter 2 gives a brief review of

data depth for both multivariate and functional data, which facilitates our discussions in

the next two chapters. Chapter 3 introduces and studies theoretical properties of ARD,

as well as its application in outlier detection. Chapter 4 focuses on the construction of

nonparametric tolerance tubes. Chapter 5 proposes KMPD for clustering multivariate and

functional data. At last, Chapter 6 summarizes the main achievement of the dissertation.



4

Chapter 2

Review of Data Depth

2.1 Review of Data Depth in Multivariate Settings

In this section, we begin with basic notations for multivariate data. We adhere to the

convention of denoting random variables and observations in upper cases and lowercases,

respectively. We also denote vectors in boldface and scalars in plain. Let X1, . . . , Xn be a

random sample from the probability distribution F in Rd, and x1, . . . ,xn their observed

values. For any x ∈ Rd,

1. Simplicial Depth (SD) (Liu (1990)) at x w.r.t. F is defined as

SD(x, F ) = PF {x ∈ S[X1, . . . ,Xd+1]}

where S[X1, . . . ,Xd+1] is a closed simplex whose vertices {X1, . . . ,Xd+1} are (d+1) points

randomly selected from F . Given a sample {X1, . . . ,Xn}, the sample SD is defined as

SDn(x) =
1(
n
d+1

)∑
(?)

I(x ∈ S[Xi,1, . . . ,Xi,d+1])

where I(·) is an indicator function. Each {Xi,1, . . . , Xi,d+1} is a subset of (d + 1) points

from the sample, and (?) represents all possible subsets of (d+ 1) points. The sample SD

is the fraction of sample simplices which contains x.
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2. Halfspace Depth (HD) (Tukey (1975))of x w.r.t. F is defined as

HD(x , F ) = inf
H
{P (H) : x ∈ H and H is a closed half-space in Rd}

Given a sample {X1, . . . ,Xn}, the sample HD is defined as:

HDn(x) =
1

n
min
e∈Rd

n∑
i=1

I(X ′ie ≤ x′e).

It is the minimum fraction of data points in any closed half-space in Rd that contains x.

There are many other depth notions for multivariate data, see Zuo and Serfling (2000)

and Liu et al. (1999). We focus mainly on SD and HD in this paper, because these two

geometric depth notions are completely nonparametric and data driven.

2.2 Review of Data Depth in Functional Settings

In the functional setting, we let {Y1(t), t ∈ T }, . . . , {Yn(t), t ∈ T } be a random sample of d-

dimensional functionals over a common support T , and {y1(t), t ∈ T }, . . . , {yn(t), t ∈ T }

their observed values. While T often refers to time, it is defined more broadly and can

refer to other suitable continua such as spatial position, etc. In practice, functional data

are observed discretely which are indexed by t, and the collection of indices may also vary

from observation to observation. For simplicity, we assume all functional are observed at

p finite indices, i.e. t = (t1, . . . , tp), and the observed functional can be denoted as y(t).

We stress that our new proposed approach is also suitable when the observed indices are

different between functionals. We simplify the notations of functional data by dropping

t ∈ T when the emphasis of T is not needed. Furthermore, we can simply use Y and

y to represent the functionals when there is no possibility of confusion. For example, we
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will use FARD(y) to denote the functional antipodal reflection depth of {y(t)}, as seen in

Chapter 3.

For any univariate functional {y(t)} over T ,

1.Fraiman and Muniz Depth (FM) (Fraiman and Muniz, 2001) is defined as

ID(y) =

∫
T
D(y(t))dt,

where D(·) is a general notion of depth for univariate data. FM is the integration of

pointwise depth value over T . The sample FM is defined as

IDn(y) =

∫
T
Dn(y(t))dt,

where Dn(·) represents the sample version of D(·).

2. Random Projection Depth (RP) and Double Random Projection Depth (RP2) (Cuevas

et al., 2007)

For any {y(t)} in Hilbert space L2[0, 1], we take a series of independently random direction

{a1(t)}, . . . , {aN (t)} and define

RP (y) =
1

N

N∑
i=1

D(< ai, y >).

Here < ai, y >=
∫
T ai(t)y(t)dt is a projection of {y(t)} on {ai(t)}. The sample RP is

defined as

RPn(y) =
1

N

N∑
i=1

Dn(< ai, y >).

In addition to considering random projections in RP, RP2 takes into account random

projections simultaneously of functionals and their first-order derivatives. Specifically, it
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is defined as

RP2(y) =
1

N

N∑
i=1

D((< ai, y >,< ai, y
′ >)),

where y′ is the first-order derivative of y. The sample RP2 is defined as

RP2n(y) =
1

N

N∑
i=1

Dn((< ai, y >,< ai, y
′ >)).

3. Band Depth (BD) and Modified Band Depth (MBD) (Lopez-pintado and Romo, 2009)

BDJ(y) =

J∑
j=2

P{G(y) ⊂ B(Y1, . . . , Yj)},

where G(y) = {(t, y(t)) : t ∈ T }, and B(Y1, . . . , Yj) = {(t, y) : t ∈ T , minr=1,...,j yr(t) ≤

y ≤ maxr=1,...,j yr(t)} is a banded region formed by the bounds of j randomly selected

curves {Y1(t)}, . . . , {Yj(t)} over T . The sample BD is defined as

BDn,J(y(t)) =

J∑
j=2

1(
n
j

)∑
(?)

I{G(y) ⊂ B(yi1 , . . . , yij ), t ∈ T }.

A modified version of BD is defined as

MBDJ(y) =
J∑
j=2

Eλr(B(y;Y1, . . . , Yj)),

where B(y;Y1, . . . , Yj) ≡ {t ∈ T : minr Yr(t) ≤ y(t) ≤ maxr Yr(t)}. Here

λr(B(y;Y1, . . . , Yj)) measures the proportion of T where {y(t)} is in the banded region
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B(y;Y1, . . . , Yj). The sample MBD is defined as

MBDn,J(y) =
J∑
j=2

1(
n
j

)∑
(?)

λr(B(y; yi1 , . . . , yij )).

The choice of parameter J is suggested in Lopez-pintado and Romo (2009) to be 3 for BD

and 2 for MBD.

4. Extremal Depth (ED)(Narisetty and Nair, 2015) is defined to be

ED(y, F ) = 1− P{y ≺ f},

where f is a random function drawn from F, and ≺ indicates the extremal ordering of

functions. Specifically, for any two functions f and g, f ≺ g if and only if argminr{φf (r) >

φg(r)} < argminr{φf (r) < φg(r)}, where φf (·) and φg(·) are probability mass functions.

For any d-dimensional functional {y(t)},

5. Multivariate Functional Halfspace Depth (MFHD)(Claeskens et al., 2014) is defined as

MFHD(y;FY , α) =

∫
T
HD(y(t);FY (t)) · ωα(t, FY (t))dt.

Here, α ∈ (0, 1], ωα(t, FY (t)) = [vol{HDα(FY (t))}]/[
∫
T vol{HDα(FY (s))}ds] and

HDα(FY (t)) = {y ∈ Rd : HD(y, FY (t)) ≥ α} is α-central region at any fixed t. MFHD(·)

applies a weight function to pointwise halfspace depth, where the weight is proportional to

the volume of α-central region at each t. The sample MFHD is defined as

MFHDn(y;α) =

p∑
j=1

HD(y(tj);FY (tj),n) · ωα(tj , FY (tj),n),

with ωα(t, FY (tj),n) = [vol{HDα(FY (tj),n)}]/[
∑p

j=1 vol{HDα(FY (tj),n)}].



9

Note that FM, RP, RP2, BD, and MBD only apply to univariate functionals. Although

MFHD applies to multivariate functionals, and it involves the tuning parameter α which

might be difficult to determine in practice, especially when the dimension of functional is

large.

Spurred by the rapid development of functional data analysis, proposals for functional

depth notions have grown rapidly as well. Due to the space limitation, we consider only a

few that are nonparametric and data driven.
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Chapter 3

Antipodal Reflection Depth and Its Application to

Multivariate and Functional Data Analysis

3.1 Introduction

Data depth, or depth for short, measures the centrality of any point with respect to its

underlying distribution or a data cloud, and thus gives rise to a natural center-outward

ordering to the points in a given sample. Depth has been developed into powerful nonpara-

metric approaches for multivariate and functional data analysis. There are many notions

of depth (Liu et al., 1999; Zuo and Serfling, 2000). Among them, the geometric ones are

particularly useful especially when the underlying distribution is unknown. Nevertheless,

due to the location-scale free nature, many of them are incapable of capturing the magni-

tude of deviation from each sample point to the deepest one. This shortcoming can often

severely restrict the utility of depth, such as in the context of outlier detection. The goal

of this paper is to mitigate this shortcoming by introducing a general approach, referred

to as antipodal reflection depth (ARD, henceforth), to refine any existing notion of depth

(referred to as base depth henceforth) to generate a class of new notions that possess the

properties expected of a well-defined notion of depth.

More specifically, the refined notion i) inherits the desirable properties from its base depth;

ii) yields a center-outward ordering which simultaneously captures the centrality obtained
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by the base depth and the relative magnitude of deviation. This approach is completely

nonparametric and data driven. Thus, ARD not only eliminates the aforementioned short-

coming, it also substantially broadens the applicability of depth as a whole.

The key idea of ARD is to take into account an antipodal reflection sample in the calculation

of depth values. More specifically, for any given sample, we first obtain its deepest point

using a proper base depth. Then, we reflect each sample point against the deepest one to

obtain its antipodal reflection. The collection of all the reflections will be referred to as

the antipodal reflection sample. Finally, we obtain ARD by applying the base depth to the

pooled sample, which combines the original sample and the antipodal reflection sample.

Note that, for convenience, we also use ARD to denote the new depth when it does not

cause any confusion.

We give a simple illustration by applying ARD to the following sample

{−200,−40,−1,−0.5, −0.2, 0.2, 1, 1.5, 1.8, 2} using simplicial depth as the base depth. We

first obtain the deepest point, namely, 0 using the base depth. By reflecting against 0, we

obtain the antipodal reflection sample {200, 40, 1, 0.5, 0.2,−0.2,−1, −1.5,−1.8,−2}. We

then apply simplicial depth to this pooled sample {−200,−40,−1,−0.5, −0.2, 0.2, 1, 1.5,

1.8, 2, 200, 40, 1, 0.5, 0.2,−0.2, −1,−1.5,−1.8,−2} to yield their ARD values. All points

from the antipodal reflection sample are steppingstone to generate the depth values, and

thus will be removed afterwards.

It is natural to expect ARD to inherit the intrinsic properties of its base depth, including

the four proposed by Liu (1990) and Zuo and Serfling (2000). However, to establish those

properties for ARD, we need to overcome some non-trivial difficulties, especially the de-

pendence structure, created from the antipodal reflection, in the pooled sample. In this

chapter, in addition to the four basic properties mentioned above, we justify that ARD
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can be approximated by its sample version consistently. Similarly, we justify that the gen-

eralization of ARD in functional settings (referred to as FARD later) also possesses many

desirable properties. These properties are recommended in Claeskens et al. (2014) and

other papers for a well-defined notion of functional depth. Consistency results are also

provided.

ARD has many immediate applications. For example, it can be applied to design a test of

symmetry, to construct a sharper tolerance region or tube, or to detect outliers, just to name

a few. In this dissertation, we mainly focus on the application of ARD in outlier detection

for both multivariate and functional settings. In multivariate settings, there is a rich

literature on outlier detection. However, most existing approaches require the distribution

to be gaussian or at least in the exponential family. In practice, this is difficult to verify

and thus casts doubt on the validity of those approaches. In functional settings, there

are only limited proposals. Some of them first convert the functional data to multivariate

and then solve the outlier detection problem in the multivariate setting. This scheme risks

losing or distorting the important features of the original functional data. Some others

resort to functional depth, which returns a “center-outward” ordering analogous to its

multivariate counterpart. However, the existing functional depth notions again suffer the

incapability of capturing the magnitude of deviation to the deepest point. In this paper,

we use ARD to introduce a systematic nonparametric approach to detect outliers in both

multivariate and functional settings. The property of ARD that it assesses the depth values

of sample points together with their relative deviations from the deepest point provides

a more effective scheme for outlier detection, and is key in making our approach more

powerful than the usual depth approaches.

The rest of this chapter is organized as follows. In Section 3.2, we formally introduce

ARD in multivariate settings, and its generalization, namely, FARD in functional settings.
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Theoretical properties of ARD and FARD are studied in depth. In Section 3.3, we focus

on the application of ARD in outlier detection. We compare the performance of ARD with

other depth using simulated data. ARD is shown to be more effective by producing better

sensitivity-specificity results. In Section 3.4, we apply ARD to an aircraft landing analysis

to identify possible anomalous landings. From the comparison with other depth notions,

ARD is shown to be more desirable in terms of identifying the landings which substantially

deviate from the “benchmark”. It is worth noting that it is this real data application which

motivates the idea of ARD. We stress that ARD is not merely a theoretical generalization

of the existing depth notions. It is in fact driven by the need in many practical applications

to account for the relative deviations from observations to the center of the data cloud.

Some concluding remarks are given in Section 3.5.

All theoretical proofs are deferred to Section 3.6.

3.2 Antipodal Reflection Depth (ARD)

3.2.1 ARD of Multivariate Data

Let F be a distribution in Rd, and θ the deepest point obtained by a suitable base depth

D(·) mentioned in Section 2.1. For a random sample point X from F , its antipodal

reflection is defined to be X̃ := 2θ − X. (The term “antipodal” is first mentioned in

Liu et al. (1999) in the context of defining antipodal symmetry, namely, F is antipodally

symmetric if X and X̃ are identically distributed.)

Definition 3.1. [Population ARD] Let Z = θ + ε(X − θ), where P{ε = 1} = P{ε =

−1} = 0.5 and ε independent of X. We further denote the distribution of Z as G. Then,
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for any x ∈ Rd, we define the ARD of x w.r.t. F as

ARD(x, F ) = D(x, G)

In principle, ARD can be defined or implemented using any well-defined depth as the base

depth. To simplify the illustration, we use SD as the base depth throughout the paper.

Specifically, for a random sample Z1, . . . ,Zd+1 from G, ARD can be expressed as

ARD(x, F ) = PG{x ∈ S[Z1, . . . ,Zd+1]},

where S[Z1, . . . ,Zd+1] is a closed simplex formed by {Z1, . . . ,Zd+1}.

Definition 3.2. [Sample ARD] Let X1, . . . ,Xn be a random sample from F . Let θ̂n be

the sample deepest point derived from the base depth, and X?
1 , . . . ,X

?
n the antipodal reflec-

tion of the original sample around θ̂n. We denote the pooled sample, consisting of the orig-

inal sample and their antipodal reflection, by {Y ?
1 , . . . ,Y

?
2n} := {X1, . . . ,Xn,X

?
1 , . . . ,X

?
n}.

Then, for any x ∈ Rd, the sample ARD is defined as

ARDn(x) = D?
2n(x),

where D?
2n(·) is the base depth function w.r.t. the pooled sample. For example, using SD

as the base depth, we obtain

ARDn(x) =
1(
2n
d+1

)∑
(?)

I(x ∈ S[Y ?
i,1, . . . ,Y

?
i,d+1]),

where (Y ?
i,1, . . . ,Y

?
i,d+1) is any subset of (d+ 1) points from the pooled sample.

Remark 3.1. There is an intermediate version of sample ARD, which is defined as follows.

For 1 ≤ i ≤ n, we let Zi = θ+ εi(Xi− θ). Then, for any x ∈ Rd, the sample ARD of x is



15

defined as

ARDn(x) = D(x, Gn),

where D(x, Gn) is base depth function w.r.t. Gn. However, in reality, θ is usually un-

known and Z ′is can not be observed. Thus, we use Definition 2 as an approximation of the

aforementioned intermediate version. The justification is that this approximation error is

negligible asymptotically. Definition 2 is not only easy to understand and implement, but

also results in an asymptotically unbiased estimator of population ARD.

In Theorem 3.1, we show that ARD satisfies four main properties introduced by Liu (1990)

which subsequently were used in Zuo and Serfling (2000) as the required properties for a

notion of depth. To be precise, we show that if the base depth satisfies the four properties,

so will ARD.

Theorem 3.1. Let F be a distribution in Rd, for any x ∈ Rd: (a) Vanish in infinity:

sup‖x‖≥MARD(x)→ 0, as M →∞

(b) Monotonicity: If F is absolutely continuous and has the deepest point θ. For any

x ∈ Rd, ARD(α(x− θ), F ) is monotone non-increasing in α for α ≥ 0.

(c) Maximality at the center: If F is absolutely continuous, ARD is maximized at the

deepest point which maximizes its base depth function and retains its original properties.

(d) Affine invariance: ARD(Ax + b, FAx+b) = ARD(x, Fx), for any d × d nonsingular

matrix A and any b ∈ Rd.

Theorem 3.2. Let F be an absolutely continuous distribution on Rd with bounded density

f . Then:

sup
x∈Rd

|ARDn(x)−ARD(x, F )| → 0 a.s. as n→∞.

Proposition 3.1. Let F be an absolutely continuous distribution on Rd with bounded

density f , and θ be the deepest point of F . Let {X1, . . . ,Xn} be a random sample from F
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and θ̂n the sample deepest point. If f does not vanish in a neighborhood of θ and the base

depth is uniquely maximized at θ, it holds that θ̂n → θ, as n → ∞.

Proposition 3.2. Sample ARD is an asymptotically unbiased estimator of population

ARD, namely, for any x ∈ Rd,

lim
n→∞

E(ARDn(x)) = ARD(x, F )

Remark 3.2. Although ARD is defined based on a new distribution G, only its values and

orderings on the original sample are useful for the inference of F . The new distribution G

is merely a catalyst to facilitate the modification of the base depth to ARD, but not to alter

the relative ordering between any two points along the same ray from the deepest point.

3.2.2 ARD of Functional Data

Let FT be a functional distribution over the support T , and Ft the distribution of the

functionals at t. For each t, we obtain the deepest point w.r.t. Ft as θ(t) from the base

depth, which we call {θ(t)} the deepest functional. For any random functional {Y (t)}

from FT , its antipodal reflection is defined to be {Ỹi(t) = 2θ(t) − Yi(t)}. We define the

functional ARD (henceforth FARD) as follows.

Definition 3.3. [Population FARD] For any functional {y(t)}, the FARD is defined as

FARD(y) =
1

‖T‖

∫
T
ARD(y(t), Ft)dt

where ARD(y(t), Ft) is the multivariate ARD of y(t) w.r.t. Ft, and ‖T‖ is the Lebesgue

measure of T .
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Definition 3.4. [sample FARD] Assume that all functionals are observed on discrete

indices t = (t1, . . . , tp). Given a functional sample Y1(t), . . . ,Yn(t), for any functional

y(t), the sample FARD is defined as

FARDn(x) =
1∑p

j=1 ∆tj

p∑
j=1

ARDn(y(tj))∆tj ,

where ∆tj = tj − tj−1 for j = 1, . . . , p, and t0 = inf{t : t ∈ T }.

Note that the deepest functional obtained by FARD is a collection of pointwise ARD

deepest point over T , which may not necessarily be a functional data point in the sample.

In many applications, the deepest functional can be regarded as the collective benchmark

suggested by the sample functionals. Case in point is such a benchmark for aircraft landing

performance used in our application in outlier detection in Section 3.4.

Claeskens et al. (2014) extended the four expected properties to functional settings. In

Theorem 3.3, we show that FARD also satisfies these properties. Moreover, FARD also

possesses the desirable property of non-degeneracy. This property is lacking in many no-

tions of functional depth, such as BD and projection depth, and is thoroughly investigated

in Chakraborty and Chaudhuri (2014).

Theorem 3.3. If the base depth (or ARD) satisfies the four properties listed in Theo-

rem 3.1, then FARD satisfies:

(a) Vanish in infinity: For a series of functionals yn, if there exists some set A with

λ(A) = λ(T ), such that for ∀t ∈ A, ‖yn(t)‖ → ∞, FARD(yn, FY )→ 0 as n→∞.

(b) Monotonicity: Let θ ∈ C(T d) be the deepest functional w.r.t. FY . For any y ∈ C(T d),

FARD(α(y − θ), FY ) is monotone non-increasing in α for α > 0.

(c) Maximality at the center: Assume θ(t) is uniquely defined for each t ∈ T . FARD is

maximized at θ.
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(d) Affine invariance: FARD(y, FY ) = FARD(Ay + S, FAy+S), where A is any d × d

nonsingular matrix, S is any functional over T .

(e) Non-Degeneracy: For a large class of functionals including continuous time Gaussian

processes, FARD does not degenerate when the sample size goes to infinity.

Remark 3.3. Viewing ARD as a general scheme to count for the deviation from the sample

points to the deepest one to improve inferences, FARD can be viewed as a special case of

integrating ARD to FM depth. In general, for any functional depth notion which is defined

only using the depth value calculated at each point, we can substitute the pointwise depth

by its ARD counterpart, to yield a new functional depth notion. Again, the new notion will

inherit the aforementioned four properties if those properties are satisfied by the original

base depth. However, it is unclear how to integrate ARD to other functional depth notions

such as RP, or whether the basic properties can be inherited. We will pursue this study in

the future.

In what follows, Theorem 3.4 and Theorem 3.5 give asymptotic properties of the sample

FARD and the sample deepest functional.

Theorem 3.4. Let y1, . . . ,yn be a sample of d-dimensional continuous functionals from

distribution FY . They are observed at the same set of indices t = (t1, . . . , tp). We assume

that the data are observed frequently such that supi=1,...,p−1 |ti+1 − ti| = O(p−(1/2+γ)) for

some γ > 0. In addition, we assume H(t) := ARD(y(t)) ∈ Lip(T ). Under the condition

in Theorem 3.2, it holds that

sup
y∈C(T )d

‖FARDn(y)− FARD(y, F )‖ → 0, a.s. n→∞, p→∞,

where C(T )d denotes d-dimensional continuous functionals.
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Theorem 3.5. Assume there exists a Lebesgue integrable function gi(t) such that

|Y (i)(t)| < gi(t) over t ∈ T for i = 1, . . . , d. If θ̂ and θ are both uniquely defined, we

obtain θ̂ → θ almost surely.

3.3 Applications of ARD In Outlier Detection

The presence of outliers in a given data set may cast undue influence on the analysis

results and adversely affect the inference outcome, causing, for example, estimation bias or

misclassification or clustering error, etc. Outlier detection is often needed to ensure reliable

analysis or inference outcomes. In this paper, we adopt the commonly used definition of

outliers in Grubbs (1969), saying “an outlying observation, or outlier, is one that appears

to deviate markedly from other members of the sample in which it occurs”. In this section,

we investigate the applications of ARD in outlier detection in multivariate and functional

settings, respectively.

3.3.1 Outlier Detection in Multivariate Settings

Outlier detection in multivariate setting has been investigated extensively (see, e.g.,

Rousseeuw and Leroy (1987)). Boxplot, bagplot and their variations are useful in visu-

alizing the data structure, but they can not be naturally extended to data with dimension

higher than three. Grubbs (1969), Hardin and Rocke (2005), Riani et al. (2009) pro-

pose tests to detect the existence of one or multiple outliers. But these tests are mainly

designed for samples generated from exponential family, thus not as effective outside at

realm. Using data depth, Cheng et al. (2000) proposes an effective nonparametric approach

to set safety thresholds for monitoring multivariate aircraft performance measures. In this

section, without imposing any assumption on the underlying distribution, we propose an
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effective nonparametric approach using ARD to detect outliers systematically. Note that

it is difficult to determine the portion of sample points which should be labeled as outliers.

In practice, the portion, denoted as α thereafter, should reflect domain knowledge or past

experience. In this paper, we assume that α is given throughout. Let X1, . . . ,Xn be a

sample in Rd. We obtain the reflection sample X?
1 , . . . ,X

?
n, and pool the original and the

reflection sample together to obtain the pooled sample Y ?
1 , . . . , Y

?
2n. Then, we identify the

(1− α) central region of the pooled sample based on their ARD values, and identify those

outside the (1 − α) central region as outliers. For a simple illustration, we revisit the toy

example in Section 3.1, and show how ARD can detect the outliers −200 and −40 for

α = 0.2. The original sample is:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

−200 −40 −1 −0.5 −0.2 0.2 1 1.5 1.8 2

which gives the reflection sample:

X?
1 X?

2 X?
3 X?

4 X?
5 X?

6 X?
7 X?

8 X?
9 X?

10

200 40 1 0.5 0.2 −0.2 −1 −1.5 −1.8 −2

Then, we get the pooled sample: {Y ?
1 , Y

?
2 , . . . , Y

?
20} = {−200,−40, . . . , 40, 200}. Applying

SD to {Y ?
i }20

i=1, we get the order statistics, Y ?
[1], Y

?
[1], Y

?
[3], Y

?
[3], . . . , Y

?
[19], Y

?
[19], in descending

SD values. (There are ten ties in them due to the symmetric structure of the pooled

sample.) To identify α = 20% outliers, we obtain first the 80% central region, CR[80%], of

pooled sample, which contains the following 16 points:

Y ?
[1] Y ?

[1] Y ?
[1] Y ?

[1] . . . Y ?
[15] Y ?

[15]

−0.2 0.2 −0.2 0.2 . . . 2 −2

X5 X?
5 X6 X?

6 . . . X10 X?
10
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Now, discard those in CR[80%] which are not from the original sample, what remains in the

central region is {X3, X4, . . . , X10} = {−1,−0.5, . . . , 2}. The data points X1 = −50 and

X2 = −40 are outside this region and thus labeled as outliers.

Note that ARD has the additional benefit of breaking ties in depth values. For instance,

applying SD directly to the original sample, we obtain a tie in {−200, 2}, and another

one in {−40, 1.8}. It is easy to see from the example above that applying ARD can break

these ties and obtain a more informative ordering that also accounts for their deviations

from the deepest point. Thus, along a ray stemming from the deepest point, points with

higher ARD values are always closer to the deepest point. As a result, ARD usually leads

to a “sharper” tolerance interval (or region) in terms of Lebesgue measure. This is further

studied and extended to tolerance tubes introduced in Chapter 4.

3.3.2 Simulation Studies – Multivariate Settings

In the following, we use a simulated dataset to compare the performance of ARD approach

with other depth approaches using HD and SD in outlier detection.

Simulation I. We generate 500 data points from a bivariate normal distribution N2(µ,Σ)

where µ = (0, 0)′ and Σ =

0.6 0

0 0.6

. We contaminate 10% of data points by a different

bivariate normal distribution N2(µc,Σc), where µc = (3, 3)′ and Σc =

 4 −1.06

−1.06 4

. By

applying ARD, SD and HD to the sample, we select the 10% points with the lowest depth

values as outliers, respectively. Note that, in practice, when we obtain a tie on 10% quantile

of depth values, we randomly select a suitable amount of observations from the tie as

outliers, such that the total number of outliers selected is exact 10% of the sample size. We
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will stay with the same strategy in all the following numerical studies. Finally, we use two

commonly used criteria, sensitivity and specificity to assess the accuracy and effectiveness of

the outlier detection result of each approach. Here, we recall the definition of sensitivity and

specificity as follows. Given any outlier detection result such as Table 3.1, the sensitivity

and specificity are defined to be sensitivity = a
N2

, specificity = d
N1

. Roughly speaking,

sensitivity measures the ability to identify an anomaly correctly, and specificity measures

the ability to identify a regular point correctly. The two criteria together can provide a

fair evaluation of outlier detection results. The sample and the result are displayed in

Figure 3.3 and Figure 3.1, respectively. The simulation is replicated by 50 times.

true outlier true regular

detected as outlier a b

detected as regular c d

N2 = a+ c N1 = b+ d

Table 3.1: Sensitivity and specificity calculation.
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Figure 3.1: Sensitivity and specificity comparison from Simulation I: Bivariate Normal
Case.

Figure 3.1 (a) and (b) clearly show that the ARD approach outperforms substantially the

approaches by SD and HD. For example, the IQR of the sensitivity of ARD is [0.76, 0.84],

while the other two are both tightly around 0.5. Clearly, it is the capability of capturing

the relative deviation to the deepest point that makes ARD more effective in detecting

outliers, especially in an asymmetric data setting.

3.3.3 Outlier Detection in Functional Settings

Recent rapid development of functional data analysis has helped draw more attention to

the outlier detection in functional setting. Hyndman and Shang (2010) and Yu et al. (2012)

apply functional principle component analysis to the sample and analyze only the first a few

principle component scores. Specifically, Hyndman and Shang (2010) constructs a bagplot
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to test the outliers in the first two principle component scores, and Yu et al. (2012) designs

specific tests on the selected scores. However, these results are less reliable if the selected

principle component scores are not able to characterize the sample well. Moreover, the

latter approach relies on the Gaussian assumption on the scores. Sun and Genton (2011)

and Febrero et al. (2008) apply functional depth to detect outliers. But these approaches

are only applicable to univariate functional data.

The ARD approach introduced in Section 3.3.1 can be extended naturally to the functional

setting. More specifically, we summarize the procedure in the following:

Step 1: On each t ∈ T , we obtain the deepest point θn(t). By connecting them throughout

the interval T , we obtain the deepest functional in the sample.

Step 2: Do antipodal reflection of all the data around the deepest point on each index t

to obtain an antipodal reflection sample of the original sample. Combine the two datasets

into a pooled sample.

Step 3: Within the pooled sample, we calculate depth value of each functional data. Then,

we remove the antipodal sample, retaining the data from the original dataset only.

Step 4: Screen out α of the functional sample points attaining the lowest functional depth

values as outliers.

We apply this approach to a functional dataset, which contains 7 functionals as in

Figure 3.2 (a). We observe that the purple and the blue functionals are “outlying” w.r.t.

the sample, but the blue one is much closer to the sample deepest functional. Applying

ARD, we are able to discern such difference between the two and assign the lowest ARD

value to the purple one. In this case, only the purple one is identified as the most likely

outlier. On the contrary, if applying any non-distance based depth notion such as MBD,

we would not be able to separate these two functionals.
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(a) original curves (b) original curves and their reflection

Figure 3.2: An illustrative example: the left panel contains 7 curves in different colors.
The right panel also includes their antipodal reflections around the median curve. The
reflections are in dashed lines and preserve the same color as their corresponding original
curves. The median curve is marked in red. The blue curve and purple curve are both
assigned the lowest depth values in the left panel. But in the right panel, only the purple
one is considered outlying.

3.3.4 Simulation Studies – Functional Settings

We now conduct three simulation studies to compare the performance of ARD approach

with the others using functional depth notions reviewed in Chapter 2. In each simulation

setting, we follow the same strategy as in multivariate settings that we replace 10% of the

original sample with the data from a different stochastic process. By applying each depth

function, the 10% points with the lowest depth values are labeled as outliers. The samples

are displayed in Figure 3.3. Each simulation is repeated 50 times.
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Figure 3.3: (a) contains 500 data points from the bivariate normal distribution with 50
points contaminated by a different bivariate normal distribution; (b) contains 100 curves
generated from gaussian process: 90 black curves are regular curves, following N(0,Σ(t));
10 red curves are contaminations, following N(2,Σ(t)); (c) and (d) are the original data
and their derivatives from the process Y (t) = x · exp{−t2} + ε, where x ∼ N(10, 32)
and ε ∼ N(0, 0.012). Here, the 10 red curves are contaminations generated from Y c(t) =
x·exp{−t}+0.05. (e) and (f) are respectively the original data and their derivatives from the
log-normal process Y (t) ∼ logN(µ(t),Σ(t)) with the same covariance operator but different
mean µ(t). Black curves follow the mean function µ(t) = Kts(Kss + D)−1(a1 sin(s) +
a2 cos(s)) and the red contaminations follow µ?(t) = Km(sin(6s) + µ(s)).

Simulation II. In this setting, we aim at detecting the outlier in the univariate gaussian

process with shifted functional mean. We generate 100 functionals from a univariate gaus-

sian process with mean µ(t) = 0 and covariance kernel Ky(s, t) = exp{− (yi,s−yi,t)2
400 } over
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the interval [0, 100]. We randomly select 10% of the sample and replace them with the

data from another gaussian process with the same covariance kernel but different mean,

µc(t) = 2. All the functionals are observed at equal spaced indices t = 1, 2, . . . , 100.

We apply FARD, MBD, RP and MFHD to the sample, respectively. As shown in

Figure 3.4 (a) and (b), FARD outperforms the other three with overall higher sensitivity

and specificity. In particular, the comparison between FARD and MBD immediately

shows that FARD improves the performance due to the capability of capturing the relative

deviation from the deepest point without the effect of any weighting scheme. It is worth

noting that despite the scale, the results of sensitivity and specificity are very similar. This

is because the strategy employed to detect outliers. We fix the total number of outliers

selected by each approach, which makes the sensitivity or specificity can be determined

by each other. We also apply BD and FM to the samples. But their performance is no

better than the current result, so we simply omit it here.
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Figure 3.4: Sensitivity and specificity comparison from Simulation II: Gaussian Process

Simulation III. In this setting, we study FARD in a multivariate functional setting. We

generate 100 functionals from the process: Y (t) = x · exp{−t2}+ e over the interval [1, 4],

where x ∼ N(10, 32) and e ∼ N(0, 0.012). We randomly select 10% of the sample and

replace them with the data another process, Y c(t) = x · exp{−t}+ 0.05 + e, where x and e

follow the same distribution as described before. All of the functionals are observed at 100

equally spaced indices, namely, t = 1.03, . . . , 4. In addition, considering that derivatives

may provide additional information about the shape of functionals, we create a bivariate

functional sample {(yi(t), y′i(t))}100
i=1, where y′i(t) is the first-order derivative of yi(t).

We apply FARD, MFHD and RP2 respectively to this sample. From Figure 3.5 (a)

and (b), it is obvious that FARD outperforms the rest. It detects all the outliers

accurately in every replication. The weighting scheme introduced in MFHD intrinsically

underestimates the importance of the segment where the majority functionals behave
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similarly. However, in this simulation, this segment is essential in distinguishing out-

liers from the regular functionals. In addition, it is difficult to determine the tuning

parameter in MFHD, especially when the functionals are not smooth or are in high

dimension. Inappropriate choices of the tuning parameter (e.g. α exceeds the max-

imal depth value in the sample and yields to an empty set of the α−central region)

would leave the MFHD undefined. We also observe that the performance of RP2 is

less stable than others. The large variation in sensitivity and specificity may be due to

the fact that they only use limited number of random projections to calculate depth values.
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Figure 3.5: Sensitivity and specificity comparison from Simulation III: Exponential Curves.

Simulation IV. In this setting, we aim at detecting outliers of log-normal process

utilizing the information from its derivatives. This setting follows exactly simulation

4.2.3 in Claeskens et al. (2014). We generate 100 functionals from the log-normal pro-

cess Y (t) = exp(X(t)), where X(t) is a Gaussian Process. Let s = {s1, . . . , s20} and
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t = {t1, . . . , t100} be 20 and 100 equidistant indices on [0, 2π], respectively. Then, the

mean function of X(t) is µ(t) = Kts(Kss + D)−1(a1 sin(s) + a2 cos(s)) and covariance

function Σ = Ktt −Kts(Kss + D)−1Kst. Here, a1 ∼ U(−2, 2) and a2 ∼ U(−1, 1) are two

uniform variables, D = Diagi=1,...,20{min((π − si)
2, 1)}, Kss(i, j) = exp(−8(si − sj)

2),

Kts(i, j) = exp(−8(ti − sj)2) and Ktt = exp(−8(ti − tj)2). We randomly select 10% of

the sample and replace them with data from a different process with the same covariance

function but different mean µ?(t) = Km(sin(6s) + µ(s)).

We apply FARD, MFHD (α = 0.25) and RP2 respectively to the sample above. It is

already observed in Claeskens et al. (2014) that FM, MBD can not carry out a better

performance than MFHD. From Figure 3.6 (a) and (b), we observe that FARD is more

effective than others in detecting the “inliers”, which are anomalies but hide within the

regular sample. Furthermore, the computation of RP2 is much more time consuming than

the rest, and makes it infeasible to apply RP2 to a large sample of functional data with

dimension higher than 2.
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Figure 3.6: Sensitivity and specificity comparison from four Simulation IV: Log-normal
Process.

3.4 Application: Detecting Anomalous Aircraft Landings

With the rapid growth of air transportation, there has been a growing emphasis on proac-

tive safety management. According to a recent study Boeing (2014), the “runway excur-

sions, abnormal runway contact, and runway undershoot/overshoot” is the third leading

cause of fatal accidents worldwide of commercial jet fleet from 2005 to 2014. The FAA

provides guidance of target touchdown point to achieve safe landing, see FAA (2014).

We have been collaborating with a major domestic airline, who has provided the landing

data set for the purpose of testing our proposed approaches. Each landing can be treated

as a functional data point. Data are observed by snapshots frequently. We have applied

the ARD approach to this aircraft landing data to detect anomalous landing traces. For

the ease of visualization, we illustrate the case of using one functional variable, namely,
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RALTC.

We apply respectively FARD, MFHD, MBD and RP to this dataset, and label 1% function-

als with the lowest depth values as outliers. As expected, the FARD is able to capture the

asymmetric structure of the landing traces. More specifically, it detects outliers from both

top and bottom, but mostly from the top, where the traces have more substantial deviation

from the benchmark. The comparison between FARD and MBD results immediately shows

that FARD mitigates the drawback of MBD of neglecting the relative deviation from the

sample points to the deepest one. Moreover, we observe that MFHD overestimates the im-

portance of the beginning phase, and consequently misses a lot of anomalous traces which

deviate a lot in the end, where should be emphasized in this application. RP is overly

sensitive in declaring outliers based on only the performance at the beginning phase.

Moreover, by applying FARD, we obtain the sample deepest functional as a benchmark

landing performance. Although aircrafts should follow the landing path with a glide slope

of 3 degree along the center line of the runway, conditions such as adverse weather may

impede carrying out landing as recommended. Instead of the path with the recommended

glide slope, the benchmark selected by FARD can be viewed as the “best expected” per-

formance that all the aircraft landings can possibly achieve. Statistical methodologies can

be applied meaningfully if they are devised to withstand practical achievability and other

considerations.

3.5 Discussion

In this chapter, we introduce a general approach named antipodal reflection depth (ARD),

to generate a class of new depth notions for both multivariate and functional data. ARD

takes into account the magnitude of deviation from any point to the deepest one, while
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preserving the ordering derived by the base depth along each ray from the deepest one. It

is useful in a variety of fields. In particular, this paper emphasizes its utility in detecting

outliers in both multivariate and functional settings. Specifically, it mitigates the incapa-

bility of many existing depths in extracting the information from the sample with regard

to their deviations to the deepest point. Both simulation studies and a real application in

aircraft landing analysis show that ARD is more effective than other depth approaches in

detecting outliers or identifying anomalous landing performance.

There exist some depth functions that are defined based on derivations from the deepest

point, for example, L1 depth (Vardi and Zhang, 2000) or Mahalanobis depth (Mahalanobis,

1936). Roughly speaking, using L1 depth is implicitly imposing a spherical structure to the

data, while Mahalanobis depth by an elliptical structure to the data. ARD, by adopting a

geometric base depth such as SD or HD, can be applied to a more general data setting.

Finally, there are many nonparametric inference methods derived from depth. It is expected

that ARD can be readily applied to all these methods as well. Similarly, the notion of depth

has be shown to have a broad range of applications in many domains. For example, in

addition to the application in outlier detection emphasized in this paper, ARD can be

applied to estimating central regions of functional data, or testing of symmetry of a given

distribution, just to name a few. We plan to pursue these ideas in separate projects. In

particular, we plan to develop a ”tolerance tube” for tracking aircraft landing performance

to reduce the risk of landing. This tolerance tube generalizes the tolerance region in

multivariate settings in Li and Liu (2008) to the functional setting.

In this paper, we consider the data setting that all functionals are observed at the same

grid points. This implies that the benchmark functional selected by our approach consists

of the deepest point at each grid point. This naturally gives rise to a robust estimator

of the underlying mean functional. Spline smoothing or other regression approaches have
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been explored to obtain a similar robust estimator. However, the latter estimator essentially

utilizes the pointwise mean, which can be sensitive to potential outliers if no proper penalty

is considered.

3.6 Proofs

Proof of Theorem 3.1

Following the notations in Section 3, we obtain:

ARD(x, F ) = D(x, G)

That is, ARD of x w.r.t. F can be viewed as the base depth of x w.r.t. a corresponding

antipodal symmetric distribution G. Consequently, ARD attains the four properties as

long as the base depth does. 2

Proof of Theorem 3.2

To show supx∈Rd |ARDn(x) − ARD(x, F )| → 0 as n → ∞, following the notations in

Section 3, we first observe that

sup
x∈Rd

|ARDn(x)−ARD(x, F )| = sup
x
|D?

2n(x)−D(x, G)|

≤ sup
x
|D?

2n(x)− D̃2n(x)|+ sup
x
|D̃2n(x)−D(x, G)|.

Thus, if we can show the following two statements

sup
x
|D̃2n(x)−D(x, G)| → 0 as n→∞ (3.1a)
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sup
x
|D?

2n(x)− D̃2n(x)| → 0 as n→∞ (3.1b)

hold, the theorem is then proved.

We consider the case that simplicial depth is used as the base depth. We call two data

points Ỹi, Ỹj a reflection pair if Ỹi = 2θ− Ỹj . Let A denote the set of subsets, each of which

contains (d + 1) points from the pooled sample {ỹ1, . . . , ỹ2n} but without any reflection

pair. Let B denote the set of such (d + 1)-point subsets containing at least one reflection

pair. We can show that the depth value contributed from set B is negligible. That is to

say, when n → ∞, we only have to count the simplicies from set A in the calculation of

D̃2n(x). More formally,

T = {(Ỹi,1, . . . , Ỹi,d+1) : a subset of (d+ 1) points from (ỹ1, . . . , ỹ2n)}

A = {(Ỹi,1, . . . , Ỹi,d+1) : a subset of (d+ 1) points from (ỹ1, . . . , ỹ2n),

which contains no reflection pair}

B = T\A

We can divide D̃2n(x) into the sum of two values, contributed from set A and B, respec-

tively. Namely,

D̃2n(x) =

(
2n

d+ 1

)−1

{
∑
A

I(x ∈ S[Ỹi,1, . . . , Ỹi,d+1]) +
∑
B

I(x ∈ S[Ỹj,1, . . . , Ỹj,d+1])}.

By some calculation, we obtain

lim
n→∞

(
2n

d+ 1

)−1

card(A) = 0 (3.2a)

lim
n→∞

(
2n

d+ 1

)−1

card(B) = 1 (3.2b)
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Note that the cardinality of a set is the total number of elements in this set. We explain

(3.2a) and (3.2b) by showing all the work as follows. Since set A contains all subsets

without reflection pairs, we can first select corresponding indices and then select sample

points from either reflection sample or original sample. That is,

card(A) =

(
n

d+ 1

)
2d+1.

In addition, it is easier to show card(T ) =
(

2n
d+1

)
. Thus,

card(A)

card(T )
=

(
n
d+1

)
2d+1(

2n
d+1

)
=

n!2d+1

(d+1)!(n−d−1)!

(2n)!
(2n−d−1)!(d+1)!

=
n!(2n− d− 1)!

(2n)!(n− d− 1)!
· 2d+1

=
n(n− 1) . . . (n− d)

2n(2n− 1) . . . (2n− d)
· 2d+1,

and

lim
n→∞

card(A)

card(T )
= 1.

Similarly, we obtain

lim
n→∞

card(B)

card(T )
= 0

Now, the problem becomes simpler since we have less simplices to count. Specifically,

D̃2n(x)−D(x, G)

=

(
2n

d+ 1

)−1

[
∑
A

I(x ∈ S[Ỹi,1, . . . , Ỹi,d+1]) +
∑
B

I(x ∈ S[Ỹj,1, . . . , Ỹj,d+1])]−D(x, G)
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and

lim
n→∞

{
(

2n

d+ 1

)−1∑
A

I(x ∈ S[Ỹi,1, . . . , Ỹi,d+1])−D(x, G)}

= lim
n→∞

card(A)(
2n
d+1

) 1

card(A)

∑
A

I(x ∈ S[Ỹi,1, . . . , Ỹi,d+1])−D(x, G)

= lim
n→∞

{ 1

card(A)

∑
A

I(x ∈ S[Ỹi,1, . . . , Ỹi,d+1])−D(x, G)}

Until now, we yet can not prove the convergence directly because the terms I(x ∈

S[Ỹi,1, . . . , Ỹi,d+1]) are not independent. Thus, in what follows, we continue to separate

set A into several small sets, each of which corresponds to a unique subset of (d + 1)

indices chosen from {1, 2, . . . , n}. Each subset, say the one corresponding to indices

{(i, 1), (i, 2), . . . , (i, d + 1)}, contains simplices formed by (d + 1) points selected from

{xi,1, . . . ,xi,d+1, x̃i,1, . . . , x̃i,d+1} but without reflection pairs. Namely,

lim
n→∞

{ 1

card(A)

∑
A

I(x ∈ S[Ỹ1, . . . , Ỹd+1])−D(x, G)}

= lim
n→∞

1

card(A)
ΣCΣΛiI(x ∈ S[Zi,1, . . . , Zi,d+1])−D(x, G)

where

C = {((i, 1), . . . , (i, d+ 1)) : a subset of (d+ 1) indicies from {1,. . . ,n}}

and Λi = {(Zi,1, . . . , Zi,d+1) : Zi,j = Xi,j or Zi,j = X̃i,j , j = 1, . . . , d+ 1}.

Thus, we only need to show 1
card(A)ΣCΣΛiI{x ∈ S[Zi,1, . . . , Zi,d+1]} − D(x, G) → 0 as

n→∞.
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We observe that for ∀i,

E{I(x ∈ S[Zi,1, . . . , Zi,d+1])} = P{x ∈ S[Zi,1, . . . , Zi,d+1]} := D(x, G).

As a result, we obtain

E{ 1

card(Λi)
I(x ∈ S[Zi,1, . . . , Zi,d+1])} = D(x, G)

In fact, 1
card(Λi)

I(x ∈ S[Zi,1, . . . , Zi,d+1]) is a function of xi,1, . . . ,xi,d+1, i.e.

h(xi,1, . . . ,xi,d+1), where h(·) is symmetric about its arguments. In addition, we note

that

card(Λi) = 2d+1, ∀i

and card(A) =

(
n

d+ 1

)
· 2d+1 = card(C) · card(Λi).

It is obvious that 1
card(A)ΣCΣΛiI{x ∈ S[Zi,1, . . . , Zi,d+1]} is a U-statistic, with first moment

being D(x, G). Followed by Lemma 3 in Liu (1990), the convergence is proved.

The proof of (3.1b) can be outlined as follows. For simplicity, take d = 2.
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Figure 3.7: Two triangles with corresponding index. The area in shadow is the non-
overlapping area of the two triangles. Only a point x within such shadowed area can make
a different between D?

2n(x) and D̃2n(x).

∀ε > 0,

P{ sup
x∈Rd

|D?
2n(x)− D̃2n(x)| > ε}

=P{ sup
x∈Rd

1(
2n
3

)∑ |I(x ∈ S(y?i,1,y
?
i,2,y

?
i,3))− I(x ∈ S(ỹi,1, ỹi,2, ỹi,3))| > ε}

=P{ sup
x∈Rd

1(
2n
3

)∑ I(x ∈ [S(y?i,1,y
?
i,2,y

?
i,3)∆S(ỹi,1, ỹi,2, ỹi,3)]) > ε}

Since |θ̂n − θ| → 0 a.s., we obtain

P{ lim
n→∞

sup
x∈Rd

1(
2n
3

)∑ I(x ∈ [S(y?i,1,y
?
i,2,y

?
i,3)∆S(ỹi,1, ỹi,2, ỹi,3)]) > ε}

=P{ lim
n→∞

sup
x∈Rd

I(x ∈ ∂S(ỹi,1, ỹi,2, ỹi,3)) > ε}

=0.

The probability is 0 because the probability of any line in R2 is 0.

2
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Remark 3.4. Using halfspace depth as base depth, supx∈Rd |ARDn(x)−ARD(x, F )| → 0

a.s. still holds.

Proof:

We begin with the ad hoc definition of ARD using halfspace depth as base depth, which

is,

ARD(x, F ) = inf
H
{P ?G(H) : H is a closed halfspace, x ∈ H}

ARDn(x) = inf
H
{P ?2n(H) : H is a closed halfspace, x ∈ H}

where P ?2n is the empirical version of P obtained from the pooled sample

{x1, . . . ,xn,x
?
1, . . . ,x

?
n}.

In general, the deepest point is not always unique. Donoho and Gasko (1992) defines the

deepest point as the centroid of the set whose elements all attain the deepest depth value.

Under this definition, we can show that |θ̂n − θ| → 0, a.s. as n → ∞ as long as the

uniformly a.s. convergence of Dn(x) is guaranteed. We agree to this treatment and in

what follows, we assume θ̂n and θ are uniquely defined.

We observe that if x 6= θ̂n, any reflection pair xi and x?i can not be enclosed in the halfspace

H? which attains ARDn(x), where H? = argminHP
?
2n{H : H is a closed halfspace, x ∈

H}. See Figure 3.8.

We observe that xi and x?i can not be enclosed in H? at the same time, unless xi and x?i

are on the boundary of H?. In this situation, the four points, x, θ̂n,xi,x
?
i form a straight

line. However, the situation can not happen because we can always decrease P ?2n(H) by

rotating the halfspace slightly such that it excludes one point.
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x

xi

θ̂n

x?i

Figure 3.8: The two black lines are the boundary of any two halfspaces that crosses point
x. For x 6= θ̂n, xi and x?i can not simultaneously be enclosed in the halfspace which
produces halfspace depth of x.

At this moment, we assume x 6= θ̂n. The discussion of the case when x = θ̂n can be

found afterwards. Now, we introduce a new concept “twin halfspaces”. Two halfspaces H1

and H2 are twin halfspaces if they are antipodally symmetric around some point c with no

intersection. Then, we can express ARDn(x) as:

ARDn(x) = inf
H1,H2

1

2
{Pn(H1 ∪H2) : H1 and H2 are twin halfspaces in Rd

around θ̂n, x ∈ H1, x
? ∈ H2}

=: D?
2n(x)

where x? = 2θ̂n − x. This is due to the following fact: as in Figure 3.9, for any halfspace

Hx with x on its boundary, the points included in Hx come from two sources: (1) the

original sample (e.g. x1); (2) the reflection sample (e.g. x?3).
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θ̂n

x

x?

x1

x2

x3

x?1

x?2

x?3

Hx

Hx?

Figure 3.9: x1, x2, x3 are from the original sample, and x?1, x
?
2, x

?
3 are their antipodal re-

flections, respectively. Hx and Hx? form a pair of twin halfspaces which cross x and x?

respectively.

We draw a halfspace Hx? which forms twin halfspaces together with Hx around θ̂n. It is

not hard to prove x? is on the boundary of Hx? . We expect that x3 would fall into Hx?

as well. Consequently, we only have to count the number of points which fall into the twin

halfspaces from the original sample. It implies that we can define the ARDn(x) using twin

halfspaces and the original data. Similarly, we define

D̃2n(x) = inf
H1,H2

1

2
{Pn(H1 ∪H2) : H1 and H2 are twin halfspaces in Rd

around θ, x ∈ H1, x̃ ∈ H2},

and

ARD(x, F ) = D(x, G)

= inf
H1,H2

1

2
{P (H1 ∪H2) : H1 and H2 are twin halfspaces in Rd around θ,
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x ∈ H1, x̃ ∈ H2}.

Replacing H by H1 ∪H2 in Section 6.1 in Donoho and Gasko (1992), supx∈Rd |D̃2n(x) −

D(x, G)| → 0 holds straightforwardly.

To prove ARDn(x) converges to ARD(x, F ) as n → ∞, we still need to show |D̃2n(x) −

D(x, G)| → 0 as n→∞.

For simplicity, take d = 2. Given pooled sample {x1, . . . ,xn,x
?
1, . . . ,x

?
n}, we obtain

{H?
1 , H

?
2} such that

{H?
1 , H

?
2} = argmin

H1,H2

1

2
{P ?2n(H1 ∪H2) : H1 and H2 are twin halfspaces in Rd around θ̂n,

x ∈ H1, x
? ∈ H2},

where x? = 2θ̂n − x. Analogously, we obtain {H̃1, H̃2} such that

{H̃1, H̃2} = argmin
H1,H2

1

2
{P̃2n(H1 ∪H2) : H1 and H2 are twin halfspaces in Rd around θ,

x ∈ H1, x̃ ∈ H2},

where x̃ = 2θ − x.
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x

θ

x̃

θ̃n

x?

H̃1

H̃2

H̃3

H?
1

H?
2

H?
3

Figure 3.10: Twin halfspaces H̃1 and H̃2 around θ contain x and x̃ on the boundary,
respectively; twin halfspaces H?

1 and H?
2 around θ̂n contain x and x? on the boundary,

respectively. Halfspace H̃3, which has x̃ on its boundary, has parallel boundary to H?
2 ;

halfspace H?
3 , which has x? on its boundary, has parallel boundary to H̃2. This figure

reflects the situation described in (3.3a).

We draw a line (or hyperplane) across x̃ parallel to the boundary of H?
2 and it produces

a new halfspaces, H̃3. Analogously, we draw a line (or hyperplane) across x? parallel to

the boundary of H̃2 and it produces a new halfspace, H?
3 . By the definition of halfspace

depth, we know that Pn(H?
1 ∪ H̃3) ≥ Pn(H̃1 ∪ H̃2). Here, Pn(·) is the empirical version of

P (·). In addition, we have Pn(H̃1 ∪H?
3 ) ≥ Pn(H?

1 ∪H?
2 ) obtained from the original sample
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{x1, . . . ,xn}. Thus, we obtain

Pn(H?
1 ∪ H̃3) ≥ Pn(H̃1 ∪ H̃2) ≥ Pn(H̃1 ∪H?

3 ) ≥ Pn(H?
1 ∪H?

2 ) (3.3a)

or Pn(H̃1 ∪H?
3 ) ≥ Pn(H?

1 ∪H?
2 ) ≥ Pn(H?

1 ∪ H̃3) ≥ Pn(H̃1 ∪ H̃2) (3.3b)

depending on the data. Next, we show that for any F which has a universal bound, say

|f(x)| ≤ g,

lim
n→∞

Pn(H?
1 ∪ H̃3)− Pn(H?

1 ∪H?
2 ) = 0.

For any fixed ε > 0, we observe:

{ sup
x∈Rd

|D?
2n(x)− D̃2n(x)| > ε}

={ sup
x∈Rd

|Pn(H?
1 ∪H?

2 )− Pn(H̃1 ∪ H̃2)| > ε}

⊂{ sup
x∈Rd

|Pn(H?
1 ∪ H̃3)− Pn(H?

1 ∪H?
2 )| > ε}

={ sup
x∈Rd

|Pn(H̃3\H?
2 )| > ε}

Let ρn = P{xi ∈ H̃3\H?
2} < 1. Under some mild condition, we have |θ̂n − θ| → 0 a.s. as

n→∞. Based on that, it is easy to show that P{limn→∞ H̃3\H?
2 = ∂H̃3} = 1, where ∂H̃3

is the boundary of H̃3, and P{limn→∞ ρn = 0} = 1. By Glivenko-Cantelli property, we

obtain:

P{ lim
n→∞

sup
x∈Rd

|Pn(H̃3\H?
2 )| > ε} = P{ sup

x∈Rd

|P (∂H̃3)| > ε} = 0.

In what follows, we show that when x = θ̂n, the convergence still holds. We observe that

|ARDn(θ̂n)−ARD(θ̂n, F )| = |D?
2n(θ̂n)−D(θ̂n, G)|
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=|D?
2n(θ̂n)−D?

2n(θ) +D?
2n(θ)−D(θ, G) +D(θ, G)−D(θ̂n, G)|

≤|D?
2n(θ̂n)−D?

2n(θ)|+ |D?
2n(θ)−D(θ, G)|+ |D(θ, G)−D(θ̂n, G)|.

Since |D?
2n(θ)−D(θ, G)| → 0 and we’ve proved that |D(θ, G)−D(θ̂n, G)| → 0 as n→∞,

we only need to show |D?
2n(θ̂n)−D?

2n(θ)| → 0 as n→∞.

θ̂n = x θ

S1 S2

S3

S4

H1

H2

Figure 3.11: x = θ̂n, H1 and H2 are halfspaces that construct D?
2n(θ̂n) and D?

2n(θ), respec-
tively. S1, S2, S3 and S4 are subspaces produced by intersections of several halfspaces.

Suppose H1 and H2 are the halfspaces that construct D?
2n(θ̂n) and D?

2n(θ), respectively. As

in Figure 3.11, we denote some sub-area as S1, S2, S3 and S4, such that H1\H2 = S1 ∪ S2

and H2\H1 = S3. Then,

|D?
2n(θ̂n)−D?

2n(θ)| = |P ?2n(H1)− P ?2n(H2)|

=|P ?2n(S1 ∪ S2)− P2n(S3)| = |P ?2n(S1 ∪ S3 ∪ S4)− P ?2n(S3)|

=|P ?2n(S1 ∪ S4)|
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and for any ε > 0, we have P{limn→∞ |P ?2n(S1 ∪S4)|} = 0 if F is continuous in a neighbor-

hood of θ. 2

Remark 3.5. Changing the base depth to Mahalanobis depth, the convergence holds if

E‖X‖2 <∞.

Proof:

To recall, the definition of Mahalanobis depth as follows:

MhD(x, G) =
1

1 + (x− µG)′Σ−1
G (x− µG)

where µG and ΣG are the mean vector and covariance matrix of distribution F . Sample

version MhDn(x) is to replace µG and ΣG by their sample estimators, respectively. (Liu

and Singh (1993)) For simplicity, we use D(·) to represent MhD(·) henceforth.

Also, recall that let X ∼ F , independent of ε ∼ Bernoulli(0.5) and then we obtain

Z = θ + ε(θ −X) G. Let θ be the deepest point w.r.t. F in terms of Mahalanobis depth.

In the case that the deepest point is not unique, we define a unique deepest point the same

way as in Remark 2. Then, we get

 µG = θ

ΣG = EG[(Z − θ)(Z − θ)′] = EF [(X − θ)(X − θ)′] := Σ.

Thus, ARD is constructed as:

ARD(x, F ) =
1

1 + (x− µG)′Σ−1
G (x− µG)

=
1

1 + (x− θ)′Σ−1(x− θ)
,
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Also,

ARDn(x) =
1

1 + (x− µ̂G)′Σ̂−1
G (x− µ̂G)

=
1

1 + (x− θ̂n)′cΣ?−1(x− θ̂n)

:= D?
2n(x),

where µ̂G = θ̂n, Σ̂G = cΣ?−1 with c = 2(n−1)
2n−1 and Σ?−1 = 1

n−1

∑n
i=1(xi − θ̂n)(xi − θ̂n)′.

By the same token, we define

D̃2n(x) =
1

1 + (x− θ)′aΣ̃−1(x− θ)
,

where a = n−1
n and Σ̃ = 1

n−1

∑n
i=1(xi − θ)(xi − θ)′.

We would like to prove

sup
x∈Rd

|ARDn(x)−ARD(x, F )| → 0 as n→∞.

Analogous to what we discussed earlier, we can prove the convergence by proving that

(3.1a) and (3.1b) hold simultaneously, namely,

 supx |D̃2n(x)−D(x, G)| → 0 as n→∞

supx |D?
2n(x)− D̃2n(x)| → 0 as n→∞.

To begin with, since D̃2n(x) has already been expressed in a way such that no data points

from the reflection sample are involved, the proof of supx∈Rd |D̃2n(x)−D(x, G)| → 0 a.s.

follows Liu and Singh (1993).

In what follows, we aim at proving supx |D?
2n(x)− D̃2n(x)| → 0 as n→∞ a.s.. By some
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calculation, we obtain

|D?
2n(x)− D̃2n(x)| = | 1

1 + (x− θ̂n)′cΣ?−1(x− θ̂n)
− 1

1 + (x− θ)′aΣ̃−1(x− θ)
|

=
(x− θ)′aΣ̃−1(x− θ)− (x− θ̂n)′cΣ?−1(x− θ̂n)

[1 + (x− θ̂n)′cΣ?−1(x− θ̂n)][1 + (x− θ)′aΣ̃−1(x− θ)]
.

Consider that limn→∞ a = 1 and limn→∞ c = 1, we can prove the convergence by showing

the convergence of the following term:

(x− θ)′Σ̃−1(x− θ)− (x− θ̂n)′Σ?−1(x− θ̂n)

[1 + (x− θ̂n)′Σ?−1(x− θ̂n)][1 + (x− θ)′Σ̃−1(x− θ)]

=
(x− θ)′(Σ̃−1 − Σ?−1)(x− θ) + 2(θ − θ̂n)′Σ?−1(x− θ̂n) + (θ − θ̂n)′Σ?−1(θ − θ̂n)

[1 + (x− θ̂n)′Σ?−1(x− θ̂n)][1 + (x− θ)′Σ̃−1(x− θ)]

For simplicity, we denote the denominator by [1+A?][1+Ã], where A? = (x−θ̂n)′Σ?−1(x−

θ̂n) and Ã = (x−θ)′Σ̃−1(x−θ). Next, we show the almost sure convergence of the following

three terms, namely,

(θ − θ̂n)′Σ?−1(θ − θ̂n)

[1 +A?][1 + Ã]
(3.4a)

(θ − θ̂n)′Σ?−1(x− θ̂n)

[1 +A?][1 + Ã]
(3.4b)

(x− θ)′(Σ̃−1 − Σ?−1)(x− θ)

[1 +A?][1 + Ã]
. (3.4c)

(a) show almost sure convergence of (3.4a).

Since the denominator is always greater or equal to 1, the ratio will converge to 0 if the

numerator converges to 0. First, we show ‖Σ? − Σ‖2 → 0 as n → ∞, so that ‖Σ?‖

can be bounded. Also, we show under some conditions, ‖θ̂n − θ‖ → 0 a.s.. Then, by
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Cauchy-Schwarz Inequality, we obtain

‖(θ − θ̂n)′Σ?−1(θ − θ̂n)‖ ≤ ‖(θ − θ̂n)‖2 · ‖Σ?‖−1 → 0 a.s.

Here, we consider L-2 norm, namely, ‖ · ‖ = ‖ · ‖2. We observe that ‖Σ?−Σ‖ ≤ ‖Σ?− Σ̃‖+

‖Σ̃− Σ‖. To recall,

Σ? =
1

n− 1

n∑
i=1

(xi − θ̂n)(xi − θ̂n)′

and Σ̃ =
1

n− 1

n∑
i=1

(xi − θ)(xi − θ)′,

then

Σ̃− Σ? =
1

n− 1

n∑
i=1

[(xi − θ)(xi − θ)′ − (xi − θ̂n)(xi − θ̂n)′]

=
1

n− 1

n∑
i=1

[xi(θ − θ̂n)′ + (θ − θ̂n)x′i − (θθ′ − θ̂nθ̂′n)]

=
n

n− 1
[x̄(θ − θ̂n)′ + (θ − θ̂n)x̄′ − (θθ′ − θ̂nθ̂′n)]

By Cauchy-Schwarz Inequality, we obtain

‖x̄(θ − θ̂n)′‖ ≤ ‖x̄‖ · ‖θ − θ̂n‖.

From Liu and Singh (1993), when EF ‖X‖2 < ∞, |Dn(x) −D(x, F )| → 0 a.s. as n → ∞.

It can be proved that if θ is uniquely defined, ‖θ̂n−θ‖ → 0 a.s. as n→∞. Also, by LLN,

we have |x̄ − µ| → 0 a.s. as n → ∞. Thus, ‖x̄‖ is bounded almost surely. Above all, we

obtain ‖x̄(θ − θ̂n)′‖ → 0 a.s..

Moreover, since k(θ) = θθ′ is continuous on θ, |k(θ)−k(θ̂n)| → 0 as |θ̂n−θ| → 0. We obtain
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|Σ̃−Σ?| → 0 as n→∞. Since h(Σ) = Σ−1 is continuous on Σ, |Σ̃−1−Σ?−1| → 0 a.s. when

n→∞ as well. As a result, ‖Σ?−Σ‖2 → 0 as n→∞ and ‖(x−θ)′(Σ̃−1−Σ?−1)(x−θ)‖ →

0.

(b) show almost sure convergence of (3.4b), namely,

sup
x∈Rd

(θ − θ̂n)′Σ?−1(x− θ̂n)

[1 + (x− θ̂n)′Σ?−1(x− θ̂n)][1 + (x− θ)′Σ̃−1(x− θ)]
→ 0 a.s. as n→∞.

We first consider to prove the convergence when x is in a bounded ball B(θ,M) with a

large M > 0. Then, we have

sup
x∈B(θ,M)

(θ − θ̂n)′Σ?−1(x− θ̂n)

≤ sup
x∈B(θ,M)

‖θ − θ̂n‖‖Σ?−1‖‖x− θ̂n‖.

We already showed that ‖Σ?−1‖ → ‖Σ−1‖ a.s.. Thus, with ‖x− θ̂n‖ bounded, the conver-

gence is straightforward. Next, we prove the convergence when x is outside that ball. We

observe

sup
x6∈B(θ,M)

(θ − θ̂n)′Σ?−1(x− θ̂n)

[1 + (x− θ̂n)′Σ?−1(x− θ̂n)][1 + (x− θ)′Σ̃−1(x− θ)]

≤ sup
x6∈B(θ,M)

(θ − θ̂n)′Σ?−1(x− θ̂n)

1 + (x− θ̂n)′Σ?−1(x− θ̂n)

Let y = Σ−1/2(x− θ̂n), we have the above equation equals to

sup
y 6∈B(θy ,My)

‖Σ−1/2(θ − θ̂n)y‖
‖y‖2

≤ sup
y 6∈B(θy ,My)

‖Σ−1/2(θ − θ̂n)‖‖y‖
‖y‖2
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= sup
y 6∈B(θy ,My)

‖Σ−1/2(θ − θ̂n)‖
‖y‖

→ 0 a.s. ,

where θy = Σ−1/2(θ − θ̂n) and My = Σ−1/2(M − θ̂n).

(c) show the almost sure convergence of (3.4c).

The proof is straightforward from the proof of (b). So far, (3.1a) holds.

Proof of Proposition 3.1: From the uniformly almost sure convergence of Dn(x), we

obtain

|Dn(θ)−D(θ)| → 0 a.s.

|Dn(θ̂n)−D(θ̂n)| → 0 a.s..

Thus, ∀ε, σ > 0, ∃N(ε, σ) s.t. we have the following two inequalities with probability 1:

− ε ≤ Dn(θ̂n)−D(θ̂n) ≤ ε

− σ ≤ Dn(θ)−D(θ) ≤ σ

Also, by the definition of the deepest point, we obtain

D(θ̂n)−D(θ) ≤ 0 and Dn(θ)−Dn(θ̂n) ≤ 0.

Thus, we obtain

D(θ̂n)−D(θ) ≥ Dn(θ̂n)− ε−D(θ) ≥ Dn(θ)− ε−D(θ) ≥ D(θ)−σ− ε−D(θ) = −(ε+σ).

In a result, we have −(ε + σ) ≤ D(θ̂n) − D(θ) ≤ 0. Consequently, P{limn→∞ |D(θ̂n) −
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D(θ)| > γ} = 0 for any γ > 0. And by the uniqueness of the deepest point, we obtain

|θ̂ − θ| → 0 almost surely.

2

Proof of Proposition 3.2

The proof directly follows the proof of Theorem 2.

2

Proof of Theorem 3

(a), (b), (c) and (d) hold naturally since FARD is the integration of pointwise ARD values.

(e) also holds immediately following the fact that FM depth does not degenerate.

2

Proof of Theorem 3.4

By definition,

FARDn(y) =

p∑
i=1

ti − ti−1

‖T ‖
ARDn(y(ti))

FARD(y, FY ) =

∫
T

1

‖T ‖
ARD(y(t), FY (t))dt

By Theorem 3.2, we obtain that for any t ∈ T ,

sup
y(t)∈Rd

‖ARDn(y(t))−ARD(y(t), F )‖ → 0, a.s.

Moreover, since H(t) := ARD(y(t)) ∈ Lip(T ), ∃A > 0 such that sups,t |H(t) − H(s)| ≤

A|t− s|. Thus,

sup
y∈C(T )d

‖FARDn(y)− FARD(y, F )‖
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=
1

‖T ‖
sup

y∈C(T )d

∫
T
|ARDn(y(t))−ARD(y(t), FY (t))|dt

≤ 1

‖T ‖

p∑
i=1

∫ ti

ti−1

(A(ti+1 − ti) + sup
j

2|ARDn(y(tj))−ARD(y(tj), FY (tj))|)dt

=
1

‖T ‖

p∑
i=1

A(ti+1 − ti)2 + sup
j

2|ARDn(y(tj))−ARD(y(tj), FY (tj))|

= O(p−2γ) + sup
j

2|ARDn(y(tj))−ARD(y(tj), FY (tj))|

By Theorem 3.4, we know the second term converges to zero almost surely. 2

Proof of Theorem 3.5

By Proposition 1, we obtain |θ̂n(t)−θ(t)| → 0 a.s. point wisely over T . From the definition

of θ̂n(t), it is easy to tell |θ̂n(t)| < maxi∈[n] |yi(t)| < g(t), where g(t) = (g1(t), . . . , gd(t)).

Then, by dominated convergence theorem, we can get the uniform convergence over T .

2

Remark 3.6. If {Y1(t)}, . . . , {Yn(t)} are continuous over T , θ̂n(t) is also continuous.

Proof:

We need to show that ∀t ∈ T , ∀δ > 0, we have

lim
∆t→0

|θ̂n(t+ ∆t)− θ̂(t)n| = 0

Given any t ∈ T , without loss of generality, we assume

θ̂n(t) = y1(t)

θ̂n(t+ ∆t) = y2(t+ ∆t).
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Then, we would expect a switch in rank between y1 and y2 during (t, t+ ∆t]. Thus,

|θ̂n(t+ ∆t)− θ̂n(t)| ≤ max{|y1(t+ ∆t)− y1(t)|, |y2(t+ ∆t)− y2(t)|}.

It goes to 0 as ∆t→ 0.
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Chapter 4

Nonparametric Tolerance Tubes for Functional Data

4.1 Introduction

Tolerance intervals and regions provide tolerance limits to univariate and multivariate

data, and are deemed important tools in statistical quality control. However, the topic of

tolerance limits of functional data remains relatively underdeveloped. In this chapter, we

introduce tolerance tubes, as a generalization of tolerance intervals and regions, that can

provide tolerance limits with a pre-specified coverage probability, say β, of functional data,

with some some pre-specified level of confidence, say γ.

In R1, two types of tolerance intervals have been developed and commonly used, namely,

β−content tolerance intervals and β−expectation tolerance intervals (Guttman, 1970). To

be precise, let X1, . . . , Xn be a sample from distribution F ∈ R1:

(1) T (X1, . . . , Xn) is called a β-content tolerance interval at confidence level γ if

P{PF (T (X1, . . . , Xn)) ≥ β} = γ.

(2) T (X1, . . . , Xn) is called β-expectation tolerance interval if

E{PF (T (X1, . . . , Xn))} = β.
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These two definitions have been generalized to multivariate settings to define tolerance

regions. If the underlying distribution of the sample is known, one can easily establish a

tolerance interval/region using density contours or other means. If it is unknown, there

exist distribution-free tolerance intervals introduced in (Wilks, 1941; Wald, 1943) by using

univariate order statistics or spacings; and there exist nonparametric tolerance regions

proposed in (Chatterjee and Patra, 1980; Lei et al., 2013) by using estimated density,

in (Bucchianico et al., 2001) by using index sets, and in Li and Liu (2008)by using the

multivariate spacings induced by the center-outward order statistics devised from data

depth. As observed in Li and Liu (2008), the approaches using estimated density or

the index set have two drawbacks: i) they require that the shapes of tolerance regions be

specified a priori, which is generally a difficult task without the knowledge of the underlying

distribution, and also a mis-specified shape is unlikely to yield the desirable properties that

one would expect from tolerance regions, and ii) if the underlying distribution is multi-

modal, the resulting tolerance regions may consist of disjoint regions, which render them

useless in practice, since it is difficult to provide a coherent interpretation of disjoint regions

in the context of tolerance. Not surprisingly, straightforward generalizations of these two

approaches to the functional setting would continue to have the same drawbacks.

In the literature, Bowden and Steinhorst (1973) and Rathnayake and Choudhary (2015)

have proposed tolerance bands which provided tolerance limits for functional data. How-

ever, their approaches are valid only for univariate functionals and also only under Gaus-

sian assumptions. In this paper, we aim to establish a general framework for tolerance

tubes which can be applied broadly to functional data (including multivariate), where only

continuity for each functional is assumed. Specifically, we generalize the aforementioned

Definitions (1) and (2) to functional settings to define β−content and β−expectation toler-

ance tubes, and propose to construct such tolerance tubes by extending the idea in Li and



58

Liu (2008) of joining “spacings” suitably defined by the notion of data depth. To broaden

further the utility of tolerance tubes, we also propose a useful modification of Definition

(2) by inserting the notion of exempt level. This is elaborated below.

In many real applications, the tolerance tube does not have to be as stringent as the usual

100% compliance required in most production lines. For example, in an application of

monitoring blood glucose levels of diabetes patients (which will be elaborated and illus-

trated in Section 4.5), it is reasonable and necessary to tolerate some temporary spikes

of blood glucose levels due to normal factors such as meal-intake. Motivated by this con-

sideration, we modify β−expectation tolerance tubes by introducing an exempt level α.

The modified tolerance tube relaxes the requirement by allowing at most α portion of each

functional outside of the tolerance limit. This modification is especially useful in the setting

where short term aberrations in functional data are not necessarily viewed as substantive

alteration of the functionals from their expected acceptable pattern.

The rest of the paper is organized as follows. In Section 4.2, we introduce formal defini-

tions of tolerance tubes for functional data, by extending the β−content and β−expectation

tolerance intervals. We further introduce the notion of an exempt level α to modify the

β−expectation tolerance tube. Theoretical justifications and properties of those definitions

are investigated. In Section 4.3, we propose an approach to construct the proposed tol-

erance tubes using the the idea of “spacings” derived by suitably defined notions of data

depth in the functional setting. We also study the properties of those sample tolerance

tubes. Section 4.4 provides three simulation studies to compare different tolerance tubes

in terms of probability content and stability. Section 4.5 and 4.6 discuss two real data

applications on glucose continuous monitoring and aircraft safe landing tracking. Some

concluding remarks are presented in Section 4.7.
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4.2 Nonparametric Tolerance Tubes

4.2.1 Definitions of Tolerance Tubes For Functional Data

Let {Y1(t) : t ∈ T }, . . . , {Yn(t) : t ∈ T } be a random sample of d-dimensional functional

generated from the process F over T , and {y1(t), t ∈ T }, . . . , {yn(t), t ∈ T } be their

observed values. For any t ∈ T , Y (t) follows distribution Ft. The notation shall be

simplified without t ∈ T in the bracket when the emphasis of T is not needed. Also, Y

and y will be used to represent the functionals when there is no possibility of confusion

with multivariate variables.

In general, a tolerance tube provides tolerance limits for a specified percentage of functional

data with some pre-fixed level of confidence. More specifically, let T (Y1, . . . , Yn) = {Cn(t) :

t ∈ T } be a tolerance tube, where Cn(t) is a set at a fixed t. A functional data y is covered

within the tube T (Y1, . . . , Yn) if (t, y(t)) ∈ T (Y1, . . . , Yn) for any t ∈ T . For simplicity, we

denote the tube by Tn and the coverage of y by y ∼ Tn. In what follows, we generalize

the two definitions of tolerance intervals in R1 in Section 4.1 to yield the following three

definitions of tolerance tubes in the functional setting.

Definition 4.1. T (Y1, . . . , Yn) is called a β−content tolerance tube at confidence level γ if

P{PF (T (Y1, . . . , Yn)) ≥ β} = γ.

Definition 4.2. T (Y1, . . . , Yn) is called β−expectation tolerance tube if

E{PF (T (Y1, . . . , Yn))} = β.

In practice, the criterion of Y ∼ T (Y1, . . . , Yn) can be relaxed such that only a portion of



60

Y inside the tube is required. For example, in a project of glucose continuous monitoring

(see Section 4.5), the blood glucose level of diabetes patients surged around meal times

and dropped back to the normal level afterward. In addition, we observed that such

spikes appeared at different times among different patients. In such a case, the tolerance

tube defined using Definition 4.1 or Definition 4.2 hardly exists in general. To define a

meaningful tolerance tube that can accommodate the aforementioned allowable occasional

exceptions, we introduce an exempt level in the β−expectation tolerance tube and yield

Definition 4.2a below.

Definition 4.2a. T (Y1, . . . , Yn) is called β−expectation tolerance tube with exempt level α

if

E{PαF (T (Y1, . . . , Yn))} = β,

where 0 ≤ α ≤ 1, PαF (Tn) := PF (λ{t : y(t) ∈ Tn} ≥ (1 − α)λ(T )), and λ(·) is a lebesgue

measure on T . When α = 0, this is equal to Definition 4.2.

Roughly speaking, the tuning parameter α reflects the degree of strictness of enforcing the

requirement of the tube. As α increases, the criterion for any functional falling within

the tube is relaxed since it only requires at least (1 − α) portion of the functional to be

inside the tube. As a result, a larger α will usually yield a narrower tube. Ideally, α

should be determined using domain knowledge. Usually, too large an α may render the

tube meaningless or useless from the practical perspective. If the domain knowledge is

unavailable, one may resort to cross-validation, which, however, might be computationally

costly. If this cost can not be overcome, α can be determined by visual decision instead,

which obviously will reduce the reliability of claimed accuracy of the tube.
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4.2.2 Desirable Properties of Tolerance Tubes

For any function Y (t) = (Y1(t), . . . , Yd(t)), we assume all its components are Lipschitz

functions. That is, for s, t ∈ T , ‖Yj(s) − Yj(t)‖ ≤ ‖s − t‖, for j ∈ {1, . . . , d}. A desirable

tolerance tube is expected to satisfy the following properties:

P1. A tolerance tube is connected throughout the whole index domain.

P2. A tube evaluated at each index is connected. (any requirement for tolerance region?)

P3. The tolerance tube expands as the tolerance level goes up. Specifically, if β1 ≤ β2,

T β1 is nested within T β2 , namely, T β1 ⊆ T β2 .

Thus, the tolerance tube is different from the functional boxplot, bagplot (Hyndman and

Shang, 2010) and other tools which are based on some statistics of the functional sample.

Some other examples of invalid tolerance tubes are shown in Figure 4.1. In panel (a),

boundaries are disconnected and incomplete; in panel (b) and (c), there are hollow spaces

inside the tube; in panel (d), the tube degenerates to a single line.
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Figure 4.1: Examples of invalid tolerance tubes: (a) boundaries are disconnected and
incomplete; (b) and (c) there is a hollow space inside the tube; (d)the tube degenerates.
Shadow area represents the spread of functional data.

4.3 Constructing Nonparametric Tolerance Tubes Using Data Depth

Data depth has been developed to quantify the “centrality” of functional data. The cen-

tral region derived from depth provides a potential formation of tolerance intervals/regions.

This formation is nonparametric and data driven, thus save the effort of dealing with com-

plex distributions of functional data. However, it can not guarantee the pre-set tolerance

level, and is sensitive to aberrations in the sample. In addition, there is not a natural way

of incorporating the exempt level α into the central region. Thus, we propose an effective

approach to construct β−expectation tolerance tube with exempt level α using the quan-

tile information of point-wise depth values. In what follows, we first give a brief review of

existing notions of data depth and the corresponding central region in both multivariate

and functional data settings.
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4.3.1 Central Region Derived from Data Depth

Without loss of generality, let FD(·) be a general notation of functional depth. Given a

sample of functionals Y1, . . . , Yn, we obtain its depth order statistics Y[1], . . . , Y[n]. For any

β ∈ (0, 1], the β−central region is the set

CRβ(Y1, . . . , Yn) = {Cn,β(t) : t ∈ T },

where Cn,β(t) is the smallest convex hull that includes {Y[1](t), . . . , Y[rn](t)} with rn =

(n+ 1)β.

Example 1: Central Region For Univariate Functionals

For univariate functional data, the central region can be expressed as:

CRβ = {y : yl(t) ≤ y(t) ≤ yu(t),∀t ∈ T }.

Here, yl(t) = miny{FD(y) ≥ FD[rn]}, yu(t) = maxy{FD(y) ≥ FD[rn]}, and FD[rn] is the

depth value of Y[rn], rn = (n+ 1)β.

Theorem 4.1. Given a random sample Y1, Y2, . . . , Yn, let CRβ be the β central region

derived via some FD, which has valid functional depth values. Then:

(1) CRβ P1 to P3 in Section 4.2.2;

(2) CRβ is a β-expectation tolerance tube if ∀y, y ∈ CRβ implies FD(y) ≥ FD[(n+1)β].

Among all central regions derived by depth reviewed in Chapter 2, only ED is useful in

constructing β−expectation tolerance tubes. We further investigate its performance in

Section 4.4 to Section 4.6. On the other hand, there is no existing approach to construct

the tube with exempt levels. Thus, in the next section, we propose an effective approach
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to solve the problem.

4.3.2 Constructing β−expectation Tolerance Tubes with α Exempt Level

In the following, given a random sample Y1, . . . ,Yn, we propose a useful approach to

construct the β−expectation tolerance tube on exempt level α.

1. For each functional Yi at each point t, calculate its pointwise depth value D(Yi(t), Ft);

2. Within each functional Yi,

(a) identify the α−quantile, say qαi , of its pointwise depth value;

(b) identify the segment Ti := {t : D(Yi(t), Ft) ≥ qαi };

3. Identify (n + 1)β curves with the highest qαi values. Without loss of generality, we

assume they are Y1, . . . ,Y(n+1)β;

4. The β−expectation tolerance tube on α exempt level is the smallest convex hull that

contains the set {Yi(t), t ∈ Ti}(n+1)β
i=1 .

Lemma 4.1. Assume D(x) is continuous on x, and F has Glivenko-Cantelli property

uniformly over convex sets. In addition, we assume Ft is continuous for t ∈ T . Then, for

any Lipschitz continuous function y, D(y, t) is continuous on t, namely, |D(y, t)−D(y, t+

δ)| → 0 as δ → 0.

Theorem 4.2. The tolerance tube constructed from above procedure:

(1) is a β−expectation tolerance tube;

(2) satisfies P1 to P3 in Section 4.2.2 under mild conditions.
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4.4 Simulation studies

In this section, we conduct three simulation studies to investigate the performance of

tolerance tubes with and without exempt levels. In particular, we are interested in studying

the benefit of introducing the exempt level on the improvement of stability and coverage

level under different functional data settings.

4.4.1 Simulation settings

Simulation setting I: Gaussian Processes. We generate 500 curves from gaussian process

with mean µ(t) = 0 and covariance function Ky(s, t) = exp{− |yi(s)−yi(t)|100 }. (All curves are

observed at equal spaced grid t = 1, 2, . . . , 100.)

Simulation setting II: Sinusoid Curves. (with slight location shift) We generate 500 curves

from y(t) = sin(2πθ(t+ s)) + cos(2πθ(t+ s)), where θ = 0.05 and s ∼ U [−10, 10].

Simulation setting III: Sinusoid with partial contaminations. We generate 500 curves from

y(t) = α1 sin(2πθ(t + s)) + α2 cos(2πθ(t + s)), where α1 ∼ U [0.05, 0.1], α2 ∼ U [0.05, 0.1],

s ∼ U [−10, 10] and θ = 0.01. All the curves are contaminated with a wave with height

h ∼ U [0.05, 0.1] at a random place over a short period ∆t = 10, that is,

y?(t) =

 y(t) + β sin(2πφ(t− t0)), if t ∈ [t0, t0 + ∆t)

y(t), otherwise,

where β ∼ U [0.05, 0.1] and φ = 0.05.
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Figure 4.2: Simulation setting I: Gaussian Processes; Simulation setting II: Sinusoid Curves;
Simulation III: Sinusoid with partial contaminations.

4.4.2 Simulation results

We construct β−expectation tolerance tubes with exempt level α by implementing the

procedure proposed in Section 4.3.2. In addition, we use β central regions derived by ED

to represent β−expectation tolerance tubes. Here, β is set to be 0.8 and α may vary

from different studies. To assess their capability of achieving the target tolerance level, we

randomly split the sample into two halves, one as the training set and the other as the test

set. We construct β-expectation tolerance tubes using the training set, and report their

coverage levels in the test set in Table 4.1. Each simulation is repeated 50 times.

TT(ED central region) TT with exempt level α

Simulation I 0.65(0.05) 0.74(0.03)
Simulation II 0.71(0.04) 0.79(0.03)
Simulation III 0.59(0.04) 0.74(0.04)

Table 4.1: Achieved averaged coverage levels (standard deviations) of the β−expectation
tolerance tubes with and without exempt levels in the test sets. β = 0.8.

We observe that the coverage of the central region is notably less than the nominal level in

all three simulated studies. Especially in Simulation III, where functionals have occasional
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spikes, the averaged coverage level is even less than 0.6. In general, if any functional is

likely to have many crisscrosses with other functionals, the central region often fails to

meet the nominal level in the test set. On the other hand, we observe that tolerance tubes

with exempt level α improve the coverage level even in Simulation III. The yield coverage

is much closer to the nominal level 0.8 yet with less variance. Here, we use cross-validation

to choose α to be 0.2, 0.2 and 0.25 in three studies, respectively.

It is noteworthy that the shapes of tolerance tubes without exempt levels are much more

sensitive to the randomness in the sample. This drawback is acute particularly in Sim-

ulation III. The shapes of the tubes can vary a lot between different training sets. This

makes it inappropriate in practice. This drawback is largely mitigated by incorporating an

exempt level. As in Figure 4.3c, the exempt tube does not involve any of the spikes and is

more stable against the change of training sets.
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(a) (b)

(c)

Figure 4.3: Comparison of β−expectation tolerance tubes with and without exempt levels.
Simulation setting I: Gaussian Processes; Simulation setting II: Sinusoid Curves; Simulation
III: Sinusoid with partial contaminations.
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4.5 Real Example: Blood Glucose Monitoring

An effective closed-loop artificial pancreas system is essential in glycemic management of

diabetes patients. It monitors the blood glucose density level continuously and manages

the amount of insulin injection accordingly. Insufficient insulin is unable to lower the blood

glucose level when it is stimulated by taking meals or other activities. On the contrary,

overdosed injection will result in low blood glucose levels (or hypoglycemia), which may

cause coma or more severely, death. The dataset we used in this study contains the blood

glucose measurements of 121 diabetes patients over a whole day. The measurement was

taken every 5 minutes from 00:00 to 23:59. Generally, we expect that the tolerance tube i)

signals abnormal blood glucose levels; ii) allows occasional short-term spikes in the curve

which can be due to normal reasons such as taking meals. The latter is critical because

the blood glucose level of patients is never constant over time. For example, it rises after

taking meals and drops back if it is under proper control. Thus, temporary spikes due to

normal factors should not rise severe health concerns. Satisfying ii) can reduce the false

alarm rate and avoid unnecessary panic in patients.

As a simple illustration, we present the 80%−expectation tolerance tubes with and without

exempt levels in Figure 4.4. Here, the exempt level is set to be 0.15. We observe that the

tolerance tube with the exempt level (on the right panel) possesses the following desirable

properties: i) it achieves the nominal level of coverage in the sample; ii) the exempt level

α can incorporate additional information from domain knowledge; iii) the tolerance limit

across time is more robust to individual turbulence which is not representative of the panel.

In particular, the latter is generally lacked in tolerance tubes without exempt levels. As

a comparison, we observe that the shape of the tolerance tube varies dramatically across

time on the left panel of Figure 4.4.
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Figure 4.4: 80%−expectation tolerance tubes with (left) and without (right) exempt levels
for blood glucose levels of 121 diabetes patients.

4.6 Real Example: Aircraft Landing Monitoring

The proposed tolerance tube with exempt levels can be applied to the aircraft landing data

set discussed in Section 3.4 to continuous monitor and alert potential anomalies in aircraft

performance during the approach phase of flight. Since in practice, the transient deviation

from the recommended criteria is often inevitable, the tolerance tube with exempt levels

would be particularly suitable for spotting anomalies. Ideally, the exempt level (α) and

tolerance level (β) should incorporate domain knowledge.

4.7 Discussion

In this chapter, we formally define tolerance tubes of functional data, as a generalization

of tolerance intervals and regions in finite dimensional settings. Tolerance tubes provide

tolerance limits to ensure that a specified portion of a functional data set to fall within the

tube with some desired level of confidence. Although the usual definitions of β−content

and β−expectation tolerance intervals can be generalized in a straightforward fashion, such
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defined tolerance tubes, well defined as they are, may be too stringent to have broad utility

for tracking functional data in real applications over the increasing volatility in functional

data over the continuum. Thus, we further introduce an exempt level α in the definition of

tolerance tubes, which allows the “worst” α portion of each functional to be exempt from

the requirement. Under the modified definition, a functional is considered contained inside

the tube as long as at least (1 − α) portion of it is within the tube. Such tolerance tube

allows us to incorporate possible practical considerations from domain experts in order to

draw more meaningful and practical inferences. Tolerance tubes with a suitable exempt

level are shown to be more effective in the real applications of continuous tracking of blood

glucose and aircraft landing performance.

In this chapter, our approach to construct the tolerance tubes is based on data depth.

In principle, using any well-defined notion of functional depth should be able to produce

β − expectation tolerance tubes using its β central region. However, when exempt levels

are considered, the functional central region are no longer valid, and it is difficult to see

how this approach can be modified. On the other hand, our proposed approach to utilize

the quantile information of depth values evaluated at each domain index and construct the

tube by excluding the “worst” part from each functional, and it is thus particularly suited

for incorporating exempt levels.

The idea of exempt levels behind the proposed tolerance tube in Definition 4.2a is to

accommodate allowable occasional aberrations or random oscillation, and yet remains ef-

fective in detecting any continuous long stretch outside the tolerance tube. The latter

could be indicative of pattern of behavior, and requires further consideration or analysis.

For example, blood glucose stays higher above for a sustained period of time may indicate

insufficient intake of insulin. In such a scenario, the input from domain experts may be

utilized to devise an additional dynamic reactionary procedure into our construction of
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tolerance tubes.

Finally, it is worth noting that our proposed tolerance tubes can be implemented with

suitable weighting schemes if needed. Case in point is the example of aircraft tracking

project above. Depending on the domains or contexts of the applications, different weight-

ing schemes may be employed to further refine or sharpen the tolerance tube. Obviously,

a prolonged deviation from the tolerance tube closer to the runway threshold would po-

tentially incur higher risk in safe landing, as in contrast with the occurrence of such a

prolonged deviation that is still far off the runway threshold. Therefore, it is useful to work

with domain experts to devise a suitable weighting scheme with more stringent weight as

the aircraft approaches the runway. Note that Chapter 3 has pursued a similar goal in this

aircraft landing performance project by developing an effective outlier detection approach

using ARD. It would seem that our approach using tolerance tubes coupled with ARD

and suitable weighting schemes may be a more practical approach, because such tolerance

tubes would be able to account for more forcefully the specific pattern of the functions.

4.8 Proofs

Proof of Theorem 4.1:

(1) CRβ is constructed using the smallest convex hull which contains the deepest (n+ 1)β

functions throughout the domain. Thus, it is straightforward to show that CRβ is

connected throughout the domain and convex at each index.

Given a sample of functional data, we obtain its depth order statistics, say, Y[1], . . . , Y[n]

with decreasing depth values. Then CRβ1 and CRβ2 are the smallest convex hull which

contains Y[1], . . . , Y[(n+1)β1], and Y[1], . . . , Y[(n+1)β2], respectively. Since β1 ≤ β2, it is clear
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that CRβ1 ⊆ CRβ2 .

(2) Let Sr = {y : FD(y) ≥ FD[r], for r = 1, . . . , n. It can be shown that

PF (sr) ∼ beta(r, n − r + 1). To achieve β−expectation, we have to solve for r
n+1 = β,

which implies r = (n+ 1)β. By the construction of central region, it is easy to obtain that

CRβ ⊇ Sr. Thus, to achieve β expected coverage, it should satisfy CRβ ⊆ Sr. In other

words, for any y? ∈ CRβ, FD(y?) ≥ FD[r]. 2

Proof of Lemma 4.1:

∀t ∈ T ,

|D(y, t+ δ)−D(y, t)| = |D(yt+δ, Ft+δ)−D(yt, Ft)|

= |D(yt+δ, Ft+δ)−D(yt, Ft+δ) +D(yt, Ft+δ)−D(yt, Ft)|

≤ |D(yt+δ, Ft+δ)−D(yt, Ft+δ)|+ |D(yt, Ft+δ)−D(yt, Ft)|

, A + B

Since y is a Lipschitz function, |yt+δ − yt| → 0 when δ → 0. By the continuity of the depth

function D(·), we obtain A→ 0. Next, we show that B → 0 as well.

First of all, we observe that

|Ft+δ(x)− Ft(x)| ≤ |Ft+δ(x)− Fnt+δ(x)|+ |Fnt (x)− Ft(x)|+ |Fnt+δ(x)− Fnt (x)|.

By the Glivenko-Cantelli property, the first two terms on the right hand side go to zero

uniformly almost sure. Then, we only have to show supx |Fnt+δ(x) − Fnt (x)| → 0 almost
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surely, namely, for any γ > 0, and any x, t,

P{ lim
n→∞

lim
δ→0
|Fnt+δ(x)− Fnt (x)| > γ} = 0.

Given any sample of functional data, there are two scenarios:

(1) for any function fi in the sample, there is no one reaching x at t, i.e., fi(t) 6= x for

i = 1, . . . , n. Then, let ν = mini |fi(t) − x|. Since all functions are Lipchitz functions,

∃M > 0, s.t. |f(t + δ) − f(t)| ≤ M |t + δ − t| = Mδ, ∀f ∼ F . We select δ s.t. Mδ < ν,

namely, δ < ν/M . Then, we obtain P{|Fnt+δ(x)− Fnt (x)| > ν} = 0.

(2) there are some functions reaching x at t. From the discussion above, to satisfy

|Fnt+δ(x) − Fnt (x)| > γ, there have to be at least nγ + 1 functions reaching x at t. As

n→∞, we obtain PFt(x) > γ. Since Ft is continuous, PFt(x) = 0 for all x. Contradiction.

From the discussion above, we conclude that supx |Ft+δ(x)− Ft(x)| → 0 almost surely. As

a result, it would follow that supx |D(x, Ft+δ)−D(x, Ft)| → 0. 2

Proof of Theorem 4.2:

(1) Let Y1, . . . , Yn be a random sample of functional points following distribution F . For

i ∈ 1, . . . , n, let zi = FD(Yi), Ti = PF (y : FD(Y ) > zi). By Theorem 4.1, we only need to

show y ∈ TTαβ ⇐⇒ FD(y) ≥ FD[rn], with rn = (n+ 1)β.

Let y? be a new functional with no less than α portion is inside the tube. Let

qα? be the α−quantile of {D(y?(t)), t ∈ T }. For t0 such that y?(t0) ∈ TTαβ ,

∃j ∈ {1, . . . , (n+ 1)β}, such that Dt0(Y[j]) ≤ Dt0(y?). Since Dt0(Y[j]) ≥ qαj ≥ qα[(n+1)β], we

obtain Dt0(y?) ≥ qα[(n+1)β]. Thus, qα? ≥ qα[(n+1)β]. Contradiction.

(2)(P1). Without loss of generality, we assume G = {Y1, Y2, . . . , Y(n+1)β} are selected to
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construct the tolerance tube TTβ. Suppose TTβ breaks right after t0 ∈ T , namely, ∃δ0 > 0,

∀0 < δ < δ0 and t = t0 + δ, D(Yi, t) < Dα(Yi) for i ∈ {1, 2, . . . , nβ}. Here, Dα(Yi) is the

α−quantile of the set {D(Yi, t) : t ∈ T }. Since the tube is not broken at t0, ∃G0 ∈ G, such

that y(t0) are selected ∀y ∈ G0. By Lemma 4.1, we obtain ∀y ∈ G0, D(y, t) = Dα(y),

and ∃y? /∈ G, such that y(t0) = y?(t0). We denote these two requirements as (?). By the

randomness of functions, the probability of satisfying (?) is very small if not zero. Thus,

unless under weird heteroscedastic sample structures, the tube would not break over the

whole interval. 2

(P2). We show that for any t ∈ T , ∃δ0 > 0, such that at least one function y selected over

the interval [t, t+ δ].

(1) If D(y, t) ≥ Dα(y), say, ∆ = D(y, t)−Dα(y) > 0, by Lemma 4.1, ∀0 < δ < δ0,

D(y, t+ δ)−Dα(y) = D(y, t+ δ)−D(y, t) +D(y, t)−Dα(y)

By continuity, ∃δ > 0, such that |D(y, t+ δ)−D(y, t)| < 1/2∆. Thus,

D(y, t+ δ)−Dα(y) > 1/2∆ > 0.

Thus, y is also selected over [t, t+ δ].

(2) If D(y, t) = Dα(y) for every function y that is selected at t0, let

G1 = {y : y(t0) is selected}. By P1, ∃δ0 > 0, such that ∀0 < δ < δ0, denote

G2 = {y : y(t0 + δ) is selected}. If the scenario in Figure 4.5 happens, (G1 ∩ G2) = ∅.

From discussions in (1), it is clear that ∀y ∈ G2, y(t0) = Dα(y) holds as well. Thus, it

should be selected at t0, namely, (G1 ∩G2) ⊇ y, contradiction! 2
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Figure 4.5: The showcase of a disconnected tube.

(P3). Tolerance tubes are nested. Let 0 < β1 < β2 ≤ 1. We show that

TTβ1(t) ∈ TTβ2(t), ∀t ∈ T . For any yi(t) ∈ TTβ1(t) for some t, we obtain

qαi ≥ qα[(n+1)β1] ≥ q
α
[(n+1)β2]. Thus, yi(t) ∈ TTβ2(t). 2
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Chapter 5

KMPD (K-means on Pairwise Distance): A New Clustering

Approach and Its Application to Aircraft Landing Pattern

Recognition

5.1 Introduction

Cluster analysis aims generally at grouping a collection of objects into clusters such that

members within the same cluster are more similar to each other than those in different

clusters. While this holds for most clustering approaches, the interpretation of “similar”

can vary greatly in different approaches, and notions of dissimilarities can take a variety of

forms. Popular choices include Euclidean distance or L2 norm, L1 norm, L∞ norm, cosine,

Mahalanobis distance, or a mixture of these. Naturally, the choice of dissimilarity notions

would strongly impact the clustering result, and thus should be, and often so, chosen

to reflect the data structure or subject matter condition. Among the existing clustering

methods, K-means introduced and studied in (Lloyd, 1957; Forgy, 1965; MacQueen, 1967;

Hartigan and Manchek, 1979), is arguably the most popular one due to its straightforward

interpretation and simplicity in computation. However, it has been observed by Garcia-

Escudero et al. (2008) that “this method is designed for clustering spherical groups of

roughly equal sizes and, thus the method is not reliable for analyzing constellations of

groups that depart strongly from this assumption”. The spherical condition can sometimes
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be achieved by applying suitable transformations, but, in reality, the condition of equal-size

generally does not hold or is impossible to verify. Thus, the latter “equal-size” clustering

result has been a well-known shortcoming for the K-means method.

Another important consideration in cluster analysis is the detection and handling outliers.

Outliers can present as the noise in a sample or abnormal behaviors of legitimate observa-

tions, namely, observations being discordant with the vast majority in the sample. Desir-

able clustering approaches should be able to separate outliers from normal observations,

ideally as a separate cluster. However, some approaches, K-means included, are sensitive

to the presence of outliers, and thus likely to distort the clustering result. Although there

are several approaches on robust cluster analysis such as Garcia-Escudero et al. (2008),

Gallegos and Ritter (2005), most of them are parametric in nature and require specified

underlying distributions, which is not easy to verify in practice. Thus, a broadly applicable

nonparametric approach is strongly desired.

The goal of this paper is to introduce a new clustering approach, referred to as K-means

on Pairwise Distance (KMPD), which can i) achieve the two aforementioned desirable

properties; ii) detect and cluster separately outliers. The idea of KMPD is simple and

intuitive. Roughly speaking, KMPD conducts similar algorithms as in K-means, but on

the proximity matrix of the data set. Here, the proximity matrix is a symmetric and

positive definite matrix which contains the pairwise dissimilarity of all points in the data

set. In different contexts, proximity or dissimilarity may be defined differently, for example,

Jaccard coefficient for binary vectors, cosine measure for string vectors. Since this paper

focuses on mainly data sets of continuous observations, for convenience, we simply use

“distance” to represent the proximity metric throughout. The KMPD method delivers such

a result that the sample points assigned to the same cluster would have similar distance

with respect to the overall data set. For example, if A and B are in the same cluster, the
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distance of A with respect to the other points are similar to B would have. That is to say,

if A is far away from the majority of points, B would also be far away. Thus, in the context

of outlier detection, it is effective to detect anomalies and gather them into one cluster,

separated from the regular sample points.

KMPD is also applicable to functional data as long as the distance between functionals

is well defined. Theoretically, functional data are infinite dimensional. This nature would

present some difficulty to many existing clustering methods which are often based on

density estimation or some assumed model. However, KMPD works on the proximity or

distance matrix instead of the original data, it applies to any dimensional settings with

well-defined distance measures.

The rest of this chapter is organized as follows. In Section 5.2, we introduce the procedure

of KMPD, followed by a discussion of the advantages of KMPD over K-means. Comparison

studies of KMPD and K-means are presented in Section 5.3 using simulated examples. It

is shown that KMPD outperforms K-means with much higher accuracy in discovering the

underlying clusters in both multivariate and functional examples. In Section 5.4, we apply

KMPD to a real data application of aviation risk management to detect possible risky

landings. More concluding remarks are provided in Section 5.5.

5.2 Methodology: KMPD

In this section, we introduce the procedure of KMPD method in detail. Given a sample

x1,x2, . . . ,xn ∈ Rd or in functional spaces,

1. transform the sample to p1, . . . ,pn where pi = (pi,1, . . . , pi,n). Here, pi,j = d(xi, xj)

is the dissimilarity between xi and xj , where d(·, ·) is a distance measure;
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2. for a specified K, we solve

C∗ = argmin
C

K∑
k=1

∑
C(i)=k
i=1,...,n

‖pi −m(p)
k ‖

2. (5.1)

Here C is a cluster assignment and C(i) = k means to assign object i to cluster k;

mk is the mean of cluster k, namely, m
(p)
k =

∑
C(i)=k
i=1,...,n

pi/
∑n

i=1 IC(i)=k.

Note that, for i = 1, . . . , n, pi represents the “relationship” between xi and the whole data

set. The second step essentially uses the same iterative algorithm in K-means to obtain

the centers of the transformed data set {p1, . . . ,pn}. Thus, the sample points in the same

cluster are similar regarding to their relationship with the whole sample. For instance, if

A and B are assigned to the same cluster and A is far away from the majority of sample

points, B would be far away as well.

It is known that K-means is ineffective in detecting clusters with different sizes. More

specifically, when there exist several clusters with different sizes, K-means tends to sep-

arate the large clusters and absorb small clusters into the big ones. This is because the

objective function of K-means implicitly penalizes both the size and the dispersion of the

clusters, which tends to force the large clusters to split. More formally, given a sample

{x1, . . . ,xn} ∈ Rd, K-means minimizes the objective function:

K∑
k=1

∑
C(i)=k
i=1,...,n

‖xi −mk‖2,
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where mk =
∑

C(i)=k pi∑n
i=1 IC(i)=k

. Here,
∑

C(i)=k
i=1,...,n

‖xi − mk‖2 evaluates the dispersion of the kth

cluster. Thus, this objective function can be further expressed as

K∑
k=1

(Nk − 1)σ̂2
k,

where σ̂2
k is an estimator of the variance of the kth cluster. Consequently, this algorithm

implicitly penalizes the size of large clusters twice. (First of all, it multiplies σ̂2
k by Nk;

secondly, large clusters tend to have greater dispersions.) As a result, this algorithm

encourage large cluster to split and merge with small clusters.

KMPD, on the contrary, encourages the data points which are originally from the same

large cluster to stay. If there exists two small clusters scatters around a big cluster, KMPD

tends to merge the two small ones into one cluster, separated from the big one.

Determining the number of clusters has always been a critical issue for all partitioning

types of clustering methods including KMPD and K-means. In literature, there are many

proposals aiming to provide solutions to this issue, such as silhouette (Rousseeuw, 1986),

gap statistic (Tibshirani et al., 2001). In practice, the choice should also depend on domain

knowledge or experts inputs.

5.3 Simulation Studies

5.3.1 KMPD for Univariate Data

We use samples generated from mixture Gaussian distributions to illustrate the benefit of

KMPD. Assume X is generated from the mixture of two Gaussian distributions, namely,

X ∼ δY1+(1−δ)Y2, where Y1 ∼ N(µ1, σ
2
1), Y2 ∼ N(µ2, σ

2
2), δ ∼ Bernoulli(p), and Y1, Y2, δ
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are mutually independent. Here, the mixture proportion δ is rooted in p. In other words,

if p is close to 1, most sample points would be generated from the first cluster. Without

loss of generality, we assume µ1 = −1 and µ2 = 1. Figure 5.1 gives a simple illustration of

the mixture distribution.

Figure 5.1: Histogram and pdf of the data setting: p = .75, σ1 = 0.5, σ2 = 0.3, µ1 =
−1.1, µ2 = 1.1.

When σ1 = σ2 and p = 0.5, the data structure is spherical with equal-size. Both KMPD

and K-means produce the same clustering result as that contained by the Bayes rule.

Outside the special structured and equal-sized setting, the validity of K-means clustering

result is often in doubt. Next, we provide a comparison study between KMPD and

K-means on clustering univariate mixture Guassian samples under different parameter

settings. Again, we use the Bayes rule as benchmark for evaluation. Specifically, we

conduct the comparisons in the following experiments:

(1) Fix σ1 = 0.5, σ2 = 0.5, and vary p.

(2) Fix p = 0.8, σ1 = 0.5, and vary σ2.
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Figure 5.2 and Figure 5.3 compare the decision boundaries produced by the two methods

against the Bayes rule. Here, the decision boundary can be simply viewed as the boundary

point between clusters.

Figure 5.2: Decision boundaries of KMPD v.s. K-means when σ1 = σ2 = 0.5 and p varies
over (0, 1)

Figure 5.3: Decision boundaries of KMPD v.s. K-means when p = 0.8, σ1 = 0.5 and σ2

varies over (0, 0.5)
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We observe that when the two oracle clusters are contrasting in size, KMPD outperforms

K-means and obtains results closer to the result achieved by the Bayes rule. In experiment

(1), when the two groups have equal variance, the boundary produced by KMPD is around

the one produced by Bayes rule as p varies over (0, 1). On the contrary, K-means only

performs well when p is around 0.5. As p deviated further from 0.5, K-means result

deteriorates more the Bayes rule result, and is substantively inferior as p is close to 0 or 1.

In many model-based clustering problem settings, such as the one described in our exper-

iment (2), using Bayes rule would lead to two decision boundaries. Here, we only focus

on the boundary between two cluster centers, because the other one can not always be

quantified by all clustering methods, including K-means method. Thus, in experiment (2),

only one boundary from Bayes rule result was plotted here. We observe in Figure 5.3,

although neither KMPD nor K-means result follows closely the Bayes rule result, KMPD

is consistently closer. With the gap seemingly approaches zero as σ2 increases to the same

value as σ1 (e.g., it coincides with the Bayes rule when σ2 = 0.475).

It is worth noting that when the two clusters are of similar sizes and dispersions, the

improvement of KMPD over K-mean would not be pronounced. Instead, the two methods

lead to similar clustering results.

We conduct three simulation studies to compare the performance of K-Means and KMPD

in multivariate and functional data settings.
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5.3.2 KMPD for Multivariate and Functional Data

Simulation Setting I: Mixture Gaussian in R2 We generate 300 points from a mixture

bivariate Gaussian distribution as follows:

 N(µ1,Σ1), with probability p

N(µ2,Σ2), with probability 1− p,

where µ1 = (0, 0), µ2 = (2, 0),Σ1 = ( 1 0
0 0.5 ), Σ2 = ( 0.5 0

0 0.25 ), and p = 0.9.

Simulation Setting II: Ring-type of outliers We generate 300 two-dimensional points

from a bivariate normal distribution, namely, {(x, y) : (x, y) ∼ N(µ,Σ)}, where µ = c(0, 0)

and Σ =
(

0.252 0
0 0.252

)
, with 10% of them contaminated by points on the ring centered at

the origin with radius 2.

Simulation Setting III: Brownian Motion We generate two clusters of 300 paths of

brownian motion over the interval [0, 2000]. One cluster is more stable, which follows the

generating process: X(0) ∼ N(0, 0.12), X(t+1) = X(t)+N(0, 0.12), for t = 1, . . . , 1999. It

consists of 90% of the sample that one colored in black in the right panel of Figure 5.6. The

other is more volatile, which follows the generating process: X(0) ∼ N(0, 1), X(t + 1) =

X(t) +N(0, 1), for t = 1, . . . , 1999, colored in red in the same figure.

Figures 5.4 to 5.6 compare the clustering results of KMPD and K-Means to the true

labeling in each simulated setting. Different clusters are marked in different colors, black

or red. Overall, as seen in Figure 5.7, KMPD outperforms K-means by yielding a lower

misclassification rate in all three examples. K-means method shows a general phenomenon

in yielding cross sectional clusters by some form of linear devision. For example, in the
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middle panel of Figure 5.5, it performs a linear “cut” which produces two clusters of similar

sizes, both of which contain sample points from the central normal distribution as well as

from the ring. On the contrary, KMPD successfully recovers the data structure by grouping

the points in the ring as a single cluster. Similarly, in Simulation III, KMPD separated

the vast majority of the volatile cluster from upper and lower side of the stable cluster.

However, the K-Means approach merged all the volatile trajectories into the stable group

and caused a high misclassification rate. We replicate the simulation each by 50 times, and

summarize the misclassification rates of the two methods using boxplots.

Figure 5.4: Clustering results of Simulation I: multivariate gaussian example.
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Figure 5.5: Clustering results of Simulation II: Ring-type outliers.

Figure 5.6: Clustering results of Simulation III: Brownian motion example.
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Figure 5.7: Boxplots of misclassification rates of K-means and KMPD for three simulation
settings for multivariate and functional data. (a) to (c) are the results for Simulation
I-Multivariate Gaussian, Simulation II-Ring-type Outliers and Simulation III-Brownian
Motions, respectively.

5.4 Application on Aircraft Landing Pattern Recognition

In this section, we revisit the aircraft landing data set provided by our collaborating airline

as discussed in Section 3.4. We propose to apply KMPD to this dataset to detect different

landing patterns if there is any. First, we need to choose a suitable dissimilarity measure

between each pair of functionals. Although there exist several dissimilarity measures for

continuous functionals, such as L1 and L∞, we use the weighted L2 norm to measure

the dissimilarity in order to account for varying importance in different landing phases.

Mathematically, we define the dissimilarity between any function {yi(t)} and {yj(t)} as:

pi,j =

∫
T
w(t)(yi(t)− yj(t))2 dt, (5.2)
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where w(t) ≥ 0 and
∫
T w(t)dt = 1. In practice, functional data are observed in finite

discrete points, say T points in total. Thus, we obtain

pi,j =
T∑
t=1

wt(yi,t − yj,t)2 (5.3)

with wt ≥ 0 and
∑T

t=1wt = 1.

To accentuate the importance of final approaching phase (i.e., close to touchdown point),

we impose a weight function w(t) which is monotone increasing with t. This is motivated by

two practical considerations. First, without weight, the early landing phase where landing

traces are much more spread-out and would dominate the overall clustering result. Thus,

the landings in the final landing phase generally is more dense and would be marginalized.

Second, the final landing phase is generally considered more critical than all early phases.

If a aircraft landing deviates in the initial phase while it is still far away from the target

touchdown point, the pilot has more leeway and time to correct the course to land within

the target touchdown range. However, this correction would be difficult to achieve if an

aircraft deviates substantively from the normal landing course near the target touchdown

point. In this section, we consider the following weight function by incorporating the input

from domain experts in aviation safety,

w(t) =
1

c+A(t)
(5.4)

where A(t) is the width of the cone at t, the distance to the runway threshold. The cone

should accommodate the allowable deviation from the recommended gliding slope landing

path, and c is a tuning parameter to be calibrated.

We applied KMPD to the data set with different choices of K, the number of clusters.
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The final K is determined to be 3 by combining Silhouette and other statistics mentioned

in Section 5.1 with as well as opinions from domain experts, and the need for a clear

and meaningful interpretation of the clustering outcome. We use K = 3 to compare the

performance of KMPD and K-means. It is worth noting that K-means approach fails

to detect small clusters which is usually the case of the cluster of anomalous landing

performance.

5.5 Discussion and Concluding Remarks

In this paper, we developed the new clustering method KMPD (K-means on Pairwise

Distance) method. It utilizes the proximity matrix, and partitions data points based their

dissimilarities to the entire data set. In other words, data points assigned to the same

cluster are similar in terms of their overall dissimilarity with respect to the entire sample.

This method is effective in discovering clusters with different sizes. We use simulated

examples to show that KMPD outperforms K-means, in terms of the accuracy of clustering.

KMPD is especially superior when the underlying clusters are widely different in size.

Indeed, it works well regardless the difference in the relative size of the clusters.

KMPD is also useful in the context of outlier detection. It can gather the points which

are “far” from the rest majority into one separate cluster, and thus label it as an outlier

cluster. In the setting of functional data, we use an aircraft landing analysis to show that

KMPD is effective in detecting an outlier cluster containing landing trajectories which de-

viate substantially from the vast majority which represent the expected normal operations.

In Chapter 3, we pursue this same project using the so-called antipodal reflection depth

approach, which is powerful in detecting outliers in both multivariate and functional data.

It would be worthwhile to compare this method with KMPD.
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Finally, we note that KMPD does not incur additional computational complexity, as it

only requires additionally initial computation of pairwise distances.
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Chapter 6

Summary

In this dissertation, we developed nonparametric approaches for several aspects in multi-

variate and functional data analysis. These approaches are useful for but not limited to

solving problems in outlier detection, construction of tolerance tubes, and clustering. All

the proposed approaches are shown to be effective using data from simulation and real

applications. In Chapter 3, we proposed ARD approach to refine any existing notion of

data depth to a class of new depth functions. The new depth functions gain the additional

capability of capturing the relative magnitude of deviation from all data points to the deep-

est one. It broadens the utility of depth to research areas where the magnitude is indeed

essential, for example, in the context of outlier detection. In Chapter 4, we introduced and

investigated nonparametric tolerance tubes for functional data. In addition to the general-

ization of tolerance regions, we proposed modifications by coupling the definitions with an

exempt level α. The idea of exempt levels is to mitigate the effect of occasional aberration

or oscillation by randomness. Nonetheless, a continuous long stretch outside the tolerance

tube could indicate pattern of behavior and needs further investigation. In Chapter 5, we

proposed a new clustering approach KMPD to detect different patterns in functional data.

This new approach focuses on the pairwise distance matrix of any given sample and thus

brings a new and insightful interpretation to clustering results. It is particularly suitable

for the scenarios when underlying clusters are substantially different in sizes.
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All these approaches above are completely non-parametric and data-driven. Their utilities

have been tested in both simulated studies and real applications, including an aviation

risk management project involving monitoring aircraft landing performance and a medical

study of blood glucose levels in diabetes patients. In the future, we plan to explore their

boarder applications.
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