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ABSTRACT OF THE DISSERTATION 

Impact and Sensitivity Analyses of Energy Sector Emissions:  

Air Quality Modeling of the PJM Region 

by CAROLINE M. FARKAS 

 

Dissertation Director: 

Ann Marie Carlton 

 

 One in eight deaths globally is due to air pollution. Exposure to high 

concentrations of atmospheric fine particulate matter (PM2.5) has negative health 

consequences. Air quality models, such as the Community Multiscale Air Quality 

(CMAQ) model, are employed to evaluate effectiveness of air pollution abatement 

strategies partly designed to minimize PM2.5 exposure and protect human health. Energy 

production and consumption is the largest controllable source sector contributing to 

ambient PM2.5 mass. The highest electricity sector (energy subdivision) emissions occur 

on hot, stagnant summer days, when energy demand is highest and the atmosphere is 

most conducive to photochemical production and PM2.5 accumulation. Electricity 

generation is positively correlated with peak PM2.5 concentrations. CMAQ consistently 

underpredicts these peak values. Accurate prediction of peak pollutant concentrations is 

critical to develop strategies that protect human health.  

 This dissertation works to reduce underprediction of peak PM2.5 concentrations 

from an energy sector and heat wave event perspective in the Northeast U.S., where PJM 

Interconnection governs the electricity transmission for 61 million people. Temporal 
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representation of electricity sector emissions is improved in CMAQ during a heat wave, 

and episodic increases in peak PM2.5 at the surface and aloft are predicted. PJM EGU 

emissions, especially sulfate, impact not only the PJM region, but also outlying areas. 

Monitored and controlled peaking units, EGUs used during highest electricity demand, 

contribute up to 87% of maximum hourly PM2.5 concentrations. Urban areas experience 

the highest potential exposure (calculated as population-weighted concentrations 

(PWCs)) from peaking unit emissions, regardless of the location of predicted peak 

ambient concentrations. Peaking units contribute substantially to exposure potential on 

the worse air quality days, but are historically exempt from Federal air quality rules. 

Eight sensitivity experiments indicate CMAQ-predicted PM2.5 PWCs are most sensitive 

to uncertainty in onroad primary organic carbon emissions, while ambient PM2.5 

concentrations are most sensitive to planetary boundary layer height. Model development 

strategies optimized to protect health may look different than traditional evaluation-

focused strategies optimized to match annual averages in measured PM2.5 mass. This 

dissertation provides issues to consider for prioritizing model development to address 

peak air quality events that drive non-attainment and threaten human health. 
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1. CHAPTER 1 

 

INTRODUCTION 

 

1.1. Motivation 

 

 One in every 8 deaths globally is linked to air pollution exposure, with 3.7 million 

deaths annually attributable to ambient concentrations.1 Exposure to fine particulate 

matter (PM2.5), even over hourly time scales, contributes substantially to the impacts2 and 

has most recently been linked to an increased risk of autism spectrum disorders.3, 4 

Ground level ozone is also dangerous to human health, negatively affecting the 

respiratory system especially in those who suffer from asthma, emphysema, and chronic 

obstructive pulmonary disease (COPD).5 It is estimated that in the U.S., PM-related 

health impacts (including increased cancer risk,6, 7 cardiovascular damage,8 pulmonary 

disorders,9 premature death10, 11 and autism3) are a factor of 30 more than ozone-related 

impacts, measured in deaths and life years lost.12 In the U.S, energy consumption and 

production is the largest controllable source of emissions that impact fine particle mass 

concentrations through direct emissions of PM2.5 and of precursor gases that react to form 

particles in the atmosphere (e.g., sulfur dioxide (SO2), nitrogen oxides (NOX) ! sulfate 

(SO4), nitrate (NO3), respectively).13 

 Aside from the health effects of PM2.5 mass, elemental carbon (EC) exhibits a 

warming effect on Earth through absorption of sunlight and reduction of the albedo of ice 

and snow. Particulate sulfate negatively effects ecosystems and damages agricultural 
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crops through dry deposition and acid rain14 and induces local cooling effects, a near-

term climate forcer (NTCF), opposite to EC climate impacts. Over the Central and 

Eastern U.S., a decrease in surface temperatures, especially during heat waves, can be 

attributed to direct and indirect forcings of anthropogenic aerosols, largely due to 

electricity generation.15, 16 

  

 

Figure 1-1: Overview of dissertation motivation. Data from (left to right) U.S. EPA, 
Hanna et al. (2001), and PJM Interconnection.  
 

 In the majority of the U.S., peak PM2.5 mass concentrations are often observed 

during heat wave, stagnation events,17-20 which are increasing in frequency and intensity in 

the Northeastern U.S. in the changing global climate.20-26 These events frequently 
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correspond to periods of high electricity demand27, 28 and increased energy-sector 

emissions. Electricity generation is positively associated with measured hourly peak 

concentrations of PM2.5 and ozone in the Northeast U.S. region served by the regional 

transport organization (RTO), PJM Interconnection (Figure 1-2). EGU emissions of 

primary PM and the formation of secondary particulates through oxidation of SO2 and 

NOx emissions contribute to total PM2.5 mass concentrations. Emissions of NOx combine 

with volatile organic compounds (VOCs) in the presence of sunlight to form ozone.  

EGU emissions of precursor gases and primary PM impact climate through the release or 

formation of greenhouse gases (GHGs) (e.g., N2O, CO, CH4, O3) and NTCFs, such as 

particulate sulfate and black carbon.15, 29, 30 

 

 
Figure 1-2: Total power generation in the PJM reliability network with measured 
ambient 1-hour maximum ozone (blue) and max daily PM2.5 (green) in New Jersey. 
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 Federal air quality initiatives and policies31, 32 often target areas that are in non-

attainment of National Ambient Air Quality Standards (NAAQS).33 States develop State 

Implementation Plans (SIPs) to attain the NAAQS to ultimately safeguard human health. 

Because of the regional nature of air pollution due to chemical transformation during 

transport, individual states are often not solely responsible for local air quality. Recent 

Federal policies, such as the Cross-State Air Pollution Rule (CSAPR), employ a regional 

approach and require states to reduce emissions from electric generation units (EGUs) 

that contribute at least 1% of the PM2.5 or ozone NAAQS in a downwind non-attainment 

area.34 This rule is particularly important where the largest regional transmission 

organization in the nation, PJM, supplies electrical power to approximately 61 million 

people in the densely populated Northeast and mid-Atlantic regions.35 

 Peak concentrations drive non-attainment and potential adverse societal impacts 

are large. This is particularly true in densely populated urban areas and during the 

summer months when the atmosphere is primed for photochemical reactions that form 

PM2.5 and ozone and people are engaged in outdoor activities. Accurate prediction of 

regional peak air quality events is essential to develop effective cross-state strategies that 

protect human health, but air quality models consistently underpredict peak PM2.5 

mass.36, 37 To better predict peak air quality events, it is important to identify possible 

sources of inaccuracy within photochemical transport models that are used to develop air 

quality management strategies. A key knowledge gap exists in understanding the reason 

behind the routine underprediction of peak ozone and PM2.5 by the U.S. Environmental 

Protection Agency’s (EPA) Community Multiscale Air Quality (CMAQ) model36, 37 used 
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to evaluate state implementation plan (SIP) effectiveness and develop regional strategies, 

such as those developed for CSAPR. 

 

1.2. Background 

 

1.2.1. Electricity Generation Emissions 

 

 The U.S. energy sector is the largest anthropogenic source of annual PM2.5, SO2, 

and NOx emissions (Figure 1-3).38 In particular, in 2008 electricity generation was the 

largest single source of primary PM2.5 and was responsible for ~20% of annual PJM NOx 

emissions.38 Using the Comprehensive Air Quality Model with Extensions (CAMx) 

photochemical model, Fann et al.39 found that in 2005, EGU point source emissions were 

the largest contributor to annually averaged PM2.5 concentrations in the U.S., while the 

largest contributor to daily 8-hour maximum ozone concentrations in 2005 was the 

onroad mobile sector. EGU point sources were the 3rd highest contributor to ozone of the 

seven source sector categories investigated. Focus on annual average concentrations of 

PM2.5 and daily 8-hour maximum concentrations of ozone occurs to match the time-frame 

definitions used to assess NAAQS attainment for these pollutants, however model 

evaluation focused on peak concentrations is warranted and necessary.  
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Figure 1-3: Sources of PM2.5, SO2, and NOx emissions in the U.S. (left) and PJM states 
(right) as detailed in the 2008 NEI. “Other energy sector” includes emissions from mobile 
sources, industrial processes, and fuel combustion. 
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 EGU emissions contribute to regional ambient concentrations of pollutants 

including the formation of secondary atmospheric pollutants. Primary emissions of PM2.5 

add to total ambient PM2.5 mass. Emitted precursor gases (e.g. SO2 and NOx) can 

experience gas-phase photochemical or aqueous-phase reactions (i.e., within cloud and 

fog droplets) to form secondary PM2.5 (e.g. sulfate, nitrate). Further, in the presence of 

sunlight these precursor gases react in the atmosphere to form tropospheric ozone.   

 Federal and state regulations31, 32, 40 have been enacted to reduce emissions from 

the energy sector (including power plant and motor vehicle emissions) in a changing 

climate and NAAQS for PM2.5 (daily: 35 µg/m3; annually: 12 µg/m3)33 and ozone (8-

hour: 0.075 ppm)33 are in place. After the implementation of the Acid Rain Program and 

the NOx Budget Program, Frost et al.41 note a 49% decrease in summertime power plant 

NOx emissions between 1999 and 2003 from 53 power plants in the Eastern U.S. He et 

al.42 also observed overall decreases in summertime NOx emissions after 2002 in 5 

Eastern U.S. states, however they found a 2.5-4% increase in NOx emissions per degree 

increase in temperature (°C) between 1997 and 2011. With expected emission decreases 

due to the enactment of CSAPR, new EGU and boiler maximum achievable technology 

(MACT) standards, and the NOx SIP call, a ~60% decrease in the contribution of the 

EGU sector to total annual PM2.5 mass concentrations is predicted for 2016 relative to 

2005 when using the CAMx air quality model.39 However, climate change has the 

potential to exacerbate peak concentrations of ozone and particulates.43 

 With global temperatures and U.S. heat wave stagnation events increasing and the 

subsequent increased likelihood of peak pollution events, accurate representation of air 
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pollution known to induce adverse health and welfare effects with tools that accurately 

predict peak concentrations in a changing climate is imperative.  

  

1.2.2. Numerical Models 

 

 The work described in this dissertation utilizes a combination of four numerical 

models to simulate the emissions from the energy sector and determine the location and 

impact of the resulting pollutants. Figure 1-4 illustrates the connection and usage of the 

models described here. 

 

 

 
Figure 1-4: Diagram of project models (rectangle with rounded edges), datasets 
(rhombus), and calculations (rectangle). The changes made to the emission inventory in 
all three projects are processed in SMOKE and then simulated in CMAQ. 
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1.2.2.1. Sparse Matrix Operator Kernel Emissions (SMOKE) Preprocessor 

 

 The SMOKE model employs the EPA’s National Emissions Inventory (NEI), a 

database of criteria and hazardous air emissions reported by state, local, and tribal 

agencies, to designate the type, quantity and location of anthropogenic air pollutants in 

the model domain. The emissions are reported by source sector at varying frequencies 

(annually, daily, hourly).44 SMOKE converts emission data from the NEI into the 

temporal and spatial resolution needed by an air quality model. Emissions are chemically 

speciated and temporally and spatially allocated into hourly time steps in grid cells that 

comprise a gridded dataset for input into the air quality model.45 Temporal profiles are 

designed to represent typical, repeatable patterns, not peak events, and are assigned to 

each pollution source based on its source classification code (SCC). In some cases day- 

or hour-specific emission data from the study year are reported and can be used in place 

of annual emissions, improving the temporal profile.  

 

 

1.2.2.2. Community Multiscale Air Quality (CMAQ) Model 

 

 CMAQ is a three-dimensional photochemical model that simulates the 

relationships between meteorology, emissions, and chemical transport to produce 3D-

gridded concentrations of atmospheric pollutants to understand air quality simulations on 

multiple scales.46 The chemistry-transport portion of the model includes processes such 

as gas- and aqueous-phase reactions and deposition, photolytic rate computation, and 
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horizontal advection and vertical diffusion.46 The meteorology is provided by a 

mesoscale numerical weather model, the Weather Research and Forecasting (WRF) 

model Advanced Research WRF core.47 CMAQ is used by EPA, air quality planning 

agencies, and states to assess which state or regional plans will attain the NAAQS, 

predict effective national regulations and policies, and to produce air quality forecasts for 

the National Weather Service.48 

  

1.2.2.3. Day-Ahead Locational Market Clearing Prices Analyzer (DAYZER) 

 

 DAYZER49 simulates the operation of select electricity markets to forecast the 

hourly location market-clearing prices (LMPs), congestion costs, and emissions using the 

most recently available data on fuel prices, demand forecast, unit and transmission line 

outages, and emission permit costs. The electric load is forecasted based on historical 

load shape and forecasted peak demands, fuel prices from the New York Mercantile 

Exchange (NYMEX), random outage using the Bernoulli probability model, maintenance 

scheduling, and imports/exports. DAYZER is used in this work to compare electricity 

generation (actual values are proprietary) with observed pollutant concentrations.  

 

1.2.2.4. Measurement Data Networks 

  

 National air quality is monitored through air measurement site networks such as 

the State and Local Air Monitoring Stations (SLAMS) and subsets including National Air 

Monitoring Stations (NAMS), and Photochemical Assessment Monitoring Stations 
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(PAMS).50, 51 Criteria air pollutants (carbon monoxide, lead, NOx, ozone, PM, and SO2) 

are measured on varying time scales (from once every six days to hourly) depending on 

site requirements. The Chemical Speciation Network (CSN)52 and Interagency 

Monitoring of Protected Visual Environments (IMPROVE)53 are SLAMS subsets 

implemented specifically to measure species that contribute to total PM2.5 mass. Data for 

these networks is available for download54 and is used in this dissertation for comparison 

to model predictions. 

 

1.3. Dissertation Overview 

 

 This work aims to improve the representation of anthropogenic emissions of 

compounds from EGU point sources for the PJM electricity sector and identify possible 

causes of the disagreement between CMAQ-predicted and measured values of PM2.5 and 

ozone under peak conditions. Chapter 2 hypothesizes that inaccurate temporalization of a 

portion of EGU emissions in the PJM region contributes to underprediction of peak PM2.5 

concentrations. Continuous emission monitors (CEMS) placed on EGUs in compliance 

with Federal regulations (e.g., NOx SIP call, Acid Rain Program) record hourly heat input 

and emission rates for some pollutants. Due to a source identification issue, SMOKE 

does not utilize all available hourly CEM data that could more accurately represent EGU 

emissions during peak air quality episodes and instead replaces actual measured data with 

default temporal profiles. Michael Moeller and I matched missing hourly CEM data from 

267 EGUs (approximately half of unmatched CEMs in PJM) with their corresponding 

annual NEI records in SMOKE. With meteorology, biogenic and mobile emission inputs 
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developed and provided by Kirk Baker at the U.S. EPA, I employed CMAQ to simulate 

the air quality impacts of the additional CEM data. I found an increase in surface 

maximum hourly ambient PM2.5 mass of up to 7.4 µg/m3 with the addition of data from 

267 CEMs with the majority of the maxima due to sulfate both at the surface and aloft. 

This is the first time the air quality impacts of missing CEM hourly data in the CMAQ 

model have been quantified.  

 Chapter 3 builds on the findings of Chapter 2 and investigates the impact of less 

frequently used EGUs known as peaking units to peak concentrations of PM2.5 and ozone 

in population centers. Using the EPA peaking unit definition, Michael Moeller and I 

identified 544 EGUs in the PJM region as peaking units. I employed CMAQ with the 

same meteorology, biogenic and mobile emissions from Kirk Baker in Chapter 2 to 

simulate the air quality effects of peaking units. I found that peaking units contribute up 

to 110 µg/m3 of maximum hourly PM2.5 mass, but their impacts are localized. Primary 

unspeciated PM2.5 contributes the most to these maxima in the PJM region. This is the 

first time air quality impacts of peaking units have been quantified and compared to those 

of EGUs from its own RTO and other surrounding RTOs.  

 Using population data I downloaded from the U.S. Census, a population-

weighting formula from Carlton et al. (2010) and python code written by Barron 

Henderson, I calculated population-weighted concentrations from the CMAQ predictions 

to analyze the locations with the highest potential for human exposure to air pollution for 

peaking units. Highly populated urban areas both in and upwind from the PJM region 

have the highest exposure potential due to PJM EGUs (peaking and non-peaking). This is 
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the first time peaking unit air quality impacts have been population-weighted to analyze 

for potential exposure impacts. 

 Chapter 4 propagates uncertainties in controllable energy sector emissions and 

meteorology through the air quality prediction system. This chapter identifies differences 

in the predominant drivers of uncertainty in ambient predictions versus those for potential 

exposure estimates. I simulated perturbations of planetary boundary layer (PBL) height 

and onroad mobile source emissions of NOx (NO+NO2), primary organic carbon (POC), 

and unspeciated PM2.5 (PMother) in SMOKE and CMAQ. Using the equation and python 

code from Chapter 3, population weights are applied to the predicted concentrations to 

determine which variables have the largest impact on potential exposure. I found that 

while CMAQ-predicted ambient concentrations of PM2.5 mass were most sensitive (of the 

four studied variables) to PBL height perturbations, the majority of the impacts occurred 

over the ocean. Population-weighted PM2.5 mass concentrations were most sensitive to 

fluctuations of onroad POC.  To my knowledge, this is the first time population weights 

have been applied to pollutant concentration fluctuations due to uncertainty in an air 

quality model. Finally, Chapter 5 concludes this dissertation and proposes future 

directions. 
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2. CHAPTER 2 

 

TEMPORALIZATION OF PEAK ELECTRIC GENERATION PM EMISSIONS 

DURING HIGH ENERGY DEMAND DAYS 

 

Material in this chapter is adapted from: 

Farkas, C.M.; Moeller, M.D.; Felder, F.A.; Baker, K.A.; Rodgers, M.; Carlton, 

A.G., Temporalization of Peak Electric Generation PM Emissions During High 

Energy Demand Days. Environ. Sci. Tech. 2015, 49, (7), 4696-4704. 

 

2.1. Abstract 

 

Underprediction of peak ambient pollution by air quality models hinders 

development of effective strategies to protect health and welfare. EPA’s Community 

Multiscale Air Quality (CMAQ) model routinely underpredicts peak ozone and fine 

particulate matter (PM2.5) concentrations. Temporal mis-allocation of electricity sector 

emissions contributes to this modeling deficiency. Hourly emissions are created for 

CMAQ using temporal profiles applied to annual emission totals unless a source is 

matched to a continuous emissions monitor (CEM) in the National Emissions Inventory 

(NEI). More than 53% of CEMs in the Pennsylvania-New Jersey-Maryland (PJM) 

electricity market and 45% nationally are unmatched in the 2008 NEI. For July 2006, a 

U.S. heat wave with high electricity demand, peak electric sector emissions, and elevated 

ambient PM2.5 mass, we match hourly emissions for 267 CEM/NEI pairs in PJM 
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(approximately 49% and 12% of unmatched CEMs in PJM and nationwide) using state 

permits, electricity dispatch modeling and CEMs. Hourly emissions for individual 

facilities can differ up to 154% during the simulation when measurement data is used 

rather than default temporalization values. Maximum CMAQ PM2.5 mass, sulfate, and 

elemental carbon predictions increase up to 83%, 103%, and 310%, at the surface and 

51%, 75%, and 38% aloft (800 mb), respectively. 

 

2.2. Introduction 

 

Photochemical transport models are integral tools used to help develop air quality 

management strategies to decrease ambient pollution concentrations and minimize human 

exposure to harmful pollution. While Electric Generating Units (EGU) can exacerbate 

ambient ozone through nitrogen oxide (NOx) emissions,1-3 they are the largest source of 

primary particulate matter (PM) in the Northeast4 and fine mode (PM2.5) particulate 

sulfate in the continental U.S.5 A variety of adverse PM-related health consequences 

negatively impact human health, including increased cancer risk,6, 7 cardiovascular 

damage,8 pulmonary disorders,9 premature death.10, 11 and autism.12 For example, 

exposure to peak concentrations of PM2.5 over just 2 hours leads to the constriction of 

blood vessels in arteries, which can cause acute cardiac events.13 Fann et al. (2012) 

estimate that costs associated with pre-mature deaths and life years lost due to PM-related 

health impacts are approximately a factor of 30 more than ozone-related impacts in the 

U.S.14 In the Eastern U.S., peak PM2.5 mass concentrations are often observed during heat 

waves, typically characterized by a period of prolonged stagnation.15-18 The frequency, 
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duration and intensity of stagnation events are projected to increase due to climate 

change18-22 and observations from the National Climatic Data Center (NCDC)23 (see 

Figure A-1) and independent modeling24 indicate stagnation in the Northeastern U.S. is 

increasing. During heat waves and summertime stagnation in the Eastern U.S., electricity 

demand is highest due to increased air conditioning loads.25-27 These high electric 

demand days (HEDDs) are characterized by maximum emissions from the electric 

generation sector2, 3 and poor surface air quality. It follows from the above trends that 

peak PM2.5 episodes over the heavily populated Eastern U.S. could also increase. Despite 

the critical importance of peak air quality episodes, accurate characterization by 

photochemical transport models of these events is elusive. In particular, the Community 

Multi-scale Air Quality model (CMAQ) underpredicts peak summertime PM2.5 

concentrations in the Eastern U.S.28, 29 CMAQ is often used to assess the effectiveness of 

rules created to reduce the highest ambient concentrations of PM2.5 and other pollutants 

in order to achieve National Ambient Air Quality Standards (NAAQS). Extreme events 

frequently drive non-attainment of PM2.5 NAAQS and are not the result of average 

ambient concentrations, but rather exacerbated conditions like HEDDs and stagnation 

that result in peak pollution episodes. Therefore, it is especially important to accurately 

quantify emissions during these events. 

 In addition to health effects associated with surface level PM2.5 mass 

concentrations, aloft particulate sulfate and black carbon are near-term climate forcers 

(NTCFs) that can impact surface and cloud albedos and have strong radiative forcing 

properties, in particular over the Eastern U.S.30-32 Both the direct and indirect forcings of 

anthropogenic aerosols largely due to electricity generation in the U.S. peaked between 
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1980-1990 at more than -2.0 W m-2 each and are associated with a decrease in surface 

temperatures over the Central Eastern U.S. of 0.5-1.0 °C annually. The strongest cooling 

often occurs during heat waves.32, 33 The magnitudes of these forcings have decreased to 

approximately -1.0 W m-2 as sulfur dioxide (SO2) emissions have decreased and are 

projected to continue decreasing but at a slower rate.32, 33 Future energy policy and 

associated environmental regulations are key uncertainties, but with respect to future 

climate warming, sulfate PM mass may increase with rising temperatures due to faster 

SO2 oxidation34, 35 and increased power plant emissions on hot days2, 3. EGUs are also a 

large source of primary PM2.5, elemental (or black) carbon (EC), and NOx emissions, 

which can modulate ambient PM concentrations (e.g., nitrate, secondary organic aerosol 

(SOA)36).  

Continuous emission monitors (CEMs) installed on EGUs and industrial facilities 

with a capacity above 25 MW in response to Federal or State regulations such as the Acid 

Rain program37 or NOx State Implementation Plan (SIP) Call1, 38 provide direct hourly 

measurement of NOx and SO2 emissions from stationary point sources. Other regulated 

pollutants for which CEMs are not required or are not readily available, such as PM, are 

reported to the NEI on an annual basis. In addition to containing emissions not measured 

with CEMs, the NEI contains critically important source information for air quality 

modeling such as location, stack height, and other stack parameters such as exit 

temperature and velocity. NEI emissions are gridded, speciated, and temporalized for 

input into photochemical models, like CMAQ, using a pre-processor such as the Sparse 

Matrix Operator Kernel Emissions modeling system (SMOKE).39 CEMs are identified 

and paired to their corresponding NEI annual records by their Office of Regulatory 
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Information Systems identifiers (ORIS IDs) and corresponding boiler codes recorded in 

the NEI. NEI facility and CEM unit identifiers are established by different federal 

agencies (U.S. EPA and U.S. Energy Information Administration (EIA))40, 41, and it is not 

required that plants report CEM identifiers to the NEI with their annual emission reports. 

EGU emissions in the NEI without both the corresponding ORIS ID and boiler code 

result in hourly CEM-measured data not being input to CMAQ. Instead, SMOKE assigns 

a source classification code (SCC)-specific a priori temporalization to the NEI-reported 

annual emission total. 

In this work we investigate the degree to which EGU sector emissions are 

accurately represented at peak energy demand during a heat wave stagnation event in an 

eastern area of the U.S. served by the Pennsylvania-New Jersey-Maryland (PJM) 

Interconnection, the largest regional transmission organization (RTO) in the U.S.42 We 

explore the hypothesis that underprediction of peak PM2.5 concentrations in a portion of 

the PJM energy sector is due, in part, to inaccurate temporalization of EGU sector 

emissions for which measurement data is available. Further, inaccurate temporalization of 

EGU sector emissions may also provide a plausible explanation for overprediction of low 

PM concentrations.28 Because the generic SMOKE profile is biased low for peak 

generation, lower than average generation during other time periods may be 

overpredicted. To test this hypothesis, 267 units from 91 stationary sources (EGUs and 

industrial facilities of varying load capacities) from 5 states within the PJM network with 

measured but unmatched CEM data are paired with their corresponding NEI annual 

records and reprocessed through the SMOKE model to remove the generic temporal 

profiles and replace default patterns with actual measurements. We conduct two 
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simulations with CMAQv5.01 to analyze the effect of the improved hourly 

temporalization of point source emissions. CMAQ predictions are evaluated with 

Interagency Monitoring of Protected Visual Environments (IMPROVE)43 and EPA’s Air 

Quality System (AQS) measurement data. 

 

2.3. Methods 

 

 To simulate air quality for the Northeastern U.S., we apply CMAQ to the heat 

wave of 2006 using emissions from the 2008 NEI with 2006 CEM data. Estimated 

electricity dispatch from the Day-Ahead Locational Market Clearing Prices Analyzer 

(DAYZER), PM2.5 mass from AQS and chemically speciated PM measurements from the 

IMPROVE network are employed to provide context for CMAQ-predicted changes in 

ambient concentrations of PM2.5 mass, sulfate, and EC from the improved temporal 

emission assignments during the heat wave. 

  July and August 2006 are characterized by a widespread heat wave that produced 

higher-than-normal daily maximum and minimum temperatures throughout the U.S. as 

well as below-average precipitation.44 The nationally averaged temperature was 77.2ºF, 

and precipitation averaged less than 2.6 inches for the U.S. July 2006 is the third warmest 

July on record nationally.45 These conditions were accompanied by higher than normal 

consumption of electricity over the majority of the nation, leading to increased electricity 

sector emissions. Peak summertime sunlight and hot temperatures with little precipitation 

or wind coupled with increased emissions are conducive to photochemical reactions and 

poor air quality. 
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2.3.1. Air Quality Modeling 

 

 We apply CMAQv5.0.1 with 12 km by 12 km grid cells (109 rows by 144 

columns) and 34 vertical layers up to 50 millibars. The Carbon Bond 05 chemical 

mechanism with toluene chemistry extensions46 is used in the simulations to describe gas 

phase photochemistry and the AERO5 aerosol module which includes secondary organic 

aerosol formed through semi-volatile partitioning47 and cloud chemistry.48 The height of 

point source emission stacks in the five study states ranged from 0 to 320 meters 

(approximately CMAQ layer 1 to 6) with an average stack height of approximately 60 

meters (layer 2). Initial and boundary conditions for CMAQ are extracted from a 

continental scale simulation that matched the time period of this application. Details 

related to inputs, application, and evaluation of the larger continental scale CMAQ 

simulation are described elsewhere.49 The Weather Research and Forecasting model 

(WRF), Advanced Research WRF core version 3.150 is used to generate gridded 

meteorological data that generates emissions and drives transport in the photochemical 

modeling.  

 Two CMAQ simulations are conducted for June 28-July 31, 2006, which includes 

a portion of the heat wave. The first three simulation days are excluded from the analysis 

for model spin up to minimize the impact of initial conditions.51 Day and hour specific 

WRF-estimated solar radiation and temperatures are input to the Biogenic Emission 

Inventory (BEIS) version 3.14 model to generate biogenic emission estimates.52 

Anthropogenic emissions originating in the United States are based on the 2008 NEI 

version 2.53 Stationary point sources reporting CEM data (http://ampd.epa.gov/ampd/) are 
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modeled with day and hour specific emissions matching the simulation period. Onroad 

mobile emissions are estimated with the Motor Vehicle Emissions Simulator (MOVES) 

model 2010b.54 Canadian emissions are based on a 2002 inventory and not projected to 

2006.55 All emissions are processed for input to CMAQ using SMOKE. Both CMAQ 

simulations include identical meteorology, chemistry and emissions, with the exception 

that the sensitivity study incorporates hourly emissions measurements for 267 units that 

employed default temporalizations in the base case simulation. 

 

2.3.2. EGU Emissions Processing 

 

 Prior to the 2008 NEI, facility and emission information was collected under the 

Consolidated Emissions Reporting Rule (CERR) using the NEI Input Format (NIF), 

which does not require ORIS ID submission.56 EPA promulgated the Air Emissions 

Reporting Requirements (AERR) in December 2008, updating the previous CERR.57 The 

AERR requires state, local, and tribal agencies to submit emission inventories to the 

Emission Inventory System (EIS) in the Consolidated Emissions Reporting Schema 

(CERS) XML reporting format. ORIS IDs are stored in EIS as an alternative identifier 

when available, but CERS does not have an explicit reportable ORIS ID data element.58 

 To account for this deficiency, we utilize the Mid-Atlantic Regional Air 

Management Association (MARAMA) crosswalk59, a document that matches the 

different identifiers for a facility or unit across inventories, to match 267 units from 91 

stationary sources with registered but unmatched CEM data and identification numbers 

for five states in the Northeast: Delaware, New Jersey, Pennsylvania, Virginia, and 
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Maryland (Figure 2-1a). These units represent 49% of the missing matches in the PJM 

region, and 12% of the total missing units throughout the U.S. (Table 2-1). 

 To more accurately represent the actual temporal profile of peak emissions during 

the heat wave, 2006 CEM data is used instead of the default 2008 NEI-included CEM 

data. Matching the ORIS IDs/boiler codes involves manual insertion of the correct codes 

into the corresponding columns in the NEI Integrated Planning Model (IPM) point-source 

sector (ptipm) inventory. CEMs are smoke stack specific, however, a single stack can be 

associated with multiple units (e.g. boilers). The NEI is reported on the unit level, not on 

the stack level. The SMOKE utility program CEMScan39 is used to sum annual totals of 

NOx and SO2 emissions, heat input (heat energy input in mmBTU), steam load (steam 

generated), and gross load (net energy MW output) from hourly data at the CEM 

monitoring location. When CEM and NEI ORIS ID and boiler codes match, SMOKE 

uses the output from CEMScan to allocate hourly emissions for NOx and SO2 as well as 

all other pollutants (e.g. PM, mercury) with an annual emission total for each point 

source using Equation 2-139. The hourly emissions for each source (i) for each emitted 

pollutant (j) are calculated as: 

 

𝐻𝑜𝑢𝑟𝑙𝑦  𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠!,! =   𝑎𝑛𝑛𝑢𝑎𝑙  𝑓𝑎𝑐𝑡𝑜𝑟!   ×  𝑎𝑛𝑛𝑢𝑎𝑙  𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠!,!  [Equation 2-1] 

where, 𝐴𝑛𝑛𝑢𝑎𝑙  𝐹𝑎𝑐𝑡𝑜𝑟! =
!!"#$%  !!"#  !"#$%  !"#  !"#$/!"#$%&

!""#!$  !"##$%  !!!"  !"#$%  !"#  !"#$/!"#$%&
 [Equation 2-2] 

 

To quality assure emission changes using this method, we manually calculate the hourly 

emissions using Equation 2-1 for primary PM2.5 and SO2. We compare these calculations 
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of hourly emissions from CEM heat inputs to that of the default temporal profile assigned 

by SMOKE based on the unit’s SCC39. 

 

2.3.3. Electricity Modeling 

 

 The Day-Ahead Locational Market Clearing Prices Analyzer (DAYZER)60 

simulates the operation of select electricity markets using the most recently available data 

on fuel prices, electricity demand, unit and transmission line outages, and emission 

permit costs. Detailed information about DAYZER and its required data input can be 

found elsewhere60. We employ DAYZER in these retrospective simulations to evaluate 

power generation during this heat wave stagnation event and relate electricity dispatch on 

HEDD to measured peak PM2.5 mass, sulfate, and EC measurements. 

 

2.3.4. Ambient Evaluation 

 

 CMAQ predictions and DAYZER dispatch data are compared with ambient 

measurements from the nine IMPROVE monitoring sites and 13 AQS locations in the 

modeling domain (Figure 2-1b). IMPROVE and AQS measurement data is downloaded 

from the Technology Transfer Network (TTN) Air Quality System (AQS)61 and is paired 

in space and time with CMAQ results using the site compare (sitecmp) tool.62 The data is 

analyzed using the Visualization Environment for Rich Data Interpretation 

(VERDIv1.4)63 as well as the R software environment64. 
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2.4. Results and Discussion 

 

2.4.1. Air Quality and Electricity Dispatch 

 

 During the simulation time period, trends in PM2.5 and sulfate mass 

concentrations are positively correlated with electricity dispatch in PJM. The correlation 

coefficient between daily DAYZER-predicted electricity dispatch and the daily average 

maximum PM2.5 mass at all AQS monitoring sites is r =0.6 (Figure A-2) and that for 

daily maximum sulfate at IMPROVE locations is r =0.5 (Figure 2-2). On July 31, when 

the PM2.5 mass concentration is highest and the fractional contribution of sulfate is 

greatest (EGUs are the largest source of continental sulfate), there is a corresponding 

peak in PJM electricity generation. Conversely, on July 8-9, when electricity demand is 

lowest, regional ambient PM2.5 concentrations are lowest and the fractional contribution 

of sulfate is smallest. Note, however, that there is an offset because electricity generation 

data is hourly, while speciated PM2.5 measurements are available every third day.  

 Similar to previous studies28, the CMAQ model indicates a positive model bias 

(overprediction) at low ambient mass concentrations and a negative model bias 

(underprediction) when measurement values are high (Figure 2-3). Linear model 

relationships between model bias and ambient measurements for the two species are 

robust and statistically significant, (sulfate: r =-0.4 and p = 3.1x10-7; PM2.5: r = -0.6 and p 

= 4x10-15).  This is consistent with temporal mis-allocation of EGU emissions where 

default profiles are designed to predict averages and typical conditions, not peak or 

minimum events. In the sensitivity simulation where 267 CEM matches are added, 27% 
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of CEMS in PJM (From Table 2-1: (541-267)/1006) and 40% of CEMS nationally that 

could be improved remain unmatched, and hourly emissions for these sources remain 

temporally mis-allocated. These percentages are calculated using values from the Clean 

Air Markets Division (CAMD) database. 

 Actual utilization of hourly CEM emission data from the additional 267 CEMs in 

SMOKE increases CMAQ-predicted peak surface mass concentrations of hourly ambient 

PM2.5 up to 7.4 µg/m3, an 83% increase, during the heat wave studied here. Maximum 

hourly ambient PM2.5 mass increases are primarily a consequence of increases in sulfate 

(from SO2 precursor emissions) and EC mass (Figure 2-5, Figure A-3). At the surface, 

increases of sulfate are highest in the Virginia Beach/Norfolk, VA area (2.5 µg/m3) 

(103%) near coal plants (Figure 2-1a). A smaller but noticeable increase is estimated near 

Blacksburg, VA (1-1.6 µg/m3). Increases in maximum hourly modeled EC concentrations 

in specific grid cells are up to 5.3 µg/m3 near Southwestern NJ and Northeastern DE, a 

310% increase. This is consistent with locations of coal fueled plants, the largest point 

sources of EC emissions4, (Figure 2-1) near Virginia Beach/Norfolk, VA, in the suburbs 

of Wilmington, DE, and Blacksburg, VA. The largest PM2.5 mass concentration increases 

occur near population centers: Blacksburg, VA (1-1.5 µg/m3), Virginia Beach/Norfolk, 

VA area (1.5-2.5 µg/m3), Pittsburgh, PA (1.5-2.5 µg/m3) and in the suburbs of 

Wilmington, DE (4.5-7.4 µg/m3). Aloft, at 800mb, an approximation for the daytime 

boundary layer height, ambient PM2.5 concentrations increase up to 1.5 µg/m3 with 

sulfate comprising nearly all of the change. These concentrations represent increases of 

51% (PM2.5) and 75% (sulfate) aloft. Changes in predicted ambient EC concentrations are 

small aloft (0.17 µg/m3), but represent a 38% increase.  
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 CMAQ predictions of other PM species are also impacted by the emissions 

changes. Particulate ammonium increases up to 0.5 µg/m3 at the surface and 0.2 µg/m3 

aloft, with the largest differences occurring near Newark, NJ, the Virginia 

Beach/Norfolk, VA area and Blacksburg, VA. In Pennsylvania, the increases in 

ammonium are spatially consistent with nitrate increases. Ammonium increases in the 

Virginia appear to be driven by sulfate, consistent with coal plant locations (Figure 2-1a). 

Nitrate exhibits increases up to 0.8 µg/m3 at the surface with the largest concentration 

differences occurring near East-Central Pennsylvania. Aloft, changes in predicted nitrate 

are similar in amount to changes at the surface (up to 0.7 µg/m3) however, geospatially 

they are different. Maximum aloft increases are located near Newark, NJ and New York 

City, NY. Mass concentrations of organic carbon (OC) increase up to 1.6 µg/m3 in North-

Central VA, Southern NJ and Pittsburgh, PA, driven by increased emissions of primary 

organic carbon. Aloft, OC has a small signature, with increases of up to 0.1 µg/m3 near 

Pittsburgh, PA and New York City, NY (Figure A-4). 

 Changes in ambient ozone mixing ratios in these simulations at the surface are 

less than 2%, however percent differences aloft are larger because absolute 

concentrations are smaller (Figure A-5). In the region modeled in this work, 60% of NOx 

emissions stem from mobile sources, with only 20% resulting from electric generation 

(Figure A-6). The small difference in CMAQ predicted ozone between simulations is 

consistent with the electricity sector contributing a relatively small amount to the domain 

total NOx emissions. 
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2.4.2. Matching Facility IDs and Improved Temporalization of Emissions 

 

 These changes in CMAQ-predicted ambient concentrations are a consequence of 

correcting a portion of the temporally mis-allocated SO2, primary PM2.5 and EC 

emissions. The generic SCC-based temporal profiles that are assigned to facilities are 

designed to represent average and typical conditions, not peak events. Whereas these 

profiles capture pattern differences between day and night, weekday and weekend, and 

seasons, they are limited in their ability to account for discrepancies due to year-specific 

events (e.g. heat waves). EPA and MARAMA have addressed this issue to an extent with 

the MARAMA-developed “CAMD to NIF (National Emissions Inventory Input Format) 

Crosswalk” to match CEM and NEI identifiers in the Northeastern and Mid-Atlantic 

regions of the U.S.65 Still, more than 40% of the national 2006 CEM measurement data 

goes unused in simulations that employ the 2008 NEI. For example, the Hopewell, VA 

coal plant CEM data indicates the unit operated only in May through October of 2006. 

The 2008 NEI is missing the ORIS ID and boiler codes associated with this unit’s CEM, 

therefore SMOKE temporalizes Hopewell emissions over the entire year (Figure 2-6a). 

During January – May and September – December, periods of lower than average 

electricity demand, SO2, EC, PM2.5 emissions are largely overpredicted. During higher 

summertime peak demand, emissions can be underpredicted by more than a factor of 

three. In the portion of the heat wave simulated here, use of CEM data for this coal plant 

results in an average hourly increase of PM2.5 and SO2 emissions of 154% over the 

default SMOKE emissions when no match occurs (Figure 2-6b). The relative increases 

for each pollutant are the same for an individual unit using this method because emissions 
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are heat input dependent (Equation 2-1). A similar trend in both PM2.5 and SO2 emissions 

is observed at a New Jersey gas plant, where the CEM estimate represents an increase of 

131% in PM2.5 and SO2 emissions (Figures 2-6c and 2-6d). It should be noted that the 

annual averages and total of emissions for both the default temporal profile and matched 

CEM profile are the same, however temporal allocation results in hourly, daily and 

monthly emission disparities. 

 Similar to emissions processing programs, routine air quality monitoring 

networks, in particular for chemically speciated PM, are designed to characterize annual 

percentiles and not peak episodes. Episodic peak events occur on short time scales 

(~hours) and negatively impact health7, 13, but are not adequately characterized by 

conventional air quality surface networks that make measurements every three days or 

even daily. Therefore, comparison of hourly model predictions to measurements collected 

every 3rd day (e.g. IMPROVE) to evaluate changes in model performance induced by 

improvements to peak hourly emissions shows little to no improvement in model 

predictive skill. However, using the non-reference method hourly PM2.5, episodic 

improvements in prediction of peak concentrations are observed (Figure 2-4). During a 

period of higher electricity demand, July 16-18, 2006, predicted PM2.5 concentrations are 

closer to measured values (maximum: up to 4 µg/m3 closer to observed values; average: 

0.1 µg/m3 closer to observed values over entire domain) for the added CEM sensitivity 

simulation for a few hours each day. The majority of these slight improvements occur 

when observed PM2.5 mass concentrations exceed 50 µg/m3 (i.e. peak concentrations). 

Speciated hourly measurements of sulfate and EC would more enable more accurate 

assessment the effectiveness of the temporalization scheme. 
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 CMAQ predictions of a variety of pollutants increase, indicative of the peak 2006 

summer heat wave emissions that occur when the matched EGU emissions are temporally 

reassigned based on their hourly CEM data. A similar study for an annual simulation is 

unlikely to perturb annual PM2.5 mass concentration averages. However, episodic 

increases in PM2.5 mass predictions are expected, as observed during the heat wave 

modeled here. Decreases in predicted PM2.5 mass during time periods of low electricity 

demand due to hourly and daily allocation differences are also expected. This suggests 

that better temporalization of EGU emissions may improve CMAQ’s ability to reproduce 

PM variability at the surface and aloft. While this paper focuses on temporalization for 

better prediction of PM2.5, sulfate, and EC ambient mass concentrations, this analysis 

could be applied to any number of pollutants emitted from point sources, for example 

mercury, whose largest emission source is power plants66. Furthermore, these results 

represent units from a single RTO and only 12% of the total unmatched CEM units in the 

U.S. A study examining this issue in other regions of the U.S. electricity grid would 

provide an interesting comparison to the results observed here. For example, a region in 

which power plants are the dominant source of NOx would provide a different 

perspective of ozone sensitivity to temporalization of EGU sector emissions. Finally, the 

MARAMA crosswalk is essential to this work, a national crosswalk, or combination of 

available RTO crosswalks, would aide in a solution to this problem. 
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	   Base Simulation Sensitivity Simulation 
	    

PJM Region 
 

 

Total Units with CEMs 1006 1006 
Matched ORIS ID/boiler 

in NEI 
465 732  

(465 + 267 new matches) 
Unmatched ORIS 
ID/boiler in NEI 

541 274  
(541 – 267 new matches) 

  

United States 
 

 

Total Units with CEMs 4830 4830 
Matched ORIS ID/boiler 

in NEI 
2644 2911  

(2644 + 267 new matches) 
Unmatched ORIS 
ID/boiler in NEI 

2186 1919  
(2186 – 267 new matches) 

 
Table 2-1. Continuous emission monitor matched and unmatched unit data. 
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Figure 2-1. a) The location of 267 units by fuel type, whose identifying numbers are 
added to the 2008 NEI for this study and b). The locations of the IMPROVE (red 
triangles) and EPA AQS (blue circles) observation stations in the study domain. 
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Figure 2-2. IMPROVE network daily maximum PM2.5 observations from July 2006 
(dotted line) measured every third day, divided into categories of sulfate (red), EC 
(black), and all other species (gray) for the 5 studied states: (Delaware, Maryland, New 
Jersey, Pennsylvania, Virginia). The percentages represent the fraction of PM2.5 that is 
sulfate at each observation. The daily DAYZER total electricity generation for the entire 
PJM region during the same time period is in blue. Note: The width of each pie chart is 
equal to the 24-hour period over which that measurement was made, as demonstrated by 
the green bracket under the first pie chart. 
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Figure 2-3. The base case model bias of sulfate (red) and PM2.5 (blue). The observation 
data are IMPROVE sites that lie within the modeling domain for all measured days in 
July 2006. 
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Figure 2-4. CMAQ model bias of PM2.5 ambient concentrations at the surface between 
July 16-18, 2006 as a time series (left) and compared to hourly observed values (right) for 
both the base case (unfilled triangles) and the case with additional CEM matches (blue 
filled circles). 
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Figure 2-5. CMAQ-predicted maximum hourly ambient concentration differences 
(matched CEM simulation – base simulation) at the surface and the 800mb level between 
July 1-31, 2006 of PM2.5 (a and d), sulfate (b and e) and EC (c and f). NOTE: not all 
concentration scales are the same. 
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Figure 2-6. A manual comparison of the default temporalization in the SMOKE model 
without matched CEM hourly data (red) and with the temporalization from the hourly 
CEM data (blue) using Equation 1. The top two plots are data from the Cogentrix-
Hopewell coal plant in Virginia and the bottom two plots are data from the AES Red Oak 
plant in New Jersey. The left plots show the temporalization over the entire year; the right 
plots show July 12-26, 2006, outlining a portion of the heat wave. 
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3. CHAPTER 3 

 

HIGH ELECTRICITY DEMAND IN PJM: ELECTRICTY SECTOR CONTRIBUTION 

TO AIR QUALITY AND PEAKING UNIT POTENTIAL EXPOSURE  

 

Material in this chapter to be submitted as: 

 Farkas, C.M.; Moeller, M.D.; Felder, F.A.; Henderson, B.H.; Carlton, A.G., High 

 Electricity Demand in PJM: Electricity Sector Contribution to Air Quality and 

 Peaking Unit Potential Exposure. Environ. Sci. & Tech. (in prep)  

 

 

3.1. Abstract 

 

 On high electricity demand days, when air quality is often poor, regional 

transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the 

electric grid by employing peak-use electric generating units (EGUs). These “peaking 

units” are exempt from some federal and state air quality rules that traditionally target 

larger (e.g., >25 MW) facilities. We identify RTO assignment and peaking unit 

classification for EGUs in the Eastern U.S. The Community Multiscale Air Quality 

(CMAQ) model estimates fine particulate matter (PM2.5) mass and ozone concentrations, 

and we population-weight ambient values as a surrogate for potential exposure during a 

heat wave in July 2006. Non-PJM EGU emissions produce high hourly maximum PM2.5 

concentrations (up to 140 µg/m3), predominantly impacting areas outside PJM. 

Monitored and controlled PJM peaking units contribute up to 87% of hourly maximum 
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PM2.5 mass locally. Potential exposure to peaking unit PM2.5 mass is highest in the 

domain’s most populated cities. Average daily temperature and national Gross Domestic 

Product (GDP) drive peaking unit heat input. Air quality planning that capitalizes on the 

understanding of electricity demand and economics may provide a holistic approach to 

protect human health within the context of energy needs in a changing world. 

 

3.2. Introduction 

 

 In the Northeast U.S., high-energy demand days (HEDDs) are typically hot, 

stagnant summer days when air conditioning loads are high and air quality is poor. 

Electricity usage is linearly correlated with daily maximum temperatures above 23˚C,1-5 

because generation rises to meet increased demand. Peak generation is met by employing 

“peaking units”, often older, less efficient, less regulated6, 7 electric generating units 

(EGUs), to ensure reliability of the grid. In many regions of the U.S., dispatch within and 

among electric grids is managed by regional transmission organizations (RTOs), which 

administer the transmission of electricity in a particular region. PJM Interconnection, the 

RTO governing the electricity transmission for all or parts of Illinois, Indiana, Michigan, 

Ohio, Kentucky, Virginia, West Virginia, Pennsylvania, Delaware, Maryland, New 

Jersey, North Carolina, Tennessee, and the District of Columbia, is the largest U.S. RTO, 

managing roughly 20% of electricity generation in the U.S.8 PJM is transmission limited 

and employs many peaking units that are often located in close proximity to population-

dense urban centers (Figure 3-1) to provide extra electricity quickly to areas of highest 

demand. Meteorological conditions that trigger high demand episodes (e.g. heat waves, 
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stagnation events) have increased in frequency and duration and are projected to continue 

this trend with the changing climate.9-12 Further, higher air temperatures reduce the 

efficiency of electricity generators and transmission lines.13 In the coming decade, 

summer peak load in PJM is forecast to increase by an average of 1% yearly.14 

 The electricity sector and fossil-fueled EGUs, in particular, are the largest 

controllable source of primary particulate matter15 and are responsible for 75% of annual 

sulfur dioxide (SO2) emissions in the U.S.16 EGUs are the second largest controllable 

source of nitrogen oxide (NOx) emissions in the U.S.17 These emissions and secondary 

pollutants formed from them in the atmosphere, such as sulfate, nitrate, and ozone cause 

cardio and pulmonary diseases18-21 and premature death22, 23 in humans. EGU-derived 

particles (e.g. black carbon (BC) and sulfate) act as near term climate forcers (NTCFs) 

and can modulate regional surface temperatures, in particular in the Eastern U.S.24-27 EGU 

emission rates of individual pollutants28 vary (Table B-1) dependent on fuel type, 

generation amount, and operating control equipment. Emission factors in PJM are lower 

than the national averages for all categories. In 2006, of the peaking units in PJM for 

which data is available, (i.e., monitored and controlled EGUs with continuous emission 

monitors (CEMs)), 1% used coal, 24% used oil, and 75% used gas. Many peaking units 

however are not fitted with CEMs and their emissions, even in high population density 

areas, are not measured and difficult to quantify.  

 Despite the close proximity of some peaking units to high population areas, and 

their projected increase in fractional contribution to total electricity generation,14 these 

facilities are not well characterized in the emissions inventory and often fall outside 

criteria for inclusion in emissions control programs. The exact number of unmonitored 
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peaking units is difficult to quantify because when peaking units fall below a regulatory 

threshold nameplate generating capacity, CEMs and national emissions inventory (NEI) 

reporting are not required. For example, if a peaking unit has a nameplate generation 

capacity below the policy-implemented threshold (25 MW)6, 7 of the Acid Rain Program, 

the SO2 emissions may not be regulated unless the unit’s state requires it. Peaking units 

not located in an ozone or PM non-attainment region or with low annual or seasonal 

emissions, regardless of peak hourly emission rates, can be exempt from federal NOx 

control and monitoring rules.29 

It is well-established in electricity markets, that dispatch and short term generation 

planning is required for Day-Ahead market based demand, transmission capacity and fuel 

price.30 In PJM, as in many parts of the U.S., the dispatch of generation units is a function 

of demand, generation offers (primarily fuel costs), transmission constraints, and 

reliability requirements. Long term energy planning (e.g. new facility construction) is 

based on long-term forecasts of fuel price and demand.31, 32 Short term fuel price 

fluctuations largely control electricity dispatch, in particular, in the Northeast U.S., and in 

particular at peak demand time periods.30 However, short-term spot market economics are 

absent in air quality forecasts, meant to alert and protect the public. This represents a key 

knowledge gap.  

 Holistic and regional regulation and analyses of air pollution, including extreme 

events, such as heat waves and peak electricity demand episodes, are needed because of 

the interconnected nature of the electricity system (e.g. electricity demand from 

Philadelphia may require fossil fuel burning in Ohio) and the transport of pollution across 

state boundaries. EGU emissions impact air quality locally and regionally because they 
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directly emit pollution and precursors that form secondary fine particles (PM2.5) and 

ozone. Regional regulations such as the Cross-State Air Pollution Rule (CSAPR) aim to 

reduce emissions from EGUs that contribute to regional PM2.5 and ozone, and this is 

critical. Local rules aimed at small generators are also helpful to curtail pollution events 

and avert adverse health impacts. In this work we investigate the air quality impacts of 

emissions from 544 monitored and controlled peaking units during a heat wave 

stagnation event during July 2006 in the Eastern U.S. This period is characterized by 

peak electricity demand that broke demand records set one year prior.33 We compare the 

air quality impacts of PJM peaking units to those associated with all EGUs from PJM and 

EGUs from surrounding RTOs that fall within the model domain. We employ the 

Community Multiscale Air Quality (CMAQ) model to simulate air quality and 

population-weight the hourly concentrations as an index for exposure potential. We 

explore associations among fuel price, electricity demand and air quality in PJM during 

the heat wave. To our knowledge, this is the first discussion of the air quality impacts of 

emissions from an individual RTO on its own region and on surrounding regions in the 

literature. We focus on PM because health impacts and the associated costs are larger 

than ozone impacts.34 

 

3.3. Methods 

  

 We investigate air quality specific to an extreme event, namely peak electricity 

generation in PJM from July 1-31, 2006 during a heat wave stagnation event. Higher-

than-normal temperatures and below-average precipitation produced the third warmest 
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July on record35, 36 and resulted in above-average electricity consumption and poor air 

quality in many cities.37 CMAQ is employed to simulate air quality and we assess 

differences in ambient and population-weighted concentrations of total PM2.5 mass, 

primary unspeciated PM2.5, sulfate, elemental carbon (EC), and ozone from perturbations 

in EGU-sector emissions. 

 

3.3.1. Air Quality Modeling 

 

 We conduct four CMAQ simulations incorporating emission scenarios described 

below. The simulations here employ the same meteorology, biogenic emissions and 

chemistry as described in detail in Farkas et al., 2015.38 The Base Case simulation in this 

work is the sensitivity simulation in Farkas et al., 2015. Briefly, CMAQv5.0.1 is applied 

to a domain covering the majority of the PJM region on a 12 km by 12 km grid with 34 

vertical layers up to 50 mb for the heat wave of June 28-July 31, 2006. The first three 

days are excluded from the analysis for model spin up. Air quality impacts from three 

sensitivity analyses are estimated via difference from the Base Case, 1.) PJM peaking 

unit emissions, 2.) All EGU emissions from PJM, and 3.) EGU emissions from RTOs 

other than PJM (Table 3-1). Emission sectors (biogenic, mobile, etc) remain constant 

across the simulations. 
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3.3.2. Emissions Processing 

 

 Four different emission scenarios (Table 3-1) are created and processed in the 

Sparse Matrix Operator Kernel Emissions (SMOKE) model 

(https://www.cmascenter.org/smoke/). The base case scenario contains U.S. 

anthropogenic emissions obtained from the 2008 NEI (v2) and July 2006 hour-specific 

CEM data. From Farkas et al. (2015),38 267 Office of Regulatory Information Systems 

(ORIS) identifiers are added to the point source sector emissions for more accurate 

temporal representation of EGU emissions. Biogenic emissions are generated from the 

Biogenic Emissions Inventory model (BEISv3.14)39 with day- and hour-specific solar 

radiation and temperatures from the Weather Research and Forecasting (WRF) model. 

The Motor Vehicle Emission Simulator (MOVESv2010b) is employed to estimate onroad 

mobile emissions. A 2002 inventory for Canadian emissions are used and are not 

projected to 2006.  

We identify EGUs as peaking units by applying the Environmental Protection Agency’s 

(EPA) peaking unit definition to the point source sector of the 2008 NEI with 2006 CEM 

data. The EPA categorizes an EGU as a peaking unit if it meets two criteria: 1) the unit’s 

average annual capacity factor is less than 10% over a three-year period and 2) the unit’s 

annual capacity factor is less than 20% in each of the three years. The capacity factor of a 

unit is defined as “either 1) the ratio of the unit’s actual electrical output to the nameplate 

capacity times 8,760 or 2) the ratio of the unit’s actual annual heat input to the maximum 

design heat input times 8,760”40 (Figure B-1). Employing the EPA definition with 

maximum-rated hourly heat input data over a three-year period (2006-2008) we identify 
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544 point-sector (Integrated Planning Model (IPM) sector and non-IPM sector) peaking 

units in states that are members of PJM from the 2008 NEI. The 544 units represent 10-

20% of total electricity generation in PJM on the highest demand days (Figure B-2). 

These units represent a lower bound for peak electricity generation and air quality 

impacts, as they are monitored and controlled peaking units fitted with CEMs and 

represent a subset of EGUs used for peak demand (e.g. behind-the-meter (BTM) 

generation is not considered and impacts air quality).41 The second scenario, hereafter the 

“No Peak” emission scenario, contains the same emissions as the Base Case scenario 

with the exception that air pollution emissions from 544 peaking units are removed from 

the annual and hourly SMOKE emission inputs. 

 We employ the EPA’s Clean Air Markets Division (CAMD)28 database to 

separate EGUs into PJM and non-PJM categories. Of note, North Carolina and Michigan 

are considered non-PJM states in this analysis because a small number of facilities in 

these states are part of PJM. For the “No PJM” scenario, we remove 1,017 PJM EGUs 

from the annual and hourly SMOKE emission inputs. The “Only PJM” scenario removes 

all EGUs except the 1,017 identified PJM EGUs from the annual and hourly SMOKE 

emissions inputs. To identify and remove individual EGUs (No Peak, No PJM, and Only 

PJM scenarios) we use ORIS identifying numbers. Although we employ all publically 

available data, a key limitation is that not all facilities report ORIS ID numbers to the 

NEI and therefore some qualifying facilities may not properly identified.38 This impairs 

the accuracy of air quality predictions. However the same method and data is used for all 

RTO emission scenarios and while exact air quality predictions are uncertain, the relative 

impact is more reliable. 
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3.3.3. Emissions, Temperature, and GDP Correlation 

 

 To investigate and identify factors that influence peaking unit usage and 

ultimately help derive predictive indicators, we compare both annual PJM and U.S. 

peaking unit heat input with PJM and U.S. average daily summer temperature and 

national gross domestic product (GDP) growth rate from 2004-2014. A yearly list of PJM 

and U.S. peaking units is complied to account for the variability in peaking unit usage. 

Annual PJM and national EPA-defined peaking unit heat input is obtained from 

CAMD.28 PJM and U.S. summer temperatures are calculated as the average daily 

temperature in the months of June, July, and August from the National Centers for 

Environmental Information’s climatological rankings database.36 The U.S. GDP annual 

growth rate for 2004-2014 is obtained from The World Bank.42 

 

 

3.3.4. Population-Weighted Concentration Analysis 

 

To estimate locations with the highest potential for human exposure due to 

peaking units, we calculate population-weighted concentrations. We assign populations 

from the 2010 National Census Tracts Gazetteer,43 based on fractional area overlap, and 

match with CMAQ concentrations of total PM2.5 mass, primary unspeciated PM2.5, 

sulfate, EC, and ozone from the simulations described above using the PseudoNetCDF, 

custom-developed software that is freely available 
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(http://www.github.com/barronh/pseudonetcdf). Equation 144 is used to calculate 

population-weighted concentrations in the study domain: 

!!  ×  !!
!!

   x 1000 people                    [Equation 1] 

where Pi is the population of the grid cell and Ci is the concentration of the grid cell.44 

The resulting population-weighted figures are multiplied by 1000 people for scaling 

purposes and are subtracted from the population-weighted Base Case simulation to 

estimate the impact due only to the specific sector.  

 County-level total population data from the 2010 American Community Survey 

(spanning 2006-2010) from the U.S. Census Bureau (https://www.census.gov/programs-

surveys/acs/) was downloaded and mapped using the “acs”45 and “choroplethr”46 

packages in the R statistical language.47 County-level median annual household income 

data from the 2010 American Community Survey (spanning 2006-2010) from the U.S. 

Census Bureau was also downloaded using the “acs” package, and was adjusted by 2015 

cost of living state data created by the Council for Community and Economic Research 

(https://www.c2er.org) and download from the Missouri Economic Research and 

Information Center (https://www.missourieconomy.org/indicators/cost_of_living/). 

Normalized median annual household income by county was mapped using the 

“choroplethr” R package. 
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3.4. Results and Conclusions 

 

3.4.1. Peaking Unit Usage 

 

 Between 2004-2014, PJM peaking unit heat inputs from CEM data vary annually 

and are dependent on meteorology and economic indicators (Figure 3-2). A statistically 

robust positive correlation (r = 0.8, p = 3×10-3) exists between average summer (e.g., 

when peaking units are typically the most employed: June, July, August) daily 

temperatures in the PJM states and annual peaking unit heat input. Repeating the analysis 

for all U.S. peaking unit heat inputs and U.S. average summer daily temperature yields 

the same statistically discernible positive correlation (r = 0.8, p = 3×10-3, Figure B-3a). 

National GDP growth rate has a weaker positive correlation (r = 0.36, p < 0.3) over the 

10-year period. However, during the most recent U.S. recession (2007-2011), the national 

GDP growth rate was 2.5% or less. The positive correlation between PJM peaking unit 

heat inputs and national GDP growth rate for this time period is strong (r=0.9, p < 0.05). 

A stronger positive correlation exists between all U.S. peaking unit heat inputs and 

national GDP growth rate during the recession (r = 0.94, p < 0.02). This suggests that 

GDP growth rate affects electricity usage below an economic threshold and may imply 

that GDP growth is linked to disposable income available for air conditioning up to 

certain economic and temperature limits. 

 Among EGU fuel types, the price of coal (shipment price)48 has the highest 

correlation with PJM peaking unit heat input (r=0.32, p=0.5). Though this association is 

suggestive of increased usage of peaking units when coal prices are above a threshold 
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price the relationship is not statistically discernable. The average annual prices of oil 

(first purchase price)49 and gas (wellhead price)50 are not correlated with PJM peaking 

unit usage (r = 0.05, p = 0.87 and r = 0.17, p = 0.65, respectively, Figure B-3b). The 

majority of PJM peaking units use gas as a fuel, only 1% use coal. Base and intermediate 

load facilities (i.e., non-peaking units) employ coal to a greater extent (55%) as a primary 

fuel. At times when coal price is high (relative to gas prices) increased use of peaking 

units may be more economically preferable.  An important caveat is that these 

relationships are based on those peaking units in PJM that were identified through the 

facility ID matching process and not inclusive of all peaking units. Further, this analysis 

is limited to annual and not short-term (e.g., daily, weekly) price data, which is 

proprietary. The higher resolution data and the distribution of fuel usage and other factors 

in the unknown subset of peaking units could impact these relationships. 

 

3.4.2. CMAQ-Simulated Air Quality Impacts 

 

 The maximum hourly PM2.5 concentration is highest in the Other RTOs 

simulation (Figure 3-3c), and most widespread in the all PJM simulation (Figure 3-3b). 

Spatial distributions of hourly maximum concentrations differ for each simulation. For 

example, hourly maximum PM2.5 concentrations from EGUs in RTOs other than PJM are 

relatively low in PJM states, however PJM EGUs result in areas of high (>25 µg/m3) 

maximum hourly PM2.5 mass (Figure 3-3, dark orange shading) throughout PJM states, as 

well as New York and Vermont. This finding suggests that not only do EGUs impact air 

quality in their own RTOs but also the air quality of states in other RTOs. Monitored and 
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controlled PJM peaking unit emissions contribute to high hourly maximum PM2.5 

concentrations. CMAQ-predicted hourly maximum surface PM2.5 mass concentrations 

due to PJM peaking units are as high as 110 µg/m3 in specific grid cells (Figure 3-3a), but 

the impacts are more localized than the other two scenarios. These peaking unit PM2.5 

maxima represent up to 87% of the total maximum hourly PM2.5 ambient concentrations 

of the Base Case (Figure B-4a). While these maxima are spatially sporadic and 

temporally episodic, nine of the thirty-one days studied exhibit peaking unit contributions 

to total hourly PM2.5 mass in at least one grid cell higher than 50% (Figure B-5).  

 The All PJM Case impacts sulfate mass concentrations throughout the modeling 

domain (> 6 µg/m3 except in Michigan, Wisconsin, and Canada, Figure 3-3e). The Other 

RTO Case impacts maximum sulfate concentrations less (Figure 3-3f). Simulation 

analysis of the PJM Peaking Units Case indicates sporadic high maximum hourly sulfate 

concentrations in Northwestern WV, Virginia Beach, VA, and the Baltimore, 

MD/Washington, DC area (Figure 3-3d). These results highlight the localized impacts of 

peaking units. In small areas, primary unspeciated PM2.5 contributes the most to peak 

concentrations of total PM2.5 mass in two of three of the cases, i.e., PJM Peaking Unit 

Case and All PJM Case, both with maximum hourly concentrations in Northwestern 

West Virginia/Southern Pennsylvania and surrounding Baltimore, Maryland (up to 85 

µg/m3, Figures 3-4d and 3-4e). This implies that the highest values of primary PM2.5 in 

the PJM area cannot be chemically identified. The maxima in both the PJM Peaking Unit 

and All PJM Cases on the Ohio/West Virginia border and Pennsylvania/West Virginia 

border correspond with the locations of PJM peaking units that use coal as the primary 

fuel (Figure 3-1a). Ambient concentrations of primary unspeciated PM2.5 for the Other 
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RTOs Case are highest southeast of Chicago, Illinois, near Bay City, Michigan, and in 

Southern Indiana/Northern Kentucky. The maximum in Southern Indiana/Northern 

Kentucky corresponds with EGU locations in PJM (Figure 3-1b). This may indicate 

incorrect ORIS ID reporting to the NEI. Some highly populated areas (e.g., Baltimore, 

MD, Washington, DC) have localized high concentrations of EC attributable to PJM 

peaking units (Figure 3-4a), however maximum hourly EC from any of the simulations 

does not exceed 5 µg/m3. It would be useful to evaluate these high primary unspeciated 

PM2.5 concentrations to determine the validity of this result; however due to the episodic 

nature of these events38 and the infrequency of chemically-speciated ambient 

measurements,51, 52 this type of comparison for the studied heat wave is difficult with 

existing data sets. 

 

3.4.3. Potential Exposure to Peaking Unit Incremental Exposure 

 

 PJM peaking unit emissions do not impact domain-wide air quality to the extent 

of all EGUs in a particular RTO, but have potential to adversely affect human health in 

major cities with disproportionate lower income levels. Coal PJM peaking plants are 

located in the Ohio Valley and on the West Virginia-Pennsylvania border (Figure 3-1a) 

and this is where their impacts on ambient concentrations are greatest. However, 

Washington, DC, Baltimore, MD, and New York City, NY have the highest population-

weighted CMAQ-predicted hourly maximum concentrations (surrogate for exposure) for 

total PM2.5 mass (Figure 3-5a), particulate sulfate (Figure 3-5d), elemental carbon (Figure 

B-9a) and primary unspeciated PM2.5 (Figure B-9d). Implications for human health and 
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cross-state exposure to pollution from rural areas to highly populated cities, even for 

peaking units.  

Approximately 60% of PJM Peaking units studied here are located in counties with 

median annual household incomes (adjusted by cost of living) between $40,000-$60,000 

(Figures 3-1a and B-10). This income level represents the lower end of the income 

spectrum and more than half (60%) of the population in the domain live in counties 

characterized by this median income range. No identified peaking units are located in 

counties below $30,000 or above $90,000. A proprietary county-level cost of living index 

exists and may result in stronger associations, particularly in states with large ranges of 

cost of living (e.g., New York).         

 PJM peaking unit heat inputs positively correlate with average summer daily 

temperatures and national GDP growth rate and air quality managers can capitalize on 

that knowledge to develop strategies to protect human health. Emissions from EGUs in 

the RTOs studied here impact regional air quality in geographic regions outside of their 

electricity network. PJM peaking units modeled in this study impact local air quality 

largely due to emissions of primary unspeciated PM2.5. Further, peaking units perturb air 

quality in highly populated areas of this domain and in lower income areas, even when 

located in rural areas. Peaking units not accounted for in this work because they do not 

employ CEMs, also impact air quality and health and further effort to include these units 

in air quality modeling is needed. Holistic energy planning with regional and local 

analyses is needed to determine the largest sources of air pollution-induced health 

impacts in order to maintain sustainable and healthy communities. 
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Emission Scenarios 

Name Description 

Base Case Base Case emissions as described in 3.3.1 

No Peak Base emissions scenario with 544 PJM peaking units 
removed from the annual NEI and CEM hourly data 

No PJM 
Base emissions scenario with all PJM EGUs identified by 
ORIS numbers removed from the annual NEI and CEM 
hourly data (1,017 EGUs removed) 

Only PJM 
Base emissions scenario with EGUs in other RTOs (i.e., not 
in PJM) identified by ORIS numbers removed from the 
annual NEI and CEM hourly data (only 1,017 EGUs 
remain) 

CMAQ Output Analyses 

Name Formula 

PJM Peaking Units Base Case scenario – No Peak scenario 

All PJM Base Case scenario – No PJM scenario 

Other RTOs Base Case scenario – Only PJM scenario 

 
Table 3-1: Emission scenarios and CMAQ output analyses and descriptions 
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Figure 3-1: Locations and fuel types of EGUs from the PJM Peaking Unit Case (a), All 
PJM Case (b), and Other RTOs Case (c). Total population by county from the American 
Community Survey from 2006-2010 (d). The pink coloring in Virginia represents areas 
with missing data. 
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Figure 3-2: PJM annual heat input (millions of MMBtu) of the 544 peaking units studied 
here (brown) compared to average summer (June, July, August) temperature (pink 
dashed) and annual U.S. gross domestic product (GDP) growth rate (green dash-dot). 
Sources: EPA clean air markets division (CAMD - heat input), NCDC (temperatures), 
The World Bank (U.S. GDP growth rate). 
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Figure 3-3: CMAQ-predicted maximum hourly ambient concentrations of PM2.5 and 
sulfate mass for PJM Peaking Units, All PJM, and Other RTOs at the surface from July 
1-31, 2006. The boxed numbers represent the highest hourly maximum concentration that 
occurred over the month of July 2006. 
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Figure 3-4: CMAQ-predicted maximum hourly ambient concentrations of EC and 
primary unspeciated PM2.5 mass for PJM Peaking Units, All PJM, and Other RTOs at the 
surface from July 1-31, 2006. The boxed numbers represent the highest hourly maximum 
concentration that occurred over the month of July 2006. 
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Figure 3-5: CMAQ-predicted maximum hourly population-weighted ambient 
concentrations of PM2.5 and sulfate mass for PJM Peaking Units, All PJM, and Other 
RTOs at the surface from July 1-31, 2006. 
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4. CHAPTER 4 

 

SENSITIVITY ANALYSIS OF CMAQ ESTIMATION OF POTENTIAL EXPOSURE 

TO PM2.5 AND OZONE CONCENTRATIONS 

 

 

Material in this chapter to be submitted as: 

 Farkas, C.M.; Carlton, A.G., Sensitivity Analysis of CMAQ Estimation of 

 Potential Exposure to PM2.5 and Ozone Concentrations. Atmos. Environ.   

 (in prep) 

 

4.1. Abstract 

 

 Identifying and reducing sources of uncertainty in photochemical models 

improves air quality predictions used to influence air quality management policies for the 

protection of human health and welfare. Inaccuracies in three-dimensional photochemical 

transport models employed to predict air quality could arise from a range of sources, 

including meteorological inputs, chemical processes, and emission inventories. The 

planetary boundary layer (PBL) height and the mobile emission sector have been 

identified as leading causes of uncertainty in predictions in surface level concentrations 

of fine particle (PM2.5) and ozone. Exploring the impacts of uncertainty in these variables 

on population-weighted concentrations may provide insight into the most important 

factors that confound potential exposure estimates. In this study we employ the 
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Community Multiscale Air Quality (CMAQ) model to perturb variables of PBL height 

and onroad mobile emissions of nitrogen oxides (NO + NO2 = NOX), primary organic 

carbon (POC), and unspeciated PM2.5 (PMother) in eight separate simulations during the 

2006 U.S. heat wave in the northeast quarter of the U.S. We population-weight the 

resulting concentrations as a potential exposure index to identify the controlling 

uncertainties potentially most impactful to CMAQ-estimated human exposure estimates 

that would be calculated using CMAQ predictions of ambient concentrations. This is in 

contrast to existing CMAQ sensitivity studies that evaluate controlling uncertainties for 

average domain-wide ambient concentration bias. Of the studied variables, average and 

maximum hourly PM2.5 predicted ambient concentrations are most sensitive to PBL 

height perturbations in locations over the ocean. In contrast, changes in onroad POC 

emissions result in the largest impact on population-weighted concentrations. Both 

predicted ambient and population-weighted ozone mixing ratios are most sensitive to 

onroad NOx emissions. The findings suggest efforts to improve CMAQ simulations for 

development of effective air quality management policies to protect human health should 

concentrate on reducing uncertainties in onroad mobile POC and NOx emissions. 

 

4.2. Introduction 

 

 Air quality models, such as the Community Mutli-scale Air Quality (CMAQ) 

model, provide an approximation of the atmosphere and the physical and chemical 

interactions with air pollutant emissions that impact air quality. When utilizing model 

results to develop plans for air quality management, it is important to consider that air 
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quality models, such as CMAQ, are estimations of a physical reality that simulate the 

relationships between chemical reactions and transport with measured or estimated inputs 

(e.g. meteorological inputs, emission inventories), all of which include uncertainty.1, 2 For 

instance, a single model variable in the domain used here (e.g. WRF-predicted air 

temperature) represents 107 uncertain CMAQ input values for a one month model 

simulation,3 generating many possible points of inaccuracy. Identifying the sources of 

largest uncertainty in CMAQ and their impacts is critical for accurate modeling of 

pollutants, such as fine particulate matter (PM2.5) and tropospheric ozone that are linked 

to acute and chronic cardiovascular and pulmonary diseases and autism.4-13 Focusing, 

however, on domain-wide average concentration and error relative to measurement 

data,14 may or may not identify the most critical variables for predictive skill (i.e., the 

most harmful pollutants in the highest populated areas). 

 Estimating human exposure to PM2.5 or ozone whether outdoors, indoors, or in-

vehicle can have many sources of uncertainty. In-vehicle PM2.5 exposure estimates can be 

highly variable depending on in-vehicle to ambient ratios and have been estimated to 

represent up between 6%-57% of total PM2.5 exposure.15 Further, concentration gradients 

of NOx close to roadways (~100-400m) have been found to change on hourly time-scales 

and depend on variations in boundary layer height, traffic flow rate and wind speed.16, 17 

Estimation of the transport of outdoor pollutants indoors and their impacts on residential 

indoor air quality is dependent on chemical composition and can be simulated with 

outdoor-to-indoor transport models.18 Most uncertainty analyses employing CMAQ have 

identified the largest contributors to propagated uncertainty on domain-wide ozone 

concentrations (i.e., chemical mechanism, turbulent closure, NO2 photolysis rate).3, 19-22 
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Previous research has estimated uncertainty of PM2.5 concentrations that propagates from 

coupling models to a source-to-dose modeling system to understand exposure.23 I am not 

aware of any CMAQ uncertainty analysis focused not on domain averages, but rather 

which factor creates the largest uncertainty in an exposure potential to PM2.5 and ozone 

calculated based on CMAQ ambient predictions. This represents a key knowledge gap 

that hinders development of effective air quality strategies to protect human health. 

 Uncertainty analyses use a variety of techniques to test the sensitivity of pollutant 

concentrations to model uncertainties. Monte Carlo analyses have been used to evaluate 

several model inputs at once;21, 22 however because of the large number of simulations 

and computation time required, a reduced form of the numerical photochemical model is 

often used, introducing additional uncertainties.1 The complex non-linear system of 

chemical reactions that are CMAQ’s chief strength and focus here are removed in such 

approaches. Brute force analysis is a technique of testing the sensitivity of model 

predictions to a single variable by running a new model simulation after each change to 

determine its impact on predictions. In the past, brute force techniques have been used to 

apportion sources of PM2.5
24 and to define the controllability of biogenic secondary 

organic aerosol (SOA)25 in CMAQ. The decoupled direct method (DDM) uses the 1st and 

2nd derivatives of the chief equations of the model to create sensitivity coefficients for 

clear sky conditions.3, 26-28 Three-dimensional DDM analyses of inorganic sulfate PM 

mass changes due to emissions of SO2 have been shown to compare well with results of 

brute force approaches, but more in-direct relationships between some gaseous and 

aerosol species do not compare as well to brute force results.29 Further, evaluation during 

extreme events (e.g. heat waves and maximum PM2.5 concentrations) is needed because 
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they can drive adverse human health impacts but are not described well in approaches 

that employ average or typical conditions. 

 There exist many avenues through which inaccuracies can lead to uncertainty in 

air quality predictions. While the resolution of grid cells chosen for an air quality 

simulation can change the meteorological and transport parameters used within the 

model, several studies have found that resolutions finer than 12 km x 12km grid cells 

(used in this work) are unlikely to significantly alter predictions of pollutant 

concentrations and health impacts.30-32 Meteorology, in particular, the planetary boundary 

layer (PBL) height modulates the diurnal pattern observed in pollutant concentrations and 

is found to have an effect on PM2.5 predictions.33 The PBL height is subject to 

measurement limitations with current technologies. Observation networks are sparse34 

with approximately 3% of weather stations that estimate PBL,35 leading to uncertainties 

in PBL height and therefore air quality.36 Balzarini et al. (2014)37 analyzed five PBL 

schemes in the Weather Research and Forecasting (WRF) model over Northern Italy and 

found mean biases ranging anywhere from -43.82 m to +248.05 m, depending on the 

scheme. In Southeast Texas, Kolling et al. (2012) found the use of the asymmetric 

convective model version 2 (ACM2) PBL scheme in the WRF model yielded modeled-

observed PBL differences from -275m to 260m.38Uncertainty in cloud modeling within 

CMAQ has been shown to greatly impact air quality simulations through limiting of 

ozone formation39 and gas-to-cloud ice partitioning that can impact aloft pollutant 

concentrations.40 Further, biogenic emission inaccuracies have led to differences in 

predictions of up to 5% of the national Ambient Air Quality Standard (NAAQS) for 

ozone and up to 2% for PM2.5 mass.41 Federal and state air quality regulations aim to 
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reduce emissions from the controllable sectors and improving inaccuracies within these 

sectors is critical to designing effective air quality management strategies. 

 This study employs the brute force sensitivity analysis to investigate several 

sources of uncertainty, previously identified (Table 4-1), that propagate errors in the 

CMAQ model and affect air quality predictions of PM2.5 and ozone. Propagating these 

uncertainties through an air quality model may help to determine if model-predicted 

ambient concentrations in simulation results fall outside a range of uncertainty. I focus on 

uncertainty in controllable anthropogenic emissions and PBL height. 

 The energy sector, including motor vehicles and electric generating unit (EGU) 

sectors, are the largest contributors to controllable emissions that degrade air quality and 

impact climate. EGU emissions of sulfur dioxide (SO2), nitrogen dioxide (NO2) and 

primary PM2.5 impact regional ambient ozone and PM2.5 concentrations.42-45 Point source 

emissions are the least uncertain because exact locations are known and unchanging and 

annual total emissions are reported, though errors exist.46-48 I focus on mobile emissions, 

the largest controllable source of primary PM2.5 and nitrogen oxides (NOx, where NOx = 

NO + NO2),49 which contributes to ozone, particulate organics and nitrate in close 

proximity to people. Due to the inherently stochastic nature of mobile emissions (i.e. 

large diversity in fleet model years, traffic patterns, etc.) emission estimates remain 

uncertain, especially in urban areas at street level,22, 50, 51 where potential exposure is high 

due to close proximity of sources (motor vehicles) and receptors (humans). In Atlanta, 

uncertainties in mobile NOx emissions impact predicted ozone concentrations to the 

largest extent relative to all anthropogenic sectors.22 Zavala et al. (2009)50 found NO 

overpredictions of 14-20% and more than a factor of 4 underestimation of PM2.5 in 
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mobile emissions in Mexico City. Primary organic carbon (POC), a chemically specific 

subset of PM2.5 emissions, may be the most uncertain due to additional emission factor 

errors (e.g., intermediate-volatility organic compounds (IVOCs)52).53 During the spring 

and summer 2006-2008, CMAQ-estimated total particulate carbon (organic carbon (OC) 

+ elemental carbon (EC)) was biased low relative to surface mass measurements due to 

underprediction of organic carbon;33 however this could also be a consequence of errors 

in the model description of secondary formation as well.54 The same study found an 

underprediction in “other” PM2.5 species (the sum of PM2.5 species without sulfate, 

nitrate, ammonium, and total carbon) during the summer in the areas included in our 

study domain, which has been shown to cause underpredictions in total PM2.5 mass.55 

Nationally, approximately 30% of all primary PM2.5 mass emitted in 2005 was POC.56 

The largest national contributor, biomass burning, occurs mostly in the Western U.S., 

while effective public policy to abate air quality issues reduces controllable emissions. 

Therefore, I focus on uncertainty of POC in the largest controllable emission sources, 

which originate from the transportation sector.56 

 

4.3. Methods 

 

 I perform eight CMAQ brute force perturbations of PBL height, NOx, primary 

organic carbon (POC), and PMother (PM2.5 not categorized as organic carbon (OC), 

elemental carbon (EC), sulfate, nitrate, H2O, Na+, Cl-, NH4
+, non-carbon organic matter 

(NCOM), Al, Ca2+, Fe, Si, Ti, Mg2+, K+, or Mn) in the onroad sector of the 2008 National 

emissions inventory (NEI) in the Northeast U.S. from July 1, 2006 to July 31, 2006. This 
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period is characteristic of Northeast stagnation heat wave events when ambient 

concentrations of ozone and PM2.5 are often high. We analyze sensitivities of PM2.5 and 

ozone concentrations in the first model layer because that is where people live and are 

exposed to pollution. Further, the concentrations are population-weighted using the 2010 

national census to determine which variables have the largest effect on potential human 

exposure. 

 

4.3.1. Sensitivity Simulations 

 

 The Base Case simulation used to compare to all perturbations is consistent with 

the sensitivity simulation described in detail in Farkas et al. (2015).47 Briefly, a 12 km by 

12 km CMAQ grid with 34 vertical layers up to 50 mb is applied to anthropogenic 

emissions from the 2008 NEI version 2 with continuous emission monitor (CEM) data 

from 2006 and additional identifiers in the point source sector emissions to incorporate 

additional CEM data. The Advanced Research WRF core model (version 3.1)57 is 

employed to generate the gridded meteorological data for the study period. The Biogenic 

Emissions Inventory (BEISv3.14)58 is used to generate biogenic emissions with day- and 

hour-specific solar radiation and temperatures from the WRF model. The Motor Vehicle 

Emission Simulator (MOVESv2010b) estimates the onroad mobile emissions for the 

study period. The model is simulated from June 28, 2006 through July 31, 2006, the first 

three model days are excluded from the analysis to allow for model spin up.  

 Each sensitivity case contains one or two modifications (Table 4-1); all other 

variables remain consistent with the Base Case. Case 1 and Case 2 perturb the WRF 



 

 

83 

gridded meteorological data to increase and decrease the PBL by 100 m, respectively. 

Full analyses of different WRF physics options have been discussed in detail,57, 59 I focus 

here on the meteorological variable shown to have the largest uncertainty similar to 

previous work. Case 3 doubles the emissions of NO and NO2 in the MOVES-generated 

onroad mobile sector, while Case 4 decreases both by half. Case 5 and 6 alter the onroad 

mobile sector emissions of POC also by a factor of two, respectively. Case 7 doubles the 

PMother emissions from the onroad mobile sector, while Case 8 divides the variable in 

half. It is important to note that this designation is different than the “other” PM2.5 

described in previous literature above33, 55 due to a recent development of the CMAQ 

model. Each respective input file was altered using the combine tool included with the 

CMAQ source code. Cases 3-8 are processed through the Sparse Matrix Operator Kernel 

Emissions (SMOKEv3.5) modeling system60 after each alteration to incorporate the 

changes of each case into the mobile sector and prepare CMAQ-ready gridded emissions. 

 

4.3.2. Population-weighted Concentrations 

 

 The population-weighted concentrations are calculated using census tract data 

from the 2010 U.S. National Census.61 The centroid of each census tract is matched to its 

corresponding CMAQ grid cell, and weighted pollutant concentrations are calculated 

with the equation below25 using the Python language (www.python.org). 

                                        !!  ×  !!
!!

 ,                                         [Equation 1] 
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where Pi is the population of the grid cell and Ci is the CMAQ concentration of the grid 

cell. 

 

4.4. Results 

 

4.4.1. Predicted PM2.5 Concentration Sensitivity 

 

 Of the studied variables, POC emission changes (Cases 5 and 6) in the onroad 

mobile sector have the largest impact on population-weighted hourly average PM2.5 

concentrations (Figures 4-1a and 4-1b). In nearly all-major cities in the domain, increases 

in onroad POC emissions result in increases in population-weighted hourly average PM2.5 

up to 13 µg/m3 for every 1000 people when compared to the base case. Decreases in 

onroad POC emissions have the opposite effect in the same areas, with decreases in 

population-weighted hourly average PM2.5 up to -6.8 µg/m3 for every 1000 people. 

Conversely, changes in domain-wide hourly average ambient PM2.5 concentrations are 

less substantial. When onroad mobile POC emissions are doubled (Case 5), PM2.5 

increases up to 7% (1.1 µg/m3, Figures 4-2a, 4-3a), and reducing POC by half (Case 6) 

decreases average ambient PM2.5 concentrations up to 3.5% (< 1µg/m3, Figures 4-2b, 4-

3b). Maximum hourly PM2.5 concentrations increase by up to 8 µg/m3 when the onroad 

mobile POC is doubled and up to 0.9 µg/m3 when POC is halved (Figures 4-4a and 4-4b, 

respectively). The unbalanced difference in the addition/reduction of POC emissions to 

potential ambient PM2.5 exposure highlights the complex non-linear chemistry associated 

with air quality. This demonstrates the usefulness of a brute force technique for the first 
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analysis of this type, as an inherent limitation of reduced form model may not represent 

the non-linear relationship well. 

 Whereas population-weighted hourly average PM2.5 concentrations are most 

sensitive to perturbations of onroad mobile POC, domain-wide ambient PM2.5 

concentrations are most sensitive to changes in PBL height (Table 4-2). Increasing the 

PBL height by 100 m (Case 1) produces hourly average ambient PM2.5 concentration 

increases of up to 2.1 µg/m3 (Figure 4-5a), an increase of 106% (Figure 4-6a), in the 

eastern portion of the domain, with maximum hourly increases in PM2.5 concentrations 

up to 44 µg/m3 (Figure 4-7a). However, the majority of the highest hourly PM2.5 

concentrations occur over the ocean, greatly reducing the population-weighted impact 

(Figures 4-8a, up to 5.9 µg/m3 for every 1000 people). Case 1 produces hourly average 

decreases east of Chicago, IL and north of New York, New Hampshire, and Vermont in 

Canada (up to -1.8 µg/m3 or -8.6%) and population-weighted PM2.5 concentrations 

decreases in Chicago, IL and Detroit, MI (up to -3.0 µg/m3 for every 1000 people). 

Decreasing the PBL by 100 m (Case 2) results in decreases in hourly average PM2.5 

concentrations of up to -0.9 µg/m3 (-10%) over the ocean and increases of up to 1.2 

µg/m3 (+10%) in Canada (Figures 4-5c and 4-6c). Case 2 produces increases in 

population-weighted PM2.5 concentrations of up to 4 µg/m3 for every 1000 people 

(Figure 4-8c) in the urban areas in the western portion of the domain and decreases in the 

eastern urban areas (up to -1 µg/m3 for every 1000 people). The exception to this is New 

York City, NY, which displays an increase in population-weighted PM2.5 concentrations. 

Maximum hourly PM2.5 concentrations in Case 2 increase from the base case up to 56 

µg/m3 (Figure 4-7c).  
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 An increase in onroad mobile NOx emissions (Case 3) results in increases of 

CMAQ-predicted PM2.5 hourly average concentrations up to 2.3 µg/m3 (Figure 4-5e), a 

13.7% increase (Figure 4-6e). The locations of the maxima are not along major interstates 

or in highly populated urban areas, as may be expected. These increases are a 

consequence of increases in nitrate (Figure C-1a). Rural areas where the higher 

concentrations are noted are agricultural regions of the U.S. with a large presence of 

livestock and fertilizer, the largest sources of ammonia emissions.62 Ammonia is the most 

abundant atmospheric alkaline gas and an aerosol free acidity analysis63 demonstrates 

low concentrations of free H+ in these areas (Figure C-1c). Although ammonia typically 

reacts with sulfuric acid to form ammonium-sulfate aerosol, high concentrations of 

ammonia in the presence of HNO3 can result in formation of aerosol ammonium nitrate 

as observed in these simulations.64 This demonstrates the possibility that highway and 

road emissions which are highest in urban areas can impact PM2.5 in rural, agricultural 

areas should ammonia emissions be high. Decreasing onroad mobile NOx emissions by 

half (Case 4) produces decreases in hourly average PM2.5 concentrations up to -1.3 µg/m3 

(-7.3%) in the same geographic locations as the increase in Case 3 (Figures 4-5g and 4-

6g) also due to nitrate. Maximum hourly increases in PM2.5 concentrations from the base 

case for Cases 3 and 4 are 22 µg/m3 and 6 µg/m3, respectively (Figures 4-7e and 4-7g). 

PM2.5 sensitivity to changes in onroad NOx emissions (Cases 3 and 4) has population-

weighted impacts in urban areas (Case 3: up to 2.6 µg/m3 for every 1000 people, Case 4: 

up to 2 µg/m3 for every 1000 people). However, there are also maxima in less populated 

areas of Pennsylvania and Ohio (Figures 4-8e and 4-8g), which correspond with the rural 
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locations observed above again, highlighting complex non-linearity, in this case due to 

inorganic thermodynamic phase partitioning of nitrogen.  

 Perturbations of onroad mobile PMother (Cases 7 and 8) do not have large impacts 

on average hourly PM2.5 concentrations, with the majority of differences from the base 

case <1% (Figures 4-2c, 4-2d, 4-3c, and 4-3d). Increases of up to 2.2 µg/m3 for every 

1000 people in population-weighted hourly average PM2.5 are observed in Case 7 (Figure 

4-1c), while Case 8 results in decreases of hourly average population-weighted PM2.5 

concentration (Figure 4-1d, up to -1.1 µg/m3). Maximum hourly increases of PM2.5 for 

Cases 7 and 8 are 1.4 µg/m3 and 1.1 µg/m3, respectively (Figures 4-4c and 4-4d). The 

smaller impacts from Cases 7 and 8 indicate that PM2.5 concentrations are not very 

sensitive to changes in PMother, most likely a consequence of improvements in PM2.5 

speciation. 

 

4.4.2. Predicted Ozone Concentration Sensitivity 

 

 Ambient and population-weighted ozone mixing ratios are most sensitive to 

changes in onroad mobile NOx emission changes. Doubling NOx emissions (Case 3) 

results in average hourly ozone increases across a majority of the domain up to 4.5 ppbv 

(an increase of 8.2%, Figures 4-5f and 4-6f), with maximum increase of up to 32 ppbv. 

Yet, in urban areas and along the I-95 corridor, we observe decreases of up to -8.5 ppbv (a 

decrease of -55%) in average hourly ozone. Ozone rapidly reacts with NO near the 

roadway in Case 3, titrating to NO2 and decreasing ozone mixing ratios.65 Case 3 

produces the largest decreases of hourly average population-weighted ozone mixing 
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ratios (up to -118 ppbv for every 1000 people, Figure 4-8f). Decreasing onroad mobile 

NOx emissions by half (Case 4) results in average decreases of ozone mixing ratios in the 

majority of the domain. However, along major highways and in cities, average hourly 

ozone concentrations increases up to 6.3 ppbv (Figure 4-5h), with hourly maximum ozone 

increases up to 72 ppbv (Figure 4-7h). This is counter-intuitive to the ozone reduction 

goals of NOx regulations. Increases in population-weighted hourly average ozone mixing 

ratios (up to 79 ppbv for every 1000 people) are observed when halving NOx onroad 

emissions (Figure 4-8h). 

 When PBL height is increased by 100 m (Case 1), average hourly ozone mixing 

ratios increase over land (Figure 4-5b, up to 3 ppbv) and decrease over the ocean (up to 

2.5 ppbv). The largest percent increases (>100%) occur in large urban areas (e.g. New 

York, NY, Philadelphia, PA, Chicago, IL, Figure 4-6b). Maximum hourly ozone mixing 

ratios are as high as 72 ppbv (Figure 4-7b). When PBL height is decreased by 100 m 

(Case 2), ozone mixing ratios appear to decrease over the domain by as much as -3.3 ppbv 

(Figure 4-5d). These decreases are probably due to the decrease in the volume of the air 

column, increasing the rate at which NOx titration occurs. The only exception to these 

results is an increase of up to 1 ppbv near Philadelphia, PA, representing a 120% increase 

in ozone (Figure 4-6d). Elsewhere, average hourly ozone percent changes are +/- 5% 

sporadically. Population-weighted hourly average ozone is only sensitive to perturbations 

of the PBL height in major cities in the domain (New York City, Philadelphia, and 

Chicago). Case 1 produces population-weighted average hourly ozone increases of up to 

23.6 ppbv (Figure 4-8b), while Case 2 results in decreases of population-weighted 

average hourly ozone by as much as -18 ppbv (Figure 4-8d). Recent coupling of the 
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WRF-CMAQ system has displayed changes in PBL height relative to the one-way 

coupling due to direct aerosol feedback66, 67 and repeating this analysis with the coupled 

model is a necessary next step. As expected, Cases 5-8 show negligible changes in 

average or maximum hourly ozone mixing ratios, since POC and PMother do not impact 

ozone mixing ratios. 
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Case CMAQ  
variable Alteration References 

1 PBL + 100 m Balzarini et al. (2014): PBL mean biases of -43.82m 
to 248.05m 
Doraiswamy et al. (2010): sharp changes in PBL 
impact diurnal variation peaks of pollutants  2 PBL - 100 m 

3 
NO, NO2 
mobile 

emissions 
doubled 

Hanna et al. (2001): factor of 2 uncertainty in area mobile 
emissions  
Zavala et al. (2009): 14-20% overpredictions of NO emissions 
Pan et al. (2014): 10-20% underestimation of mobile NOx 
emissions 
Tian et al. (2010): factor of 2 uncertainty in mobile emissions 
has the largest impact on ozone predictions of 5 sectors 

4 
NO, NO2 
mobile 

emissions 
halved 

5 
POC 

mobile 
emissions 

doubled 
Doraiswamy et al. (2010): underpredictions of 
organic carbon in spring and summer up to ~50% 

6 
POC 

mobile 
emissions 

halved 

7 
PMOTHR 

mobile 
emissions 

doubled Doraiswamy et al. (2010): underpredictions of 
“other” unspeciated PM2.5 of ~50-60% in the summer 
Appel et al. (2008) find an underprediction in PM2.5 
mass due to an underprediction in PMother by ~11-20% 8 

PMOTHR 
mobile 

emissions 
halved 

 
Table 4-1. Description of sensitivity simulations 
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Ambient Concentration 
Sensitivity Rank  Population-weighted 

Sensitivity Rank 
PM2.5 Ozone  PM2.5 Ozone 

PBL height onroad NOx most 
sensitive  

| 
| 
| 
| 
| 
| 
| 
| 
| 

least 
sensitive 

onroad POC onroad NOx 

onroad NOx PBL height PBL height PBL height 

onroad POC ------- onroad NOx ------- 

onroad PMother ------- onroad PMother ------- 

 
Table 4-2: CMAQ Simulation Sensitivity Ranks 
CMAQ perturbation simulations ranked in order of PM2.5 or ozone sensitivity (most 
sensitive to least sensitive) 
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Figure 4-1: Sensitivity Cases 5-8, population-weighted CMAQ-predicted ambient 
concentration differences from the Base Case of average hourly PM2.5 from July 1, 2006 
to July 31, 2006. All concentrations are per 1000 people. Ozone is not included because 
Cases 5-8 did not have an effect on CMAQ-predicted ozone mixing ratios. 
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Figure 4-2: Sensitivity Cases 5-8, CMAQ-predicted ambient concentration differences 
from the Base Case of average hourly PM2.5 from July 1, 2006 to July 31, 2006. Ozone is 
not included because Cases 5-8 did not have an effect on CMAQ-predicted ozone mixing 
ratios. 
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Figure 4-3: Sensitivity Cases 5-8, CMAQ-predicted ambient concentration percent 
differences from the Base Case of average hourly PM2.5 from July 1, 2006 to July 31, 
2006. Ozone is not included because Cases 5-8 did not have an effect on CMAQ-
predicted ozone mixing ratios. 
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Figure 4-4: Sensitivity Cases 5-8, CMAQ-predicted maximum hourly ambient 
concentration differences from the Base Case of maximum hourly PM2.5 (a,c,e,g) from 
July 1, 2006 to July 31, 2006. Ozone is not included because Cases 5-8 did not have an 
effect on CMAQ-predicted ozone mixing ratios. 
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Figure 4-5: Sensitivity Cases 1-4, CMAQ-predicted ambient concentration differences 
from the Base Case of average hourly PM2.5 (a,c,e,g) and average hourly ozone (b,d,f,h) 
from July 1, 2006 to July 31, 2006. 
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Figure 4-6: Sensitivity Cases 1-4, CMAQ-predicted ambient concentration percent 
differences from the Base Case of average hourly PM2.5 (a,c,e,g) and average hourly 
ozone (b,d,f,h) from July 1, 2006 to July 31, 2006. 
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Figure 4-7: Sensitivity Cases 1-4, CMAQ-predicted ambient concentration differences 
from the Base Case of maximum hourly PM2.5 (a,c,e,g) and maximum hourly ozone 
(b,d,f,h) from July 1, 2006 to July 31, 2006. 
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Figure 4-8: Sensitivity Cases 1-4, population-weighted CMAQ-predicted ambient 
concentration differences from the Base Case of average hourly PM2.5 (a,c,e,g) and 
average hourly ozone (b,d,f,h) from July 1, 2006 to July 31, 2006. All concentrations are 
per 1000 people. 
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5. CHAPTER 5 

 

SUMMARY, IMPLICATIONS, AND FUTURE DIRECTIONS 

 

5.1. Summary 

 

 The work presented in this dissertation addresses an ongoing mission to improve 

agreement between ambient concentrations of PM2.5 mass species and ozone measured in 

the atmosphere and those predicted by photochemical models for the right reasons. The 

first project focuses on improvement of point source emission estimates in a 

photochemical model by incorporating actual emission measurements to improve the 

temporal profile of electric generating unit (EGU) sector emissions. The second project 

focuses on the contribution of peaking unit emissions from the PJM Interconnection 

regional transmission organization (RTO) to model estimated PM2.5 and ozone in 

comparison to those from all EGUs in PJM and other RTOs. The final project estimates 

sources of uncertainty for PM2.5 and ozone CMAQ-predictions using a brute force 

analysis of meteorological and mobile emission variables that have been found to have 

high uncertainty in previous research. The resulting ambient concentrations are 

population-weighted as estimation for potential exposure.   

 Chapter 2 demonstrates that while improved temporalization of CEM emission 

data predicts substantial, episodic increases in surface concentrations of PM2.5 mass and 

small increases in surface ozone mixing ratios, the model bias between CMAQ predicted 

concentrations and observed ambient concentrations of these pollutants showed small 
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improvements (up to 3 µg/m3) in the case with additional ORIS IDs. These improvements 

generally occurred during the hottest days of the heat wave and at peak concentrations of 

PM2.5 mass. Fine particulate matter is often studied in an annual context and 

measurements are designed for this as opposed to capturing peak concentrations. 

 The same heat wave period described in Chapter 2 is used in Chapter 3 to 

estimate the air quality impact due to peak-usage EGUs, also known as peaking units and 

compare them to the impacts from all EGUs in PJM and surrounding RTOs. Population-

weighted concentrations, as a simplified index of potential human exposure, are 

employed to study impacts of ambient concentrations of PM2.5 and ozone due to peaking 

units from a more health-centered perspective. Emissions from PJM EGUs not only 

impact the PJM region, but surrounding regions as well. Maximum ambient mass 

concentrations of PM2.5 due to peaking units are predicted to be very high at peak hours 

during the heat wave period and these concentrations have the largest effect on the most 

populated cities in the Northeast U.S., regardless of the location of the maximum in 

ambient concentrations. Peaking unit usage over the past 10 years in the PJM region 

correlates well with average summer air temperature and with GDP when the growth rate 

is 2.5% or less, suggesting that the summer air temperature and the national economic 

strength, likely indicators of available disposable income to spend on air conditioning 

during these peak events, may strongly affect peaking unit usage. The most monitored, 

most regulated peaking units are studied here and represent a lower bound estimate. 

Peaking unit usage is projected to increase over the next ten years, as are heat waves and 

stagnation events, bringing attention to the likely air quality impact and the importance of 

identifying and quantifying their emissions. 



 

 

108 

 Limitations of these studies exist and are controlled in large part by uncertainties 

of the models and their inputs. Small errors in a single input can propagate throughout the 

model simulation, affecting predicted concentrations. Chapter 4 uses a brute force 

sensitivity analysis to determine the resulting fluctuations in model-predicted 

concentrations when changes are made individually to single variables. Specifically, I 

investigate how mass concentrations of PM2.5 species and ozone mixing ratios react to 

perturbations in planetary boundary layer (PBL) height and increases and decreases in 

mobile emissions of primary organic carbon (POC), nitrogen oxides (NO + NO2 = NOx), 

and unspeciated PM2.5 (PMother). I found that while ambient concentrations of PM2.5 are 

most sensitive to changes in PBL height, the majority of the sensitivity occurs over the 

ocean. An assessment for potential exposure assessment shows that population-weighted 

PM2.5 concentrations are most sensitive to onroad mobile primary organic carbon (POC) 

changes. Ambient and population-weighted ozone concentrations are most sensitive to 

onroad mobile NOx increases and decreases. Model development intended to help 

develop air quality strategies to protect human health may be more effective if the focus 

is on motor vehicle emissions of POC and NOx. 

 When considering the uncertainty findings of Chapter 4 in relation to Chapter 2, 

the additional hourly ambient PM2.5 mass observed after 267 ORIS IDs were added to the 

simulation was as high as 7.4 µg/m3. This value is above the range of uncertainty 

observed with onroad PMother, which had a maximum increase of 1.4 µg/m3. The 

maximum findings of Chapter 2 lie within the range of uncertainty for onroad POC 

(maximum 8 µg/m3), onroad NOx (maximum difference of 22 µg/m3) and PBL height 

(maximum uncertainty of 56 µg/m3). Note that the majority of the PBL maxima were 
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located over the ocean. The additional ORIS matches from Chapter 2 represent 50% of 

missing ORIS IDs in the NEI during this simulation. If all 541 missing ORIS IDs were 

matched and simulated and we assume the impacts are linear, they lie outside the 

maximum uncertainty observed in Chaper 4 for onroad POC and onroad PMother, but not 

PBL height or onroad NOx This suggests that while onroad NOx and PBL height have the 

potential to impact air quality forecasts in a larger way, correct hourly temporal allocation 

is necessary for accurate short-term forecasting, especially within individual PM2.5 

species. 

 When considering the uncertainty findings of Chapter 4 in relation to Chapter 3, 

the maximum ambient PM2.5 mass observed due solely to 544 PJM peaking units is 110 

µg/m3. This concentration lies outside the uncertainty due to any of the studied variables 

in the uncertainty analysis, implying that these estimated impacts are not due to model 

error and could possibly benefit from a policy that aims to reduce emissions from peaking 

units on the hottest days. 

 

5.2. Implications 

 

 This work has implications both in the modeling community and the policy 

community. Chapter 2 identifies an area ripe for improvement with the use of existing 

higher temporal resolution data. In this study I manually paired the data using identifying 

numbers and electricity permits. This problem is not due to a lack of science or 

engineering understanding, rather a policy fix, such as a permit requirement mandating a 

single identifier or submission of the Office of Regulatory and Information Systems 
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(ORIS) identifier across all point source sectors and emission reporting procedures to the 

national emissions inventory (NEI) would facilitate use of measured data in atmospheric 

models. The air quality impacts due to peaking units presented in Chapter 3 are limited to 

regulated peaking units with CEMs, suggesting that unmonitored facilities and behind-

the-meter generation units could have an equal or worse impact on air quality and that the 

results shown here are a lower bound. This has even larger implications for areas of high-

population. Chapter 4 contributes to the modeling community by identifying model 

uncertainties most impactful to potential human exposure to ambient air pollution. 

Ranking sensitivities by population-weighted concentrations can highlight the model 

inaccuracies most critical to improving accuracy of air quality simulations used to affect 

public health and welfare policies. 

 

5.3. Future Directions 

  

5.3.1. Reducing Uncertainty in Motor Vehicle Emissions 

 

 Large contributors to uncertainty in mobile emissions are traffic patterns, vehicle 

fleets, and miles driven. Often vehicle fleets are characterized by state registrations. 

Occasionally, two simultaneous video cameras are used for eight hours a day to capture 

license plates at a specific location. The license plates are usually recorded by hand; 

however license plate identification software does exist.1 This method only collects 

information on the vehicle, not the miles driven nor the time spent in traffic. I propose 

utilizing existing highway cameras as a more efficient and accurate method of collecting 
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traffic data. Automated vehicle identification software has been used in the past by toll 

agencies, traffic monitoring agencies, and law enforcement offices.2, 3 Using a 

combination of highway cameras and vehicle identification software, the vehicle fleet, 

traffic patterns, and corresponding emissions can be estimated. This method could be 

used to improve hourly motor vehicle emission data for the major highways in the U.S. 

  

5.3.2. Detailed Demographic Health Impact Analysis 

  

 Population-weighted concentrations can be used not only to detail the areas most 

affected by air pollutants but also in interdisciplinary studies to investigate correlations 

between air pollution and human characteristics, such as socio-economic status, race, age, 

and other variables accounted for in the national census. This could help to answer 

interesting science-sociology and human ecology questions about the location of point 

source emissions and the populations they affect the most, as well as introducing the need 

for policies protecting those most affected by air pollution. 

 

5.3.3. Coupled Modeling 

 

 The DAYZER model used in Chapter 2 can be a powerful tool in hypothetical 

studies involving changes in future energy choices or equipment. One study that is 

already in progress from this work is investigating the air quality implications of an 

offshore wind farm in New Jersey. Wind data from the Weather Research and 

Forecasting (WRF) model and DAYZER-generated hypothetical electricity market 
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simulations are employed to observe fluctuations in air emissions, and the resulting air 

quality, due to the inclusion of three different sized wind farms into the power grid. With 

the results, an environmental economic-based study can be performed to quantify the 

regional health costs or savings associated with an offshore wind farm.  

 The work presented in this dissertation highlights the human dimension to air 

quality modeling and the exposure potential of air pollution on different regions of the 

Northeast U.S. The aim of the U.S. EPA is to protect human health and welfare. While 

public policy and energy planning measures can work to bring regions into attainment 

with NAAQS, emission models that do not account for economic or potential human 

exposure impacts (e.g. population-weighted concentrations) will not be the most effective 

at protecting health-reducing exposure. By performing sensitivity analyses of the CMAQ 

model and population-weighting the results, we gain a better understanding of which 

variables have the greatest impact on the model results with the highest exposure 

potential. The newly coupled CMAQ-WRF model is a two-way model in which predicted 

concentrations can impact meteorological variables (e.g. direct aerosol feedbacks). The 

sensitivity analysis performed here should be repeated with the coupled model to evaluate 

the impact of this improvement relative to the one-way coupled model. 

 

5.3.4. Incorporating Environmental Externalities into Electricity Price 

 

 Currently, electricity grids are optimized for reliability. Using the DAYZER-

SMOKE-CMAQ modeling system, we could investigate impacts of optimizing the 

electricity grid for air quality or human health impacts. These simulations could be 
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compared with health impacts of current air quality simulations and answer questions 

such as 1) When do electricity costs outweigh health costs if the electricity grid was 

optimized for air quality?, 2) Would blackout or brownout events increase?, 3) How 

much would ambient concentrations of PM2.5 and ozone change? 
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A. APPENDIX A 

 

SUPPORTING INFORMATION FOR CHAPTER 2 

 

 
 
Figure A-1. Average monthly stagnation days by season from the National Climatic Data 
Center (NCDC) for the 5 studied states (Delaware, Maryland, New Jersey, Pennsylvania, 
Virginia) are represented by blue open circles. The red dashed line is a linear trendline. 
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Electricity Modeling Details: 

DAYZER simulations were created using the DAYZER tool in long-term form 

downloaded from Cambridge Energy Solutions (http://www.ces-us.com/product-

dayzer.asp). The July 1-31, 2006 simulation used in this work was simulated using the 

“PJM RTO” pool with the corresponding PJM power flow data (PFD). The default user 

database (UserDB) was used as a baseline. 

 

 

 

 
 
Figure A-2. CSN maximum hourly PM2.5 observations from July 2006 for the study 
domain are represented by the thin black line. The daily DAYZER total electricity 
generation for the entire PJM region during the same time period is in blue. 
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Figure A-3. CMAQ-predicted maximum percent differences of the two study simulations 
at the surface and 800mb between July 1-31, 2006 of ambient concentrations of PM2.5 (a 
and d), sulfate (b and e) and EC (c and f). 
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Figure A-4. CMAQ-predicted maximum hourly ambient concentration differences of the 
two study simulations at the surface and the 800mb level between July 1-31, 2006 of 
ambient concentrations of ammonium (a and d), nitrate (b and e) and OC (c and f). 
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Figure A-5. CMAQ-predicted ppbV maximum hourly differences and maximum percent 
differences of the two study simulations at the surface (a,c) and 800mb (b,d) between 
July 1-31, 2006 of ambient mixing ratios of ozone. 
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Figure A-6. Percentage of NOx emissions emitted from each category of sources from 
the 2008 NEI for Delaware, Maryland, New Jersey, Pennsylvania, and Virginia. 
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B. APPENDIX B 

 

SUPPORTING INFORMATION FOR CHAPTER 3 

 
 

 

National 

Fuel Type SO2 (lbs/MWh) NOx (lbs/MWh) 

Coal 13 6 

Oil 12 4 

Gas 0.1 1.7 

PJM 

Coal 5 0.9 

Oil 1.1 1.7 

Gas 0.03 1.3 
 

Table B-1: National and PJM EGU Average Emission Rates of SO2 and NOx by Fuel 
Source: EPA peaking unit definition; 2006 continuous emission monitor (CEM) data 
from EPA’s Clean Air Markets Division 
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Figure B-1: Example of the classification of an EGU as an EPA-defined peaking unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

EPA’s peaking unit definition: 
EGU generates < 10% of 3-year average capacity and < 20% each year 

 
Plant 1 
Capacity: 100,000 million British thermal units (MMBTU) per year 
 

   Year 1                     Year 2                      Year 3 
    16,000 MMBTU        5,000 MMBTU        8,000 MMBTU 

  (16%)                       (5%)                        (8%)       
 

3-year average = 9.7%     
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Figure B-2: The fraction of hourly total PJM gross load that is PJM peaking unit load 
during July1-31, 2006. Note: The hourly data is from PJM continuous emissions monitors 
and does not include units that are not fitted with monitors. 
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Figure B-3: a) U.S. annual heat input (millions of MMBtu) of peaking units (brown) 
compared to annual average temperature (pink dashed) and annual gross domestic 
product (GDP) growth rate (green dash-dot). The daily average temperature (Figure 2) 
has a slightly better correlation (r = 0.8, p = 3×10-3) than average summer high 
temperatures (r = 0.79, p = 3×10-3) partly due to the fact that overnight summer 
temperatures in addition to daily maximum also play a critical role in energy usage.       
b) PJM annual heat input (millions of MMBtu) of peaking units (blue) compared to 
annual average U.S. oil price per barrel (red dashed), annual average U.S. gas price per 
thousand cubic feet (green dotted) and annual average coal price per short ton (black 
dash-dot). 
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Figure B-4: Maximum percent of total from the 544 peaking units studied here to the 
Base Case concentrations of a) PM2.5 mass b) particulate sulfate, c) elemental carbon, and 
d) primary unspeciated PM2.5 from July1-31, 2006. This represents the maximum 
contribution of these peaking units to hourly total PM2.5 during the studied time period. 
 

 

 

 

Max Percent of Total Peaking 
Unit Surface Primary PM2.5 

Max Percent of Total  
Peaking Unit Surface EC 

Max Percent of Total  
Peaking Unit Surface SO4 

Max Percent of Total  
Peaking Unit Surface PM2.5 

100 

60 

20 0 

M
ax P

ercent of Total  
P

eaking U
nit S

urface P
M

2.5 

80 

40 

percent of total 100 

60 

20 0 

M
ax P

ercent of Total  
P

eaking U
nit S

urface P
M

2.5 

80 

40 

percent of total 
100 

60 

20 

0 

Max Percent of Total Peaking 
Unit Surface Primary PM2.5 

80 

40 

pe
rc

en
t o

f t
ot

al
 

100 

60 

20 

0 

Max Percent of Total Peaking 
Unit Surface Primary PM2.5 

80 

40 

pe
rc

en
t o

f t
ot

al
 

100 

60 

20 

0 

Max Percent of Total Peaking 
Unit Surface Primary PM2.5 

80 

40 

pe
rc

en
t o

f t
ot

al
 

100 

60 

20 

0 

Max Percent of Total Peaking 
Unit Surface Primary PM2.5 

80 

40 

pe
rc

en
t o

f t
ot

al
 

100 

60 

20 

0 

Max Percent of Total Peaking 
Unit Surface Primary PM2.5 

80 

40 

pe
rc

en
t o

f t
ot

al
 

100 

60 

20 

0 

Max Percent of Total Peaking 
Unit Surface Primary PM2.5 

80 

40 

pe
rc

en
t o

f t
ot

al
 

a) b) 

c) d) 



 

 

125 

  

 

Figure B-5: Maximum daily percent contribution to CMAQ-predicted hourly ambient 
PM2.5 mass by the 544 peaking units studied here from July 1-31, 2006. 
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Ozone Analysis 

 Ambient surface hourly maximum ozone mixing ratios are highest in the All PJM 

simulation throughout and outside the PJM region (Figure B-5b, up to 45 ppbV). PJM 

Peaking Units result in hourly maximum ozone mixing ratios of up to14 ppbV (Figure B-

5a), 9% of the maximum hourly O3 concentrations of the Base Case (Figure B-6), with 

multiple peak values occurring from Northern New Jersey extending south through the 

coast of Virginia. 
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Figure B-6: CMAQ-predicted maximum hourly ambient concentrations of ozone for 
PJM Peaking Units, All PJM, and Other RTOs at the surface from July 1-31, 2006 (a-c) 
and CMAQ-predicted maximum hourly population-weighted ambient concentrations of 
ozone for PJM Peaking Units, All PJM, and Other RTOs at the surface from July 1-31, 
2006 (d-f). 
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Figure B-7: Maximum percent difference between the 544 peaking units studied here 
and the Base Case for ozone from July1-31, 2006. This represents the maximum 
contribution of these peaking units to hourly total ozone during the studied time period. 
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Aloft analysis 

 Meteorology can exacerbate air quality episodes, often through stagnation that 

causes accumulation of trace species such as chemically-produced sulfate and PM2.5 

mass. Along coastal areas, land/sea breeze events can also exacerbate pollution events. 

Aloft, at 800 mb, CMAQ-predicted peaking unit ambient concentrations of PM2.5 reach 

an hourly maximum up to 6.6 µg/m3 with primary unspeciated PM2.5 and sulfate species 

contributing the majority, up to ~3 µg/m3 each (Figure B-7). This result is unique. 

Primary PM2.5 is emitted at the surface, while sulfate forms aloft in the atmosphere, often 

in clouds, areas of convective mixing and vertical transport. Note the spatial distribution 

in maximum change aloft is different than at the surface, with the majority of the maxima 

over Southeastern Virginia, Western Maryland and Southern New Jersey. 
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Figure B-8: CMAQ-predicted ambient hourly maximum concentrations due to peaking 
units at 800mb of total PM2.5 mass (a), sulfate (b), EC (c) and primary unspeciated PM2.5 
(d) from July 1-31, 2006. 
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Figure B-9: CMAQ-predicted maximum hourly population-weighted ambient 
concentrations of EC and primary unspeciated PM2.5 mass for PJM Peaking Units, All 
PJM, and Other RTOs at the surface from July 1-31, 2006.  
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Figure B-10: Annual median household income for 2006-2010 as reported in the 2010 
American Community Survey by the US Census Bureau adjusted by a state-level cost of 
living index. The pink coloring in Virginia represents areas with missing data. 
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C. APPENDIX C 

 

SUPPORTING INFORMATION FOR CHAPTER 4 

 

 
 
Figure C-1: Sensitivity Cases 3-4, CMAQ-predicted ambient concentration differences 
from the Base Case of average hourly nitrate (a,c) and hourly average aerosol free acidity 
(b,d) from July 1, 2006 to July 31, 2006. 
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D. APPENDIX D 

 

EFFICIENCY OF BASE CASE MODEL RUNS ON PHOTON SERVER 

 

 

Figure D-1: Total run times of the Base Case simulation from Chapter 2 with varying 
configurations of nodes and processors to determine the optimal configuration that 
provides the fastest run time on the Rutgers’ Department of Environmental Science’s 
PHOTON server. 
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E. APPENDIX E 

 

R SCRIPTS USED FOR THIS DISSERTATION 
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######################################################################## 

# Figure 2-1b of Caroline Farkas Dissertation (2016) 

# Script for Map of AQS and IMPROVE sites used 

######################################################################## 

 

#load libraries 

> library(maps) 

> library(mapproj) 

 

#Read in IMPROVE data and get unique sites 

> col_names5 <- c("Dataset", "Sitecode", "Date", "POC", "Lat", "Lon", "State", "ec", 

 "pm25", "so4") 

> col_classes5 <- c("character","character","character","numeric","numeric", "numeric", 

 "character", rep("numeric",3)) 

> improve_sites<- read.csv(file= 

 "/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_analaysis/IMPROVE

 _2006.txt", sep=",",  skip=1, header=F, col.names=c(col_names5),  

 colClasses = c(col_classes5), na.strings=c("-999.0000","-999")) 

> improve_unique <- unique(improve_sites$Sitecode) 

> length(improve_unique) 

#remove unneeded columns 

> improve <- improve_sites[, c(2,5,6,7)] 

> improve <- improve[!duplicated(improve),] 
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> nrow(improve) #should match length(improve_unique) 

 

#Read in hourly PM2.5 data for AQS sites 

> col_names <- c("siteID", "lat", "lon", "column", "row", "timeOn", "timeOff", 

 "obPM25", "modPM25") 

> col_classes <- c("numeric", "numeric", "numeric", "numeric", "numeric", "character", 

 "character", rep("numeric",2)) 

> sitexAdded<- read.csv(file= 

 "/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_analaysis/QA_2006_

 addto2008NEI_hourly.csv", sep=",", skip=6, header=F,col.names=c(col_names), 

 colClasses=c(col_classes), na.strings=c("NA", "", "-999")) 

> sites <- unique(sitexAdded$siteID) 

#remove unneeded columns 

> hourly <- sitexAdded[, c(1,2,3)] 

> hourly <- hourly[!duplicated(hourly),] 

 

#Plot AQS and IMPROVE onto map using different colors and print as PDF format 

#begin PDF 

> pdf("/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_analaysis/obs_ 

 location_map.pdf", width=8, height=7) 

> map(database="state",regions=c("Virginia", "New Jersey", "Pennsylvania", "West 

 Virginia", "Delaware", "Maryland", "DC")) 

> points(improve$Lon,improve$Lat,cex=1.5,pch=17,col="red") 
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> points(hourly$lon,hourly$lat, cex=1.5,pch=20,col="blue") 

> legend("topleft", c("IMPROVE sites", "AQS hourly sites"), pch=c(17,20), 

 col=c("red","blue"), cex=0.65) 

#add names of cities above 250k people for reference 

> data(us.cities) 

> map.cities(us.cities, country=c("NJ"), label=T, minpop=250000, font=2) 

> map.cities(us.cities, country=c("PA"), label=T, minpop=250000, font=2) 

> map.cities(us.cities, country=c("MD"), label=T, minpop=250000, font=2) 

> map.cities(us.cities, country=c("DC"), label=T, minpop=250000, font=2) 

> map.cities(us.cities, country=c("VA"), label=T, minpop=250000, font=2) 

> map.cities(us.cities, country=c("VA"), label=T, minpop=40050, maxpop=41000, 

 cex=1,  font=2) 

> map.cities(us.cities, country=c("DE"), label=T, font=2) 

#end PDF 

> dev.off() 
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######################################################################## 

# Figure 2-2 of Caroline Farkas Dissertation (2016) 

# Time series of July 2006 showing daily concentrations of PM2.5, measured every third 

day (IMPROVE) versus DAYER daily concentrations of PM2.5. Additional pie plots 

show the percentage of species that make up PM2.5. 

######################################################################## 

> library(mapplots) 

> library(lubridate) 

# Read in IMPROVE data, separated by pollutant 

> col_names6 <-c("Dataset", "Sitecode", "Date", "POC", "Lat", "Lon", "State", "ec", 

 "pm25", "so4") 

> col_classes6 <- c("character","character","character","numeric","numeric", "numeric", 

 "character",rep("numeric",3)) 

> improve<-read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_ 

 analaysis/IMPROVE_2006.txt",sep=",", skip=1, header=F, 

 col.names=c(col_names6), colClasses=c(col_classes6), na.strings=c("-

 999.0000","-999")) 

> improve$Dataset <- NULL 

> improve$Date <- mdy(improve$Date) 

> improve$other <- improve$pm25 - improve$so4 - improve$ec 

#make data frame of maximum of all points on certain date 

> max.improve <- aggregate(cbind(ec,pm25,so4,other)~Date, data=improve, 

 FUN="max") 
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> write.csv(max.improve, "/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_ 

 analaysis/max_improve.csv",row.names=FALSE) 

 

#IMPROVE is measured every 3 days. So, in textedit, I added the missing dates with no 

(or blank) data to more easily match up with the DAYZER data that had points for 

everyday. Read back in, format date, merge with DAYZER data and remove unwanted 

columns: 

> col_names9 <- c("dateon","ec","pm25","so4","other") 

> col_classes9 <- c("character",rep("numeric",4)) 

> max.improve.new<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/ 

 Manuscript_data_analaysis/max_improve.csv",sep=",", skip=1,header=F, 

 col.names=c(col_names9), colClasses=c(col_classes9)) 

> max.improve.new$dateon <- ymd(max.improve.new$dateon) 

> all_max.improve <- merge(max.improve.new,dayzer,by.x=("dateon"),by.y=("Date")) 

> all_max.improve$Generation_MWh <- NULL 

> all_max.improve$Spin_MWh <- NULL 

 

#read in DAYZER generation 

> dayzer.file <- "/Users/Carna/Downloads/Daily+Generation+from+Jul-Aug+2006-

 2.csv" 

> col_names2 <- c("Date", "Generation_MWh", "Spin_MWh", 

 "Total_Generation_MWh") 

> col_classes2 <- c("character", "numeric", "numeric","numeric") 
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> dayzer <- read.csv(file=dayzer.file, skip=1, sep=c(","), header=F, 

 col.names=c(col_names2), colClasses=c(col_classes2), na.strings=c("#N/A", "-

 999", "-9")) 

#I made a vector called dates to subset out the dates in DAYZER that are for July 2006. 

This could be done MUCH easier by just subsetting with less than and greater than 

statements. This was early on in my R coding abilities…. 

> dates <- c("7/1/06", "7/2/06", "7/3/06", "7/4/06", "7/5/06", "7/6/06", "7/7/06", "7/8/06", 

 "7/9/06", "7/10/06", "7/11/06", "7/12/06", "7/13/06", "7/14/06", "7/15/06", 

 "7/16/06", "7/17/06", "7/18/06", "7/19/06", "7/20/06", "7/21/06", "7/22/06", 

 "7/23/06", "7/24/06", "7/25/06", "7/26/06", "7/27/06", "7/28/06", "7/29/06", 

 "7/30/06", "7/31/06") 

> dayzer <- subset(dayzer, dayzer$Date%in%dates) 

> dayzer$Date <- mdy(dayzer$Date) 

> dayzer$Mil_MWh <- dayzer$Total_Generation_MWh/1000000 

 

#Making the Graph 

> par(mar=c(4,4,1,5)) 

> plot(max.improve$Date, max.improve$pm25, ylim=c(5,40), 

 xlim=c(1151712000,1154304000), xlab="2006 Dates", 

 ylab=expression(paste("Observed PM"[2.5], " (", mu, "g ",m^{-3}, 

 ")")),cex.lab=1.25,mgp=c(2.5,1,0), las=1, type="l",lty=2) 

> par(new=T) 
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> plot(dayzer$Date,dayzer$Mil_MWh, type="l", xlim=c(1151712000,1154304000), 

 col="blue",yaxt="n", ylab=NA, xlab=NA,axes=F, lwd=2) 

> axis(4,at=c("2.0","2.2","2.4","2.6","2.8","3.0","3.2"),col="blue",las=1,col.ticks="blue") 

> mtext(side=4,line=3,"DAYZER Total Generation (Millions of 

 MWh)",col="blue",cex=1.25) 

> par(new=T) 

> plot(NA,NA, xlim=c(1151712000,1154304000), ylim=c(5,40) ,las=1, ylab="", xlab="", 

 xaxt="n", yaxt="n",bty="n") 

#make pie charts appear on graph 

> a=1 

> for (i in seq(1151712000,1154304000,86400)){ 

   add.pie(z=c(max.improve[a,2],max.improve[a,4],max.improve[a,5]),   

  x=max.improve[a,1], y=max.improve[a,3], radius=1.25, labels="",   

  col=c("black","red","gray73"), border=F) 

   percent <-max.improve[a,4] / (max.improve[a,2] + max.improve[a,4] +   

  max.improve[a,5])*100 

   percent <- formatC(percent,format="f",digits=0) 

   text(paste("  ",percent,"%",sep=""), x=max.improve[a,1], y=max.improve[a,3] +  

  2.5, cex=1,col="red") 

   a=a+1 

 } 
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######################################################################## 

# Figure 2-3 of Caroline Farkas Dissertation (2016) 

# Scatter plot of CMAQ model bias using IMPROVE measured data for SO4 and PM2.5 

######################################################################## 

#read in IMPROVE data 

> col_names <- c("siteID", "lat", "lon", "column", "row", "timeOn", "timeOff", 

 "obASO4", "modASO4", "obAEC", "modAEC", "obPM25", "modPM25") 

> col_classes <- c("numeric", "numeric", "numeric", "numeric", "numeric", "character", 

 "character", rep("numeric",6)) 

> sitexBase<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_ 

 analaysis/QA_stn_2006.csv",sep=",", skip=6, header=F,col.names=c(col_names), 

 colClasses=c(col_classes)) 

 

#format time and calculate biases 

sitexBase$timeOn <- mdy_hm(as.character(sitexBase$timeOn)) 

sitexBase$biasASO4 <- sitexBase$modASO4 - sitexBase$obASO4 

sitexBase$biasPM25 <- sitexBase$modPM25 - sitexBase$obPM25 

 

#Plot model bias of base case with PM2.5 and SO4 on the same plot 

> par(mar=c(4,4,4,4)) 

> plot(sitexBase$obASO4,sitexBase$biasASO4, col = "red", xlab="", xlim=c(0,20), 

 ylim=c(-15,15), xaxs="i", yaxs="i", ylab="", cex.lab=1.25, lab.col="red", 

 mgp=c(2.75,1,0), las=1, pch=16, Family="Times") 
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> mtext(expression(paste("Observed Sulfate (", mu, "g ",m^{-3},  ")")), 

 line=2.5,side=1,cex=1.25, col="red") 

> mtext(expression(paste("Sulfate Bias (modeled - observed)")), line=2.25, side=2, 

 cex=1.25, col="red", Family="Times") 

> abline(v=0,h=0,lty=2,col="black") 

> par(new=T) 

> plot(sitexBase$obPM25, sitexBase$biasPM25, col="blue", xaxs="i", yaxs="i", 

 xlab="", ylab="", xlim=c(0,50), ylim=c(-30,30), xaxt="n", yaxt="n", 

 mgp=c(2.75,1,0), las=1) 

> axis(3) 

> mtext(expression(paste("Observed PM"[2.5], " (", mu, "g ",m^{-3}, ")")), line=2, 

 side=3, cex=1.25, col="blue") 

> axis(4,las=1) 

> mtext(expression(paste("PM"[2.5]," Bias (modeled - observed)")), line=2.75, side=4, 

 cex=1.25, col="blue") 

> legend(0.5,29, c(expression(paste("SO"[4])), expression(paste("PM"[2.5]))), 

 pch=c(16,1), col=c("red","blue")) 
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######################################################################## 

# Figure 2-4 of Caroline Farkas Dissertation (2016) 

# CMAQ model bias of PM2.5 during the month of July 2006 and compared to hourly 

measured values 

######################################################################## 

> library(lubridate) 

 

#Read in the base case vs obs (hourly data downloaded from ttn - used 88502) 

> col_names <- c("siteID", "lat", "lon", "column", "row", "timeOn", "timeOff", 

 "obPM25", "modPM25") 

> col_classes <- c("numeric", "numeric", "numeric", "numeric", "numeric", "character", 

 "character", rep("numeric", 2)) 

> sitexBase<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_ 

 analaysis/QA_2006_2008NEIbase_hourly.csv",sep=",", skip=6, header=F, 

 col.names=c(col_names), colClasses=c(col_classes), na.strings=c("NA", "", "-

 999")) 

 

> a <- unique(sitexBase$siteID) 

> length(a) 

> sitexBase$dateTime <- mdy_hm(sitexBase$timeOn) 
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#Read in the sensitivity simulation (added ORIS IDs case) vs obs 

> col_names <- c("siteID", "lat", "lon", "column", "row", "timeOn", "timeOff", 

 "obPM25", "modPM25") 

col_classes <- c("numeric", "numeric", "numeric", "numeric", "numeric", "character", 

 "character", rep("numeric", 2)) 

sitexAdded<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_ 

 analaysis/QA_2006_addto2008NEI_hourly.csv",sep=",", skip=6, header=F, 

 col.names=c(col_names), colClasses=c(col_classes), na.strings=c("NA", "", "-

 999")) 

 

> b <- unique(sitexAdded$siteID) 

> length(b) 

> sitexAdded$dateTime <- mdy_hm(sitexAdded$timeOn) 

 

#merge the two datasets 

> all <- merge(sitexBase,sitexAdded, by.x=c("siteID", "dateTime"), 

 by.y=c("siteID","dateTime")) 

> all$basePM25 <- all$modPM25.x 

> all$addedPM25 <- all$modPM25.y 

> all$lat.y <- NULL 

> all$lon.y <- NULL 

> all$column.y <- NULL 

> all$row.y <- NULL 
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> all$obPM25.y <- NULL 

> all$modPM25.y <- NULL 

> all$modPM25.x <- NULL 

 

#compute difference between observed and modeled 

> all$baseDiff <- all$basePM25-all$obPM25  #base - obs 

> all$addedDiff <- all$addedPM25-all$obPM25  #added - obs 

 

#fix the date 

> all$timeOn <- mdy_hm(all$timeOn) 

 

#2-panel plot of model bias 

> par(mfrow=c(1,2), oma = c(3,3,1,0) + 0.1, mar = c(0,0,1,1) + 0.1) 

#plot bias vs time 

> par(mar=c(1.25,1,0,0.3)) 

> plot(sub$dateTime,sub$baseDiff, pch=2, mgp=c(2.5,1,0), cex.lab=1.25, las=1) 

> points(sub$dateTime, sub$addedDiff, col="blue", pch=20) 

> abline(h=0) 

#plot bias vs obs 

> par(mar=c(1.25,0.3,0,0.25)) 

> plot(sub$obPM25,sub$baseDiff, pch=2, yaxt='n') 

> points(sub$obPM25,sub$addedDiff, col="blue", pch=20) 

> abline(h=0) 
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> legend(57,32,c("Base Case","Matched CEM Case"),pch=c(2,20),col=c("black","blue"), 

 cex=1, pt.cex=1.5) 

 

> title(xlab = expression(paste("Dates                               Observed Hourly PM"[2.5], " 

 (", mu, "g ", m^{-3}, ")")), ylab=expression(paste("Model Bias of PM"[2.5]," 

 (Model - Observations)")), cex.lab=1.25, outer = TRUE, mgp=c(1.5,1,0), 

 cex.main=2) 
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######################################################################## 

# Figure 2-6 of Caroline Farkas Dissertation (2016) 

# 4-panel comparison of default SMOKE temporalization versus matched CEM hourly 

with ORIS IDs  

########################################################################

> library(lubridate) 

 

#Read in Coal Plant data 

> col_names2 <- c("State", "FacilityName", "FacilityID", "UnitID", "AssociatedStacks", 

 "Year", "Date", "Hour", "HeatInput", "AnnFactor", "AnnSO2", 

 "SMOKE_SO2_hourly", "CEMScan_SO2_hourly", "AnnPM25", 

 "SMOKE_PM25_hourly", "CEMScan_PM25_hourly") 

> col_classes2 <- c(rep("character",2),"numeric", "character", "character", "numeric", 

 "character" ,rep("numeric",9)) 

> Coal<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_ 

 analaysis/James_Cogen_Coal.csv", sep=",", skip=1, header=F, 

 col.names=c(col_names2), colClasses=c(col_classes2)) 

> Coal$newdate <- mdy_hm(paste(Coal$Date, “ “, Coal$Hour,”:00”,sep=””)) 

 

#Change tons to lbs 

> Coal$CEMScan_PM25_hourly <- Coal$CEMScan_PM25_hourly*2000 

> Coal$SMOKE_PM25_hourly <- Coal$SMOKE_PM25_hourly*2000 
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#Read in NG plant data 

> col_names <- c("Date", "Hour", "HeatInput", "AnnFactor", "AnnPM25", 

 "CEMScan_PM25_hourly", "SMOKE_PM25_hourly", "AnnSO2", 

 "CEMScan_SO2_hourly", "SMOKE_SO2_hourly") 

> col_classes <- c("character",rep("numeric",9)) 

> NG<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript_data_ 

 analaysis/AES_Red_Oak.csv", sep=",", skip=1, header=F, 

 col.names=c(col_names), colClasses=c(col_classes)) 

 

> NG$newdate <- mdy_hm(paste(NG$Date, " ", NG$Hour,":00",sep="")) 

> Dates <- unique(NG$Date) 

 

#Change tons to lbs 

> NG$CEMScan_PM25_hourly <- NG$CEMScan_PM25_hourly*2000 

> NG$SMOKE_PM25_hourly <- NG$SMOKE_PM25_hourly*2000 

 

#For chart labels - time goes by seconds (86,400 sec per day since 1970) 

> months <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", 

 "Nov", "Dec") 

> mo <- c(jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec) 

> jul_days <- c("12","13","14","15","16","17","18","19","20","21","22","23","24","25") 
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> jul_sec <- c(jul12, jul13, jul14, jul15, jul16, jul17, jul18, jul19, jul20, jul21, jul22, 

jul23, jul24, jul25) 

 

#Make 4 panel plots 

> par(mfrow=c(2,2),oma = c(3,4,1,0) + 0.1,mar = c(0,0,1,1) + 0.1) 

#1 

> par(mar=c(1.25,1,0,0.5)) 

> plot(Coal$newdate,Coal$CEMScan_PM25_hourly, type = "l", col="blue", xlab="", 

 ylab="", las=1, ylim=c(0,10), xaxt="n") 

> axis(1,at=mo,labels=NA) 

> lines(Coal$newdate,Coal$SMOKE_PM25_hourly, col="red") 

> legend(1136073601,10, c("ORIS-CEM Match","No Match"), cex=0.55, lty=c(1,1), 

 lwd=c(1.5,1.5), col=c("blue","red")) 

> text(1162339201+324000,10, "Coal Plant - Annual", cex=0.75, font=2) 

#2 

> par(mar=c(1.25,0.5,0,1)) 

> plot(Coal$newdate,Coal$CEMScan_PM25_hourly, type = "l", col="blue", xlab="", 

 ylab="", ylim=c(0,10), xlim=c(jul12,jul25), yaxt="n", las=1) 

> axis(1,at=jul_sec,labels=NA) 

> lines(Coal$newdate,Coal$SMOKE_PM25_hourly, col="red") 

> text(jul22+43200,10, "Coal Plant - Heat Wave", cex=0.75, family="Arial",font=2) 

#3 

> par(mar=c(1,1,0.25,0.5)) 
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> plot(NG$newdate,NG$CEMScan_PM25_hourly, type = "l",col="blue", xlab="", 

 ylab="", ylim=c(0,14), xaxt="n",las=1) 

> axis(1,at=mo,labels=months) 

> lines(NG$newdate,NG$SMOKE_PM25_hourly, col="red") 

> text(1162339201+700000,14, "NG Plant - Annual", cex=0.75, family="Arial",font=2) 

#4 

> par(mar=c(1,0.5,0.25,1)) 

> plot(NG$newdate,NG$CEMScan_PM25_hourly, type = "l",col="blue", ylab="", 

 xlab="",ylim=c(0,14), xlim=c(jul12,jul25), las=1, yaxt="n") 

> axis(1,at=jul_sec,labels=jul_days) 

> lines(NG$newdate,NG$SMOKE_PM25_hourly, col="red") 

> text(jul22+60200,14, "NG Plant - Heat Wave", cex=0.75, font=2) 

 

> title(xlab = "Months in 2006                             Days in July 2006", ylab = 

 expression(paste("PM"[2.5], "  Emissions (lbs hr"^-1,")")), cex.lab=1.5, outer = 

 TRUE, mgp=c(1.75,1,0), cex.main=2, family="Arial") 

 

#Calculating actual numbers for comparing the data 

> July <- c("7/1/06", "7/2/06", "7/3/06", "7/4/06", "7/5/06", "7/6/06", "7/7/06", "7/8/06", 

"7/9/06", "7/10/06", "7/11/06", "7/12/06", "7/13/06", "7/14/06", "7/15/06", "7/16/06", 

"7/17/06", "7/18/06", "7/19/06", "7/20/06", "7/21/06", "7/22/06", "7/23/06", "7/24/06", 

"7/25/06", "7/26/06", "7/27/06", "7/28/06", "7/29/06", "7/30/06", "7/31/06") 
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#Coal 

> July_Coal <- subset(Coal, Coal$Date%in%July) 

> a <- mean(July_Coal$SMOKE_PM25_hourly) 

> b <- mean(July_Coal$CEMScan_PM25_hourly) 

> c <- mean(July_Coal$SMOKE_SO2_hourly) 

> d <- mean(July_Coal$CEMScan_SO2_hourly) 

 

#percent increase of PM2.5 – coal plant 

> e <- (b-a)/a *100 

 

#percent increase of SO2 – coal plant 

> f <- (d-c)/c*100 #the same as e 

 

#Gas 

> July_Gas <- subset(NG, NG$Date%in%July) 

> g <- mean(July_Gas$SMOKE_PM25_hourly) 

> h <- mean(July_Gas$CEMScan_PM25_hourly) 

> i <- mean(July_Gas$SMOKE_SO2_hourly) 

> j <- mean(July_Gas$CEMScan_SO2_hourly) 

 

#percent increase of PM2.5 - gas plant 

> k <- (h-g)/g *100 
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#percent increase of SO2 – gas plant 

> l <- (j-i)/i*100 #the same as k 

 

#Find max differences by looking at ratio of CEMScan/SMOKE values 

> July_Coal$PM25diff <- July_Coal$CEMScan_PM25_hourly / 

 July_Coal$SMOKE_PM25_hourly 

> July_Coal$SO2diff <- July_Coal$CEMScan_SO2_hourly / 

 July_Coal$SMOKE_SO2_hourly 

> July_Gas$PM25diff <- July_Gas$CEMScan_PM25_hourly / 

 July_Gas$SMOKE_PM25_hourly 
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######################################################################## 

# Data Analysis for Chapter 3 of Caroline Farkas Dissertation (2016) 

# This script determines which EGUs are peaking units based on the EPA definition (less 

than 10% of capacity factor over 3-year average, and less than 20% of capacity factor in 

each of those years). This approach was used to find PJM peaking units too by subsetting 

the data by state (not shown here but very easy to do using this script) 

######################################################################## 

#Read in US CEM Capacity Factors 

> col_names <- c("State", "FacilityName", "ORIS", "BLR", "Year", "MaxHourlyHIrate") 

> col_classes <- c("character", "character","character", "character", rep("numeric",2)) 

> cap <-read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/US_CEM_CAPACITY_FACTORS_2002_2014.csv", sep=",", skip=1, 

 header=F, col.names=c(col_names), colClasses=c(col_classes), 

 na.strings=c(“NA”,”-999”, “”)) 

 

#Read in CEM data 

> col_names1 <- c("State", "FacilityName", "ORIS", "BLR", "Year", 

 "HeatInput_MMBTU", "GrossLoad_MWh") 

> col_classes1 <- c("character", "character","character","character", rep("numeric",3)) 

> cem <-read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/US_CEM_2002_2014.csv", sep=",", skip=1, header=F, 

 col.names=c(col_names1), colClasses=c(col_classes1), na.strings=c("NA","-

 999")) 
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#calculate maximum annual heat input by multiplying maximum hourly heat input by 

number of hours in a year (8,760) and then merge the 2 data frames 

> cap$maxHI <- cap$MaxHourlyHIrate*8760 

> cem_cap <- merge(cem,cap,by.x=c(“State”, “FacilityName”, “ORIS”,”BLR”,”Year”), 

 by.y=c(“State”, “FacilityName”,”ORIS”,”BLR”,”Year”)) 

#calculate percentage use of max annual heat input 

> cem_cap$pUse <- (cem_cap$HeatInput_MMBTU/cem_cap$maxHI)  

 

#subset the years out 

> y2002 <- subset(cem_cap, Year==2002) 

> y2003 <- subset(cem_cap, Year==2003) 

> y2004 <- subset(cem_cap, Year==2004) 

> y2005 <- subset(cem_cap, Year==2005) 

> y2006 <- subset(cem_cap, Year==2006) 

> y2007 <- subset(cem_cap, Year==2007) 

> y2008 <- subset(cem_cap, Year==2008) 

> y2009 <- subset(cem_cap, Year==2009) 

> y2010 <- subset(cem_cap, Year==2010) 

> y2011 <- subset(cem_cap, Year==2011) 

> y2012 <- subset(cem_cap, Year==2012) 

> y2013 <- subset(cem_cap, Year==2013) 

> y2014 <- subset(cem_cap, Year==2014) 
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# rename pUse for each year so I can keep them straight when I do the averages 

> colnames(y2002)[10] <-"pUse2002"  

> colnames(y2003)[10] <-"pUse2003" 

> colnames(y2004)[10] <-"pUse2004" 

> colnames(y2005)[10] <-"pUse2005" 

> colnames(y2006)[10] <-"pUse2006" 

> colnames(y2007)[10] <-"pUse2007" 

> colnames(y2008)[10] <-"pUse2008" 

> colnames(y2009)[10] <-"pUse2009" 

> colnames(y2010)[10] <-"pUse2010" 

> colnames(y2011)[10] <-"pUse2011" 

> colnames(y2012)[10] <-"pUse2012" 

> colnames(y2013)[10] <-"pUse2013" 

> colnames(y2014)[10] <-"pUse2014" 

 

> colnames(y2002)[6] <-"HeatInput2002_MMBTU"  

> colnames(y2003)[6] <-"HeatInput2003_MMBTU" 

> colnames(y2004)[6] <-"HeatInput2004_MMBTU" 

> colnames(y2005)[6] <-"HeatInput2005_MMBTU" 

> colnames(y2006)[6] <-"HeatInput2006_MMBTU" 

> colnames(y2007)[6] <-"HeatInput2007_MMBTU" 

> colnames(y2008)[6] <-"HeatInput2008_MMBTU" 

> colnames(y2009)[6] <-"HeatInput2009_MMBTU" 
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> colnames(y2010)[6] <-"HeatInput2010_MMBTU" 

> colnames(y2011)[6] <-"HeatInput2011_MMBTU" 

> colnames(y2012)[6] <-"HeatInput2012_MMBTU" 

> colnames(y2013)[6] <-"HeatInput2013_MMBTU" 

> colnames(y2014)[6] <-"HeatInput2014_MMBTU" 

 

#merge them into 3-year subsets for the rolling 3-year average (NOTE: do this for all 10 

years, but to save space, I did not rewrite them all here) 

#2004 

> cem_2002_2004 <- merge(y2002[,c("State", "FacilityName", "ORIS","BLR", 

 "pUse2002")], y2003[,c("State","FacilityName","ORIS","BLR","pUse2003")],by.

 x=c("State", "FacilityName", "ORIS","BLR"), by.y=c("State", "FacilityName", 

 "ORIS", "BLR")) 

> cem_2002_2004 <- merge(cem_2002_2004, y2004[,c("State", "FacilityName","ORIS", 

 "BLR", "HeatInput2004_MMBTU","pUse2004")]) 

> cem_2002_2004$averagePUse <- rowMeans(subset(cem_2002_2004, select = 

 c(pUse2002, pUse2003, pUse2004), na.rm=TRUE)) 

 

> peak_cem2004 <- subset(cem_2002_2004, averagePUse<=0.1 & pUse2002<=0.2 & 

 pUse2003<=0.2 & pUse2004<=0.2) 

 

#make data frame 

> year <- c(2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014) 
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> heat_input <- c(sum(peak_cem2004$HeatInput2004_MMBTU), 

 sum(peak_cem2005$HeatInput2005_MMBTU), 

 sum(peak_cem2006$HeatInput2006_MMBTU), 

 sum(peak_cem2007$HeatInput2007_MMBTU), 

 sum(peak_cem2008$HeatInput2008_MMBTU), 

 sum(peak_cem2009$HeatInput2009_MMBTU), 

 sum(peak_cem2010$HeatInput2010_MMBTU), 

 sum(peak_cem2011$HeatInput2011_MMBTU),  

 sum(peak_cem2012$HeatInput2012_MMBTU), 

 sum(peak_cem2013$HeatInput2013_MMBTU), 

 sum(peak_cem2014$HeatInput2014_MMBTU)) 

> USpeak <- data.frame(year,heat_input) 
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######################################################################## 

# Data analysis for Chapter 3 of Caroline Farkas Dissertation (2016) 

# This script creates the “No PJM” and “Only PJM” emission scenarios by removing 

PJM EGUs from CEM and NEI data that is used as inputs for SMOKE/CMAQ for 2006 

######################################################################## 

#read in PJM CEM data 

> col_names <- c("State", "FacilityName", "ORISPL", "UnitID", "Month", "Year", 

 "SO2", "AvgNOxRate", "NOx", "CO2", "HeatInput", "GrossLoad", "UnitType", 

 "FuelType", "FuelTypeSec", "SO2Control", "NOxControl", "PMControl", 

 "other") 

> col_classes <- c(rep("character",18)) 

> PJM <-read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/July_2006_PJM_CEM.csv", sep=",", skip=1, header=F, 

 col.names=c(col_names), colClasses=c(col_classes), na.strings=c("NA","-999", 

 "")) 

> PJM$pair <- paste(PJM$ORISPL,PJM$UnitID,sep=” “) 

 

#read in 2008 NEI (ptipm is 1 file, ptnonipm is 6 files because of its size) 

> col_names3 <- c("country_cd", "region_cd", "tribal_code", "facility_id", "unit_id", 

 "rel_point_id", "process_id", "agy_facility_id", "agy_unit_id", 

 "agy_rel_point_id", "agy_process_id", "SCC", "poll", "ann_value", 

 "ann_pct_red", "facility_name", "erptype", "stkhgt", "stkdiam", "stktemp", 

 "stkflow", "stkvel", "naics", "longitude", "latitude", "ll_datum", 
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 "horiz_coll_mthd", "design_capacity", "design_capacity_units", "reg_codes", 

 "fac_source_type", "unit_type_code", "control_ids", "control_measures", 

 "current_cost", "cumulative_cost", "projection_factor", "submitter_id", 

 "calc_method", "data_set_id", "facil_category_code", "ORIS","BLR", "ipm_yn", 

 "calc_year", "date_updated", "fug_height", "fug_width_ydim", 

 "fug_length_xdim", "fug_angle", "zipcode", "annual_avg_hours_per_year", 

 "jan_value", "feb_value", "mar_value", "apr_value", "may_value", "jun_value", 

 "jul_value", "aug_value", "sep_value", "oct_value", "nov_value", "dec_value", 

 "jan_pctred", "feb_pctred", "mar_pctred", "apr_pctred", "may_pctred", 

 "jun_pctred", "jul_pctred", "aug_pctred", "sep_pctred", "oct_pctred", 

 "nov_pctred", "dec_pctred", "comment") 

> col_classes3 <- c(rep("character",77)) 

> NEI <- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008PTIPMImprovedv2.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names3), colClasses=c(col_classes3), na.strings=c("NA","-

 999")) 

 

> NONIPM1 <- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008PTNONIPMImproved1v1.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names3), colClasses=c(col_classes3), na.strings=c("NA","-

 999")) 
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> NONIPM2 <- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008PTNONIPMImproved2v3.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names3), colClasses=c(col_classes3), na.strings=c("NA","-

 999")) 

 

> NONIPM3 <- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008PTNONIPMImproved3v1.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names3), colClasses=c(col_classes3), na.strings=c("NA","-

 999")) 

 

> NONIPM4 <- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008PTNONIPMImproved4v2.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names3), colClasses=c(col_classes3), na.strings=c("NA","-

 999")) 

 

> NONIPM5 <- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008PTNONIPMImproved5v1.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names3), colClasses=c(col_classes3), na.strings=c("NA","-

 999")) 
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> NONIPM6 <- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008PTNONIPMImproved6v1.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names3), colClasses=c(col_classes3), na.strings=c("NA","-

 999")) 

 

#make SCC codes numeric and pair ORIS and BLR identifiers into 1 column to make 

matching and identification easier 

> NEI$SCC <- as.numeric(NEI$SCC) 

> NEI$pair <- paste(NEI$ORIS,NEI$BLR,sep=" ") 

 

> NONIPM1$SCC <- as.numeric(NONIPM1$SCC) 

> NONIPM1$pair <- paste(NONIPM1$ORIS,NONIPM1$BLR,sep=" ") 

 

> NONIPM2$SCC <- as.numeric(NONIPM2$SCC) 

> NONIPM2$pair <- paste(NONIPM2$ORIS,NONIPM2$BLR,sep=" ") 

 

> NONIPM3$SCC <- as.numeric(NONIPM3$SCC) 

> NONIPM3$pair <- paste(NONIPM3$ORIS,NONIPM3$BLR,sep=" ") 

 

> NONIPM4$SCC <- as.numeric(NONIPM4$SCC) 

> NONIPM4$pair <- paste(NONIPM4$ORIS,NONIPM4$BLR,sep=" ") 
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> NONIPM5$SCC <- as.numeric(NONIPM5$SCC) 

> NONIPM5$pair <- paste(NONIPM5$ORIS,NONIPM5$BLR,sep=" ") 

 

> NONIPM6$SCC <- as.numeric(NONIPM6$SCC) 

> NONIPM6$pair <- paste(NONIPM6$ORIS,NONIPM6$BLR,sep=" ") 

 

#read in CEM data for July 2006, make a single file 

> col_names6 <- c("ORISID", "BLRID", "Date", "Hour", "NOXmass", "SO2mass", 

 "NOXrate", "optime", "gload", "sload", "heatinput", "heatinput_measure", 

 "so2measure", "noxmmeasure", "noxrmeasure", "unitflow") 

> CEM1<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/HOUR_UNIT_2006_07_1-30jul.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names6), colClasses=c(col_classes6), na.strings=c("NA","-

 999")) 

 

> CEM2 <- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/HOUR_UNIT_2006_07_31jul.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names6), colClasses=c(col_classes6), na.strings=c("NA","-

 999")) 

 

> CEM <- rbind(CEM1,CEM2) 

> CEM$pair <- paste(CEM$ORISID,CEM$BLRID,sep=" ") 
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# match CEM and PJM ORIS/BLR pairs to make 2 dataframes (1. CEM PJM data and 

2.CEM data without PJM units) 

> a <- unique(PJM$pair) 

> CEM_PJM <- subset(CEM, CEM$pair%in%PJM$pair) 

#PJM units not in CEM data 

> CEM_PJM_not <- subset(CEM,!(CEM$pair%in%PJM$pair)) 

 

# put in correct SMOKE input format and write to csv form 

> CEM_PJM$ORISID <- as.numeric(CEM_PJM$ORISID) 

> CEM_PJM$BLRID <- as.character(CEM_PJM$BLRID) 

> CEM_PJM$Date <- as.character(CEM_PJM$Date) 

> CEM_PJM$NOXrate <- as.numeric(CEM_PJM$NOXrate) 

> CEM_PJM$heatinput = as.numeric(CEM_PJM$heatinput) 

> CEM_PJM$heatinput_measure = as.numeric(CEM_PJM$heatinput_measure) 

> CEM_PJM$so2measure = as.numeric(CEM_PJM$so2measure) 

> CEM_PJM <- CEM_PJM[,1:16] 

> write.csv(CEM_PJM, "/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/July2006_CEM_PJMonly.txt", row.names=F) 

 

# match NEI and PJM ORIS/BLR pairs and make 2 data frames: 1. NEI PJM data and 2. 

NEI data without PJM units 

> NEI_PJM <- subset(NEI, NEI$pair%in%PJM$pair) 

> NEI_PJM_not <- subset(NEI, !(NEI$pair%in%PJM$pair)) 
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# put NEI ptipm file in correct SMOKE input format and write to csv form 

> NEI_PJM$ann_value <- as.numeric(NEI_PJM$ann_value) 

> NEI_PJM$ann_pct_red <- as.numeric(NEI_PJM$ann_pct_red) 

> NEI_PJM$stkhgt<- as.numeric(NEI_PJM$stkhgt) 

> NEI_PJM$stkdiam <- as.numeric(NEI_PJM$stkdiam) 

> NEI_PJM$stktemp <- as.numeric(NEI_PJM$stktemp) 

> NEI_PJM$stkflow <- as.numeric(NEI_PJM$stkflow) 

> NEI_PJM$stkvel <- as.numeric(NEI_PJM$stkvel) 

> NEI_PJM$longitude <- as.numeric(NEI_PJM$longitude) 

> NEI_PJM$latitude <- as.numeric(NEI_PJM$latitude) 

> NEI_PJM$design_capacity <- as.numeric(NEI_PJM$design_capacity) 

> NEI_PJM$fac_source_type <- as.numeric(NEI_PJM$fac_source_type) 

> NEI_PJM$unit_type_code <- as.numeric(NEI_PJM$unit_type_code) 

> NEI_PJM$current_cost <- as.numeric(NEI_PJM$current_cost) 

> NEI_PJM$cumulative_cost <- as.numeric(NEI_PJM$cumulative_cost) 

> NEI_PJM$projection_factor <- as.numeric(NEI_PJM$projection_factor) 

> NEI_PJM$calc_method <- as.numeric(NEI_PJM$calc_method) 

> NEI_PJM$data_set_id <- as.numeric(NEI_PJM$data_set_id) 

> NEI_PJM$calc_year <- as.numeric(NEI_PJM$calc_year) 

> NEI_PJM$date_updated <- as.numeric(NEI_PJM$date_updated) 

> NEI_PJM$fug_height <- as.numeric(NEI_PJM$fug_height) 

> NEI_PJM$fug_width_ydim <- as.numeric(NEI_PJM$fug_width_ydim) 

> NEI_PJM$fug_length_xdim <- as.numeric(NEI_PJM$fug_length_xdim) 
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> NEI_PJM$fug_angle <- as.numeric(NEI_PJM$fug_angle) 

> NEI_PJM$annual_avg_hours_per_year <- as.numeric(NEI_PJM$annual_avg_hours_ 

 per_year) 

> NEI_PJM$jan_value <- as.numeric(NEI_PJM$jan_value) 

> NEI_PJM$feb_value <- as.numeric(NEI_PJM$feb_value) 

> NEI_PJM$mar_value <- as.numeric(NEI_PJM$mar_value) 

> NEI_PJM$apr_value <- as.numeric(NEI_PJM$apr_value) 

> NEI_PJM$may_value <- as.numeric(NEI_PJM$may_value) 

> NEI_PJM$jun_value <- as.numeric(NEI_PJM$jun_value) 

> NEI_PJM$jul_value <- as.numeric(NEI_PJM$jul_value) 

> NEI_PJM$aug_value <- as.numeric(NEI_PJM$aug_value) 

> NEI_PJM$sep_value <- as.numeric(NEI_PJM$sep_value) 

> NEI_PJM$oct_value <- as.numeric(NEI_PJM$oct_value) 

> NEI_PJM$nov_value <- as.numeric(NEI_PJM$nov_value) 

> NEI_PJM$dec_value <- as.numeric(NEI_PJM$dec_value) 

> NEI_PJM$jan_pctred <- as.numeric(NEI_PJM$jan_pctred) 

> NEI_PJM$feb_pctred <- as.numeric(NEI_PJM$feb_pctred) 

> NEI_PJM$mar_pctred <- as.numeric(NEI_PJM$mar_pctred) 

> NEI_PJM$apr_pctred <- as.numeric(NEI_PJM$apr_pctred) 

> NEI_PJM$may_pctred <- as.numeric(NEI_PJM$may_pctred) 

> NEI_PJM$jun_pctred <- as.numeric(NEI_PJM$jun_pctred) 

> NEI_PJM$jul_pctred <- as.numeric(NEI_PJM$jul_pctred) 

> NEI_PJM$aug_pctred <- as.numeric(NEI_PJM$aug_pctred) 
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> NEI_PJM$sep_pctred <- as.numeric(NEI_PJM$sep_pctred) 

> NEI_PJM$oct_pctred <- as.numeric(NEI_PJM$oct_pctred) 

> NEI_PJM$nov_pctred <- as.numeric(NEI_PJM$nov_pctred) 

> NEI_PJM$dec_pctred <- as.numeric(NEI_PJM$dec_pctred) 

> NEI_PJM <- NEI_PJM[,1:77] 

>  write.csv(NEI_PJM, "/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008PTIPM_PJMonly.csv", row.names=F) 

 

# put NEI ptnonipm files (6 of them) in correct SMOKE input format and write to csv 

form. (NOTE: Only the first of 6 is pasted here because the rest is repetition and many 

pages long)  

> NONIPM1_PJM <- subset(NONIPM1, NONIPM1$pair%in%PJM$pair) 

> NONIPM1_PJM_not <- subset(NONIPM1, !(NONIPM1$pair%in%PJM$pair)) 

 

> NONIPM1_PJM$ann_value <- as.numeric(NONIPM1_PJM$ann_value) 

> NONIPM1_PJM$ann_pct_red <- as.numeric(NONIPM1_PJM$ann_pct_red) 

> NONIPM1_PJM$stkhgt<- as.numeric(NONIPM1_PJM$stkhgt) 

> NONIPM1_PJM$stkdiam <- as.numeric(NONIPM1_PJM$stkdiam) 

> NONIPM1_PJM$stktemp <- as.numeric(NONIPM1_PJM$stktemp) 

> NONIPM1_PJM$stkflow <- as.numeric(NONIPM1_PJM$stkflow) 

> NONIPM1_PJM$stkvel <- as.numeric(NONIPM1_PJM$stkvel) 

> NONIPM1_PJM$longitude <- as.numeric(NONIPM1_PJM$longitude) 

> NONIPM1_PJM$latitude <- as.numeric(NONIPM1_PJM$latitude) 
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> NONIPM1_PJM$design_capacity <- as.numeric(NONIPM1_PJM$design_capacity) 

> NONIPM1_PJM$fac_source_type <- as.numeric(NONIPM1_PJM$fac_source_type) 

> NONIPM1_PJM$unit_type_code <- as.numeric(NONIPM1_PJM$unit_type_code) 

> NONIPM1_PJM$current_cost <- as.numeric(NONIPM1_PJM$current_cost) 

> NONIPM1_PJM$cumulative_cost <- as.numeric(NONIPM1_PJM$cumulative_cost) 

> NONIPM1_PJM$projection_factor <- as.numeric(NONIPM1_PJM$projection_factor) 

> NONIPM1_PJM$calc_method <- as.numeric(NONIPM1_PJM$calc_method) 

> NONIPM1_PJM$data_set_id <- as.numeric(NONIPM1_PJM$data_set_id) 

> NONIPM1_PJM$calc_year <- as.numeric(NONIPM1_PJM$calc_year) 

> NONIPM1_PJM$date_updated <- as.numeric(NONIPM1_PJM$date_updated) 

> NONIPM1_PJM$fug_height <- as.numeric(NONIPM1_PJM$fug_height) 

> NONIPM1_PJM$fug_width_ydim <- as.numeric(NONIPM1_PJM$fug_width_ydim) 

> NONIPM1_PJM$fug_length_xdim <- as.numeric(NONIPM1_PJM$fug_length_xdim) 

> NONIPM1_PJM$fug_angle <- as.numeric(NONIPM1_PJM$fug_angle) 

> NONIPM1_PJM$annual_avg_hours_per_year <-as.numeric(NONIPM1_PJM$annual_ 

 avg_hours_per_year) 

> NONIPM1_PJM$jan_value <- as.numeric(NONIPM1_PJM$jan_value) 

> NONIPM1_PJM$feb_value <- as.numeric(NONIPM1_PJM$feb_value) 

> NONIPM1_PJM$mar_value <- as.numeric(NONIPM1_PJM$mar_value) 

> NONIPM1_PJM$apr_value <- as.numeric(NONIPM1_PJM$apr_value) 

> NONIPM1_PJM$may_value <- as.numeric(NONIPM1_PJM$may_value) 

> NONIPM1_PJM$jun_value <- as.numeric(NONIPM1_PJM$jun_value) 

> NONIPM1_PJM$jul_value <- as.numeric(NONIPM1_PJM$jul_value) 
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> NONIPM1_PJM$aug_value <- as.numeric(NONIPM1_PJM$aug_value) 

> NONIPM1_PJM$sep_value <- as.numeric(NONIPM1_PJM$sep_value) 

> NONIPM1_PJM$oct_value <- as.numeric(NONIPM1_PJM$oct_value) 

> NONIPM1_PJM$nov_value <- as.numeric(NONIPM1_PJM$nov_value) 

> NONIPM1_PJM$dec_value <- as.numeric(NONIPM1_PJM$dec_value) 

> NONIPM1_PJM$jan_pctred <- as.numeric(NONIPM1_PJM$jan_pctred) 

> NONIPM1_PJM$feb_pctred <- as.numeric(NONIPM1_PJM$feb_pctred) 

> NONIPM1_PJM$mar_pctred <- as.numeric(NONIPM1_PJM$mar_pctred) 

> NONIPM1_PJM$apr_pctred <- as.numeric(NONIPM1_PJM$apr_pctred) 

> NONIPM1_PJM$may_pctred <- as.numeric(NONIPM1_PJM$may_pctred) 

> NONIPM1_PJM$jun_pctred <- as.numeric(NONIPM1_PJM$jun_pctred) 

> NONIPM1_PJM$jul_pctred <- as.numeric(NONIPM1_PJM$jul_pctred) 

> NONIPM1_PJM$aug_pctred <- as.numeric(NONIPM1_PJM$aug_pctred) 

> NONIPM1_PJM$sep_pctred <- as.numeric(NONIPM1_PJM$sep_pctred) 

> NONIPM1_PJM$oct_pctred <- as.numeric(NONIPM1_PJM$oct_pctred) 

> NONIPM1_PJM$nov_pctred <- as.numeric(NONIPM1_PJM$nov_pctred) 

> NONIPM1_PJM$dec_pctred <- as.numeric(NONIPM1_PJM$dec_pctred) 

> NONIPM1_PJM <- NONIPM1_PJM[,1:77] 

> write.csv(NONIPM1_PJM, "/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008NONIPM1_PJMonly.csv", row.names=F) 
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######################################################################## 

# Figure 3-1a of Caroline Farkas Dissertation (2016) 

# Location and Fuel Type of PJM Peaking Unit Map 

######################################################################## 

> library(maps) 

#read in peaking units (544 lines) 

> col_names2 <- c("State","Plant_name","ORIS","BLR","Year","Lat","Lon","pair") 

> col_classes2 <- c(rep("character",4), rep("numeric",3),"character") 

> peakers<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008_NEI_Peakers_Removed_Lat_Long.csv", sep=",", skip=1, header=F, 

 col.names=c(col_names2), colClasses=c(col_classes2), na.strings=c("NA","-

 999")) 

#fuel types 

> col_names3 <- c("State", "FacilityName", "ORISID", "BLRID", "Year", "UnitType", 

 "FuelType_P", "FuelType_S", "blank") 

> col_classes3 <- c(rep("character",9)) 

> fuels<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/PJMRegion2006FuelTypes.csv",sep=",", skip=1, header=F, 

 col.names=c(col_names3), colClasses=c(col_classes3), na.strings=c("NA","-

 999")) 

#make ORIS/BLR ID unique pair as one column so it is easier to match 

>fuels$pair <- paste(fuels$ORISID,fuels$BLRID,sep=" ") 
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#add fueltype to peakers dataframe 

> peakers$fuel <- fuels$FuelType_P[match(peakers$pair,fuels$pair)] 

 

#coal 

> peakcoal <- subset(peakers,fuel==”Coal”) 

#gas 

> peakgas <- subset(peakers,fuel=="Pipeline Natural Gas" | fuel=="Other Gas" | 

 fuel=="Natural Gas" | fuel=="Other Gas, Pipeline Natural Gas") 

#oil 

> peakoil <- subset(peakers, fuel=="Other Oil" | fuel=="Diesel Oil" | fuel=="Residual 

 Oil") 

 

# make map 

> map(database="state",regions=c("Virginia","New Jersey","Pennsylvania","West 

 Virginia", "Delaware", "Maryland", "DC", "Ohio", "Indiana", "Maine", "New 

 Hampshire", "Vermont", "Connecticut" ,"Rhode Island", "Massachusetts", 

 "Michigan", "Kentucky", "New York", "Illinois", "Wisconsin"), mar=c(0,3,0,0)) 

> points(peakcoal$Lon,peakcoal$Lat,cex=1.5,pch=17,col="black") 

> points(peakgas$Lon,peakgas$Lat,cex=1.5,pch=20,col="green3") 

> points(peakoil$Lon,peakoil$Lat,cex=1.5,pch=0,col="red") 

> legend(-91.5,45.8, c("Coal", "Oil", "Gas"), pch=c(17,0,20), col=c("black", "red", 

 "green3"), cex=1.5) 

> title(main="Location and Fuel Type of PJM Peaking Unit EGUs") 



 

 

173 

######################################################################## 

# Figure 3-1b of Caroline Farkas Dissertation (2016) 

# Location and Fuel Type of All PJM EGUs Map 

######################################################################## 

#Read in CEM_PJMonly data 

> col_names2 <- c("ORISID", "BLRID", "Date", "Hour", "NOXmass", "SO2mass", 

 "NOXrate", "optime", "gload", "sload", "heatinput", "heatinput_measure", 

 "so2measure", "noxmmeasure", "noxrmeasure", "unitflow") 

> col_classes2 <- c(rep("character",16)) 

> PJMonly <-read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/July2006_CEM_PJMonly.txt",sep=",", skip=1, header=F, 

 col.names=c(col_names2), colClasses=c(col_classes2), na.strings=c("NA","-999", 

 "")) 

> PJMonly$pair <- paste(PJMonly$ORISID,PJMonly$BLRID,sep=” “) 

 

 

#read in CAMD data for lat/lon and primary fuel source 

> col_names9 <- c("State", "FacilityName", "ORISPL", "UnitID", "AssociatedStacks", 

 "Month", "Year", "Programs", "SO2", "AvgNOxRate", "NOx", "CO2", 

 "HeatInput", "FuelType", "Lat", "Lon","other") 

> col_classes9 <- c(rep("character",16)) 
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> CAMD <-read.csv(file="/Users/Carna/Downloads/EPADownload/emission_12-11-

 2015.csv", sep=",", skip=1, header=F, col.names=c(col_names9), 

 colClasses=c(col_classes9), na.strings=c("NA","-999", "")) 

 

#make ORIS/BLR pairs in one column to match with other files 

> CAMD$pair <- paste(CAMD$ORISPL,CAMD$UnitID, sep=" ") 

 

# merge and match data 

> PJMonly2 <- merge(PJMonly,CAMD, by.x=”pair”,by.y=”pair”) 

# remove duplicates 

> PJMonly3 <- PJMonly2[!duplicated(PJMonly2$pair),] 

 

#separate into fuel types for mapping 

> PJM_coal <- subset(PJMonly3,FuelType=="Coal" | FuelType=="Coal Refuse") 

> PJM_oil <- subset(PJMonly3, FuelType=="Diesel Oil" | FuelType=="Other Oil" | 

 FuelType=="Residual Oil" | FuelType=="Petroleum Coke" | FuelType=="Other 

 Oil, Tire Derived Fuel") 

> PJM_gas <- subset(PJMonly3, FuelType=="Pipeline Natural Gas" | FuelType=="Other 

 Gas" | FuelType=="Process Gas" | FuelType=="Natural Gas" | 

 FuelType=="Natural Gas, Pipeline Natural Gas" | FuelType=="Other Gas, 

 Pipeline Natural Gas") 
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> map(database="state",regions=c("Virginia","New Jersey","Pennsylvania","West 

 Virginia", "Delaware", "Maryland", "DC", "Ohio", "Indiana", "Maine", "New 

 Hampshire", "Vermont", "Connecticut", "Rhode Island", "Massachusetts", 

 "Michigan", "Kentucky", "New York", "Illinois", "Wisconsin"), mar=c(0,3,0,0)) 

> points(PJM_coal$Lon,PJM_coal$Lat,cex=1.5,pch=17,col="black") 

> points(PJM_gas$Lon,PJM_gas$Lat,cex=1.5,pch=20,col="green3") 

> points(PJM_oil$Lon,PJM_oil$Lat,cex=1.5,pch=0,col="red") 

> legend(-91.5,45.8, c("Coal", "Oil", "Gas"), pch=c(17,0,20), col=c("black", "red", 

 "green3"), cex=1.25) 

> title(main="Location and Fuel Type of PJM EGUs") 
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######################################################################## 

# Figure 3-1c of Caroline Farkas Dissertation (2016) 

# Location and Fuel Type of Other RTO EGUs Map 

######################################################################## 

#Read in CEM_PJMonly data 

> col_names2 <- c("ORISID", "BLRID", "Date", "Hour", "NOXmass", "SO2mass", 

 "NOXrate", "optime", "gload", "sload", "heatinput", "heatinput_measure", 

 "so2measure", "noxmmeasure", "noxrmeasure", "unitflow") 

> col_classes2 <- c(rep("character",16)) 

> noPJM <-read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/July2006_CEM_noPJM.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names2), colClasses=c(col_classes2), na.strings=c("NA","-999", 

 "")) 

#make ORIS/BLR pairs in one column for matching 

> noPJM$pair <- paste(noPJM$ORISID,noPJM$BLRID,sep=" ") 

 

#merge and match data with CAMD 

> noPJM2 <- merge(noPJM,CAMD, by.x="pair",by.y="pair") 

#remove duplicates and NC and TN 

> noPJM3 <- noPJM2[!duplicated(noPJM2$pair),] 

> noPJM3 <- subset(noPJM3, noPJM3$State!="NC") 

> noPJM3<- subset(noPJM3, noPJM3$State!="TN") 
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#separate fuel types 

> nonPJM_coal <- subset(noPJM3,FuelType=="Coal" | FuelType=="Other Solid Fuel" | 

 FuelType=="Coal, Wood") 

> nonPJM_oil <- subset(noPJM3, FuelType=="Diesel Oil" | FuelType=="Other Oil" | 

 FuelType=="Residual Oil" | FuelType=="Petroleum Coke" | 

 FuelType=="Residual Oil, Pipeline Natural Gas" | FuelType=="Diesel Oil, Other 

 Oil") 

> nonPJM_gas <- subset(noPJM3, FuelType=="Pipeline Natural Gas" | 

 FuelType=="Other Gas" | FuelType=="Natural Gas") 

 

#make map 

> map(database="state",regions=c("Virginia", "New Jersey", "Pennsylvania", "West 

 Virginia", "Delaware", "Maryland", "DC", "Ohio", "Indiana", "Maine", "New 

 Hampshire", "Vermont", "Connecticut", "Rhode Island", "Massachusetts", 

 "Michigan", "Kentucky", "New York", "Illinois", "Wisconsin"), mar=c(0,3,0,0)) 

> points(nonPJM_coal$Lon,nonPJM_coal$Lat,cex=1.5,pch=17,col="black") 

> points(nonPJM_gas$Lon,nonPJM_gas$Lat,cex=1.5,pch=20,col="green3") 

> points(nonPJM_oil$Lon,nonPJM_oil$Lat,cex=1.5,pch=0,col="red") 

> legend(-91.5,39.8, c("Coal", "Oil", "Gas"), pch=c(17,0,20), col=c("black", "red", 

 "green3"), cex=1.25) 

> title(main="Location and Fuel Type of Other RTO EGUs") 
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######################################################################## 

# Figure 3-1d of Caroline Farkas Dissertation (2016) 

# Total Population by County Map 

######################################################################## 

> library(acs) 

> library(sqldf) 

> library(ggplot2) 

> library(maps) 

> library(choroplethr) 

> library(choroplethrMaps) 

 

#sign into census API (request key here: http://api.census.gov/data/key_signup.html)   

> api.key.install(key="key_goes_here") 

 

# load the boundary data for all counties in domain 

> county.df=map_data("county",region=c("Maine", "Vermont", "New Hampshire", 

 "Rhode Island", "Massachusetts", "Connecticut", "New York", "New Jersey", 

 "Delaware", "Pennsylvania", "Virginia", "West Virginia", "Ohio", "Kentucky", 

 "Maryland", "Indiana", "Illinois", "Michigan", "Wisconsin", "DC")) 

 

# rename fields for later merge 

> names(county.df)[5:6]=c("state","county") 

#load boundary data for all states in domain 



 

 

179 

> state.df=map_data("state",region=c("Maine", "Vermont", "New Hampshire", "Rhode 

 Island", "Massachusetts", "Connecticut", "New York", "New Jersey", "Delaware", 

 "Pennsylvania", "Virginia", "West Virginia", "Ohio", "Kentucky", "Maryland", 

 "Indiana", "Illinois", "Michigan", "Wisconsin", "DC")) 

 

#fetch data, first get table number 

acs.lookup(endyear = 2009, span = 5, dataset = "acs", table.name = "population", 

case.sensitive=F ) 

 

> census_pop <- acs.fetch(geography=counties, endyear=2010, span=5, 

 table.number=”B01003”, col.names=”pretty”) 

 

#make into data frame for easier handling 

> census_pop.dat <- data.frame(county=geography(census_pop)[[1]], 

 pop=as.numeric(estimate(census_pop))) 

 

#clean up county names and find the states 

> census_pop.dat$state=tolower(gsub("^.*County, ", "", census_pop.dat$county)) 

> census_pop.dat$county=tolower(gsub(“ County,.*”, “”, census_pop.dat$county)) 

 

#fix spelling differences that make counties not match (blank data) 

> a <- which(census_pop.dat$county=="st. lawrence") 

> census_pop.dat$county[a] <- "st lawrence" 
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> b <- which(census_pop.dat$county=="st. croix") 

> census_pop.dat$county[b] <- "st croix" 

> c <- which(census_pop.dat$county=="st. clair") #illinois & michigan 

> census_pop.dat$county[c] <- "st clair" 

> d <- which(census_pop.dat$county=="st. joseph") #indiana & michigan 

> census_pop.dat$county[d] <- "st joseph" 

> e <- which(census_pop.dat$county=="laporte") 

> census_pop.dat$county[e] <- "la porte" 

> f <- which(census_pop.dat$county=="dekalb") #indiana & illinois 

> census_pop.dat$county[f] <- "de kalb" 

> g <- which(census_pop.dat$county=="lasalle") 

> census_pop.dat$county[g] <- "la salle" 

> h <- which(census_pop.dat$county=="dupage") 

> census_pop.dat$county[h] <- "du page" 

> i <- which(census_pop.dat$county=="prince george's") 

> census_pop.dat$county[i] <- "prince georges" 

> j <- which(census_pop.dat$county=="queen anne's") 

> census_pop.dat$county[j] <- "queen annes" 

> k <- which(census_pop.dat$county=="st. mary's") 

> census_pop.dat$county[k] <- "st marys" 

 

#merge county boundaries with the new data frame 

> choropleth=merge(county.df, census_pop.dat, by=c("state","county"), all.x=TRUE) 
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> choropleth=choropleth[order(choropleth$order), ] 

 

#make cuts in the data for the map scale 

> choropleth$pop_cuts=cut(choropleth$pop, breaks=c(0, 5000, 10000, 50000, 100000, 

 250000, 500000, 750000, 1000000, 2500000, 5172848), include.lowest=T) 

 

#map 

> ggplot(choropleth, aes(long, lat, group = group)) + geom_polygon(aes(fill = pop_cuts), 

 colour = "black", size = 0.1) + geom_polygon(data = state.df, colour = "black", 

 fill = NA) + scale_fill_manual(values = c("#FFFFFF", "#F2F0F6", "#C4BCD3", 

 "#A99DBE", "#9282AC", "#7F6B9D", "#6D5690", "#5F4186", "#522A7E", 

 "#4A007E"), na.value="pink") + theme(axis.line=element_blank(), 

 axis.text.x=element_blank(), axis.text.y=element_blank(), 

 axis.ticks=element_blank(), axis.title.x=element_blank(), 

 axis.title.y=element_blank(), panel.background=element_blank(), 

 panel.border=element_blank(), panel.grid.major=element_blank(), 

 panel.grid.minor=element_blank(), plot.background=element_blank())+ 

 ggtitle("Total Population by County") + theme(plot.title = element_text(size=20, 

 face="bold", vjust=0.5)) 
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######################################################################## 

# Figure 3-2 of Caroline Farkas Dissertation (2016) 

# PJM peaking unit heat input compared to PJM average summer temperature and U.S. 

annual Gross Domestic Product from 2004-2014 

######################################################################## 

#read in data 

> col_names <- c("Year", "MMBTU", "AvgTemp", "oilPrice", "gasPrice", "coalPrice", 

 "Ap_Sept_AvgTemp", "JJA_AvgTemp", "JJA_MaxTemp", "GDP_growthRate") 

> col_classes <- c("numeric", "numeric","numeric",rep("character",3), "numeric", 

 "numeric", "numeric", "numeric") 

> peak <-read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/PJM_peaking_heat_inputs.csv", sep=",", skip=1, header=F, 

 col.names=c(col_names), colClasses=c(col_classes), na.strings=c("NA","-999")) 

 

#plot 

> par(mar=c(4,4.5,2,8.25)) 

> plot(peak$Year,peak$MMBTU/1000000, type="l", col="burlywood4", ylab=NA, 

 xlab=NA, las=1, lwd=5, lty=1,cex.axis=1.25) 

> mtext(side=1,expression(bold("Year")),line=2.25,cex=1.25) 

> mtext(side=2, expression(bold("Heat Input (Millions of MMBtu)")), line=2.75, 

 col="burlywood4", cex=1.25) 

> par(new=T) 
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> plot(peak$Year,peak$JJA_AvgTemp, type="l", axes=F, xlab=NA, ylab=NA, 

 col="hotpink", lwd=5, lty=2) 

> axis(side=4, las=1,cex.axis=1.25) 

> mtext(side=4,line=3.5, expression(paste(bold("Temperature ("), bold(degree), 

 bold("F)"))), col="hotpink",cex=1.25) 

> par(new=T) 

> plot(peak$Year, peak$GDP_growthRate, type="l", axes=F, xlab=NA, ylab=NA, 

 col="darkolivegreen", lwd=5, lty=4) 

> axis(side=4,las=1,line=5,cex.axis=1.25) 

> mtext(side=4,line=7.35,expression(bold("GDP Growth Rate (annual %)")), 

 col="darkolivegreen",cex=1.25) 

> legend("bottomright", c("Average Heat Input - PJM Peaking Units","PJM Average 

 Summer Temperature", "Annual U.S. GDP Growth Rate"), cex=1, lty=c(1,2,4), 

 lwd=c(3,3, 3), col=c("burlywood4","hotpink", "darkolivegreen")) 
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######################################################################## 

# Figure A-1 of Caroline Farkas Dissertation (2016) 

# 4 panel average monthly stagnation days by season for Delaware, Maryland, New 

Jersey, Pennsylvania, and Virginia 

######################################################################## 

> library(sp) 

> library(maps) 

> library(maptools) 

> gpclibPermit() 

> library(plyr) 

> library(lubridate) 

 

#reading in ~500 files using for loop 

> filenames <- list.files(path = "/Users/Carna/Dropbox/Rutgers/Research/Stagnation_ 

 days/data", pattern = NULL, all.files = FALSE, full.names = TRUE, recursive = 

 FALSE, ignore.case = FALSE) 

 

> stag=NULL 

> for (i in 1:length(filenames)){ 

   stag2<-read.table(filenames[i], header=T, quote="\"", skip=0,    

  col.names=c(col_names), colClasses=c(col_classes), na.strings=c("NA",  

  "", "CC")) 

   stag2$Date <- paste(substr(filenames[i],60,65)) 
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   stag=rbind(stag,stag2) 

 } 

> write.csv(stag,"/Users/Carna/Dropbox/Rutgers/Research/Stagnation_ 

 days/all_years.csv",row.names=F) 

 

#creating function to return state from lat and lon 

> latlong2state <- function(stag) { 

   # Prepare SpatialPolygons object with one SpatialPolygon per state (plus DC, 

 minus HI & AK) 

  > states <- map('state', fill=TRUE, col="transparent", plot=FALSE) 

   > IDs <- sapply(strsplit(states$names, ":"), function(x) x[1]) 

  > states_sp <- map2SpatialPolygons(states, IDs=IDs, 

                                   proj4string=CRS("+proj=longlat +datum=wgs84")) 

   

   # Convert pointsDF to a SpatialPoints object  

   > stagSP <- SpatialPoints(stag, proj4string=CRS("+proj=longlat    

  +datum=wgs84")) 

   # Use 'over' to get _indices_ of the Polygons object containing each point  

  > indices <- over(stagSP, states_sp) 

   # Return the state names of the Polygons object containing each point 

   > stateNames <- sapply(states_sp@polygons, function(x) x@ID) 

    stateNames[indices] 

 } 
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# Test the function using points in Wisconsin and Oregon. 

> testPoints <- data.frame(x = c(-90, -120), y = c(44, 44)) 

> testPoints <- data.frame(x = c(-74.44, -80.08), y = c(40.48, 36.11)) 

 

> latlong2state(testPoints) 

 

#make lat and lon subset 

> stag_latlon <- subset(stag, select=c(Lon,Lat), row.names=F) 

> stag_states<- latlong2state(stag_latlon) 

 

#put into data frame 

> stag$state <- stag_states 

> stag_5states <- subset(stag, stag$state == "new jersey" | stag$state == "maryland"| 

 stag$state == "delaware" | stag$state == "virginia" | stag$state == "pennsylvania") 

 

# subset into seasons, average by month, per year, make a four panel plot 

> stag_5states$Month <- paste(substr(stag_5states$Date,5,6)) 

 

#plot 

> par(mfrow=c(2,2),oma = c(3,4,1,0) + 0.1,mar = c(0,0,1,1) + 0.1) 

#december-january-february 

> djf <- subset(stag_5states, stag_5states$Month == "12" | stag_5states$Month == "01" | 

 stag_5states$Month == "02") 
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> djf_avg <- aggregate(Stagnation_days~Date, djf, mean) 

> djf_avg$Date2 <- ymd(as.character(paste(djf_avg$Date,"01",sep=""))) 

> plot(djf_avg$Date2,djf_avg$Stagnation_days, col="blue", ylim=c(0,15), xaxt="n", 

 labels=FALSE) 

> axis(1,labels=FALSE) 

> abline(lm(djf_avg$Stagnation_days~djf_avg$Date2), col="red", lty=2, lwd=2) 

> mtext(13, 3000000,"December-January-February") 

 

#march-april-may 

> mam <- subset(stag_5states, stag_5states$Month == "03" | stag_5states$Month == "04" 

 | stag_5states$Month == "05") 

> mam_avg <- aggregate(Stagnation_days~Date, mam, mean) 

> mam_avg$Date2 <- ymd(as.character(paste(mam_avg$Date,"01",sep=""))) 

> plot(mam_avg$Date2,mam_avg$Stagnation_days, col="blue", ylim=c(0,15), 

 labels=FALSE) 

> abline(lm(mam_avg$Stagnation_days~mam_avg$Date2), col="red", lty=2, lwd=2) 

 

#june-july-august 

> jja <- subset(stag_5states, stag_5states$Month == "06" | stag_5states$Month == "07" | 

 stag_5states$Month == "08") 

> jja_avg <- aggregate(Stagnation_days~Date, jja, mean) 

> jja_avg$Date2 <- ymd(as.character(paste(jja_avg$Date,"01",sep=""))) 
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> plot(jja_avg$Date2,jja_avg$Stagnation_days, col="blue", ylim=c(0,15), 

 labels=FALSE) 

> abline(lm(jja_avg$Stagnation_days~jja_avg$Date2), col="red", lty=2, lwd=2) 

 

#september-october-november 

> son <- subset(stag_5states, stag_5states$Month == "09" | stag_5states$Month == "10" | 

 stag_5states$Month == "11") 

> son_avg <- aggregate(Stagnation_days~Date, son, mean) 

> son_avg$Date2 <- ymd(as.character(paste(son_avg$Date,"01",sep=""))) 

> plot(son_avg$Date2,son_avg$Stagnation_days, col="blue", ylim=c(0,15), yaxt="n") 

> axis(2,labels=FALSE) 

> abline(lm(son_avg$Stagnation_days~son_avg$Date2), col="red", lty=2, lwd=2) 
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######################################################################## 

# Figure B-2 of Caroline Farkas Dissertation (2016) 

# Plot of daily fraction of PJM grossload (generation) that is Peaking Units 

######################################################################## 

> library(lubridate) 

> library(plyr) 

 

#read in onlyPJM CEM data 

> col_names3 <- c("ORISID", "BLRID", "Date", "Hour", "NOXmass", "SO2mass", 

 "NOXrate", "optime", "gload", "sload", "heatinput", "heatinput_measure", 

 "so2measure", "noxmmeasure", "noxrmeasure", "unitflow") 

> col_classes3 <- c("numeric","character","character", rep("numeric",13)) 

> CEM <- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/July2006_CEM_PJMonly.txt", sep=",", skip=1, header=F, 

 col.names=c(col_names3), colClasses=c(col_classes3), na.strings=c("NA","-999", 

 "-9")) 

> CEM$Date <- ymd(CEM$Date) 

> CEM$Hour <- paste(CEM$Hour,":00", sep="") 

> CEM$DateTime <- paste(CEM$Date,CEM$Hour) 

> CEM$DateTime <- ymd_hm(CEM$DateTime) 

 

#pair ORIS and Boiler Ids with space in the middle to make a joint unique identifier 

> CEM$pair <- paste(CEM$ORISID,CEM$BLRID,sep=" ") 
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#make hourly sum of gload for CEM (all PJM) 

> CEM_hSum <- ddply(CEM, .(DateTime), summarise, hSum_gload = sum(gload, 

 na.rm=TRUE)) 

 

#read in 544 peaking units (chosen based on EPA peaking unit requirements) 

#these already have the ORIS and Boiler IDs paired 

> col_names2 <- c("State","Plant_name","ORIS","BLR","Year","Lat","Lon","pair") 

> col_classes2 <- c(rep("character",4), rep("numeric",3),"character") 

> peakers<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2008_NEI_Peakers_Removed_Lat_Long.csv", sep=",", skip=1, header=F, 

 col.names=c(col_names2), colClasses=c(col_classes2), na.strings=c("NA","-

 999")) 

 

#subset peaking unit data using peakers list 

> peaking_CEM <- CEM[CEM$pair%in%peakers$pair,] 

 

#make hourly averages of gload for Peaking Units (PJM) 

> peaking_CEM_hSum <- ddply(peaking_CEM, .(DateTime), summarise, 

 peak_hSum_gload = sum(gload, na.rm=TRUE)) 

 

#merge datasets 

> hSum <- merge(CEM_hSum, peaking_CEM_hSum, by. x="DateTime", 

 by.y="DateTime") 
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#calculate fraction of total gross load that is peaking units 

> hSum$peak_frac <- hSum$peak_hSum_gload / hSum$hSum_gload 

 

#plot 

> par(mar=c(4,5,3.5,1)) 

> plot(hSum$DateTime,hSum$peak_frac, type= "l",col="blue", 

 xlab=expression(bold("Days")), ylab=NA, las=1, main="Fraction of Hourly PJM 

 Gross Load that is from Peaking Units", cex.lab=1.25, cex.main=1.25, 

 cex.axis=1.25) 

> mtext(side=2,expression(bold("Fraction of Total Gross Load")),cex=1.25,line=3.5) 
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######################################################################## 

# Figure B-3a of Caroline Farkas Dissertation (2016) 

# U.S. peaking unit heat input compared to U.S. average summer temperature and U.S. 

annual Gross Domestic Product from 2004-2014 

######################################################################## 

# read in peaking unit data 

> col_names <- c("Year", "MMBTU", "AvgTemp", "oilPrice", "gasPrice", 

 "coalPrice","Ap_Sept_AvgTemp","JJA_AvgTemp","JJA_MaxTemp","GDP_gro

 wthRate") 

> col_classes <- c("numeric", "numeric","numeric",rep("character",3), "numeric", 

 "numeric", "numeric", "numeric") 

> peak <-read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/PJM_peaking_heat_inputs.csv", sep=",", skip=1, header=F, 

 col.names=c(col_names), colClasses=c(col_classes), na.strings=c("NA","-999")) 

#US JJA average temp (from NCDC) 

> peak$US_JJA_temp <- c(70.38, 72.57, 73.52, 73.07, 71.99, 71.02, 73.08, 73.65, 73.70, 

 72.53, 71.71) 

 

#add US_MMBTU to data frame (from Data Analysis for Chapter 3 to determine U.S. 

peaking units) 

> peak$US_MMBTU <- c(293076865, 635089063, 487538037, 608736607, 436649216, 

 405063587, 626581211, 562045024, 699362633, 474566612, 522125170) 
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#plot U.S. JJA avg. temp vs MMBTU WITH GDP growth rate 

> par(mar=c(4,4.5,2,8.25)) 

> plot(peak$Year,peak$US_MMBTU/1000000, type="l",col="burlywood4", ylab=NA, 

 xlab=NA, las=1, lwd=5, lty=1,cex.axis=1.25) 

> mtext(side=1,expression(bold("Year")), line=2.25,cex=1.25) 

> mtext(side=2, expression(bold("Heat Input (Millions of MMBtu)")), line=2.75, 

 col="burlywood4",cex=1.25) 

> par(new=T) 

> plot(peak$Year,peak$US_JJA_temp, type="l", axes=F, xlab=NA, ylab=NA, 

 col="hotpink", lwd=5, lty=2) 

> axis(side=4, las=1,cex.axis=1.25) 

> mtext(side=4,line=3.5, expression(paste(bold("Temperature ("), bold(degree), 

 bold("F)"))), col="hotpink",cex=1.25) 

> par(new=T) 

> plot(peak$Year, peak$GDP_growthRate, type="l", axes=F, xlab=NA, ylab=NA, 

 col="darkolivegreen", lwd=5, lty=4) 

> axis(side=4,las=1,line=5,cex.axis=1.25) 

> mtext(side=4,line=7.35,expression(bold("GDP Growth Rate (annual %)")), 

 col="darkolivegreen",cex=1.25) 

> legend("bottomright", c("Average Heat Input - U.S. Peaking Units","U.S. Average 

 Summer Temperature", "Annual U.S. GDP Growth Rate"), cex=1, lty=c(1,2,4), 

 lwd=c(3,3, 3), col=c("burlywood4","hotpink", "darkolivegreen")) 
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######################################################################## 

# Figure B-3b of Caroline Farkas Dissertation (2016) 

# PJM peaking unit annual heat input compared to U.S. annual average oil, gas, and coal 

price 

######################################################################## 

# read in peaking unit data 

> col_names <- c("Year", "MMBTU", "AvgTemp", "oilPrice", "gasPrice", 

 "coalPrice","Ap_Sept_AvgTemp","JJA_AvgTemp","JJA_MaxTemp","GDP_gro

 wthRate") 

> col_classes <- c("numeric", "numeric","numeric",rep("character",3), "numeric", 

 "numeric", "numeric", "numeric") 

> peak <-read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/PJM_peaking_heat_inputs.csv", sep=",", skip=1, header=F, 

 col.names=c(col_names), colClasses=c(col_classes), na.strings=c("NA","-999")) 

 

# make fuel prices numeric values 

> peak$oilPrice <- as.numeric(sub('\\$','',as.character(peak$oilPrice))) 

> peak$gasPrice <- as.numeric(sub('\\$','',as.character(peak$gasPrice))) 

> peak$coalPrice <- as.numeric(sub('\\$','',as.character(peak$coalPrice))) 

 

#plot Fuel price vs. MMBTU 

> par(mar=c(4,6,2,5)) 
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> plot(peak$Year, peak$MMBTU/1000000, type="l",col="blue", ylab=NA, 

 xlab=expression(bold("Year")), cex.lab=1.25, las=1, lwd=5, cex.axis=1.25) 

> mtext(side=2, expression(bold("Heat Input (Millions of MMBtu)")), line=3.1, 

 cex=1.25, col="blue") 

> par(new=T) 

> plot(peak$Year,peak$oilPrice, type="l", axes=F, xlab=NA, ylab=NA, col="red", 

 lwd=5, lty=2) 

> axis(side=4, las=1, cex.axis=1.25) 

> mtext(side=4,line=3,expression(bold("Price per unit ($)")),cex=1.25) 

> par(new=T) 

> plot(peak$Year,peak$gasPrice, type="l", axes=F, xlab=NA, ylab=NA, col="green3", 

 lwd=5, lty=3) 

> par(new=T) 

> plot(peak$Year,peak$coalPrice, type="l", axes=F, xlab=NA, ylab=NA, col="black", 

 lwd=5, lty=4) 

> legend(2012.05,42.1, c(sprintf('%s\n%s',"Avg. Peaking Unit", "Heat 

 Input"),sprintf("Avg. U.S. Oil Price"),sprintf("Avg. U.S. Gas Price"), 

 sprintf("Avg. U.S. Coal Price")), cex=1, lty=c(1,2,3,4), lwd=c(1.5,1.5, 1.5, 1.5), 

 col=c("blue","red","green3","black")) 
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######################################################################## 

# Figure B-10 of Caroline Farkas Dissertation (2016) 

# Annual median household income adjusted by state cost of living index 

######################################################################## 

> income2005_2010.dat <- data.frame(county=geography(census_income)[[1]], 

 income=as.numeric(estimate(census_income))) 

 

#clean up county names and find the states (tolower is lowercase) 

> income2005_2010.dat$state=tolower(gsub("^.*County, ", "", 

 income2005_2010.dat$county)) 

> income2005_2010.dat$county=tolower(gsub(" County,.*", "", 

 income2005_2010.dat$county)) 

 

#read in 2015 cost of living index per state (from MERIC) 

> col_names <- c("state", "rank", "index", "grocery", "housing", "utilities", 

 "transportation", "health", "misc.") 

> col_classes <- c("character",rep("numeric",8)) 

> COLi<- read.csv(file="/Users/Carna/Dropbox/Rutgers/Research/Manuscript2_ 

 data/2015_costofliving.csv",sep=",", skip=1, header=F, col.names=c(col_names), 

 colClasses=c(col_classes), na.strings=c(“NA”, “”, “-999”)) 

 

#change state names to lower case 

> COLi$state <- tolower(COLi$state) 
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#merge 2006 income and 2003 cost of living together by state 

> income_COLi <- merge(income2005_2010.dat,COLi,by.x=”state”,by.y=”state”) 

 

#normalize incomes by cost of living by multiplying median income by cost of living 

index divided by 100 (standard cost of living) 

> income_COLi$normalized <- (income_COLi$income / (income_COLi$index / 100)) 

 

#map new normalized values 

# load the boundary data for all counties 

> county.df=map_data("county",region=c("Maine","Vermont","New Hampshire","Rhode 

 Island", "Massachusetts","Connecticut","New York","New Jersey", "Delaware", 

"Pennsylvania", "Virginia","West Virginia", "Ohio", "Kentucky", "Maryland", "Indiana", 

 “Illinois”, “Michigan”, “Wisconsin”, “DC”)) 

 

# rename fields for later merge 

> names(county.df)[5:6]=c("state","county") 

> state.df=map_data("state",region=c("Maine","Vermont","New Hampshire","Rhode 

Island", "Massachusetts", "Connecticut", "New York", "New Jersey", "Delaware", 

 "Pennsylvania", "Virginia","West Virginia", "Ohio", "Kentucky", "Maryland", 

 "Indiana", "Illinois", "Michigan","Wisconsin", "DC")) 

 

#fix spelling differences that make counties not match (blank data) 

> a <- which(income_COLi$county=="st. lawrence") 
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> income_COLi$county[a] <- "st lawrence" 

> b <- which(income_COLi$county=="st. croix") 

> income_COLi$county[b] <- "st croix" 

> c <- which(income_COLi$county=="st. clair") #illinois & michigan 

> income_COLi$county[c] <- "st clair" 

> d <- which(income_COLi$county=="st. joseph") #indiana & michigan 

> income_COLi$county[d] <- "st joseph" 

> e <- which(income_COLi$county=="laporte") 

> income_COLi$county[e] <- "la porte" 

> f <- which(income_COLi$county=="dekalb") #indiana & illinois 

> income_COLi$county[f] <- "de kalb" 

> g <- which(income_COLi$county=="lasalle") 

> income_COLi$county[g] <- "la salle" 

> h <- which(income_COLi$county=="dupage") 

> income_COLi$county[h] <- "du page" 

> i <- which(income_COLi$county=="prince george's") 

> income_COLi$county[i] <- "prince georges" 

> j <- which(income_COLi$county=="queen anne's") 

> income_COLi$county[j] <- "queen annes" 

> k <- which(income_COLi$county=="st. mary's") 

> income_COLi$county[k] <- "st marys" 
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#merge county boundaries with the new data frame 

> choropleth2=merge(county.df, income_COLi, by=c("state","county"),all.x=TRUE) 

> choropleth2=choropleth2[order(choropleth2$order), ] 

 

#make cuts in the data for the map scale 

> choropleth2$normalized_cuts=cut(choropleth2$normalized, breaks=c(20000, 30000, 

 40000, 50000, 60000, 70000, 80000, 90000, 100000, 110000, 120000, 130000), 

 include.lowest=T) 

 

#map 

> ggplot(choropleth2, aes(long, lat, group = group)) + geom_polygon(aes(fill = 

 normalized_cuts), colour = "black", size = 0.1) + geom_polygon(data = state.df, 

 colour = "black", fill = NA) + scale_fill_manual(values = c("#FFFFFF", 

 "#EEF0FC", "#C6CBE7", "#ADB4DA", "#98A1CF", "#8590C6", "#7480BD", 

 "#6372B5", "#5265AF", "#4058A9", "#2B4BA6", "#023FA5"), na.value="pink") 

 + theme(axis.line=element_blank(), axis.text.x=element_blank(), 

 axis.text.y=element_blank(), axis.ticks=element_blank(), 

 axis.title.x=element_blank(), axis.title.y=element_blank(), 

 panel.background=element_blank(), panel.border=element_blank(), 

 panel.grid.major=element_blank(), panel.grid.minor=element_blank(), 

 plot.background=element_blank()) + ggtitle("Annual Median Household 

 Income\n Adjusted by State Cost of Living Index") + theme(plot.title = 

 element_text(size=20, face="bold", vjust=0.5)) 


