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ABSTRACT OF THE THESIS

From Coordinate Descent to Social Sampling:

Coordinate Sampling for Large Scale Optimization

by Mohsen Ghassemi

Thesis Director: Prof. Anand Sarwate

The unprecedented rate at which data is being created and stored calls for scalable optimiza-

tion techniques that allow efficient “Big Data” analysis. In this work where there is only one

computing node, that modifies the coordinate-sampling distribution for stochastic coordinate

descent: we call this proportional stochastic coordinate descent (PSCD). This method treats

the gradient of the function as a probability distribution to sample the coordinates, and may be

useful in so-called lock-free decentralized optimization schemes. Although stochastic coordinate

descent methods seem attractive due to their small per-iteration complexity, they show high

variance in performance compared to full gradient descent algorithms. In order to address this

issue we propose stochastic variance reduced coordinate descent that takes information from

the previous gradient estimates into account. Lastly, we consider stochastic message passing

algorithms that limit the communication required for decentralized and distributed convex op-

timization and provide convergence guarantees on the objective value. For general distributed

optimization in which agents jointly minimize the sum of local objectives we propose treating

the iterates as gradients and propose a stochastic coordinate-wise primal averaging algorithm

for optimization.
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Chapter 1

Introduction

In the recent years, with emergence of many problems dealing with large scale data sets or

very high dimensional data, large scale convex optimization has received a great amount of

attention. Large scale machine learning, which has applications in bioinformatics, computer

vision, text processing, product recommendation systems, and many other areas where “Big

Data” is available, uses convex optimization as a powerful tool for empirical risk minimization.

Applications of large scale convex optimization, however, are not limited to machine learning

problems. For instance, resource allocation in large wireless networks can be modeled as a

convex optimization problem.

In general, such problems can be formulated as

min
w∈Rd

f(w)
4
=

1

n

n∑
i=1

f i(w), (1.1)

where {f i(w)} are convex functions and n or d (or both) are very large. Traditional methods

such as gradient descent have very high complexity when applied to large scale problems. A

plethora of different methods try to tackle this issue. Some of these methods use stochastic

optimization algorithms that have low computational cost and are scalable enough to process

large data sets. Another approach is distributing of the computation task among many com-

puting agents in a network. Models such as MapReduce [1] have been proposed for distributed

processing of large data sets. In this work, we employ numerical methods and network message

passing protocols to efficiently solve large scale convex optimization problems. Here, we mainly

focus on methods that perform coordinate-wise operations in order to reduce complexity.

We first propose a method for the simpler case of centralized optimization that uses a novel

non-uniform sampling of the coordinates. In this scheme, the chance of a coordinate j being se-

lected is proportional to partial gradients ∂f(w)
∂wj

. We name this method Proportional Stochastic

Coordinate Descent (PSCD). We show that for convex smooth objective functions our algo-

rithm, with constant step size, achieves O
(

1
t

)
convergence rate in expectation. Our centralized

analysis is based on the analysis of the uniform scheme by Sahlev-Shwartz and Tewari [2]. The
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recent survey of Wright [3] summarizes much of the early work on coordinate descent meth-

ods. Many other authors have studied non-uniform sampling algorithms that differ from ours

in the coordinate selection method [4–7]. Of particular note is the seminal work of Nesterov,

who proves linear convergence rate for his non-uniform method for strongly convex objective

functions [4]. Our centralized setup is different in that we consider optimization of convex and

smooth objectives rather than strongly convex objectives. Our method, like other first-order

gradient methods, has sublinear convergence rate for non-strongly convex objective functions

which is not surprising since strongly convex functions (unlike convex functions) cannot be arbi-

trarily “flat”, which means that the algorithm takes sufficiently “steep” steps at every iteration.

Our proportional method can also be adopted for shared memory systems where the nodes

(computational agents) are arranged in a star network. For this setup, our algorithm is based

on the framework used by Recht et al. [8] where a central node (memory node) keeps the current

global decision vector and the rest of nodes (computing nodes) access to this value and update

it in an asynchronous manner. In this framework, it is assumed that while each working node

is computing its update based on its local objective function value and transmitting it to the

central node, other working nodes can also access or update the decision vector. This means

that the estimates of the gradient vector that are transmitted to the central node could be

obsolete. We propose that each node evaluate its estimate of the gradient according to the

PSCD update rule.

Although stochastic optimization methods seem attractive due to their small per-iteration

complexity, they show high variance in performance which rises from the high variance in

estimates of the gradient vectors. In order to address this issue we propose that we can make

use of the previous gradient estimates. The idea is that if the objective function is smooth

enough so that gradient values do not change drastically from one point to another in its

vicinity, the last gradient estimate is still a good estimate of the current gradient vector. This

idea stems from stochastic variance reduced optimization methods proposed in the machine

learning literature [9, 10], especially the SAG method presented in [9]. The coordinate-wise

method that we propose based on this idea updates a random coordinate of the gradient vector

at every iteration while keeping the old values for the other coordinates. We call our method

Stochastic Variance Reduced Coordinate descent (SVRC).

One drawback of the SAG algorithm is that it requires a large amount of memory to keep

the values of sub-gradients at all data points. The coordinate-wise method we present here

addresses the memory requirement issue of SAG. In SVRC, the memory required to save the

gradient vector is proportional to the dimension of the data d (and not the size the data set n,
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which is the case in SAG). However, this is achieved at the cost of improvement in the run-time

(time to achieve a certain subopyimality gap). In SAG, the per-iteration complexity is improved

by a factor of n, while the improvement in SVRC is relative to d.

Large-network paradigms for communication and distributed computation have driven re-

newed interest in opinion and belief formation models from mathematical sociology and psy-

chology. One such recent work is the novel message passing protocol called social sampling [11]

that uses limited communication to perform distributed estimation. This protocol is similar to

consensus-based multi-agent optimization models – the goal of this work is to investigate the

connection between the two. The idea is that every agent performs local processing based on

its local objective function, then samples its belief or state of the global at random to send to

its neighbors. Subsequently, agents update their belief based on the messages they receive from

their neighbors. Transmitting samples of the belief instead of the complete information makes

this method suitable for distributed settings with limited communication resources. We note

that for centralized optimization, coordinate descent methods can be considered as centralized

variants of the social sampling method where social samples are the partial derivatives.

Despite the popularity and success of stochastic and semi-stochastic gradient methods in

centralized settings, when it comes to distributed optimization over general connected networks,

from the perspective of one node the gradient information from other nodes is useful only if their

current states are not very different from its own. For a strongly convex objective function, this

is the case if the estimates are close to the optimum. However, we are interested in methods

that guarantee convergence (at least in expectation) to the optimal point regardless of the initial

estimate given to the algorithm.

For distributed settings we propose social sampling [11]. We treat the primal iterate as a

probability distribution and exchange coordinate samples in the network. This solution may be

useful for networks with limited computation and communication resources. Our methods build

on the framework developed by Nedić and Ozdaglar [12]. We assume that the nodes broad-

cast information about their current local decision vectors to their neighbors to cooperatively

optimize the global objective function which is the average of the local objective functions.

However, in contrast to the mentioned works, our methods rely on sharing partial information

with the neighbors, namely information about a small subset of the coordinates.

Our distributed optimization method is related to many existing works in the literature,

especially consensus-based algorithms under various assumptions and constraints [13–20]. An

over view is provided in chapter 2.
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1.1 Notations and Definitions

Throughout this report, superscript i indicates node i of a network, except for ej that denotes

the j-th standard coordinate vector. Furthermore, the discrete time (iteration index) is either

represented by subscript t or as the argument of a time-variant function. All element indexes in

matrices and vectors are also indicated by subscripts. We denote the set {1, . . . , k} by [k]. The

vector 1A for A ⊆ [d] is a d-dimensional vector with 1’s for indices i ∈ A and 0 elsewhere. We

denote by ∇jf(x) = ∂f(x)
∂xj

the partial derivative of f(x) w.r.t. its jth coordinate. Assume V is

a d× d matrix. We denote by diag(V ) ∈ Rd a vector with elements being diagonal elements of

V . Also, Diag(V ) is a d× d diagonal matrix with the same diagonal elements as V .

Let D = {x1, x2, . . . , xm} be a data set whose elements, the data points, are i.i.d samples

drawn from P, a distribution on Rd.

Let G = (V,E) represent a graph with vertex set V = {1, . . . , n} and edge set E ⊆ V × V .

Let N i ⊂ V be the set of the neighbors of node (vertex) i and Ñ i = N i ∪ i.

We define projection of a vector w to a convex set B as PB(w) = argmin
w′∈B

‖w − w′‖.

Definition 1. A function f : Rd → R is convex if for all vectors u and v,

f(u)− f(v) ≥ ∇f(v)> (u− v) . (1.2)

Definition 2. A function f : Rd → R is λ-strongly convex if for all vectors u and v,

f(u)− f(v) ≥ ∇f(v)> (u− v) +
λ

2
‖u− v‖22. (1.3)

Definition 3. A function f : Rd → R is L-Lipschitz continuous if for all vectors u and v,

‖f(u)− f(v)‖2 ≤ L ‖u− v‖2 . (1.4)

Definition 4. A function f : Rd → R is L-smooth if it is twice differentiable and has L-

Lipschitz continuous gradients. Equivalently, Rd → R is L-smooth if [21]

f(u)− f(v) ≤ ∇f(v)T (u− v) +
L

2
‖u− v‖2 . (1.5)

Definition 5. A function f : Rd → R is β-coordinate-wise smooth w.r.t. coordinate j if it is
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twice differentiable and for all vectors u and basis vectors ej and any scalar η,

f(u+ ηej)− f(u) ≥ η∇jf(u) +
βη2

2
. (1.6)

1.1.1 Convergence Notations

The optimal solution to an optimization problem is denoted by w∗. In this work, we use iterative

optimization methods that generate a random sequence of iterates {wt}Tt=0 (also referred to in

this work as estimates, beliefs, or decision vectors) and a sequence of corresponding function

values {f(wt)}Tt=0.

We study the convergence of our algorithms in terms of guaranteed expected error bounds

as functions of the number of iterations T . Error bounds provided for stochastic algorithms are

in some cases in terms of

E
[
‖wt − w∗‖2

]
≤ ε(t) (1.7)

and in most cases in terms of the suboptimality gap f(wt)− f(w∗)

E [f(wt)− f(w∗)] ≤ E(t), (1.8)

where ε(t) and E(t) are decreasing function of t. If the objective function f(w) is L-smooth

(1.5), then we can relate these two notions: E(t) = L
2 ε(t).

We define convergence rate of a method as the rate at which these error bounds converge

to zero. We say a sequence {xt} converges linearly to its limit x∗ if lim
t→∞

|xt+1−x∗|
|xt−x∗| = C where

C is a constant. Moreover, a sequence {xt} converges sublinearly to x∗ if lim
t⇒∞

|xt+1−x∗|
|xt−x∗| = c(t),

where c(t)→ 1 as t→∞.

We also use the big (O) notation [22] in describing the asymptotic behavior of some of the

algorithms in this work. For functions f : Rd → R and g : Rd → R, we have

f(w) = O (g(w)) as t→∞

if and only if there is a positive real number K and a real number w† such that |f(w)| ≤M |g(w)|

for all w ≥ w†.
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1.2 Model and Problem Setup

We will consider three types of problems in this work: centralized, shared memory and dis-

tributed. For the distributed setting, we make the following assumptions on the network.

In the distributed setup, the optimization task is jointly accomplished by the n processing

units that are arranged in a network represented by a graph G = (V,E) which we assume to be

connected; we further assume (i, i) ∈ E for all i. An n×n matrix Q is called graph-conformant

if Qik = 0 for (i, k) /∈ E. We consider matrix-valued processes Q(t) where Q(t) is doubly

stochastic. We use the notation Qik(t) = qik(t). We think of qik(t) as the weight that node

i assigns to the information from node k at time t. Throughout the paper we assume that

the expectation of each stochastic graph-conformant matrix corresponds to a connected graph.

Deterministic matrices correspond to connected graphs as well.

1.2.1 Centralized System

First, we consider an optimization problem in a centralized setup. Then, we study the case of

optimizing the sum of functions fi for i ∈ [n] where each function is associated with one node

of a network.

In the centralized problem, we aim to minimize the following objective function:

min
w∈Rd

f(w), (1.9)

where f(w) is a convex smooth function.

1.2.2 Shared Memory System

Our proportional sampling scheme extends naturally to shared-memory models for distributed

optimization. In these models, a common memory element holding the current iterate wt is

accessed by a collection of n processors, each with its own local objective function f i(w). The

goal of such a system is to minimize the average of the local objectives:

min
w∈Rd

fS(w) =
1

n

n∑
i=1

f i(w), (1.10)

where {f i(w)}ni=1 are strongly convex functions with Lipschitz continuous gradients. In this

setup, a central node has a memory that keeps a shared estimate vector and all other nodes

have access to this node to read or update the estimate. In this work, we assume that each
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node reads the shared vector at arbitrary times and updates the estimate using its local gradient

information.

1.2.3 Distributed System

Similar to shared memory model, in a general connected network, we aim to minimize the

average of the local objective functions associated with the nodes of the network:

min
w∈Rd

fD(w) =
1

n

n∑
i=1

f i(w), (1.11)

where {f i(w)} are strongly convex functions.
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Chapter 2

Literature Review

2.1 Social Sampling

An important issue in any large-scale distributed optimization setup, like any other large net-

work, is implementing an efficient communication method its nodes. Many such ”message

passing protocols” have suggested, choosing the right protocol requires taking into account the

topology and information flow in the network. One of the rather recent protocols is social sam-

pling [11]. This method can be considered as a randomized version of the consensus method.

In a consensus-based setup, every node shares its entire information (belief, state or estimate)

of some phenomenon with its neighbors iteratively, until they all converge to the true belief.

In social sampling, however, instead of sharing complete information, only partial information

(sampled belief) is shared with the neighbors.

Sarwate and Javidi [11] use this idea in a distributed learning problem were nodes of a

network locally estimate global empirical distribution (histogram) of opinions in a network:

Π(j) =
1

n

n∑
i=1

1 (Xi = j) ej ∀j ∈ [d], (2.1)

where Xi is a random variable representing node i’s opinion which takes value in a known

discrete set of values.

In this setup, at each iteration every node sends an unbiased sample drawn according to

its current estimate of the true distribution. Formally, at each time t, each node i maintains

an estimate Πi(t) of the true distribution Π and sends its neighbors a random message Yi(t) ∈

{0, e1, e2, . . . , ed} drawn according to Πi(t). Each node i assigns a weight Qik(t) to its neighbor

k. Then, nodes update their estimates using the following rule:

Πi(t+ 1) = (1− ηtAii(t))Πi(t)− ηtBii(t) Yi(t) +
∑

k∈Ni(t)

ηtQik(t)Yk(t), (2.2)
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where ηt is a step size and Aii and Bii are problem-specific. The authors show that under

certain assumptions, the estimates converge to a common value almost surely.

2.2 Stochastic Optimization Methods

There is a considerable body of work on stochastic optimization methods in general and stochas-

tic coordinate descent methods in particular. These methods are especially popular for large

scale machine learning problems where conventional deterministic methods are too slow or seem

impractical. In this section some well-known algorithms in the literature are discussed.

2.2.1 Stochastic Gradient Descent for SVM

In the paper “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM”, the basic stochastic

gradient descent method is applied for optimizing objective functions of support vector machines

(SVM) learning problems [23]. The SVM problem with hinge loss function has the following

form:

min
w∈Rd

f(w) =
λ

2
‖w‖2 +

1

m

∑
(x,y)∈S

`(w; (x, y)), (2.3)

where

`(w; (x, y)) = max{0, 1− y〈w, x〉} (2.4)

and S is a data set with m data points.

Algorithm

At every iteration, k samples out of m data points are chosen uniformly at random in order to

find an unbiased estimate of the subgradient of the objective function f(w). In other words, at

each iteration the gradient of the following approximate objective function is computed:

f(wt) =
λ

2
‖wt‖2 +

1

k

∑
(x,y)∈Dt

max{0, 1− y〈wt, x〉}, (2.5)

where Dt ⊂ D with |Dt| = k. The computed gradient is the following:

ĝt = ∇ft(wt) (2.6)

= λwt −
1

k

∑
(x,y)∈Dt

1[ywTt x < 1]yx. (2.7)
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Finally, a projection step is adopted to keep wt inside the feasible domain W during the algo-

rithm.

Convergence Analysis

Let f1, . . . , fT be a sequence of λ-strongly convex functions, and w1, ..., wT+1 be a sequence of

vectors in W. Assume wt+1 = PW(wt− ηtgt) where gt is a subgradient of ft at wt and ηt = 1
λt .

Assume that for all t, ‖gt‖ ≤ L and for all data points (x, y) ∈ D we have ‖x‖ ≤ R. Suppose

that Dt is sampled i.i.d from data set D for all n. Let r be a number chosen uniformly at

random from [T ]. Then:

ED1,...,DT
Er[f(wr)] ≤ f(w∗) +

c log T

λT
. (2.8)

where c is a constant. Also, for the same conditions, with probability at least 1− δ we have

f(wT )− f(w∗) ≤ c log T

δλT
. (2.9)

2.2.2 Stochastic Gradient Descent with Suffix Averaging

Authors of “Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization”

[24] try to improve the well-known O( log T
T ) convergence guarantee for SGD with averaging to

achieve the optimal rate of O( 1
T ).

Algorithm

The general SGD algorithm is described in the following pseudo-code:

Algorithm 1 Stochastic Gradient Descent

Require: S, ηt, T
arbitrarily select w1 ∈ W
for t = 1, 2, . . . , T do

calculate ĝt s.t. E[ĝt] ∈ ∂f(wt)
set wt+1 = PW(wt − ηtĝt)

end for
return wT+1

Note that this is a very general scheme and the results obtained in this paper are valid for

different variants of SGD and SCD (or any other stochastic method) as long as they satisfy

E[ĝt] = ∇f(wt) and some assumptions that we will see in the sequel. The algorithm returns a
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sequence of points w1, . . . , wT . To obtain in a final estimate, common methods in the literature

are interested in the last point wT or the average point w̃T = 1
T

∑T
i=1 wi.

However, the authors claim that by averaging just over a portion of the points instead of all

points a convergence rate of O( 1
T ) is achievable even for non-smooth objective functions. This

method, called α-suffix averaging, for α ∈ (0, 1) returns the following point:

wαT =
wT (1−α)+1 + ...+ wT

αT
. (2.10)

Convergence Analysis

First, we consider smooth functions and show that if we return the last point, we achieve an

O( 1
T ) convergence guarantee.

Suppose f is L-smooth and λ-strongly convex over a convex set W and E[‖gt‖2] ≤ M2.

Then, if we set step size ηt = c/λt for some constant c, for any T we have

E[f(wT )− f(w∗)] ≤ C1LM
2

λ2T
. (2.11)

Also, for the average point w̃T = 1
T

T∑
t=1

wt we have:

E[f(w̃T )− f(w∗)] ≤ C2LM
2

λT
. (2.12)

For non-smooth loss functions such as the hinge loss, however, the analyses above do not

hold. for some problems it can be proved that the error gap between f(w̃T ) and f(w∗) is lower

bounded by Ω( log T
T ). The authors of this paper show that by the use of α-suffix averaging, the

O( 1
T ) convergence rate can be recovered:

E[f(wαT )− f(w∗)] ≤

(
C3 + C4 log( 1

1−α )
)

α

M2

λT
, (2.13)

Moreover, if ‖gt‖2] ≤M2 with probability 1, we have with probability at least 1− δ:

‖wT − w∗‖2 ≤
C5M

2

λ2T
+
C6M

2 log(log(T )/δ)

λT
. (2.14)

In these inequalities, C1, . . . , C6 are constants.
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2.2.3 Reducing Computational Cost Using Stale Gradients

Our work in Chapter 4 is based on the algorithm suggested in “Minimizing Finite Sums with

the Stochastic Average Gradient” by Schmidt, Le Roux, and Bach [9]. The authors present

a variance reduced variant of SGD for optimizing strongly convex cost functions that can be

written as sum of a finite set of smooth functions. The so-called ”Stochastic Average Gradient”

(SAG) method achieves an exponential convergence rate by keeping the the previous gradient

value in memory.

Stochastic Average Algorithm

Objective functions in machine learning problems can usually be written as a sample average

(or sum) over a finite data set:

f(w) =
1

m

m∑
i=1

f i(w). (2.15)

Therefore, the full gradient method for computing the gradient of f(w) needs to find the gradient

of all fi functions. On the other hand, stochastic gradient descent (SGD) randomly selects

one i (or a small number of them in case of minibatching) and takes the gradient at that

(those) point(s) to find the approximate gradient. The SAG method combines these methods

by updating the solution w according to the following rule:

wt+1 = wt − ηt
1

m

m∑
i=1

ĝi(t), (2.16)

where

ĝi(t) =


∇f i(wt) if i ∈ Dt ,

ĝi(t− 1) otherwise.

(2.17)

The set Dt is a subset of data set D which is randomly selected so that, similar to SGD, the

gradient at a few data points is calculated. For the rest of data points, however, we use the

gradient value from the previous steps, as opposed to setting it to zero which is the case in SGD.

As we will soon see in the analysis, this methods achieves a linear convergence rate similar to

that of standard gradient descent, while enjoying low per-iteration computational complexity

of SGD. However, it requires a huge amount of memory for large scale problems to keep track

of the gradient values.
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Convergence Rate

Assume that in 2.15 f is λ-strongly convex and f i is L-smooth for all i. Let the step size be

1
2mL . Then, for any T it holds that

E [f(wT )− f(w∗)] ≤
(

1− λ

8Lm

)T
L

2

[
3‖w0 − w∗‖2 +

9
∑n
i=1 ‖∇f i(w∗)‖2

4nL2

]
. (2.18)

Variance Reduction

In order to show how SAG can improve the variance of the results, we write its update rule in

the following from:

wt+1 = wt − ηt

[
∇f i(wt)−∇f i(Φt)

m
+

1

m

m∑
k=1

∇fk(Φt)

]
. (2.19)

The idea behind variance reduction methods is as follows [10]. Say we have random variable

X and we are interested in estimating E [X]. Moreover, we have random variable Y which is

highly correlated with X and we can easily compute E [Y ]. Now, define θα = α (X − Y ) +E [Y ]

as an estimator of E [X]. We observe that E [θα] = αE [X] + (1− α)E [Y ] and V ar (θα) =

α2 [V ar(X) + V ar(Y )− 2 Cov(X,Y )]. We observe that for large enough covariance, V ar (θα)

can be smaller than V ar(X). Also, note that parameter α can be used to further control the

variance while taking into consideration that smaller variance (smaller α) is achieved at the cost

of more bias in the estimate.

In (2.15), X = ∇f i(wt) and Y = ∇f i(Φt) and α = 1
n , so we have considerable improvement

in variance while enduring some bias.

2.2.4 Unbiased SAG

Defazio, Bach, and Lacoste-Julien [10] present another variance-reduced stochastic gradient

algorithm. However, unlike the SAG method, the estimates of the gradient vector are unbiased.

The update rule in this method is as follows:

wt+1 = wt − ηt

[
∇f i(wt)−∇f i(Φt) +

1

m

m∑
k=1

∇fk(Φt)

]
. (2.20)

where ∇fi(Φt) is the current stored gradient estimate and the index i is selected uniformly

at random from [m]. Let ĝt = ∇f i(wt) − ∇f i(Φt) + 1
m

m∑
k=1

∇fk(Φt). Note that Ei [ĝt] =

1
m

m∑
k=1

∇fk(wt)− 1
m

m∑
k=1

∇fk(Φt)+ 1
m

m∑
k=1

∇fk(Φt) = ∇f(wt) which shows that ĝt is an unbiased
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estimate of the true gradient vector. The unbiasedness of the estimate makes it easier to analyze

the convergence of the algorithm, however, this comes at the cost of having higher variance (for

SAGA, α is n times that of SAG).

Convergence Results

Consider optimization problem with objective function in form of (2.15). For λ-strongly convex

L-smooth fi(w), using SAGA algorithm with step size η = 1
2(λm+L) , after T iterations we have:

E[f(wT )− f(w∗)] ≤(
1− λ

2 (λm+ L)

)T
L

2

‖w0 − w∗‖2 +
m
[
f(w0)− f(w∗)− (w0 − w∗)>∇f(w∗)

]
λm+ L

 .
(2.21)

Also, if we relax the strong convexity condition and use step size η = 1
3L , we get

E[f(w̃T )− f(w∗)] ≤
(

4m

T

)[
2L

m
‖w0 − w∗‖2 + f(w0)− f(w∗)− (w0 − w∗)>∇f(w∗)

]
, (2.22)

where w̃T = 1
T

∑T
t=0 wt.

2.2.5 Stochastic Coordinate Descent

Authors of “Stochastic Methods for `1-Regularized Loss Minimization” [2] suggest another

stochastic method for efficiently solving `1-regularized loss minimization problems, that is:

min
w∈Rd

f(w) = λ‖w‖1 +
1

m

m∑
i=1

`(w; (xi, yi)). (2.23)

In order to get rid of the absolute value terms which are non-differentiable, the method

presented here solves the following equivalent problem:

min
w∈R2d

f(w) = λ

2d∑
j=1

wj +
1

m

m∑
i=1

`(w; (x̂i, yi)), (2.24)

such that w > 0, where x̂i = [xi;−xi]. The authors claim that if v∗ ∈ R2d is the minimizer of

the problem 2.24, then w∗ ∈ Rd defined by w∗j = v∗d+j−v∗j minimizes the original problem 2.23.

Initializing w to be zero, at each iteration t a coordinate j is picked uniformly at random from

[2d]. Then the derivative of f(w) w.r.t. (wj(t), gj(t) = ∇jf(w(t)), is calculated. We assume
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that f(w) is L-coordinate-wise smooth. Then, the update rule is the following:

w(t+ 1) = w(t)− η(t)ej , (2.25)

where ej is the jth unit vector and ηn = max{wjn ,
gjn
β }. The step size is trimmed to ensure

that the condition w ≥ 0 is always satisfied. The pseudo-code of Stochastic Coordinate Descent

(SCD) is given in Algorithm 2.

Algorithm 2 Stochastic Coordinate Descent

Require: S, T, L
set w1 = 0
for t = 1, 2, . . . , T do

sample j uniformly at random from [2d]
set gj(t) = ∇jf(w(t))

set η(t) = min{wj(t), gj(t)
L }

set w(t+ 1) = w(t)− η(t)
end for
return w(T + 1)

Convergence Rate of SCD

Let f(w) be a convex and L-coordinate-wise smooth function. Then, it holds for every output

of the SCD algorithm, wT , that [2]

E[f(wT )− f(w∗)] ≤
d
(
L‖w∗‖2 + 2f(0)

)
2T

. (2.26)

Proof Sketch. Define the “double potential” function ψ(w) = L
2 ‖w−w

∗‖2+f(w). Using smooth-

ness of f , we can prove that ψ(w)−ψ(w−ηej) ≥ (wj−w∗j )gj . Taking expectation of both sides

w.r.t. the choice of the coordinate j, we get E [ψ(wt)− ψ(wt+1)] ≥ 1
dE
[
∇f(wt)

T (wt − w∗)
]
.

But by convexity of f , we have 1
dE
[
∇f(wt)

T (wt − w∗)
]
≥ 1

dE [f(wt)− f(w∗)]. Considering

the fact that E[f(wt) − f(w∗)] is monotonically non-increasing, by summing over t we obtain

E [f(wT+1)− f(w∗)] ≤ E
[

1
T

T∑
n=1

f(wt)− f(w∗)

]
≤ d

T [ψ(w1)− ψ(wT+1)]. By doing some alge-

braic manipulation we get the result in 2.26.

We use the idea of this proof in Chapter 3 to prove the convergence of our proportional

coordinate descent method.
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2.3 Optimization in Shared Memory Systems

In this section we discuss some of the existing works on shared memory models introduced in

Chapter 1.

2.3.1 Asynchronous Parallel SCD

Liu and Wright [25] propose an asynchronous parallel stochastic coordinate descent method for

optimizing a cost function in the following form:

f(w) = g(w) + h(w), (2.27)

where g(w) is smooth and convex and h(w) is convex and ”separable” in the sense that it can

be written as h(w) =
d∑
j=1

gj(wj) where j is the coordinate index.

Algorithm

In this method, each processor updates a random coordinate of the vector w independent of the

other processors, so many coordinates might be updated simultaneously and the vector that is

read by processor i can be different from the vector that it is writing the update to, since some

of the coordinates might be updated by other processors during the update process by i. The

pseudo-code for the algorithm is described below. Note that this describes the procedure in a

single processor, and the same procedure is done in every processor at the same time.

Algorithm 3 Asynchronous SCD

Require: S, T, L, λ
set w(1) = 0
set η = λ

L
for t = 1, 2, . . . , T do

sample j uniformly at random from [d]
set gj(t) = ∇jf(w(t))
set w(t+ 1) = w(t)− η

Lg
j(t)ej

end for
return w(T + 1)
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Convergence Analysis

Assume that f(w) is convex and L-smooth. Then, for certain choices of the step size η, for

convex f(w) we have

E[f(wT )− f(w∗)] ≤
d
(
L‖w0 − w∗‖2 + f(w0)− f(w∗)

)
T + d

(2.28)

and for λ-strongly convex function f(w) it holds that

E [f(wT )− f(w∗)] ≤
(

1− λ

d(λ+ 2L)

)T
d
(
L‖w0 − w∗‖2 + f(w0)− f(w∗)

)
. (2.29)

We can see that the reduction factor after d iterations of this algorithm is
(

1− λ
d(λ+2L)

)d
≈

1 − λ
λ+2L , while for the standard gradient descent method the rate constant is 1 − 2λ

γ if we

apply the algorithm to L-smooth λ-strongly convex functions. Thus, for some values of the

smoothness parameter L, the asynchronous SCD method may need less computation than the

standard GD.

Finally, under the same conditions and parameter values as before, with probability higher

than 1− δ, it holds that

f(wT )− f(w∗) ≤ ε, (2.30)

if we run the algorithm at least T times, where for convex functions

T =
d
(
L‖w0 − w∗‖2 + f(w0)− f(w∗)

)
ερ

− d (2.31)

and for λ-strongly convex functions

T =
d(λ+ 2L)

λ

∣∣∣ log
L‖w0 − w∗‖2 + f(w0)− f(w∗)

ερ

∣∣∣. (2.32)

2.3.2 A Lock-Free Method

The HOGWILD! method [8] is another parallel stochastic optimization method for shared mem-

ory systems. This algorithm, like the algorithm in previous section, is also lock-free, in the sense

that the nodes can access and write on the decision vector at any time and the memory is not
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locked when the vector is being updated by any node. Here, the objective function is separable:

f(w) =

d∑
j=1

fj(wj), (2.33)

and each node updates a random component i at arbitrary times:

wj(t+ 1) = wj(t)− η d
∂fj(w(t))

∂wj(t)
, (2.34)

or:

w(t+ 1) = w(t)− η d ∂fj(w(t))

∂wj(t)
ej . (2.35)

Convergence Results

Consider using HOGWILD! to solve the optimization problem (2.33) with f being β-smooth

and λ-strongly convex with ‖∂fj(w)
∂wj

‖ ≤M for all w ∈ Rd. Assume that the number of updates

written to w by other nodes while a certain node is updating it is bounded by τ . Define P2(x)

to be a second order polynomial in x. With step size

η =
c1ε

LM2P2(τ)
, (2.36)

and for large enough number of iterations, i.e.

T >
LM2P2(τ) log(L‖w0 − w∗‖2/ε)

c2ε
, (2.37)

for any ε > 0 and some constants c1 and c2, we have E [f(w(T ))− f(w∗)] ≤ ε. Note that this

is an expectation guarantee and not a w.h.p. guarantee as in the previous work mentioned in

Subsection 2.3.1.

2.4 Distributed Optimization

There is a plethora of works on distributed optimization. A few related works are discussed

here.
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2.4.1 Distributed Asynchronous Gradient Optimization

In this seminal work by Tsitsiklis et al., a model for distributed asynchronous optimization is

proposed [18]. In this model, n nodes compute and communicate their estimates of components

of a decision vector w =
(
w1, . . . , wd

)
. Nodes have access to a global objective function and

computation of components of the decision vector is distributed among them. Each node, at

each step, performs some computations to update its belief on some components of the decision

vector and also combines its own estimate with the last estimates it has received from other

nodes (either directly or through some intermediate nodes). Let tjik be the time the last message

containing wj sent from node k to node i is computed.

Communication assumptions

In this work the following assumption on network communications hold:

• A directed link from node k to node i exists for component wj if and only if k sends

infinite number of messages with a value of wj to node i.

• The lag between any two consecutive such messages is bounded.

• There are constants a and b such that at least one message is sent during interval [atb, a(t+

1)b] and number of the messages during this interval is bounded.

• The communication delays, t− tjik, are bounded.

Update rule

Each node updates the value of component j of its estimate according to the following rule:

wji (t+ 1) =

n∑
k=1

Qjikw
j
k(tjik) + ηi(t)s

j
i (t), (2.38)

where Qj is the weight assigned by node i to opinions from node k, and ηi(t) is a step size used

by node i. sji (t) is some computation locally performed by node i, e.g. in distributed stochastic

approximation it is defined as sji (t) = −∂f(wt)
∂wj + Ei(t), a noisy unbiased estimate of the partial

gradient w.r.t. the jth component.

Convergence results

Consider solving distributed problem (1.11) with a smooth objective function. Under assump-

tions mentioned above and some further assumptions on the noise term, the algorithm presented
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in this section converges almost surely for both constant and decaying step size.

2.4.2 Consensus-Based Distributed Subgradient Optimization

Unlike the work mentioned above [18], in the seminal work by Nedić and Ozdaglar [12] each node

(agent) has access to a local function and the goal of the optimization problem is to minimize

the sum (or average) of this local objectives. In this model, nodes share their current estimates

with their neighbors. Each node performs a local gradient step on its local objective function

at its current estimate (fi(wi(t))) and combines its own belief with those of its neighbors.

Update rule

Each node updates its estimate according to the following update rule:

wi(t+ 1) =

n∑
k=1

Qik(t)wi(t)− ηi(t)gi(t), (2.39)

where gi(t) is a subgradient of fi(wt).

Communication assumptions

It is assumed here that:

• A directed link exists from k to i if and only if j communicates directly with i.

• The weight coefficients are time dependent which means that some existing links may be

inactive (zero weight) in some iterations. Therefore, the network connectivity graph is

also time dependent.

• Every agent’s information at any time will reach each and every other node directly or

indirectly.

• The interval between two consecutive messages from each node to its neighbors is bounded.

• The links are bidirectional with the same weight in both directions.

• The weight matrix Q(t) is doubly stochastic.

Convergence results

Consider solving distributed problem (1.11) with convex objective function. Assume that the

subgradients of the local functions are bounded by L. Under these assumptions and the above-

mentioned communication assumptions, with constant step size ηi(t) = η for all i ∈ [n] and t,
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we have

f(w̃iT )− f(w∗) ≤ n‖w̄0 − w∗‖2

2ηT
+ ηCL2, (2.40)

where w̃T = 1
T

T∑
t=1

wit and w̄t = 1
n

n∑
i=1

wit.

2.4.3 Consensus-based optimization Over Random Networks

This work builds on the works by Nedić and Ozdaglar [12] and Tsitsiklis et al. [18] mentioned

in this section. The main difference here is that the availability of a link between any two nodes

is a random process. Therefore, at any time, link availability between among nodes is a random

event.

Update rule

Each node updates its estimate in in this way:

wi(t+ 1) =

n∑
k=1

Qik(t)wi(t)− η(t)gi(t), (2.41)

where gi(t) is a subgradient of fi(wi(t)). Note that all nodes use the same step size η(t).

Communication assumptions

The main assumptions here are:

• A directed link exists from k to i if and only if j communicates directly with i.

• The link availability is random at any time, therefore the the weight matrix is a random

matrix and the connectivity graph is a random graph.

• The average connectivity graph is strongly connected.

• The weight matrices Q(t) are doubly stochastic with probability 1.

Convergence results:

Consider solving distributed problem (1.11) with convex objective function. Assume that the

subgradients of the local functions are bounded by L. Under these assumptions and the
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above-mentioned communication, with diminishing step sizes satisfying
∑∞
t=1 η(t) = ∞ and∑∞

t=1 η
2(t) <∞, we have:

lim
t→∞

wi(t) = w∗ w.p. 1 (2.42)

and for constant step size we have the following result:

lim sup
T→∞

|f(w̃i(T ))− f(w∗)| ≤ nCL2 w.p. 1, (2.43)

where w̃i(T ) = 1∑T
t=1 η(t)

T∑
t=1

η(t)wi(t) and C is a constant.

2.4.4 Asynchronous Broadcast-Based Distributed Optimization

This asynchronous method [13] also builds on the works by Nedić and Ozdaglar [12] and Tsit-

siklis et al. [18], as well as the paper by Aysal et al. [26]. In this paper, a broadcast-based

asynchronous distributed optimization algorithm is proposed and its convergence behavior is

studied. The model used here takes into account two types of uncertainty: i) link availability

is random due to possible link failures and ii) agents use noisy estimates of their local gradient

vectors to update their beliefs. In this setup, all nodes are by default in sleep mode. At random

times, a node i (only one node at a time) sends its current estimate of the decision vector to its

neighbors. Only a random subset of its neighbors receive the message because of link failures.

These nodes wake up and combine their current estimate with that of node i and perform a

noisy local gradient step. Then, they go back to sleep mode until they receive another message.

The distributed optimization problem solved in this paper is the following constrained problem:

f(w) =
1

m

m∑
i=1

fi(w)

s.t. w ∈ W, (2.44)

where W ⊂ Rd is a convex set.
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Update rule

If node i broadcasts at time t and a subset Ji of its neighbors receive its message, for node i

and nodes k /∈ Ji we have

wk(t+ 1) = wk(t) (2.45)

and for k ∈ Ji we have the following two-step update rule:

vk(t) = βwi(t) + (1− β)wk(t)

wk(t+ 1) = PW(vk(t))− ηk(t)ĝk(t), (2.46)

where PW is the projection on the feasible set W and ĝk(t) = ∇fk(vk(t)) + Ek(t). Note that

Ek(t) is zero mean noise.

Communication assumptions

Here the following assumptions hold:

• A directed link exists from k to i if and only if j communicates directly with i.

• The underlying network is connected.

• The link failures process is i.i.d, that is the probability of failure of each link is constant

over time and failure of a link is independent of other links in the network.

Convergence results

Consider solving distributed problem (2.44) with convex objective function and closed convex

constraint set. Assume that the subgradients of the local functions are bounded by L. Also,

assume that the error in computing the gradient is bounded: E
[
E2
k(t)|Ft−1, i,Ji

]
≤ ν2 and

zero mean: E [Ek(t)|Ft−1, i,Ji] = 0 with probability 1 for k ∈ Ji . Under these assumptions

and the above-mentioned communication assumptions, with diminishing step sizes satisfying∑∞
t=1 η(t) = ∞ and

∑∞
t=1 η

2(t) < ∞, we have that the sequence of the estimates of the nodes

converge to the same random point in the optimal set.

Moreover, with constant step size ηi(t) = ηi for averaged iterates w̃i(T ) = 1
T

T∑
t=1

wi(t), we
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get

lim sup
T→∞

|f(w̃i(T ))− f(w∗)| ≤ nC1(L+ ν)2 + C2n
√
n+ C3

√
n w.p. 1, (2.47)

where C1, C2, and C3 are constants.
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Chapter 3

Proportional Stochastic Coordinate Descent

In this chapter we propose and analyze a non-uniform variant of stochastic coordinate descent

which we call Proportional Stochastic Coordinate Descent (PSCD). In this method, unlike con-

ventional Stochastic coordinate descent, a random coordinate is selected at each step according

to a non-uniform probability distribution. Here, we treat the gradient vector as a probability

distribution, i.e. the probability of selecting the jth coordinate is proportional to the jth coordi-

nate of the gradient vectors, ∇jf(w). The idea behind this method is that this biased sampling

method selects the “most important” coordinate, the coordinate along which the function has

the largest reduction, at each step. This intuitively results in reduced variance of results across

the sample paths, since in this method only a limited number of ”important” paths have high

probability of being selected.

We first study this method for centralized problems. Then, we discuss its application to

shared memory systems and to complete networks where all the nodes are connected.

3.1 Centralized Proportional Stochastic Gradient descent

In order solve the centralized minimization problem in form of

min
w∈Rd

f(w), (3.1)

where f(w) is a convex smooth function, we use a variant of the stochastic coordinate de-

scent method, which we call centralized Proportional Stochastic Gradient Descent (centralized

PSCD). At every iteration t, a coordinate j is randomly selected and the j-th coordinate of

w(t) is updated:

w(t+ 1) = w(t)− ηĝ(t), (3.2)
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where ĝ(t) = C(t)ej is an unbiased estimate of the gradient vector on a single coordinate:

E [ĝ(t)] = g(t). In this algorithm the coordinates are selected according to the following distri-

bution:

P (j) =
|gj(t)|
‖g(t)‖1

, (3.3)

where g(t) ∈ ∂f(w(t)) is a sub-gradient of f(w(t)) and gj(t) is a sub-derivative of f(w(t))

w.r.t. the j-th coordinate. Considering that E [ĝ(t)] = E
[
C(t)ej

]
= C(t)

∑
j
|gj(t)|
‖g(t)‖1 e

j while

E[sgn(gj(t)) · ‖g(t)‖1 · ej ] = g(t), we need to set C(t) = ‖g(t)‖1 sgn(gj(t)). In this setup, we use

constant step size η = 1
αL where L is the maximum component-wise Lipschitz constant of f(w)

and α is a constant.

The pseudo-code for the centralized setup is given in Algorithm 4.

Algorithm 4 Centralized PSCD

Require: λ, L, T
set w0 = 0
set η = 1

αL
for t = 1, 2, . . . , T do

calculate g(t) ∈ ∂f(w(t))

select j according to P (j) =
|gj(t)|
‖g(t)‖1 for j ∈ [d]

set w(t+ 1) = w(t)− η(t) ‖g(t)‖1 sgn(gj(t))e
j

end for
return w(T + 1)

3.1.1 Convergence Analysis

Theorem 1. Consider Algorithm 4 for solving problem (3.1) when f is convex with L-Lipschitz

continuous component-wise gradients. With constant step size η = 1
αL we have:

E [f(w(t))− f(w∗)] ≤ α (Ψ(w0)−Ψ(w∗))

T
, (3.4)

where

Ψ(w) = f(w) +
L

2
‖w − w∗‖2. (3.5)

Proof. To prove this theorem we need the following Lemma, which is a corollary of Theorem

2.1.5 in the book of Nesterov [21].

Lemma 1. Suppose that function f(w) has component-wise Lipschitz continuous gradient:

|∇jf(w + hej)−∇jf(w)| ≤ Lj |h|,
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Then we have

f(w + hej)− f(w) ≤
〈
∇f(w), hej

〉
+
Lj

2
|h|2. (3.6)

To find an upper bound on the optimality gap in the centralized setup, we will use the

preceding Lemma. Following the approach taken by Shalev-Shwartz and Tewari [2], define the

potential function Ψ(w) in (3.5), where w∗ = argminw f(w) is the minimizer of the objective

function f(w) and L is the maximum component-wise Lipschitz constant of f(w). Using this

potential function we will prove that under some condition for λ our suggested method for

updating w(t) will converge to the optimal solution. Define γ(t) = ηC(t) = η ‖g(t)‖1 sgn(gj(t))

so that the update is ηĝ(t) = γ(t)ej . Consider the difference of the potential across one iteration:

Ψ(w(t))−Ψ(w(t+ 1)) =f(w(t))− f(w(t+ 1)) +
L

2
(‖w(t)− w∗‖2 − ‖w(t+ 1)− w∗‖2)

(a)

≥ − g(t)> (w(t+ 1)− w(t))− Lγ(t)2

2

+
L

2
(w(t)− w(t+ 1))

>
(w(t) + w(t+ 1)− 2w∗)

=− g(t)>
(
−γ(t)ej

)
− Lγ(t)2

2
+
L

2

(
γ(t)ej

)> (
2w(t)− 2w∗ − γ(t)ej

)
=γ(t)gj(t)−

Lγ(t)2

2
+
L

2

(
γ(t)(2wj(t)− 2w∗j − γ(t)2

)
=γ(t)gj(t)− Lγ(t)2 + Lγ(t)

(
wj(t)− w∗j

)
, (3.7)

where (a) follows from Lemma 1.

Let F(t) be the σ-algebra generated by the random coordinate choices up to time t. If we

take the conditional expectation of both sides, we will have the following inequality, which is

averaged over the choice J(t) at time t:

E [Ψ(w(t))−Ψ(w(t+ 1))|F(t)] ≥
d∑
j=1

γ(t)|gj(t)|gj(t)
‖g(t)‖1

− Lγ(t)2 + L

d∑
j=1

γ(t)|gj(t)|
(
wj(t)− w∗j

)
‖g(t)‖1

=

d∑
j=1

|gj(t)|2

αL
− ‖g(t)‖21

α2L
+

d∑
j=1

gj(t)
(
wj(t)− w∗j

)
α

=
‖g(t)‖22
αL

− ‖g(t)‖21
α2L

+
1

α
g(t)>(w(t)− w∗). (3.8)

We can see that if
‖g(t)‖22
αL − ‖g(t)‖

2
1

α2L has a non-negative value, then we will have the following
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inequality:

E [Ψ(w(t))−Ψ(w(t+ 1))|F(t)] ≥ 1

α
g(t)>(w(t)− w∗), (3.9)

meaning that α must satisfy the following condition:

‖g(t)‖22
αL

− ‖g(t)‖21
α2L

≥ 0⇒ α ≥ ‖g(t)‖21
‖g(t)‖22

. (3.10)

Since we have the bound
‖g(t)‖21
‖g(t)‖22

≤ d, it suffices to set α ≥ d.

By taking the expectation with respect to the entire history up to time t, we have

E [Ψ(w(t))−Ψ(w(t+ 1))] ≥ 1

α
E
[
g(t)>(w(t)− w∗)

]
. (3.11)

The convexity of f implies

E [f(w(t))− f(w∗)] ≤ αE [Ψ(w(t))−Ψ(w(t+ 1))] . (3.12)

Considering the fact that f(w(t)) − f(w∗) is a monotonically non-increasing sequence with

respect to t, summing over t gives us

TE [f(w(T ))− f(w∗)] ≤ E

[
T−1∑
t=0

(f(w(t))− f(w∗))

]

≤ αE

[
T−1∑
t=0

(Ψ(w(t))−Ψ(w(t+ 1)))

]

≤ α (Ψ(w0)−Ψ(w(T ))) . (3.13)

Therefore:

E [f(w(T ))− f(w∗)] ≤ α (Ψ(w0)−Ψ(w(T )))

T

≤ α (Ψ(w0)−Ψ(w∗))
T

. (3.14)
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3.2 Distributed Proportional Stochastic Gradient descent

We propose that the proportional gradient sampling method can be adopted in some distributed

setups, namely shared memory systems and complete networks where all of the nodes directly

communicate with each other.

3.2.1 DPSCD for Shared Memory System

Our proportional sampling scheme extends naturally to shared-memory models for distributed

optimization. In these models, a common memory element holding the current iterate w(t) is

accessed by a collection of p processors. The goal of such a system is to minimize a function

which can be written as sum of n functions:

min
w∈Rd

fS(w) =
1

n

n∑
i=1

f i(w), (3.15)

where {f i(w)}ni=1 are strongly convex functions with Lipschitz continuous gradients. In this

setup, a central node has a memory that keeps a shared estimate vector and all other nodes have

access to this node to read or update the estimate. The nodes also have access to functions {f i}

and choose one of these functions uniformly at random when they update decision vector. If

the nodes operate synchronously, the algorithm will be essentially performing the conventional

unbiased stochastic gradient descent on fS(w).

Here, we focus on the more challenging asynchronous setup, which can be considered as a

modified version of HOGWILD! [8]. Our proposed method for this setting, called asynchronous

distributed PSCD, assumes that each node reads the shared vector at arbitrary times and

updates the estimate using its local gradient information.The update rule in this method is

w(t) = w(t)− η ĝi(θ), (3.16)

where η is a constant step size and ĝi(θ) =
∥∥gi(θ)∥∥

1
· sgn

(
gij(θ)

)
· ej is computed at the value

of the decision vector at time θ and is used at time t. The delay t − θ ≤ τ is sum of two

delays, namely, the computation time of ĝi(θ) and communication delay between node i and

the central node. During this period, the estimate vector may be updated by other nodes.

In fact, we assume that t keeps track of the number of updates to the shared vector by any

node. Therefore, τ is essentially an upper bound on the number of updates by the other nodes

while a certain node is computing and transmitting its update to the central node. Since in
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our algorithm only one random coordinate is updated by each node per iteration, the updates

do not get overwritten by the other nodes too often. The pseudo-code for this algorithm is

demonstrated in Algorithm 5.

Algorithm 5 DPSCD for Shared Memory Systems (at an individual node)

Require: η
set w0 = 0
loop

select i uniformly at random from [n]
read w(θ) from the shared memory
calculate gi(θ) ∈ ∂f i(w(θ))

select j according to P (j) =
|gij(θ)|
‖gi(θ)‖1 for j ∈ [d]

calculate ĝi(θ) =
∥∥gi(θ)∥∥

1
sgn(gij(θ))e

j

read w(t)
write w(t) = w(t)− ηĝ(θ) to the shared memory

end loop

Convergence Analysis

The analysis of this method follows a similar procedure to that of HOGWILD! [8]. Theorem

(2) presents the asymptotic analysis of this algorithm.

Theorem 2. Suppose that we want to solve the optimization problem (3.15) when {f i}ni=1 and

fD are λ-strongly convex and have L-Lipschitz continuous gradients. Moreover,
∥∥∇f i(w)

∥∥2 ≤

M2. In the algorithm, suppose that t− θ ≤ τ and we use constant step size η(t) = η. Then, we

have

E [fS(w(T ))− fS(w∗)] ≤ (1− ηΛ)
T
L ‖w0 − w∗‖2 +

ηLKM2

λ
, (3.17)

where Λ =

√
1+2
√
d−1√

1+2
√
d+1

λ ≤ 1
η and K =

(
τ +

√
d+ 6τ + 2τ2

√
d
)2

.

Proof. The proof of this theorem follows a similar method as that of the HOGWILD! method.

First, we expand the distance between the iterate and the optimum:

‖w(t+ 1)− w∗‖2 = ‖w(t)− w∗‖2 + η2
∥∥ĝi(θ)∥∥2 − 2η (w(t)− w∗)> ĝi(θ)

= ‖w(t)− w∗‖2 + η2
∥∥ĝi(θ)∥∥2 − 2η (w(t)− w(θ))

>
ĝi(t)

− 2η (w(t)− w(θ))
> (
ĝi(θ)− ĝi(t)

)
− 2η (w(θ)− w∗)> ĝi(θ). (3.18)

In the next step, we take expectation of both sides to find the expected error. Note that
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E
[
ĝi(t)

]
= E

[
E
[
ĝi(t)|F(t)

]]
and E

[
ĝi(t)|F(t)

]
= EiEj

[
ĝi(t)|F(t)

]
= ∇fS(w(t)), where j

represents a random coordinate of the local gradient vector gi(t) and i is a function index

selected uniformly at random from [n] and F(t) is the σ-algebra generated by the random

coordinate and node choices up to time t. Therefore, taking expectation of both sides with

respect to all choices of coordinates local gradient vectors and choices of functions {f i} at each

step results in

E
[
‖w(t+ 1)− w∗‖2

]
− E

[
‖w(t)− w∗‖2

]
=η2 E

[∥∥ĝi(θ)∥∥2
]
− 2η E

[
(w(t)− w(θ))

>∇fS (w(t))
]

− 2η E
[
(w(t)− w(θ))

>
(∇fS (w(θ))−∇fS (w(t)))

]
− 2η E

[
(w(θ)− w∗)>∇fS (w(θ))

]
≤η2d M2 − 2η E [fS (w(t))− fS (w(θ))]− ηλ E

[
‖w(t)− w(θ)‖2

]
− 2η E

[
(w(t)− w(θ))

>
(∇fS (w(θ))−∇fS (w(t)))

]
− ηλ E

[
‖w(θ)− w∗‖2

]
. (3.19)

The inequality above results from λ-strong convexity of fS and the fact that fS (w(θ)) −

fS (w∗) ≥ 0. Now, for the second term in the r.h.s of (3.19) we have:

−2η E [fS (w(t))− fS (w(θ))] =
2η

n

n∑
i=1

t−1∑
t′=θ

E
[
f i (w(t′))− f i (w(t′ + 1))

]
≤ 2ητ

n

n∑
i=1

E
[(
gi(t)

)>
(w(t)− w(t+ 1))

]
≤ 2η2τ

n

n∑
i=1

E
[(
gi(t)

)>
ĝi(t)

]
=

2η2τ

n

n∑
i=1

E
[∥∥gi(t)∥∥

1

(
gi(t)

)>
ej
]

=
2η2τ

n

n∑
i=1

E
[∥∥gi(t)∥∥2

2

]
≤ 2η2τM2. (3.20)
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Similarly, we also get that

− 2η E
[
(w(t)− w(θ))

>
(∇fS (w(θ))−∇fS (w(t)))

]
=

2η

n

n∑
i=1

t−1∑
t′=θ

E
[
(w(t′)− w(t′ + 1))

> (∇f i (w(θ))−∇f i (w(t))
)]

≤ 4η2τM2. (3.21)

Plugging the this bounds in inequality (3.19) and rearranging the terms results in the following:

E
[
‖w(t+ 1)− w∗‖2

]
− E

[
‖w(t)− w∗‖2

]
≤ η2d M2 + 2η2τM2 + 4η2τM2

− ηλ
(
E
[
‖w(θ)− w∗‖2

]
+ E

[
‖w(t)− w(θ)‖2

])
= η2M2 (d+ 6τ)

− ηλ
(
E
[
‖w(t)− w∗‖2

]
− 2E

[
(w(t)− w(θ))

>
(w(θ)− w∗)

])
, (3.22)

where the equality results from the fact that for any two (random) vectors u and v in Rd, we
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have that ‖u‖2 + ‖v‖2 = ‖u+ v‖2 − 2u>v. Therefore:

E
[
‖w(t+ 1)− w∗‖2

]
− (1− ηλ)E

[
‖w(t)− w∗‖2

]
≤ η2M2 (d+ 6τ) + 2ηλE

[
(w(t)− w(θ))

>
(w(θ)− w∗)

]
= η2M2 (d+ 6τ) + 2ηλ

t−1∑
t′=θ

E
[
(w(t′ + 1)− w(t′))

>
(w(θ)− w∗)

]
= η2M2 (d+ 6τ) + 2η2λ

t−1∑
t′=θ

E
[(
ĝi(t′)

)>
(w(θ)− w∗)

]
= η2M2 (d+ 6τ) + 2η2λ

t−1∑
t′=θ

E
[
E
[(
ĝi(t′)

)>
(w(θ)− w∗) |F(t′)

]]
= η2M2 (d+ 6τ) + 2η2λ

t−1∑
t′=θ

E
[
E
[
ĝi(t′)|F(t′)

]>
(w(θ)− w∗)

]
= η2M2 (d+ 6τ) + 2η2λ

t−1∑
t′=θ

E
[
∇fS(w(t′))> (w(θ)− w∗)

]
(a)

≤ η2M2 (d+ 6τ) + 2η2λ

t−1∑
t′=θ

E [‖∇fS(w(t′))‖ · ‖w(θ)− w∗‖]

≤ η2M2 (d+ 6τ) + 2η2λ

t−1∑
t′=θ

M E [‖w(θ)− w∗‖]

(b)

≤ η2M2 (d+ 6τ) + 2τMη2λ E [‖w(t)− w(θ)‖+ ‖w(t)− w∗‖]
(c)

≤ η2M2 (d+ 6τ) + 2τMη2λ E
[
τη
√
dM + ‖w(t)− w∗‖

]
(d)

≤ η2M2 (d+ 6τ) + 2τMη2λ

(
τη
√
dM +

√
E
[
‖w(t)− w∗‖2

])
, (3.23)

where (a) follows from Cauchy-Schwarz inequality, (b) follows from the triangle inequality,

(c) follows from the triangle inequality and the fact that
∥∥gi(t′)∥∥

1
≤
√
d
∥∥gi(t′)∥∥

2
≤
√
dM

and inequality (d) is an application of Jensen’s inequality. For a more compact proof, define

y(t) = E
[
‖w(t)− w∗‖2

]
. Then, we have:

y(t+ 1) ≤ (1− ηλ) y(t) + 2τMη2λ
√
y(t)

+ η2M2
(
d+ 6τ + 2τ2

√
dηλ

)
. (3.24)

To find the fixed point of this recursion, we study the asymptotic behavior of the algorithm.

Define α = (1− ηλ), β = 2τMη2λ, and γ = η2M2
(
d+ 6τ + 2τ2

√
dηλ

)
. As t→∞, we have

y∞ = α y∞ + β
√
y∞ + γ. (3.25)
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Therefore,

y∞ =

(
−β −

√
β2 − 4 (α− 1) γ

2 (α− 1)

)2

=

τMη +

√
τ2M2η2λ2 + ηλM2

(
d+ 6τ + 2τ2

√
dηλ

)
λ


2

. (3.26)

Now, assuming that ηλ ≤ 1, we have

y∞ ≤
M2

ηλ

τη +

√
τ2η2λ2 + η2λ2

(
d+ 6τ + 2τ2

√
dηλ

)
λ


2

≤ηM
2

λ

(
τ +

√
τ2 +

(
d+ 6τ + 2τ2

√
dηλ

))2

≤ηM
2

λ

(
τ +

√
d+ 6τ + τ2

(
1 + ηλ

√
d
))2

(3.27)

Also, from 3.26 we have that

y∞ ≥

τMη +

√
τ2M2η2λ2 + ηλM2

(
2τ2
√
dηλ

)
λ


2

= τ2M2η2

(
1 +

√
1 + 2

√
d

)2

. (3.28)

Taking into account that y∞ ≤ y(t) for any t, from (3.24) we have

y(t+ 1) ≤ α y(t) + β
y(t)
√
y∞

+ γ

= α (y(t)− y∞) +
β
√
y∞

(y(t)− y∞) + αy∞ + β
√
y∞ + γ

=

(
α+

β
√
y∞

)
(y(t)− y∞) + y∞ (3.29)

or

y(t+ 1)− y∞ ≤
(
α+

β
√
y∞

)
(y(t)− y∞) . (3.30)

Expanding the recursion and plugging in the results of (3.27) and (3.28) gives us the following



35

closed-form formula:

y(t) ≤
(
α+

β
√
y∞

)T
(y0 − y∞) + y∞

=

(
1− ηλ+

2τMη2λ
√
y∞

)T
(y0 − y∞) + y∞

(a)

≤
(

1− ηλ+
2τMη
√
y∞

ηλ

)T
(y0 − y∞) +

KM2

λ
η

(b)

≤

1−

1− 2τMη

τMη
(

1 +
√

1 + 2
√
d
)
 ηλ

T

(y0 − y∞) +
KM2

λ
η

≤

(
1−

(
1− 2

1 +
√

1 + 2
√
d

)
ηλ

)T
y0 +

KM2

λ
η

=

(
1−

√
1 + 2

√
d− 1√

1 + 2
√
d+ 1

ηλ

)T
y0 +

KM2

λ
η, (3.31)

where K =
(
τ +

√
d+ 6τ + 2τ2

√
d
)2

and (a) is a result of (3.27) and (b) is a result of (3.28).

Hence,

E
[
‖w(t+ 1)− w∗‖2

]
≤

(
1−

√
1 + 2

√
d− 1√

1 + 2
√
d+ 1

ηλ

)T
‖w0 − w∗‖2 +

KM2

λ
η. (3.32)

Due to the Lipschitz continuity of the gradients (1.5) and considering that ∇fS(w∗) = 0,

we have

E [fS(w(t))− fS(w∗)] ≤ L

2
‖w(t)− w∗‖2 . (3.33)

Therefore,

E [fS(w(T ))− fS(w∗)] ≤ L

2

(
1−

√
1 + 2

√
d− 1√

1 + 2
√
d+ 1

ηλ

)T
‖w0 − w∗‖2 +

LKM2

λ
η. (3.34)
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3.2.2 DPSCD for Complete networks

Consider the setup where all nodes are directly connected to each other and cooperate to solve

the following problem:

min
w∈Rd

fD(w) =
1

n

n∑
i=1

f i(w), (3.35)

where {f i(w)}ni=1 are convex functions with Lipschitz continuous gradients. If all nodes are

connected to each other, every node has the gradient information of all nodes. However, since

the nodes are not sharing their estimate values {wi(t)}, the gradient information is not useful

unless all the nodes have the same iterate value at every iteration. In order to satisfy this

requirement without synchronizing the iterate values at every iteration, nodes can start the

optimization algorithm with the same initial value. The update rule in this model is

wi(t+ 1) = wi(t)− η
n∑
k=1

ĝk(t)

n
, (3.36)

where η(t) = 1
λt and ĝk(t) =

∥∥gk(t)
∥∥

1
· sgn

(
gk
Jk
t

)
· eJk(t) = γk(t)eJ

k
t . In the end, the algorithm

outputs the time average w̃i(T ) = 1
T

T∑
t=1

wi(t).

Algorithm 6 DPSCD for Complete Networks

Require: n, T , λ
set w0 = 0
for t = 1, 2, . . . , T do

for all i ∈ [n] do
calculate gi(t) ∈ ∂f i(w(t))

select J it according to P (j) =
|gij(t)|
‖gi(t)‖1 from j ∈ [d]

calculate ĝi(t) =
∥∥gi(t)∥∥

1
sgn(gi

Ji
t
)ej

send ĝi(t) to all other nodes in the network
end for
for all i ∈ [n] do

set ηt = 1
λt

set wi(t+ 1) = wi(t)− η(t)
n∑
k=1

ĝk(t)
n

end for
end for
return W (T + 1)

Convergence Analysis

If all nodes start from the same initial point, the problem basically reduces to the central case

with the slight difference that the objective function is in the form of f(w) = 1
n

∑n
i=1 f

i(w)
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and we estimate the gradient by ĝ(t) =
∑n
i=1

ĝi(t)
n , where ĝi(t) is an unbiased estimate of

gi(t) = ∇f i(w(t)) computed using PSCD.

Theorem 3. Consider Algorithm (3.35) for solving problem (1.11) where every f i is convex

with L-Lipschitz continuous gradients. If every node uses step size η = 1
αL , where L = maxi L

i,

we have

E [f(w(T ))− f(w∗)] ≤ α (Ψ(w(0)−Ψ(w∗))

T
, (3.37)

where

Ψ(w) = f(w) +
L

2
‖w − w∗‖2. (3.38)

Proof. Here, we assume that all nodes start with the same starting point w(0). Since they all

use the same gradient estimate ĝt at each step, the iterates wi are the same among all nodes

at each iteration. We denote the common iterate by w(t) = wi(t) for all i ∈ [n]. Following the

proof for centralized PSCD, if we substitute ĝ(t) =
∑n
i=1

ĝi(t)
n , we get

Ψ(w(t))−Ψ(w(t+ 1)) =f(w(t))− f(w(t+ 1))

+
L

2
(‖w(t)− w∗‖2 − ‖w(t+ 1)− w∗‖2)

≥− g(t)> (w(t+ 1)− w(t))− L

2
‖η ĝ(t)‖2

+
L

2
(w(t)− w(t+ 1))

>
(w(t) + w(t+ 1)− 2w∗)

=− η g(t)>ĝ(t)− L

2
‖η ĝ(t)‖2

+
L

2
η ĝ(t)> (2w(t)− 2w∗ − η ĝ(t))

=
1

n

n∑
k=1

γk(t)gJk
t
− L

2

∥∥∥∥∥ 1

n

n∑
k=1

(
γk(t)eJ

k
t

)∥∥∥∥∥
2

+
1

n

n∑
k=1

L

2
γk(t)(2wJk(t) − 2w∗Jk

t
)− L

2

∥∥∥∥∥ 1

n

n∑
k=1

(
γk(t)eJ

k
t

)∥∥∥∥∥
2

=
1

n

n∑
k=1

γk(t)gJk
t
− L

∥∥∥∥∥ 1

n

n∑
k=1

(
γk(t)eJ

k
t

)∥∥∥∥∥
2

+ L
1

n

n∑
k=1

γk(t)(wJk(t) − w∗Jk
t
). (3.39)

Then, taking conditional expectation of both sides w.r.t to the entire history up to time t results
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in

E [Ψ(w(t))−Ψ(w(t+ 1))|F(t)] ≥ 1

n

n∑
k=1

E
[
γk(t)gJk

t
|F(t)

]
− L

∥∥∥∥∥ 1

n

n∑
k=1

(
γk(t)eJ

k
t

)∥∥∥∥∥
2

+ L
1

n

n∑
k=1

E
[
γk(t)

(
wJk(t) − w∗Jk

t

)
|F(t)

]
=

1

n

n∑
k=1

E
[
η
∥∥gk(t)

∥∥
1
· sgn

(
gkJk

t

)
· gJk

t
|F(t)

]

− L

∥∥∥∥∥ 1

n

n∑
k=1

(
γk(t)eJ

k
t

)∥∥∥∥∥
2

+ L
1

n

n∑
k=1

E
[
η
∥∥gk(t)

∥∥
1
· sgn

(
gkJk

t

)
·
(
wJk(t) − w∗Jk

t

)
|F(t)

]

=
1

n

n∑
k=1

d∑
Jk
t =1

η
∥∥gk(t)

∥∥
1
· sgn

(
gk
Jk
t

)
.gk
Jk
t
· gJk

t

‖gk(t)‖1

− L

∥∥∥∥∥ 1

n

n∑
k=1

(
γk(t)eJ

k
t

)∥∥∥∥∥
2

+ L
1

n

n∑
k=1

d∑
Jk
t =1

η
∥∥gk(t)

∥∥
1
· sgn

(
gk
Jk
t

)
.gk
Jk
t
·
(
wJk(t) − w∗Jk

t

)
‖gk(t)‖1

=
1

αLn

n∑
k=1

gk(t)>g(t)

− L

∥∥∥∥∥ 1

n

n∑
k=1

(
η
∥∥gk(t)

∥∥
1
· sgn

(
gkJk

t

)
· eJ

k
t

)∥∥∥∥∥
2

+
1

αn

n∑
k=1

gk(t)> (w(t)− w∗)

=
1

αL
g(t)>g(t)− 1

α2n2L

∥∥∥∥∥
n∑
k=1

(∥∥gk(t)
∥∥

1
· sgn

(
gkJk

t

)
· eJ

k
t

)∥∥∥∥∥
2

+
1

α
g(t)> (w(t)− w∗)

≥
‖g(t)‖22
αL

− 1

α2n2L

∣∣∣∣∣
n∑
k=1

∥∥gk(t)
∥∥

1

∣∣∣∣∣
2

+
1

α
g(t)> (w(t)− w∗)

=
‖g(t)‖22
αL

− 1

α2n2L
|n · ‖g(t)‖1|

2
+

1

α
g(t)> (w(t)− w∗)

=
‖g(t)‖22
αL

−
‖g(t)‖21
α2L

+
1

α
g(t)> (w(t)− w∗) (3.40)

The first inequality above follows from L-smoothness of the objective function and the second in-

equality results from repeatedly applying the triangle inequality. Therefore, if α ≥ maxi
‖gi(t)‖21
‖gi(t)‖22
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we will have the following inequality:

E [Ψ(w(t))−Ψ(w(t+ 1))|F(t)] ≥ 1

α
g(t)>(w(t)− w∗), (3.41)

Again, since we have
‖u‖21
‖u‖22

≤ d for any vector u, it suffices to set α ≥ d. Following the same

arguments as in the centralized method, we get

E [f(w(T ))− f(w∗)] ≤ α (Ψ(w(0)−Ψ(w∗))
T

. (3.42)

3.3 Discussion

In this chapter the proportional stochastic coordinate descent algorithm was discussed for three

different setups: centralized, shared memory system, and complete network. This method

requires computation of the entire gradient vector at each step which seems wasteful since

optimization algorithms have faster convergence if they use the true gradient vector instead of

an estimate of it. However, in distributed setups, computing the true gradient of each local

function is cheaper, so for this setups this method seems more promising. Also, under some

conditions, such as smoothness, etc., the algorithm might still achieve comparable convergence

rates with less frequent computation of the true gradient. A future direction of this work can

be the study of these conditions and the relationship between the frequency of the true gradient

computations and the convergence rate.

Moreover, for the complete network setup we observe that DPSCD algorithm has the same

convergence rate as its centralized counterpart. Because in this model the gradient computation

task is distributed among n nodes, we can achieve linear speedup (in n) in runtime (measured

in number of CPU ycles) compared to the centralized setup. For the shared memory system,

however, the speedup depends on the relation between the delay τ and number of processors

p.
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Chapter 4

A Semi-Stochastic Method

4.1 Stochastic Variance Reduced Coordinate Descent

Although stochastic optimization methods seem attractive due to their small per-iteration com-

plexity, they show high variance in performance which arises from the high variance in the

estimates of the gradient vectors. In order to address this issue we propose that one can make

use of the previous gradient estimates. The idea is that if the objective function is smooth

enough so that gradient values do not change drastically between two nearby iterates, the pre-

vious gradient estimate is still a good estimate of the current gradient vector. In this section,

we consider the centralized minimization problem

min
w∈Rd

f(w) =
1

n

n∑
i=1

fi(w), (4.1)

where f : Rd → R is a λ-strongly convex objective function with L-Lipschitz continuous gra-

dients. For this family of problems, first-order methods such as gradient descent (GD) achieve

linear convergence rates (if adopting a fixed step-size). however, their fast convergence is only

practical for problems with moderate size because their per-iteration cost increases linearly

with the size of the data set [21]. In the recent years, with the rise of large scale problems, the

focus has been on stochastic methods that use some inexpensive approximation of the gradient

instead of taking a full gradient at each iteration in order to reduce the complexity. However,

these methods achieve slower convergence rates and show much higher variance in performance

compared to their more complex deterministic counterparts. In order to fill in this gap, Le

Roux, et al. in [9] have suggested the stochastic average gradient (SAG) method that achieves

linear convergence rate of GD while enjoying little iteration cost of stochastic gradient descent.

This algorithm, at each iteration, computes the value of the subgradients at only a random

subset of data points and updates those values, while the subgradient values for other data

points are the same as those at time t − 1. The major drawback of this algorithm is that it

requires a large amount of memory to keep the values of subgradients at all data points.
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The coordinate-wise method we present here addresses the memory requirement issue of

SAG while maintaining both fast convergence rate and little per-iteration complexity. This

method updates a random coordinate of the gradient vector (as opposed to the subgradient at

a data point) at every iteration while keeping the old values for the other coordinates. We call

our method Stochastic Variance Reduced Coordinate descent (SVRC). In SVRC, the memory

required to save the gradient vector is proportional to the dimension of the data d (and not

the size the data set nd, which is the case in SAG). Also, as we will see, the convergence

rate is improved compared to SAG. However, this is achieved at the cost of improvement in

the run-time as in SAG, the complexity per-iteration is improved by a factor of n, while the

improvement in SVRC is relative to d.

In this section, we define gt = ∇f(wt) the true gradient of function f at iteration t and

ĝt the approximate of the gradient vector at time t. Further, let θt =

 ĝt

wt

 be the vertical

concatenation of the approximate gradient vector and the iterate (decision vector) at time t

and θ∗ =

g∗
w∗

 =

 0

w∗

 where w∗ is the minimizer of f(w) and g∗ is the gradient vector at

minimum which equals the zero vector since f(w) is convex.

The Stochastic Variance Reduced Coordinate descent (SVRC) method we present here up-

dates a random coordinate of the gradient vector at every iteration while keeping the old values

for the other coordinates. Thus, the update rule is the following:

wt+1 = wt − ηĝt, (4.2)

where η is the fixed step-size which depends on the dimension of the data and the Lipschitz

constant. The approximate gradient vector ĝt is computed at each iteration according to the

following rule:

ĝt =

d∑
j=1

ĝj(t)e
j , (4.3)

where ej is the jth standard coordinate vector and

ĝj(t) =


∇jf(wt) if j is selected,

ĝj(t− 1) otherwise.

(4.4)

is the jth coordinate of ĝt and j is the randomly selected coordinate to be updated with
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probability p = 1
d .

In order to write equation (4.4) in a more compact form, we introduce a random vector zt.

The elements of this vector are zero-mean random variables zit which take the value
(
1− 1

d

)
with probability 1

d and − 1
d with probability

(
1− 1

d

)
. Now, the equation (4.4) can be re-written

in the following compact form:

ĝj(t) =

(
1− 1

d

)
ĝj(t− 1) +

(
1− 1

d

)
gj(t− 1) + zt (gj(t− 1)− ĝj(t− 1)) , (4.5)

or

ĝt =

(
1− 1

d

)
ĝt−1 +

(
1− 1

d

)
gt−1 + Zt (gt−1 − ĝt−1) , (4.6)

with Zt = diag(zt).

4.2 Convergence Analysis

The following theorem provides the convergence result for SVRC method proposed in this

section.

Theorem 4. Consider using SVRC for solving optimization problem 4.1 with L-smooth λ-

strongly convex objective function. With constant step-size η = 1
2dL we have

E [f(wT )− f(w∗)] < L ‖w∗‖2
(

1− λ

8dL

)T
. (4.7)

Proof. In order to find the convergence rate of the Stochastic Variance Reduced Coordinate

descent (SVRC), we first define a quadratic function Q(θt) = (θt − θ∗)T P (θt − θ∗) for some

value of P to be specified later and prove the convergence of this function to zero. Then, we

show that Q is a Lyapunov function for ‖wt − w∗‖2. In other words, it always upper-bounds

‖wt − w∗‖2.

Lemma 2. Assume that Q(θt) = (θt − θ∗)T P (θt − θ∗) with θt =

 ĝt

wt

 and θ∗ =

g∗
w∗

 =

 0

w∗

 and P =

 A B

BT C

 with A, B and C being symmetric. Note that wt, ĝt, zt ∈ Rd and
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A,B,C ∈ Rd×d and . Then, we have

E [Q(θt)|Ft−1] =ĝTt−1

[
1

d
Diag(S) +

(
1− 2

d

)
S

]
ĝt−1 +

1

d
gTt−1 [Diag(S)] gt−1

+
2

d
ĝTt−1 [S −Diag(S)] gt−1 + 2

(
1− 1

d

)
ĝTt−1 [B − ηC] (wt−1 − w∗)

+
2

d
gTt−1 [B − ηC] (wt−1 − w∗) + (wt−1 − w∗)T C (wt−1 − w∗) , (4.8)

where S = A− 2ηB + η2C.

Proof.

E [Q(θt)|Ft−1] = E

(θt − θ∗)T
 A B

BT C

 (θt − θ∗)|Ft−1


= E

[
ĝTt Aĝt + 2ĝTt B (wt − w∗) + (wt − w∗)T C (wt − w∗) |Ft−1

]
. (4.9)

Plugging in the values of wt and ĝt from (4.2) and (4.6) gives us

ĝTt Aĝt =

(
1− 1

d

)2

ĝTt−1Aĝt−1 +
1

d2
gTt−1Agt−1

+
1

d
(gt−1 − ĝt−1)

T

[
Diag(A)− 1

d
A

]
(gt−1 − ĝt−1)

+
2

d

(
1− 1

d

)
ĝTt−1gt−1, (4.10)

ĝTt B (wt − w∗) =

(
1− 1

d

)
ĝTt−1B (wt−1 − w∗) +

1

d
gTt−1B (wt−1 − w∗)

− η
(

1− 1

d

)2

ĝTt−1Aĝt−1 −
2η

d

(
1− 1

d

)
ĝTt−1Bgt−1

− η

d2
gTt−1Bgt−1

− η

d
(gt−1 − ĝt−1)

T

[
Diag(B)− 1

d
B

]
(gt−1 − ĝt−1) (4.11)
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and

(wt − w∗)T C (wt − w∗) = (wt−1 − w∗)T C (wt−1 − w∗) + η2

(
1− 1

d

)2

ĝTt−1Cĝt−1

+
η2

d2
gTt−1Cgt−1 − 2η

(
1− 1

d

)
ĝTt−1C (wt−1 − w∗)

− 2η

d
gTt−1C (wt−1 − w∗) +

2η2

d

(
1− 1

d

)
ĝTt−1Cgt−1

+
η2

d
(gt−1 − ĝt−1)

T

[
Diag(C))− 1

d
C

]
(gt−1 − ĝt−1) . (4.12)

Therefore,

E [Q(θt)|Ft−1] =ĝTt−1

[(
1− 1

d

)2

A− 2η

(
1− 1

d

)2

B + η2

(
1− 1

d

)2

C

]
ĝt−1

+ gTt−1

[
1

d2
A− 2η

d2
B +

η2

d2
C

]
gt−1

+ (gt−1 − ĝt−1)
T
U (gt−1 − ĝt−1)

+ ĝTt−1

[
2

d

(
1− 1

d

)
A− 4η

d

(
1− 1

d

)
B +

2η2

d

(
1− 1

d

)
C

]
gt−1

+ ĝTt−1

[
2

(
1− 1

d

)
B − 2η

(
1− 1

d

)
C

]
(wt−1 − w∗)

+ gT
[

2

d
B − 2η

d
C

]
(wt−1 − w∗)

+ (wt−1 − w∗)T C (wt−1 − w∗) . (4.13)

where U =
[

1
d Diag(A)− 1

d2A−
2η
d Diag(B) + 2η

d2B + η2

d Diag(C)− η2

d2C
]
.

If we rearrange the terms, we will have

E [Q(θt)|Ft−1] =

(
1− 1

d

)2

ĝTt−1Sĝt−1 +
1

d2
gTt−1Sgt−1

+
1

d
(gt−1 − ĝt−1)

T

[
Diag(S)− 1

d
S

]
(gt−1 − ĝt−1)

+
2

d

(
1− 1

d

)
ĝTt−1Sgt−1 + 2

(
1− 1

d

)
ĝTt−1 [B − ηC] (wt−1 − w∗)

+
2

d
gTt−1 [B − ηC] (wt−1 − w∗) + (wt−1 − w∗)T C (wt−1 − w∗) . (4.14)
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Finally, by expanding the third term above we have

E [Q(θt)|Ft−1] =ĝTt−1

[
1

d
Diag(S) +

(
1− 2

d
S

)]
ĝt−1 + gTt−1

[
1

d
Diag(S)

]
gt−1

+
2

d
ĝTt−1 [S −Diag(S)] gt−1 + 2

(
1− 1

d

)
ĝTt−1 [B − ηC] (wt−1 − w∗)

+
2

d
gTt−1 [B − ηC] (wt−1 − w∗) + (wt−1 − w∗)T C (wt−1 − w∗) . (4.15)

Now, we use Lemma 2 with A =
[
3dη2 + η2

d − 2η2
]
I, B = −η

(
1− 1

d

)
I, and C = 1

dI for

the case of η = 1
2dL . We note that in this case

B − ηC = −ηI

and

S =

[
3dη2 +

η2

d
− 2η2

]
I + 2η2I −

(
2η2

d

)
I +

(
η2

d

)
I = 3dη2I.

Therefore, we have

E [Q(θt)|Ft−1] =

(
1− 1

d

)
3dη2ĝTt−1ĝt−1 + 3η2gTt−1gt−1 − 2η

(
1− 1

d

)
ĝTt−1 (wt−1 − w∗)

− 2η

d
gTt−1 (wt−1 − w∗) +

1

d
(wt−1 − w∗)T (wt−1 − w∗) . (4.16)

Nesterov in [21] proves the following lemma that we will use in the sequel.

Lemma 3. Let h : Rd → R be a function with L-Lipschitz continuous gradients. Then, for

any vectors u and v we have

‖∇h(u)−∇h(v)‖2 ≤ L 〈∇h(u)−∇h(v), u− v〉 . (4.17)

Applying Lemma 3 to the second term in equation (4.16) results in

3η2gTt−1gt−1 ≤ 3η2LgTt−1 (wt−1 − w∗) . (4.18)
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Thus, we get

E [Q(θt)|Ft−1] ≤
(

1− 1

d

)
3dη2ĝTt−1ĝt−1 − 2η

(
1− 1

d

)
ĝTt−1 (wt−1 − w∗)

+

(
3η2L− 2η

d

)
gTt−1 (wt−1 − w∗) +

1

d
(wt−1 − w∗)T (wt−1 − w∗) . (4.19)

On the other hand, from the definition of Q(θ) we have

Q(θt−1) =ĝTt−1Aĝt−1 + 2ĝTt−1B (wt−1 − w∗) + (wt−1 − w∗)T C (wt−1 − w∗)

=ĝTt−1

[
3dη2 +

η2

d
− 2η2

]
Iĝt−1

− 2ĝTt−1

[
η

(
1− 1

d

)
I

]
(wt−1 − w∗)

+
1

d
(wt−1 − w∗)T (wt−1 − w∗) . (4.20)

Therefore,

E [Q(θt)|Ft−1]− (1− δ)Q(θt−1)

≤
[
3dη2 − 3η2 − 3dη2 − η2

d
+ 2η2 + 3dδη2 +

η2δ

d
− 2δη2

]
ĝTt−1ĝt−1

− 2ηδ

(
1− 1

d

)
ĝTt−1 (wt−1 − w∗)

+

(
3η2L− 2η

d

)
gTt−1 (wt−1 − w∗) +

δ

d
(wt−1 − w∗)T (wt−1 − w∗) . (4.21)

For some value of δ that we specify later Rearranging the terms inside the first bracket on the

right-hand side results in

E [Q(θt)|Ft−1]− (1− δ)Q(θt−1) ≤
[
3dη2

(
δ − 1

d

)
+ (1− δ)η2

(
2− 1

d

)]
ĝTt−1ĝt−1

− 2ηδ

(
1− 1

d

)
ĝTt−1 (wt−1 − w∗)

+

(
3η2L− 2η

d

)
gTt−1 (wt−1 − w∗)

+
δ

d
(wt−1 − w∗)T (wt−1 − w∗) . (4.22)

Let M =
[
3dη2

(
δ − 1

d

)
+ (1− δ)η2

(
2− 1

d

)]
I = cI. We know that if c is negative, for any
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vector v ∈ Rd, vTMv < 0. Therefore:

(
ĝt−1 +

1

2
M−1t

)T
M

(
ĝt−1 +

1

2
M−1t

)
< 0

⇒ ĝTt−1Mĝt−1 + ĝTt−1t+
1

4
tTM−1t < 0

⇒ ĝTt−1Mĝt−1 + ĝTt−1t < −
1

4
tTM−1t, (4.23)

where t = −2ηδ
(
1− 1

d

)
(wt−1−w∗). This gives an upper bound on the first two terms in (4.22).

Therefore, we have

E [Q(θt)|Ft−1]− (1− δ)Q(θt−1) ≤−
1
4

(
2ηδ

(
1− 1

d

))2
3dη2

(
δ − 1

d

)
+ (1− δ)η2

(
2− 1

d

)‖wt−1 − w∗‖2

+

(
3η2L− 2η

d

)
gTt−1 (wt−1 − w∗)

+
δ

d
(wt−1 − w∗)T (wt−1 − w∗)

=
−δ2

(
1− 1

d

)2
3dδ − 1 + δ−1

d − 2δ
‖wt−1 − w∗‖2

+

(
3η2L− 2η

d

)
gTt−1 (wt−1 − w∗)

+
δ

d
(wt−1 − w∗)T (wt−1 − w∗)

=

(
δ

d
−

−δ2
(
1− 1

d

)2
3dδ − 1 + δ−1

d − 2δ

)
‖wt−1 − w∗‖2

+

(
3η2L− 2η

d

)
gTt−1 (wt−1 − w∗) (4.24)

In order for M to be negative definite, we need the following condition:

[
3dη2

(
δ − 1

d

)
+ (1− δ)η2

(
2− 1

d

)]
I ≺0

⇒ 3dη2

(
δ − 1

d

)
+ (1− δ)η2

(
2− 1

d

)
<0

⇒ 3dδ − 3 + 2− 2δ
1

d
+
δ

d
<0

⇒ δ

(
3d− 2 +

1

d

)
<1 +

1

d

⇒ δ <
1 + 1

d(
3d− 2 + 1

d

) . (4.25)

Therefore it suffices that

δ <
1

3d
. (4.26)
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Following from λ-strong convexity of f , we have

‖wt−1 − w∗‖2 ≤
1

λ
gTt−1 (wt−1 − w∗) . (4.27)

Hence,

E [Q(θt)|Ft−1]− (1− δ)Q(θt−1) ≤(
3η2L− 2η

d
+

δ

λd
−

δ2
(
1− 1

d

)2
λ
(
3dδ − 1 + δ−1

d − 2δ
)) ‖wt−1 − w∗‖2. (4.28)

If we set δ = λ
8dL and η = 1

2dL , assuming λ ≤ L, we have

3η2L− 2η

d
+

δ

λd
−

δ2
(
1− 1

d

)2
λ
(
3dδ − 1 + δ−1

d − 2δ
) =

3

4d2L
− 1

d2L
+

1

8d2L

−
δ2
(
1− 1

d

)2
λ
(
3dδ − 1 + δ−1

d − 2δ
)

=− 1

8d2L
+

δ2
(
1− 1

d

)2
λ
(
1− 3dδ + 2δ − δ−1

d

)
≤− 1

8d2L
+

δ2

λ (1− 3dδ)

=− 1

8d2L
+

λ

64d2L2
(
1− 3λ

8L

)
≤− 1

8d2L
+

λ

64d2L2
(
1− 3

8

)
≤− 1

8d2L
+

1

40d2L

<0. (4.29)

Note that δ = λ
8dL satisfies (4.26). Inequality (4.29) implies

E [Q(θt)|Ft−1]− (1− δ)Q(θt−1) < 0 (4.30)

or

E [Q(θt)|Ft−1] < (1− δ)Q(θt−1). (4.31)

Taking expectation on both sides with respect to θ0, θ1, . . . , θt−1 and substituting the value for
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δ, we get

E [Q(θt)] <

(
1− λ

8dL

)
E [Q(θt−1)] . (4.32)

Therefore,

E [Q(θt)] <

(
1− λ

8dL

)t
Q(θ0). (4.33)

Initializing ĝ0 = 0 and w0 = 0 results in

Q(θ0) = ĝ0
TAĝ0 + 2ĝ0

TB (w0 − w∗) + (w0 − w∗)T C (w0 − w∗) =
1

d
‖w∗‖2. (4.34)

Hence,

E [Q(θt)] <

(
1− λ

8dL

)t
1

d
‖w∗‖2. (4.35)

We now need to prove that Q(θt) (the Lyapunov function) dominates ‖wt − w∗‖2. If P ′ =

P −

0 0

0 1
2dI

 =

 A B

BT C − 1
2dI

 is positive definite, then xTPx � xT
0 0

0 1
2dI

x for any

x ∈ Rd. Therefore, we have Q(θt) >
1
2d‖wt −w

∗‖2. We know that P ′ is positive definite if and

only if both A and the Schur complement of P ′, i.e. S′ = (C − 1
2dI) − BTA−1B, are positive

definite [27]. A =
[
3dη2 + η2

d − 2η2
]
I is obviously positive definite for all acceptable values of

d. We now check S′ to determine if it is positive definite.

S′ =

(
1

d
I − 1

2d
I

)
−

η2
(
1− 1

d

)2
3dη2 + η2

d − 2η2
I

=

[
1

2d
−

η2
(
1− 1

d

)2
3dη2 + η2

d − 2η2

]
I

�
[

1

2d
− 1

3d− 2

]
I

� 0 (4.36)

for d ≥ 2. Therefore, P ′ is positive definite for d ≥ 2. Then,

1

2d
‖wt − w∗‖2 < Q(θt) (4.37)
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Therefore,

E
[
‖wt − w∗‖2

]
< 2dE [Q(θt)] . (4.38)

From this and (4.35) we get

E
[
‖wT − w∗‖2

]
< 2‖w∗‖2

(
1− λ

8dL

)T
. (4.39)

Finally, from smoothness of f(w) we have

E [f(wT )− f(w∗)] < L ‖w∗‖2
(

1− λ

8dL

)T
. (4.40)

which shows an exponential rate of convergence for this method.

4.2.1 Discussion

The SVRC method presented here provides linear convergence rate for strongly convex smooth

functions. Instead of computing the true gradient vector at every iteration, our method only

updates one element of the coordinate vector. It also addresses the memory issue of the SAG

method and improves its convergence rate (compare
(
1− λ

8dL

)T
of SVRC to

(
1− λ

8mL

)T
of

SAG), at the cost of higher per-iteration complexity. A future direction of research in this area

can be using second order (Hessian) information to achieve faster convergence rates.

As the name of this method suggests, SVRC has reduced variance in results compared to

the standard stochastic coordinate descent (SCD) method. The variance reduction analysis

for SVRC falls within the framework for variance reduction presented in [10] and mentioned

in Section 2.2.3 of Chapter 2. The idea behind the methods following this framework is that

if X is a random variable and we are interested in estimating E [X], we can introduce have

random variable Y which is highly correlated with X for which we can easily compute its

expectation. Now, define θα = α (X − Y ) + E [Y ] as an estimator of E [X]. We observe that

E [θα] = αE [X] + (1− α)E [Y ] and V ar (θα) = α2 [V ar(X) + V ar(Y )− 2 Cov(X,Y )]. If the

covariance is large enough, V ar (θα) can be smaller than V ar(X).

If we rewrite the update rule of SVRC as:

wt+1 = wt − ηt [∇jf(wt)− ĝj(t− 1) + ĝ(t− 1)] , (4.41)
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we can see that here X = d∇jf(wt) and Y = dĝj(t− 1), θ = ĝ(t), α = 1
d , and the expectation

of Y is taken over the choice of j.
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Chapter 5

Distributed Optimization in Networks with Limited

Communication Resources

In a general connected network, we aim to minimize the average of the local objective functions

associated with the nodes of the network:

min
w∈Rd

fD(w) =
1

n

n∑
i=1

f i(w), (5.1)

where {f i(w)} are strongly convex functions.

It is tempting to directly apply proportional gradient sampling to the general network set-

ting for distributed optimization. A näıve adoption of our centralized method for distributed

problems would involve communicating proportionally sampled estimates of the local gradients

with the neighbors in order to converge to a common optimal point of the global objective func-

tion. In Chapter 3 we showed that this method actually works if the nodes are fully connected

where all of the nodes start with the same initial value. However, sending gradient information

to neighbors in the network does not necessarily help them reach the global minimizer because

at any instant t, various nodes have different values of estimates wit, so the gradient values from

the neighbors might be totally irrelevant. Hence, for general connected networks we suggest

that the nodes exchange partial information about their current local estimates {wit}ni=1 instead

of communicating gradient information.

5.1 Distributed Coordinate-wise Primal Averaging

The method in this section is motivated by the problem of limiting communication during

the iterations. Based on two existing works, [12] and [28], on consensus-based distributed

optimization and the social sampling protocol suggested by Sarwate and Javidi [29], we consider

a communication scheme based on sending partial information about the current iterate wit:

each node only sends an estimate (sample) ŵti of their current belief wti . In particular, ŵti only

contains information about a single (random) coordinate of wit.
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5.1.1 Synchronous Coordinate-wise Primal Averaging

A simple model is for an oracle to select a coordinate of {wit} and have all nodes synchronized

to transmit information about that same coordinate. This method can be seen as a coordinate-

wise variant of the distributed primal averaging algorithm of Nedić and Ozdaglar [12]. In this

algorithm, at every iteration some oracle selects a random coordinate j from {1, · · · , n} and

orders all nodes to send the j-th coordinate of wit to their neighbors. Each node i updates its

j-th coordinate with a weighted average of their neighbor’s coordinates. Subsequently, node i

updates all coordinates of wit using its full local gradient git = ∇f i(wit). Therefore, the update

rule can be written as

wit+1 =

d∑
j=1

∑
k∈N̂ i

Qjik(t)Djwkt − ηitgit for j ∈ [d], (5.2)

where Dj is a diagonal matrix with 1 on its jth diagonal element and zero otherwise and

Qj(t) =


Q if j is selected at time t,

I otherwise.

(5.3)

5.1.2 Asynchronous Coordinate-wise Primal Averaging

The synchronous algorithm requires an oracle to select a common coordinate j so that all

nodes average on the same coordinate at each time. In a more realistic scenario, however,

we would like to allow each node i to select its own coordinate ji at random. It can then

send the pair
(
ji,
(
wit
)
ji

)
to its neighbors. Then, node i will receive a collection of requests{(

jk,
(
wit
)
jk

)
: k ∈ N i

}
. For each k ∈ N i, it will send

(
jk,
(
wit
)
jk

)
to node k. This preserves

the bidirectionality of the links. Each node, for every coordinate, computes a convex combi-

nation of its own belief and those of the neighbors who have sent their information about the

same coordinate. For different coordinates, the assigned weights to the neighbors need not be

the same.

For this algorithm the update rule is the same as (5.2), except that for every coordinate j,

matrix Qj(t) is chosen i.i.d across time according to PGj , which is a probability distribution over

QGj , a set of doubly stochastic matrices comfortant to subgraphs of G each of which include all

of the self-loops.
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Algorithm 7 Asynchronous Coordinate-wise Primal Averaging

Require: N , T , graph G, step size sequence {ηt}, matrix Q
arbitrarily select wi1 ∈ Rd for all i ∈ [n].
for t = 1, 2, . . . T do

for all i ∈ [n] do
compute git ∈ ∂f i(wit)
select ji uniformly in [d]

send
(
ji,
(
wit
)
ji

)
to all nodes in N i

end for
for all i ∈ [n] do

send
(
jk,
(
wit
)
jk

)
to each node k ∈ N i

end for
for all i ∈ [n] do

for all j ∈ [d] do
if j ∈ {jk : k ∈ N̄ i} then

(vit+1)j =
∑
k∈N̄ i Q

j
ik(t)(wkt )j

else
(vit+1)j = (wit)j

end if
end for
wit+1 = vit+1 − ηtgit

end for
end for
return for each i ∈ [n] the average

w̃iT =
1

T

T∑
t=1

wit.

for each i ∈ [n]
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5.1.3 Convergence Rate

Theorem 5 provides the convergence analysis for the case with deterministic Qj across time for

every coordinate. This provides the basis for analyzing both synchronous and asynchronous

methods where the weight matrices are random. Our analysis relates several average quantities

such as the time average

w̃iT =
1

T

T∑
t=1

wit, (5.4)

the network average

w̄t =
1

n

n∑
i=1

wit, (5.5)

and the time-and-network average

w̃ =

n∑
i=1

w̃i

n
=

T∑
t=1

w̄t
T
. (5.6)

Theorem 5. Consider solving problem (5.1). Suppose that every node uses update rule (5.2)

with the same step size ηt = 1
λt across the network and Qj(t) = Qj for all j ∈ [d]. Furthermore,

assume that our objective functions are λ-strongly convex and have bounded gradients, that

is for any vector w ∈ Rd we have ‖∇f i(w)‖ ≤ M and |∇jf i(w)| ≤ Mj. Then, for T ≥

max
j∈[d]
{−2e log(

√
λ2(Qj))},

E
[
fD(w̃iT )− fD(w∗)

]
≤ (C1 + C2 log(T ))

log(T )

T
, (5.7)

where

C1 =
M2

2nλ

C2 =
18MM ′

√
n

λ

M ′ =

d∑
j=1

Mj

− log(
√
λ2(Qj))

.

Proof. We take an approach similar to Nedić and Ozdaglar [12]. We first find a bound on the

expected distance of the network average (5.5) from the optimal point w∗. Note that since Qj
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is doubly stochastic for all j ∈ [d], we have the following recursive relation:

w̄t+1 = w̄t − ηt
n∑
i=1

git
n
. (5.8)

This implies the following recursion:

‖w̄t+1 − w∗‖2 =

∥∥∥∥∥w̄t − w∗ − ηt
n∑
i=1

git
n

∥∥∥∥∥
2

= ‖w̄t − w∗‖2 +

∥∥∥∥∥ηt
n∑
i=1

git
n

∥∥∥∥∥
2

− 2ηt(w̄t − w∗)>
n∑
i=1

git
n

(a)

≤ ‖w̄t − w∗‖2 + η2
t

M2

n
− 2ηt

n∑
i=1

(w̄t − w∗)>git
n

, (5.9)

where in (a) we made use of the finite form of Jensen’s inequality. For the the summands of

the third term above we have

(w̄t − w∗)>git = (w̄t − w∗)>∇f i(wit)

= (w̄t − wit)>∇f i(wit) + (wit − w∗)>∇f i(wit)
(a)

≥ −
∥∥∇f i(wit)∥∥ ‖w̄t − w∗‖+ f i(wit)− f i(w∗)

+
λ

2

∥∥wit − w∗∥∥2

= −
∥∥∇f i(wit)∥∥ ‖w̄t − w∗‖+ f i(wit)− f i(w̄t)

+
λ

2

∥∥wit − w∗∥∥2
+ f i(w̄t)− f i(w∗)

(b)

≥ −
∥∥∇f i(wit)∥∥∥∥w̄t − wit∥∥+∇f i(w̄t)>(wit − w̄t)

+
λ

2

∥∥wit − w∗∥∥2
+ f i(w̄t)− f i(w∗)

(c)

≥ −
(∥∥∇f i(wit)∥∥+

∥∥∇f i(w̄t)∥∥) ∥∥w̄t − wit∥∥
+
λ

2

∥∥wit − w∗∥∥2
+ f i(w̄t)− f i(w∗), (5.10)

where (a) follows from Cauchy-Shwartz inequality and strong convexity of f i, (b) is a result of

convexity of f i and (c) also results from Cauchy-Shwartz inequality. Using inequality (5.10) we
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can upper-bound the third term in the r.h.s of (5.9):

−2ηt

n∑
i=1

〈
(w̄t − w∗), git

〉
n

≤ 2ηt

n∑
i=1

(∥∥∇f i(wit)∥∥+
∥∥∇f i(w̄t)∥∥) ∥∥w̄t − wit∥∥

n

− ληt
n∑
i=1

∥∥wit − w∗∥∥2

n
− 2ηt

n∑
i=1

f i(w̄t)− f i(w∗)
n

(a)

≤ 2ηt

n∑
i=1

(∥∥∇f i(wit)∥∥+
∥∥∇f i(w̄t)∥∥) ∥∥w̄t − wit∥∥

n

− ληt ‖w̄t − w∗‖2 − 2ηt (fD(w̄t)− fD(w∗)) , (5.11)

where (a) results from finite form Jensen’s Inequality as well as the definition of fD. Substituting

this result in (5.9) and taking expectation w.r.t. the entire history up to time t we get

E
[
‖w̄t+1 − w∗‖2

]
≤E

[
‖w̄t − w∗‖2

]
+ η2

t

M2

n

+ 2ηt

n∑
i=1

E
[(∥∥∇f i(wit)∥∥+

∥∥∇f i(w̄t)∥∥) ∥∥w̄t − wit∥∥]
n

− ληtE
[
‖w̄t − w∗‖2

]
− 2ηtE [f(w̄t)− fD(w∗)]

≤ (1− ληt)E
[
‖w̄t − w∗‖2

]
+ η2

t

M2

n

+ 4ηtME
[∥∥w̄t − wit∥∥]− 2ηtE [fD(w̄t)− fD(w∗)] . (5.12)

By rearranging the terms we get

E [fD(w̄t)− fD(w∗)] ≤1− ληt
2ηt

E
[
‖w̄t − w∗‖2

]
− 1

2ηt
E
[
‖w̄t+1 − w∗‖2

]
+
ηt
2n
M2 + 2ME

[∥∥w̄t − wit∥∥] . (5.13)

The following Lemma provides us with a bound on E
[∥∥w̄t − wit∥∥].

Lemma 4. Suppose all the assumptions in Theorem 5 hold. For any node i at any time t the

network average w̄t in (5.5) satisfies

E
[∥∥w̄t+1 − wit+1

∥∥] ≤ 2
√
n

λ

d∑
j=1

Mj
log(2bje t

2)

bj t
, (5.14)

where bj = − log(
√
λ2(Qj)).

Proof. we define the n × d matrices Wt, Gt, and W̄t whose i-th rows are wit, g
i
t, and w̄t. We

further define n × 1 vectors W j
t = (Wt):,j , G

j
t = (Gt):,j , and W̄ j

t = (W̄t):,j . Recall that Qj
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is n × n. Using this notation, we have the following update rule for the network for every

coordinate:

W j
t+1 = QjW j

t − ηtG
j
t , (5.15)

Therefore,

W̄ j
t+1 −W

j
t+1 =

(
1

n
11> − I

)
W j
t+1

=

(
1

n
11> − I

)(
QjW j

t − ηtG
j
t

)
=

(
1

n
11> − I

)
Qj
(
QjWt−1 − ηt−1G

j
t−1

)
−
(

1

n
11> − I

)
ηtG

j
t

=

(
1

n
11> − I

)
(Qj)2W j

t−1

−
(

1

n
11> − I

)
Qjηt−1G

j
t−1 −

(
1

n
11> − I

)
ηtG

j
t . (5.16)

Assuming W1 = 0, if we continue the process we get

W̄ j
t+1 −W

j
t+1 = −

t∑
s=1

ηs

(
1

n
11> − I

)(
Qj
)t−s

Gjs

= −
t∑

s=1

ηs

(
1

n
11> −

(
Qj
)t−s)

Gs, (5.17)

where the last line results from the fact that for any doubly stochastic matrix A, we have that

11>A = 11>.

Let ηt = 1
λt . Taking the absolute value of the i-th elements of both sides of (5.17) and using

Jensen’s inequality results in

∣∣(w̄t+1)j − (wit+1)j
∣∣ =

∣∣∣∣∣
t∑

s=1

1

λs

(
1

n
1> −

(
Qj
)t−s
i,:

)>
Gjs

∣∣∣∣∣
≤

t∑
s=1

1

λs

∣∣∣∣∣
(

1

n
1> −

(
Qj
)t−s
i,:

)>
Gjs

∣∣∣∣∣
≤

t∑
s=1

Mj

λs

∥∥∥∥ 1

n
1> −

(
Qj
)t−s
i,:

∥∥∥∥
1

. (5.18)
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Now, we get the following bound for the summation in the right-hand side of (5.18) [30]:

t∑
s=1

Mj

λs

∥∥∥∥ 1

n
1> −

(
Qj
)t−s
i,:

∥∥∥∥
1

≤Mj
√
n

λ

t∑
s=1

1

s

(√
λ2(Qj)

)t−s
≤2Mj

√
n

λ

log(2bje t
2)

bj t
, (5.19)

where λ2(Qj) ≤ 1 is the second eigenvalue of matrix Qj and bj = − log(
√
λ2(Qj)). Summing

over all j ∈ [d] and taking expectation of both sides of (5.20) with respect to the entire history

results in

E
[∥∥w̄t+1 − wit+1

∥∥] ≤E [∥∥w̄t+1 − wit+1

∥∥
1

]
=

d∑
j=1

E
[∣∣(w̄t+1)j − (wit+1)j

∣∣]
≤ 2
√
n

λ

d∑
j=1

Mj
log(2bje t

2)

bj t
. (5.20)

Substituting the result of Lemma 4 and ηt = 1
λt in (5.13):

E [fD(w̄t)− fD(w∗)] ≤λ(t− 1)

2
E
[
‖w̄t − w∗‖2

]
− λt

2
E
[
‖w̄t+1 − w∗‖2

]
+

M2

2nλt
+

4M
√
n

λ

d∑
j=1

Mj
log(2bje t

2)

bj t
. (5.21)

This provides a bound on E [fD(w̄t)− fD(w∗)]. However, in order to analyze the asymptotic

behavior of our algorithms, we are interested in E
[
fD(w̃i)− fD(w∗)

]
. Consider the time-and-

network average (5.6). From convexity of fD and Jensen’s inequality we have

E [fD(w̃T )− fD(w∗)] ≤ 1

T

T∑
t=1

E [fD(w̄t)− fD(w∗)]

≤
T∑
t=1

λ(t− 1)E
[
‖w̄t − w∗‖2

]
− λtE

[
‖w̄t+1 − w∗‖2

]
2T

+
1

T

T∑
t=1

M2

2nλt
+

1

T

T∑
t=1

4M
√
n

λ

d∑
j=1

Mj
log(2bje t

2)

bj t
. (5.22)
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Using convexity, Jensen’s inequality, and some algebra we can establish that for T > max
j∈[d]
{2bje},

E [fD(w̃T )− fD(w∗)] ≤ 1

T

∑
t=1

−λT
2

E
[
‖w̄T+1 − w∗‖2

]
+

1

T

T∑
t=1

(
M2

2nλ
+

12MM ′
√
n

λ
log(T )

)
1

t

≤ CT
T

T∑
t=1

1

t

≤ CT
log(T )

T
, (5.23)

where M ′ =
d∑
j=1

Mj

bj
and CT = M2

2nλ + 12MM ′
√
n

λ log(T ). This lets us relate the time average w̃iT

at a node to the network time average:

E
[
fD(w̃iT )− fD(w∗)

]
≤ E

[
fD(w̃T )− fD(w∗) +∇fD(w̃it)

>(w̃it − w̃t)
]

(a)

≤ E
[
fD(w̃T )− fD(w∗) +

∥∥∇fD(w̃iT )
∥∥ ∥∥w̃it − w̃T∥∥]

(b)

≤ E [fD(w̃T )− fD(w∗)] + E

[∥∥∇fD(w̃iT )
∥∥ T∑
t=1

∥∥wit − w̄t∥∥
T

]

≤ E [fD(w̃T )− fD(w∗)] +
M

T

T∑
t=1

E
[∥∥wit − w̄t∥∥] , (5.24)

where in the inequality (a) we used Cauchy-Shwartz and the (b) results from Jensen’s inequality

and the definition of w̃iT and w̃T .

Combining the results from (5.24), (5.23), and Lemma 4 gives us the desired upper bound

on the loss:

E
[
fD(w̃iT )− fD(w∗)

]
≤ CT

log(T )

T
+

2M
√
n

λT

T∑
t=1

d∑
j=1

Mj log(2bje t
2)

bj t

(a)

≤ CT
log(T )

T
+

6MM ′
√
n log(T )

λT

T∑
t=1

1

t

≤
(
M2

2nλ
+

12MM ′
√
n

λ
log(T )

)
log(T )

T

+
6MM ′

√
n log(T )

λ

log(T )

T

=

(
M2

2nλ
+

18MM ′
√
n

λ
log(T )

)
log(T )

T
. (5.25)
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where (a) results from the assumption T > max
j∈[d]
{2bje}, the fact t < T and the definition

M ′ =
d∑
j=1

Mj

bj
.

Now that we have established the results for the case with time-invariant weight matrices,

we go on to study the case where Qj(t) is selected i.i.d. from distribution PGj . Note that for

every coordinate j, the quantity PGj is a function of {PCi }ni=1 that are probability distributions

over coordinate indexes at each node. The following lemma is used in the sequel to analyze the

behavior of our methods.

Lemma 5. Suppose the same assumptions as Theorem (5) hold except that in (5.2), Qj(t) is

an i.i.d sequence of doubly stochastic matrices drawn from distribution PGj . Then, for wit and

w̄t we have that

E
[∥∥w̄t+1 − wit+1

∥∥] ≤ d∑
j=1

2Mj
√
n

λ

log(2bje t
2)

bj t
, (5.26)

where bj = − log
(
E
[
σ2

(
Qj(t)

)])
and σ2

(
Qj
)

is the second largest singular value of Qj(t).

Proof. Define Qj(s, t) = Qj(t)Qj(t− 1) · · ·Qj(s+ 1). Following the procedure in Lemma 4, we

get

∣∣(w̄t+1)j − (wit+1)j
∣∣ ≤ t∑

s=1

Mj

λs

∥∥∥∥ 1

n
1> −Qj(s, t)i,:

∥∥∥∥
1

≤
t−1∑
s=1

Mj

λs

∥∥∥∥ 1

n
1> − (ei)>Qj(s, t)

∥∥∥∥
1

+
2M j

λt

≤
t−1∑
s=1

Mj
√
n

λs

∥∥∥∥ 1

n
1> − (ei)>Qj(s, t)

∥∥∥∥
2

+
2M j

λt
. (5.27)
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For the summand of the first term here we have

∥∥∥∥ 1

n
1> − (ei)>Qj(s, t)

∥∥∥∥2

2

=

(
1>

n
− (ei)>Qj(s+ 1, t)Qj(s+ 1)

)
(

1>

n
− (ei)>Qj(s+ 1, t)Qj(s+ 1)

)>
=

1>1

n2
+ (ei)>Qj(s+ 1, t)Qj(s)Qj(s+ 1)>Qj(s+ 1, t)>ei

− 2

n
1>Qj(s+ 1)>Qj(s+ 1, t)>ei

=
1>Qj(s+ 1)Qj(s+ 1)>1

n2

+ (ei)>Qj(s+ 1, t)Qj(s+ 1)Qj(s+ 1)>Qj(s+ 1, t)>ei

− 2

n
1>Qj(s+ 1)Qj(s+ 1)>Qj(s+ 1, t)>ei

=

(
1>

n
− (ei)>Qj(s+ 1, t)

)
Qj(s+ 1)

Qj(s+ 1)>
(

1>

n
− (ei)>Qj(s+ 1, t)

)>
≤ λ2

(
Qj(s+ 1)Qj(s+ 1)>

) ∥∥∥∥ 1

n
1> − (ei)>Qj(s+ 1, t)

∥∥∥∥2

2

. (5.28)

Continuing this recursive procedure results in

∥∥∥∥ 1

n
1> − (ei)>Qj(s, t)

∥∥∥∥2

≤ σ2
2

(
Qj(s)

) ∥∥∥∥ 1

n
1> − (ei)>Qj(s+ 1, t)

∥∥∥∥2

≤
∥∥∥∥ 1

n
1> − (ei)>

∥∥∥∥2 t∏
l=s+1

σ2
2

(
Qj(l)

)
(5.29)

Taking expectation of both sides w.r.t. the entire history and keeping in mind that {Qj(l)}tl=s+1

are i.i.d. over time results in

E
[∥∥∥∥ 1

n
1> − (ei)>Qj(s, t)

∥∥∥∥] ≤ ∥∥∥∥ 1

n
1> − (ei)>

∥∥∥∥E
[

t∏
l=s+1

σ2

(
Qj(l)

)]

=

∥∥∥∥ 1

n
1> − (ei)>

∥∥∥∥ t∏
l=s+1

E
[
σ2

(
Qj(l)

)]
=

∥∥∥∥ 1

n
1> − (ei)>

∥∥∥∥E [σ2

(
Qj(l)

)]t−s
≤ E

[
σ2

(
Qj(τ)

)]t−s
. (5.30)
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Therefore,

E
[∥∥w̄t+1 − wit+1

∥∥] ≤ E
[∥∥w̄t+1 − wit+1

∥∥
1

]
=

d∑
j=1

E
[∣∣(w̄t+1)j − (wit+1)j

∣∣]
≤

d∑
j=1

[
t−1∑
s=1

Mj
√
n

λs
E
[
σ2

(
Qj(τ)

)]t−s
+

2M j

λt

]

≤
d∑
j=1

2M j
√
n

λ

log(2bjet
2)

bjt
, (5.31)

Now, we are ready to find the upper bound on E
[
fD(w̃iT )− fD(w∗)

]
in the setup with

random weight matrices.

Theorem 6. Assume that all conditions in Lemma 5 hold. We have the following upper bound

on the loss of coordinate-wise primal averaging algorithm with update rule (5.2) for the opti-

mization problem (5.1) if T ≥ −2 e log
(
E
[
σ2

(
Qj(t)

)])
:

E
[
fD(w̃iT )− fD(w∗)

]
≤
(
M2

2nλ
+

18Mc
√
n

λ
log(T )

)
log(T )

T
, (5.32)

where c =
∑d
j=1

Mj

− log(E[σ2(Qj(t))]) and M and Mj are as defined in Theorem (5).

Proof. By applying Lemma 5 to (5.13) and following the same procedure as that of the proof

of Theorem 5, we get the stated result.

We remark that for both synchronous and asynchronous distributed algorithms proposed in

this chapter, the analysis in Theorem 6 holds. The synchronous algorithm is a special case where

Qj is a random matrix which takes value from the set {Q, I}. In the asynchronous method the

sample space is larger, i.e. the entire QGj which is defined in Subsection 5.1.2.

5.2 Distributed Coordinate-wise Primal Averaging with Stochastic

Local Gradients

We claim that our coordinate-wise primal averaging method also works for a setup in which the

nodes use unbiased estimates of their gradient vectors instead of the true gradient. The update

rule here is

wit+1 =

d∑
j=1

∑
k∈N̂ i

Qjik(t)Djwkt − ηitĝit for j ∈ [d], (5.33)
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or

w̄t+1 = w̄t − ηt
n∑
i=1

ĝit
n
. (5.34)

where ĝit is an unbiased estimate of the true local gradient vector: E
[
ĝit|Ft

]
= git = ∇f i(wit).

5.2.1 Convergence Analysis

Theorem 7 provides the convergence result in case of using approximate gradients. The re-

sult stated in this theorem uses the following lemma which provides us with a bound on

E
[∥∥w̄t − wit∥∥].

Lemma 6. Suppose all the assumptions in Theorem 7 hold. For any node i at any time t the

network average w̄t in (5.5) satisfies

E
[∥∥w̄t+1 − wit+1

∥∥] ≤ 2
√
n

λ

d∑
j=1

M̂j
log(2bje t

2)

bj t
, (5.35)

where E
[
|
(
ĝit
)
j
| |Ft

]
≤ M̂j and bj = − log(

√
λ2(Qj)).

Proof. Following the same procedure as the proof in Lemma 4 we get the result stated here.

Now, we are ready to state the main result of the coordinate-wise primal averaging with

approximate local gradient.

Theorem 7. Consider solving problem (5.1). Suppose that every node uses update rule (5.33)

with the same step size ηt = 1
λt across the network and Qj(t) = Qj for all j ∈ [d]. Furthermore,

assume that our objective functions are λ-strongly convex and have bounded gradients, that is

for any vector w ∈ Rd we have ‖∇f i(w)‖ ≤M , E
[
|ĝit|2 |Ft

]
≤ M̂2 and E

[
|
(
ĝit
)
j
| |Ft

]
≤ M̂j.

Then, for T ≥ max
j∈[d]
{−2e log(

√
λ2(Qj))},

E
[
fD(w̃iT )− fD(w∗)

]
≤ (C ′1 + C ′2 log(T ))

log(T )

T
, (5.36)
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where

C ′1 =
M̂2

2nλ
, (5.37)

C ′2 =
18MM̂ ′

√
n

λ
, (5.38)

M̂ ′ =

d∑
j=1

M̂j

− log(
√
λ2(Qj))

. (5.39)

Proof. Here, we follow a procedure similar to the previous proofs in this section.

‖w̄t+1 − w∗‖2 = ‖w̄t − w∗‖2 +

∥∥∥∥∥ηt
n∑
i=1

ĝit
n

∥∥∥∥∥
2

− 2ηt(w̄t − w∗)>
n∑
i=1

ĝit
n
. (5.40)

Therefore,

E
[
‖w̄t+1 − w∗‖2 |Ft

]
= ‖w̄t − w∗‖2 + E

∥∥∥∥∥ηt
n∑
i=1

ĝit
n

∥∥∥∥∥
2
− 2ηt(w̄t − w∗)>

n∑
i=1

git
n

≤ ‖w̄t − w∗‖2 + η2
t

M̂2

n
− 2ηt

n∑
i=1

(w̄t − w∗)>git
n

. (5.41)

Therefore,

E [fD(w̄t)− fD(w∗)] ≤1− ληt
2ηt

E
[
‖w̄t − w∗‖2

]
− 1

2ηt
E
[
‖w̄t+1 − w∗‖2

]
+
ηt
2n
M̂2 + 2ME

[∥∥w̄t − wit∥∥] . (5.42)

Following similar steps as in the proof of Theorem 5 we get the result stated in this theorem.
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Chapter 6

Conclusion

In this work, we used social sampling to limit the communication in cooperative multi-agent

optimization settings. For centralized and shared memory systems, we proposed a new nonuni-

form variant of stochastic coordinate descent and provided upper bounds on the expected sub-

optimality gap. This method requires full knowledge of local gradient vectors, which seems

computationally wasteful. However, this method may be useful for shared memory systems

with limited communication resources where computing local gradient vectors by each node

is inexpensive and we are more concerned about the amount of communication or contention

among nodes rather than the computation cost.

We also proposed a semi stochastic method with reduced variance compared to stochastic

coordinate descent. This algorithm makes use of old gradient values as well as random updates

on components of the gradient vector. We showed that this method has linear convergence in

a setup where stochastic coordinate descent methods show sublinear convergence, while having

lower variance.

In distributed models, we argued that sharing gradient information is not necessarily ben-

eficial; which suggested that nodes should share samples of their current estimates {wit} . We

proposed a stochastic coordinate-wise consensus-based optimization method that requires nodes

to share random coordinates of their estimates with their neighbors. We provided convergence

analysis and explicit error bounds in expectation for this method.

An interesting question raised in the centralized model is using that how using “stale”

gradient values from previous iterations would affect the convergence rate of the algorithm. Less

frequent full gradient evaluation drastically reduces the computational cost of the algorithm,

therefore a delayed PSCD method might solve the intrinsic issue of PSCD that it requires

evaluation of the full gradient at every iteration. Analyzing such a scheme would build on

recent results of [9] and also the SVRC method presented here. Finally, an empirical evaluation

of our methods on typical objective functions, especially in machine learning, may shed more

light on when nonuniform sampling can help in practice.
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[6] Zheng Qu, Peter Richtárik, and Tong Zhang. Randomized dual coordinate ascent with

arbitrary sampling. Technical Report arXiv:1411.5873 [math.OC], ArXiV, November 2014.

URL http://arxiv.org/abs/1411.5873.
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[16] S Sundhar Ram, A Nedić, and Venugopal V Veeravalli. Distributed stochastic sub-

gradient projection algorithms for convex optimization. Journal of Optimization The-

ory and Applications, 147(3):516–545, 2010. doi: 10.1007/s10957-010-9737-7. URL

http://dx.doi.org/10.1007/s10957-010-9737-7.
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