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ABSTRACT OF THE THESIS 

Structure-From-Motion without Projective Consistency 

By XIAOLI HE 

Thesis Director: 

Dr. Manish Singh  

 

Structure-from-motion (SFM) studies have shown that people are good at perceiving 3D 

structure in dynamic dot displays consistent with rigid object rotation. However, 

observers can perceive volumetric structure even when image motion is inconsistent with 

rigid rotation. As an extreme case, in dynamic figure-ground displays containing textural 

motion, observers perceive one set of regions as rotating in 3D, despite constant dot 

speed everywhere (projectively inconsistent with 3D rotation; Froyen et al. 2013, JOV; 

Tanrikulu et al., 2016, JOV). It is unclear, however, to what extent this extreme 

“tolerance” is due to the figure-ground competition, which induces the assigned figural 

region as rotating in those displays. Here we used standard SFM displays, depicting a 

single object in isolation, and manipulated the discrepancy of image motion from 3D 

rigid rotation. We started not with 3D objects, but with a 2D velocity field within a 

vertically oriented ellipse. For an ellipsoid rotating about its principal axis, its 

orthographic-projected speed profile is a cosine function along each orthogonal “rib”. We 

manipulated the proportion α of cosine speed versus constant speed (range 0-1), and the 

motion direction θ relative to the orthogonal ribs (range 0-60°). In experiment 1, 



	  
	  

	   iii	  

observers used a 7-point scale to rate the degree to which the display depicted a 

volumetric object. In experiment 2, observers adjusted the depth to match the SFM 

displays. Both experiments shows that the volumetric percepts increased significantly 

with α, and were surprisingly tolerant to deviations from the projectively correct α=1, 

θ=0. For α, volumetric ratings increased between 0-0.6 but plateaued beyond 0.6. The 

effect of θ was surprisingly small, with even θ=45° yielding high volumetric ratings. 

Then we applied a rigidity-based computer vision model to our displays, and compared 

the model prediction with observers’ data. The comparison shows that the rigidity-based 

model does not predict human’s volumetric percepts correctly. In addition, the predicted 

motion from the model has large deviations from the display itself in terms of rotation 

axis. Thus even in standard SFM displays, the 3D percept was surprisingly tolerant to 

discrepancies from projectively correct rigid object motion. These results argue for a 

more nuanced view of 3D interpretation in which strict projective consistency plays a less 

prominent role than in conventional SFM accounts. 
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1. INTRODUCTION 

Structure from motion (SFM) is a phenomenon that our visual system can 

perceive the three-dimensional structure from two-dimensional images sequences that 

contain only 2D motion information. For decades, researchers standardly used 2D 

projections of simulated rotating 3D objects to study the phenomenon. For example, one 

of the first SFM studies used 2 frames of projection from a wireframe object that 

consisted of connected line segments (Wallach, 1953). Later on, researchers used 

disconnected elements such as isolated points, terminations of line segments, or texture 

elements, and added more frames and elements to the display. There are two 

characteristics in common in the above SFM displays: first, no 3D motion information 

was conveyed by each individual frame; and second, such elements eliminated other cues 

like occluding contour and shading. Therefore, there are many possible 3D structures and 

3D motions that are consistent with the frame sequences—though some interpretations 

are simpler, and some can be very complicated.  

This leads to the interesting and important question: what constraint does the 

visual system use in SFM? Different constraints have been proposed to interpret human 

SFM. Most of them focus on explaining how people can perceive 3D structure from 

image sequences that are projected from rigid object rotation. One of the most well 

known constraints is the rigidity assumption (Ullman, 1979). 

Based on empirical research, Ullman (1979) proposed the rigidity assumption: 

“Any set of elements undergoing a 2-D transformation which has a unique interpretation 

as a rigid body moving in space, should be interpreted as such a body in motion.”  The 
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rigidity assumption assumes that a rigid interpretation is uniquely determined (up to a 

depth reversal) by applying the rigidity constraint. He also showed that the rigidity 

assumption was computable from his structure-from-motion theorem. The theorem states 

that if rigidity is satisfied in three distinct orthographic views of four non-planar points, 

the 3D structure of the four points can be uniquely determined (including the reflection 

about the image plane). Based on the above assumptions, Ullman developed the original 

rigidity-based algorithm: in order to estimate the structure of the whole object, we can 

divide the object into many small groups of four elements, and test rigidity within each 

group, and then combine the results into a global object. In summary, this model assumes 

that as long as the 2D display is projectively consistent with a rigid object, the 3D 

structure and motion can be uniquely determined. Since its publication, the rigidity 

assumption has had great impact on other location-based models in human SFM research 

(Clocksin, 1980; Husain, Treue, Anderseon, 1989). The location-based models code the 

frames in terms of the (x,y) locations of all the dots, and assume that the visual system 

recovers the 3D structure by analyzing the changes in the dots’ locations. The rigidity 

model is also widely used in computer vision (Tomasi & Kanade, 1992; Morita & 

Kanade, 1997; Anandan & Irani, 2002).  

The above location-based models can’t deal with correspondence problem — 

when the dots have limited lifetime. Specifically, with limited lifetime, it’s difficult to 

determine which dots correspond to which in the previous frame. In another word, the 

appearance and disappearance of dots makes it impossible to track individual dots. 

Another type of models based on velocity field can avoid the correspondence problem.  

Such models assume that the visual system uses motion information such as image 
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velocity field to compute the 3D structure. For example, Braunstein and Andersen (1984) 

ran a series of experiments and proposed the constant angular velocity heuristic. Instead 

of testing dots’ consistency directly with rigidity interpretation, they assumed that the 

visual system analyzes the projected image motion profile (i.e. 2D speed profile) of the 

dots to test for consistency with 3D rotation. They found that if the dots’ 2D speed profile 

was a cosine function along each horizontal cross-section (assuming that the object is 

centered at the origin), people could perceive the rotation of sphere with high accuracy 

(Figure 1). Therefore, they proposed that the visual system prefers the interpretation of a 

3D shape rotating with constant angular velocity.  

 

Figure 1:  The orthographic image motion profile (i.e. 2D speed profile) of a rotating 

ellipsoid should be a cosine function along each horizontal cross-section (assuming that 

the ellipse is centered at the origin). 

The location-based models and the velocity-based models take different inputs 

and use different algorithms, but both types of models assume projective consistency 

with rigidly moving objects. In particular, these models perform quite well with SFM 

displays that are projected from rigid rotating objects.  However, the generalizability of 

ω

vmax=2πωR
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the algorithms based on the rigidity constraint is unclear given that people can also 

handle displays that have certain deviations from rigidity motion, such as bending, 

stretching, twisting and flowing (Todd, 1982). Therefore, researchers attempted to relax 

this assumption and proposed some new algorithms to handle certain types of non-rigid 

motions. 

Todd’s (1982) trajectory-based algorithm attempts to discriminate between rigid 

and non-rigid objects. The algorithm is based on the image trajectories of each element’s 

projected motion in space and time. It assumed that different types of motion such as 

rigid motion and non-rigid motion have their specific geometric relations among their 

trajectories. Normally, the trajectories from rigid motion have certain geometric patterns. 

For example, for a vertical orientated ellipsoid rotating about its primary axis, the 

trajectories of dots lying on the surface will be a series of horizontal circles with different 

radii. He claimed that people can discriminate rigid from non-rigid motion based on 

trajectory cue. He applied the algorithm to SFM displays that were projected from rigid 

and non-rigid motion, and compared the algorithm predictions with human 

discriminations. The algorithm succeeded in distinguishing rigid from non-rigid motion 

as human did. However, it didn’t attempt to compute the non-rigid 3D shapes people 

actually perceive. 

Later on, Ullman (1983) also developed an incremental rigidity scheme to deal 

with displays containing motion that includes some deviations from perfect rigidity, such 

as an object undergoes certain degrees of distortion while rotating. The schema tried to 

maintain an internal rigid model by allowing minimum non-rigid deformations over 

successive frames. The scheme can tolerate a certain degree of deviation from rigidity, 
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but it is time consuming. Moreover, although it attempts to relax the rigidity assumption, 

it’s so sensitive to noise that it doesn’t always have a stable interpretation especially 

when the initial rigid interpretation is incorrect (Braunstein, 1994). 

Instead of using location-based constraints such as incremental rigidity or 

trajectory patterns, Jain & Zaidi (2011) showed that relative velocity plays a dominant 

role in SFM. They used random-dot displays containing projections of narrow cylinders 

that rotated simultaneously about the vertical and depth axes. In addition, the cylinders 

were either rigid or flexing, so the deformation in the displays resulted from two types of 

3D motion: either rigid or non-rigid motion. Their experiments showed that human 

observers had equal sensitivity in discriminating the shape of cross-sections from rigid 

and non-rigid displays. The model they proposed was based on motion perspective and 

three differential invariants (curl, div and def) decomposed from the first order velocity 

field (Koenderink & Van Doorn, 1986). Their computational model performed similarly 

as human observers. In addition, they showed that the rigidity-based models such as 

Todd’s (1982) trajectory algorithm couldn’t predict human percepts well.  

In summary, all these models assume that the human perception is projectively 

consistent with image data. At first, researchers tried to explain people’s ability in 

perceiving 3D structure from displays that were projected from rigid object rotation. 

Various models were proposed based on the rigidity constraints. Later on, it was found 

that people can also perceive the 3D structure from certain types of non-rigid object 

rotation, because such non-rigid motions as bending a tube and biological motion are 

quite common in daily life. These phenomena questioned the previous models, especially 

the location-based models. The rigidity-based models tried to relax the original rigidity 
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assumption, but they still didn’t perform well with non-rigid 3D motion. This suggests 

that the visual system does not work in the same way as the rigidity-based models 

propose.  Therefore, people began to use velocity field as model input, so as to further 

explore humans’ ability to estimate different non-rigid 3D motions. These SFM models 

underwent huge changes over the decades, but all of them have one universal assumption: 

in order to perceive 3D structure, the 2D motion sequences should be projectively 

consistent with 3D motion, whether rigid or non-rigid. But what happens when the 

universal assumption is violated? There is some evidence showing that people are good at 

perceiving volumetric structure when projective consistency is violated. 

Surprising evidence comes from the figure/ground study of Froyen et al. in 2013. 

As Figure 2 shows, these displays contained alternating light and dark regions with 

different shapes of contours in terms of their convexity and symmetry. Inside each region, 

there were random-dot textures moving horizontally at constant speed, but the motion 

direction is opposite in alternating regions. The pattern of texture motion was not 

projectively consistent with a 3D rotating object. However, people still had strong percept 

of rotating columns in one set of regions (light or dark). The study showed that even if 

the image motion is projectively inconsistent with 3D rotation, people can still have 

strong 3D percepts.  
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Figure 2: An example of display used in the figure/ground study of Froyen et al. in 2013. 

The arrows show the motion direction of the textures. 

In traditional SFM studies, the displays were generated from 3D objects—real or 

simulated, with rigid or non-rigid motion. So projective consistency is a necessary 

constraint for current SFM models. However, the above figure/ground studies show that 

when the 2D image motion has large deviations from projective consistency, people can 

still have strong 3D percepts. But a natural question is whether this occurred only due to 

figure-ground competition across each contour. In the rotating-column displays, the cue 

about figure-ground competition is accretion/deletion along each contour, and there are 

two possible interpretations. The traditional interpretation is that accretion/deletion is a 

strong cue to background (Kaplan, 1969; Thompson, Mutch, & Berzins, 1985): when a 

translating texture accretes/deletes from a boundary, it is perceived as 

appearing/disappearing behind the surface defined by the boundary. Accretion/deletion 

can also be interpreted as a cue to 3D objects. It is compatible with self-occlusion by a 

rotating 3D object—deletion can be a result of texture moving to the backside of an 

object, while accretion can be a result of texture moving from the backside of the object 

to the front side. The second interpretation leads to the rotating percept.  In the rotating-



	  
	  

	  

8	  

columns displays, accretion/deletion was present on both sides of each contour, so each 

side can be perceived as either figure or background. However, both sides cannot be in 

the back at the same time. Since there are two possible interpretations for each side, one 

side can be interpreted as a rotating object in the front, and another side as background. 

Therefore, it’s unclear whether the 3D percept is due to figure/ground competition or due 

to the effect of SFM.  

Ramachandran, Cobb and Rogers-Ramachandran (1988) reported a visual 

demonstration, which suggests that projective consistency can be violated even in the 

absence of figure-ground competition. They used random-dot display that was projected 

from a rotating cylinder, so the display was projectively consistent with a rotating 

cylinder, and subjects perceived it as a rotating cylinder. However, when the display was 

seen through a triangular aperture, subjects reported perceiving a rotating cone. In this 

case, the velocity field was inconsistent with a rotating cone, but the shape of the aperture 

influenced the interpretation of the display. However, Ramachandran et al. didn’t 

systematically manipulate the degree of discrepancy from projective consistency, or 

investigate how much discrepancy the visual system can tolerate. 
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2. EXPERIMENTS 

As noted above, different models embody different visual constraints to estimate 

3D structure from 2D image motion. One assumption that these models share is 

projective consistency: the inferred 3D structure must be projectively consistent with the 

image motion. However, in the context of figure/ground study mentioned above (where 

both sides of each border contained accretion/deletion), observers get a strong percept of 

3D rotation even though the 2D speed profile is projectively inconsistent with 3D rotation. 

Can this happen with standard SFM displays where the region is always perceived as 

figurual and the figure/ground cue will not help with the 3D percept?  

In order to understand the internal constraints that give rise to a 3D percept, we 

used dynamic random dots displays that were similar to traditional SFM displays: there 

were white dots moving inside an elliptical area (see Figure 3).  However, in order to 

quantitatively manipulate the degree of discrepancy of the image motion from physical 

3D rotation, we manipulated the speed profile of the dots’ motion in two respects: first, 

the speed profile is defined as a linear combination of cosine speed and constant speed, 

and we manipulated α— the proportion of cosine speed that is projected from 3D rotation 

(higher speed in the center and going down to zero at the edges, see the section 

Manipulation of speed for details). If α=0, the dot speed is constant (linear motion); if 

α=1, the speed profile is cosine, consistent with 3D rotation (See Figure 5). Therefore, as 

α increases, the projective discrepancy with 3D rotation decreases. Second, we also 

manipulated the direction θ of the dot motion. If θ=0, the direction is horizontal, and the 

motion is consistent with a rotating ellipsoid. As θ increases, the projective discrepancy 
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with 3D rotation increases. With 6 levels of α and 5 levels of θ, we have 30 different 

conditions overall (not including the counterbalancing of motion direction). In the 

following two experiments, we used the above stimuli in two different tasks—a rating 

task and a method of adjustment—to explore the influence of projective consistency on 

subjects’ 3D percepts. 

2.1 Experiment 1: Rating Task 

In this rating experiment, we examined the subjects' 3D volumetric percepts using 

a continuous 7-point scale. We manipulated the discrepancy from projective consistency 

in the display and wanted to see how it influenced their volumetric percepts. 

2.1.1 Method 

Subjects 

Eight Rutgers University graduate students with normal vision participated in the 

study. All were naive to the purpose of the experiment, and were paid for their 

participation. 

Stimuli and Design 

The stimuli for this experiment were 2D dynamic random-dot displays in a 

vertically oriented elliptical area (See Figure 3; the boundary of the ellipse was not part 

of the stimulus). The ellipse was 2.13° wide and 5.58° height. There are 165 white dots 

inside the black area, and the dot radius is 0.03°. The initial positions of the dots were 

randomly picked inside the ellipse in the first frame. The motion was generated by 

changing the dots’ location across frames. From frame to frame, the dots moved in the 

same fixed direction (determined by θ), and each dot's speed was defined by a function 
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S(r), r represents the relative location in the 2D plane; we call this 2D speed profile. (See 

the following paragraphs for details.) Each display consisted of 90 frames and each frame 

lasted 1/30s, adding up to 3s. 

We also did some control to clear up other possible confounding factors.  

1) In most conditions, the speed of individual dots varied over frames, which led 

to dot density changes across the ellipse. To eliminate possible effects of texture density 

change, we kept the density uniform from frame to frame using a method proposed by 

Sperling et al. (1989): we divided the ellipse area into 10×10 grid of sub-squares, and 

kept the dot density in each sub-square constant and uniform in each frame by adding 

new dots and deleting old ones.  

2) In some conditions, the dots at the boundary had essentially zero speed (see 

manipulation below), which resulted in an obvious illusory boundary. To minimize the 

influence of the illusory boundary, we introduced a ‘threshold’ to the dots’ speed so that 

when speed is too close to 0, the dot would be forced to move with a very small speed. In 

addition, the background was filled with darker dots with the same density. 
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Figure 3: The 2D dynamic display used in the first experiment 

Manipulation of speed 

Suppose there is a vertically oriented ellipsoid rotating about its primary axis with 

certain angular speed , and we randomly sprinkle dots on its surface, so that the dots 

rotate together with the ellipsoid (Figure 4, left). If we make an orthographic projection 

of the dots (Figure 4, right), there are two main features about their image motion: 1) the 

motion direction of the dots is horizontal, i.e. it is orthogonal to the object's rotation axis, 

2) Along the motion direction, its speed profile is a cosine function. Let’s assume that 

there is a dot D at location (x,y) in the projection plane (see Figure 4, right). Let  be the 

!

r
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distance to the ellipse’s primary axis, and R be the radius of an arbitrary cross-section. 

Then its 2D speed is a function of : 

     (1) 

Here, the 2D speed C(r) is projectively consistent with a rotating ellipsoid. For 

example, when the dot reaches the primary axis of the ellipse, its speed will reach the 

maximum . When the dot reaches the two boundaries, its speed will reduce to 0. 

Let’s call it the cosine speed profile. 

 

 

Figure 4: An ellipsoid rotating about its primary axis with angular speed , and its 

orthographic projection. R: the radius of an arbitrary cross-section. r: distant to the 

primary axis. So the dot’s speed is determined by its location in the projection plane (R 

and r). 

r

C(r) = 2⇡!R⇥ cos(0.5⇡
r

R
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In order to explore the importance of projective consistency, we manipulated the 

proportion of the cosine speed profile and the motion direction quantitatively. 

Corresponding to the above two features, we manipulate: 

1) Cosine weight α: the actual speed profile of dots S(r), is a linear mixture of the 

cosine speed profile C(r), and constant speed component L. α is the proportion of C(r). 

As a result, the actual speed S of the dot at location (x,y) is:  

      (2) 

r is the distance from the dot to the ellipse’s primary axis. α can vary from 0 to 1. 

When α is 1, the speed is consistent with the rotating ellipsoid; when α is 0, the speed is 

constant (See Figure 5).  

2) Motion direction θ: We also manipulated the motion direction relative to 

horizontal. θ can vary from 0 to 60°. When θ is 0°, it’s consistent with the rotating 

ellipsoid. 

Therefore, when α=1 and θ =0°, the speed profile is consistent with a rotating 

ellipsoid; when α=0, the speed profile is consistent with 2D translation. If α and θ is 

between the two extremes, there is no simple physical rotation that is consistent with the 

speed profile.  Those are the conditions where we want to see how people's 3D percepts 

change.  

In the two experiments, there were 6 levels of α equally spaced from 0 to 1, and 

there were 5 levels of θ equally spaced from 0 ° to 60 °.  

S(r) = ↵C(r) + (1� ↵)L
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In the first experiment, we also had a third independent variable determining 

constant speed L in equation (2), which we called ‘constant speed component’. We used 

two values: in one condition, L was set to the peak speed of the cosine speed profile (in 

the condition of α =1 and θ=0°, and the peak speed was 0.84°/s); in the other condition, L 

was set to the average speed of the cosine speed profile (0.56°/s). Figure 5 shows the two 

conditions. When we combined two speeds L and C together, the actual speed S was 

faster in the first condition. 

Therefore, based on α, θ and L, we had 60 (6×5×2) different conditions. For each 

condition, we had 4 repetitions including 2(up/down) × 2(right/left) motion directions for 

counterbalancing. There were 240 trials in total. 

 

Figure 5: Actual speed of dots as a function of r with different α values and constant 

speed component (L). The left panel shows when L was set to the peak speed of the 

cosine speed profile; the right panel shows when L was set to the average speed of the 

cosine speed profile. 
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Procedure 

The experiment was run in a quiet dark room. Subjects sat at distant of 105 cm 

from a HP monitor (refresh rate: 100Hz, with resolution 1280 × 1024 pixels) connected 

to a power Mac. The experiment was presented using Psychtoolbox on a mac version 

MATLAB (R2007b) (Brainard, 1997; Kleiner et al., 2007). 

Before the experimental trial, instructions were shown on the screen. Then to get 

familiar with the rating scale, subjects were shown two examples that might be rated as 1 

and 7. For ‘7’, we used a classical structure-from-motion dynamic dots display in a 

cylinder, and for ‘1’, we used the same display but the dots’ speed inside the cylinder was 

constant. After watching the two examples, subjects pressed any key to enter the practice 

trials to get acquaint with the procedure and the scale. There were 18 practice trials with 

different α and θ values. After the practice trials, subjects were shown the two examples 

again, and then pressed any key to enter the actual experiment. 

At the beginning of each trial, there was a fixation at the center of the screen for 

500ms. Then the dynamic display described above was shown for 3s, followed by a 

flickering mask for 750ms (250ms for fixation and 500ms for the backward mask). A 7-

point scale was shown after the mask, with the question ‘To what extent do you perceive 

the shape as a rotating volumetric object’ on the top, and a slider at the bottom 

representing the scale. The slider is a bar with a continuous change of luminance. Dark 

color means low ratings, and bright color means high ratings. Numbers from 1 to 7 were 

also shown under the slider. 1 means ‘definitely flat’, 7 means ‘definitely a rotating 

volumetric object’. Selecting a response somewhere between these two extremes would 
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mean that you get some sense of a volumetric object in the display, but it is somewhat 

weak. Subjects used the mouse to move the curser along the slider, and could choose any 

continuous number between 1-7 (e.g. 2.75, 3.4) by mouse click. There was no time limit. 

It went into the next trial automatically after a click was made. The 240 trials were 

divided into three 10-minute sessions, with 80 trials in each. Subjects could take a short 

break between sessions. The order of 240 trials was randomized for each subject. It took 

approximately 40 minutes for subjects to complete the whole experiment. 

2.1.2 Results and Discussion 

The graph in Figure 6 left plots the volumetric ratings as a function of α and θ. 

The x-axis represented different α values. Different lines represented different θ values.  

A 3-way repeated measurement ANOVA was applied to the ratings, with 

independent variables α, θ and L. The main effects of the three independent variables 

were significant, with Fα(5,35)=66.464, p<.0005, Fθ(4,28)=54.698, p<.0005, 

FL(1,7)=7.411, p=0.029<.05. The volumetric ratings increased significantly with α, and 

decreased significantly as θ became larger. The volumetric ratings were significantly 

higher when L was set to the average speed. However there’s no interaction between the 

independent variables. Furthermore, we ran pairwise comparisons with Bonferroni 

correction for different levels of α and θ, respectively. For α, the ratings increased 

significantly when α increased from 0 to 0.6, but the effect was not significant beyond 0.6.  

The effect of θ was relatively small. The ratings decreased significantly when θ changed 

from 0° to 45°, and there was no significant difference between 45° and 60°. 
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The analysis showed that as α increased and θ decreased, volumetric ratings 

increased. However, by the time that α was 0.6, the ratings had already been asymptotic. 

Note that α=0.6 corresponds to a large deviation from projective consistency. And even 

when θ was as large as 45°, which was highly inconsistent with 3D rotation, the 

volumetric ratings were still high. The results suggest that projective consistency is not as 

important as previously thought for the visual system. 

In addition, we suspected that different observers might use the same rating scale 

differently. Therefore we normalized each subject’s data with respect to their own 

average ratings across all the conditions. The normalized volumetric ratings are shown in 

Figure 6 right panel. Then we also applied the same tests to the normalized rating. The 

results were the same as for the raw data. 

 

Figure 6: Results for the rating task as a function of α and θ. Left panel: raw ratings; 

Right panel: normalized ratings (Normalized by each subject’s average rating across all 

the conditions.) 
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2.2 Experiment 2: Adjustment Task 

In the above rating experiment, we examined the subjects' 3D volumetric percepts 

by using a 7-point scale. The simple task gives us an idea about how people’s 3D 

percepts change as a function of α and θ. However, there are two possible problems with 

the rating task. First, subjects might have different understandings about 'volumetric 

percepts'. Second, they might use the same rating scale differently. So the same number 

on the scale might mean different 3D percepts for different subjects. This would 

introduce inter-subject differences that are not due to perceptual differences per se. To 

address the above concerns, we used another psychophysical task–method of adjustment. 

We asked the subjects to adjust the perceived depth of the 3D objects to match the given 

SFM displays. This makes the task more perceptually. 

2.2.1 Method 

Subjects 

Eight Rutgers University graduate students with normal vision participated in the 

study. They were naive to the purpose of the experiment. All of them were paid for their 

participation. 

Stimuli and Design 

Figure 7 shows the snapshot of the adjustment task. We used the same SFM 

displays with the same α and θ values as Experiment 1. The parameters (such as the 

dimension and luminance) of the displays were also the same. There were only two 

differences: 1) experiment 1's results showed that constant speed component L did not 

interact with α and θ, therefore we only used one level of the L which corresponds to the 
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average speed of the cosine speed profile (0.56°/s) 2) there were no darker dots outside of 

the ellipse area and the background was black. As shown in Figure 7, the SFM display 

was shown on the left of the screen. At the same time, on the right of the screen, there 

were three different views of a same adjustable half ellipsoid: top-down view, side view, 

and mesh views. The height of the top-down view and the width of the side view 

corresponded to the depth of the mesh surface. The three views changed synchronically 

with the subjects’ depth adjustment. The dimensions of the three views were scaled by a 

factor of 2/3 of the SFM displays. The depth of the mesh surface was adjustable by the 

subjects. Blue lines indicated the 0 longitude and 0 latitude. The view angle of the mesh 

surface is [1,4,0.5]. The initial depth of the mesh view was randomly picked. It could be 

adjusted from 0 to as much as 3 times of the mesh surface’s width. 

 

Figure 7: A snapshot from the adjustment task 
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Before the actual experiment, subjects had 9 practice trials to become familiar 

with the adjustment procedure. The stimuli for practice trials were similar to the actual 

experiment. The only difference was that the practice displays used a circular region 

rather than an ellipse (Thus when α =1, θ =0, the display would be consistent with a 

rotating sphere; See Figure 8). The radius of the circle in the image was the same as the 

width of the ellipse, which was 2.13°. The sizes of three views on the right were still 2/3 

of the display on the left. There were 9 practice trials with 3 α values (0, 0.6 and 1) × 3 θ 

values (0°, 30° and 60°).  

 

Figure 8: Stimuli for the practice trials 

In summary, in the second experiment, there were 6 levels of α: 0, 0.2, 0.4, 0.6, 

0.8, 1, and 5 levels of θ: 0°, 15°, 30°, 45° and 60°. The average speed was 0.56°/s. In total, 

we had 30 (6×5) different conditions. And for each condition, we had 8 repetitions 

including 2(up/down) × 2(right/left) motion directions for counterbalancing. There were 
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2 exact repetitions for each motion direction. Thus there were 240 trials for one 

participant.  

Procedure 

The experiment was run in a dark room. Subjects sat at 105 cm from an iMac 

monitor (85 Hz, 1280pxl × 1024 pxl) connected to an iMac. The experiment was 

presented using Psychtoolbox on mac version of MATLAB_R2014b (Brainard, 1997; 

Kleiner et al., 2007). 

Before the experimental trial, instructions were shown on the screen. The task of 

the subjects was to adjust the depth of the ellipsoid (how deep & narrow, or how flat, it is) 

in order to match as closely as possible the 3D shape they perceived when looking at the 

SFM display. Subjects ran the practice trials first, and then pressed any key to enter the 

actual experiment. 

At the beginning of each trial, there was a fixation at the center of the screen for 

500ms. Then the dynamic display and the three views described above were shown, 

subjects adjusted the depth of the three views simultaneously by mouse, and press 'space' 

key when they finish adjusting. The ratio of the adjusted depth over the horizontal width 

of the ellipse was recorded. The display lasted until subjects finished adjusting and 

pressed the 'space'. There was no time limit for each trial. It went into next trial 

automatically after subject pressed the ‘space’ key. The order of 240 trials was 

randomized for each subject, and they were divided into three 10-minute sessions, with 

80 trials in each. Subjects took a short break between different sessions. It took 

approximately 45 minutes to finish the whole experiment. 
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2.2.2 Results and Discussion 

Figure 9 plots the volumetric ratings as a function of α and θ. The x-axis 

represents different α values. Different lines represent different θ values. The normalized 

depth is the ratio of the adjusted depth over the width of the ellipse. So when normalized 

depth is 1, the mesh ellipsoid has a circular cross-section. When normalized depth is 

smaller than 1, the ellipsoid will be flatter, and when it is larger than 1, the ellipsoid will 

be deeper. 

A 2-way repeated measurement ANOVA was applied to the normalized depth 

settings, with independent variables α and θ. The main effects of α was significant, with 

Fα (5,35)=9.99, p<.0001. In general, the volumetric percept increased significantly as α 

got larger. The trend of θ is similar to experiment 1 but the effect is not significant, with 

Fθ(4,28)=1.65, p=.195. There was no interaction with α and θ, with F(α, θ)(20,140)=0.7317, 

p=.787. Furthermore, we ran pairwise comparisons with Bonferroni correction for 

different levels of α. The adjusted depth increased significantly when α changed from 0 

to 0.6, but plateaued beyond 0.6.  
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Figure 9: The mean (standard error) of the normalized depth with different α and θ 

The results show that the effect of α is consistent with the first experiment. 

Subjects’ volumetric percept increased as α increased from 0 to 0.6, but plateaued beyond 

0.6, which suggests that people has high tolerance with projective consistency in terms of 

α. Moreover, when we used a more perceptual task in experiment 2, there was no effect 

of motion direction θ. Note that when θ is high, the image motion is highly inconsistent 

with 3D rotation. It suggests that the 3D percept relies more on α. The angle between the 

motion direction and the axis seems less important. 

Combining the results from the two experiments, we can conclude that the visual 

system has high tolerance for deviations from projective consistency, and that projective 

consistency plays a less prominent role in SFM than previously thought 
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3. COMPARISON AGAINST THE RIGIDITY-BASED MODEL 

In the above two experiments, we showed that projective consistency was not a 

strict constraint in SFM. One possible argument is that when α is not 1, the visual system 

will just treat the constant speed component (the deviation from projective consistency) 

as noise. It’s hard to simply attribute the high tolerance to α and θ to noise, since when α 

was far away from 1 and θ is relatively large, the 3D percept was still strong. But to test 

for this possibility, we applied a classic rigidity based SFM model from computer vision 

that used factorization techniques to our displays (Tomasi & Kanade, 1992). The model 

is based on SVD factorization, and therefore it can deal with certain degrees of noise by 

only considering the three greatest singular values from SVD factorization. 

The model takes the sequence of frames with 2d locations of dots as input. Based 

on SVD factorization, the model predicts the underlying 3D shape matrix and also the 

rotation matrix from frame to frame. Because the model assumes rigidity, the predicted 

3D shape remains the same from frame to frame, and the 3D rotation matrix can vary.  

Here, we compared the model predictions about the SFM displays used in the 

experiment with the human data in the following two ways: 

3.1 Discrepancy between the model and the rating data 

The model outputs a 3D shape matrix, and we calculated the orthogonal 

projection matrix from the matrix. Then we compared the discrepancy of the 2D matrix 

with the original 2D display (input) by calculating the Error Sum of Squares (SSE). If the 

model can predict the display well, the SSE should be very low. Therefore, higher SSE 

means larger discrepancy, and larger discrepancy means worse prediction. Given the 2D 
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display, if we have an observer that follows the rigidity assumption just like the model 

does, they should have the best volumetric rating for α=1 and θ=0°. And if α gets smaller 

and θ becomes larger, the discrepancy from rigidity of the display becomes larger, and 

the observer should have worse (or lower) volumetric ratings. In other words, the higher 

discrepancy (SSE) will imply lower ratings for the rigidity-based observer. However, 

Figure 10 shows that there is no systematic pattern for α and θ. This is inconsistent with 

human data from experiment 1, where the ratings showed a systematic dependence on α 

and θ (Recall Figure 4). The comparison suggests that rigidity assumption may not be the 

constraint or the only constraint that human observer used when rating our displays. 

 

Figure 10: Discrepancy (SSE) between the model and the display. x-axis indicates 

different α values, and different color bars indicate different θ values. 
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human perceived depth from the adjustment task. Figure 11 shows the predicted depth 

and the perceived depth from the adjustment task over different α and θ values.  

Comparing the two panels in Figure 11, There are mainly three differences 

between model prediction and human data: 1) subjects overestimated the depth than the 

model when α is 0. In this condition, the speed of dots is constant, which is consistent 

with 2D translation, and the model predicts zero depth. However, subjects still perceived 

some depth for constant speed. Moreover, the perceived depth was almost half the depth 

of the ellipsoid with circular cross-section. 2) When θ increases from 0° to large degrees 

(such as 45° and 60 °), the predicted depth increases dramatically, and when α is above 

0.4, θ is 60°, the predicted depth exceeds the circular cross-section. This means that when 

the motion direction deviates highly from horizontal, the model overestimates the depth 

compared to human observers. However, results from experiment 2 showed that θ had no 

effect on the perceived depth, which means that human observers didn’t care about the 

motion direction when performing the task. 3) The maximum perceived depth in the 

human data is around the circular cross-section, which suggests that human observers 

didn’t overestimate the depth compared to the model. 

In summary, the comparison of depth shows that 1) the rigid SFM model can't 

explain why human observers had some volumetric percepts when the speed was constant; 

2) The predicted depth from the model increases as θ increases, while the perceived depth 

doesn’t rely on θ; 3) The model overestimates the depth with large θ, which is 

inconsistent with the perceived depth from human data. 
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Figure 11: The predicted depth from the model (left) versus the perceived depth from the 

adjustment task (right). X-axis indicates different α values, and different color bars 

indicate different θ values. The dash line showed the circular cross-section. 

3.3 Predicted direction of rotation axis from the model 

Why does the model predict differently from human perception? One possible 

explanation is that when θ is large or α is small, i.e., the display's discrepancy from a 

physical possible rigid rotating object gets larger, the model needs to do something to 

maintain the rigidity assumption. We suspected that the model achieved this by 

continually changing the predicted axis of rotation from frame to frame—which would be 

very different from a human observer’s percepts. To test for this, we did a more detailed 

analysis from the recovered 3D shape: we recovered the rotation axis from each frame. 

The results were shown in Figure 12. The left panel shows the orientation vectors of the 

rotation axis over each frame. Each intersection point on the mesh grid represents one 

combination of α and θ. The x-axis indicates different θ values; y-axis indicates different 
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α values. At the same time, the mesh grid is parallel to the 2D projection plane, so the z-

axis corresponds to the line of sight that is orthogonal to the projection plane. For 

example, if we have a rotating ellipsoid as Figure 4 shows, the direction of rotation axis 

should be parallel to y-axis. 

 

Figure 12: The predicted orientation of rotating axis (left) and change of the axis (right) 

over different conditions. 

The figure shows that when θ=0°, the directions of rotation axis are generally 

consistent with a rotating ellipsoid. However, as θ gets larger, the rotation axis becomes 

less stable over different frames. There is no obvious pattern for α.  

To see the patterns of change more clearly, we calculated the circular standard 

deviation of rotation axis over different frames, which were shown in the right panel of 

Figure 12. Now the trend is clearer: for a fixed α, as θ increases, the variance of the 

rotation axis becomes larger; for a fixed θ, the variance of the rotation axis also increases 

as α increases.  
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The change of rotation axis corroborates the above guess. Of the 30 displays with 

different α and θ combinations, only six have physical possible motion: when α=1, θ=0°, 

the moving pattern of the display is consistent with a rigid rotating ellipsoid; when α=0, 

regardless of θ, the display is consistent with 2D translation. The other 24 conditions 

have different degrees of discrepancy from rigidity– as θ and α increases, the discrepancy 

from rigidity also increases. For the rigid SFM model, to keep the shape constant over 

frames, it has to counteract the effect of the discrepancy by means of a rotation axis 

change over frames. Therefore, as α and θ increases together, the discrepancy increases, 

and the rotating axis change also increases. The result was corroborated by the circular 

STD change in the right panel of Figure 12. Consider again in Figure 11, as θ increases, 

the predicted depth also increases. From the rotation axis analysis here, we can see that 

even the predicted depth is not meaningful given that the predicted rotating axis keeps 

changing. 
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4. GENERAL DISCUSSION 

In human structure-from-motion literature, a vital and interesting question is what 

assumption the visual system uses to recover the underlying 3D structure. There are many 

models such as Ullman (1979)’s rigidity assumption and the incremental rigidity 

assumption (Ullman, 1985), Braunstein’s (1984) constant velocity assumption and others. 

One assumption in common underlying these models is that they regard projective 

consistency as the necessary and sufficient assumption for human to recover the 

underlying 3D structure. In another word, to perceive the correct 3D structure, the 2D 

image motion should be consistent with 3D rotation. However, our results show that it 

plays a less dominate role than expected in SFM.  

With our two manipulations, α and θ, we quantitatively manipulated the degree of 

discrepancy between image motion and projection that are consistent with physical 

rotation: as α gets away from 1 and as θ gets larger, the discrepancy increases. If 

projective consistency is the only and vital assumption visual system uses, as the 

discrepancy increases, their performance should get worse. However, our results from the 

two tasks show that this is not simply the case. In one aspect, when the motion direction 

is correct (θ =0°), as α increases from 0 to 1, the proportion of cosine speed increases, 

which means that the image motion becomes more consistent with the physical rotation. 

And as α reaches 1, it should be completely consistent with physical rotation. However, 

the volumetric percepts and the depth adjustment plateaued beyond α was 0.6, which 

suggests that for human observers, the volumetric percepts when α=0.6 was as strong as 

α=1. Therefore, it suggests that in our case, the volumetric perception doesn’t require 

strict cosine motion profile. There might be some other constraints for the visual system. 
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In another aspect, the two experiments showed small effect of the motion direction θ. The 

3D percepts were strong in spite of the fact that as θ got larger, the image motion 

becomes less physically possible. This suggests that the 3D perception is not influenced 

by motion direction as much as α. From the above two aspects, we can conclude that 

subjects’ 3D percepts are more sensitive to cosine speed profile and less sensitive to the 

direction of motion; and overall, α and θ shows that projective consistency plays a less 

prominent role in SFM than previously thought.  

Even when the deviations of α and θ are so huge, the 3D percepts are still strong 

compared to the percepts of projectively consistent display, so it’s hard to attribute the 

effects to random noise. We further tested this assumption by the rigidity-based SFM 

model from computer vision.  The model is based on rigidity assumption and it is able to 

deal with certain degrees of noise from strict rigidity. If the effects of α and θ are due to 

noise, the rigidity-based SFM model should be able to simulate human observers percepts 

well. However, our comparisons showed that the model behaved differently from human 

observers. This suggests that projective consistency alone is not a necessary and 

sufficient assumption for human SFM.  

In summary, the two experiments show that subjects’ volumetric percepts plateau 

beyond α of 0.6, and are still strong when θ is as large as 45°. This suggests that human 

3D percepts are surprisingly resilient to deviations from projective consistency, with 

speed profiles that are substantially constant-velocity (up to about 40%) still perceived as 

3D. The model comparisons also convinced that the effects of α and θ are not simply due 

to noise, and that projective consistency is not necessary for human SFM.  
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There have been lots of studies that tried to explore what constraints human use in 

SFM, and researchers assume that projective consistency is a necessary constraint for the 

visual system. However, our results showed that people had vivid 3D percepts when 

projective consistency was violated (most of our displays were not consistent with 3D 

rotating objects). And their judgments of the volumetric shapes had systematic patterns 

with the degree of deviation from projective consistency. These results suggested that the 

visual system has large tolerance on the discrepancy of projective consistency, and 

therefore projective consistency may not be as vital as previously thought in SFM.  

Moreover, our studies have a few advantages over previous studies. Firstly, 

compared with figure/ground studies mentioned in the introduction (Froyen et al., 2013), 

our studies used standard SFM displays where the ellipse region is always perceived as 

figure, so that it eliminated the possibility that the 3D perception was due to the 

figure/ground cues. Secondly, compared to Ramachandran et al. (1988)’s rotating cone 

study, our study manipulated the projective consistency in a more systematic way. 

In addition, our studies also proposed a new way to generating SFM displays and 

explore the constraints used in SFM. The traditional method usually generates the 

displays from the projections of simulated or real 3D objects, while our method generated 

the SFM displays directly from 2D velocity field that defined the image motion of the 

dots. Although there are studies that also use velocity information in their computational 

models (Koenderink & Van Doorn, 1986; Jain & Zaidi, 2011, et al.), they normally 

follow the traditional way of stimuli generation and therefore presume projective 

consistency. But here, we used 2D velocity field directly, so it doesn’t require an 

underlying 3D object. The advantage of our method is that it has more freedom to 
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systematically manipulate projective consistency. One may argue that the traditional way 

can also manipulate projective consistency by adding noise after generating the 

projections. However, our results suggest that the effects can’t be simply explained by 

random noise, because in the display, the velocity field had large and systematic 

deviation from projective consistency, but human observers had the plateau effect when 

the proportion of cosine speed is beyond 0.6. If it’s due to random noise, the 3D percepts 

should decrease gradually as the noise increases. Moreover, the prediction from the 

rigidity-based SFM model (which can deal with certain levels of noise) is different from 

human data.  

The role of projective consistency is challenged by our results, as well as some 

previous studies in terms of motion and shape (Ramachandran, Cobb & Rogers, 1988). 

The current studies manipulated the degree of projective consistency by manipulating the 

velocity field. In particular, we used the same ellipse-like contour, and manipulated the 

2D speed profile by the proportion of cosine speed profile (α) and motion direction (θ).  

But with the speed profile method, we can also manipulate the degree of projective 

consistency in a different way—by manipulating the shape of contour. The manipulation 

of shape might be a better and stronger way to explore the role of projective consistency. 

Here are three main reasons: firstly, the shape manipulation will break projective 

consistency more dramatically. When a rotationally symmetric object is rotating about its 

symmetric axis, the occluding contour remains constant; but if it is not rotationally 

symmetric, the contour will vary in time as it rotates. If we keep the shape of contour 

fixed over rotation, some shapes will have higher degree of projective inconsistency than 

others. For example, asymmetric shapes will have more inconsistency than symmetric 
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shapes. Secondly, our current studies, as well as previous related studies, suggest that 

there might be some interactions between the contour shape and velocity information. For 

example, in Ramachandran (1988)’s displays, subjects reported perceiving a rotating 

cone when a triangular aperture was added, despite the constant speed of the texture. In 

the figure/ground study (Froyen et al. in 2013), compared with asymmetric/concave areas, 

the symmetric/convex areas are more likely to be perceived as rotating columns despite 

the constant texture speed. Thirdly, traditional SFM computational models often ignore 

the shape information, which leaves a rich area for us to explore. Therefore it would be 

interesting to explore how the change of contour shape influences the 3D percepts. 

Convexity and symmetry are two important properties of shape. The 

figure/ground study showed that convex and symmetric areas were more likely to be 

perceived as rotating objects (Froyen et al., 2013). This raised the question of whether it 

would be true of SFM displays where the moving region is always interpreted as figure, 

and the figure/ground cue cannot help to promote the 3D percept. Therefore, it’s 

worthwhile to explore the influence of convexity and symmetry on SFM. In particular, 

whether the change of contours’ degree of symmetry and convexity will change the 

strength of SFM percepts, and if so, will it change in a systematic way and why? We can 

apply the speed profile method to contours with different degrees of symmetry or 

convexity, and generate a series of SFM displays with different values of proportion of 

cosine motion—α (α can be from 0 to 1). Then, we can explore the minimum values of α 

required for people to perceive the displays as rotating 3D objects. The minimum values 

of α is as an index of deviation of projective consistency. If symmetric/convex shapes 

have lower α than asymmetric/concave shapes, it will demonstrate that the two properties 
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of shape indeed influence the interpretation of motion information, and it again implies 

that projective consistency is not necessary for SFM. 
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