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ABSTRACT OF THE DISSERTATION

Cantor minimal systems from a descriptive perspective

by Burak Kaya

Dissertation Director: Simon Thomas

In recent years, the study of the Borel complexity of naturally occurring classification

problems has been a major focus in descriptive set theory. This thesis is a contribution

to the project of analyzing the Borel complexity of the topological conjugacy relation

on various Cantor minimal systems.

We prove that the topological conjugacy relation on pointed Cantor minimal sys-

tems is Borel bireducible with the Borel equivalence relation ∆+
R . As a byproduct of

our analysis, we also show that ∆+
R is a lower bound for the Borel complexity of the

topological conjugacy relation on Cantor minimal systems.

The other main result of this thesis concerns the topological conjugacy relation

on Toeplitz subshifts. We prove that the topological conjugacy relation on Toeplitz

subshifts with separated holes is a hyperfinite Borel equivalence relation. This result

provides a partial affirmative answer to a question asked by Sabok and Tsankov.

As pointed Cantor minimal systems are represented by properly ordered Bratteli

diagrams, we also establish that the Borel complexity of equivalence of properly ordered

Bratteli diagrams is ∆+
R .
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Chapter 1

Introduction

Classification problems have undoubtedly been a central theme in mathematics through-

out history. However, not all classification problems have satisfactory solutions. Conse-

quently, it is natural to ask whether or not one can measure how difficult a classification

problem is. In other words, is it possible to rigorously compare the relative complexity

of the complete invariants of classification problems?

Over the last couple of decades, this question has been successfully and affirmatively

answered by descriptive set theory. This thesis is a contribution to the analysis of some

classification problems in topological dynamics from the point of view of descriptive set

theory.

1.1 Background from descriptive set theory

Descriptive set theory classically studies the behavior of the “definable” subsets of

Polish spaces, i.e. completely metrizable separable topological spaces. By the definable

subsets of Polish spaces, one usually means the projective sets, i.e. those sets that can

be obtained from the Borel subsets of Polish spaces by finitely many applications of

projection and complementation.

In this thesis, we shall only be concerned with Borel sets and analytic sets. Recall

that a subset of a Polish space X is said to be analytic if it is the projection of a Borel

set B ⊆ X × Y for some Polish space Y .

For the framework which we will introduce, we wish to consider Polish spaces not

with their topologies but rather with their Borel σ-algebra structures. A measurable

space (X,B) is called a standard Borel space if B is the Borel σ-algebra of some Polish

topology on X. Examples of standard Borel spaces include finite sets, N, Rn, the Baire
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space NN, and the Cantor space 2N together with the Borel σ-algebras arising from

their usual topologies.

Let (X,B) and (Y,B′) be standard Borel spaces. A map f : X → Y is called Borel

if f−1[B] ∈ B for all B ∈ B′. Equivalently, f is Borel if and only if its graph is a Borel

subset of X ×Y , where the product X ×Y is endowed with the product σ-algebra. We

note that endowing X×Y with the product σ-algebra is equivalent to endowing it with

the Borel σ-algebra of the product topology τ × τ ′ for some Polish topologies τ and τ ′

generating B and B′ respectively.

Two standard Borel spaces (X,B) and (Y,B′) are said to be (Borel) isomorphic if

there exists a bijection f : X → Y such that both f and f−1 are Borel. The following

is a classical result of Kuratowski [Kec95, Theorem 15.6].

Theorem 1.1.1 (The Borel Isomorphism Theorem). Any two uncountable standard

Borel spaces are isomorphic.

A subset of a Polish space with the subspace topology is usually not Polish. In fact,

it is well-known that those subsets that form Polish spaces with the subspace topology

are exactly the Gδ subsets. In contrast to this, every Borel subset of a standard Borel

space can be regarded as a standard Borel space in its own right. More precisely, if

A ⊆ X is a Borel subset of a standard Borel space (X,B), then (A,B � A) is also a

standard Borel space where

B � A = {A ∩B : B ∈ B}

For general background in descriptive set theory, we refer the reader to [Kec95]. From

now on, while denoting a standard Borel space by (X,B), we shall usually drop the

collection of measurable sets B and refer to X as a standard Borel space if the standard

Borel structure is understood from the context.

1.2 Classification problems and definable equivalence relations

Under appropriate coding and identification, various collections of mathematical struc-

tures can be naturally regarded as standard Borel spaces; and it turns out that many



3

classification problems on these structures can be regarded as definable equivalence

relations on the corresponding standard Borel spaces.

For instance, consider the problem of classifying countable graphs up to graph iso-

morphism. Since we only wish to consider countable graphs up to isomorphism, we

may assume without loss of generality that the underlying vertex sets of the graphs we

will classify are N. Identifying each graph (N, E) with the characteristic function of its

symmetric irreflexive edge relation E ⊆ N× N, we can regard each countable graph as

an element of the Polish space 2N×N. Conversely, each element of 2N×N which is the

characteristic function of a symmetric irreflexive binary relation on N can be regarded

as the edge relation of some countable graph. It is easily checked that the subset

{χE ∈ 2N×N : E is symmetric and irreflexive}

is a Borel subset of 2N×N and hence is a standard Borel space. This example is a special

case of a more general construction.

Let L be a countable language. Since constants and functions may be interpreted

as relations, we may suppose without loss of generality that L = {Ri}i∈I where each

Ri is an ni-ary relation symbol. Then the Polish space

ModL :=
∏
i∈I

2N
ni

may be viewed as the space of L-structures with underlying universe N. More specifi-

cally, each element x ∈
∏
i∈I 2N

ni codes the L-structure Mx = (N, {RMx
i }i∈I) where

RMx
i (k1, . . . , kni)⇔ xi(k1, . . . , kni) = 1

for every i ∈ I and (k1, . . . , kni) ∈ Nni . It is routine to check that for any sentence ϕ in

the infinitary logic Lω1,ω, the set

ModL(ϕ) = {x ∈ ModL :Mx |= ϕ}

is an isomorphism-invariant Borel subset of ModL and thus is a standard Borel space.

Moreover, the isomorphism relation ∼=ϕ on ModL(ϕ) is the orbit equivalence relation of

the logic action of the infinite symmetric group S∞ defined by

π · x = y ⇔ R
My

i (k1, . . . , kni) = RMx
i (π−1(k1), . . . , π−1(kni))
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for any π ∈ S∞, i ∈ I and (k1, . . . , kni) ∈ Nni . It is easily checked that this action is

continuous with respect to the Polish topology on S∞ induced from the topology of the

Baire space NN, which turns S∞ into a Polish group. It follows that ∼=ϕ is an analytic

subset of the product space ModL(ϕ)×ModL(ϕ).

Although this construction provides a plethora of examples, it is not the only way to

regard naturally occurring classification problems as definable equivalence relations on

Polish spaces. It turns out that one can perform similar constructions for many other

classification problems as long as the objects we wish to classify are determined by a

countable amount of data.

1.3 Borel reducibility

In our investigation of the relative complexity of classification problems, we shall use

the notion of Borel reducibility, introduced by Friedman and Stanley [FS89] to measure

the relative complexity of the corresponding definable equivalence relations.

An equivalence relation E ⊆ X ×X on a standard Borel space X is called a Borel

equivalence relation (respectively, an analytic equivalence relation) if it is a Borel subset

(respectively, an analytic subset) of X × X. Given two analytic equivalence relations

E and F on standard Borel spaces X and Y respectively, a Borel map f : X → Y is

called a Borel reduction from E to F if for all x, y ∈ X,

x E y ⇐⇒ f(x) F f(y)

We say that E is Borel reducible to F , written E ≤B F , if there exists a Borel reduc-

tion from E to F . Two analytic equivalence relations E and F are said to be Borel

bireducible, written E ∼B F , if both E ≤B F and F ≤B E. Clearly ∼B defines an

equivalence relation on the class of analytic equivalence relations. The equivalence class

[E]∼B will be referred to as the Borel complexity of E. Finally, we will write E <B F

if both E ≤B F and F �B E.

The intuition behind the requirement that reductions be Borel is the following.

Assume for the moment that we allow reductions to be arbitrary maps. Then for any

equivalence relation E on a standard Borel space X we can construct a reduction from
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E to the identity relation ∆R using well-orderings of X/E and R. However, having been

constructed by the axiom of choice, these reductions would most likely be pathological

sets and cannot be described in a reasonable manner.1 We wish to exclude such maps

and thus require that our reductions be Borel.

Intuitively speaking, a Borel reduction from E to F may be regarded as an “explicit”

computation which allows us to obtain a set of complete invariants for the classification

problem associated with E using a set of complete invariants for the classification

problem associated with F . Thus, if E is Borel reducible to F , then the classification

problem associated with E is at most as complex as the classification problem associated

with F .

Notice that the notion of Borel reducibility can be defined for arbitrary classes of

equivalence relations. Nevertheless, the equivalence relations that are relevant to the

analysis of most classification problems turn out to be the analytic equivalence relations.

The relation ≤B defines a quasi-order on the collection of equivalence relations on

standard Borel spaces. The quasi-order structures of the analytic and Borel equivalence

relations under ≤B have been well-studied and are interesting in their own right, regard-

less of their connections with classification problems. In the following sections, we will

recall some basic results that are used throughout this thesis. For general background,

we refer the reader to [Kan08, Gao09].

1.4 Universal relations

Let H be a class of equivalence relations. Then an equivalence relation E is said to be

universal for the class H if E ∈ H and F ≤B E for every F ∈ H. Using universal ana-

lytic sets, Becker and Kechris [BK96] showed that the class of analytic equivalence re-

lations admits universal elements. Examples of universal analytic equivalence relations

include isomorphism of separable Banach spaces [FLR09], isometric bi-embeddability

of Polish metric spaces [LR05], and bi-embeddability of countable graphs [LR05].

1It is well-known that no well-ordering of R can be analytic or co-analytic. However, it is consistent
with ZFC that there exists a ∆1

2 well-ordering of R. On the other hand, if sufficiently large cardinals
exist, then there does not exist a projective well-ordering of R.
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In contrast to analytic equivalence relations, the class of Borel equivalence relations

does not admit a universal element. Let E be a Borel equivalence relation on a standard

Borel space X. Consider the Borel equivalence relation E+ on the space XN defined by

xE+y ⇔ {[xn]E : n ∈ N} = {[yn]E : n ∈ N}

The operation E 7→ E+ is called the Friedman-Stanley jump. That E 7→ E+ is indeed

a jump operation for non-trivial Borel equivalence relations is a result of Friedman and

Stanley [FS89].

Theorem 1.4.1 (Friedman-Stanley). If E is a Borel equivalence relation on a standard

Borel space X with more than one equivalence class, then E <B E+.

Another class of analytic equivalence relations that admits universal elements is

the class of equivalence relations that are classifiable by countable structures. Here,

an equivalence relation E on a standard Borel space X is said to be classifiable by

countable structures if E ≤B ∼=ϕ for some sentence ϕ in the infinitary logic Lω1,ω

over a countable relational language L. Since they are Borel reducible to analytic

equivalence relations, equivalence relations that are classifiable by countable structures

are necessarily analytic. It is worth noting that up to Borel bireducibility, these are

exactly the orbit equivalence relations of Borel actions of closed subgroups of S∞ on

standard Borel spaces [BK96].

An equivalence relation E is said to be Borel complete if it is universal for the class

of equivalence relations that are classifiable by countable structures. Although the

existence of Borel complete relations does not immediately follow from the definition,

many natural classification problems have been proven to be Borel complete. Examples

of Borel complete relations include isometry of Polish ultrametric spaces [GK03], and

the isomorphism relations on countable groups [Mek81], countable linear orders [FS89],

and countable Boolean algebras [CG01].

1.5 The structure of Borel equivalence relations under ≤B at low levels

In this section, we will focus our attention on the low levels of the ≤B-hierarchy of

Borel equivalence relations. Let ∆X denote the identity relation on the standard Borel
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space X. Up to Borel bireducibility, the ≤B-hierarchy of the Borel equivalence relations

starts with the initial segment

∆1 <B ∆2 <B · · · <B ∆N

consisting of the Borel equivalence relations with at most countably many equivalence

classes. An example of a naturally occuring classification problem with Borel complexity

∆N is the isomorphism relation on finitely generated abelian groups.

The following remarkable theorem, which is a special case of a more general result

of Silver [Sil80] predating the subject, shows that every Borel equivalence relation with

uncountably many classes has perfectly many classes and that ∆R is the immediate

≤B-successor to ∆N.

Theorem 1.5.1 (Silver dichotomy). Let E be a Borel equivalence relation on a standard

Borel space X. Then either E ≤B ∆N or ∆R ≤B E.

A Borel equivalence relation E is said to be smooth (or concretely classifiable) if

E ≤B ∆X for some (equivalently, every) uncountable standard Borel space X. For

example, if a Borel equivalence relation E on a standard Borel space X admits a Borel

transversal, i.e. a Borel subset T ⊆ X which intersects every E-class exactly at a single

point, then E is smooth. (The converse does not hold for arbitrary Borel equivalence

relations. However, it holds for certain natural classes of Borel equivalence relations such

as the orbit equivalence relations of Borel actions of Polish groups [Gao09, Corollary

5.4.12].)

A Borel equivalence relation E is said to be finite if all E-classes are finite. It is not

difficult to check that finite Borel equivalence relations admit Borel transversals and

hence are smooth [Kan08, Proposition 7.2.1].

Examples of smooth Borel equivalence relations among classification problems in-

clude isomorphism of countable divisible abelian groups [TV99, Example 1], isomor-

phism of Bernoulli shifts [Orn70], isomorphism of finitely splitting rooted trees on N

[Gao09, Theorem 13.2.3], and isometric classification of compact metric spaces [Gao09,

Theorem 14.2.1].
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Not all Borel equivalence relations are smooth. For example, the Borel equivalence

relation E0 on 2N defined by

xE0y ⇔ ∃m∀n ≥ m xn = yn

is not smooth [Gao09, Proposition 6.1.7]. Examples of classification problems with

Borel complexity E0 include isomorphism of torsion-free abelian groups of rank 1 [TV99,

Example 2] and isometric classification of Heine-Borel ultrametric spaces [GK03].

Quite remarkably, E0 turns out to be the immediate ≤B-successor of ∆R. Harring-

ton, Kechris, and Louveau [HKL90] proved the following result, generalizing an earlier

result of Glimm and Effros.

Theorem 1.5.2 (Harrington-Kechris-Louveau dichotomy). Let E be a Borel equiva-

lence relation on a standard Borel space X. Then either E ≤B ∆R or E0 ≤B E.

Hence, up to Borel bireducibility, we have the following initial segment

∆1 <B ∆2 <B · · · <B ∆N <B ∆R <B E0

of the ≤B-hierarchy of Borel equivalence relations. Unfortunately, the linearity breaks

down at E0, as we shall see later.

1.5.1 Countable Borel equivalence relations

A Borel equivalence relation E is said to be countable if all E-classes are countable.

Among the Borel equivalence relations, the class of countable Borel equivalence relations

is of particular interest and is perhaps the most studied. In this section, we will recall

some basic results from the theory of countable Borel equivalence relations. For general

background, we refer the reader to [JKL02].

In practice, most countable Borel equivalence relations appear as the orbit equiva-

lence relations of Borel actions of countable groups. For example, E0 can be realized

as the orbit equivalence relation of the bit-wise addition action of the group
⊕

i∈N Z2

on 2N, where Z2 denotes the cyclic group of order 2. Let G be a countable discrete

group with a Borel action Γ : G×X → X on a standard Borel space X. Then the orbit
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equivalence relation EXG given by

x EXG y ⇔ ∃g ∈ G g · x = y

is a countable Borel equivalence relation. The following remarkable theorem of Feldman

and Moore [FM77] shows that every countable Borel equivalence relation arises in this

fashion.

Theorem 1.5.3 (Feldman-Moore). Let E be a countable Borel equivalence relation on

a standard Borel space X. Then there exist a countable discrete group G and a Borel

action Γ : G×X → X such that E = EXG .

As a corollary to the Feldman-Moore theorem, Dougherty, Jackson, and Kechris

[DJK94] proved that the class of countable Borel equivalence relations admits a univer-

sal element.

Theorem 1.5.4 (Dougherty-Jackson-Kechris). There exists a countable Borel equiva-

lence relation E such that F ≤B E for all countable Borel equivalence relations F .

More specifically, consider the orbit equivalence relation E∞ of the shift action of

the free group F2 on two generators on 2F2 given by

(γ · f)(α) = f(γ−1α)

for all γ, α ∈ F2 and f ∈ 2F2 . Then E∞ is a universal countable Borel equivalence rela-

tion. Examples of classification problems with Borel complexity E∞ include conformal

equivalence of Riemann surfaces [HK00], isomorphism of countable locally finite trees

[JKL02], isomorphism of finitely generated groups [TV99], and arithmetic equivalence

of subsets of natural numbers [MSS16].

It is well-known that E0 <B E∞ [Gao09, Theorem 7.4.10]. One may ask whether

or not there are intermediate countable Borel equivalence relations strictly between E0

and E∞. Adams and Kechris [AK00] proved the following theorem, which shows that

there are uncountably many ≤B-incomparable countable Borel equivalence relations

and that the quasi-order of countable Borel equivalence relations under ≤B is extremely

complicated.



10

Theorem 1.5.5 (Adams-Kechris). There exists a map A 7→ EA that assigns a countable

Borel equivalence relation EA to each Borel subset of 2N such that

EA ≤B EB ⇔ A ⊆ B

1.5.2 Hyperfinite and hypersmooth Borel equivalence relations

A Borel equivalence relation E on a standard Borel space X is said to be hyperfinite

(respectively, hypersmooth) if there exists an increasing sequence F0 ⊆ F1 ⊆ · · · of finite

(respectively, smooth) Borel equivalence relations such that E =
⋃
i∈N Fi. Clearly every

hyperfinite Borel equivalence relation is hypersmooth. We shall see in a moment that

the converse also holds for countable Borel equivalence relations.

It is easily seen that E0 is hyperfinite. Moreover, E0 is universal for the class

of hyperfinite Borel equivalence relations. Dougherty, Jackson, and Kechris [DJK94]

proved the following theorem based on earlier work by Weiss [Wei84] and Slaman-Steel

[SS88].

Theorem 1.5.6 (Dougherty-Jackson-Kechris). Let E be a countable Borel equivalence

relation on a standard Borel space X. Then the following are equivalent.

• E is hyperfinite.

• E is hypersmooth.

• E ≤B E0.

• There exists a Borel action of Z on X such that E = EXZ .

• There exists a Borel assignment C 7→<C giving for each equivalence class C a

linear order <C of C of order type finite or Z. (Here that C 7→<C is Borel means

that the relation R(x, y, z)⇔ x <[y]E z is Borel.)

For an example of a hypersmooth Borel equivalence relation which is not countable,

consider the Borel equivalence relation E1 on (2N)N defined by

x E1 y ⇔ ∃m∀n ≥ m xn = yn
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Then it is easily checked that E1 is hypersmooth. Moreover, E1 is universal for the

class of hypersmooth Borel equivalence relations [KL97, Proposition 1.3].

That a Borel equivalence relation is not countable does not exclude the possibility

that it may be essentially countable, i.e. Borel reducible to a countable Borel equivalence

relation. However, E1 is known to be not essentially countable. Indeed, we have the

stronger result that E1 is not Borel reducible to any orbit equivalence relation of a

Borel action of a Polish group [KL97]. Moreover, the following remarkable theorem of

Kechris and Louveau [KL97] shows that there are no ≤B-intermediate Borel equivalence

relations strictly between E0 and E1.

Theorem 1.5.7 (Kechris-Louveau dichotomy). Let E be a Borel equivalence relation

on a standard Borel space X such that E ≤ E1. Then either E ≤B E0 or E ∼B E1.

Combined with the previous results, this theorem completely determines the struc-

ture of hypersmooth Borel equivalence relations.

1.5.3 The Borel equivalence relation ∆+
R

We will now turn our attention to another direction in the ≤B-hierarchy. Recall that

∆+
R denotes the Friedman-Stanley jump of the identity relation ∆R. An example of a

classification problem with Borel complexity ∆+
R is the conjugacy relation on ergodic

measure preserving transformations with discrete spectrum [For00, Theorem 65].

By the Borel isomorphism theorem, ∆+
R is Borel bireducible with ∆+

X for any un-

countable standard Borel space X. It follows from the Feldman-Moore theorem that

for any countable Borel equivalence relation E we have that E ≤B ∆+
R . To see this, let

E be a countable Borel equivalence relation on a standard Borel space X and let G be

a countable discrete group with a Borel action on X such that E = EXG . Fix an enu-

meration {gi}i∈N of the group G. Then it is easily checked that the map x 7→ (gi ·x)i∈N

is a Borel reduction from E to ∆+
X . On the other hand, it is well-known that ∆+

R is

not essentially countable [Kan08, Theorem 17.1.3, Section 17.2]. Thus we have that

E∞ <B ∆+
R .
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1.6 Background from topological dynamics

Topological dynamics in the broadest sense is the study of the behavior of pairs (X,G,Λ)

where X is a topological space, G is a topological semigroup and Λ : G×X → X is a

continuous action. From now on, any such pair will be referred to as a flow.

In this thesis, we shall only be concerned with those flows where the phase space

X is compact metrizable and G is the additive group of integers Z endowed with the

discrete topology, in which case we can replace (X,G,Λ) by (X,ϕ) where ϕ : X → X

is the homeomorphism defined by the action of the generator 1 ∈ Z. We remark that

the notions that will be introduced in this section are defined in many sources for pairs

(X,ϕ) where ϕ is an arbitrary continuous map on X. That being said, we shall take the

liberty of restricting all relevant definitions to the case where ϕ is a homeomorphism.

A topological dynamical system is a pair (X,ϕ) where X is a compact metrizable

topological space and ϕ : X → X is a homeomorphism. If (X,ϕ) and (Y, ψ) are

topological dynamical systems, then (Y, ψ) is called a factor of (X,ϕ) if there exists a

continuous surjection π : X → Y such that

π ◦ ϕ = ψ ◦ π

If the factor map π : X → Y is a homeomorphism, then (X,ϕ) and (Y, ψ) are said to

be topologically conjugate and π is called a topological conjugacy. Similarly, we define

the class of pointed topological dynamical systems as the class of triples of the form

(X,ϕ, x) where (X,ϕ) is a topological dynamical system and x ∈ X. Two pointed

systems (X,ϕ, x) and (Y, ψ, y) are said to be (pointed) topologically conjugate if there

exists a topological conjugacy π : X → Y between (X,ϕ) and (Y, ψ) such that π(x) = y.

A topological dynamical system (X,ϕ) is said to be equicontinuous if the family

of functions {ϕi : i ∈ Z} is uniformly equicontinuous. It is well-known that every

topological dynamical system (X,ϕ) admits a maximal equicontinuous factor (Y, ψ) in

the sense that (Y, ψ) is an equicontinuous factor of (X,ϕ) and every equicontinuous

factor of (X,ϕ) is a factor of (Y, ψ) through a factor map which makes the correspond-

ing diagram commute. Moreover, the maximal equicontinuous factor of a topological

dynamical system is unique up to topological conjugacy [Kůr03, Theorem 2.44].



13

Given a topological dynamical system (X,ϕ), a subset Y ⊆ X is said to be ϕ-

invariant if ϕ[Y ] = Y . For notational convenience, we will write invariant if the map

ϕ is clear from the context. A subsystem of (X,ϕ) is a topological dynamical system

of the form (Y, ϕ) where Y is a non-empty closed invariant subset of X.

1.6.1 Minimality

The “irreducible” objects among topological dynamical systems are the minimal dy-

namical systems, where a topological dynamical system (X,ϕ) is said to be minimal if

(X,ϕ) has no proper subsystems. Equivalently, (X,ϕ) is minimal if for every invariant

closed subset Y ⊆ X we have either Y = ∅ or Y = X.

Given a point x ∈ X in a topological dynamical system (X,ϕ), the orbit of x under

ϕ is defined to be the set

Orb(x) = {ϕi(x) : i ∈ Z}

For any U ⊆ X, the set of return times of x to the subset U is the set

RetU (X,ϕ, x) := {i ∈ Z : ϕi(x) ∈ U}

The point x ∈ X is said to be an almost periodic point of (X,ϕ) if for every open

neighborhood U of x, the set of return times RetU (X,ϕ, x) is syndetic, i.e. there exists

an integer k ≥ 1 such that RetU (X,ϕ, x) ∩ {i, i + 1, . . . , i + k} 6= ∅ for all i ∈ Z.

Minimality has various equivalent characterizations. For completeness, we include the

proof of the equivalences of these characterizations.

Theorem 1.6.1. [K̊ur03] Let (X,ϕ) be a topological dynamical system. Then the

following are equivalent.

a. (X,ϕ) is minimal.

b. For all x ∈ X, the orbit Orb(x) is dense in X.

c. For all non-empty open U ⊆ X, there exists k ∈ N+ such that
k⋃

i=−k
ϕi[U ] = X.

d. For all x ∈ X and for all non-empty open U ⊆ X, the set RetU (X,ϕ, x) is

syndetic.
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e. For some x ∈ X, the orbit Orb(x) is dense in X and x is an almost periodic

point.

Proof. [a ⇒ b]: Assume that (X,ϕ) is minimal. For every x ∈ X, the orbit closure

Orb(x) is a closed non-empty invariant subset and hence equals X by minimality.

[b ⇒ a]: Assume that every orbit is dense. Let Y ⊆ X be a closed non-empty

invariant set. Then Orb(x) ⊆ Y for any x ∈ Y . By the assumption, this implies that

Y = X.

[a ⇒ c]: Assume that (X,ϕ) is minimal. Let U ⊆ X be a non-empty open set.

Then Y = X \
⋃∞
i=−∞ ϕ

i[U ] is a proper closed invariant subset. By minimality, Y = ∅

and hence
⋃∞
i=−∞ ϕ

i[U ] is an open cover of X. By compactness, there exists k ∈ N+

such that
⋃k
i=−k ϕ

i[U ] = X.

[c ⇒ d]: Assume (c) and let x ∈ X and U ⊆ X be a non-empty open set. By the

assumption, there exists k ∈ N+ such that
⋃+k
i=−k ϕ

i[U ] = X. But this means that for

all i ∈ Z there exists −k ≤ p ≤ k such that ϕi−p(x) ∈ U . Equivalently, RetU (X,ϕ, x)

is syndetic with gaps bounded by at most 2k.

[d ⇒ e]: Assume (d) and let x ∈ X be any point. Then for any non-empty open

set U and non-empty open neighborhood V of x, RetU (X,ϕ, x) is non-empty and

RetV (X,ϕ, x) is syndetic.

[e ⇒ a]: Assume towards a contradiction that (X,ϕ) is not minimal and that X is

the closure of the orbit of some almost periodic point x ∈ X. Let ∅ ( W ( X be a

proper non-empty closed invariant subset of X. If x ∈ W , then Orb(x) ⊆ W since W

is closed and invariant. But this contradicts the assumption that Orb(x) = X. Thus

x /∈W . It follows that there exists a closed set V such that x ∈ Int(V ) and V ∩W = ∅.

By almost periodicity, there exists k ∈ N+ such that for any i ∈ Z there exists 0 ≤ p ≤ k

with ϕi+p(x) ∈ V . Since W is invariant, the closed set
⋃k
i=0 ϕ

−i[V ] does not intersect

W . Thus X \
⋃k
i=0 ϕ

−i[V ] is a non-empty open set. Since the orbit Orb(x) is dense by

assumption, there exists n ∈ Z such that ϕn(x) ∈ X \
⋃k
i=0 ϕ

−i[V ]. But this implies

that ϕn+p(x) /∈ V for any 0 ≤ p ≤ k, which is a contradiction.
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1.6.2 Cantor dynamical systems

Recall that a topological space is said to be a Cantor space if it is perfect, compact,

totally disconnected and metrizable. It is well-known that there exists a unique Cantor

space up to homeomorphism. From now on, when we say the Cantor space, we mean

the topological space 2N with its usual product topology.

A Cantor dynamical system is a topological dynamical system (X,ϕ) where X is a

Cantor space. We will refer to minimal Cantor dynamical systems as Cantor minimal

systems.

Example 1.6.2 (Odometers). Let (ui)i∈N be a sequence of natural numbers such that

(ui)i∈N is not eventually constant, ui > 1 and ui|ui+1 for all i ∈ N. Consider the

sequence of canonical group homomorphisms

Zu0 ←− Zu1 ←− Zu2 · · ·

where Zui denotes the cyclic group of order ui. Let Odo((ui)i∈N) be the inverse limit

group

Odo((ui)i∈N) := lim←−Zui = {(mi) ∈
∏
i∈N
Zui : mj ≡ mi (mod ui) for j > i}

with the induced topology. Then the pair (Odo((ui)i∈N), η) is a Cantor dynamical

system, where η(h) = h + 1̂ and 1̂ = (1, 1, 1, . . . ). Moreover, it is easily checked that

0̂ = (0, 0, . . . ) is an almost periodic point with dense orbit. Hence, (Odo((ui)i∈N), η) is a

Cantor minimal system by Theorem 1.6.1. The Cantor minimal system (Odo((ui)i∈N), η)

is called the odometer (or the adding machine) associated with (ui)i∈N.

The classification problem for odometers is central to some proofs in this thesis.

We will next recall some basic results regarding the classification of odometers up

to topological conjugacy. For a detailed survey of odometers, we refer the reader to

[Dow05].

A supernatural number is a formal product
∏
i∈N+ pkii where pi is the i-th prime

number and ki ∈ N ∪ {∞} for all i ∈ N. For each sequence (ui)i∈N of positive integers,

define lcm(ui)i∈N to be the supernatural number u =
∏
i∈N+ pkii where

ki = sup{j ∈ N : ∃m ∈ N pji |um}
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Given a supernatural number u, any sequence (ui)i∈N of positive integers such that

lcm(ui)i∈N = u and ui|ui+1 for all i ∈ N will be called a factorization of u; and any

positive integer q dividing some ui will be called a factor of u.

It turns out that the set of supernatural numbers is a complete set of invariants for

topological conjugacy of odometers [BS95] and hence the topological conjugacy problem

for odometers is smooth.

Theorem 1.6.3. The odometers (Odo((ui)i∈N), η) and (Odo((vi)i∈N), η) are topologically

conjugate if and only if lcm(ui)i∈N = lcm(vi)i∈N.

1.6.3 Properly ordered Bratteli diagrams

It is well-known that pointed Cantor minimal systems can be represented by infinite

directed multigraphs known as properly ordered Bratteli diagrams. In this section,

following [HPS92, Dur10], we shall give a brief overview of the correspondence between

properly ordered Bratteli diagrams and pointed Cantor minimal systems.

An unordered Bratteli diagram (or simply, a Bratteli diagram) is a pair (V,E) con-

sisting of a vertex set V and an edge set E which can be partitioned into non-empty

finite sets V =
⊔∞
n=0 Vn and E =

⊔∞
n=1En such that the following conditions hold:

1. V0 = {v0} is a singleton.

2. There exist a range map r : E → V and a source map s : E → V such that

r[En] ⊆ Vn and s[En] ⊆ Vn−1 for all n ∈ N+. Moreover, s−1(v) 6= ∅ for all v ∈ V

and r−1(v) 6= ∅ for all v ∈ V − V0.

Bratteli diagrams are often given diagrammatic representations as directed graphs

consisting of the vertices Vn at (horizontal) level n and the edges En connecting the

vertices at level n− 1 with the vertices at level n. (For an example, see Figure 1, where

the orientation is taken to be in the downward direction.)
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Figure 1

Vn−1

Vn

Vn+1

En

En+1

If we fix a linear order on Vn for each n ∈ N, then the edge set En determines a

|Vn| × |Vn−1| incidence matrix Mn = (mij) defined by

mij = |{e ∈ En : r(e) = ui ∧ s(e) = wj}|

where ui is the i-th vertex in Vn and wj is the j-th vertex in Vn−1. For example, if we

order the vertices at each level in Figure 1 from left to right, then the corresponding

incidence matrices Mn and Mn+1 are

Mn =



0 1

2 1

1 0

0 2


and Mn+1 =

2 1 0 0

1 0 1 1



Given a Bratteli diagram (V,E) and k, l ∈ N with k < l, define Ek+1 ◦ ... ◦El to be

the set of paths from Vk to Vl. More specifically, Ek+1 ◦ ... ◦ El is the set

{(ek+1, ..., el) : r(ei) = s(ei+1) i = k + 1, ..., l − 1 ∧ ei ∈ Ei i = k + 1, ..., l}

The corresponding range and source maps are defined by r(ek+1, ..., el) := r(el) and

s(ek+1, ..., el) := s(ek+1) respectively. Observe that the product matrix Ml · ... ·Mk+1

is the incidence matrix of the edge set Ek+1 ◦ ... ◦ El.

For any sequence 0 = m0 < m1 < m2 < ... of natural numbers, we define the

telescoping of (V,E) with respect to (mi)i∈N to be the Bratteli diagram (V ′, E′) where
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V ′n = Vmn , E′n = Emn−1+1 ◦ ... ◦ Emn and the range and source maps are defined as

above. For example, if we telescope the diagram in Figure 1 to the levels n − 1 and

n+ 1, then we get the diagram in Figure 2.

Figure 2

Vn−1

Vn+1

A Bratteli diagram (V,E) is called simple if there exists a telescoping (V ′, E′) of

(V,E) such that all the incidence matrices of (V ′, E′) have only non-zero entries, i.e.

every vertex of (V ′, E′) at any level is connected to every vertex at the next level. It is

easily checked that (V,E) is simple if and only if for every n ∈ N there exists an integer

m > n such that there is a path from each vertex in Vn to each vertex in Vm.

Two Bratteli diagrams (V,E) and (V ′, E′) are said to be isomorphic if there exist

bijections f : V → V ′ and g : E → E′ which preserve the gradings and intertwine the

respective source and range maps, i.e. s′ ◦g = f ◦ s and r′ ◦g = f ◦ r. From now on, the

equivalence relation on Bratteli diagrams generated by isomorphism and telescoping

will be denoted by ∼.

An ordered Bratteli diagram is a triple of the form (V,E,4) where (V,E) is a Bratteli

diagram and 4 is a partial order on E such that for all edges e, e′ ∈ E, e and e′ are

4-comparable if and only if r(e) = r(e′). Let B = (V,E,4) be an ordered Bratteli

diagram. We define the Bratteli compactum associated with B = (V,E,4) to be the

space of infinite paths

XB = {(ei)i∈N+ : ∀i ∈ N+ ei ∈ Ei ∧ r(ei) = s(ei+1)}

endowed with the topology generated by the basic clopen sets of the form

[e1, e2, . . . , ek]B = {(fi)i∈N+ ∈ XB : (∀1 ≤ i ≤ k) ei = fi}



19

It is straightforward to verify that the metric dB on XB defined by

dB((ei)i∈N+ , (fi)i∈N+) = 2−k

where k = min{i : ei 6= fi} induces the same topology. We remark that the topological

space XB is determined solely by (V,E). Moreover, it is easily checked that if (V,E) is

a simple Bratteli diagram and XB is infinite, then XB is a Cantor space.

Given an ordered Bratteli diagram (V,E,4) and k < l in N, the set of paths

Ek+1 ◦ · · · ◦ El from Vk to Vl can be given an induced lexicographic order defined by

(fk+1, fk+2, . . . , fl) ≺ (ek+1, ek+2, . . . , el)

if and only if for some i with k + 1 ≤ i ≤ l we have fi ≺ ei and fj = ej for all

i < j ≤ l. One readily checks that if (V,E,4) is an ordered Bratteli diagram, (V ′, E′) is

a telescoping of (V,E), and 4′ is the corresponding lexicographic order, then (V ′, E′,4′)

is an ordered Bratteli diagram. In this case, (V ′, E′,4′) is called a telescoping of

(V,E,4). Two ordered Bratteli diagrams are said to be isomorphic if and only if there

is an isomorphism of underlying unordered Bratteli diagrams which respects the partial

order structure on edges. Let ≈ denote the equivalence relation on ordered Bratteli

diagrams generated by telescoping and isomorphism.

Given an ordered Bratteli diagram (V,E,4), let Emax and Emin denote the sets

of maximal and minimal elements of E respectively. (V,E,4) is said to be properly

ordered if

• XB is infinite.

• (V,E) is a simple Bratteli diagram.

• There exists a unique path xmin = (ei)i∈N+ such that ei ∈ Emin for all i ∈ N+ and

there exists a unique path xmax = (fi)i∈N+ such that fi ∈ Emax for all i ∈ N+.

In this case, xmin and xmax are called the minimal and maximal paths respectively.

(We remark that some authors require the space XB of infinite paths to be infinite as

a part of the definition of an ordered Bratteli diagram to exclude Bratteli compacta

which are finite.)
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For every properly ordered Bratteli diagram B = (V,E,4), we can define a home-

omorphism λB : XB → XB, called the Vershik map, as follows:

• λB(xmax) = xmin

• λB(e1, e2, . . . , ek, ek+1, . . . ) = (f1, f2, . . . , fk, ek+1, . . . ) where k is the least integer

such that ek /∈ Emax, fk is the successor of ek in E, and (f1, f2, ..., fk−1) is the

unique minimal path in E1 ◦E2 ◦ · · · ◦Ek−1 with range equal to the source of fk.

It is routine to check that (XB, λB, xmax) is a pointed Cantor minimal system

[HPS92, Section 3]. Any such dynamical system is called a Bratteli-Vershik dynam-

ical system. It turns out that every Cantor minimal system is topologically conjugate

to a Bratteli-Vershik dynamical system.

Theorem 1.6.4. [HPS92] For any pointed Cantor minimal system (X,ϕ, x) there ex-

ists a properly ordered Bratteli diagram B = (V,E,4) such that (X,ϕ, x) is (pointed)

topologically conjugate to (XB, λB, xmax). Moreover, if (Xi, ϕi, xi) corresponds to the

properly ordered Bratteli diagram Bi = (V i, Ei,4i) for i = 0, 1, then (X0, ϕ0, x0) is

(pointed) topologically conjugate to (X1, ϕ1, x1) if and only if B0 ≈ B1.

Given a pointed Cantor minimal system (X,ϕ, x), any properly ordered Bratteli

diagram B = (V,E,4) such that (X,ϕ, x) is topologically conjugate to (XB, λB, xmax)

will be referred to as a Bratteli-Vershik representation of (X,ϕ, x). In Chapter 7, we will

discuss in detail how to construct a Bratteli-Vershik representation of a given pointed

Cantor minimal system.

1.6.4 Subshifts

For the purposes of this thesis, an alphabet is a finite set with at least two elements.

Given an alphabet a, endow a with the discrete topology and consider the topological

space aZ together with the left-shift map σ : aZ → aZ defined by

(σ(α))(i) = α(i+ 1)

for all i ∈ Z and α ∈ aZ. It is easily checked that (aZ, σ) is a Cantor dynamical system.

Any subsystem (O, σ) of (aZ, σ) is called a subshift over the alphabet a. For notational
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convenience, we shall often drop the left-shift map σ and refer to O as a subshift. Thus,

a subshift over an alphabet a is simply a closed σ-invariant subset of aZ. For any

sequence α ∈ aZ, we define the subshift generated by α to be the closure of its orbit

Orb(α). The following well-known theorem [LM95, Theorem 6.2.9] characterizes the

factor maps between subshifts over an alphabet a.

Theorem 1.6.5 (Curtis-Hedlund-Lyndon). Let X,Y ⊆ aZ be subshifts and let

π : X → Y

be a continuous map from X to Y commuting with σ. Then there exist i ∈ N and a

block code, i.e. a function C : a2i+1 → a, such that

(π(α))(k) = C(α[k − i, k + i])

for all k ∈ Z and α ∈ X, where α[k, l] denotes the subblock

(α(k), α(k + 1), . . . , α(l))

of the bi-infinite sequence α.

For any block code C : a2i+1 → a, the natural number i called the length of the

block code C and is denoted by |C|. For any topological conjugacy π : X → Y between

subshifts X and Y , we define the length of π to be the natural number

|π| = max{min{|C| : C induces π},min{|C| : C induces π−1}}

A subshift O ⊆ aZ is said to be minimal if the topological dynamical system (O, σ) is

minimal. Being a closed subspace of a Cantor space, any subshift is totally disconnected,

compact, and metrizable. If it is also minimal and infinite, then it has no isolated points

and hence is a Cantor space itself. Thus, infinite minimal subshifts are Cantor minimal

systems. Finite minimal subshifts are obviously classified up to topological conjugacy

by their cardinalities. From now on, we shall exclude these trivial cases and assume

that minimal subshifts are infinite.

Recently, minimal subshifts have been a particular focus of study due to the struc-

ture of their topological full groups. Here the topological full group [[ϕ]] of a Cantor
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dynamical system (X,ϕ) is the group of homeomorphisms ψ : X → X such that there

exists a continuous function n : X → Z with ψ(x) = ϕn(x)(x) for all x ∈ X. Ma-

tui [Mat06] showed that the commutator subgroup of the topological full group of an

infinite minimal subshift is finitely generated, infinite and simple; and Juschenko and

Monod [JM13] proved that these groups are also amenable. This result provided the

first examples of finitely generated simple amenable infinite groups.

It is known by the work of Giordano, Putnam and Skau [GPS99] that the commu-

tator subgroups of the topological full groups of two Cantor minimal systems (X,ϕ)

and (Y, ψ) are isomorphic if and only if (X,ϕ) and (Y, ψ) are flip conjugate, i.e. (X,ϕ)

is topologically conjugate to (Y, ψ) or (Y, ψ−1). Using this fact, Thomas [Tho13] con-

structed a Borel reduction from flip conjugacy of minimal subshifts over a finite alpha-

bet to isomorphism of finitely generated simple amenable groups and proved that the

isomorphism relation on such groups is not smooth. This result provides a strong mo-

tivation for studying conjugacy relations on minimal subshifts. If one could show that

flip conjugacy of minimal subshifts is a universal countable Borel equivalence relation,

then one would obtain that isomorphism of finitely generated simple amenable groups is

as complex as it possibly could be, i.e. as complex as isomorphism of arbitrary finitely

generated groups.

1.7 Precise statements of the main results of this thesis

In the following subsections, we shall recall some earlier results on the Borel complexity

of the topological conjugacy relation on various dynamical systems and present the

main results of this thesis.

1.7.1 The topological conjugacy relation on minimal subshifts

Among the various classes of minimal dynamical systems that we have introduced, the

topological conjugacy relation is most well-studied on the class of subshifts.

Clemens [Cle09] proved that the topological conjugacy relation on subshifts over a

finite alphabet is a universal countable Borel equivalence relation. Gao, Jackson, and
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Seward [GJS15] analyzed topological conjugacy of generalized G-subshifts, i.e. subsys-

tems of the flow (aG, G,Λ) where a is an alphabet, G is a countably infinite discrete

group, and the action Λ of G on aG is given by

(g · α)(h) = α(g−1h)

for all g, h ∈ G and α ∈ aG. Two such G-subshifts are said to be topologically conjugate

if there exists a homeomorphism between them which commutes with the action of

G. Gao, Jackson, and, Seward showed that topological conjugacy of G-subshifts is

Borel bireducible with E0 when G is locally finite; and that topological conjugacy of

G-subshifts is a universal countable Borel equivalence relation when G is not locally

finite. They also proved that topological conjugacy of minimal subshifts over a finite

alphabet is not smooth and posed the question of determining the Borel complexity of

the topological conjugacy relation on minimal subshifts.

Since then, the project of analyzing the Borel complexity of the topological conju-

gacy relation for restricted classes of minimal subshifts has been pursued in different

directions. For example, Gao and Hill [GH] have shown that topological conjugacy

of minimal rank-1 systems is Borel bireducible with E0. Thomas [Tho13] proved that

the topological conjugacy relation is not smooth for the class of Toeplitz subshifts, i.e.

minimal subshifts that contain bi-infinite sequences in which every subblock appears

periodically.

Subsequent to Thomas’ result on Toeplitz subshifts, Sabok and Tsankov [ST15]

analyzed topological conjugacy of generalized Toeplitz G-subshifts for residually finite

groups G over a finite alphabet. They proved that topological conjugacy of generalized

Toeplitz G-subshifts is not hyperfinite if G is residually finite and non-amenable; and

that topological conjugacy of Toeplitz subshifts with separated holes is 1-amenable in

the following sense.

A countable Borel equivalence relation E on a standard Borel space X is said to be

1-amenable if there exists a sequence of positive Borel functions fn : E → R+ such that

letting fxn (y) = fn(x, y) we have that

• For all x ∈ X, fxn ∈ `1([x]E) and ‖fxn‖1 = 1,
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• For all x, y ∈ X such that xEy, we have that limn→∞ ‖fxn − f
y
n‖1 = 0

It is well-known that hyperfiniteness implies 1-amenability [JKL02, Proposition 2.13]

and that 1-amenable relations are hyperfinite µ-almost everywhere for every Borel prob-

ability measure µ on X [KM04, Corollary 10.2]. On the other hand, it is still open

whether 1-amenability implies hyperfiniteness.

Sabok and Tsankov asked whether or not topological conjugacy of Toeplitz subshifts

is hyperfinite. One of the main results of this thesis is the following partial affirmative

answer.

Theorem A. The topological conjugacy relation on Toeplitz subshifts with separated

holes over a finite alphabet is hyperfinite.

Indeed, we will prove that the topological conjugacy relation is hyperfinite on a larger

class of Toeplitz subshifts which we shall call Toeplitz subshifts with growing blocks. On

the other hand, the question of whether topological conjugacy of all Toeplitz subshifts

over a finite alphabet is hyperfinite remains open.

1.7.2 The topological conjugacy relation on Cantor minimal systems

The other main results of this thesis concern the topological conjugacy relation on

Cantor minimal systems. More specifically, we shall determine the Borel complexity of

the topological conjugacy relation on pointed Cantor minimal systems, and provide a

lower bound for the Borel complexity of the topological conjugacy relation on Cantor

minimal systems.

As far as the author knows, the Borel complexities of these relations have not

been previously studied in this generality. On the other hand, the Borel complexity

of the topological conjugacy relation on arbitrary Cantor dynamical systems has been

determined by Camerlo and Gao [CG01].

Since we wish to classify Cantor dynamical systems up to topological conjugacy,

we may assume without loss of generality that the underlying topological spaces of the

Cantor dynamical systems that we study are 2N. Then each Cantor dynamical system

(2N, ϕ) can be identified with the corresponding homeomorphism ϕ and the Polish
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group H(2N) consisting of homeomorphisms of the Cantor space 2N can be regarded

as the standard Borel space of Cantor dynamical systems. Moreover, the topological

conjugacy relation on H(2N) is precisely the orbit equivalence relation of the continuous

action of H(2N) on itself by conjugation.

It is well-known that H(2N) is isomorphic to a closed subgroup of the infinite sym-

metric group S∞ and thus the topological conjugacy relation on Cantor dynamical

systems is classifiable by countable structures. Camerlo and Gao proved that this rela-

tion is as complicated as it could possibly be, i.e. it is Borel complete [CG01, Theorem

5]. Unfortunately, the Cantor dynamical systems constructed in their proof are far

from minimal and do not give any non-trivial bounds for the Borel complexity of the

topological conjugacy relation on Cantor minimal systems. In this thesis, we shall prove

the following theorem.

Theorem B. ∆+
R is Borel reducible to the topological conjugacy relation on Cantor

minimal systems.

Theorem B will be obtained as a byproduct of our analysis of topological conjugacy

of pointed Cantor minimal systems, which is the main focus of this thesis. Using Stone

duality, we shall show that the set of countable atomless Boolean subalgebras of P(Z)

which are closed under the map A 7→ A−1 and whose non-empty elements are syndetic

sets is a complete set of invariants for topological conjugacy of pointed Cantor minimal

systems. This will enable us to prove the following theorem.

Theorem C. ∆+
R is Borel bireducible with the topological conjugacy relation on pointed

Cantor minimal systems.

Combining Theorem C and Theorem 1.6.4, we will show that the Borel complexity

of ≈-equivalence of properly ordered Bratteli diagrams is exactly ∆+
R . As an application

of this result, we will prove a non-uniformity theorem regarding whether or not one can

assign proper orderings to simple Bratteli diagrams in a uniform ≈-invariant Borel way.
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1.8 Organization of this thesis

The remainder of this thesis is organized as follows. In Chapter 2, we will use Stone

duality to represent pointed Cantor minimal systems by certain Boolean subalgebras of

the Boolean algebra P(Z) of subsets of Z. We will also characterize minimal subshifts

in terms of the generating sets of their associated Boolean algebras. In Chapter 3, we

will construct the standard Borel spaces of Cantor minimal systems, minimal subshifts,

and properly ordered Bratteli diagrams. In Chapter 4, we will prove Theorem B and

Theorem C. In Chapter 5, we will first give an overview of Toeplitz subshifts and

construct the standard Borel spaces of various subclasses of Toeplitz subshifts. Then

we shall analyze topological conjugacy of Toeplitz subshifts. In Chapter 6, we will

prove Theorem A. In Chapter 7, we will first establish the correspondence between

pointed Cantor minimal systems and properly ordered Bratteli diagrams. Then we will

interpret our results in terms of properly ordered Bratteli diagrams. Finally, we will

discuss some applications of our results and some possible further research directions.

1.9 Remarks on notation

In the remainder of this thesis, we will retain most of the notation introduced in this

chapter. We would particularly like to emphasize that the symbols σ and ξ will be

reserved for shift maps throughout this thesis. The symbol σ will always denote the

left-shift map on aZ defined by

(σ(α))(i) = α(i+ 1) for all i ∈ Z and α ∈ aZ

for every alphabet a. The symbol ξ will always denote the shift map on P(Z) given by

ξ(A) := {a− 1 : a ∈ A}

for all A ∈ P(Z). We will often need to use Boolean algebras of sets, i.e. Boolean

algebras of the form (A,∪,∩, ·C , ∅, X) where A ⊆ P(X) is an algebra of subsets of X

for some set X. For notational convenience, we shall simply refer to the underlying

collection of sets A as a Boolean algebra and never write the corresponding six-tuple.
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Chapter 2

Stone duality and Cantor minimal systems

2.1 Stone duality

It is a classical result of Stone [Sto36, Sto37] that there exists a natural correspondence

between Boolean algebras and Boolean spaces, i.e. zero-dimensional compact Hausdorff

spaces. In more detail, given a Boolean algebra A, consider the set S(A) of ultrafilters

on A endowed with the topology generated by the basic open sets of the form

{U ∈ S(A) : A ∈ U}

for some A ∈ A. Then the resulting topological space S(A) is a Boolean space, which

is called the Stone space of A. Moreover, A is isomorphic to the Boolean algebra of

clopen subsets of its Stone space via the map

A 7→ {U ∈ S(A) : A ∈ U}

Conversely, every Boolean space X is homeomorphic to the Stone space of the Boolean

algebra BX of its clopen subsets via the homeomorphism

w 7→ {U ∈ BX : w ∈ U}

This correspondence extends to a duality between homomorphisms of Boolean algebras

and continuous maps of Boolean spaces. Before we formulate this duality, we recall

some basic definitions.

For every homomorphism f : A → B of Boolean algebras, the dual is the map

f∗ : S(B)→ S(A) defined by f∗(w) = f−1[w] for every w ∈ S(B). For every continuous

map ψ : X → Y of Boolean spaces, the dual is the map ψ∗ : BY → BX defined by

ψ∗(U) = ψ−1[U ] for every U ∈ BY .
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Theorem 2.1.1 (Stone duality). [Kop89] Let f : A → B and g : B → C be homomor-

phisms of Boolean algebras and let φ : X → Y and ψ : Y → Z be continuous maps of

Boolean algebras. Then

• f∗ : S(B)→ S(A) is continuous and φ∗ : BY → BX is a homomorphism.

• f is injective (respectively, surjective) if and only if f∗ is surjective (respectively,

injective).

• φ is injective (respectively, surjective) if and only if φ∗ is surjective (respectively,

injective).

• (IdA)∗ = IdS(A) and (IdX)∗ = IdBX .

• (g ◦ f)∗ = f∗ ◦ g∗ and (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

A Boolean subalgebra of P(Z) is said to be a Z-syndetic algebra if its non-empty

elements are syndetic sets and it is closed under both the shift map ξ and ξ−1. In

this chapter, we shall use Stone duality to show that the set of countable atomless

Z-syndetic algebras is a set of complete invariants for topological conjugacy of pointed

Cantor minimal systems. We will need the following easy but useful proposition.

Proposition 2.1.2. Let (X,ϕ, x) be a pointed topological dynamical system. Then the

map U 7→ RetU (X,ϕ, x) = {k ∈ Z : ϕk(x) ∈ U} is a Boolean algebra homomorphism

from BX to P(Z).

Proof. Let U, V ∈ BX be clopen sets. Then we have

RetU∪V (X,ϕ, x) = {k ∈ Z : ϕk(x) ∈ U ∪ V }

= {k ∈ Z : ϕk(x) ∈ U} ∪ {k ∈ Z : ϕk(x) ∈ V }

= RetU (X,ϕ, x) ∪RetV (X,ϕ, x)

RetU∩V (X,ϕ, x) = {k ∈ Z : ϕk(x) ∈ U ∩ V }

= {k ∈ Z : ϕk(x) ∈ U} ∩ {k ∈ Z : ϕk(x) ∈ V }

= RetU (X,ϕ, x) ∩RetV (X,ϕ, x)
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Clearly Ret∅(X,ϕ, x) = ∅ and RetX(X,ϕ, x) = Z. Thus U 7→ RetU (X,ϕ, x) is a

Boolean algebra homomorphism.

2.2 Representing pointed Cantor minimal systems by countable atom-

less Z-syndetic algebras

Given a pointed Cantor minimal system (X,ϕ, x), we define its return times algebra

Ret(X,ϕ, x) to be the collection

Ret(X,ϕ, x) := {RetU (X,ϕ, x) : U ∈ BX}

By Proposition 2.1.2, Ret(X,ϕ, x) is a Boolean subalgebra of P(Z). Moreover, by

Theorem 1.6.1, the minimality of (X,ϕ, x) implies that the map U 7→ RetU (X,ϕ, x)

is injective and that Ret(X,ϕ, x) is a countable atomless Z-syndetic algebra. From

now on, any countable atomless Z-syndetic algebra will be referred to as a return times

algebra. Our choice of terminology is justified by the following lemma.

Lemma 2.2.1. If A is a return times algebra, then there exists a pointed Cantor

minimal system (X,ϕ, x) such that A = Ret(X,ϕ, x).

Proof. It is well-known that there exists a unique countable atomless Boolean algebra up

to isomorphism [Kop89, Corollary 5.16]. Thus A is isomorphic to the Boolean algebra

of clopen subsets of 2N and it follows from Stone duality that S(A) is homeomorphic

to 2N.

Let ξ∗ : S(A) → S(A) be the dual homeomorphism of the automorphism ξ of A

and let xA ∈ S(A) be the ultrafilter {A ∈ A : 0 ∈ A}. We claim that (S(A), ξ∗, xA) is

a pointed Cantor minimal system such that A = Ret(S(A), ξ∗, xA). For each A ∈ A,

the set of return times of xA to the clopen set U = {w ∈ S(A) : A ∈ w} is

RetU (S(A), ξ∗, xA) = {k ∈ Z : ξk∗ (xA) ∈ U}

= {k ∈ Z : A ∈ ξk∗ (xA)}

= {k ∈ Z : k ∈ A}

= A
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It follows that Ret(S(A), ξ∗, xA) = A and that xA is an almost periodic point. Further-

more, the orbit of xA meets every non-empty clopen set and hence is dense in S(A).

Therefore (S(A), ξ∗, xA) is a pointed Cantor minimal system by Theorem 1.6.1.

We shall refer to (S(A), ξ∗, xA) as the ultrafilter dynamical system associated with

the return times algebra A. The following lemma shows that every pointed Cantor

minimal system can be represented as the ultrafilter dynamical system associated with

its return times algebra. Consequently, the collection of return time algebras is a set of

complete invariants for topological conjugacy of pointed Cantor minimal systems.

Lemma 2.2.2. Let (X,ϕ, x) be a pointed Cantor minimal system and let A be its return

times algebra Ret(X,ϕ, x). Then (X,ϕ, x) is topologically conjugate to (S(A), ξ∗, xA).

Proof. Recall that the map ρ : A → BX given by RetU (X,ϕ, x) 7→ U is an isomorphism

of Boolean algebras. Let ρ∗ : S(BX) → S(A) be its dual homeomorphism. By Stone’s

theorem, we know that the map θ : X 7→ S(BX) given by w 7→ {U ∈ BX : w ∈ U} is a

homeomorphism. We claim that the homeomorphism ρ∗ ◦ θ is a topological conjugacy

between (X,ϕ, x) and (S(A), ξ∗, xA). Obviously, (ρ∗ ◦ θ)(x) = xA. Moreover, for all

w ∈ X, we have that

((ρ∗ ◦ θ) ◦ ϕ)(w) = ρ∗({U ∈ BX : ϕ(w) ∈ U})

= ρ∗({ϕ[U ] ∈ BX : w ∈ U})

= {(ρ−1 ◦ ϕ)[U ] ∈ BX : w ∈ U}

= {Retϕ[U ](X,ϕ, x) ∈ A : w ∈ U}

= ξ∗({RetU (X,ϕ, x) ∈ A : w ∈ U})

= ξ∗({ρ−1[U ] ∈ BX : w ∈ U})

= ξ∗(ρ∗({U ∈ BX : w ∈ U}))

= (ξ∗ ◦ (ρ∗ ◦ θ))(w)
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Corollary 2.2.3. Two pointed Cantor minimal systems (X,ϕ, x) and (Y, ψ, y) are

topologically conjugate if and only if Ret(X,ϕ, x) = Ret(Y, ψ, y).

Proof. Assume that (X,ϕ, x) and (Y, ψ, y) are topologically conjugate via the home-

omorphism π : X → Y . Since π∗ is an isomorphism between BY and BX , we have

that

Ret(X,ϕ, x) = {RetU (X,ϕ, x) : U ∈ BX}

= {Retπ[U ](Y, ψ, y) : U ∈ BX}

= {RetV (Y, ψ, y) : V ∈ BY } = Ret(Y, ψ, y)

For the converse direction, assume that Ret(X,ϕ, x) = A = Ret(Y, ψ, y). Then it

follows from Lemma 2.2.2 that (X,ϕ, x) and (Y, ψ, y) are both topologically conjugate

to (S(A), ξ∗, xA).

Stone duality provides a way of rephrasing topological questions about Boolean

spaces in terms of algebraic questions about Boolean algebras and vice versa. In general,

this translation does not necessarily simplify the questions. However, in many cases

one approach is much easier than the other. For example, consider the classification

problem for odometers up to topological conjugacy.

Example 2.2.4. Let (sk)k∈N be a sequence of natural numbers such that (sk)k∈N is

not eventually constant, sk > 1 and sk|sk+1 for all k ∈ N and consider the odometer

Odo((sk)k∈N) corresponding to the sequence (sk)k∈N. Recall that the topology of

Odo((sk)k∈N) = {w ∈
∏
k∈N

Zsk : ∀j > i wj ≡ wi (mod si)}

is induced by the product topology on
∏
k∈N Zsk where each component has the discrete

topology. Thus the Boolean algebra of clopen subsets of Odo((sk)k∈N) is generated by

the collection

{{w ∈ Odo(sk)k∈N : w(i) = j} : i ∈ N ∧ 0 ≤ j < si}

under the Boolean operations. It easily follows that a non-empty subset of the integers

is in the set of return times Ret(Odo((sk)k∈N), η,0) if and only if it is a finite union of
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infinite arithmetic progressions of the form p+qZ where q is a factor of the supernatural

number lcm(sk)k∈N. This observation immediately gives a simple proof of the left-to-

right direction of Theorem 1.6.3 as follows.

Assume that lcm(sk)k∈N 6= lcm(rk)k∈N. We can assume without loss of generality

that there exists a factor q of lcm(sk)k∈N which is not a factor of lcm(rk)k∈N. Then

qZ ∈ Ret(Odo((sk)k∈N), η,0)

but

qZ /∈ Ret(Odo((rk)k∈N), η,0)

Hence, (Odo((sk)k∈N), η,0) and (Odo((rk)k∈N), η,0) are not (pointed) topologically con-

jugate. On the other hand, since odometers are topological groups, if (Odo((sk)k∈N), η)

and (Odo(rsk)k∈N), η) were topologically conjugate via a homeomorphism π, then the

pointed systems (Odo((sk)k∈N), η,0) and (Odo((rk)k∈N), η,0) would be (pointed) topo-

logically conjugate via the homeomorphism w 7→ π(w) − π(0). Hence, odometers cor-

responding to different supernatural numbers are not topologically conjugate.

The advantage of studying return times algebra representations of pointed Cantor

minimal systems rather than the minimal homeomorphisms themselves will become

more apparent when we present the proof of Theorem C.

2.3 Representing pointed minimal subshifts by finitely generated atom-

less Z-syndetic algebras

In the rest of this thesis, we will often need to regard subsets of integers of the form

RetU (X,ϕ, x) as elements of 2Z. From now on, the corresponding characteristic function

χRetU (X,ϕ,x) : Z→ 2 of RetU (X,ϕ, x) will be denoted by retU (X,ϕ, x).

In this section, we shall characterize the Cantor minimal systems that are topolog-

ically conjugate to minimal subshifts over finite alphabets in terms of the generating

sets of their return times algebras. We begin by noting the following trivial but useful

observation.



33

Proposition 2.3.1. Let (X,ϕ) be a topological dynamical system and let U be a clopen

subset of X. Then the map rU : X → 2Z defined by x 7→ retU (X,ϕ, x) is continuous.

Moreover, rU ◦ ϕ = σ ◦ rU .

Proof. Since U is clopen, the characteristic function χU (x) : X → 2 is continuous and

hence rU (x) = (χU (ϕn(x)))n∈Z is continuous. It follows from the definition of rU that

rU ◦ ϕ = σ ◦ rU .

Fix a Cantor minimal system (X,ϕ). For each non-empty subset F ⊆ BX consider

the map retF : X → (2Z)F given by x 7→ (retU (X,ϕ, x))U∈F . The map retF is

continuous on each component by Proposition 2.3.1 and hence is continuous on the

space (2Z)F endowed with the product topology. Moreover, retF ◦ϕ = λF ◦ retF where

λF is the componentwise shift map defined by λF (w) = (σ(w(U)))U∈F . Consider the

space (2F )Z endowed with the product topology where each component 2F has the

discrete topology. Let ηF be the map from (2Z)F to (2F )Z given by

(ηF (w)(k))(U) = (w(U))(k)

for all w ∈ (2Z)F , U ∈ F and k ∈ Z. Clearly ηF is a bijection and σ ◦ ηF = ηF ◦ λF .

Proposition 2.3.2. ηF is continuous whenever F is finite.

Proof. Let F be finite. For each f ∈ 2F and i ∈ Z, consider the basic open set

Wi,f = {v ∈ (2F )Z : v(i) = f}. Then we have

η−1
F [Wi,f ] =

⋂
U∈F
{w ∈ (2Z)F : w(U)(i) = f(U)}

Since the sets {w ∈ (2Z)F : w(U)(i) = f(U)} are open in (2Z)F and F is finite, η−1
F [Wi,f ]

is open and hence ηF is continuous.

It follows that if there exists a finite F ⊆ BX such that retF is injective, then ηF ◦retF

is a topological conjugacy from (X,ϕ) onto a minimal subshift over the alphabet 2F .

In order for retF to be injective, it is sufficient for F to generate BX under ϕ and

the Boolean operations, since BX separates the points of X. On the other hand, for

each x ∈ X, the Boolean algebras BX and Ret(X,ϕ, x) are isomorphic via the map
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U 7→ RetU (X,ϕ, x). Hence, BX is generated by finitely many elements under ϕ and the

Boolean operations if and only if Ret(X,ϕ, x) is generated by finitely many elements

under ξ and the Boolean operations for some (equivalently, every) x ∈ X.

These observations suggest the following definition. A return times algebra A is

said to be finitely generated if there exists a finite subset F ⊆ A such that A is the

Boolean algebra generated by the collection {ξk(A) : A ∈ F ∧ k ∈ Z}. In this case, the

subset F ⊆ A is called a generating set of A. We are now ready to present the main

theorem of this section.

Theorem 2.3.3. Let (X,ϕ, x) be a pointed Cantor minimal system. Then (X,ϕ, x) is

topologically conjugate to a pointed minimal subshift over some finite alphabet if and

only if Ret(X,ϕ, x) is finitely generated.

Proof. Assume that (X,ϕ, x) is topologically conjugate to a pointed minimal subshift

(O, σ,w) over some finite alphabet a. Then by Corollary 2.2.3,

Ret(X,ϕ, x) = Ret(O, σ,w)

On the other hand, since the topology of O is induced by the topology of aZ, the return

times algebra Ret(O, σ,w) is generated by the finite generating set

{RetUs(O, σ,w) : s ∈ a}

where Us is the basic clopen set {v ∈ aZ : v(0) = s}. For the converse direction,

assume that Ret(X,ϕ, x) is finitely generated with a finite generating set F ′. Let F

be the preimage of F ′ under the map U 7→ RetU (X,ϕ, x). Then it follows from the

previous discussion that ηF ◦ retF is a topological conjugacy from (X,ϕ, x) onto a

pointed minimal subshift over the alphabet 2F .
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Chapter 3

The construction of various standard Borel spaces

In order to discuss the Borel complexity of an equivalence relation on a class of struc-

tures, we need to code these structures as elements of a standard Borel space. In

general, there may be more than one way to do this. For example, the class of finitely

generated groups can be identified with a subspace of the Polish space 2N
3

consisting of

elements satisfying an Lω1ω-sentence defining the ternary relations on N coding finitely

generated groups [TV99] as well as with the space of normal subgroups of the free

group Fω on ω generators which contain all but finitely many of a distinguished set of

generators [Wil12, §3.2].

In practice, whenever there are different natural codings of the same class of struc-

tures as standard Borel spaces, these codings turn out to be equivalent in the sense that

there exist Borel maps between the corresponding standard Borel spaces which map

codes of structures to codes of equivalent structures. The following principle, which

first appeared in [Gao09] in a slightly different form, seems to be true.

For any class H of mathematical structures, if (X1,Ω1) and (X2,Ω2) are

two standard Borel spaces naturally coding elements of H, then there ex-

ists a Borel map f : X1 → X2 such that f(x) and x are isomorphic as

mathematical structures for every x ∈ H.

In other words, there is essentially one way to code a class of structures as a standard

Borel space, if there exists any at all. Even though each instance of this principle is

a mathematical statement, the general principle is a philosophical statement since the

notion of “natural coding” cannot be mathematically defined. This principle may be

considered as an analogue of the Church-Turing thesis. For a more detailed discussion,

we refer the reader to [Gao09, §14.1].
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In the rest of this chapter, we shall construct the various standard Borel spaces

that are used throughout this thesis. For the concrete instances of the aforementioned

principle, we will sketch how the equivalence of different codings can be proved.

3.1 The standard Borel space of Cantor minimal systems

For any Cantor minimal system (X,ϕ), after choosing a clopen basis for the topology of

X, one can find a homeomorphism from X to 2N and construct a topologically conjugate

system (2N, ψ). Therefore, it is sufficient to code those Cantor minimal systems which

have 2N as their underlying topological spaces.

Let B be the countable atomless Boolean algebra of clopen subsets of 2N. Recall that

by Stone duality the homeomorphism group H(2N) of the Cantor space 2N is isomorphic

to the automorphism group Aut(B) of the Boolean algebra B via the isomorphism

ϕ 7→ ϕ−1
∗

Thus, we can identify H(2N) with the subspace Aut(B) of the Polish space BB. A

function f ∈ BB is an automorphism of B if f satisfies the following conditions.

a. ∀U, V ∈ B U = V ∨ f(U) 6= f(V )

b. ∀V ∈ B ∃U ∈ B f(U) = V

c. f(∅) = ∅

d. f(2N) = 2N

e. ∀U, V ∈ B f(U ∪ V ) = f(U) ∪ f(V ) ∧ f(U ∩ V ) = f(U) ∩ f(V )

It is easily checked that these conditions define a Gδ subset of BB. Hence, H(2N) is a

Polish space with the induced topology. Indeed, it is a closed subgroup of the Polish

group Sym(B).

Recall by Theorem 1.6.1 that a Cantor dynamical system (2N, ϕ) is minimal if and

only if

∀U ∈ B ∃k ∈ N 2N =
k⋃

i=−k
ϕ−i∗ (U)
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Observe that the quantifier-free part of this sentence defines a Borel subset of BB for

each k ∈ N and U ∈ B. It follows that the set

M2N := {ϕ−1
∗ ∈ H(2N) : (2N, ϕ) is minimal}

is a Borel subset of H(2N) and hence is a standard Borel space. The standard Borel

space of pointed Cantor minimal systems is simply

M∗2N :=M2N × 2N

Consider the action Λ : H(2N)×M2N →M2N given by

ϕ∗ · ψ∗ = ϕ∗ ◦ ψ∗ ◦ ϕ−1
∗

for all ϕ∗, ψ∗ ∈ H(2N). It is easily checked that the action Λ is Borel. Moreover,

the orbit equivalence relation of Λ is the topological conjugacy relation ∼=tc on M2N .

Similarly, the topological conjugacy relation∼=∗tc onM∗
2N

is the orbit equivalence relation

of the Borel action of H(2N) on M∗
2N

given by

ϕ∗ · (ψ∗, w) = (ϕ∗ ◦ ψ∗ ◦ ϕ−1
∗ , ϕ−1(w))

for all ϕ∗, ψ∗ ∈ H(2N) and w ∈ 2N. Hence the equivalence relations ∼=tc and ∼=∗tc are

both analytic equivalence relations since they are the orbit equivalence relations of Borel

actions of a Polish group.

We will next discuss how the space of minimal subshifts over finite alphabets can

be constructed as a subspace ofM2N . We will first argue that whether or not a pointed

Cantor minimal system has a finitely generated return times algebra can be expressed

with a Borel condition.

Observe that the map fromM∗
2N

to (2Z)B given by (ϕ∗, w) 7→ (retU (2N, ϕ−1, w))U∈B

is Borel since whether or not w ∈ V can be checked in a Borel way for every V ∈ B and

(retU (2N, ϕ−1, w))(k) = 1⇔ w ∈ (ϕ∗)
−k(U)

Identifying elements of P(Z) with their characteristic functions in 2Z, we can construct

a Borel map that sends each sequence w in (2Z)B to a sequence in (2Z)B that lists the
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elements of the Boolean algebra generated by {σk(w(i)) : i ∈ B ∧ k ∈ Z}, possibly

with repetitions. (To list the elements of this Boolean algebra, we can use a fixed

enumeration of the free Boolean algebra on the symbol set {γki : i ∈ B ∧ k ∈ Z}.)

It follows that whether or not a return times algebra is finitely generated can be

expressed with a Borel condition. Hence, the subset of M∗
2N

consisting of elements

that have finitely generated return times algebras is Borel. By Theorem 2.3.3, these

are precisely those pointed Cantor minimal systems that are topologically conjugate to

pointed minimal subshifts over finite alphabets. Since whether or not the return times

algebra of a pointed Cantor minimal system is finitely generated is independent of the

distinguished point, the subset of M2N consisting of Cantor minimal systems that are

topologically conjugate to minimal subshifts over finite alphabets is Borel and hence is

a standard Borel space.

It turns out that the standard Borel space of minimal subshifts over finite alphabets

which we described above is not the most convenient space for our purposes. In the next

section, instead of working with objects coding minimal subshifts, we will take a more

direct approach and construct the space of minimal subshifts over a finite alphabet a as

the set of minimal subshifts over the alphabet a endowed with an appropriate standard

Borel structure. This will allow us to regard the topological conjugacy relation on

minimal subshifts as a countable Borel equivalence relation rather than an essentially

countable Borel equivalence relation.

3.2 The standard Borel space of minimal subshifts

Recall that a subshift over a finite alphabet a is a topological dynamical system (O, σ)

where O is a closed σ-invariant subset of the compact space aZ.

It is well-known that for any metric space (X, d), the space K(X) of non-empty

compact subsets of X endowed with the topology induced by the Hausdorff metric

δd(C1, C2) = max{max
x∈C1

d(x,C2),max
y∈C2

d(y, C1)}

is a Polish space. It is easily checked that the map C 7→ σ[C] on K(aZ) is continuous
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and hence the set

Sσ,a := {O ∈ K(aZ) : σ[O] = O}

of subshifts over the alphabet a is a closed subset of K(aZ) [Cle09, Lemma 3]. It is

well-known that there exists a sequence of Borel functions gk : K(aZ) → aZ such that

for every C ∈ K(aZ) the set {fk(C)}k∈Z is dense in C [Kec95, Theorem 12.23]. Then

for every O ∈ Sσ,a and w ∈ O we have

Orb(w) = O ⇔ ∀k ∀i ∃j gi(O)[−k, k] = w[j − k, j + k]

Observe that w ∈ O is an almost periodic point of (O, σ) if and only if each subblocks of

w appears along w with bounded gaps, which can be expressed with a Borel condition.

Thus the set

Mσ,a := {O ∈ Sσ,a : O is infinite ∧ g0(O) is almost periodic ∧ Orb(g0(O)) = O}

is a Borel subset of Sσ,a and hence is a standard Borel space. By Theorem 1.6.1, the

standard Borel space Mσ,a is precisely the standard Borel space of minimal subshifts

over the alphabet a.

It easily follows from the Curtis-Hedlund-Lyndon theorem that the topological con-

jugacy relation on Sσ,a is a countable Borel equivalence relation [Cle09, Lemma 9].

Thus, the topological conjugacy relation is a countable Borel equivalence relation on

any Borel subspace of Sσ,a. In particular, it is a countable Borel equivalence relation

on Mσ,a.

To construct the standard Borel space of minimal subshifts over finite alphabets, we

can suppose without loss of generality that the finite alphabets which we use are finite

ordinals. Then the standard Borel space of minimal subshifts over finite alphabets is

simply

Mσ =
⋃
n≥2

Mσ,n

We have constructed two different standard Borel spaces for the class of minimal sub-

shifts over finite alphabets. We will now sketch how the equivalence of these construc-

tions can be proved.
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Given ϕ∗ ∈M2N coding a Cantor minimal system that is topologically conjugate to

a minimal subshift, we can first exhaustively search for some generating set F of

Ret(2N, ϕ−1, (0, 0, 0, ...))

using the maps we have constructed in §3.1. We then use the proof of Theorem 2.3.3

to construct a minimal subshift over the alphabet 2|F | which is topologically conjugate

to (2N, ϕ−1). Conversely, given a minimal subshift O in Mσ, we first choose a point

w ∈ O and construct the return times algebra A = Ret(O, σ,w). We then apply a

back-and-forth argument to construct an isomorphism of Boolean algebras between A

and B. Since (O, σ,w) is topologically conjugate to (S(A), ξ∗, xA), the isomorphism

we constructed between A and B can be used to find an automorphism of B coding

(O, σ). We skip the routine details of checking that these procedures define Borel maps

between the corresponding standard Borel spaces.

3.3 The standard Borel space of properly ordered Bratteli diagrams

In this section, we shall construct the standard Borel spaces of simple Bratteli diagrams

and properly ordered Bratteli diagrams.

Given a Bratteli diagram (V,E), we can suppose without loss of generality that the

vertex set and the edge set are fixed countably infinite sets V and E respectively. We

then code (V,E) by the triple (f, g, h) ∈ NV × NE × (V ×V)E such that f(v) = n for

each v ∈ Vn, g(e) = n for each e ∈ En, and h(e) = (s(e), r(e)) for each e ∈ E where s

and r are the corresponding source and range maps.

Let SBD be the subset of the Polish space NV × NE × (V × V)E consisting of

elements (f, g, h) satisfying the following conditions.

a. For all i ∈ N, {v ∈ V : f(v) = i} is non-empty and finite.

b. For all v, w ∈ V, if f(v) = f(w) = 0, then v = w.

c. For all non-zero i ∈ N, {e ∈ E : g(e) = i} is non-empty and finite.

d. For all e ∈ E, g(e) 6= 0.
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e. For all v, w ∈ V and e ∈ E, g(e) = f(w) = f(v) + 1 whenever h(e) = (v, w).

f. For all i ∈ N, there exists j > i such that for all v, w ∈ V with f(v) = i and

f(w) = j, there exist ei+1, ..., ej ∈ E such that (ei+1, ..., ej) is a path from v to w.

Observe that the set SBD is precisely the set of triples coding simple Bratteli diagrams.

Moreover, conditions (a)-(f) define a Borel subset of NV × NE × (V ×V)E and hence

SBD is a standard Borel space.

In order to code ordered Bratteli diagrams, we need to incorporate the partial order

relations on the edge set E. Identifying binary relations on E with their characteristic

functions in the Polish space 2E×E, we can regard the space of ordered Bratteli diagrams

as the Borel subset of NV×NE× (V×V)E× 2E×E consisting of quadruples (f, g, h, p)

satisfying conditions (a)-(e) and the following conditions

g. For all e ∈ E, p(e, e) = 1.

h. For all e, e′ ∈ E, p(e, e′) = 1 and p(e′, e) = 1 implies e = e′.

i. For all e, e′, e′′ ∈ E, p(e, e′) = 1 and p(e′, e′′) = 1 implies p(e, e′′) = 1.

j. For all e, e′ ∈ E, p(e, e′) = 1 or p(e′, e) = 1 if and only if π2(h(e)) = π2(h(e′))

where π2 is the projection map onto the second coordinate.

Recall that an ordered Bratteli diagram is properly ordered if it is simple, its space

of infinite paths is infinite, and there exist unique maximal and minimal paths. The

first property is expressed by the Borel condition (f). For the second property, consider

the Borel condition

k. The set {i ∈ N : ∃e, e′ ∈ E e 6= e′ ∧ g(e) = g(e′) = i} is infinite

It is easily checked that if B is a simple Bratteli diagram, then the space of infinite

paths XB is infinite if and only if the condition (k) holds. However, the last property

seems to require an existential quantification over the Polish space EN and hence is

an analytic condition. We will show that it is equivalent to a Borel condition for the

quadruples coding ordered Bratteli diagrams.
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Given an ordered Bratteli diagram (V,E,4), for each vertex v ∈ V there exists a

unique path from the root v0 to v each element of which is in Emin. It follows that if we

“mark” the minimal edges in the diagrammatic representation of (V,E) together with

the vertices which they connect, then we obtain a tree Tmin whose edge set is exactly

Emin. Since Tmin is finitely branching, König’s lemma implies that the following are

equivalent

• There is a unique infinite branch in Tmin.

• For every vertex v ∈ Tmin, there exists a unique successor v+ of v in Tmin such

that there exist infinitely many w ∈ Tmin above v+.

Similarly, one can argue that having a unique maximal path can be expressed with

a condition that quantifies over countable sets. It follows that the subset POBD of

NV × NE × (V ×V)E × 2E×E coding properly ordered Bratteli diagrams is Borel and

hence is a standard Borel space.

Let ∼ and ≈ denote equivalence of simple Bratteli diagrams and properly ordered

Bratteli diagrams on the standard Borel spaces SBD and POBD respectively. One can

show that ∼ and ≈ are both analytic equivalence relations by reducing these relations

to isomorphism relations on other mathematical structures represented by Bratteli di-

agrams. For example, it is proved in [Ell10, §2.3] that ∼ is Borel bireducible with

the isomorphism relation on countable simple locally finite groups of strongly diago-

nal type, which is an analytic equivalence relation. In §7.1, we will prove that ≈ and

∼=∗tc are Borel bireducible by constructing Borel maps between M∗
2N

and POBD map-

ping pointed Cantor minimal systems to their Bratteli-Vershik representations and vice

versa.
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Chapter 4

Proofs of Theorem B and Theorem C

In this chapter, we shall prove Theorem B and Theorem C. We begin by deducing

that ∼=∗tc ≤B ∆+
R from the fact that the set of return times algebras is a set of complete

invariants for topological conjugacy of pointed Cantor minimal systems.

Lemma 4.1. ∼=∗tc ≤B ∆+
R .

Proof. Recall that ∆+
2Z

and ∆+
R are Borel bireducible since any two uncountable stan-

dard Borel spaces are isomorphic. Thus it is sufficient to prove that ∼=∗tc≤B ∆+
2Z

. Let

f :M∗
2N
→ (2Z)N be the map given by

f((ϕ∗, w)) = (retg(i)(2
N, ϕ−1, w))i∈N

where g : N → B is a fixed enumeration of the clopen subsets of 2N. It follows from

the discussion in §3.1 that f is a Borel map. By Corollary 2.2.3, f is a Borel reduction

from ∼=∗tc to ∆+
2Z

.

To show that ∆+
R ≤B ∼=∗tc, it is enough to injectively assign a return times algebra to

each non-empty countable subset of R. In order to construct these return times algebras,

we will need a rich collection of syndetic subsets of Z and these will be obtained from

a non-Cantor minimal system. Fix an irrational number γ ∈ (0, 1) and consider the

irrational rotation Tγ : [0, 1) → [0, 1) defined by x 7→ x + γ (mod 1) where [0, 1)

is identified with the quotient R/Z. It is well-known that the topological dynamical

system ([0, 1), Tγ) is minimal [Kůr03, Proposition 1.32].

Our collection of syndetic sets will be constructed in a manner similar to the

construction of Sturmian words. A Sturmian word is a 0-1 sequence of the form

ret[0,γ)([0, 1), Tγ , x) for some x ∈ [0, 1). The main difference will be that we do not

insist that the endpoint of the half open interval be the same as the rotation angle.
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Let I ⊆ (0, 1) be a non-empty countable set and let AI denote the Boolean algebra

consisting of the subsets of [0, 1) generated by the collection

GI = {T kγ [[0, α)] : k ∈ Z ∧ α ∈ I}

Proposition 4.2. AI is a countable atomless Boolean subalgebra of P([0, 1)) whose

non-empty elements are finite unions of half open intervals and which is closed under

both Tγ and T−1
γ .

Proof. Observe that complements and intersections of finite unions of half open intervals

in [0, 1) are also finite unions of half open intervals. Since GI is a countable subcollection

of P([0, 1)) consisting of finite unions of half open intervals which is closed under both

Tγ and T−1
γ , the same is true of the Boolean algebra AI generated by GI . To see that

AI is atomless, assume to the contrary that there exists an atom ∅ 6= A ( [0, 1) in

AI . Recall that the Tγ-orbit of every point is dense by the minimality of ([0, 1), Tγ).

It follows that there exists k ∈ Z \ {0} such that A ∩ T kγ [A] 6= ∅. Note that kγ is

also irrational and hence ([0, 1), Tkγ) is also minimal. Since A is an atom in AI , we

have that A ∩ T kγ [A] = A. But then {T kiγ (x) : i ∈ Z} ⊆ A for any x ∈ A and hence

{T kiγ (x) : i ∈ Z} is not dense in [0, 1) for any x ∈ A, which contradicts the minimality

of ([0, 1), Tkγ).

Let AI be the image of AI under the Boolean algebra homomorphism

U 7→ RetU ([0, 1), Tγ , 0)

It follows from Proposition 4.2 that AI is a countable atomless subalgebra of P(Z)

which is closed under both ξ and ξ−1. By the minimality of ([0, 1), Tγ), since each

U ∈ AI contains an open interval, the set RetU ([0, 1), Tγ , 0) is a syndetic subset of Z

for every U ∈ AI . Hence AI is a return times algebra.

4.1 Asymptotic densities of the return times sets

Recall that the asymptotic density of a subset A of Z is defined to be the limit

Dens(A) := lim
n→∞

|A ∩ [−n, n]|
2n+ 1
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whenever it exists. Identifying P(Z) with 2Z, we can similarly define the asymptotic

density of an element α ∈ 2Z to be the limit

Dens(α) := lim
n→∞

|{k ∈ Z : α(k) = 1} ∩ [−n, n]|
2n+ 1

whenever it exists. In this section, we shall show that the set of asymptotic densities of

elements of AI is a topological conjugacy invariant for the collection of Cantor minimal

systems of the form (S(AI), ξ∗). We will need the following well-known theorem.

Theorem 4.1.1. [EW11] Let γ ∈ [0, 1) be an irrational number. Then for any x ∈ [0, 1)

the sequence (T iγ(x))i∈N is equidistributed in [0, 1) in the sense that for any a, b ∈ [0, 1)

with 0 ≤ a ≤ b < 1 we have that

lim
n→∞

|{j : 0 ≤ j < n, xj ∈ [a, b]}|
n

= b− a

By applying Theorem 4.1.1 to the irrational rotations Tγ and T1−γ , it is easily

checked that for every 0 ≤ a ≤ b < 1 and x ∈ [0, 1), we have that

Dens(Ret[a,b)([0, 1), Tγ , x)) = b− a

Since each element of AI is a finite union of half open intervals, this implies that

Dens(RetU ([0, 1), Tγ , 0)) = µ(U)

for every U ∈ AI where µ is the usual Lebesgue measure on [0, 1). Having shown that

elements of AI have well-defined asymptotic densities, we define the density set of AI

to be the collection

Dens(AI) := {Dens(A) : A ∈ AI}

= {Dens(RetU ([0, 1), Tγ , 0)) : U ∈ AI}

= {µ(U) : U ∈ AI}

In order to prove that Dens(AI) is an invariant of the topological conjugacy class

of (S(AI), ξ∗), we will need the following technical lemma.

Lemma 4.1.2. Let U ⊆ [0, 1) be a finite union of half open intervals. Then for every

α in the subshift of 2Z generated by retU ([0, 1), Tγ , 0) we have that Dens(α) = µ(U).
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Proof. Let α be in the subshift generated by retU ([0, 1), Tγ , 0). It is sufficient to find

some v ∈ [0, 1) such that α = retU ([0, 1), Tγ , v) since we know that

Dens(retU ([0, 1), Tγ , v)) = µ(U)

by the previous discussion. As α is in the subshift generated by retU ([0, 1), Tγ , 0), there

exists a sequence (nk)k∈N of integers such that α = lim
k→∞

σnk(retU ([0, 1), Tγ , 0)). Notice

that

α = lim
k→∞

σnk(retU ([0, 1), Tγ , 0)) = lim
k→∞

(retU ([0, 1), Tγ , T
nk
γ (0)))

Hence, our target point v ∈ [0, 1) should be the limit of the sequence Tnkγ (0) in [0, 1).

However, there is no reason that this sequence should converge. Nevertheless, the

sequential compactness of [0, 1) implies that there exists some subsequence (nki)i∈N

such that T
nki
γ (0) is convergent, say with the limit v = lim

i→∞
T
nki
γ (0). We would like to

move the limit operation inside so that

lim
i→∞

retU ([0, 1), Tγ , T
nki
γ (0)) = retU ([0, 1), Tγ , lim

i→∞
T
nki
γ (0)) = retU ([0, 1), Tγ , v)

If the function retU ([0, 1), Tγ , ·) were continuous, then this step would be justified.

However, Proposition 2.3.1 may fail if U is not clopen and retU (X,ϕ, ·) need not be

continuous in general. Even though retU ([0, 1), Tγ , v) is not necessarily α, we will next

prove that these sequences can differ at only finitely many indices.

Let Bv be the set of indices {j ∈ Z : T jγ (v) ∈ ∂U} where ∂U denotes the boundary of

U . Note that ∂U is finite and hence Bv is also finite. Otherwise, v would be a periodic

point of ([0, 1), Tγ), which contradicts the minimality of ([0, 1), Tγ). We will show that

retU ([0, 1), Tγ , v) � (Z−Bv) = lim
i→∞

(retU ([0, 1), Tγ , T
nki
γ (0)) � (Z−Bv))

where the limit is taken in the topological space 2Z−Bv . For each k ≥ 1, choose δk > 0

such that

δk < min{d(T jγ (v), y) : y ∈ ∂U ∧ −k ≤ j ≤ k ∧ j /∈ Bv}

where d is the usual metric on R/Z ∼= [0, 1). Since Tγ is an isometry with respect

to d, it follows from the choice of δk that for any v′ in the open ball Bd(v, δk) and

for any −k ≤ j ≤ k with j /∈ Bv, we have that T jγ (v) ∈ Int(U) ⇔ T jγ (v′) ∈ Int(U)
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where Int(U) is the interior of U . In other words, for any v′ ∈ Bd(v, δk) and for any

−k ≤ j ≤ k with j /∈ Bv, we have that

retU ([0, 1), Tγ , v)(j) = retU ([0, 1), Tγ , v
′)(j)

Since v = lim
i→∞

T
nki
γ (0), we know that for any k ≥ 1, there exists m ≥ 0 such that for

all i ≥ m we have |v − Tnkiγ (0)| < δk. It follows that

retU ([0, 1), Tγ , v) � (Z−Bv) = lim
i→∞

(retU ([0, 1), Tγ , T
nki
γ (0)) � (Z−Bv))

= ( lim
i→∞

retU ([0, 1), Tγ , T
nki
γ (0)) � (Z−Bv)

= α � (Z−Bv)

This implies that α and retU ([0, 1), Tγ , v) have the same asymptotic density µ(U).

We are now ready to prove the main result of this section.

Corollary 4.1.3. For every non-empty countable I, J ⊆ [0, 1), Dens(AI) = Dens(AJ)

whenever (S(AI), ξ∗) and (S(AJ), ξ∗) are topologically conjugate.

Proof. Assume that (S(AI), ξ) and (S(AJ), ξ) are topologically conjugate via the home-

omorphism π : S(AI) → S(AJ). Let r ∈ Dens(AI). Since Ret(S(AI), ξ∗, xAI )) = AI ,

there exists a clopen subset W of S(AI) such that

r = Dens(RetW (S(AI), ξ∗, xAI )) = Dens(Retπ[W ](S(AJ), ξ∗, π(xAI )))

It follows from Proposition 2.3.1 that the image of S(AJ) under the map

w 7→ retπ[W ](S(AJ), ξ∗, w)

is a subshift. This subshift is minimal since it is the factor of a minimal dynamical

system. Moreover, we know that

retW (S(AI), ξ∗, xAI ) = retU ([0, 1), Tγ , 0)

for some U ∈ AI ; and every sequence in the subshift generated by retU ([0, 1), Tγ , 0) has

the same asymptotic density by Lemma 4.1.2. In particular,

r = Dens(Retπ[W ](S(AJ), ξ∗, π(xAI ))) = Dens(Retπ[W ](S(AJ), ξ∗, xAJ ))
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and hence r ∈ Dens(AJ). Carrying out this argument symmetrically, we have that

Dens(AI) = Dens(AJ)

4.2 Reducing ∆+
R to ∼=tc and ∼=∗tc

In this section, we will construct Borel reductions from ∆+
R to both ∼=tc and ∼=∗tc. This

will prove Theorem B and complete the proof of Theorem C.

Recall that ∆+
I ∼B ∆+

R for any uncountable Borel subset I of R. Thus it is sufficient

to show that ∆+
I is Borel reducible to both ∼=tc and ∼=∗tc for some appropriately chosen

Borel subset I ⊆ (0, 1) of size continuum.

The key observation to construct such Borel reductions is the following. Taking

unions, intersections, and complements introduce no new boundary points as we gen-

erate AI from GI . Hence, the set of boundary points of elements of AI is exactly the

set of boundary points of elements of GI which is contained in the Q-span of {1, γ}∪ I.

Thus the density set Dens(AI) is contained in the Q-span of {1, γ} ∪ I since

Dens(AI) = {µ(U) : U ∈ AI}

Lemma 4.2.1. There exist an irrational number γ ∈ (0, 1) and a Borel subset I ⊆ (0, 1)

of size continuum such that I ∩ {1, γ} = ∅ and I ∪ {1, γ} is Q-linearly independent.

Proof. Fix a labeling of the vertices of the full binary tree of height ω by N. For any

infinite path α ∈ 2N, let Aα ⊆ N be the set of labels of the vertices that α passes

through. Observe that intersection of any two such sets is finite. We claim1 that if

we let rα =
∑∞

i=0 χAα(i) · 2−(i+1)2
for each α ∈ 2N, then the set {rα : α ∈ 2N} is

a Q-linearly independent subset of (0, 1) of size continuum, where χAα denotes the

characteristic function of Aα. To see this, assume to the contrary that there exist

{αi}ki=0 ⊆ 2N and {aαi}ki=0 ⊆ Q \ {0} such that
∑k

i=0 aαirαi = 0. By multiplying both

1The author learned this trick from a MathOverflow post [Gow] by Sir William Timothy Gowers
that is posted under the username “gowers” (http://mathoverflow.net/users/1459/gowers).
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sides by an appropriate integer, we may assume without loss of generality that the

coefficients aαi are integers. Since the pairwise intersections of the sets Aαi are finite,

we can find n ∈ Aα0 such that n ≥ 2
∑k

i=0 |aαi | and each m ≥ n belongs to at most

one of the sets Aαi . Then the binary expansion of
∑k

i=0 aαirαi necessarily contains the

binary digit 1 between its (n− 1)2-th binary digit and (n+ 1)2-th binary digit, which

is a contradiction.

Let γ ∈ {rα : α ∈ 2N} and set I := {rα : α ∈ 2N}\{γ}. Then I and γ satisfy our

requirements.

Theorem 4.2.2. ∆+
R is Borel reducible to both ∼=tc and ∼=∗tc.

Proof. Fix some irrational number γ ∈ (0, 1) and a Borel subset I ⊆ (0, 1) as in Lemma

4.2.1. Given any S ∈ IN, let f(S) and g(S) be elements of M2N and M∗
2N

which code

(S(AS), ξ∗) and (S(AS), ξ∗, xAS ) respectively, where S = {Si ∈ I : i ∈ N} and AS

is computed using the irrational rotation by γ. We will show that f and g are Borel

reductions from ∆+
I to ∼=tc and ∼=∗tc respectively.

We first argue that f and g are Borel maps from IN toM2N andM∗
2N

. Notice that

given any S ∈ IN, we can construct the sequence

(ret[0,Si)([0, 1), Tγ , 0))i∈N

in a Borel way. It follows from the discussions in §3.1 that there exists a Borel map

sending this sequence to some sequence AS in (2Z)N that lists the Boolean algebra

generated by

{σk(ret[0,Si)([0, 1), Tγ , 0)) : i ∈ N ∧ k ∈ Z}

The sequence AS enumerates the elements of AS , possibly with repetitions. Assume

for the moment that we have a Boolean algebra isomorphism iS : AS → B. Then the

corresponding elements of M2N and M∗
2N

which code (S(AS), ξ∗) and (S(AS), ξ∗, xAS )

are given by

f(S)(U) = V ⇔ iS(σ−1(i−1
S (U))) = V

and

g(S) = (f(S),
⋂
{U ∈ B : 0 ∈ i−1

S (U)})
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respectively. We now describe how the sequence (iS(AS(k)))k∈N in BN can be obtained

from AS in a Borel way. Fix an enumeration of B and the set of finite partial bijections

from N into N. Using these enumerations, given AS , we can construct a sequence (βn) of

Boolean algebra isomorphisms from finite Boolean subalgebras of AS to finite Boolean

subalgebras of B such that βn ⊆ βn+1 for all n ∈ N and
⋃
n∈N βn is an isomorphism

between AS and B. (This is a standard back-and-forth argument. At stage 2n and

2n + 1, we make sure that n-th elements of AS and B are already in the domain and

the range of β2n and β2n+1 respectively.)

It is easily checked that the procedure above can be defined in a Borel way. Hence

f and g are Borel maps from IN to M2N and M∗
2N

respectively. We now check that f

and g are reductions from ∆+
I to ∼=tc and ∼=∗tc respectively. Pick S,S′ ∈ IN such that S

is ∆+
I -equivalent to S′. Then clearly

Ret(S(AS), ξ∗, xAS ) = AS = AS′ = Ret(S(AS′), ξ∗, xAS′ )

It follows from Corollary 2.2.3 that g(S) ∼=∗tc g(S′) and hence f(S) ∼=tc f(S′). Now

pick S,S′ ∈ IN such that S is not ∆+
I -equivalent to S′. Recall that Dens(AS) and

Dens(AS′) are contained in the Q-spans of {1, γ} ∪ S and {1, γ} ∪ S′ respectively.

Moreover, we know that S ⊆ Dens(AS) and S′ ⊆ Dens(AS′). Since I ∪ {1, γ} is

Q-linearly independent, we have that Dens(AS) 6= Dens(AS′). Then it follows from

Corollary 4.1.3 that f(AS) �tc f(AS′) and hence g(AS) �∗tc g(AS′).

This proves Theorem B and completes the proof of Theorem C.
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Chapter 5

Basic structure of Toeplitz subshifts

In this chapter, following [Wil84, Dow05], we will give a detailed overview of the struc-

ture of Toeplitz sequences and Toeplitz subshifts. For the next two chapters, fix a finite

alphabet n ∈ N.

5.1 Toeplitz sequences and their scales

A bi-infinite sequence α ∈ nZ is called a Toeplitz sequence over the alphabet n if for all

i ∈ Z there exists j ∈ N+ such that α(i+kj) = α(i) for all k ∈ Z. Equivalently, Toeplitz

sequences are those in which every subblock appears periodically. Periodic sequences

are obviously Toeplitz. However, we shall exclude these since we are interested in

infinite subshifts generated by Toeplitz sequences and periodic sequences have finite

orbits under σ. From now on, all Toeplitz sequences are assumed to be non-periodic

unless stated otherwise.

Example 5.1.1. Let � denote the blank symbol. At stage 0 of our construction, we

start with the two-sided constant sequence of blank symbols. For i ≥ 1,

• At stage 2i−1, we choose the index j corresponding to the leftmost blank symbol

in the interval [0, 2i) not yet filled at the previous stages and replace each blank

symbol at position j + k22i−1 with the symbol 0.

• At stage 2i, we choose the index j corresponding to the rightmost blank symbol

in the interval [0, 2i+1) not yet filled at the previous stages and replace each blank

symbol at position j + k22i with the symbol 1.



52

We illustrate the first three stages of this construction below.

. . .�������������������������������� . . .

. . . 0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0� . . .

. . . 0�0 1 0�0 1 0�0 1 0�0 1 0�0 1 0�0 1 0�0 1 0�0 1 . . .

. . . 0 0 0 1 0�0 1 0 0 0 1 0�0 1 0 0 0 1 0�0 1 0 0 0 1 0�0 1 . . .

where the index of the leftmost slot is 0. Let αi be the two-sided sequence over the

alphabet 2 ∪ {�} obtained at the i-th stage of this construction. It is easily checked

that the sequence α ∈ 2Z defined by

α(j) = lim
i→∞

αi(j)

is a Toeplitz sequence over the alphabet 2.

We shall see later that every Toeplitz sequence can be obtained by such a recursive

construction. In order to carry out such an analysis, we will need the following objects

associated to each sequence α ∈ nZ for each p ∈ N+.

• The p-periodic parts of α is defined to be the set of indices

Perp(α) :=
⋃
a∈n

Perp(α, a)

where Perp(α, a) := {i ∈ Z : ∀k ∈ Z α(i + pk) = a} for each symbol a ∈ n. In

other words,

Perp(α) = {i ∈ Z : ∀k ∈ Z α(i) = α(i+ pk)}

p is called a period of α if Perp(α) 6= ∅. It follows from the definitions that the

sequence α is a Toeplitz sequence if and only if
⋃
p∈N+ Perp(α) = Z.

• The sequence obtained from α by replacing α(i) with the blank symbol � for

each i /∈ Perp(α) will be called the p-skeleton of α. The p-skeleton of α will be

denoted by Skel(α, p).

• Any subblock of the p-skeleton of α which consists of non-blank symbols and

which is preceded and followed by a blank symbol will be called a filled p-block of

the p-skeleton of α.
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• The indices of the p-skeleton of α containing the blank symbol will be called the

p-holes of α.

• The set of p-symbols of α is the set of words Wp(α) = {α[kp, (k + 1)p) : k ∈ Z}.

For example, consider the Toeplitz sequence α constructed in Example 5.1.1. The

set of essential periods of α is {2i : i ∈ N+}. For each i ∈ N+, the 2i-skeleton of α is

the sequence αi that is obtained at the i-th stage of the construction.

Proposition 5.1.2. Let α ∈ nZ be a sequence and let p, q ∈ N+ be periods of α.

a. If p|q, then Perp(α) ⊆ Perq(α).

b. If Perp(α) ⊆ Perq(α), then Pergcd(p,q)(α) = Perp(α).

Proof. (a) Assume that q = pk for some k ∈ N+. If i ∈ Perp(α), then α(i) = α(i+pkl)

for all l ∈ Z and hence i ∈ Perpk(α) = Perq(α). Thus Perp(α) ⊆ Perq(α).

(b) Assume that Perp(α) ⊆ Perq(α). By Bézout’s identity, there exists k1, k2 ∈ Z

such that gcd(p, q) = k1p+ k2q. If i ∈ Perp(α) ⊆ Perq(α), then

α(i) = α(i+ kk1p) = α(i+ kk1p+ kk2q) = α(i+ kgcd(p, q))

for any k ∈ Z and hence i ∈ Pergcd(p,q)(α). Thus Perp(α) ⊆ Pergcd(p,q)(α). The

converse inclusion follows from part (a).

Let α ∈ nZ. On the one hand, any multiple of a period of α is a period of α by

Proposition 5.1.2.a. On the other hand, we do not want to take “irrelevant” periods into

consideration. Using Proposition 5.1.2.b, we can restrict our attention to those periods

that are minimal among the periods that give the same p-skeletons. A positive integer

p ∈ N+ is called an essential period of α if p is a period of α and Perq(α) 6= Perp(α)

for all 1 ≤ q < p. Equivalently, p is an essential period of α if and only if the p-skeleton

of α is not periodic with any smaller period.

Proposition 5.1.3. If p, q ∈ N+ are essential periods of a sequence α then so is

lcm(p, q).
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Proof. Let p and q be essential periods of α. Assume to the contrary that lcm(p, q) is

not an essential period. Then there exists a period r with 1 ≤ r < lcm(p, q) such that

Perr(α) = Perlcm(p,q)(α) ⊇ Perp(α), P erq(α)

By Proposition 5.1.2, we have that

Perp(α) = Pergcd(p,r)(α) and Perq(α) = Pergcd(q,r)(α)

Since p and q are essential periods, gcd(p, r) = p and gcd(q, r) = q and hence lcm(p, q)|r

contradicting the assumption that r < lcm(p, q).

Thus we can associate a supernatural number to each sequence by taking the least

common multiple of its essential periods. The scale of a Toeplitz sequence α is the

supernatural number uα = lcm(ui)i∈N where ui is an enumeration of the essential

periods of α.

5.2 Toeplitz subshifts and their maximal equicontinuous factors

Every subblock of a Toeplitz sequence α appears periodically along α and hence the

return times of α to any basic clopen subset of its shift orbit closure Orb(α) contains

an infinite progression of the form p+ qZ. It follows that α is an almost periodic point

of (Orb(α), σ) and hence (Orb(α), σ) is a minimal subshift by Theorem 1.6.1. From

now on, such minimal subshifts will be called Toeplitz subshifts.

In this section, we will prove that the maximal equicontinuous factor of a Toeplitz

subshift Orb(α) is the odometer associated to the supernatural number uα. All results

in this section are originally due to Williams [Wil84]. However, the statements of the

following results are slightly more general than Williams’ original results and hence we

include the proofs for completeness. For the rest of this section, fix a Toeplitz sequence

α ∈ nZ.

Lemma 5.2.1. [Wil84] Let p ∈ N+ and for each 0 ≤ k < p, define

A(α, p, k) := {σi(α) : i ≡ k (mod p)}
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Then each element of A(α, p, k) has the same p-skeleton as σk(α), i.e. for each symbol

a ∈ n, we have that Perp(σ
k(α), a) = Perp(γ, a) for all γ ∈ A(α, p, k).

Proof. Let γ ∈ nZ be in A(α, p, k). Then there exists a sequence σpmi+k(α) converg-

ing to γ. Since Perp(σ
pmi+k(α), a) = Perp(σ

k(α), a) for all i ∈ N, we have that

Perp(σ
k(α), a) ⊆ Perp(γ, a) for each a ∈ n.

Now assume that for some symbol a ∈ n there existsm ∈ Perp(γ, a)−Perp(σk(α), a).

Since m /∈ Perp(σ
k(α), a), there exist another symbol b 6= a and an integer m′ such

that m′ ≡ m (mod p) and σk(α)(m′) = b. But since σk(α) is a Toeplitz sequence, we

can find q ∈ N+ such that m′ ∈ Perq(σk(α), b) ⊆ Perpq(σ
k(α), b). This implies that

for any γ′ ∈ A(α, p, k) there exists 0 ≤ m′′<pq with m′′ ≡ m′ ≡ m (mod p) such that

γ′(m′′) = b. However, γ(m′′) = a for all m′′ ≡ m (mod p) by assumption and hence no

sequence of elements of Arik can converge to γ which contradicts our assumption. Thus

Perp(σ
k(α), a) ⊇ Perp(γ, a) for all a ∈ n, which completes the proof.

Lemma 5.2.2. [Wil84] Let (ri)i∈N be a factorization of uα and let A(α, ri, k) be defined

as in Lemma 5.2.1. For each i ∈ N, we have that

a. {A(α, ri, k) : 0 ≤ k < ri} is a partition of Orb(α).

b. A(α, ri, k) ⊆ A(α, rj , l) for all j < i and k ≡ l (mod rj).

c. σ[A(α, ri, k)] = A(α, ri, k + 1) for k < ri − 1 and σ[A(α, ri, ri − 1)] = A(α, ri, 0).

Proof. By the definition of Orb(α), we have that
⋃
{A(α, ri, k) : 0 ≤ k < ri} ⊆ Orb(α).

Let i ∈ N and let p be an essential period of α such that ri|p, say p = q.ri. We will first

prove that A(α, p, k) and A(α, p, l) are at a positive distance apart from each other if

k 6≡ l (mod p). Let k and l be integers such that k 6≡ l (mod p). Since p is an essential

period of α, σk(α) and σl(α) must have different p-skeletons, which implies that there

exists a ∈ n such that m ∈ Perp(σk(α), a) − Perp(σl(α), a) for some integer m. Then

there exists m′ ≡ m (mod p) such that σl(α)(m′) = b for some symbol b 6= a. Let

q′ be a period of σl(α) such that p|q′ and m′ ∈ Perq′(σl(α), b). Observe that for any

γ ∈ A(α, p, l) there exists 0 ≤ m′′<q′ such that m′′ ≡ m′ ≡ m (mod p) and γ(m′′) = b.
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However, we know that γ′(m′′) = a for all γ′ ∈ A(α, p, k) and for all m′′ ≡ m (mod p).

Hence the distance between γ and γ′ is greater or equal to 2−(q′+1) for any γ ∈ A(α, p, l)

and γ′ ∈ A(α, p, k).

For any 0 ≤ k < ri, we have that A(α, ri, k) =
⊔q−1
j=0 A(α, p, jri + k). Since the sets

A(α, p, jri + k) are all at a positive distance apart from each other, it follows that the

sets A(α, p, jri + k) are disjoint and that

A(α, ri, k) =

q−1⊔
j=0

A(α, p, jri + k) =

q−1⊔
j=0

A(α, p, jri + k)

Hence the sets A(α, ri, k) are disjoint. Similarly, we have that

Orb(α) =

ri−1⊔
k=0

q−1⊔
j=0

A(α, p, jri + k) =

ri−1⊔
k=0

A(α, ri, k) =
⋃
{A(α, ri, k) : 0 ≤ k < ri}

which completes the proof of (a). Statements (b) and (c) easily follow from the defini-

tions.

Before we construct the maximal equicontinuous factor of Orb(α), we will mention

an important consequence of these lemmas. By Lemma 5.2.1 and Lemma 5.2.2.a, any

essential period of α is an essential period of any γ ∈ Orb(α) and vice versa. Therefore,

it makes sense to define the scale of a Toeplitz subshift O to be the supernatural number

that is the least common multiple of all essential periods of some (equivalently, every)

point of O.

Consider the map ψ : Orb(α)→ Odo(ui)i∈N given by

ψ(x) = (mi)i∈N

where x ∈ A(α, ui,mi) and the sequence (ui)i∈N is a factorization of uα. The map ψ

is continuous since the inverse images of the basic clopen sets of Odo(ui)i∈N are clopen

in Orb(α). (This follows from the fact that the sets in the partitions in Lemma 5.2.2.a

are clopen in the relative topology.) Moreover, we have that ψ ◦ σ = η ◦ψ and hence ψ

is a factor map. In order to show that Odo(ui)i∈N is the maximal equicontinuous factor

of Orb(α), it is sufficient to prove that ψ−1[ψ(α)] = {α}. (For example, see [Pau76,

Proposition 1.1].)
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Recall by Lemma 5.2.1 that the ui-skeletons of the sequences in the set A(α, ui,mi)

are the same. Hence two sequences β, β′ ∈ Orb(α) have the same uk-skeleton whenever

ψ(β) � k + 1 = ψ(β′) � k + 1. This implies that ψ is one to one on the set of Toeplitz

sequences since every subblock of a Toeplitz sequence eventually appears in some uk-

skeleton. In particular, we have that ψ−1[ψ(α)] = {α}, which completes the proof that

Odo(ui)i∈N is the maximal equicontinuous factor of Orb(α).

Since the maximal equicontinuous factor of a topological dynamical system is unique

up to topological conjugacy, it follows from Theorem 1.6.3 that topologically conjugate

Toeplitz subshifts have the same scale.

5.3 Various subclasses of Toeplitz subshifts

Given a Toeplitz sequence α and a factorization (ui)i∈N of its scale uα, we can imagine α

being obtained by a recursive construction where we start the construction with the two-

sided constant sequence of blank symbols and replace the blank symbols corresponding

to the indices Perui(α) periodically with the appropriate symbols at the i-th stage.

This way of understanding Toeplitz sequences from their constructions allows us to

isolate some special types of Toeplitz sequences as considered by Downarowicz [Dow05,

Section 9].

Of particular interest in this thesis will be the class of Toeplitz subshifts with sepa-

rated holes. A Toeplitz subshift O is said to have separated holes with respect to (ui)i∈N

if the minimal distance between the ui-holes in the ui-skeleton of every (equivalently,

some) element of O grows to infinity with i, where (ui)i∈N is a factorization of the

scale of O. It turns out that whether or not a Toeplitz subshift has separated holes is

independent of the particular factorization (ui)i∈N.

Proposition 5.3.1. Let (ui)i∈N and (vi)i∈N be two factorizations of the same super-

natural number u and let O be a Toeplitz subshift with scale u. Then O has separated

holes with respect to (ui)i∈N if and only if O has separated holes with respect to (vi)i∈N.

Proof. Let O be a Toeplitz subshift with scale u and let α be some sequence in O.
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Assume that O has separated holes with respect to (ui)i∈N. It follows from

lcm(ui)i∈N = lcm(vi)i∈N

that for any i ∈ N there exists j ∈ N such that ui|vj and hence Perui(α) ⊆ Pervj (α)

by Proposition 5.1.2. It follows that O has separated holes with respect to some sub-

sequence (vjk)k∈N. But the minimal distance between vi-holes in the vi-skeleton of α

cannot decrease as a function of i since Pervi(α) ⊆ Pervi+1(α). Hence O has separated

holes with respect to (vi)i∈N. Carrying out this argument symmetrically, we have that

if O has separated holes with respect to (vi)i∈N, then it also has separated holes with

respect to (ui)i∈N.

In this section, we will define a property that generalizes the property of having

separated holes. Given a Toeplitz subshift O and a Toeplitz sequence α ∈ O, let

A(α, p, k) be defined as in Lemma 5.2.1. Notice that for any β ∈ Orb(α), regardless of

whether or not β is a Toeplitz sequence, we have that

{A(β, ui, k) : 0 ≤ k < ui} = {A(α, ui, k) : 0 ≤ k < ui}

since the orbit of β is dense in Orb(α) by minimality. Therefore, this partition only

depends on ui and it will be denoted by Parts(Orb(α), ui).

By Lemma 5.2.1, every element of A(α, ui, k) has the same ui-skeleton. Conse-

quently, for each W ∈ Parts(Orb(α), ui), we can define the ui-skeleton of W to be the

ui-skeleton of some (equivalently, every) element of W and denote it by Skel(W,ui).

Define Parts∗(O, ui) to be the set

{W ∈ Parts(O, ui) : Skel(W,ui)(0) 6= � ∧ Skel(W,ui)(−1) = �}

If Parts∗(O, ui) is non-empty, then for each W ∈ Parts∗(O, ui), let length(W ) be

the smallest positive integer such that Skel(ui,W )(length(W )) = �. In other words,

length(W ) is the length of the filled ui-block of the ui-skeleton of W whose first non-

blank symbol is positioned at index 0. We note that the set Parts∗(O, ui) is non-empty

for all but finitely many i. The Toeplitz subshift O is said to have growing blocks with

respect to (ui)i∈N if

lim
i→∞

min{length(W ) : W ∈ Parts∗(O, ui)} = +∞
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i.e., O has growing blocks with respect to (ui)i∈N if the minimal length of filled ui-blocks

grows to infinity with i.

If a Toeplitz subshift O has separated holes with respect to a factorization of its

scale u, then it has separated holes with respect to any factorization of u by Proposition

5.3.1 and hence it has growing blocks with respect to any factorization of u.

Unfortunately, unlike having separated holes, having growing blocks is not indepen-

dent of the factorization (ui)i∈N. Consider the Toeplitz sequence whose (2k5)-skeletons

restricted to the interval [0, 2k5) are given by

0���0

0�1�00���0

0 0 1 0 00���00111001010

0 0 1 0 00�1�00111001010001000���00111001010

. . .

for each k ∈ N. We initially start with the 5-skeleton consisting of the repeated blocks

0���0. At every odd stage k, we fill the hole in the middle of the leftmost ��� block

along each interval [j2k5, (j + 1)2k5) with the symbol 1. At every even stage k, along

each interval [j2k5, (j + 1)2k5), we fill the first two single holes with the symbol 0, the

remaining single holes with the symbol 1, and replace the rightmost ��� block by the

block 101. It is easily checked that the Toeplitz subshift generated by this Toeplitz

sequence does not have growing blocks with respect to (2k5)k∈N. However, it does have

growing blocks with respect to (4k5)k∈N.

5.4 The standard Borel spaces of various subclasses of Toeplitz sub-

shifts

In this section, we construct the standard Borel spaces of various subclasses of Toeplitz

subshifts over the alphabet n as subspaces of the space of minimal subshifts over the

alphabet n constructed in §3.2. We will need the following theorem regarding the Borel

definability of Baire category notions.
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Theorem 5.4.1. [ST15] Let X be a Polish space and let F (X) be the Effros Borel

space F (X) consisting of closed subsets of X. Then for any Borel subset A ⊆ X, the

set

{F ∈ F (X) : (∃∗x ∈ F ) x ∈ A}

is Borel, where the quantifier ∃∗x ∈ F stands for “For non-meagerly many x in F”.

Recall that minimal subshifts form a Borel subset of K(nZ), which is identical to

F (nZ) by the compactness of nZ. Since the Toeplitz sequences of a Toeplitz subshift

form a dense Gδ subset [Dow05, Theorem 5.1] and the set of Toeplitz sequences is a

Borel subset of nZ, it follows from Theorem 5.4.1 that the set

Tn := {O ∈ K(nZ) : O is a Toeplitz subshift}

is a Borel subset of K(nZ) and hence is a standard Borel space.

Next we will construct the standard Borel spaces of Toeplitz subshifts with growing

blocks and separated holes. However, since having growing blocks is not independent

of the factorization we use for each supernatural number, in order to talk about the

standard Borel space of Toeplitz subshifts with growing blocks, we need to fix a map

that assigns a factorization to each supernatural number. Moreover, we want to express

the property of having growing blocks with a Borel condition and hence the factorization

map we will use should be Borel when considered as a function from (N ∪ {∞})N to

(N+)N. Given a supernatural number r =
∏
i∈N+ pkii , let

ṙt =
∏

1≤i≤t+1

p
min{ki,t+1}
i

and define the natural factorization (rt)t∈N of r to be the sequence obtained from the

sequence (ṙt)t∈N by deleting all 1’s and the repeated terms. We note that all results in

this thesis hold for any Borel factorization of supernatural numbers.

Recall that there exists a Borel map which chooses a point from each element in

K(nZ). Now fix a Borel map that chooses a point from each element of Tn. Since all

points in a Toeplitz subshift have the same essential periods, we can construct a Borel

map from τ : Tn → (N+)N that sends each Toeplitz subshift to the natural factorization

of its scale.
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By Lemma 5.2.1 and Lemma 5.2.2.a, the p-skeleton structures of all points in a

Toeplitz subshift are the same, up to shifting. Moreover, both having separated holes

and growing blocks with respect to the natural factorization can be expressed by Borel

conditions. Thus both

T ∗n := {O ∈ Tn : O has separated holes}

and

T ∗∗n := {O ∈ Tn : O has growing blocks with respect to τ(O)}

are Borel subsets of Tn and hence are standard Borel spaces. The restriction of the

topological conjugacy relation to Tn, T ∗n , and T ∗∗n are clearly countable Borel equivalence

relations. Moreover, it follows from the work of Thomas [Tho13] that the topological

conjugacy relation on T ∗n is not smooth.

5.5 Topological conjugacy of Toeplitz subshifts

In [DKL95], Downarowicz, Kwiatkowski, and Lacroix found a criterion for Toeplitz

subshifts to be topologically conjugate. In the proof of Theorem A, we will need this

criterion in a slightly more general form than it was originally formulated. In this

section, we will include these more general statements with their proofs. We note that

all results in this section are extracted from [DKL95, Theorem 1].

Lemma 5.5.1. Let (O, σ, α) and (O′, σ, β) be pointed Toeplitz subshifts and let π be

a topological conjugacy from (O, σ, α) to (O′, σ, β). Then for any p ∈ N+ such that

[−|π|, |π|] ⊆ Perp(α), P erp(β) there exists φ ∈ Sym(np) such that

φ(α[kp, (k + 1)p)) = β[kp, (k + 1)p) for all k ∈ Z

where |π| denotes the length of the topological conjugacy π as defined in §1.6.4.

Proof. Let p ∈ N+ be such that [−|π|, |π|] ⊆ Perp(α), P erp(β). Consider the relation

Γ : Wp(α)→Wp(β) given by

Γ(α[kp, (k + 1)p)) = β[kp, (k + 1)p)
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for each k ∈ Z. We want to prove that Γ is well-defined and one to one. Pick k, k′ ∈ Z

such that α[kp, (k + 1)p) = α[k′p, (k′ + 1)p). Since [−|π|, |π|] ⊆ Perp(α), P erp(β) we

have that

α[kp− |π|, (k + 1)p+ |π|] = α[k′p− |π|, (k′ + 1)p+ |π|]

By the definition of |π|, there exists some block code C inducing π such that |C| ≤ |π|.

Then we have that

β(kp+ u) = (π(α))(kp+ u)

= C(α[kp+ u− |C|, kp+ u+ |C|])

= C(α[k′p+ u− |C|, k′p+ u+ |C|])

= (π(α))(k′p+ u)

= β(k′p+ u)

for any 0 ≤ u < p and hence β[kp, (k + 1)p) = β[k′p, (k′ + 1)p). This proves that Γ is

well-defined. Since there exists a block code C ′ inducing π−1 such that |C ′| ≤ |π|, a

symmetrical argument shows that Γ is one to one. It follows that Γ is a bijection and

hence we can choose φ ∈ Sym(np) to be any permutation extending Γ.

Lemma 5.5.2. Let O and O′ be Toeplitz subshifts with the same scale r. Assume that

there exist a factor p of r and φ ∈ Sym(np) such that

φ(α[kp, (k + 1)p)) = β[kp, (k + 1)p) for all k ∈ Z

for some points α ∈ O and β ∈ O′. Then (O, σ, α) and (O′, σ, β) are pointed topologically

conjugate.

Proof. Observe that φ induces a homeomorphism φ̂ of nZ defined by

φ̂(γ)[kp, (k + 1)p) = φ(γ[kp, (k + 1)p))

for all k ∈ Z and γ ∈ nZ. Obviously φ̂(σpk(α)) = σpk(β) for any k ∈ Z. Let

A(α, p, 0) = {σi(α) : i ≡ 0 (mod p)}

and

A(β, p, 0) = {σi(β) : i ≡ 0 (mod p)}
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Since φ̂ is a homeomorphism and (φ̂)−1 = φ̂−1, it easily follows that

φ̂[A(α, p, 0)] = A(β, p, 0)

Recall by Lemma 5.2.2 that {A(α, p, k) : 0 ≤ k < p} and {A(β, p, k) : 0 ≤ k < p} are

partitions of O and O′ respectively. Let π be the map from O to O′ given by

π(γ) = σi(φ̂(σ−i(γ))) if γ ∈ A(α, p, i)

Obviously π is a bijection between O and O′. Moreover, it is continuous on each

A(α, p, i). Since the sets A(α, p, i) are at a positive distant apart from each other, it

follows that π is continuous on O and hence is a homeomorphism between O and O′. We

want to show that π is shift preserving. For any 0 ≤ i < p−2 and for any γ ∈ A(α, p, i),

we have that

π(σ(γ)) = σi+1(φ̂(σ−(i+1)(σ(γ)))) = σ(σi(φ̂(σ−i(γ)))) = σ(π(γ))

Since φ̂ commutes with σp, for any γ ∈ A(α, p, p− 1) we have that

σ(π(γ)) = σ(σ(p−1)(φ̂(σ−(p−1)(γ))))

= σp(φ̂(σ−(p−1)(γ)))

= φ̂(σp(σ−(p−1)(γ)))

= φ̂(σ(γ))

= π(σ(γ))

Therefore, π is a topological conjugacy between O and O′ sending α to β.

We remark that the proofs of Lemma 5.5.1 and Lemma 5.5.2 together imply that

if O and O′ are topologically conjugate Toeplitz subshifts, then some elements of the

partition Parts(O, p) are mapped onto some elements of the partition Parts(O′, p)

under the natural action of Sym(np) for a sufficiently large factor p of the common

scale.
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Chapter 6

Proof of Theorem A

In this chapter, we shall prove Theorem A. Indeed, we will prove the stronger result

that the topological conjugacy relation on the standard Borel space T ∗∗n of Toeplitz

subshifts with growing blocks is hyperfinite.

Recall that the set K(nZ) of non-empty compact subsets of nZ is a Polish space

endowed with the topology induced by the Hausdorff metric defined in §3.2. For each

p ∈ N+, consider the action of the symmetric group Sym(np) on K(nZ) defined by

φ ·K 7→ φ̂[K]

where φ̂ is the homeomorphism of nZ given by

φ̂(γ)[kp, (k + 1)p) = φ(γ[kp, (k + 1)p)) for all k ∈ Z and for all γ ∈ nZ.

Since there exists a sequence of Borel functions that choose a dense set of points from

each element of K(nZ) [Kec95, Theorem 12.23], given K,K ′ ∈ K(nZ), we can check

in a Borel way whether or not a dense subset of K is mapped onto a dense subset K ′

under φ̂. By the continuity of φ̂ and the closedness of K and K ′, this is equivalent to

φ̂[K] = K ′. It follows that the action of Sym(np) on K(nZ) defined above is Borel. Let

Dp denote the orbit equivalence relation of this Borel action. Clearly Dp is a finite Borel

equivalence relation since it is the orbit equivalence relation of a Borel action of a finite

group on a standard Borel space.

Before we present the proof of the main result of this chapter, we will prove the

following easy but useful proposition which shows that if there exists a p-hole in the

p-skeleton of a sequence α, then there exists a p-hole in the p-skeleton of its image under

a block code, which is no further from the p-hole in the sequence α than the length of

the block code.
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Proposition 6.1. Let (O, σ, α) and (O′, σ, β) be pointed Toeplitz subshifts and let π

be a factor map from O onto O′ such that π(α) = β. Assume that m ∈ N+ is the

length of some block code C inducing π. Then for all p ∈ N+ and k ∈ Z, we have that

k ∈ Perp(β) whenever [k −m, k +m] ⊆ Perp(α).

Proof. For all p ∈ N+ and k ∈ Z, if [k −m, k +m] ⊆ Perp(α), then for all l ∈ Z

β(k + pl) = (π(α))(k + pl) = C(α[k + pl −m, k + pl +m])

= C(α[k −m, k +m])

= (π(α))(k) = β(k)

which implies that k ∈ Perp(β).

We are now ready to present the main theorem of this chapter.

Theorem 6.2. The topological conjugacy relation on T ∗∗n is Borel reducible to E1.

Proof. It is not difficult to check that the set

Fin(K(nZ)) := {F ⊆ K(nZ) : F is finite and non-empty}

is a Borel subset of K(K(nZ)) and hence is a standard Borel space. Let Dfin
p be the

equivalence relation on Fin(K(nZ)) given by

(F, F ′) ∈ Dfin
p ⇔ {[W ]Dp : W ∈ F} = {[W ]Dp : W ∈ F ′}

for each p ∈ N+. Even though Dfin
p is not a subrelation of D+

p , we can think of Dfin
p as

the restriction of the Friedman-Stanley jump of Dp to the finite subsets of K(nZ).

Let vn be the equivalence relation on (N+)N × (Fin(K(nZ)))N defined by

(r, (Fi)i∈N) vn (s, (F ′i )i∈N)⇐⇒ r = s ∧ ∃j ∀i ≥ j (Fi, F
′
i ) ∈ Dfin

ri

Since each Dp is a finite Borel equivalence relation, each Dfin
p is a finite Borel equivalence

relation and hence is smooth. Fix a Borel isomorphism h0 : (N+)N → 2N and for each

p ∈ N+, fix some Borel reduction hp : Fin(K(nZ))) → 2N from Dfin
p to ∆2N . Then it is

easily checked that the map h : (N+)N × (Fin(K(nZ)))N → (2N)N given by

(r, (Fi)i∈N) 7→ (h0(r), hr0(F0), h0(r), hr1(F1), . . . )
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is a Borel reduction fromvn to E1. Thus it is sufficient to prove that the topological con-

jugacy relation on T ∗∗n is Borel reducible to vn. Let f : T ∗∗n → (N+)N × (Fin(K(nZ)))N

be the map given by

f(O) = (τ(O), χ(O))

where τ(O) is the natural factorization of the scale of O defined in §5.4 and the sequence

χ(O) is defined as follows. For each i ∈ N, if Parts∗(O, τ(O)i) 6= ∅, then we define

χ(O)i = {σbj/2c[W ] : W ∈ Parts∗(O, τ(O)i) ∧ length(W ) = j}

Otherwise, if Parts∗(O, τ(O)i) = ∅, then we set χ(O)i = {nZ}. In other words, possibly

except for finitely many i for which Parts∗(O, τ(O)i) = ∅, we define χ(O)i to be the

subset of Parts(O, τ(O)i) consisting of those elements which position the midpoints of

the filled τ(O)i-blocks in the τ(O)i-skeleton of O at index 0. (If such a block has even

length, then its “midpoint” is defined to be the index which cuts the block in such a

way that there is one more non-blank symbol on its left than on its right.)

We claim that f is a Borel reduction from the topological conjugacy relation on T ∗∗n

to the equivalence relation vn. It is straightforward to check that f is Borel and we

will skip the tedious details.

To see that f is a reduction, pick O,O′ ∈ T ∗∗n such that O and O′ are topologically

conjugate and let π : O → O′ be a topological conjugacy. Recall that topologically

conjugate Toeplitz subshifts have the same scale and hence τ(O) = τ(O′). Let (ri)i∈N

be the sequence τ(O). Since O and O′ both have growing blocks with respect to (ri)i∈N,

there exists n0 such that the minimal lengths of the filled ri-blocks of O and O′ are

both greater than 4|π|+ 6 for all i ≥ n0.

We claim that (χ(O)i, χ(O′)i) ∈ Dfin
ri for all i ≥ n0, which implies that f(O) vn f(O′).

Let i ∈ N be such that i ≥ n0. We want to show that

{[W ]Dri : W ∈ χ(O)i} = {[W ]Dri : W ∈ χ(O′)i}

Pick W ∈ χ(O)i. By the definition of χ(O), W is of the form σbn/2c[Z] for some set

Z ∈ Parts∗(O, ri) with length(Z) = n. Choose α ∈W and set β = π(α).
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Let k = bn/2c − |π| − 2 and k′ = bn/2c+ |π|+ 2. By the choice of i, we have that

n ≥ 4|π|+ 6 and hence k ≥ |π|+ 1. Since

[−k − |π| − 1, k + |π|+ 1] ⊆ Perri(α)

it follows from Proposition 6.1 that [−k, k] ⊆ Perri(β) and hence the subblock β[−k, k]

is a part of some filled ri-block of Skel(β, ri). Similarly, it follows from Proposition

6.1 that there are at least two ri-holes in Skel(β, ri) along the interval [−k′, k′] since

Skel(α, ri) has two ri-holes at the indices −1 − bn/2c and n − bn/2c. Let q′ < 0 < q

be the ri-holes in the skeleton Skel(β, ri) such that

Skel(β, ri)(q
′′) 6= �

for all q′ < q′′ < q. Clearly we have that −k′ ≤ q′ < −k < k < q ≤ k′. Set

j = d(q+q′)/2e. Notice that the filled ri-block to which β[−k, k] belongs is β[q′+1, q−1]

and the midpoint of this filled ri-block is j. Hence σj [π[W ]] ∈ χ(O′)i.

By the choice of i, we know that the minimal lengths of filled-ri-blocks of α and

σj(β) are both greater than 4|π|+6. Since W and σj [π[W ]] both position the midpoints

of the corresponding filled ri-blocks at 0, we have that

[−2|π| − 2, 2|π|+ 2] ⊆ Perri(α), P erri(σ
j(β))

On the other hand, it follows from the previous inequalities that

j = d(q + q′)/2e ≤ d(k′ − k)/2e ≤ |π|+ 2

and hence the topological conjugacy σj ◦ π sending α to σj(β) and its inverse can be

given by some block codes of length at most 2|π| + 2. Consequently, Lemma 5.5.1

implies that there exists φ ∈ Sym(nri) such that

φ(α[lri, (l + 1)ri)) = (σj(β))[lri, (l + 1)ri)

for all l ∈ Z. Then it easily follows from the proof of Lemma 5.5.2 that the induced

homeomorphism φ̂ bijectively maps W onto σj [π[W ]]. Therefore, W and σj [π[W ]] are

Dri-equivalent which shows that

{[W ]Dri : W ∈ χ(O)i} ⊆ {[W ]Dri : W ∈ χ(O′)i}
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Carrying out this argument symmetrically, we can easily obtain (χ(O)i, χ(O′)i) ∈ Dfin
ri .

Hence, f(O) vn f(O′) whenever O and O′ are topologically conjugate.

Now pick O,O′ ∈ T ∗∗n and assume that f(O) vn f(O′). Then τ(O) = τ(O′); and for

some sufficiently large i, there exists W ∈ Parts(O, τ(O)i) which is bijectively mapped

onto some W ′ ∈ Parts(O′, τ(O)i) via a homeomorphism φ̂ induced by a permutation

φ ∈ Sym(nτ(O)i). It follows from Lemma 5.5.2 that O and O′ are topologically conju-

gate.

Proof of Theorem A. It follows from Theorem 6.2 that the topological conjugacy rela-

tion on T ∗∗n is hypersmooth. By Theorem 1.5.6, this relation is hyperfinite since it is a

hypersmooth countable Borel equivalence relation. Consequently, its restrictions onto

Borel subsets of T ∗∗n are hyperfinite. In particular, the topological conjugacy relation

on T ∗n is hyperfinite.
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Chapter 7

Equivalence of properly ordered Bratteli diagrams

In this chapter, we shall analyze the Borel complexity of equivalence of properly ordered

Bratelli diagrams. In particular, we will show that ≈ and ∼=∗tc are Borel bireducible.

Then we will then restrict the equivalence relation ≈ to the class of properly ordered

Bratteli diagrams of finite rank and analyze its Borel complexity. Finally, we will discuss

some applications of our results and some possible further research directions.

7.1 Pointed Cantor minimal systems and properly ordered Bratteli

diagrams

In this section, we will describe how one can construct Borel maps between M∗
2N

and

POBD sending pointed Cantor minimal systems to their Bratteli-Vershik representa-

tions and vice versa. In our treatment of the correspondence between pointed Can-

tor minimal systems and properly ordered Bratteli diagrams, we shall follow [Dur10,

HPS92, Ska00].

We begin by introducing Kakutani-Rohlin partitions of Cantor minimal systems. A

clopen partition P of a topological space X is a partition consisting of clopen subsets

of X. Notice that a clopen partition of a compact space is necessarily finite.

Definition 7.1.1. A Kakutani-Rohlin partition of a Cantor minimal system (X,ϕ) is

a clopen partition Q of X of the form

Q = {ϕj [Bk] : 1 ≤ k ≤ t ∧ 0 ≤ j < hk}

where t, hk ∈ N+ and Bk is a clopen subset of X for each 0 ≤ k ≤ i. For each 1 ≤ k ≤ t,

the collection {ϕj [Bk] : 0 ≤ j < hk} is called the k-th tower of Q and the set Bk is
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said to be the base of the k-th tower. The height of the k-th tower is defined to be the

number hk.

Let (X,ϕ, x) be a pointed Cantor minimal system and assume for the moment that

there exists a sequence (Qi)i∈N of Kakutani-Rohlin partitions with

Qi = {ϕj [Bi
k] : 1 ≤ k ≤ ti ∧ 0 ≤ j < hi,k}

such that

a. Q0 = {X}, t0 = 1, h0,1 = 1, and B0
1 = X.

b.
⋂
i∈N

⋃
1≤k≤ti B

i
k = {x},

c. Qi+1 is finer than Qi for all i ∈ N, and

d.
⋃
i∈NQi generates the topology of X.

Using the sequence (Qi)i∈N, we will define a properly ordered Bratteli diagram whose

associated Bratteli-Vershik dynamical system is topologically conjugate to (X,ϕ, x).

The i-th vertex set of our properly ordered Bratteli diagram will have one vertex for

each tower in the i-th Kakutani-Rohlin partition Qi. More specifically, for each i ∈ N,

let Vi be the i-th vertex set

Vi := {(i, 1), . . . , (i, ti)}

Now, for each i ∈ N+, let Ei be the i-th edge set

Ei := {(i, k, k′, j) : ϕj [Bi
k′ ] ⊆ Bi−1

k , 1 ≤ k ≤ ti−1, 1 ≤ k′ ≤ ti, 0 ≤ j ≤ hi,k′}

The source and range maps of these edges are given by

s(i, k, k′, j) := (i− 1, k) and r(i, k, k′, j) := (i, k′)

respectively. Finally, let 4 be the partial order on the edge set given by

(i1, k1, k
′
1, j1) 4 (i2, k2, k

′
2, j2)⇔ i1 = i2 ∧ k′1 = k′2 ∧ j1 ≤ j2

It is well-known that B = (V,E,4) is a properly ordered Bratteli diagram and that

(X,ϕ, x) is topologically conjugate to (XB, λB, xmax) [HPS92, Dur10].
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We shall next prove that such sequences of Kakutani-Rohlin partitions always exist.

We will need the following technical lemma.

Lemma 7.1.1. [HPS92, Put89] Let Q be a clopen partition of X and C be a clopen

subset of X. Then there exists a clopen partition C1, . . . , Ct of C and positive integers

{hi : 1 ≤ i ≤ t} such that

Q′ = {ϕj [Ci] : 1 ≤ i ≤ t ∧ 0 ≤ j < hi}

is a Kakutani-Rohlin partition of X which is finer than Q.

Proof. Consider the first entrance map r : C → N+ given by

r(x) = inf{i ∈ N+ : ϕi(x) ∈ C}

Since (X,ϕ) is minimal and C is clopen, the map r is well-defined and continuous.

It follows that r[C] is compact and hence is finite. Let r[C] = {h1, . . . , ht′} and set

C ′i = r−1[{hi}]. It is straightforward to check that the collection

{C ′i : 1 ≤ i ≤ t′}

is a partition of C and that the collection

Q′ = {ϕj [C ′i] : 1 ≤ i ≤ t′ ∧ 0 ≤ j < hi}

is a partition of X. The partition Q′ is not necessarily finer than Q. This can easily be

fixed as follows. For each Z ∈ Q, if Z intersects some element ϕk[C ′i0 ] of the i0-th tower

but does not contain it, then we split the i0-th tower of Q′ into the following towers

{ϕj−k[ϕk[C ′i0 ] ∩ Z] : 0 ≤ j < hi0}

{ϕj−k[ϕk[C ′i0 \ Z]] : 0 ≤ j < hi0}

and then replace Q′ by the partition

{ϕj [C ′i] : 1 ≤ i ≤ t′ ∧ 0 ≤ j < hi ∧ i 6= i0}
⋃

{ϕj−k[ϕk[C ′i0 ] ∩ Z], ϕj−k[ϕk[C ′i0 \ Z]] : 0 ≤ j < hi0}
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We repeat this procedure for the remaining Z ∈ Q and refine the partition Q′ at each

stage if necessary. After finitely many steps, we exhaust all the elements of Q and the

resulting partition Q′ satisfies the requirements.

Theorem 7.1.2. [HPS92] There exists a sequence (Qi)i∈N of Kakutani-Rohlin parti-

tions

Qi = {ϕj [Bi
k] : 1 ≤ k ≤ ti ∧ 0 ≤ j < hi,k}

such that

a. Q0 = {X}, t0 = 1, h0,1 = 1, and B0
1 = X.

b.
⋂
i∈N

⋃
1≤k≤ti B

i
k = {x},

c. Qi+1 is finer than Qi for all i ∈ N, and

d.
⋃
i∈NQi generates the topology of X.

Proof. Fix a decreasing sequence of clopen sets (Ci)i∈N+ with
⋂
i∈N+ Ci = {x} and a

sequence of clopen partitions (Wi)i∈N+ such that Wi+1 is finer than Wi for all i ∈ N+

and the collection
⋃
i∈N+Wi generates the topology of X. By Lemma 7.1.1, there exists

a Kakutani-Rohlin partition Q1 such that Q1 is finer than W1 and the bases of towers

of Q1 form a partition of C1. For each i ≥ 2, we obtain Qi by applying Lemma 7.1.1

inductively to the clopen set Ci and the clopen partition

Wi ∨Qi−1 := {W ∩Q : W ∈ Wi ∧ Q ∈ Qi−1 ∧ W ∩Q 6= ∅}

It is routine to check that the resulting sequence (Qi)i∈N of Kakutani-Rohlin partitions

satisfies properties (a)-(d).

Given an element of M∗
2N

, by applying the constructions in the proofs of Theorem

7.1.2 and Lemma 7.1.1, we can construct a sequence of Kakutani-Rohlin partitions

satisfying properties (a)-(d) in a Borel way. (The only step of the proofs that seems to

require a quantification over an uncountable set is finding r[C] in the proof of Lemma

7.1.1. However, since X has no isolated points and r[C] is discrete, in order to find
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r[C], it is sufficient to evaluate r on a dense countable subset of C, which can be done

in a Borel way using a fixed countable dense subset of X.)

It is routine to check that the map that sends each element ofM∗
2N

to the properly

ordered Bratteli diagram obtained by the construction given at the beginning of this

section which uses the sequence of Kakutani-Rohlin partitions constructed by the above

procedure is Borel. This Borel map sends each pointed Cantor minimal system to one

of its Bratteli-Vershik representations and it follows from Theorem 1.6.4 that ∼=∗tc ≤B ≈.

We will now sketch how one can construct a Borel map from POBD toM∗
2N

which

sends each properly ordered Bratteli diagram to an automorphism of B coding the

Bratteli-Vershik dynamical system it represents.

Recall from the proof of Theorem 4.2.2 that there exists a Borel map from the space

of sequences in (2Z)N that enumerate return times algebras to the spaceM∗
2N

such that

each return times algebra is mapped to an automorphism of B coding the corresponding

ultrafilter dynamical system. A straightforward but tedious analysis shows that the map

which sends each properly ordered Bratteli diagram in POBD to an enumeration of

the return times algebra of its associated Bratteli-Vershik dynamical system is Borel.

Composing these maps, we obtain a Borel reduction witnessing that ≈ ≤B ∼=∗tc.

Having determined the Borel complexity of ≈, the next step would be to analyze

how the Borel complexity changes when we restrict our attention to various subclasses

of properly ordered Bratteli diagrams. In this thesis, we shall only consider equivalence

of properly ordered Bratteli diagrams of finite rank.

7.2 Properly ordered Bratteli diagrams of finite rank

A Bratteli diagram (V,E) is said to be of finite rank if there exists n ∈ N such that

|Vk| ≤ n for all k ∈ N. Downarowicz and Maass [DM08] proved that the Bratteli-

Vershik dynamical system associated to a properly ordered Bratteli diagram of finite

rank is topologically conjugate to either an odometer or a minimal subshift over a finite

alphabet.

Since topological conjugacy of odometers is smooth and topological conjugacy of
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minimal subshifts over finite alphabets is a countable Borel equivalence relation, equiv-

alence of properly ordered Bratteli diagrams of finite rank is an essentially countable

Borel equivalence relation and hence is Borel reducible to E∞.

Theorem 2.3.3 implies that the return times algebra of a Bratteli-Vershik dynamical

system arising from a finite rank properly ordered Bratteli diagram is finitely generated,

unless the system is topologically conjugate to an odometer.

Since the set I in the proof of Theorem 4.2.2 was chosen to be Q-linearly indepen-

dent, the return times algebra of the pointed Cantor minimal system (S(AS), ξ∗, xAS )

constructed in that proof is not finitely generated unless the corresponding countable

non-empty subset S of I is finite. Hence, the properly ordered Bratteli diagrams cor-

responding to the pointed Cantor minimal system (S(AS), ξ∗, xAS ) are of infinite rank

for any countably infinite S ⊆ I.

It is routine to check that for any uncountable standard Borel space X, the equiv-

alence relation ∆+
X is Borel bireducible with its restriction to the Borel subset

{x ∈ XN : {xn : n ∈ N} is infinite}

Consequently, equivalence of properly ordered Bratteli diagrams of infinite rank is Borel

bireducible with ∆+
R . Combining these observations with the fact that E∞ <B ∆+

R , we

obtain the following corollary.

Corollary 7.2.1. Equivalence of properly ordered Bratteli diagrams of finite rank is

strictly less complex than equivalence of properly ordered Bratteli diagrams of infinite

rank.

7.3 A non-uniformity theorem

In this section, as an application of Theorem C, we will prove a non-uniformity theorem

regarding assigning proper orderings to simple Bratteli diagrams.

Assume that we are given an unordered Bratteli diagram (V,E) such that the in-

cidence matrices have only positive entries at each level. Then we can easily attach

a partial order 4 to (V,E) as follows so that (V,E,4) is a properly ordered Bratteli



75

diagram [Ska91, Section 1]. Fix a linear order ≤∗ on E and a linear order ≤n on Vn

for each n ∈ N. Given e, e′ ∈ En+1 with r(e) = r(e′), define e 4 e′ if and only if either

s(e) <n s(e
′) or, s(e) = s(e′) and e <∗ e′. It is not difficult to see that the sources of

the minimal (respectively, maximal) edges are the same at every level and hence there

is a unique minimal (respectively, maximal) path.

Therefore, given a simple unordered Bratteli diagram B, we can explicitly attach a

partial order to the edges and obtain a properly ordered Bratteli diagram B∗, possibly

after telescoping B. Carrying out this procedure on the relevant standard Borel spaces,

it is not difficult to prove that there exists a Borel map f : SBD → POBD such that

for every B ∈ SBD we have f(B) ∼ B as unordered Bratteli diagrams. On the other

hand, this map is not “uniform” in the sense that B1 ∼ B2 does not necessarily imply

f(B1) ≈ f(B2).

One can ask whether or not such a uniform map exists. If we do not insist that f

be well-behaved, then we can use the axiom of choice to choose a representative from

each ∼-class and map each ∼-class to the properly ordered Bratteli diagram obtained

from the corresponding representative. We will prove that there does not exist such a

uniform Borel map. We first need to understand the complexity of ∼-equivalence of

simple Bratteli diagrams.

Hjorth [Hjo02] has proved that the isomorphism relation ∼=T FA on the standard

Borel space of countable torsion-free abelian groups is not Borel. Ellis showed that

∼=T FA is Borel reducible to the isomorphism relation for simple dimension groups [Ell10,

Proposition 6.2] and it essentially follows from the work of Effros, Handelman, and Shen

[EHS80] that the isomorphism relation for simple dimension groups is Borel reducible

to the equivalence relation ∼ on the space of simple Bratteli diagrams. (For a detailed

discussion of this construction, we refer the reader to [Eff81, Chapter 3].)

On the one hand, ∼ is not Borel since ∼=T FA is Borel reducible to it. On the other

hand, ≈ is Borel since we have proved that it is Borel bireducible with ∼=∗tc and hence is

Borel bireducible with ∆+
R . These observations immediately imply the following result.

Theorem 7.3.1. There exists no Borel map f : SBD → POBD such that
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• f(B) ∼ B as unordered Bratteli diagrams and

• f(B) ≈ f(B′) whenever B ∼ B′

for all B,B′ ∈ SBD.

Proof. Assume towards a contradiction that there exists such a Borel map f . Then f is a

Borel reduction from ∼ to ≈. This implies that ∼ is Borel, which is a contradiction.

7.4 Further research directions

In this concluding section, we will discuss some open problems regarding the Borel com-

plexity of the topological conjugacy relation on various topological dynamical systems.

Even though we have provided a lower bound for the Borel complexity of the topo-

logical conjugacy relation on Cantor minimal systems, we do not know any non-trivial

upper bounds. The techniques used in this thesis are designed to analyze topologi-

cal conjugacy of pointed Cantor minimal systems and it is not clear to us whether or

not they can be used to find any upper bounds for topological conjugacy of unpointed

Cantor minimal systems.

Open Question 1. What is the Borel complexity of the topological conjugacy relation

on Cantor minimal systems? In particular, is this relation even Borel?

We have observed that equivalence of properly ordered Bratteli diagrams of finite

rank is essentially countable and hence is Borel reducible to E∞. Moreover, E0 is a

lower bound for the Borel complexity of this relation. To see this, let (O, σ, α) be a

Toeplitz subshift over the alphabet 2, where α is a Toeplitz sequence such that the

scale of α is 2∞ and the 2k-skeleton of α contains a single hole along every interval of

length 2k for each k ∈ N+. It follows from [Dow05, Theorem 13.1] that there exists a

σ-invariant Borel probability measure on the space

XO = {β ∈ 2Z : β ∈ O ∧ β is a Toeplitz sequence}

Consequently, the orbit equivalence relation of the left-shift action of Z on XO cannot

have a Borel transversal and hence is not smooth. It follows that the equivalence
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relation E on XO defined by

β E β′ ⇔ (O, σ, β) and (O, σ, β′) are topologically conjugate

is not smooth since it is a countable Borel equivalence relation which contains a non-

smooth countable Borel equivalence relation [Tho13, Proposition 2.1]. An analysis of

the construction of Bratteli-Vershik representations of pointed Toeplitz subshifts with

Toeplitz points described in [GJ00, Theorem 8] shows that there exists a Borel map from

XO to the space of properly ordered Bratteli diagrams sending each β to a Bratteli-

Vershik representation of (O, σ, β) of finite rank. It follows that E ∼B E0 is Borel

reducible to equivalence of properly ordered Bratteli diagrams of finite rank. As far as

the author knows, E0 is the best known lower bound for the Borel complexity of this

relation.

Open Question 2. What is the Borel complexity of equivalence of properly ordered

Bratteli diagrams of finite rank? More generally, what is the Borel complexity of topo-

logical conjugacy of pointed minimal subshifts over a finite alphabet?

Finally, we would like to point out that the question of Sabok and Tsankov re-

garding topological conjugacy of Toeplitz subshifts in its full generality remains open.

We believe that the answer to this question is affirmative and that this relation is

hyperfinite.

Recall that if O and O′ are topologically conjugate Toeplitz subshifts, then some

elements of the partition Parts(O, p) are mapped onto some elements of the partition

Parts(O′, p) under the natural action of Sym(np) on K(nZ) for a sufficiently large

factor p of the common scale. The proof of Theorem 6.2 relies on the fact that we can

eventually identify the “correct” subset of each partition Parts(O, p) in a Borel way

for Toeplitz subshifts with growing blocks. We believe that it might be possible to find

such a Borel choice for arbitrary Toeplitz subshifts and construct a Borel reduction from

topological conjugacy of Toeplitz subshifts to E1, which would imply the hyperfiniteness

of the former equivalence relation.



78

Appendix A

Restricting the Friedman-Stanley jump to finite subsets

Given a Polish space X, the set K(X) of non-empty compact subsets of X is a Polish

space endowed with the topology induced by the Hausdorff metric defined by

δd(C1, C2) = max{max
x∈C1

d(x,C2),max
y∈C2

d(y, C1)}

It is easily checked that the set

Fin(X) := {F ⊆ X : F is finite and non-empty}

is an Fσ subset of K(X) and hence is a standard Borel space. Given a Borel equivalence

relation E on X, let Efin be the equivalence relation on Fin(X) defined by

u Efin v ⇔ {[x]E : x ∈ u} = {[x]E : x ∈ v}

It is well-known that there exists a sequence of Borel functions fk : K(X) → X such

that {fk(C)}k∈N is dense in C for all C ∈ K(X) [Kec95, Theorem 12.23]. It follows

that

u Efin v ⇔ (∀i ∃j (fi(u), fj(v)) ∈ E) ∧ (∀i ∃j (fi(v), fj(u)) ∈ E)

Thus Efin is a Borel equivalence relation. Even though Efin is not a subrelation of E+,

we can think of Efin as the restriction of the Friedman-Stanley jump to the finite subsets

of X. (It is straightforward to check that Efin is Borel bireducible with the restriction

of E+ to the Borel subset of XN consisting of sequences in which only finitely many

elements of X appear.) We will now explore some basic properties of the map E 7→ Efin.

Proposition A.0.1. Let E be a Borel equivalence relation on a standard Borel space

X. Then E ≤B Efin.

Proof. The Borel map x 7→ {x} is a Borel reduction from E to Efin.
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Proposition A.0.2. Let E and F be Borel equivalence relations on standard Borel

spaces X and Y respectively. If E ≤B F , then Efin ≤B F fin.

Proof. Assume that E ≤B F . Let g : X → Y be a Borel reduction from E to F . Then

it is easily checked that the map from Fin(X) to Fin(Y ) given by u 7→ {g(x) : x ∈ u}

is a Borel reduction from Efin to F fin.

Proposition A.0.3. Let E0 ⊆ E1 ⊆ . . . be an increasing sequence of Borel equivalence

relations on a standard Borel space X. Then Efin
0 ⊆ E

fin
1 ⊆ . . . is an increasing sequence

of Borel equivalence relations on Fin(X) and
⋃
i∈NE

fin
i = Efin where E =

⋃
i∈NEi.

Proof. It is clear that Efin
i ⊆ Efin

i+1 for all i ∈ N since Ei ⊆ Ei+1. Similarly, we have

that
⋃
i∈NE

fin
i ⊆ Efin since Ei ⊆ E. For the converse inclusion, let u, v ∈ Fin(X) and

assume that (u, v) ∈ Efin. Then for all x ∈ u there exists y ∈ v such that (x, y) ∈ E

and vice versa. Since E =
⋃
i∈NEi and both u and v are finite, these finitely many

equivalences are witnessed by En for some sufficiently large n. But then (u, v) ∈ Efin
n

and hence (u, v) ∈
⋃
i∈NE

fin
i .

Corollary A.0.4. Let E be a Borel equivalence relation on a standard Borel space X.

Then

a. If E has finite (respectively, countable) equivalence classes, then so does Efin.

b. If E is smooth, then so is Efin.

c. If E is hyperfinite, then so is Efin.

d. If E is hypersmooth, then so is Efin.

Proof. [a.] Choose u ∈ Efin, say u = {x0, . . . , xk} for some k ∈ N. Notice that any

representative of the equivalence class [u]Efin is a non-empty finite subset of
⋃k
i=0[xi]E .

Thus there are at most |Pfin(
⋃k
i=0[xi]E)|-many representatives of the equivalence class

[u]Efin where Pfin(A) is the set of finite subsets of A. It follows that if E has finite

(respectively, countable) equivalence classes, then so does Efin.

[b.] This follows from Proposition A.0.2 and the fact that ∆fin
R = ∆Fin(R).
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[c.] Assume that E is hyperfinite, say E =
⋃
n∈NEn for some increasing sequence

(En)n∈N of finite Borel equivalence relations. Then each Efin
n has finite equivalence

classes by part (a) and it follows from Proposition A.0.3 that Efin =
⋃
n∈NE

fin
n is

hyperfinite.

[d.] Assume that E is hypersmooth, say E =
⋃
n∈NEn for some increasing sequence

(En)n∈N of smooth Borel equivalence relations. Then each Efin
n is smooth by part (b)

and it follows from Proposition A.0.3 that Efin =
⋃
n∈NE

fin
n is hypersmooth.

By Corollary A.0.4, the Borel equivalence relations ∆N, ∆R, E0, E1, and E∞ are

fixed points of the map E 7→ Efin up to Borel bireducibility. Based on this observation,

one might conjecture that E ∼B Efin for all Borel equivalence relations E with infinitely

many E-classes. However, this naive conjecture turns out to be false. As we shall see

later, for every countable Borel equivalence relation E, the equivalence relation Efin

behaves like a universal finite index extension of E; and not every countable Borel

equivalence relation is Borel bireducible with all of its finite index extensions. We first

need to recall some basic definitions.

Let E ⊆ F be countable Borel equivalence relations on a standard Borel space X.

Then F is called a finite index extension of E if every F -class consists of finitely many

E-classes. We will write [F : E] <∞ to denote that F is a finite index extension of E.

Theorem A.0.5. Let E be a countable Borel equivalence relation on a standard Borel

space X. Then for every countable Borel equivalence relation F on X with [F : E] <∞,

we have that F ≤B Efin.

Proof. By the Feldman-Moore theorem, there exists a countable discrete group G such

that F = EXG for some Borel action of G on X. Let (gi)i∈N be a fixed enumeration of

elements of G and consider the map h : X → Fin(X) defined by

x 7→ {gi · x : i ≤ jx}

where jx is the least natural number such that

∀k ∃i ≤ jx (gk · x, gi · x) ∈ E
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It is easily checked that h is a Borel map. Notice that h maps every x to a finite

subset of X that contains representatives of each E-class contained in [x]F . Hence

xFy ⇔ h(x)Efinh(y) for all x, y ∈ X.

It follows that if E ⊆ F is a pair of countable Borel equivalence relations on a

standard Borel space X such that [F : E] < ∞ and F �B E, then Efin �B E and

hence E <B Efin. It is well-known that such pairs of countable Borel equivalence

relations exist [Ada02]. One may ask whether or not the only obstacle for a countable

Borel equivalence relation E to satisfy E ∼B Efin is the existence of such a finite index

extension.

Open Question 3. Let E be a countable Borel equivalence relation on a standard Borel

space X such that Efin �B E. Does there necessarily exist a countable Borel equivalence

relation F such that [F : E] <∞ and F �B E?
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