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Dissertation Director: Dr. David A. Case

0.1 Introduction

Chapter 1 contains a basic introduction to solvation models. Special attention is given to

the Ornstein-Zernike and RISM statistical mechanical solvation models used throughout

this work.

0.2 Correction of 3D-RISM Solvation Thermodynamics for Small Molecules

Implicit solvent models offer a fast way to estimate the effects of solvation on solute with-

out the complications of explicit simulations. One common test of model accuracy is to

compute the transfer energy from gas to liquid for a variety of small molecules, since

many of these values have been experimentally measured. Studies of the temperature

dependence of these values can provide additional insights into the performance of im-

plicit solvent models. In this work the temperature derivatives of solvation energies for

the 3D-RISM integral equation approach are computed. Results for 1123 small drug-like

molecules (both neutral and charged) in water are compared to results from molecular

dynamics simulations and experiment. The uncorrected results are rather poor, but it
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is known that errors are strongly correlated with the partial molar volumes of the so-

lutes. Several linear solvation energy corrections are examined and extended to deal with

solvation enthalpies and entropies. A new temperature-dependent linear correction is

introduced.

0.3 Crystal Structure Refinement with Periodic 3D-RISM

X-ray scattering measurements from macromolecular crystals can provide valuable infor-

mation about the solvent environment around biomolecules, but conventional refinement

techniques use only very simplified solvation models. In this work solvent distributions

for six protein structures are computed using molecular dynamics or integral equation

(3D-RISM) solvation models. Bragg intensities for both models are in better agreement

with experiment at all resolution ranges than those computed using the default “flat” sol-

vent model in the refmac5 refinement program, with the greatest improvement in the 1.5

to 2.5 Å range. Results from MD simulation are generally closer to experiment than those

from 3D-RISM, but the differences are small and should be balanced against the much

larger computational resources required for MD simulations. The 3D-RISM solvent dis-

tributions can be derived in seconds (for unit cells with 50 Å sides), and could be updated

regularly during the course of crystallographic refinement.
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Chapter 1

Introduction

1.1 Solvation

Solvation is the process of molecules (known as solute) becoming surrounded by a molec-

ular fluid (known as solvent) through their mutual interactions. The effect of solvation

on chemical processes is of great practical importance in science, medicine, and indus-

try. Nearly all known biological processes occur in a salt water solution, where the liquid

solvent often plays a critical role in altering biochemical reactions. In addition, many

biomolecules require a stable solvent environment to maintain their form and function.

Several major examples of solvation affecting biology include:

1. Protein conformational transitions can be more or less favorable depending on the

solvent environment [86, 18].

2. Protein and nucleic acid binding of virtually all varieties can be aided or hindered

depending on their solvent environment. This includes ligand binding, complex

formation, and DNA recognition and binding [69].

Drug solubility, efficacy, and side effects can critically depend on the surrounding solvent.

Thus modern drug design must take solvation into consideration. In industry, solvation is

commonly used to control reaction rates and reduce wear on manufacturing equipment.

Most industrialized methods of chemical synthesis and purification rely on regulated sol-

vation environments to economically produce large product volumes [44]. Thus, in prin-

ciple, a successful solvation model could reduce costs and increase success rates of many

activities: designing drugs to interact with their targets, investigating the mechanisms of

biochemical interactions which may reveal new drug targets, and engineering industrial

solvents and the materials they interface with, to name a few.
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Due to the importance of solvation interactions in a variety of fields, much effort has

been expended attempting to simulate solvation so its effects can be more accurately pre-

dicted. Simulating the motion of molecules in a fluid and interactions with their environ-

ment poses both theoretical and computational challenges. For mildly dilute solutions,

the ratio of solvent atoms to solute atoms is rather large, being on the order of 104:1

for water:albumin in the average human blood sample [1]. Even in more concentrated

cellular environments there remain far more water molecules than solute. Without the

use of clever methods and algorithms, even modern supercomputers could not handle

systems with such large numbers of mutually interacting moving objects. Attempting

to theoretically comprehend the quantitative and qualitative behavior of extremely large

systems requires sophisticated mathematical models whose complexity can easily obscure

their applicability and explanatory power. Thus modern solvation models trend towards

simplicity and computational efficiency, though this may be done at the cost of losing

generality and overlooking subtle solvation behavior which only occurs in complex or

computationally expensive models.

1.2 Solvation Models

Like all physical processes, solvation is ultimately governed by physics. At the heart of

most solvation models are solvent-solute interactions which can be modeled using a num-

ber of approaches varying in complexity, computational cost, and physical realism. Since

thermodynamics and statistical mechanics are the tools of choice when dealing with very

large numbers of interacting particles, most modern solvation models have as their goal

the calculation of thermal quantities which predict the statistically averaged behavior of

solvation dynamics. Thus solvation interactions form the starting point of solvation mod-

els and serve as a common tongue to bind them together. Similarly, thermodynamics and

mechanical dynamics are the the typical output of these models. Thus a natural starting

point for discussing solvation models is discussing the various known solvation interac-

tions.
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1.2.1 Solvation Interactions

The standard solvation model involves a total solute-solvent interaction energy which can

be divided into physically distinct additive component energies.

Esolv = Ecoul + Epol + Edisp + Eexc + ECT (1.1)

The total interaction energy Esolv is the total solvation interaction energy and can

be used when deriving most thermodynamic quantities of interest related to solvation.

The Coulombic solvation energy Ecoul results from the electrostatic interaction between

charged particles of the solute and solvent. It can be attractive or repulsive (i.e., nega-

tive or positive respectively) depending on the signs of interacting charged particles. All

magnetic and electrodynamic interactions are typically ignored since they are assumed

to have negligible effect on solvation. The polarization energy Epol arises from the so-

lute and solvent causing mutually induced electric dipole moments in one another (of-

ten called a induced dipole-induced dipole interaction). The dispersion energy Edisp is

due to charged particle motion leading to instantaneous dipole moments of the solute

or solvent which in turn creates an induced dipole moment in the other (often called an

instantaneous dipole-induced dipole interaction). Both polarization and dispersion in-

teractions are always attractive since the resulting induced dipoles increase separation of

oppositely charged particles between the solute and solvent. The exchange energy Eexc

results from the Pauli exclusion force between solute and solvent particles and is always

positive (i.e., repulsive) since Pauli exclusion prevents fermions (e.g., electrons, protons,

and neutronst) from occupying the same quantum state. The polarization, dispersion, and

exchange interactions are collectively known as the Van der Waals interactions. Finally,

the charge transfer energy ECT is the energy from charges being exchanged between so-

lute and solvent. While charge transfer is important in many solvation reactions where

solvent chemically interact with the solute, it has been largely ignored in published solva-

tion models, in part due to it requiring quantum methods which carry high computational

cost and added complexity.
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The total solvation interaction is used by solvation models to calculate solvation prop-

erties such as solvation thermodynamics. How exactly this is done depends on the model,

including the specific thermodynamic ensemble used by the model. Common thermo-

dynamic quantities of interest that solvation models can compute include the solvation

excess chemical potential, pressure of solvation, partial molar volume of the solvent, and

more. In addition, some models can provide a spatial distribution of the solvent. In bio-

physics these solvation quantities can be applied in calculating the effect of the solvent

environment on reaction rate constants, ligand binding affinity, and solubility. In addi-

tion, most models allow solvation forces to be calculated, which can be used in molecular

dynamics calculations, such as protein folding and ligand docking simulations.

1.2.2 Solvation Models

All solvation models discussed in this work provide a method of calculating one or more

of the solvation energies in equation (1.1). These models differ in

• physical assumptions

• accuracy

• computational cost

No existing practical solvation model is universally applicable as they must make physical

assumptions in order to balance accuracy and computational cost. As new and improved

computing technologies become available, this situation may change and a unified solva-

tion model may become feasible. As of this writing there are a large number of competing

models. Which model a researcher chooses depends on all three above factors with re-

spect to their application, though computational cost is often the dominant factor and

thus has been a major focus of recent solvation models.

Solvation models can be roughly divided into three categories (roughly in order of

greatest to least general computational cost): quantum, classical, and quasi- or non-physical.

Quantum solvation models are the most computationally expensive, often prohibitively

so for practical application, but they are necessary when solute-solvent and solvent-solvent
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covalent bonding or electron transfer must be considered. The most popular quantum sol-

vation model is the polarizable continuum model (PCM) which makes quantum modeling

tractable by treating the solvent as a continuum of some kind (dielectric, conductive, etc.)

rather than individual molecules. However, the same continuum approximation which

makes the PCM computationally attractive also reduces its ability to accurately model

covalent and electron transfer reactions, partly defeating one of the primary uses of quan-

tum models. Consequently PCM models are primarily useful when electrostatic forces

dominate solvation. For a general review of quantum solvation models, see [84].

Unlike quantum models, classical solvation models ignore electron transfer entirely

and focus an electrostatic effects and wave-free approximations for the van der Waals in-

teractions. Classical solvation models can be divided into explicit solvent models, where

every solvent molecule is individually modeled, and implicit solvent models, such as

where the solvent is represented as a continuum (similar to the PCM). By far the most

common explicit solvent model is the all-atom molecular dynamics simulation which

places solvent molecules in the simulation box with the solute and performs a full New-

tonian force calculation for all atoms. This is very computationally expensive due to the

sheer number of solvent atoms involved and the fact that they typically must interact with

one another as well as with the solute in order to obtain realistic solvent distributions.

Nonetheless, explicit solvent models have shown excellent agreement with experiment in

cases where electrostatic effects dominate solvation and have the added benefit of allow-

ing a consistent model to be used for both solvation and solute-solute interactions while

retaining computational feasibility.

The most popular classical implicit solvent model is the Poisson-Boltzmann equation

(PBE) and its linearized form, Debye-Hückle theory. When electrostatic effects dominate,

this family of models generally agree with explicit solvent models while requiring a tiny

fraction of the computational cost. Whereas most explicit and quantum solvent simula-

tions take hours to complete, PBE simulations take minutes or even seconds. However,

implicit solvent models tend to have greater error when compared to experiment than

explicit solvent models, though whether the size of this error is too great depends on the

application. Nevertheless, PBE models tend to be the solvent model of choice in practical
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applications due to their reasonable accuracy and very low computational cost.

Most of the models mentioned so far have experimentally determined parameters. The

few models which have little or no experimental parameters are called ’ab initio’ models,

though even among these so-called parameter free models there usually are a few ex-

perimental parameters. Virtually no practically useful solvation model relies entirely on

fundamental physical constants. In contrast to ab inito models, there are quasi- or non-

physical solvation models. Examples include the Solvent Accessible Surface Area (SASA)

model and the Generalized Born (GB) model. These models tend to use primitive geo-

metric approximations which, when well parameterized, can potentially give extremely

fast results that approach or exceed the accuracy of implicit solvation models. However,

since these models rely heavily on parameterization, it can be difficult to accurately esti-

mate their error when applied to a new molecule not contained in the parameterization

set. Thus these models tend to be primarily used in specialized cases for which they were

parameterized, such as solvation of small molecules or solvation of DNA-like helices.

There are limitations shared by all current practical solvation models. Generally, hy-

drophobic effects have proven difficult to capture using computationally accessible mod-

els. Viscosity of fluids is typically poorly modeled or ignored. Perhaps most important to

practical applications, especially in biophysics, hydrogen bonding often is not included

in models or inaccurately reproduced. For reactions involving ionization, they typically

cannot be modeled without resorting to the more sophisticated (and computationally ex-

pensive) quantum solvation models.

This work focuses on a currently underutilized family of classical solvation models

based on integral equations from statistical mechanics. They are in many ways similar to

implicit solvent models, treating the solvent as a continuum whose density distribution

must minimize an energy function, but unlike most implicit solvent models they also con-

sider the molecular structure of the solvent as well as solvent-solvent correlations. These

statistical mechanical models allow fast computation of accurate anisotropic thermally

averaged solvent distributions, even in 3D for the case of the 3D-RISM theory, something

not presently possible using traditional implicit solvent models.
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1.3 Statistical mechanics of fluids

A classical statistical mechanical model of fluids has proven useful for modeling solva-

tion. A brief general overview of the theory will be presented here. For a more thorough

presentation see [66] or [57], and for a relatively complete reference see [29].

For a given fluid, consider a function which counts the average number of particles

at a given position relative to a reference particle in the fluid. This is called the radial

distribution function (RDF) g (r), and can be used to obtain the particle number den-

sity ρ at a position r given some reference unperturbed (e.g., bulk) particle density ρ0,

ρ (r) = g (r) ρ0. For a homogeneous isotropic system of evenly distributed particles, the

RDF is dependent only on radial distance from the reference particle, g (r), whereas in

inhomogeneous systems where local density varies based on angle with respect to the

reference particle, the RDF may be a fully 3D function of relative position.

The RDF can be used to calculate the partition function, which bridges statistical me-

chanics to thermodynamics. With the partition function, the total thermodynamic system

energy can be calculated, which in turn allows for the Helmholtz energy to be calculated.

With these energies and the partition function, most desired thermodynamic quantities

can be computed, including the entropy, pressure, and heat capacity, among others. The

RDF approach to fluids extends naturally to solvation, where typically the reference par-

ticles are solute molecules (or their atoms) and the RDFs represent the local density of

solvent molecules (or their atoms) about the solute.

Unfortunately it is often difficult or impossible to measure fluid RDFs experimentally.

Thus theoretical methods are frequently employed to calculate the RDF of a system using

known parameters. Doing so requires knowledge about properties of the constituent par-

ticles of the system, including their particle-particle interactions. These properties may

be theoretically or experimentally determined, though whether this is practically possible

depends on the system.

One approach to calculating the RDF is by dividing it into two component correlation

functions. This is traditionally done by defining a new correlation function which rep-

resents the excess of the RDF over bulk, h (r) ≡ g (r) − 1, named the total correlation
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function (TCF). Then h (r) is divided into a sum of component correlations functions

h (r12) = c (r12) + t (r12) = c (r12) + ρ

ˆ
dr3 c (r13) h (r23) (1.2)

where r12 is the distance between particles 1 and 2 and ρ is the bulk particle density.

Equation (1.2) is know as the Ornstein-Zernike (OZ) equation. The OZ equation ex-

presses the TCF h (r12) between particles 1 and 2 as the sum of their pair-wise direct and

indirect correlation functions c (r12) and t (r12) (DCF and ICF respectively). The DCF

represents the direct probabilistic correlation between two particles without any interme-

diate particles, while the ICF is the sum of all correlations between two particles mediated

by a number of intermediate correlated particles. To calculate the ICF for each possible

mediating particle 3, the direct correlation of particle 1 and mediator 3 must be multiplied

by the total correlation between particle 2 and 3, hence the form of the second term on the

right side of equation (1.2). The hope of the OZ equation is that by separating the direct

and indirect interactions, one of the two interactions can be modeled in some way and

this model can be used with the OZ equation to obtain solutions for the TCF.

Note that the inclusion of the TCF in calculating the ICF makes the OZ equation recur-

sive, meaning an infinite set of mediating particles must be included when calculating the

TCF. Further, there are two unknowns (h (r), c (r)) and only one equation, so the equation

is undetermined. Still more, it is unclear how best to calculate the convolution integral in-

troduced to the OZ equation by the ICF. Thus the ICF is both what makes the OZ equation

interesting and challenging.

The problem of underdetermination is commonly resolved by artificially introducing

a second equation known as the closure relation, which effectively serves as a model of

the ICF:

t (r12) = h (r12)− c (r12) = exp [−βu (r12)− h (r12) + B (r12)] (1.3)

Here u (r12) is the interaction potential energy between particles 1 and 2 and β ≡
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1/kBT. The form the bridge function B (r12) takes is left to the imagination of the re-

searcher; without its definition, the equation is underdetermined. Roughly, the closure re-

lation states that the ICF exponentially decreases with the interaction and the TCF, while

the bridge function offers the means by which the ICF may exponentially increase (or

perhaps another cause of its exponential decrease depending on the sign of the bridge

function). There are some arguments attempting to justify the introduction of the closure

relation and the particular form it is given, including arguments for particular choices of

bridge functions, but all these arguments bely an underlying truth: the closure relation

is introduced artificially in an attempt to save a promising theory. Surprisingly, despite

the artificiality of the closure relation, it allows the OZ equation to produce physically

plausible results. Unsurprisingly, the quasi-physical nature of the closure relation leads

to difficulty diagnosing and treating sources of error in the resulting OZ equation solu-

tions. Thus the closure relation is a double-edged sword that must be treated with care in

order to obtain useful results from the OZ theory.

This does not resolve the infinitely recursive convolution integral. Most OZ solution

methods resolve this by solving the OZ equation in frequency space:

h̃ (k) = c̃ (k) + ρh̃ (k) c̃ (k) (1.4)

By the convolution theorem the convolution integral is converted to multiplication in

frequency space, resolving the infinite recursion. Matrix algebra can then be used to solve

the equation for the TCF.

The standard algorithm for solving the OZ equation uses iterative convergence:

1. Guess the values for one of the correlation functions (typically the DCF).

2. Calculate one of the other correlation functions using the closure relation.

3. Calculate the remaining correlation function using the OZ equation.

4. Check for consistency between correlation functions holds within an error tolerance

ξ (e.g., h (r12)− c (r12)− t (r12) ≤ ξ).
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5. If the error greater than the tolerance, repeat the process using a newly computed

correlation function guess using the calculated values of other correlation functions.

Many practical computational problems must be solved to make this approach tenable,

but in principle it allows solving the OZ equation to obtain the values of the associated

correlation functions, which can in turn be used to compute solvent distributions and

solvation thermodynamics.

1.4 RISM

The most popular form of the OZ equation is the molecular Ornstein-Zernike (MOZ) the-

ory, which treats molecules as particles by assigning them molecular correlation functions.

Unfortunately MOZ is computationally expensive to solve, in large part due to its six de-

grees of freedom (relative position and orientation of interacting molecules). One way to

reduce the cost is by averaging the orientational contribution to the correlation functions

so that only a radial component remains, then assuming that the molecular correlation

functions are a linear combination of atomic correlation functions. Doing so gives rise

to the reference interaction site model (RISM), which is the primary theoretical model

used in this work. The RISM retains many of the theoretical benefits of the OZ, including

producing spatial particle density distributions, while being significantly cheaper to com-

pute. The RISM can make use of many of the same closure relations as the OZ equation,

including the previously mentioned KH, HNC, and PSE-n closures. In addition, similar

algorithms can be employed to obtain its solution.

1.4.1 1D-RISM

The derivation of the RISM equation begins with the MOZ equation, which is very similar

to the OZ equation, but includes a dependence on relative molecular orientation

h (rAB, ΩA, ΩB) = c (rAB, ΩA, ΩB) +
ρ

8π2

ˆ ˆ ∞

−∞
drCdΩC c (rAC, ΩA, ΩC) h (rCB, ΩC, ΩB)

where A, B, and C are molecules.
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The RISM can be obtained by two operations.

First, the molecule-molecule TCF of MOZ is averaged over its orientations at a fixed

intermolecular distance, resulting in a site-site TCF:

h12 (r) =
1

Ω2

ˆ
dΩAdΩBδ

(
rA

1

)
δ
(

rB
2 − r

)
hAB (rAB, ΩA, ΩB)

where A and B are molecules and Ω is the number of angles (2π per angular degree of

freedom in the case of continuous angular integrals). The deltas effectively place site 1 at

the origin and site 2 at r, such that the contributions of all orientations and intermolecular

distances which maintain the site-site distance are averaged.

Second, the fundamental approximation of RISM is that the molecule-molecule DCF

is the sum of its respective atomic site-site DCFs

cAB (rAB) = ∑
1∈A,2∈B

c12 (r12) (1.5)

Combining the site-site approximation and the orientational averaging with the OZ

equation, the site-site Ornstein Zernike (SSOZ) equation, also called the one-dimensional

reference interaction site model (1D-RISM) equation, is obtained [12]:

h12 (r) = ∑
3,4

ω13 (r) ∗ c34 (r) ∗ω42 (r) + ρ ∑
3,4

ω13 (r) ∗ c34 (r) ∗ h42 (r) (1.6)

where Lab is the bond length between sites a and b, δab is unity if site a and b are the

same species and nil otherwise, and ω is the intramolecular correlation matrix

ω12 (r) = δ12δ (r) +
(1− δ12)

4πL2
12

δ12 (r− L12)

This matrix is equal to unity for correlation of particles with their own species at zero

distance, 1/4πL2
12 when the species are different and separated by a distance Lab, and nil

otherwise. It represents the rigid molecular structure of the solvent in matrix form so that

the inter-atomic distances have influence on the resulting TCF when solving the RISM

equation. A more complete discussion of this term is given in [30].

As with the OZ equation, in practice the 1D-RISM is solved in k-space since it simpli-

fies calculation of the convolutions:
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h̃12 (k) = ∑
3,4

ω̃13 (k) c̃34 (k) ω̃42 (k) + ρ ∑
3,4

ω̃13 (k) c̃34 (k) h̃42 (k) (1.7)

In this work the primary importance of the 1D-RISM is that its solution can be used to

calculate the solvent-solvent susceptibility function of a solvent system at a fixed temper-

ature and solvent density:

χvv
αγ (r) = ωvv

αγ (r) + ρv
αhvv

αγ (r) (1.8)

where ωvv
αγ (r) is the solvent intramolecular coordination function (a matrix which

models the solvent molecular geometry by being zero everywhere except where r is the

distance between two sites in the same solvent molecule), and ρv
α is the solvent site bulk

density.

The utility of χvv
αγ (r) is revealed in the next section.

1.4.2 3D-RISM

If instead of averaging the orientations of both molecules in the OZ equation, the position

and orientaiton of the central molecule is fixed and only the orientational freedom of the

test molecule is averaged:

h12 (r) =
1
Ω

ˆ
dΩBdrABδ

(
rA

1

)
δ
(

rB
2 − r

)
hAB (rAB, 0, ΩB)

while the RISM approximation is assumed the same as for the 1D-RISM (see equa-

tion (1.5)), then the 3D-RISM equation is obtained [6, 46, 48, 45]:

huv
γ (r) = ∑

α

ˆ
dr
′

cuv
α

(
r− r

′
)

χvv
αγ

(
r
′
)

(1.9)

The superscript uv indicates an interaction between a solute molecule u and solvent

molecule v, the subscripts α and γ indicate a given solvent site within the solvent molecule

v, r and r
′
are Cartesian position vectors, huv

γ (r) is the total correlation correlation function

(TCF) (related to the radial distribution function (RDF) by guv
α (r) = huv

α (r) + 1), cuv
α (r)

is the direct correlation function (DCF) (which is asymptotically proportional to the po-

tential, cuv
α (r) ∝ −uuv

α (r) / (kBT)), and χvv
αγ is the solvent-solvent susceptibility function
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obtained from equation (1.8) using the 1D-RISM. Note that χvv
αγ implicitly contains in-

fluence from the intramolecular correlation matrix and hence introduces the influence of

the atomic structure of the solvent into the 3D-RISM equation. It is this structural influ-

ence which primarily separates the 3D-RISM solvation model from other solvation models

which almost universally ignore solvent structure both when calculating thermodynamics

and solvent distributions.

The 3D-RISM is defined on a 3D grid due to the fixed orientation of the central molecule,

hence the “3D” in the 3D-RISM. By Fourier transform the 3D-RISM can be expressed in

k-space which allows the convolution integral to be more efficiently computed as simple

multiplication:

ĥα (k) = ∑
γ

ĉγ (k) χ̂VV
γα (k) (1.10)

The algorithm for solving the 3D-RISM equation is almost identical to the one pre-

viously outlined for solving the OZ equation. Just as with the OZ equation, a closure

equation is needed in order to solve the 3D-RISM for the DCF and TCF. Solvation ther-

modynamics and forces can then be directly computed using the TCF and DCF obtained

from solving the 3D-RISM equation for a particular closure.

1.5 Closures

The OZ equation requires an expression for the closure equation in order to calculate

a solution and provide an expression for the excess chemical potential and associated

thermodynamic variables. The most popular closure equations are the hypernetted chain

(HNC)[62], Kovalenko-Hirata (KH)[46] and the partial series expansion of order-n[41].

Since the results for the HNC and KH equations can be obtained from PSE-n when n = ∞

and n = 1 respectively, only the PSE-n will be considered here. Temperature derivatives

of all closures are in table 2.2.
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The PSE-n expression for the closure is given as

g (r) =


exp(t∗ (r)) t∗ (r) < 0

n

∑
i=0

t∗ (r)i

i!
t∗ (r) ≥ 0

(1.11)

t∗ (r) ≡ −βu (r) + h (r)− c (r)

The PSE-n closure assumes that the general form of the closure relation with the bridge

function set to zero is accurate when t∗ (r) < 0 (and hence t (r) < 1), but when t∗ (r) ≥ 0

(i.e., t (r) ≥ 1) a partial series expansion of the exponential is more numerically stable.

Surprisingly this relatively simple closure and its aforementioned relatives have become

the dominant closure model due to their simplicity and success in applications. As will

be shown in Chapter chapter 2, there are known physical deficiencies inherent to these

closures which manifest themselves in a number of ways, yet so far no other published

closure relation has managed to achieve such broad utility.

Given a specific closure equation, thermodynamic quantities can be computed for the

3D-RISM. For example, the corresponding excess chemical potential is

∆µPSE-n = kT ∑
γ

ργ

ˆ h2
γ (r)
2
− cγ −

hγ (r) cγ (r)
2

−
t∗γ (r)

n+1

(n + 1)!
Θ(hγ (r))dr (1.12)

where Θ is the Heaviside step function and γ is a solvent site.

The remainder of this work will attempt apply the 3D-RISM and its closures to prac-

tical problems involving solvation. Chapter 2 focuses on calculating accurate solvation

energies for small drug-like molecules, while Chapter 3 introduces a new version of 3D-

RISM extended to periodic solute and applies it to crystal structure refinement.
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Chapter 2

Correction of 3D-RISM Solvation Thermodynamics for Small
Molecules

Accurate solvation free energies and entropies are critical to correctly predicting and

understanding the outcome of most clinically relevant biochemical processes, including

drug binding affinity and reaction rates. During drug development, experimental mea-

surement of solvation thermodynamics is cost prohibitive due to the large number of

candidate molecules that must be synthesized and tested. This has led to interest in cal-

culating solvation thermodynamics using computer simulations. Unfortunately the most

accurate simulation methods which use explicit atomic models of the solvent, such as

molecular dynamics (MD) and ab initio quantum mechanical methods (QM), are com-

putationally expensive and often take weeks or months to complete a single calculation

[88, 73, 42, 59].

In response, faster, less accurate simulation methods have been developed which model

the solvent as an implicit continuum, such as the generalized Born (GB) [83] and Poisson-

Boltzmann (PB) [32, 5] methods. While PB in particular has had some success in predict-

ing experimental and MD solvation free energies, it is unable to predict the location of the

solvent molecules about the solute, and generally yields rather poor estimates for tem-

perature derivatives [74, 35]. The spatial distribution of solvent molecules is often critical

to understanding how solvation affects a particular reaction and can help improve the

design of drug candidates. Statistical mechanical methods from liquid-state theory [29],

such as density functional theory (DFT) [21, 93] or integral equation theories like molec-

ular Ornstein-Zernike (MOZ) [8, 37, 38] and the reference interaction site model (RISM)

[12, 31, 67], fill the gap between explicit and implicit solvent simulations.
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These methods typically make use of an atomic model of the solvent without explic-

itly modeling its motion in solution, allowing the methods to predict accurate solvent

distributions, similar to explicit solvent models, while retaining the relatively low com-

putational cost of implicit solvent models.

One promising integral equation method is the 3D-RISM [47, 7, 71], which extends

the RISM to calculate three-dimensional solvent distributions about a solute, at a frac-

tion of the computational expense of explicit solvent simulations. A known limitation of

the 3D-RISM is its poor agreement with experimental solvation energies for small neutral

molecules. Linear corrections for HNC-like closures have been proposed which increase

the accuracy of the 3D-RISM solvation energies to be comparable with those of explicit

solvent MD. Two such linear corrections are the Universal Correction (UC) [64, 70] and

the Ng bridge correction (NgB) [85], both having correction terms related to the partial

molar volume of the solvent. These linear corrections have found application both to DFT

theories and the 3D-RISM. Though useful, these corrections have not yet been satisfacto-

rily explained on physical grounds and require experimental parameterization to obtain

best results. Recent work by Sergiievsky et al. [80, 60] has lead to a parameter free cor-

rection of similar quality to UC and NgB for which several physical explanations have

been proposed [80, 15, 52, 79]. Gaining physical insight into why these corrections are

needed may provide a deeper understanding of integral equation methods and point to-

wards an analytic means of increasing their accuracy beyond what is possible with ad hoc

corrections.

In this work we introduce 3D-RISM as a practical method to calculate solvation en-

thalpies and entropies. Used in combination with the aforementioned corrections, good

quantitative agreement with experiment is achieved. Previously, the only way to obtain

such a decomposition was using exceptionally taxing MD simulations [68, 26, 33], but now

the 3D-RISM can be used to calculate accurate solvation energies and entropies for small

molecules in a fraction of the time. Further, when compared to experiment, the decom-

position indicates that the linear solvation energy corrections are mostly correcting the

entropic term. Possible implications of this on the physical basis for the linear corrections

and its relation to HNC-like closures will be discussed. These results provide insights into
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the physical realism of the 3D-RISM and suggest a path a to further improvements in the

method.

2.1 Theory

2.1.1 Energy and Entropy

Decomposition of excess chemical potentials into energy and entropic contributions using

temperature derivatives comes from Yu, Roux and Karplus [91, 92] and has been previ-

ously applied in a few applications [14, 89, 90].

In the canonical ensemble, the excess chemical potential, ∆µ, due to a solvent site α

is composed of the excess partial molar entropy, ∆sT,V , and partial molar total system

energy, ∆εT,V[92]

∆µα = ∆εα,T,V − T∆sα,T,V . (2.1)

To simplify the notation, we will assume a canonical ensemble and omit the T, V subscript

from this point on. The entropy can be expressed as the temperature derivative of the the

excess chemical potential,

T∆sα = −T
(

∂∆µα

∂T

)
ρ

= −δT∆µα (2.2)

where

δT ≡ T
(

∂

∂T

)
ρ

. (2.3)

Inserting equation (2.2) into equation (2.1) we have

∆εα = ∆µα − δT∆µα (2.4)

and

−T∆sα = ∆µα − ∆εα.

The 3D-RISM can be used to calculate ∆µα (e.g., using equation (1.12) for the PSE-n

closure). The temperature derivative is then obtained by applying equation (2.3) to the

3D-RISM equation, equation (1.10), giving

δTĥ = {δT ĉ} χ̂VV + ĉδTχ̂VV (2.5)
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where δTχ̂VV = ρδTĥVV is obtained from the 1D-RISM.

Applying equation (2.3) and the PSE-n expression of the excess chemical potential

(equation (1.12)) gives

∆εPSE-n = ∆µPSE-n − δT∆µPSE-n

= −kT ∑
γ

ργ

ˆ
hγ (r) δThγ (r)− δTcγ (r)

− 1
2
[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)]

−
t∗γ

n (r)
n!

[βu (r) + δThγ (r)− δTcγ (r)]Θ (hγ (r)) dr.

(2.6)

The temperature derivative of the closure, necessary to solve the temperature derivative

integral equation, is

δTh (r) = δTg (r) =


g (r) δTt∗ (r) t∗ (r) < 0

n−1

∑
i=0

t∗ (r)i

i!
δTt∗ (r) t∗ (r) ≥ 0

(2.7)

δTt∗ (r) = βu (r) + δTh (r)− δTc (r) .

2.1.2 Solvation Energy Corrections

While the excess chemical potential given by equation (1.12) is consistent with the PSE-n

closure, in practice, solvation free energies calculated from this expression are too high,

which has been linked to the non-polar component[16, 24, 40]. In response to this, a num-

ber corrections have been proposed that use a modified form of the excess chemical po-

tential while leaving the predicted solvent distributions unchanged.

For brevity, we will focus on the Universal Correction (UC) [65] and initial state cor-

rection (ISc) [80, 60]. Details of the Gaussian fluctuations correction (GF) [13, 36], and the

Ng Bridge Correction (NgB) [85] are presented in 4.1. Temperature derivatives of these

corrected free energy expressions yield an expression for the solvation energy, much like

equation (2.6). Expressions for all these corrections can be found in table 2.1 and table 2.2.
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Closure Closure Relation

KH g (r) =

 exp(t∗ (r)) t∗ (r) < 0

1 + t∗ (r) t∗ (r) ≥ 0
HNC g (r) = exp (t∗ (r))

PSE-n g (r) =


exp(t∗ (r)) t∗ (r) < 0

n

∑
i=0

t∗ (r)i

i!
t∗ (r) ≥ 0

t∗ (r) = −βu (r) + h (r)− c (r)

Closure Excess Chemical Potential

KH ∆µKH = kT ∑γ ργ

´ h2
γ(r)
2 Θ (−hγ (r))− cγ (r)− hγ(r)cγ(r)

2 dr
HNC ∆µHNC = kT ∑γ ργ

´ h2
γ(r)
2 − cγ (r)− hγ(r)cγ(r)

2 dr
PSE-n ∆µPSE-n = kT ∑γ ργ

´ h2
γ(r)
2 − cγ (r)− hγ(r)cγ(r)

2 − t∗γ(r)
n+1

(n+1)! Θ(hγ (r))dr

Correction Excess Chemical Potential

GF ∆µGF = kT ∑γ ργ

´
−cγ (r)− hγ(r)cγ(r)

2 dr
UCT ∆µUC = ∆µRISM + av + b

NgBT ∆µNgB = ∆µRISM + kTρO
2 (1− γ)

´
cnp

O (r) dr
ISc ∆µISc = ∆µRISM − 1

2 kTv
(

1
χTkT + ρTot

)
ISc∗ ∆µISc∗ = ∆µRISM − 1

2 kTv
(

1
χTkT − ρTot

)
Table 2.1: Closure expressions and excess chemical potential equations for various com-
mon closures and corrections.
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Closure Temperature Derivative

KH δTh (r) =

{
g (r) δTt∗ (r) for t∗ < 0
δTt∗ (r) for t∗ ≥ 0

HNC δTh (r) = g (r) δTt∗ (r)

PSE-n δTh (r) =


g (r) δTt∗ (r) t∗ (r) < 0

n−1

∑
i=0

t∗ (r)i

i!
δTt∗ (r) t∗ (r) ≥ 0

δTt∗ (r) = βu (r) + δTh (r)− δTc (r) .

Closure Excess Solvation Energy

KH ∆εKH = −kT ∑
γ

ργ

ˆ
hγ (r) δThγ (r)Θ (−hγ (r))− δTcγ (r)

− 1
2
[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)] dr

HNC ∆εHNC = −kT ∑
γ

ργ

ˆ
hγ (r) δThγ (r)− δTcγ (r)

− 1
2
[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)] dr

PSE-n ∆εPSE-n = −kT ∑
γ

ργ

ˆ
hγ (r) δThγ (r)− δTcγ (r)

− 1
2
[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)]

−
t∗γ

n (r)
n!

[βu (r) + δThγ (r)− δTcγ (r)]Θ (hγ (r)) dr

Correction Excess Solvation Energy

GF ∆εGF = −kT ∑
γ

ργ

ˆ
−δTcγ (r)−

1
2
[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)] dr

UCT ∆εUCT = ∆εRISM + a (v− δTv)− Ta1v + b0
NgBT ∆εNgB = ∆εRISM − kTρO

2

{
(1− γ)

´
δTcnp

O (r) dr− γ1T
´

cnp
O (r) dr

}
ISc ∆εISc = ∆εRISM + 1

2 kTδTv
(

1
χTkT + ρTot

)
− 1

2 kTv
(

1
χTkT

)2
(χTkT + δTχTkT)

ISc∗ ∆εISc∗ = ∆εRISM + 1
2 kTδTv

(
1

χTkT − ρTot

)
− 1

2 kTv
(

1
χTkT

)2
(χTkT + δTχTkT) .

Table 2.2: Closure expression temperature derivatives and excess solvation energy equa-
tions for various common closures and corrections.
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2.1.2.1 Universal Correction

The Universal Correction (UC) is a simple empirical correction to the RISM excess chemi-

cal potential [65],

∆µUC = ∆µRISM + av + b (2.8)

where a and b are parameterized from experimental data and v, the partial molar volume

(PMV), is calculated from equation (2.9). In the original presentation, the Gaussian fluc-

tuation approximation (GF) [13, 36] was used for ∆µRISM, but subsequent studies have

used the closure specific excess chemical potential with improved results [85, 34]. In what

follows either the closure specific or Gaussian fluctuation approximation may be used

(see 4.1.1 for details of the GF temperature derivative). The parameterization must be

repeated for any change in solvent composition, temperature or density. As will be re-

vealed in the results seciton, the expression shows considerable improvement for small,

non-polar molecules in pure water.

[14] provide the following convenient expression for the PMV

v = kBTχT

(
1−∑

γ

ργ

ˆ
cγ (r) dr

)
(2.9)

where χT is the isothermal compressibility for the bulk solvent, calculated as[20, 57, 28]

χT =
β

ρTot −∑α ∑γ ραργ ĉαγ (0)
. (2.10)

For uncorrected excess chemical potential, the non-polar component, ∆µRISM
NP , can be

obtained by setting all partial charges to zero. The polar component is then

∆µRISM
Pol = ∆µRISM − ∆µRISM

NP .

For UC, the non-polar component is

∆µUC
NP = ∆µRISM

NP + avNP + b

where vNP is the partial molar volume of the chargeless solute. The polar component is

computed as

∆µUC
Pol = ∆µUC − ∆µUC

NP

= ∆µRISM
Pol + avPol.
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Since solvent polarization component of the partial molar volume, vPol, is relatively small,

the polar component of the excess chemical potential is only slightly changed.

In the original formulation, a and b are constants with no temperature dependence.

However, as we show in Results, including a linear temperature dependence for these

coefficients,

a = a0 + a1T,

b = b0 + b1T, (2.11)

provides significantly improved results compared to experiment. Applying equation (4.5)

to equation (2.8) we have

δT∆µUC = δT∆µRISM + a1Tv + aδTv + b1T (2.12)

The temperature derivative of the PMV is

δTv = v + kT {δTχT}
(

1−∑
γ

ργ

ˆ
cγ (r) dr

)
− kTχT

(
∑
γ

ργ

ˆ
{δTcγ} dr

)
(2.13)

where δTχT is also pre-calculated with DRISM,

δTχT = −χT + β
[
ρTot −∑α ∑γ ραργ ĉαγ (0)

]−2 [
∑α ∑γ ραργ

´
{δTcαγ} dr

]
= −χT +

χ2
T

β

[
∑α ∑γ ραργ

´
{δTcαγ} dr

]
.

(2.14)

After some algebra, we have

∆εUC = ∆εRISM + a (v− δTv)− a1Tv + b0.

Including this form of temperature dependence does not change the fitting procedure to

determine a and b needed for solvation free energies. Only two new parameters need to

be fit, a1 and b0, and can determined by fitting against empirical enthalpies or entropies

at a single temperature.

The Ng Bridge Correction (NgB) [85] is similar in spirit to UC but contains an explicit

temperature dependence and only one free parameter. Details of NgB can be found in

4.1.2.
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2.1.2.2 Initial State Correction

The so-called initial state correction (ISc) [80],

∆µISc = ∆µRISM −
[

ρTotkT − 1
2

ρ2
TotkTĉ (k = 0)

]
v, (2.15)

and ISc∗,

∆µISc∗ = ∆µRISM +
1
2

ρ2
TotkTĉ (k = 0) v, (2.16)

are similar to UC and NgB corrections, but differ in that they are analytic, parameter free

corrections. There has been considerable discussion as to the physical meaning of these

corrections and which is appropriate for 3D-RISM [60, 15, 79]. The factor in square brack-

ets in equation (2.15) is the pressure of the solvent derived from the molecular density

functional theory (MDFT) free energy expression [80],

PMDFT = ρTotkT − 1
2

ρ2
TotkTĉ (k = 0) . (2.17)

It is well known that the HNC family of closures overestimate solvent pressures by several

orders of magnitude [28, 39] and the ISc correction can be seen as compensating for the

additional work required to insert the solute into the liquid. With this in mind, [79] have

derived

P3DRISM =
Nsite + 1

2
ρTotkT − 1

2
ρ2

TotkTĉ (k = 0) (2.18)

specifically for 3D-RISM using a density functional approach. Nsite is the number of sol-

vent sites and, for water, Nsite = 3, giving P3DRISM = PMDFT + ρTotkT. [79] argue that

P3DRISMv should be subtracted from ∆µRISM and the ideal part added back in, in which

case, ∆GISc is recovered.

While it is tempting to interpret this as a pressure correction, P3DRISM is not the true

pressure predicted by RISM. The ideal gas contribution incorrectly depends on the num-

ber of internal degrees of freedom (Nsite) of the solvent molecules. Furthermore, MDFT

cannot be used to derive properties for 3D-RISM since there is no known way to obtain

molecular ρ (r) from site-site distributions [28]. We also observe that both equation (2.17)

and equation (2.18) are quite different from the RISM expression for pressure derived from
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the free energy route [81]

PRISM = kTρ + 2πkT ∑
α

∑
γ

ραργ

ˆ [h2
αγ (r)

2
− cαγ (r)−

(
t∗αγ (r)

)n+1

(n + 1)!
Θ
(
t∗αγ (r)

)]
r2 dr

− kT

(2π)2

ˆ {
ln [det [1− ρω̂ (k) ĉ (k)]] + Tr

[
ρω̂ (k) ĉ (k) [1− ρω̂ (k) ĉ (k)]−1

]}
k2 dk.

The two expression share only two terms in common and, for water under ambient condi-

tions, PRISM ≈ 0.6PMDFT. The physical interpretation of equation (2.15) is still unclear but

the correction has been demonstrated to greatly improve 3D-RISM hydration free energies

for ambient conditions.

For the purposes of practical calculation, it is convenient to substitute in the expres-

sion, ρĉ (k = 0) = 1− 1
ρkTχT

, where χT is the isothermal compressibility of the solvent,

giving

∆µISc = ∆µRISM − 1
2

kTv
(

1
χTkT

+ ρTot

)
(2.19)

and

∆µISc∗ = ∆µRISM − 1
2

kTv
(

1
χTkT

− ρTot

)
. (2.20)

As with UC, the polar/non-polar decomposition is straightforward:

∆µISc
Pol = ∆µRISM

Pol −
1
2 kTvPol

(
1

χTkT + ρTot

)
and ∆µISc

NP = ∆µRISM
NP − 1

2 kTvNP

(
1

χTkT + ρTot

)
.

The solvation energy is then

∆εISc = ∆εRISM +
1
2

kTδTv
(

1
χTkT

+ ρTot

)
− 1

2
kTv

(
1

χTkT

)2

(δTχTkT + χTkT) .

Similarly, for ISc∗ we have

∆εISc∗ = ∆εRISM +
1
2

kTδTv
(

1
χTkT

− ρTot

)
− 1

2
kTv

(
1

χTkT

)2

(δTχTkT + χTkT) .

2.2 Methods

2.2.1 Data Sets and Hydration Energy Data

Several sets of small molecule structures and their experimental hydration energies were

obtained from previous publications for use in this work. These sets are labeled after the

last name of one of their publication authors: Abagyan [10], Mobley [61], Rizzo [72], and
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Palmer [65]. Only the Rizzo set contains ionic molecules. Additionally, a solute set of 9

alkali halide ions was created using parameters from [40]. These sets were combined into

a single small molecule database, including duplicate molecules whose structures differ

due to use of different relaxation techniques among published sets.

In total the small molecule database contains 1123 molecules, consisting of 1075 neu-

tral molecules, 39 monovalent ionic molecules, and 9 monovalent monoatomic ions, all

with associated experimental Gibbs energies of hydration. To allow decomposing the

enthalpic and entropic contributions to the Gibbs energies, experimental enthalpic and

entropic energies of hydration were collected from the literature. Due to the relative spar-

sity of experimental entropic and enthalpic energies of hydration, only 74 molecules have

their full experimental energy decomposition data. Datasets are again labeled using the

last name of the first author: Abraham [4] and Cabani [11] (59 neutral molecules), Fawcett

[22] (7 monovalent ionic molecules), and Marcus [55, 56] (8 monovalent monoatomic

molecules). All experimental values are reported as being measured in standard ther-

modynamic conditions with temperatures between 298 and 298.15 K.

2.2.2 Solute Preparation

Antechamber was used to assign partial charges to all molecular atoms using the AM1-

BCC semi-empirical model and the Amber GAFF [87] force field parameters, except for

alkali halides which used Joung and Cheatham TIP3P parameters [40]. No structural

alterations were made to the published molecules. A small set of molecules whose 3D-

RISM calculations failed to converge were not used for correction model fitting.

2.2.3 Hydration Free Energy Calculations

All RISM calculations were performed using a modified version of AmberTools 15. Mod-

ifications will be released as part of AmberTools 16.
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cSPC/E
Parameter H Value O Value
mass (u) 1.008 16

charge (e+) 0.4238 -0.8476
Lennard-Jones ε (J/C) 0.01553 0.1553

Lennard-Jones rmin/2 (Å) 0.654237952 1.7767
H-O bond length (Å) 1

H-O-H bond angle (degrees) 109.47°

Table 2.3: Parameters of water models used in 1D-RISM calculations.

2.2.3.1 1D-RISM Calculations

One 1D-RISM calculation was performed for each desired closure (KH, HNC, and PSE-3)

for a total of three 1D-RISM calculations. Each calculation used the cSPC/E water model

(see Table table 2.3) at 298 K on a simulation grid of 16,384 grid points separated by a grid

spacing of 0.025 Å. Calculations were performed with a solvent dielectric of 78.497, water

density of 55.345 M, and a target residual tolerance for the MDIIS solver set to 1E-12.

2.2.3.2 3D-RISM Calculations

The 3D-RISM calculations were performed for the KH, HNC, and PSE-3 closures. The

3D-RISM equation and its closure relation were solved on a 3D grid with infinite dilution

boundary conditions. The simulation box was a cube with 30 Å side length and 0.3 Å grid

spacing. Interaction potentials were given an infinite cutoff to avoid cutoff approximation

error. The modified direct inversion of iterative subspaces (MDIIS) solver was used to

increase the rate of convergence of the integral equation solution[49]. In order to overcome

convergence problems with PSE-3 and HNC closure ’bootstrapping’ was used. Here, a

solution was obtained using a lower order closure and this solution was used as a starting

point for solving the target closure. For PSE-3 the lower order closure was PSE-2, while

for HNC both PSE-2 and PSE-3 were used as lower order closures.

2.2.4 Parameter Fitting

Correction model parameters were fitted by bootstrap ordinary least squares (OLS) linear

regression using the Python statsmodels module (version 0.6.1) [78]. Parameter fitting
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used only empirical data for neutral molecules from the Mobley, Abagyan, Rizzo and

Palmer datasets. As with bootstrap analysis described below, the original data was re-

sampled with replacement to obtain a new data set. An independent OLS fitting was

performed on each resampled data set. The final values and confidence interval for each

parameter was taken as the mean and standard error over all best fit parameters for each

set or resampled data.

2.2.5 Model Testing

Testing of corrected and uncorrected expressions, with and without fit parameters, was

done independently from parameter fitting and employed 1,000 rounds of bootstrap anal-

ysis and k-fold cross validation.

2.2.5.1 k-Fold Cross-Validation

The expected goodness of fit of each model, independent of the data used to train it, was

estimated using k-fold cross-validation. To perform k-fold cross-validation, the sample

is randomly divided into k equally sized subsamples. Each subsample is used once as

test data for the model produced using the other k− 1 subsamples as training data. The

statistics of the resulting k models and their test regressions form distributions which can

be used to calculate the root mean squared error of the R2 regression factor. The error in

the R2 factor provides a statistical estimate for the effect the particular small molecular

solute sample has on goodness of fit of the correction regression. For this work k = 10

was chosen and the average taken over 1,000 10-fold cross-validations.

2.2.5.2 Bootstrap Analysis

Bootstrap regression analysis was used to obtain the confidence intervals for the fitted

model parameters. In bootstrap analysis, a random sample of size N is obtained from the

original sample, allowing the same sample member to be selected more than once (i.e.,

sampling with replacement). Regression is performed using the resampled data. This

procedure is repeated many times. The statistics of the resulting regression models form
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Correction a a0 a1 b b0 b1

UC(T)KH −0.1498(8) 0.009(7) −0.00053(2) −0.1(1) −3.2(9) 0.010(3)
UC(T)PSE3 −0.1185(7) 0.032(7) −0.00051(2) −0.3(1) −3.2(9) 0.010(3)
UC(T)HNC −0.1186(7) 0.033(7) −0.00051(2) −0.2(1) −3.3(9) 0.010(3)

Correction γ γ0 γ1

NgB(T)KH 0.333(1) 0.38(1) −0.00015(4)
NgB(T)PSE3 0.366(1) 0.31(1) 0.00019(4)
NgB(T)HNC 0.364(1) 0.31(1) 0.00020(4)

Table 2.4: Fit parameters for UC(T) and NgB(T) corrections. Standard error in the last digit
is given in parentheses.

distributions which can be used to calculate the desired confidence intervals for the fitting

parameters. In this work N was chosen to be equal to the original sample size and 1,000

resamples were taken.

2.3 Results

In total, eight different corrections were tested with three different closures. Of these,

three corrections performed particularly well against all closures: UCT, NgB and ISC. As

will be discussed, UCGF(T) and ISC* only performed well for the KH closure. Despite

adding temperature dependence to the fit coeffcient, NgBT did no better than NgB. This

can be seen in parameterization (see table 2.4) where γ0 is the dominant contribution to γ.

In the case of UCT, the addition of temperature dependence to the coefficient is necessary

and a1 is the dominant contribution to a at room temperature. In this, UCT, NgB and ISC

all give a linear temperature dependence to the PMV correction.

None of the three closures used performed significantly better or worse overall. PSE-3

generally has the good agreement with experiment and molecular dynamics and typically

has the same convergence properties as KH when the closure bootstrapping protocol de-

scribed in Methods is used. For this reason, our discussion focuses on PSE-3 but complete

results for all closures and corrections can be found in Correction of 3D-RISM solvation

thermodynamics for small drug-like molecules.
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∆G
Slope y-intercept R2 RMSE MUE

PSE-3 1.20(8) 20.1(4) 0.305(1) 20.277(7) 19.537(8)
UCPSE3 0.96(2) −0.23(6) 0.8407(4) 1.261(2) 0.917(1)
NgBPSE3 1.12(2) 0.20(6) 0.8509(4) 1.448(3) 1.037(1)
IScPSE3 0.96(2) −0.75(6) 0.8322(4) 1.432(2) 1.053(1)
MD 0.99(2) 0.64(5) 0.8865(3) 1.249(1) 1.025(1)

Table 2.5: Bootstrap statistical comparison between predicted and empirical hydration
free energies for neutral molecules (Mobley, Abagyan, Rizzo and Palmer datasets). As
described in Methods, values are the mean of all resampled data. RMSE: root-mean-
squared-error. MUE: mean unsigned error. Standard error in the last digit is given in
parentheses.

2.3.1 Hydration Free Energies

As expected, uncorrected 3D-RISM provides poor predictions of the SFE of small neutral

molecules for all closures (for PSE-3, see figure 2.1 and table 2.5 and for all closures, see

table 4.2). R2 ranged from 0.218(1) to 0.305(1) for the three closures and the y-intercept,

MUE and RMSE were approximately 20 kcal/mol or higher.

UCPSE-3, NgBPSE-3 and ISCPSE-3 all compare favorably to experiment and are statisti-

cally quite close to MD. Results for UCPSE-3 and ISCPSE-3 are extremely close for the PSE-3

closure and have identical slopes. The errors are, overall all, lower for UCPSE-3, which is

to be expected since UCPSE-3 has been fit to the data. However, while ISC performs well

for PSE-3 and HNC, it is significantly worse with the KH closure, giving errors more than

2 kcal/mol (see table 4.2). ISC*, on the other hand, performs best for the KH closure, sig-

nificantly outperforming ISC, but shows significant errors for PSE-3 and HNC. UCGF, the

original correction proposed by [65], gives results similar to UC for KH but shows large

systematic errors for higher order closures with slopes of 1.30.

There is no clear best overall correction and closure combination, though UC has the

lowest errors across all closures. Corrections which should be avoided include UCGF for

all closures (even for KH, UC is better), as well as ISC*. Using ISC for KH is also not

recommended due to the relatively large errors.

UCPSE-3, NgBPSE-3 and ISCPSE-3 all capture the slope of ionic solutes approximately as

well as they do for neutral solutes and have improve R2 values. In absolute terms, the



30

−10 0 10 20 30 40

∆GExp (kcal/mol)

−10

0

10

20

30

40
∆
G

P
S
E

3
N

o
C

(k
ca

l/
m

o
l)

RMSE = 20.28± 0.01
MUE = 19.54± 0.01
R2 = 0.30± 0.00
y = 1.20x+ 20.09

−15 −10 −5 0 5

∆GExp (kcal/mol)

−15

−10

−5

0

5

∆
G

P
S
E

3
U

C
(k

ca
l/

m
o
l)

RMSE = 1.26± 0.00
MUE = 0.92± 0.00
R2 = 0.84± 0.00
y = 0.96x− 0.23

−20 −15 −10 −5 0 5 10

∆GExp (kcal/mol)

−20

−15

−10

−5

0

5

10

∆
G

P
S
E

3
N

g
B

(k
ca

l/
m

o
l)

RMSE = 1.45± 0.00
MUE = 1.04± 0.00
R2 = 0.85± 0.00
y = 1.12x+ 0.20

−15 −10 −5 0 5

∆GExp (kcal/mol)

−15

−10

−5

0

5

∆
G

P
S
E

3
IS

c
(k

ca
l/

m
o
l)

RMSE = 1.43± 0.00
MUE = 1.05± 0.00
R2 = 0.83± 0.00
y = 0.96x− 0.75

−15 −10 −5 0 5

∆Gexp (kcal/mol)

−15

−10

−5

0

5

∆
G

M
D

(k
ca

l/
m

o
l)

RMSE = 1.25± 0.01
MAE = 1.02± 0.01
R2 = 0.89± 0.00
y = 0.99x+ 0.63

Figure 2.1: Hydration free energies of neutral molecules (semi-transparent circles) from
3D-RISM-PSE-3 and MD vs. experiment (Mobley, Abagyan, Rizzo and Palmer datasets).
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∆G
Slope y-intercept R2 RMSE MUE

PSE-3 1.14(6) 17(5) 0.8952(8) 10.62(3) 9.26(2)
UCPSE3 0.93(5) −6(4) 0.8915(9) 6.53(2) 4.87(2)
NgBPSE3 1.05(6) 1(4) 0.868(1) 8.24(3) 6.22(2)
IScPSE3 0.92(5) −7(4) 0.8903(9) 6.57(2) 4.90(2)

Table 2.6: Bootstrap statistical comparison between predicted and empirical hydration
free energies for ions (Rizzo dataset).
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Figure 2.2: Hydration free energies of ions from 3D-RISM-PSE-3 vs. experiment (Rizzo
dataset). Positive ions are blue triangles pointing up and negative ions are red triangles
pointing down. Filled symbols are alkali-halide ions.
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∆G
Slope y-intercept R2 RMSE MUE

PSE-3 1.00(9) 18.9(3) 0.232(1) 19.695(8) 18.861(8)
UCPSE3 0.97(1) −0.87(3) 0.9322(3) 1.146(2) 0.885(1)
NgBPSE3 1.13(1) −0.54(3) 0.9465(2) 1.231(2) 0.885(1)
IScPSE3 0.97(1) −1.37(3) 0.9394(3) 1.519(2) 1.319(1)

Table 2.7: Bootstrap statistical comparison between predicted and molecular dynamics
hydration free energies for neutral molecules (Mobley dataset). As described in Methods,
R2 bootstrap is the mean of all resampled data and R2 k-fold is the mean over all training
sub-samples. RMSE: root-mean-squared-error. MUE: mean unsigned error.

RMSE and MUE are all significantly worse (see figure 2.2 and table 4.3) but the relative

errors are similar to those of the neutral compounds. The y-intercept also appears much

worse but the statistical error is also much higher due to the smaller data set. Even so, the

relative error for ions is somewhat smaller than that for neutral molecules.

It is not immediately clear how much of this error is due to 3D-RISM and how much

should be attributed to the force field or errors in the experimental data. The relatively

simple case of monovalent ions highlights the problem (filled triangles in figure 2.2). Em-

pirical values are available from Refs. [77, 2, 53] and have a RMS difference of roughly

3 kcal/mol. In this work Joung-Cheatham parameters were used [39], which are fit to data

from Ref. [77], but for comparison values from Ref. [2, 53] were also used. Other ions in

the data set have not received the same attention as the alkali-halide ions, contributing to

the large absolute errors. Due to these uncertainties, the ion HFEs were not used in fitting

UC, UCGF or NgB corrections.

2.3.1.1 Comparison Against Molecular Dynamics

Since 3D-RISM and MD calculations share the same force field, the 3D-RISM may be ex-

pected to reproduce MD results better than experiment. Comparing table 4.4 and table 4.2,

this is the case with R2 values improve for all corrections. Of all the corrections considered

only ISC*PSE-3 and ISC*HNC have R2 < 0.9.

Despite the improved correlations, errors with respect to MD are, in some cases, in-

creased. Notably, UC and ISC have increased RMSE, MUE and a larger absolute y-

intercept, despite having improved correlation coefficients and slightly improved slopes.
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Figure 2.3: Hydration free energies of neutral molecules from 3D-RISM-PSE-3 vs. MD
(Mobley dataset). Coloring as in figure 2.1.
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∆GPol

Slope y-intercept R2 RMSE MUE

PSE-3 1.16(1) −0.16(4) 0.9530(3) 1.160(2) 0.831(1)
UCPSE3

Pol 1.07(1) −0.20(3) 0.9469(3) 0.841(2) 0.5377(9)
NgBPSE3

Pol 1.16(1) −0.16(4) 0.9531(2) 1.162(2) 0.833(1)
IScPSE3

Pol 1.06(1) −0.20(4) 0.9459(3) 0.837(2) 0.5330(9)

Table 2.8: Bootstrap statistical comparison between predicted and molecular dynamics
polar hydration free energies for neutral molecules (Mobley dataset).

For both corrections, the y-intercept was negative relative to the experimental data while

MD results over estimated experimental data by 0.64(5) kcal/mol. This then contributes

to the RMSE and MUE values. UC was fit against experimental data, so this result is not

surprising.

MD data also allow comparison of polar and non-polar contributions to the free en-

ergy. Previous work has suggested that the polar component calculated by 3D-RISM is

in good agreement with MD[54, 85, 39] while the non-polar contribution is the primary

source of error[24, 85]. Indeed, uncorrected 3D-RISM data is much better for just the polar

component (see table 2.8 and figure 2.4) and is generally poor for the non-polar compo-

nent (see table 2.9 and figure 2.5).

All of the corrections perform as well as or better than uncorrected 3D-RISM for the po-

lar SFE with the exception of UCGFPSE-3/HNC and NgB (see table 4.5). Even with these in-

cluded, R2 > 0.92 for all corrections and closures. That NgB does not show improvement

is due to the nature of the correction, which can only effect the non-polar contribution

(see equation (4.4)). The improvement in the other corrections is due to the electrostric-

tion effect, which accounts for the polar component of the PMV. In particular, UCPSE-3 and

ISCPSE-3 show improvement over uncorrected 3D-RISM with MUE ≈ 0.54 kcal/mol and

RMSE ≈ 0.84 kcal/mol.

As previously noted, the non-polar contribution to solvation free energy predicted by

3D-RISM is extremely poor (see table 2.9 and figure 2.5). All corrections substantially

improve the prediction of ∆GNP though the extent to which they do varies considerably.

NgB performs the best across all closures with slopes and y-intercepts within error of

1.0 and 0.0. NgB also has the lowest RMSE and MUE and the highest R2. UCPSE-3 and
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Figure 2.4: Hydration free energies of solvent polarization for neutral molecules from
3D-RISM-PSE-3 vs. MD (Mobley dataset). Coloring as in table 2.5.

∆GNP

Slope y-intercept R2 RMSE MUE

PSE-3 2.5(4) 16.8(7) 0.0967(8) 20.471(8) 19.687(8)
UCPSE3

NP 0.64(3) 0.36(5) 0.542(1) 0.5856(6) 0.4614(5)
NgBPSE3

NP 0.99(2) 0.02(4) 0.7937(8) 0.3576(6) 0.2456(4)
IScPSE3

NP 0.56(2) −0.01(3) 0.7284(9) 0.9318(6) 0.8528(5)

Table 2.9: Bootstrap statistical comparison between predicted and molecular dynamics
non-polar hydration free energies for neutral molecules (Mobley dataset).
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Figure 2.5: Non-polar hydration free energies of neutral molecules from 3D-RISM-PSE-3
vs. MD (Mobley dataset). Coloring as in table 2.5.
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∆H/∆ε

Slope y-intercept R2 RMSE MUE

PSE-3 1.19(7) 1.2(8) 0.798(2) 2.79(1) 2.045(8)
UCTPSE3 0.89(6) −1.4(6) 0.806(1) 1.849(5) 1.504(4)
NgBPSE3 1.19(7) 1.2(7) 0.802(1) 2.77(1) 2.030(8)
IScPSE3 0.98(6) 0.3(7) 0.799(1) 2.117(6) 1.667(6)

Table 2.10: Bootstrap statistical comparison between predicted ∆H (all UC and NgB cor-
rections) or ∆ε (uncorrected 3D-RISM and parameter free corrections) and ∆H from ex-
periment for neutral molecules (Abraham and Cabani datasets).

ISCPSE-3 do improve greatly over uncorrected 3D-RISM but do not have the predictive

power of NgBPSE-3. UCPSE-3 has both poor slope and R2 but the limited range of the data

means that the RMSE and MUE are still reasonably good. In contrast, ISCPSE-3 has an

R2 only slightly smaller than NgBPSE-3 but the slope, RMSE and MUE are all worse than

UCPSE-3. Of course, UC and ISC have the same dependence on PMV but differ in how the

coefficients are obtained. If UC was fit against MD data instead of experiment, we would

expect UC results to be at least as good as ISC in this comparison.

2.3.2 Hydration Energies and Entropies

2.3.2.1 Solvation Energies/Enthalpies

Care must be taken when comparing 3D-RISM data against solvation enthalpy and en-

tropy from experiment. As discussed in section §2.1 and [92], the temperature derivative

data presented here are properly the solvation energy and entropy at constant volume.

This difference will be small and is estimated by [92] to be on the order of 1 kcal/mol.

Since the the coefficients for UCT, UCGFT, and NgBT corrections were fit against enthalpy

data, we can claim that these are models that predict enthalpy and the associated constant

pressure entropy.

Uncorrected 3D-RISM performs reasonably well for neutral molecules with all three

closures (see table 2.10, table 4.7 and figure 2.6) and much better than for SFE. For all three

closures R2 ≈ 0.80, RMSE < 2.8 kcal/mol and MUE < 2.4 kcal/mol, which is good con-

sidering that we are comparing enthalpies and energies and expect the error to be on the
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Figure 2.6: Hydration energies/enthalpies of neutral molecules from 3D-RISM-PSE-3 vs.
experiment (Abraham and Cabani datasets). Coloring as in table 2.5.
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∆H/∆ε

Slope y-intercept R2 RMSE MUE

PSE-3 0.88(9) −12(8) 0.853(2) 8.16(6) 6.35(4)
UCTPSE3 0.83(9) −17(8) 0.867(2) 7.96(6) 6.12(4)
NgBPSE3 0.88(9) −12(9) 0.850(3) 8.15(6) 6.34(4)
IScPSE3 0.80(8) −17(8) 0.867(2) 7.89(5) 6.04(4)

Table 2.11: Bootstrap statistical comparison between predicted ∆H (all UC and NgB cor-
rections) or ∆ε (uncorrected 3D-RISM and parameter free corrections) and ∆H from ex-
periment for ions (Fawcett and Marcus datasets).

order of 1 kcal/mol at a minimum. NgB and NgBT provide nearly identical results with

each other and with uncorrected 3D-RISM. Combined with the parameterization of γ0

and γ1 (see table 2.4) it is clear that NgB has the correct temperature dependence. UC, on

the other hand, has RMSE > 19 kcal/mol for all closures and requires temperature depen-

dence to be added to both coefficients (see table 4.7). With this temperature dependence

added, UCT performs quite well and has the lowest RMSE and MUE of any correction. R2

and y-intercept from UC are both quite close to values from no correction and NgB. ISC

also performs well with slope and y-intercept within error of 1.0 and 0.0, an R2 identical

to no correction, NgB and UCT, and RMSE and MUE close to those of UCT. Overall, the

quality of 3D-RISM’s treatment of enthalpies is similar to its treatment of the polar SFE.

In both cases only small correction are needed and are made.

When we consider the energy/enthalpy of ionic solutes, the absolute errors are much

larger, just as they were for the SFE, but the relative errors are similar to those of neutral

compounds and correlation is improved. Again, there is little difference between uncor-

rected 3D-RISM and the corrections and NgB is nearly identical to uncorrected 3D-RISM

is all metrics. Similarly, ISC and UC are slightly better than NgB in terms of RMSE and

MUE. The values of the RMSE, MUE and y-intercept are all larger than observed for the

SFE of ionic solutes. The errors in the y-intercept are particularly large but, again, so are

the statistical errors as the sample size is becoming much smaller.
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Figure 2.7: Hydration energies/enthalpies of ions from 3D-RISM-PSE-3 vs. experiment.
Coloring as in figure 2.2.

T∆S

Slope y-intercept R2 RMSE MUE

PSE-3 2.6(5) −4(4) 0.439(3) 18.52(3) 17.13(3)
UCTPSE3 0.56(8) −3.7(7) 0.517(3) 1.497(5) 1.157(4)
NgBPSE3 1.0(1) −1(1) 0.495(3) 2.346(8) 1.807(6)
IScPSE3 0.7(1) −1.3(9) 0.507(3) 1.930(6) 1.552(5)

Table 2.12: Bootstrap statistical comparison between predicted T∆SP (all UC and NgB
corrections) or T∆SV (uncorrected 3D-RISM and parameter free corrections) and T∆SP
from experiment for neutral molecules (Abraham and Cabani datasets).
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Figure 2.8: Hydration entropies of neutral molecules from 3D-RISM-PSE-3 vs. experiment
(Abraham and Cabani datasets). Coloring as in table 2.5.
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T∆S

Slope y-intercept R2 RMSE MUE

PSE-3 1.0(5) −4(3) 0.316(6) 6.19(3) 5.16(3)
UCTPSE3 0.7(1) −3.9(10) 0.570(5) 2.21(1) 1.77(1)
NgBPSE3 0.8(1) −0.3(9) 0.689(4) 1.91(1) 1.49(1)
IScPSE3 0.6(1) −1.7(9) 0.616(5) 2.004(7) 1.758(8)

Table 2.13: Bootstrap statistical comparison between predicted T∆SP (all UC and NgB
corrections) or T∆SV (uncorrected 3D-RISM and parameter free corrections) and T∆SP
from experiment for ions (Fawcett and Marcus datasets).

2.3.2.2 Solvation Entropies

Entropies, like the non-polar SFE contributions, are poorly handled by 3D-RISM and are

a large source of error (see table 4.9 and figure 2.8). Of the corrections, only ISC* has an

R2 significantly larger than 0.5. Of the three most successful corrections, NgB has the best

slope and intercept but, given the low R2, this may not be meaningful. ISC and UCT

both have lower errors than NgB. While the errors for UCT are only slightly larger in

magnitude than those for the SFE of small neutral molecules (see figure 2.1) the low R2

means that comparing relative solvation entropies is not useful.

The solvation entropies of ionic solutes is quite similar to that of neutral molecules.

The magnitudes of the values and errors as well as the quality of the corrections are qual-

itatively the same between the two data sets. The major differences for the corrections are

that the R2 values are slightly higher for ionic solutes and that NgB has the lowest errors

and UCT the highest instead of the other way around.

2.4 Conclusions

We have presented a new implementation of temperature derivatives in 3D-RISM, capable

of efficiently calculating solvation energies and entropies of charged and neutral small

molecules. Accuracy comparable to that of explicit solvent, all-atom molecular dynamics

simulations is achieved through the use of different correction methods. While a number

of corrections have been proposed in the literature, we found that only UC(T) and NgB

are applicable to all closures, while ISC works with PSE-n closures for n ≥ 3. UC with the
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Figure 2.9: Hydration entropies of ions from 3D-RISM-PSE-3 vs. experiment. Coloring as
in figure 2.2 (Fawcett and Marcus datasets).
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Gaussian fluctuation free energy functional only works with the KH closure while ISC*

performs poorly regardless of closure.

The physical basis of these corrections is to mitigate the effects of the excessively high

pressures predicted by the HNC-like closures used here. Due to the over-estimation of

pressure, additional mechanical work is included in the 3D-RISM excess chemical poten-

tial calculation and must be subtracted off. The PMV accounts for the change in volume

required to accommodate the solute. Since the leading contribution to the PMV is the van

der Waals size of the solute, UCT and ISC corrections primarily improve the non-polar

and entropic components of the SFE. However, the PMV also depends on the charge state

of the solute through the electrostriction effect. UCT and ISC also improve the polar and

energetic components of the SFE as a result while NgB does not. To compensate for the

extra mechanical work, several expressions for pressure are available, including the bulk

pressure from the compressibility and energy routes, and the contact pressure. However,

only the contact pressure on the solute, as used in ISC, successfully mitigates the excess

mechanical work. The fact that these pressure expressions give different quantitative re-

sults is symptomatic of the larger inconsistencies in the HNC closure.

While these corrections are of practical use in calculating solvation free energies and

their decomposition, they do not address the underlying deficiencies in the closures. Fur-

ther improvements in 3D-RISM and related methods will require new closure approxima-

tions that avoid these inconsistencies.
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Chapter 3

Crystal Structure Refinement with Periodic 3D-RISM

3.1 Periodic Interactions

The 3D-RISM equation as formulated by Kovalenko and Hirata does not assume a par-

ticular boundary condition in its derivation [48]. Boundary conditions arise solely from

the interaction potential uuv
α (r) contained in the closure equation. If the potential has

periodic boundary conditions, such as in a crystal lattice, then the resulting density corre-

lation functions obtained from the 3D-RISM will be periodic. Similarly, a potential which

assumes the infinite dilution case (i.e., solute being infinitely far apart) will lead to the

potential asymptotically approaching zero far from the solute. For such potentials the

correlation functions will reflect infinite dilution boundary conditions as long as the box

is sufficiently larger than the solute so that the potential smoothly approaches zero near

the box boundaries. Thus to produce a periodic 3D-RISM, a periodic potential function is

required.

In non-periodic systems, it is common to use the Coulomb inverse-square law to

model electrostatic interactions. From these laws the electrostatic interaction on a point

charge qi exerted by a set of point charges Q (where qi ∈ Q) is

ui (ri) = qiV (ri) = qi
1

4πεr
∑

j∈Q, j 6=i

qj

rij
(3.1)

Fi (ri) = qiE (ri) = qi
1

4πεr
∑

j∈Q, j 6=i

qj∣∣rij
∣∣2 r̂ij (3.2)

where rij =
∣∣ri − rj

∣∣.
Additionally, the Lennard-Jones 12-6 equation is a popular model for the so-called Van

der Waals interactions, including the attractive long-range induced dipole-induced dipole
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(r−6) and short-range Pauli exclusion between electron orbitals (r−12). Unlike the Colom-

bic potential, the Lennard-Jones equation requires two atom-atom interaction parameters

whose values depend on the types of atoms interacting. These parameters are typically

fitted using quantum chemistry calculations. The Lennard-Jones potential energy and

force experienced between interacting atoms i and j is

uij
(
rij
)
= ε ij

[(
σij

rij

)12

− 2
(

σij

rij

)6
]

(3.3)

Fij
(
ri, rj

)
= ε ij

12
r2

ij

[(
σij

rij

)12

−
(

σij

rij

)6
]

rij (3.4)

In combination, the Coulomb and Lennard-Jones interactions are the most popular

model for interparticle interactions in all of computational chemistry due to their balance

of computational efficiency and accuracy.

The most direct means of calculating electrostatic potential energy of a periodic sys-

tem is to sum the Coulomb interactions exerted by the charges in all unit cells on the

charged particles in some reference unit cell. Excluding trivial toy cases, the solution of

this approach is indeterminant due to the non-convergent infinite series of unit cell contri-

butions. A popular method known as the Ewald sum avoids these convergence issues by

solving the long range periodic contribution to the electostatic potential using a Fourier

series of periodic Guassian charges. This method only features point charges in the central

unit cell. This approach conditionally guarantees that the series will converge in a finite

number of terms.

Alternative periodic potentials to the Ewald sum include particle-mesh methods, such

as the particle-particle particle-mesh (PPPM) method, and fast multipole methods. The

choice of potential is primarily a matter of computational efficiency and ease of imple-

mentation. The computational efficiency of these potentials, as well as the range of atom

counts for which they are most efficient, is given in Table 3.1. In terms of implementation

difficulty, the Ewald sum is by far the easiest while PPPM tends to be the most complex,

with fast multipole in between.

What follows is a derivation of the Ewald sum solvation potential and force as it is
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Table 3.1: Computational efficiency of popular periodic potentials [23]. Here N is the
number of charged particles in the system.

periodic potential asymptotic
computational

complexity

efficiency cutoff range
of charged particle

count
Ewald sum O

(
N3/2) 2− 102

particle-particle particle-mesh O (N log N) 103 − 105

fast multipole O (N) 106 and up

applied to the RISM, followed by a derivation of the Particle Mesh Ewald (PME) method

to expedite the calculation of the long-range Ewald sum term. The PME method is then

employed to develop the periodic 3D-RISM, a variation of the 3D-RISM which can handle

periodic solute. Finally, the periodic 3D-RISM is applied to X-ray crystal structure refine-

ment and its results compared to those of traditional solvent models used in refinement.

3.2 Ewald Sum

3.2.1 Solvation Potential Energy

The Ewald sum is a means of solving the Poisson equation for a periodic charge distri-

bution. It achieves this by treating the charges (e.g., partially charged atoms) within the

reference periodic unit cell as a set of point charges, while charges in other unit cells are

approximated as a set of infinitely periodic Gaussian charges, one Gaussian charge per

point charge. The Poisson equation can be solved independently for the short and long-

range charge distributions. Adding the solutions together produces the Ewald sum. To

handle the infinite periodicity of the Gaussian charges while solving the Poisson equation,

the Fourier transform is employed.

The Poission equation can be written as

−∇2φ (r) = 4πρ (r) (3.5)

where φ (r) is the electric potential at a Cartesian point r produced by an electric charge

density distribution ρ (r), and∇2 =
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
is the Laplace operator or Laplacian

in three-dimensional Cartesian coordinates.
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The Ewald sum solves the Poisson equation for an infinitely periodic charge distri-

bution by splitting the charge distribution into short-range charges, which are the set of

point charges in some reference unit cell, and long-range charges, which are the set of

periodic Gaussian charges in all other unit cells,

ρ (r) = ρSR (r) + ρLR (r)

ρSR (r) =
N

∑
i

qiδ (r− ri) (3.6)

ρLR (r) =
N

∑
j=1

∑
n

qj (α/π)
3
2 exp

[
−α
∣∣r− (rj + nL

)∣∣2] (3.7)

where ρSR and ρLR are the short and long-range charge distributions respectively, qi

is the charge on point charge i located at position ri, N is the total number of point charges

in the reference cell, δ (r) is the Dirac delta function, L is the unit cell lattice vector (in the

form of three ordered scalar values), n is the unit cell lattice iteration vector (iterating

from zero to infinity in all directions), and α is the Gaussian charge ’smear’ coefficient. As

can be seen from equation (3.7), the Gaussian charge distribution is infinitely periodic in

all directions and, to simplify the math, it includes the reference unit cell. The Gaussians

originating from the reference cell will later be subtracted so that it does not contribute to

the final Ewald sum.

Due to the distributivity of the Laplacian, this leads to separate solutions for the short-

range and long-range potentials,

φ (r) = φSR (r) + φLR (r)

The potential resulting from the infinitely peroidic Gaussian charges will be solved

first. To handle the infinite periodicity, the Poisson equation will be solved in frequency

space (k-space) and later translated back to Cartesian space (r-space).

−∇2φ (r) = −∇2

(
1

Vcell
∑
k

φ̃ (k) eir·k
)
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=
1

Vcell
∑
k

k2φ̃ (k) eir·k (3.8)

ρ (r) =
1

Vcell
∑
k

ρ̃ (k) eir·k (3.9)

Given the definition of the complex Fourier series and its inverse

f (r) =
1

Vcell

∞

∑
k=−∞

f̃ (k) eik·r (3.10)

f̃ (k) =
ˆ

V
dr f (r) e−ik·r (3.11)

where k = |k| = 2π/λ is the spatial angular frequency (i.e., wave number) and k is

the associated wave vector, then the Poisson equation in k-space is

−∇2φ (r) = 4πρ (r)

1
V ∑

k
k2φ̃ (k) eir·k =

4π

V ∑
k

ρ̃ (k) eir·k

φ̃ (k) =
4π

k2 ρ̃ (k) (3.12)

The Fourier transform of the infinitely periodic Gaussian charge density is

ρ̃LR (k) =
ˆ

V
dr e−ik·rρLR (r)

=

ˆ
V

dr e−ik·r
N

∑
j=1

∑
n

qj (α/π)
3
2 exp

[
−α
∣∣r− (rj + nL

)∣∣2]

=

ˆ
all space

dr e−ik·r
N

∑
j=1

qj (α/π)
3
2 exp

[
−α
∣∣r− rj

∣∣2]

=
N

∑
j=1

qje−ik·rj e−k2/4α]
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Substituting this into the k-space Poisson equation allows for the solution of the long-

range portion of the Ewald sum potential in k-space.

φ̃LR (k) =
4π

k2 ρ̃LR (k)

φ̃LR (k) =
4π

k2

N

∑
j=1

qje−ik·rj e−k2/4α (3.13)

The k-space potential can then be Fourier transformed back into r-space.

φLR (r) =
1

Vcell
∑
k 6=0

φ̃LR (k) eik·r

=
1

Vcell
∑
k 6=0

N

∑
j=1

4πqj

k2 eik·(r−rj)e−k2/4α (3.14)

Before solving the electric potential produced by the point carges, the contribution to

the long-range potential due to the Gaussian charge distribution in the reference unit cell

can be removed so that the reference cell only contains point charges. This can be done by

deriving the potential produced by a single Gaussian charge in the reference cell,

ρGauss (r) = qi (α/π)
3
2 e−αr2

(3.15)

Substituting this into r-space Poisson equation and solving it in spherical coordinates

provides the resulting electric potential of the single Gaussian charge.

−1
r

∂2rφGauss (r)
∂r2 = 4πρGauss (r)

−
∂2rφGauss (r)

∂r2 = 4πrρGauss (r)

−
∂rφGauss (r)

∂r
=

ˆ r

∞
dr 4πrρGauss (r)

= −2πqi (α/π)
3
2

ˆ ∞

r
dr2 e−αr2
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= −2qi (α/π)
1
2 e−αr2

rφGauss (r) = 2qi (α/π)
1
2

ˆ r

0
dr e−αr2

= qierf
(√

αr
)

φGauss (r) =
qi

r
erf
(√

αr
)

where erf(x) = 2√
π

´ x
0 e−t2

dt is the error function.

The short range portion of the Ewald sum is thus the potential contributed by the set

of point charges in the reference cell subtracted by their corresponding Gaussian charges

to remove the undesired extra Gaussian charge added by the long-range potential.

φSR (r) =
N

∑
i

qi

r
− qi

r
erf
(√

αr
)

=
N

∑
i

qi

r
erfc

(√
αr
)

where erfc (x) ≡ 1− erf (x) is the complementry error function.

The long range portion of the Ewald sum contains a self-interaction term where the

Gaussian charge interacts with itself

φself (r → 0) = 2qi (α/π)
1
2

This erroneous interaction term can be subtracted in the final Ewald sum.

Combining the above results, the full Ewald sum is, for a smear parameter η ≡ 1/
√

α

(the form used in the Amber implementation of RISM),

φEwald (r) = φLR (r) + φSR (r)− φself (r) (3.16)
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φLR (r) =
1

Vcell
∑
k 6=0

N

∑
j=1

4πqj

k2 eik·(r−rj)e−k2η2/4

φSR (r) =
N

∑
i

qi

r
erfc

(
r
η

)

φself (r → 0) = 2qi
(
1/πη2) 1

2

Notice that in the long range term there is a singularity at k = 0 due to the k2 term in the

denominator. The traditional method of avoiding this issue is to employ so called tin-foil

(i.e., conductive) ’boundary’ conditions by assuming that φ̃LR (k = 0) = 0. This causes

a negligible change in results for electically neutral systems since they have a quickly

decaying long-range term, but for non-neutral systems this approximation introduces a

potentially large error term. However, this term is irrelevant so long as the system is net

neutral (∑N
i qi = 0) since in that case Ũ (k = 0) = ∑N

i qiφ̃LR (0) = 0 regardless of the

value of φ̃LR (0).

However, for the 3D-RISM the calculation is performed with a possibly non-netural

solute acting on solvent sites whose density distribution is initially assumed to be equal

to bulk solvent. For neutral solvent this is not an issue, but for ionic solvent this leads

to a potentially charged unit cell prior to the solution of the 3D-RISM equation. Thus the

φ̃LR (0) term is not truly zero for the periodic 3D-RISM with ionic solute, but nevertheless

it is ignored because assuming φ̃LR (0) = 0 forces the 3D-RISM to converge the solvent

density distribution towards charge neutrality on its own. Unfortunately, when using this

procedure the 3D-RISM fails to produce solvent distributions which fully neutralize the

solute, resulting in non-neutral unit cells. If the φ̃LR (0) term is added to the potential

prior to solving the 3D-RISM, the final system is neutralized, but the resulting atom count

disagrees significantly with molecular dynamics simulations. At the moment no method

has been devised which leads to both a fully neutralizing solvent distribution and an

accurate solvent atom count, so this is an open and unresolved problem with the approach

to the periodic 3D-RISM outlined in this work.
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The minimum image convention must be applied when calculating short range in-

teractions in periodic systems, including the short range term of the Ewald sum and the

Lennard-Jones potential energy. The convention simply states that when calculating the

electrostatic contribution of a periodic charged particle at a given point, the closest peri-

odic instance of the charge should be used as the source, and a spherical cutoff should be

employed to prevent interactions with particles farther than half the shortest perpendic-

ular width of the unit cell. See [58] for a more detailed discussion of the minimum image

convention and its necessity for periodic interactions.

In the 3D-RISM only the solute is periodic and only solute-solvent interactions occur.

Thus there are no self-interactions and φself can be ignored. Therefore the Ewald sum

electric potential energy used by the 3D-RISM when dealing with periodic solute is given

by

uUV
Ewald = uUV

LR + uUV
SR (3.17)

uUV
LR =

1
Vcell

∑
k∈K3,k 6=0

∑
u∈U

∑
v∈V

quqv
4π

k2 exp
(

ik · ruv −
k2η2

4

)

uUV
SR = ∑

u∈U
∑

v∈V

qi

|ruv|
erfc (|ruv| /η)

where u and v are atoms from solute and solvent molecules U and V respectively,

ruv = rv − ru is the distance vector of a solvent atom v from a solute atom u, η is the

solvent Gaussian charge smearing parameter, and Vcell is the volume of the unit cell.

3.3 Particle Mesh Ewald

The Particle Mesh Ewald (PME) method applies the Fast Fourier Transform (FFT) to the

long range component of the Ewald sum. Doing so decreases the asymptotic computa-

tional time complexity of the long range term from O
(

N2) to O (N log N) where N is the

number of solute atoms. The PME method has some overhead, so for small N solute it is

possible PME may be equally fast or, in rare cases, slower than the original Ewald sum.

The PME method does not change the short-range portion of the Ewald sum. Since the
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short-range term has an asymptotic complexity of O (N) and is relatively quick to com-

pute compared to the long-range term, fewer efforts have been made to optimize it.

3.3.1 Solvation Potential

The PME method is essentially a way of rewriting the long range portion of the Ewald sum

to make it amenable to computation on a grid (i.e., mesh) using the FFT. To achieve this,

a series of somewhat intuitive mathematical theorems must be used to produce a not-so-

intuitive rewriting of the long range term. The bulk of the mathematical reasoning behind

the SPME derivation that follows is from [9], though a few corrections in the derivation

have been made and the notation has been altered.

Beginning with the long range portion of the Ewald sum potential in k-space (eq. 3.13):

φ̃LR (k) =
4π

k2 e−k2/4α
N

∑
j

qje−ik·rj

Recall that the sum is over the k-space point charges, while the exponential outside

the sum is the Fourier coefficient of the Gaussian smear used to make the point charges

both diffuse and continuous, which helps speed up the convergence of the Fourier series.

Fourier transforms of Dirac delta functionals, such as point-charge distribution functions,

are notoroiously slow to converge since it attempts to map continuous sinusoidal waves to

a discontinous step function - a worse case scenario for convergence. Wavelet transforms

could potentially be a better choice if one wishes to avoid the Gaussian smear approxima-

tion at the heart of the Ewald sum method.

Writing the long-range Ewald sum potential energy of a collection of N interacting

point charges as

uLR =
1
2

N

∑
i, j 6=i

qiqjθ
(∣∣ri − rj

∣∣)+ 1
2 ∑

n∈Z3,n 6=0

N

∑
i, j

qiqjθ
(∣∣ri − rj + Ln

∣∣)

=
1
2 ∑

n∈Z3

N

∑
i, j

qiqjθ
(∣∣ri − rj + Ln

∣∣)− 1
2

θ (r → 0)
N

∑
i

q2
i (3.18)

where θ (r) ≡ φ (r) /q for source charge q, θ (r → 0) ≡ limr→0 θ (r), and L is the unit

cell lattice vector matrix. The first term of the first expression is the contribution from
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the charges in the reference unit cell, while the second term is the contribution from their

infinitely periodic images. The first term of the second expression is the contribution

from all pairs of atoms, while the second term removes self-interactions which appear in

the first term. The reason for writing the Ewald sum potential energy in this way is that

the first term of the second expression can be rewritten using the relation

∑
n∈Z3

N

∑
i, j

qiqjθ
(∣∣ri − rj + Ln

∣∣) = 1
V ∑

m 6=0
θ̂ (m) |ρ̂ (m)|2 + 1

V
θ̂ (m→ 0)

(
N

∑
i

qi

)2

(3.19)

where ρ (r) = ∑N
i=1 qiδ (r− ri) is the point charge distribution. This relation essentially

states that the potential energy contribution from the N interacting point charges is the

same whether it is calculated in r-space or k-space, but the particular form of the k-space

expression on the right can be computed very efficiently, as will be shown. Proving this

relation is the bulk of the mathematical content of the PME method and will be performed

in several steps. To begin, the following relation must be proved:

∑
n∈Z3

N

∑
i, j

qiqjθ
(∣∣ri − rj + Ln

∣∣) = ˆ θ (r) (ρ ? η ? D) (r) dr

where ? is the convolution operator (i.e., f (x) ? g (x) ≡
´

f (s) g (x− s) ds), η (r) ≡

ρ (−r), and D ≡ ∑n∈Z3 δ (r− Ln).

Proof: First,

ρ ? η (r) =
ˆ

ρ (s) η (r− s) ds

=

ˆ
ρ (s) ρ (s− r) ds

=
N

∑
i=1

N

∑
j=1

qiqj

ˆ
δ (s− ri) δ

(
r−

(
s− rj

))
ds

=
N

∑
i=1

N

∑
j=1

qiqjδ
(
r−

(
ri − rj

))
By the above expression and the associative property of the the convolution operation,
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ρ ? η ? D (r) =
ˆ

ρ ? η (s) D (s− r) ds

=
N

∑
i=1

N

∑
j=1

qiqj

ˆ
δ
(
s−

(
ri − rj

))
D (s− r) ds

=
N

∑
i=1

N

∑
j=1

qiqjD
(
r−

(
ri − rj

))

= ∑
n∈Z3

N

∑
i=1

N

∑
j=1

qiqjδ
(
r−

(
ri − rj + Ln

))
At last,

ˆ
θ (r) (ρ ? η ? D) (r) dr =

ˆ
θ (r) ∑

n∈Z3

N

∑
i=1

N

∑
j=1

qiqjδ
(
r−

(
ri − rj + Ln

))
dr

= ∑
n∈Z3

N

∑
i=1

N

∑
j=1

qiqjθ
(∣∣ri − rj + Ln

∣∣)
Using this newly proven relation, equation (3.18) can be rewritten as

uLR =
1
2 ∑

n∈Z3

N

∑
i, j

qiqjθ
(∣∣ri − rj + Ln

∣∣)− 1
2

θ (r → 0)
N

∑
i

q2
i

=
1
2

ˆ
θ (r) (ρ ? η ? D) (r) dr− 1

2
θ (r → 0)

N

∑
i

q2
i

By the Plancherel theorem and the fact that the ρ ? η ? D is real-valued,

ˆ
θ (r) (ρ ? η ? D) (r) dr =

ˆ
θ̂ (k) ̂(ρ ? η ? D) (k) dk

Using this relation with the current potential energy expression

uLR =
1
2

ˆ
θ (r) (ρ ? η ? D) (r) dr− 1

2
θ (r → 0)

N

∑
i

q2
i

=
1
2

ˆ
θ̂ (k) ̂(ρ ? η ? D) (k) dk− 1

2
θ (r → 0)

N

∑
i

q2
i
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Poisson’s summation formula is given by

D (r) = ∑
n∈Z3

δ (r− Ln)→ D̂ (k) =
1
V ∑

d∈Z3

δ
(

k− L−Td
)

The Poisson’s summation formula combined with the Fourier transform convolution

identity ( ˆa ? b = âb̂),

̂(ρ ? η ? D) (k) = ρ̂ (k) η̂ (k) D̂ (k)

= ρ̂ (k) ρ̂ (−k)
1
V ∑

d∈Z3

δ
(

k− L−Td
)

= |ρ̂ (k)|2 1
V ∑

d∈Z3

δ
(

k− L−Td
)

This expression is close to the desired form. To finish,

ˆ
θ̂ (k) ̂(ρ ? η ? D) (k) dk =

ˆ
θ̂ (k) |ρ̂ (k)|2 1

V ∑
d∈Z3

δ
(

k− L−Td
)

dk

=
1
V ∑

d∈Z3

θ̂
(∣∣∣L−Td

∣∣∣) ∣∣∣ρ̂ (L−Td
)∣∣∣2

=
1
V ∑

m
θ̂ (m) |ρ̂ (m)|2

=
1
V ∑

m 6=0
θ̂ (m) |ρ̂ (m)|2 + 1

V
lim
m→0

θ̂ (m) |ρ̂ (0)|2

=
1
V ∑

m 6=0
θ̂ (m) |ρ̂ (m)|2 + 1

V
lim
m→0

θ̂ (m)

(
N

∑
i

qi

)2

where m ≡ L−Td. At last, it has been proven that

ˆ
θ̂ (k) ̂(ρ ? η ? D) (k) dk =

1
V ∑

m 6=0
θ̂ (m) |ρ̂ (m)|2 + 1

V
θ̂ (m→ 0)

(
N

∑
i

qi

)2

where θ̂ (m→ 0) ≡ limm→0 θ̂ (m).
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Thus equation (3.19) has been proven and so the long-range potential energy of the

Ewald sum can be written as

uLR =
1
2

N

∑
i,j

qiqjθ
(∣∣ri − rj

∣∣)+ 1
2 ∑

n∈Z3

N

∑
i,j

qiqjθ
(∣∣ri − rj + Ln

∣∣)

=
1

2V ∑
m 6=0

θ̂ (m) |ρ̂ (m)|2 + 1
2V

θ̂ (m→ 0)

(
N

∑
i

qi

)2

− 1
2

θ (r → 0)
N

∑
i

q2
i (3.20)

The first term in the second expression is the contribution from all periodic images in

k-space, the second term is the ’background charge’ contribution term for m → 0 where

the net source charge is smeared evenly over the whole unit cell volume, and the third

term is the removal of self-interactions as previously described.

As is, this method is no faster to compute than the standard Ewald sum since the

first term requires calculating the total electrostatic potential and performing a standard

Fourier transform. However, with a few additional modifications the first term can be

much more quickly computed by using the fast fourier transform (FFT). Since the FFT op-

erates on a regularly spaced grid, the charge distribution must first be interpolated onto

the grid before the FFT can be performed. The chosen method for smearing the charge

is the main differentiator between the various flavors of PME. A particularly popular

approach called smooth PME (SPME) uses a cardinal b-spline to interpolate the source

charge to the grid. The b-spline interpolation has a roughly Gaussian character at high

polynomial orders, thus approaching a Gaussian charge distribution. It also has the desir-

able trait that integration of its weights over the region of interpolation equals 1, thus re-

taining the value of the original point charge that was interpolated (if not its exact position

in the case of interpolated charges overlapping the same grid points). Further, b-splines

are fast to compute and add negligible overhead to the Ewald sum calculation.

The b-spline interpolation of point charges to a grid using a Gaussian distribution

function can be done by rewriting the Gaussian charge distribution in terms of cardinal

b-splines
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ρ̂ (m) =
N

∑
j

qj exp
(
2πim · rj

)
≈

N

∑
j

qj ∑
l∈Z3

W (u− l) exp
(

2πidTK−1l
)
≡ Q̂ (k)

where W (x) are the cardinal b-spline weights and Q̂ (k) is the b-spline interpolated

charge grid. While the unmodified Gaussian could be directly evaluated at grid points,

discretization error could be significant unless the grid was very fine. Interpolating using

the cardinal b-spline avoids this issue by ensuring that the full charge is spread over the

grid points so that integrating over all the interpolated grid points recovers the value of

the source point charge.

The modified potential θ̂ (m) can be calculated in k-space as

Ĝ (k) =
θ̂ (k)

|B (k)|2
=

4π

k2
e−k2/4α

|B (k)|2

where B (k) = bx (k) by (k) bz (k) is the 3D b-spline Fourier coefficient. The division by

the b-spline Fourier coefficients is performed to eliminate the contribution of the b-spline

function to the convolution such that the b-spline is used purely for interpolation and is

not part of the physical model.

Thus the product of the Gaussian charge and its modified potential can be approxi-

mated by the b-spline interpolated charge grid Q̂ (k) and the modified potential Ĝ (k):

ρ̂ (m) θ̂ (m) ≈ Q̂ (k) Ĝ (k)

where m =
∣∣L−Td

∣∣ as before. This is the fundamental approximation of the SPME

method. The error introduced by the approximation is dependent on the order of the

cardinal b-spline used for interpolation as well as the fineness of the simulation grid.

Substituting this expression into equation (3.20), the full SPME long range potential is

obtained.

uLR =
1

2V ∑
j∈V

qj ∑
m 6=0

Ĝ (m) Q̂ (m) +
1

2V
θ̂ (m→ 0)

(
∑
i∈U

qi

)2

− 1
2

θ (r → 0)
N

∑
i

q2
i (3.21)

From this the long range potential of the solute acting on the solvent can be calculated:
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uU→V
LR =

1
V ∑

j∈V
qj ∑

m 6=0
ĜU→V (m) Q̂U (m) +

1
V

θ̂ (m→ 0)

(
∑
i∈U

qi

)2

(3.22)

ĜU→V (k) =
4π

k2
e−k2/4α

B (k)

Note that the self-interaction term is dropped since no solute-solute terms are consid-

ered. For the same reason, there is no longer double counting of interactions from the

sums and hence the 1/2 coefficients are removed. Finally, since the solvent charges re-

main as point charges, the b-spline Fourier coefficient in the denominator of ĜU→V is not

squared.

Simliarly, the long range potential of the solvent acting on the solute is given by:

”uV→U
LR =

1
V ∑

i∈U
qi ∑

m 6=0
ĜV→U (m) Q̂V (m) +

1
V

θ̂ (m→ 0)

(
∑
i∈U

qi

)2

(3.23)

ĜV→U (k) = ĜU→V (k)

To summarize, the PME algorithm for calculating the long range term of the Ewald

sum is as follows:

1. Interpolate point source charges to a Cartesian grid. The SPME uses a b-spline to

perform interpolation.

2. Convert the source charge grid from real space to frequency space using a FFT.

3. Convolute the source charge grid with the electrostatic interaction Green function.

In frequency space the convolution is a simple multiplication.

4. Convert the convoluted kernel from frequency space to real space using a FFT.

5. Calculate the electrostatic potential grid, dividing by the unit cell volume for plane

wave normalization and applying a uniform background charge correction.
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3.3.2 Solvation Force

The solvation force of the solvent acting on the solute can be directly derived from equa-

tion (3.23) and the standard relation between electrical potential and force:

FLR PME (r) = −q∇φLR PME (r) = −∇ULR PME (r)

∇UV→U
LR = ∇

 1
V ∑

i∈U
qiβ (ri)

[
∑

m 6=0
ĜV→U (m) Q̂V (m)

]
+

1
V

θ̂ (m→ 0)

(
∑
j∈V

qj

)2


=
1
V ∑

i∈U
qi∇β (ri)

[
∑

m 6=0
ĜV→U (m) Q̂V (m)

]
+
���

���
���

���
�:0

∇ 1
V

θ̂ (m→ 0)

(
∑
j∈V

qj

)2

=
1
V ∑

i∈U
qi∇β (ri)

[
∑

m 6=0
ĜV→U (m) Q̂V (m)

]
where β (ri) [ f (r)] is the b-spline interpolation of f (r) onto grid point i at Cartesian

position ri. Hence ∇β (ri) [ f (r)] is the Cartesian gradient of the b-spline interpolation.

By combining the b-spline weights with their Cartesian gradient, interpolation can be

accomplished simultaneously with computing the gradient required to obtain the force

in Cartesian coordinates. The PME force gradient can be calculated several other ways,

each with their own benefits and downsides. The implementation of periodic 3D-RISM in

Amber uses the b-spline analytic gradient primarily because of its speed of computation

and reasonable accuracy.

Since solving the 3D-RISM equation produces a solvent density grid g (r) (the radial

distribution function), the solvent charge does not need to be interpolated to the grid as

it is already on a grid. To obtain the solvent site charge grid, the solvent site density grid

must merely be multiplied by its site charge. The charge grid can then be used to calculate

a modified form of the solvent electric potential based on equation (3.23),

φ
′

LR PME (r) = QU (r) ? G
′
(r) =

1
Vcell

IFFT
[

Q̃U (k) G̃
′
(k)
]
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G̃
′
(k) =

4π

k2
1

B (k)

where φ
′

LR PME (r) is the modified PME potential which lacks the Gaussian coeffi-

cient, G
′
is the modified Green function with the Gaussian charge removed. The Gaussian

charge has been removed from the Green function since the 3D-RISM solves for a dis-

cretized version of a continuous solvent density distribution, and hence point charges are

not present to produce Gaussians.

An aside on removing the Gaussian from the Green function: it is unclear to the author

if removing the Gaussian is the best choice, but it seems to work in practice. The solute

point charges that are interpolated to a grid during the solute-to-solvent PME (prior to

solving the 3D-RISM) are only treated as Gaussians after interpolation, so their resulting

grid does not represent the true Gaussian source charges either. Further, the purpose of

adding the periodic Gaussian is to increase the convergence rate of the Fourier transform

by introducing a smoothly varying periodic function. Without the Gaussian the FFT is act-

ing on a step function, which is a worst case scenario for Fourier transforms and may lead

to failed convergence. Nontheless, leaving the Gaussian out does not seem to produce

poor results when calculating the solvent-to-solute force, possibly because the continuous

solvent density grid produced by the 3D-RISM is sufficiently smooth and periodic-like

(i.e., low average discontinuities across boundaries) so as to make ’smoothing’ by includ-

ing the Gaussian Fourier coefficients unnecessary. A consequence of not including the

Gaussian distribution is that the Gaussian smearing coefficient is not used for solvent-to-

solute force calculations.

Using the modified electric potential, the solvent-to-solute atom force can be calcu-

lated by simultaneously interpolating the potential to the solute atom and calculating the

force via the b-spline gradient method:

Fu
LR PME (ru) = −qu∇φ

′

LR PME (ru)

≈ quφ
′

LR PME (ru) L◦∇W (ru)
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∇W (r) = ∂wx (rx)wy
(
ry
)

wz (rz) i + wx (rx) ∂wy
(
ry
)

wz (rz) j + wx (rx)wy
(
ry
)

∂wz (rz) k

L = Lxi + Lyj + Lzk

where ∇W
(

r
′
)

is the b-spline interpolation gradient vector at a grid point r
′

within

order N grid points around the point of interpolation r (i.e. solute position), ∂wx (rx) ≡

dwx (rx) /dx is the b-spline weight derivative along axis x (calculated using a simple cen-

tral difference along that axis about the grid point), wi (r) is the 1D b-spline weight at

grid point r, ◦ is the element-wise vector multiplication operator, L is a vector of the unit

cell side lengths. The multiplication by L is done since W must be calculated in recipro-

cal space to handle triclinic unit cells and thus multipyling by L needed to convert the

weights back to real space.

Thus the modified SPME force method used in Amber for periodic 3D-RISM calcula-

tions is:

1. Convert the solvent site density grid to a charge grid by multiplying each grid point

by its site charge.

2. Convert the solvent charge grid from real space to frequency space using a FFT.

3. Convolute the solvent charge grid with the electrostatic interaction Green function.

In frequency space the convolution is a simple multiplication.

4. Convert the convolution kernel from frequency space to real space using a FFT.

5. Multiply the resulting grid by the appropriate constants to obtain the solvent elec-

trostatic potential field grid.

6. Obtain the solvation force on each solute atom by interpolating the solvent potential

field grid onto the solute atom positions using an analytic gradient b-spline.

As previously mentioned, the Green function in step 3 has been modified by removing

the Gaussian Fourier coefficient.
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3.4 Periodic 3D-RISM Theory

To perform a 3D-RISM calculation for a periodic solute, two primary changes must be

made to standard 3D-RISM theory:

• a periodic electrostatic interaction must be used, both for electric potential and force

calculations

• the 3D-RISM solver algorithm no longer needs to contend with a k = 0 term

The first modification has already been covered. The periodic electrostatic interaction of

choice is the Ewald sum. When the PME method is employed to calculate the long range

term in the Ewald sum, the calculation can be performed with reasonable timings com-

parable to that of the aperiodic potentials. Long range asymptotic calculations which are

critical for infinite dilution 3D-RISM calculations are already included in the long range

term of the Ewald sum and thus do not need to be separately calculated.

The second modification is relatively minor and uses the following simplified 3D-

RISM solver algorithm:

1. Make an initial guess for c (r) (only affects rate of convergence, not the solution).

2. FFT: c (r) to ĉ (k).

3. Solve the 3D-RISM equation in k-space for ĥ (k).

4. IFFT: ĥ (k) to h (r).

5. Solve the closure relation for g (r) using the given h (r) and c (r).

6. Calculate the DCF residual ∆c (r), which is equal to the RDF residual: ∆c (r) =

g (r)− 1− h (r).

7. If ∆c (r) is less than the user specified error tolerance, cease iterating. Otherwise

calculate a new c
′
(r) = c (r) + ∆c (r) and go to Step 2.

This procedure is nearly identical to the standard 3D-RISM solver algorithm except long

range asymptotics at k = 0 are no longer removed or restored between Fourier transforms.
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Unlike infinite dilution 3D-RISM, periodic 3D-RISM uses tinfoil boundary conditions (i.e.,

φ̂ (k = 0) = 0) and hence there is no explosive k = 0 term to contend with.

These combined modifications to the standard 3D-RISM produce the periodic 3D-

RISM, which can treat the solvation of solute periodic in all three dimensions (e.g., crys-

tals).

3.5 Periodic 3D-RISM Implementation

There are a few practical matters which must be considered when implementing and us-

ing the periodic 3D-RISM to perform simulations.

Many crystal structures have triclinic unit cells (i.e., unit cells with all non-90 degree

interior angles). Nothing in the 3D-RISM theory assumes a specific box geometry, so

triclinic unit cell support is an implementation detail. The most notable points in the

implementation where tricilinic cells must be considered is when calculating the Carte-

sian coordinates of grid points and when calculating k-space wave vectors. All distances

should typically be calculated in Cartesian space, including when applying the minimum

image convention. Fortunately the FFT requires no modification to treat triclinic unit cells

as it makes no assumption of grid geometry, but the b-spline interpolation of charges to

the grid must be performed in reciprocal space to ensure the correct distances are used in

the interpolation.

For crystal solute the simulation box dimensions are typically fixed to match the unit

cell dimensions. The grid spacing can be user defined, so the user still has control over

simulation resolution. The elimination of freedom in box dimensions is a notable simpli-

fication over the infinite dilution 3D-RISM, which requires careful choice of box size to

balance capturing short-range interactions with computational efficiency.

The implementation created for this work will be released in April, 2016 as part of

AmberTool 16, an open source collection of molecular simulation software. The imple-

mentation was based upon an existing non-periodic RISM code that was primarily de-

veloped by Tyler Luchko, David Case, and Andriy Kovalenko [54]. The code is written

in Fortran 90. Distributed parallelization using the MPI communications protocol was
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added for the purpose of handling macromolecular solute that require too much physical

memory or computation time for a single computer system to simulate. Parallelization

is accomplished by dividing the simulation box along the z-axis according to the number

of process nodes so that each process node performs a simluation on its assigned grid

slab (a process commonly referred to as slab decomposition). Since the FFTW library was

used to perform Fourier transforms, the MPI functions in that library were used to facil-

itate distributed Fourier transforms of the entire simulation grid, avoiding the practical

complications and significant performance issues of performing the transform on a single

compute node.

3.6 Crystal structure refinement

One practical application of the periodic 3D-RISM is X-ray crystal structure refinement.

Traditionally structure refinement is performed as an iterative nonlinear error minimiza-

tion process between experimental and theoretical structure data using a chemical inter-

action model:

∆E = Ecalc − wobsEobs (3.24)

where Ecalc and Eobs are the calculated and observed structure data respectively, and

wobs are the observed data weights being optimized to minimize error ∆E. Typically

E are the 3D electron density map or structure factor amplitudes. Calculating Ecalc is

usually done by performing a energy minimization molecular dynamics simulation with

periodic boundary conditions and a chosen solvation model. Traditionally the solvation

model is either an explicit solvent, an implicit solvent model such as Generalized Borne or

Poisson-Boltzmann, or a ’flat’ solvent model where the solvent is uniformly distributed in

the unit cell similar to bulk solvent. As an alternative, the periodic 3D-RISM can be used

as a solvation model. This allows potentially shorter computation times than explicit sol-

vent models, while possibly providing higher accuracy than implicit and ’flat’ solvation

models. Further, since a solution of the 3D-RISM produces 3D solvent density distribu-

tion grids, electron density maps and associated structure factors can be conveniently
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calculated with little or no additional theoretical approximations.

The 3D-RISM electron density grid is obtained from the radial distribution function

grid. To do this for water, the oxygen RDF grid is interpreted as a water RDF. A new

electron density grid is created from this by summing the charge contribution of each

water RDF grid point, ’smearing’ them over a user defined number of neighboring grid

points using an experimental 1D solvent electron RDF to guide the interpolation.

Structure factors can then be calculated from the electron density map using a simple

Fourier transform,

F (r) =
ˆ

σα
e (r) e2πik·rdV

where V is the simulation box volume, and σα
e (r) is the electron density for solvent

species α. Structure factors are proportional to intensity of the reflected beam by Ihkl ∝

|F (hkl)|2 and thus can be calculated directly from experimental X-ray scattering intensity

data.

The R-factor is a common measure of agreement between a crystallographic model

and X-ray diffraction data and is a popular measure of structure refiniment quality. It is

calculated by

R =
∑
∣∣Fobs

∣∣− ∣∣Fcalc
∣∣

∑
∣∣Fobs

∣∣
where Fobs and Fcalc are the observed and calculated structure factors respectively.

To demonstrate the practical utility of the periodic 3D-RISM in crystal structure re-

finement, R-factors were calculated for four solvated crystal structures obtained from the

PDB with associated experimental structure factors. For purpose of comparison, three

different solvent models were used to calculate refined Fcalc: explicit solvent, the peri-

odic 3D-RISM solvent, and a “flat” solvent featured in the refmac5 refinement software

application.
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3.6.1 Methods

3.6.1.1 General

The six macromolecule crystal structures being refined have Protein Data Bank (PDB) IDs

1AHO (scorpion toxin protein), 1BZR (whale myoglobin), 2IGD (protein G IGG-binding

domain II), 2LZT (lysozyme), 4LZT (hen egg white lysozyme), and 4YUL / 3K0N (Cyp-

clophilin A - CypA).

For both 3D-RISM and explicit solvent, MD energy minimization calculations were

performed using the sander application based on a developmental version of Amber-

Tools derived from the AmberTools 15 release. The source code will be made available in

the AmberTools 16 release. AmberTools is a free and open source molecular simulation

toolset. The cSPC/E water model was used for both explicit and 3D-RISM solvents. The

cSPC/E parameters are given in table 2.3. The long-range electrostatic interaction was

calculated using the smooth particle mesh Ewald (SPME) method.[17, 19]

Refinement calculations were performed using the Refmac 5 software application. The

refinement procedure requires two input structures: the solvent density distribution (as

calcluated by the solvent model) and the energy minimized solute structure. During re-

finement, the solvent density is held constant (except for an overall scaling factor, which

is refined), while the atomic positions and B-factors of the solute are modified to achieve

best agreement with the observed diffraction intensities. The final R-factor is obtained

after 40 refinement cycles.

3.6.1.2 Periodic 3D-RISM solvent

All 3D-RISM solvent model calculations were performed with the Kovalenko-Hirata (KH)

closure on a uniform 0.35 Å spaced grid. A 10−6 correlation function convergence error

tolerance was enforced at each MD time step. The periodic 3D-RISM implementation di-

rectly produced solvent distributions which were used in Refmac refinement calculations.
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3.6.1.3 Explicit solvent

For explicit solvent model calculations, each solute was immersed in a pre-equilibriated

cubic water box with a buffer distance of 20 Å. Counter-ions were added to neutralize

the protein systems. Non-bonded interaction cutoff was set at 9.0 Å. Equations of motion

were integrated by employing the leap-frog Verlet algorithm with a 2 fs time step. Co-

valent bond lengths involving hydrogen atoms were constrained using SHAKE.[75] The

system was first minimized with 2000 steps of steepest descent, followed by 3000 steps of

conjugate gradient method to remove bad contacts. The system was then equilibrated at

298.15 K and 1 atm with the solute kept fixed (with the restraint of 10.0 kcal/(mol.Å2)) for

25ns. Temperature was regulated by using Langevin thermostat with a collision frequency

of 2.0 ps-1 while pressure was maintained using Berendsen barostat. All simulations were

performed using the GPU accelerated pmemd code (pmemd.cuda).[25, 76, 50] Only the

last 20ns of trajectories were kept and their solvent distributions averaged to produce

solvent distributions suitable for use in Refmac refinement calculations.

3.6.2 Results

The R-factor and R-free after 40 cycles of Refmac refinement for the six single conformer

protein structures is shown in table 3.2. There is an average drop in R of 0.019 between

flat and explicit MD, and an average drop of 0.011 between flat and 3D-RISM. Further,

R-factor values for the 3D-RISM solvent model are typically close to in between those of

the flat and explicit solvent models, with the notable exceptions of lysozyme 4LZT and

2LZT where 3D-RISM nearly matches the explicit R-factor. Thus in terms of R-factors, the

3D-RISM seems to have accuracy between the explicit and flat solvent models, with the

curious exception of lysozymes.

The R-factor and R-free for 1AHO in both single and multiple conformations is shown

in table 3.3. As in table 3.2, the R-factors of 3D-RISM are roughly in between flat and

explicit solvent models, indicating that this trend is not merely a byproduct of only con-

sidering a single protein conformation.

Plots of the R-factors at multiple refinement resolutions for five of the proteins is
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Protein scorpion toxin GB3 myoglobin lysozyme lysozyme cyclophilin
PDB ID/resol. 1AHO/0.96 2IGD/1.10 1BZR/1.15 4LZT/0.95 2LZT/1.97 4YUL/1.42
flat (Refmac) .209/.214 .220/.233 .200/.208 .196/.205 .167/.216 .201/.224

3D-RISM .197/.211 .213/.224 .194/.206 .190/.197 .154/.201 .185/.202
explicit MD .189/.198 .191/.209 .186/.192 .191/.202 .153/.214 .172/.185

Table 3.2: Solvent models with a single protein configuration; each block shows R/Rfree
after 40 cycles of refmac refinement.

Solvent Model R R-free
single protein conformation
flat (default) .209 .214

RISM .197 .211
explicit .189 .198

multiple protein conformation
flat (default) .178 .190

RISM .158 .174
explicit .144 .167

Table 3.3: R-factor and R-free values for single and multiple protein conformations of
1AHO refined in water using the flat, periodic 3D-RISM, and explicit solvation models.

shown in figure 3.2. In general these plots hold no surprises. At coarse resolutions of

around 5 Å and up, 3D-RISM tends to perform slightly worse than the three solvent mod-

els, but at reasonable refinement resolutions of about 1 to 4 Å 3D-RISM is roughly in the

middle of the flat and explicit solvent model R-factors, matching the trend observed in

table 3.2 and table 3.3.

Timings for single snapshot 3D-RISM solvation calculations are shown in table 3.4.

Even for the relatively large grid of 140 x 120 x 90 Å for 1AHO, the calculation time is

only 7.74 minutes. When a parallel execution is performed on two MPI processes the total

calculation times are roughly halved, as expected. Thus the single-process computation

times are short, and the times can be further linearly curtailed via parallelization.

3.7 Conclusions

The 3D-RISM was extended to handle periodic solute (e.g., crystals). This involved re-

placing the Coulombic potential with the Ewald sum to handle the periodic interactions,

using the Smooth Particle Mesh Ewald (SPME) potential to speed up calculation of the
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Figure 3.1: Water density distribution about a scorpion toxin protein (PDB ID 1AHO).

Protein atom count grid dimensions (Å) threads time (s)
1AHO 3848 140 x 120 x 90 1 464.4

2 247.5
2IGD 3708 72 x 84 x 90 1 166.1

2 86.6
4LZT 1984 56 x 64 x 70 1 58.42

2 29.72

Table 3.4: Timings of single snapshot 3D-RISM solvation calculations using varying num-
bers of execution threads. CPU: Intel Core i7-5700HQ @ 2.7 GHz.
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Figure 3.2: R-factor values for various solute structures refined in water using the explicit,
periodic 3D-RISM, and flat solvation models.
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long range term in the Ewald sum, and introducing the minimum image convention to

the short range term of the Ewald sum and Lennard-Jones potential. In addition, a few

minor details of the standard 3D-RISM solver were simplified, particularly there is no

longer need to be concerned with divergence at k = 0 due to the use of tinfoil boundary

conditions in the calculation of the SPME. This new periodic 3D-RISM does not correctly

balance ionic solvent counts in order to neutralize the solute, an issue which will need to

be addressed in future work.

The periodic 3D-RISM was applied to crystallographic structure refinement of six pro-

tein structures. It was found that the average R-factor using the periodic 3D-RISM solva-

tion model is an improvement over the flat solvent model and sits roughly between the

R-factors of the explicit solvent and flat solvent. Considering that the 3D-RISM simula-

tions only take seconds to minutes to complete, whereas the equivalent MD simulations

require hours or days, the periodic 3D-RISM solvent model poses an interesting compro-

mise of accuracy and computational efficiency that may be useful to crystallographers

seeking rapid structure refinement protocols where solvent distributions may be updated

frequently.
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Chapter 4

Appendix

4.1 Correction of 3D-RISM solvation thermodynamics for small drug-like molecules

4.1.1 Gaussian Fluctuation Approximation

The Gaussian fluctuation approximation (GF) [13, 36] has been shown to produce better

results than HNC in many [36, 51] but not all[24, 34] cases. It has the form

∆µGF = kT ∑
γ

ργ

ˆ
−cγ (r)−

hγ (r) cγ (r)
2

dr. (4.1)

Applying equation (4.5) we have

δT∆µGF = ∆µGF + kT ∑
γ

ργ

ˆ
−δTcγ (r)−

1
2
[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)] dr. (4.2)

This gives

∆εGF = ∆µGF − δT∆µGF

= −kT ∑
γ

ργ

ˆ
− δTcγ (r)

− 1
2
[{δThγ (r)} cγ (r) + hγ (r) δTcγ (r)] dr.

(4.3)

4.1.2 Ng Bridge Correction

Closely related to the UC, [85] proposed the following correction

∆µNgB = ∆µRISM +
kTρO

2
(1− γ)

ˆ
cnp

O (r) dr (4.4)

where cnp
O is the non-polar CDF of oxygen – calculated with the solute charges turned off

– ρO is the bulk number density of oxygen and γ is an adjustable parameter. While the

KH closure was originally used, here we extend the correction to use any PSE-n closure,

which includes KH when n = 1.
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Since NgB uses only non-polar terms to correction ∆µRISM, the polar/non-polar de-

composition is simply

∆µ
NgB
Pol = ∆µRISM

Pol

∆µ
NgB
NP = ∆µRISM

NP +
kTρO

2
(1− γ)

ˆ
cnp

O (r) dr.

From this we see that the correction does not change the polar component of the solvation

free energy.

As with UC, we apply a linear temperature dependence to the fit parameter,

γ = γ0 + γ1T.

We will denote the linear temperature dependence as NgBT. Taking the temperature deriva-

tive we have

δT∆µNgBT = δT∆µRISM +
kTρO

2

{
(1− γ)

[ˆ
cnp

O (r) dr +
ˆ

δTcnp
O (r) dr

]
− γ1T

ˆ
cnp

O (r) dr
}

We will denote the linear temperature dependence as NgBT. Taking the temperature deriva-

tive we have

δT∆µNgBT = δT∆µRISM +
kTρO

2

{
(1− γ)

[ˆ
cnp

O (r) dr +
ˆ

δTcnp
O (r) dr

]
− γ1T

ˆ
cnp

O (r) dr
}

Using for equation (2.6) we have

∆εNgBT = ∆µNgB − δT∆µNgBT

= ∆µRISM +
kTρO

2
(1− γ)

ˆ
cnp

O (r) dr− δT∆µRISM

− kTρO

2

{
(1− γ)

[ˆ
cnp

O (r) dr +
ˆ

δTcnp
O (r) dr

]
− γ1T

ˆ
cnp

O (r) dr
}

= ∆εRISM − kTρO

2

{
(1− γ)

ˆ
δTcnp

O (r) dr− γ1T
ˆ

cnp
O (r) dr

}
.

Without the temperature dependence, we have

∆εNgB = ∆εRISM − kTρO

2

{
(1− γ)

ˆ
δTcnp

O (r) dr (r) dr
}

.

As with UC, the temperature dependence of γ does not change the fitting procedure to

obtain accurate solvation free energies and only one new parameter needs to be fit against

empirical enthalpies and entropies. For testing purposes, we will denote the original cor-

rection NgB and NgBT when γ1 is included.
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4.1.3 Temperature derivatives

4.1.3.1 1D-RISM

The analytic expression for the temperature derivative of the RISM equation has been

derived by [92] and gives the expression

δTĥVV = ω̂δT ĉVVω̂ + ω̂δT ĉVVρĥVV + ω̂ĉVVρδTĥVV

in reciprocal space, where we have used the functional isochoric temperature derivative

δT ≡ T
(

∂

∂T

)
ρ

. (4.5)

Note that this definition provides the useful relations δTkT = kT and δT β = −β.

For DRISM, we apply δT to equation (1.7) to get

δTĥ′VV =
{

δTω̂′
}

ĉVVω̂′ + ω̂′
{

δT ĉVV
}

ω̂′ + ω̂′ ĉVVδTω̂′

+
{

δTω̂′
}

ĉρĥ′VV + ω̂′
{

δT ĉVV
}

ρĥ′VV + ω̂′ ĉVVρδTĥ′VV

=
[{

δTω̂′
}

ĉVV + ω̂′δT ĉVV
] [

ω̂′ + ρĥ′VV
]
+ ω̂′ ĉVV

[
δTω̂′ + ρδTĥ′VV

]
.

Now we use

δTĥ′VV = δTĥVV − δTD̂

and

δTω̂′ = δTω̂ + ρδTD̂ = ρδTD̂

to get

δTĥVV − δTD̂ =
[{

δTω̂′
}

ĉVV + ω̂′δT ĉVV
] [

ω̂ +
�
�ρD̂ + ρĥVV −

�
�ρD̂
]
+ ω̂′ ĉVV

[
��
�ρδTD̂ + ρδTĥVV −��

�ρδTD̂
]

=
[{

δTω̂′
}

ĉVV + ω̂′δT ĉVV
]

χ̂ + ω̂′ ĉVVρδTĥVV

δTĥVV =
[
1− ω̂′ ĉVVρ

]−1 [[{
δTω̂′

}
ĉVV + ω̂′δT ĉVV

]
χ̂ + δTD̂

]
.
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4.1.3.2 3D-RISM

For 3D-RISM, we apply the temperature derivative to the full 3D-RISM equation, equa-

tion (1.10), giving

δTĥ = {δT ĉ}
(

ω̂ + ρĥVV
)
+ ĉρδTĥVV

= {δT ĉ} χ̂VV + ĉδTχ̂VV (4.6)

where

δTχ̂VV = ρδTĥVV

is obtained from 1D-RISM.

4.1.4 Long-Range Asymptotics

In order to compute solutions to 1.9 and 4.6, it is necessary to account for the long-range

behavior of electrostatic interactions, which cannot be Fourier transformed due to diver-

gence at small k. The use of long-range asymptotics[82, 63, 3] has been described for 1D-

RISM and 3D-RISM [43, 45, 27].

As we are only concerned with pure water, we need only consider the long-range

behavior of cα (r), which is approximated as

c(as)
α (r) = −βqα

NU

∑
i

Qi

|r− Ri|
erf
(
|r− Ri|

η

)
, (4.7)

where qα is the charge of solvent site α, Qi and Ri are the partial charge and position of

site i of NU solute sites, η is the charge smearing coefficient and erf is the error function.

c(as)
α (r) is subtracted from cα (r) before performing a forward Fourier transform and then

ĉ(as)
α (k) = −4πβqα

NU

∑
i

Qi
e−
(

kη
2

)2
−ik·Ri

k2 (4.8)

is added back in reciprocal space.

equation (4.6) also requires the temperature derivatives of equation (4.7) and 4.8:

δTc(as)
α (r) = βqα

NU

∑
i

Qi

|r− Ri|
erf
(
|r− Ri|

η

)
and

δT ĉ(as)
α (k) = 4πβqα

NU

∑
i

Qi
e−
(

kη
2

)2
−ik·Ri

k2 . (4.9)
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4.1.5 Bootstrap Analysis

Correction a a0 a1 b b0 b1

UCKH −0.1498(8) 0.009(7) −0.00053(2) −0.1(1) −3.2(9) 0.010(3)

UCPSE3 −0.1185(7) 0.032(7) −0.00051(2) −0.3(1) −3.2(9) 0.010(3)

UCHNC −0.1186(7) 0.033(7) −0.00051(2) −0.2(1) −3.3(9) 0.010(3)

UCGFKH −0.1044(8) 0.018(7) −0.00041(2) 0.6(1) −3.1(9) 0.012(3)

UCGFPSE3 −0.041(1) 0.064(7) −0.00036(2) 1.1(2) −3(1) 0.013(3)

UCGFHNC −0.038(1) 0.069(8) −0.00036(3) 1.1(2) −3(1) 0.013(4)

Correction γ γ0 γ1

NgBKH 0.333(1) 0.38(1) −0.00015(4)

NgBPSE3 0.366(1) 0.31(1) 0.00019(4)

NgBHNC 0.364(1) 0.31(1) 0.00020(4)

Table 4.1: Fit parameters for UC and NgB corrections. Standard error in the last digit is

given in parentheses.
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∆G

Slope y-intercept R2 RMSE MUE

KH 1.2(1) 24.6(5) 0.218(1) 24.964(10) 24.030(10)

PSE-3 1.20(8) 20.1(4) 0.305(1) 20.277(7) 19.537(8)

HNC 1.21(9) 20.0(4) 0.301(1) 20.149(8) 19.415(8)

UCKH 0.98(2) −0.20(5) 0.8413(4) 1.272(2) 0.918(1)

UCPSE3 0.96(2) −0.23(6) 0.8407(4) 1.261(2) 0.917(1)

UCHNC 0.92(2) −0.28(5) 0.8625(4) 1.098(1) 0.837(1)

UCGFKH 1.04(2) −0.04(5) 0.8442(4) 1.354(2) 0.965(1)

UCGFPSE3 1.30(3) 0.62(7) 0.8432(4) 1.917(4) 1.334(2)

UCGFHNC 1.30(2) 0.67(6) 0.8612(5) 1.745(3) 1.296(2)

NgBKH 1.10(2) 0.12(6) 0.8507(4) 1.409(2) 1.018(1)

NgBPSE3 1.12(2) 0.20(6) 0.8509(4) 1.448(3) 1.037(1)

NgBHNC 1.08(2) 0.14(5) 0.8777(4) 1.191(2) 0.905(1)

IScKH 0.96(2) −2.17(6) 0.8045(5) 2.494(2) 2.091(2)

IScPSE3 0.96(2) −0.75(6) 0.8322(4) 1.432(2) 1.053(1)

IScHNC 0.92(2) −0.66(5) 0.8584(4) 1.188(1) 0.919(1)

ISc*KH 0.99(2) 1.08(6) 0.8380(4) 1.705(1) 1.453(1)

ISc*PSE3 1.00(2) 2.59(8) 0.8162(5) 2.951(2) 2.689(2)

ISc*HNC 0.96(2) 2.67(7) 0.8232(5) 3.057(2) 2.811(2)

MD 0.99(2) 0.64(5) 0.8865(3) 1.249(1) 1.025(1)

Table 4.2: Bootstrap statistical comparison between predicted and empirical hydration

free energies for neutral molecules (Mobley, Abagyan, Rizzo and Palmer datasets). As

described in Methods, values are the mean of all resampled data. RMSE: root-mean-

squared-error. MUE: mean unsigned error. Standard error in the last digit is given in

parentheses.
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∆G

Slope y-intercept R2 RMSE MUE

KH 1.14(5) 20(4) 0.8938(7) 12.76(3) 11.07(3)

PSE-3 1.14(6) 17(5) 0.8952(8) 10.62(3) 9.26(2)

HNC 1.16(7) 18(5) 0.9099(7) 10.16(3) 8.86(3)

UCKH 0.91(5) −7(3) 0.8918(9) 6.58(2) 4.94(2)

UCPSE3 0.93(5) −6(4) 0.8915(9) 6.53(2) 4.87(2)

UCHNC 0.95(6) −5(4) 0.9150(7) 6.07(2) 4.51(2)

UCGFPSE3 1.10(6) 2(5) 0.8850(9) 9.90(4) 6.97(3)

UCGFKH 0.93(5) −6(4) 0.8959(8) 6.59(2) 4.89(2)

UCGFHNC 1.12(7) 2(5) 0.9024(7) 10.54(4) 7.62(4)

NgBKH 1.02(6) −0(4) 0.8751(10) 7.80(3) 5.97(2)

NgBPSE3 1.05(6) 1(4) 0.868(1) 8.24(3) 6.22(2)

NgBHNC 1.07(7) 3(5) 0.9013(7) 7.71(3) 5.81(3)

IScKH 0.90(5) −9(3) 0.8900(9) 6.73(2) 5.07(2)

IScPSE3 0.92(5) −7(4) 0.8903(9) 6.57(2) 4.90(2)

IScHNC 0.94(6) −6(5) 0.9146(7) 6.07(3) 4.52(2)

ISc*KH 0.93(5) −6(4) 0.8939(9) 6.51(2) 4.91(2)

ISc*PSE3 0.96(5) −3(4) 0.8931(9) 6.51(2) 5.03(2)

ISc*HNC 0.98(6) −2(5) 0.9162(7) 5.97(2) 4.75(2)

MD 0.9(1) −8.8(1) 0.952(2) 2.933(8) 2.861(9)

Table 4.3: Bootstrap statistical comparison between predicted and empirical hydration

free energies for ions (Rizzo dataset). Only the six Joung-Cheatham monovalent ions[39]

are included for MD.
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∆G

Slope y-intercept R2 RMSE MUE

KH 0.9(1) 23.2(4) 0.1474(1) 24.40(1) 23.36(1)

PSE-3 1.00(9) 18.9(3) 0.232(1) 19.695(8) 18.861(8)

HNC 1.03(9) 18.7(3) 0.225(1) 19.483(8) 18.648(8)

UCKH 0.98(1) −0.85(3) 0.9329(3) 1.151(2) 0.886(1)

UCPSE3 0.97(1) −0.87(3) 0.9322(3) 1.146(2) 0.885(1)

UCHNC 0.95(1) −0.93(3) 0.9301(3) 1.145(2) 0.909(1)

UCGFKH 1.05(1) −0.74(4) 0.9347(2) 1.214(2) 0.912(1)

UCGFPSE3 1.31(2) −0.25(4) 0.9333(3) 1.715(3) 1.171(2)

UCGFHNC 1.32(2) −0.28(5) 0.9089(6) 1.785(4) 1.221(2)

NgBKH 1.10(1) −0.62(3) 0.9423(2) 1.233(2) 0.913(1)

NgBPSE3 1.13(1) −0.54(3) 0.9465(2) 1.231(2) 0.885(1)

NgBHNC 1.11(1) −0.63(3) 0.9451(2) 1.187(2) 0.883(1)

IScKH 0.99(1) −2.76(3) 0.9339(3) 2.849(1) 2.728(1)

IScPSE3 0.97(1) −1.37(3) 0.9394(3) 1.519(2) 1.319(1)

IScHNC 0.95(1) −1.29(3) 0.9387(3) 1.400(2) 1.215(1)

ISc*KH 0.98(2) 0.39(5) 0.9065(3) 1.078(1) 0.8556(1)

ISc*PSE3 0.97(2) 1.86(7) 0.8578(4) 2.286(2) 2.023(2)

ISc*HNC 0.96(2) 1.93(7) 0.8369(4) 2.359(2) 2.091(2)

Table 4.4: Bootstrap statistical comparison between predicted and molecular dynamics

hydration free energies for neutral molecules (Mobley dataset). As described in Methods,

R2 bootstrap is the mean of all resampled data and R2 k-fold is the mean over all training

sub-samples. RMSE: root-mean-squared-error. MUE: mean unsigned error.
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∆GPol

Slope y-intercept R2 RMSE MUE

KH 1.14(1) −0.19(3) 0.9516(2) 1.068(2) 0.750(1)

PSE-3 1.16(1) −0.16(4) 0.9530(3) 1.160(2) 0.831(1)

HNC 1.14(1) −0.23(3) 0.9535(3) 1.052(2) 0.7741(10)

UCKH
Pol 1.06(1) −0.21(3) 0.9472(3) 0.832(2) 0.5344(9)

UCPSE3
Pol 1.07(1) −0.20(3) 0.9469(3) 0.841(2) 0.5377(9)

UCHNC
Pol 1.04(1) −0.26(3) 0.9471(3) 0.748(2) 0.4896(8)

UCGFKH
Pol 1.11(1) −0.18(3) 0.9490(3) 0.962(2) 0.642(1)

UCGFPSE3
Pol 1.36(2) −0.03(6) 0.9489(3) 1.946(3) 1.480(2)

UCGFHNC
Pol 1.38(2) −0.14(5) 0.9234(6) 2.091(4) 1.590(2)

NgBKH
Pol 1.14(1) −0.19(3) 0.9514(2) 1.067(2) 0.750(1)

NgBPSE3
Pol 1.16(1) −0.16(4) 0.9531(2) 1.162(2) 0.833(1)

NgBHNC
Pol 1.14(1) −0.23(3) 0.9535(3) 1.052(2) 0.774(1)

IScKH
Pol 1.06(1) −0.21(4) 0.9463(3) 0.820(2) 0.5240(9)

IScPSE3
Pol 1.06(1) −0.20(4) 0.9459(3) 0.837(2) 0.5330(9)

IScHNC
Pol 1.04(1) −0.26(3) 0.9472(3) 0.739(2) 0.4844(8)

ISc*KH
Pol 1.07(1) −0.21(4) 0.9472(3) 0.845(2) 0.5435(9)

ISc*PSE3
Pol 1.08(1) −0.19(4) 0.9475(3) 0.880(2) 0.5667(10)

ISc*HNC
Pol 1.05(1) −0.26(3) 0.9487(3) 0.779(2) 0.5140(9)

Table 4.5: Bootstrap statistical comparison between predicted and molecular dynamics

polar hydration free energies for neutral molecules (Mobley dataset).
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∆GNP

Slope y-intercept R2 RMSE MUE

KH 2.9(5) 20.5(9) 0.0822(8) 25.09(1) 24.09(1)

PSE-3 2.5(4) 16.8(7) 0.0967(8) 20.471(8) 19.687(8)

HNC 2.6(4) 16.2(7) 0.1022(8) 20.192(8) 19.417(8)

UCKH
NP 0.69(3) 0.26(5) 0.586(1) 0.5729(6) 0.4522(5)

UCPSE3
NP 0.64(3) 0.36(5) 0.542(1) 0.5856(6) 0.4614(5)

UCHNC
NP 0.65(3) 0.26(5) 0.565(1) 0.6250(7) 0.5058(5)

UCGFKH
NP 0.82(3) 0.11(6) 0.643(1) 0.5025(7) 0.3834(5)

UCGFPSE3
NP 0.99(4) 0.58(7) 0.650(1) 0.7635(6) 0.6447(6)

UCGFHNC
NP 0.97(4) 0.75(8) 0.621(1) 0.8641(7) 0.7526(6)

NgBKH
NP 1.01(3) −0.11(5) 0.7636(8) 0.4063(7) 0.2871(4)

NgBPSE3
NP 0.99(2) 0.02(4) 0.7937(8) 0.3576(6) 0.2456(4)

NgBHNC
NP 1.01(2) −0.07(4) 0.7927(8) 0.3586(7) 0.2412(4)

IScKH
NP 0.50(2) −1.32(4) 0.616(1) 2.3245(6) 2.2808(6)

IScPSE3
NP 0.56(2) −0.01(3) 0.7284(9) 0.9318(6) 0.8528(5)

IScHNC
NP 0.59(2) 0.01(3) 0.7052(9) 0.8797(6) 0.7984(6)

ISc*KH
NP 0.79(5) 1.32(9) 0.395(1) 1.1612(9) 0.9957(9)

ISc*PSE3
NP 0.88(7) 2.7(1) 0.263(1) 2.655(1) 2.447(2)

ISc*HNC
NP 0.92(7) 2.6(1) 0.264(1) 2.683(1) 2.472(2)

Table 4.6: Bootstrap statistical comparison between predicted and molecular dynamics

non-polar hydration free energies for neutral molecules (Mobley dataset).
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∆H/∆ε

Slope y-intercept R2 RMSE MUE

KH 1.01(6) 1.9(7) 0.802(1) 2.702(6) 2.334(6)

PSE-3 1.19(7) 1.2(8) 0.798(2) 2.79(1) 2.045(8)

HNC 1.19(8) 1.0(8) 0.802(2) 2.80(1) 2.041(8)

UCKH 1.8(2) −9(2) 0.565(3) 20.12(3) 18.82(3)

UCPSE3 1.7(2) −10(2) 0.568(3) 19.52(3) 18.32(3)

UCHNC 1.7(2) −10(2) 0.558(3) 19.52(3) 18.30(3)

UCTKH 0.87(6) −1.6(6) 0.794(1) 1.890(5) 1.541(5)

UCTPSE3 0.89(6) −1.4(6) 0.806(1) 1.849(5) 1.504(4)

UCTHNC 0.87(5) −1.6(6) 0.809(1) 1.823(5) 1.479(4)

UCGFKH 1.6(2) −6(2) 0.627(3) 14.36(3) 13.22(2)

UCGFPSE3 1.8(1) −2(1) 0.758(2) 12.13(2) 10.95(2)

UCGFHNC 1.9(1) −1(1) 0.774(2) 12.44(2) 11.20(2)

UCTGFKH 0.90(6) −1.3(6) 0.798(1) 1.897(5) 1.549(4)

UCTGFPSE3 1.20(6) 2.4(7) 0.823(1) 2.442(8) 1.928(6)

UCTGFHNC 1.29(7) 3.5(8) 0.814(1) 2.785(9) 2.183(7)

NgBKH 1.01(6) 1.9(7) 0.803(1) 2.697(5) 2.330(5)

NgBPSE3 1.19(7) 1.2(7) 0.802(1) 2.77(1) 2.030(8)

NgBHNC 1.18(7) 1.0(8) 0.801(2) 2.81(1) 2.051(8)

NgBTKH 1.01(6) 2.0(7) 0.804(1) 2.798(6) 2.424(6)

NgBTPSE3 1.19(7) 1.1(8) 0.800(1) 2.88(1) 2.103(8)

NgBTHNC 1.19(7) 0.9(8) 0.799(2) 2.92(1) 2.126(8)

IScKH 0.98(6) 0.0(7) 0.784(2) 2.130(6) 1.638(6)

IScPSE3 0.98(6) 0.3(7) 0.799(1) 2.117(6) 1.667(6)

IScHNC 0.97(6) 0.3(7) 0.800(1) 2.108(5) 1.656(5)

ISc*KH 0.56(8) −1.0(7) 0.497(3) 3.092(7) 2.734(6)

ISc*PSE3 1.3(2) −3(2) 0.466(3) 6.59(1) 5.79(1)

ISc*HNC 1.4(2) −3(2) 0.489(3) 6.79(1) 5.99(1)

Table 4.7: Bootstrap statistical comparison between predicted ∆H (all UC and NgB cor-

rections) or ∆ε (uncorrected 3D-RISM and parameter free corrections) and ∆H from ex-

periment for neutral molecules (Abraham and Cabani datasets).
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∆H/∆ε

Slope y-intercept R2 RMSE MUE

KH 0.84(9) −13(9) 0.848(3) 8.29(5) 6.47(4)

PSE-3 0.88(9) −12(8) 0.853(2) 8.16(6) 6.35(4)

HNC 0.91(8) −9(8) 0.848(4) 7.67(8) 5.47(5)

UCKH 0.66(7) −36(6) 0.821(2) 10.97(5) 8.97(5)

UCPSE3 0.64(7) −37(6) 0.834(2) 10.95(5) 9.04(5)

UCHNC 0.65(8) −36(7) 0.827(4) 11.49(7) 9.23(7)

UCTKH 0.80(9) −19(9) 0.858(2) 8.09(6) 6.17(4)

UCTPSE3 0.83(9) −17(8) 0.867(2) 7.96(6) 6.12(4)

UCTHNC 0.88(8) −13(7) 0.872(4) 7.38(7) 5.43(5)

UCGFKH 0.72(7) −28(7) 0.837(2) 9.53(5) 7.77(4)

UCGFPSE3 0.95(9) −13(8) 0.853(2) 11.72(7) 8.60(6)

UCGFHNC 0.94(10) −14(9) 0.841(4) 11.83(10) 9.02(7)

UCTGFKH 0.83(9) −17(9) 0.857(2) 8.07(6) 6.17(4)

UCTGFPSE3 1.1(1) −2(1) 0.865(2) 11.95(8) 8.71(7)

UCTGFHNC 1.1(1) 0.6(1) 0.850(4) 11.9(1) 8.53(8)

NgBKH 0.85(9) −12(9) 0.850(3) 8.23(5) 6.42(4)

NgBPSE3 0.88(9) −12(9) 0.850(3) 8.15(6) 6.34(4)

NgBHNC 0.91(8) −9(8) 0.848(4) 7.66(8) 5.46(5)

NgBTKH 0.85(9) −12(9) 0.850(3) 8.23(5) 6.42(4)

NgBTPSE3 0.88(9) −12(9) 0.849(3) 8.17(6) 6.36(4)

NgBTHNC 0.91(8) −9(8) 0.848(4) 7.69(8) 5.48(5)

IScKH 0.78(9) −19(8) 0.856(2) 8.25(5) 6.16(5)

IScPSE3 0.80(8) −17(8) 0.867(2) 7.89(5) 6.04(4)

IScHNC 0.85(7) −13(7) 0.880(3) 6.89(5) 5.28(4)

ISc*KH 0.53(9) −1.4(7) 0.634(5) 2.614(10) 2.23(1)

ISc*PSE3 0.6(2) −4(2) 0.398(6) 2.39(1) 1.99(1)

ISc*HNC 0.4(3) −5(2) 0.238(6) 2.60(2) 2.20(1)

Table 4.8: Bootstrap statistical comparison between predicted ∆H (all UC and NgB cor-

rections) or ∆ε (uncorrected 3D-RISM and parameter free corrections) and ∆H from ex-

periment for ions (Fawcett and Marcus datasets).
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T∆S

Slope y-intercept R2 RMSE MUE

KH 2.7(5) −4(4) 0.432(3) 19.56(3) 18.10(3)

PSE-3 2.6(5) −4(4) 0.439(3) 18.52(3) 17.13(3)

HNC 2.6(5) −3(4) 0.460(3) 18.43(3) 17.01(3)

UCKH 2.6(5) −6(4) 0.435(3) 20.16(3) 18.85(3)

UCPSE3 2.5(5) −6(4) 0.443(3) 19.56(3) 18.35(3)

UCHNC 2.6(5) −5(4) 0.460(3) 19.49(3) 18.27(3)

UCTKH 0.52(8) −4.0(7) 0.489(3) 1.545(5) 1.205(4)

UCTPSE3 0.56(8) −3.7(7) 0.517(3) 1.497(5) 1.157(4)

UCTHNC 0.58(7) −3.5(6) 0.564(3) 1.427(5) 1.109(4)

UCGFKH 2.1(4) −4(3) 0.442(3) 14.27(2) 13.16(2)

UCGFPSE3 1.9(3) −3(3) 0.471(3) 11.71(2) 10.69(2)

UCGFHNC 2.0(3) −2(3) 0.502(3) 11.89(2) 10.87(2)

UCTGFKH 0.49(8) −4.2(7) 0.494(3) 1.531(6) 1.193(4)

UCTGFPSE3 0.56(7) −3.4(7) 0.483(3) 1.598(5) 1.205(4)

UCTGFHNC 0.64(8) −2.7(8) 0.492(4) 1.637(6) 1.214(4)

NgBKH 0.67(1) −0.9(8) 0.500(3) 2.418(6) 2.066(5)

NgBPSE3 1.0(1) −1(1) 0.495(3) 2.346(8) 1.807(6)

NgBHNC 1.0(2) −1(1) 0.518(3) 2.345(8) 1.800(6)

NgBTKH 0.65(1) −0.9(8) 0.502(3) 2.538(6) 2.182(6)

NgBTPSE3 1.0(2) −1(1) 0.493(3) 2.459(8) 1.895(7)

NgBTHNC 1.0(2) −1(1) 0.516(3) 2.466(8) 1.900(6)

IScKH 0.64(1) −1.2(8) 0.492(3) 2.435(7) 2.065(5)

IScPSE3 0.7(1) −1.3(9) 0.507(3) 1.930(6) 1.552(5)

IScHNC 0.8(1) −1.0(9) 0.542(3) 1.887(6) 1.509(5)

ISc*KH 0.83(5) 1.8(6) 0.787(1) 4.246(8) 3.806(8)

ISc*PSE3 1.13(8) −1.9(9) 0.749(2) 4.33(1) 3.48(1)

ISc*HNC 1.13(9) −2.0(9) 0.742(2) 4.48(1) 3.62(1)

Table 4.9: Bootstrap statistical comparison between predicted T∆SP (all UC and NgB cor-

rections) or T∆SV (uncorrected 3D-RISM and parameter free corrections) and T∆SP from

experiment for neutral molecules (Abraham and Cabani datasets).
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T∆S

Slope y-intercept R2 RMSE MUE

KH 1.0(5) −4(3) 0.295(6) 6.23(3) 5.16(3)

PSE-3 1.0(5) −4(3) 0.316(6) 6.19(3) 5.16(3)

HNC 0.6(7) −7(4) 0.183(5) 5.89(4) 4.77(3)

UCKH 0.7(5) −7(3) 0.195(5) 6.63(4) 5.51(3)

UCPSE3 0.5(5) −8(3) 0.140(4) 6.51(4) 5.32(3)

UCHNC 0.4(9) −9(5) 0.209(7) 7.27(5) 5.97(4)

UCTKH 0.56(10) −4.2(7) 0.604(5) 1.946(10) 1.577(9)

UCTHNC 0.5(1) −4.9(10) 0.479(6) 2.13(1) 1.81(1)

UCTPSE3 0.7(1) −3.9(10) 0.570(5) 2.21(1) 1.77(1)

UCGFKH 0.7(4) −5(3) 0.253(5) 4.48(3) 3.72(2)

UCGFPSE3 0.9(4) −4(3) 0.336(6) 4.70(2) 4.08(2)

UCGFHNC 0.5(5) −7(3) 0.195(6) 4.67(2) 4.08(2)

UCTGFKH 0.6(1) −4(1) 0.474(5) 2.27(1) 1.84(1)

UCTGFPSE3 1.0(3) −3(2) 0.383(6) 4.39(2) 3.34(2)

UCTGFHNC 0.6(4) −5(3) 0.231(7) 4.01(3) 3.15(2)

NgBKH 0.7(1) 0.1(9) 0.730(4) 2.91(1) 2.57(1)

NgBPSE3 0.8(1) −0.3(9) 0.689(4) 1.91(1) 1.49(1)

NgBHNC 0.7(2) −1(1) 0.622(6) 1.88(1) 1.38(1)

NgBTKH 0.7(1) 0.2(9) 0.727(4) 2.98(1) 2.64(1)

NgBTPSE3 0.8(1) −0.4(9) 0.687(4) 1.87(1) 1.43(1)

NgBTHNC 0.7(2) −1(1) 0.621(6) 1.84(1) 1.34(1)

IScKH 0.54(9) −1.6(7) 0.646(5) 2.399(9) 2.06(1)

IScPSE3 0.6(1) −1.7(9) 0.616(5) 2.004(7) 1.758(8)

IScHNC 0.45(9) −2.5(7) 0.615(5) 1.926(9) 1.662(10)

ISc*KH 0.80(9) −16(9) 0.857(2) 8.37(6) 6.06(5)

ISc*PSE3 0.77(8) −21(7) 0.865(2) 8.12(5) 6.47(4)

ISc*HNC 0.81(6) −18(6) 0.876(3) 7.38(5) 5.85(4)

Table 4.10: Bootstrap statistical comparison between predicted T∆SP (all UC and NgB

corrections) or T∆SV (uncorrected 3D-RISM and parameter free corrections) and T∆SP

from experiment for ions (Fawcett and Marcus datasets).
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4.1.6 k-fold Cross-Validation Statistics

Correction a a0 a1 b b0 b1

UCKH −0.1499(8) 0.009(7) −0.00053(2) −0.1(1) −3.2(10) 0.011(3)

UCPSE3 −0.1185(8) 0.033(7) −0.00051(2) −0.3(1) −3.3(10) 0.010(3)

UCHNC −0.1186(8) 0.033(6) −0.00051(2) −0.2(1) −3.3(9) 0.010(3)

UCGFKH −0.1044(9) 0.018(7) −0.00041(2) 0.6(1) −3.1(10) 0.013(3)

UCGFPSE3 −0.042(1) 0.065(9) −0.00036(3) 1.1(2) −3(1) 0.013(4)

UCGFHNC −0.038(1) 0.069(10) −0.00036(3) 1.1(2) −3(1) 0.013(5)

Correction γ γ0 γ1

NgBKH 0.333(1) 0.38(1) −0.00015(4)

NgBPSE3 0.366(1) 0.31(1) 0.00019(4)

NgBHNC 0.364(1) 0.31(1) 0.00020(4)

Table 4.11: Fit parameters for UC and NgB corrections using k-fold averaging. Standard

error in the last digit is given in parentheses.
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∆G

Slope y-intercept R2 RMSE MUE

KH 1.2(3) 25(1) 0.2234(10) 24.936(9) 24.016(9)

PSE-3 1.2(3) 20(1) 0.309(1) 20.258(7) 19.531(7)

HNC 1.2(3) 20(1) 0.305(1) 20.119(7) 19.398(8)

UCKH 0.98(6) −0.2(3) 0.8422(4) 1.261(2) 0.919(1)

UCPSE3 0.97(6) −0.2(2) 0.8420(4) 1.250(2) 0.918(1)

UCHNC 0.93(6) −0.3(2) 0.8620(4) 1.089(1) 0.8363(10)

UCGFPSE3 1.31(8) 0.6(3) 0.8478(4) 1.882(4) 1.333(2)

UCGFKH 1.04(6) −0.0(3) 0.8444(4) 1.339(2) 0.965(1)

UCGFHNC 1.30(8) 0.7(3) 0.8634(5) 1.721(3) 1.296(2)

NgBKH 1.10(7) 0.1(3) 0.8522(4) 1.389(2) 1.015(1)

NgBPSE3 1.12(7) 0.2(3) 0.8529(4) 1.425(2) 1.035(1)

NgBHNC 1.08(6) 0.1(2) 0.8764(4) 1.184(2) 0.907(1)

IScKH 0.96(7) −2.2(3) 0.8064(5) 2.482(2) 2.087(2)

IScPSE3 0.96(6) −0.8(3) 0.8343(4) 1.416(2) 1.052(1)

IScHNC 0.92(6) −0.7(2) 0.8578(4) 1.181(1) 0.919(1)

ISc*KH 0.99(6) 1.1(3) 0.8386(4) 1.700(1) 1.453(1)

ISc*PSE3 0.99(7) 2.6(3) 0.8167(5) 2.948(2) 2.690(2)

ISc*HNC 0.96(7) 2.7(3) 0.8225(5) 3.057(2) 2.815(2)

MD 0.99(5) 0.6(2) 0.8865(3) 1.245(1) 1.0254(10)

Table 4.12: k-fold statistical comparison between predicted and empirical hydration free

energies for neutral molecules (Mobley, Abagyan, Rizzo and Palmer datasets). As de-

scribed in Methods, values are the mean of all resampled data. RMSE: root-mean-squared-

error. MUE: mean unsigned error. Standard error in the last digit is given in parentheses.
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Slope y-intercept R2 RMSE MUE

KH 1.2(3) 22.4(215) 0.877(2) 12.38(3) 11.08(3)

PSE-3 1.2(3) 20.8(214) 0.884(2) 10.30(3) 9.27(3)

HNC 1.2(4) 17.0(285) 0.903(2) 9.72(3) 8.86(3)

UCKH 1.0(2) −3.9(164) 0.888(2) 6.12(2) 4.91(2)

UCPSE3 1.0(2) −2.8(170) 0.885(2) 6.09(3) 4.88(2)

UCHNC 1.0(3) −2.4(214) 0.917(2) 5.47(3) 4.49(2)

UCGFPSE3 1.2(3) 5.8(210) 0.883(2) 9.03(4) 6.94(3)

UCGFKH 1.0(2) −3.3(168) 0.889(2) 6.19(3) 4.95(2)

UCGFHNC 1.2(4) 6.0(289) 0.899(2) 9.45(5) 7.56(4)

NgBKH 1.1(3) 3.4(200) 0.874(2) 7.34(3) 5.99(2)

NgBPSE3 1.1(3) 5.3(206) 0.874(2) 7.62(3) 6.16(3)

NgBHNC 1.1(3) 5.5(265) 0.907(2) 7.02(3) 5.82(3)

IScKH 0.9(2) −5.9(165) 0.887(2) 6.25(3) 5.05(2)

IScPSE3 1.0(2) −4.1(170) 0.884(2) 6.12(2) 4.90(2)

IScHNC 1.0(3) −2.0(209) 0.915(2) 5.48(3) 4.49(2)

ISc*KH 1.0(2) −2.5(167) 0.889(2) 6.06(2) 4.89(2)

ISc*PSE3 1.0(2) −0.2(175) 0.886(2) 6.13(2) 5.03(2)

ISc*HNC 1.0(3) 1.5(217) 0.915(2) 5.54(2) 4.73(2)

Table 4.13: k-foldstatistical comparison between predicted and empirical hydration free

energies for ions (Rizzo dataset). Only the six Joung-Cheatham monovalent ions[39] are

included for MD.
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∆G

Slope y-intercept R2 RMSE MUE

KH 0.9(3) 23(1) 0.1576(9) 24.365(9) 23.343(9)

PSE-3 1.0(3) 18.8(10) 0.2383(10) 19.678(8) 18.858(8)

HNC 1.0(3) 18.7(10) 0.231(1) 19.451(8) 18.631(8)

UCKH 0.98(4) −0.9(1) 0.9338(2) 1.142(2) 0.886(1)

UCPSE3 0.97(4) −0.9(1) 0.9330(3) 1.138(2) 0.8860(10)

UCHNC 0.95(4) −0.9(1) 0.9317(3) 1.134(2) 0.9085(10)

UCGFPSE3 1.31(5) −0.2(2) 0.9348(3) 1.687(3) 1.170(2)

UCGFKH 1.05(4) −0.7(1) 0.9354(2) 1.200(2) 0.912(1)

UCGFHNC 1.32(6) −0.3(2) 0.9133(5) 1.744(4) 1.221(2)

NgBKH 1.10(4) −0.6(1) 0.9426(2) 1.219(2) 0.911(1)

NgBPSE3 1.12(4) −0.5(1) 0.9469(2) 1.215(2) 0.884(1)

NgBHNC 1.11(4) −0.6(1) 0.9459(2) 1.173(2) 0.883(1)

IScKH 0.98(4) −2.8(1) 0.9351(3) 2.843(1) 2.726(1)

IScPSE3 0.97(3) −1.4(1) 0.9407(3) 1.510(2) 1.318(1)

IScHNC 0.95(4) −1.3(1) 0.9402(3) 1.394(1) 1.2142(10)

ISc*KH 0.98(5) 0.4(2) 0.9073(3) 1.071(1) 0.8549(9)

ISc*PSE3 0.97(6) 1.9(2) 0.8586(3) 2.283(1) 2.024(1)

ISc*HNC 0.96(6) 1.9(2) 0.8380(4) 2.357(1) 2.094(2)

Table 4.14: k-fold statistical comparison between predicted and molecular dynamics hy-

dration free energies for neutral molecules (Mobley dataset). As described in Methods,

R2 bootstrap is the mean of all resampled data and R2 k-fold is the mean over all training

sub-samples. RMSE: root-mean-squared-error. MUE: mean unsigned error.
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∆GPol

Slope y-intercept R2 RMSE MUE

KH 1.13(4) −0.2(2) 0.9524(2) 1.050(2) 0.749(1)

PSE-3 1.16(4) −0.2(2) 0.9541(2) 1.145(2) 0.832(1)

HNC 1.14(4) −0.2(2) 0.9549(3) 1.037(2) 0.774(1)

UCKH
Pol 1.06(4) −0.2(2) 0.9483(3) 0.813(2) 0.5351(9)

UCPSE3
Pol 1.07(4) −0.2(2) 0.9480(3) 0.821(2) 0.5387(9)

UCHNC
Pol 1.04(4) −0.3(2) 0.9489(3) 0.726(2) 0.4895(8)

UCGFKH
Pol 1.10(4) −0.2(2) 0.9499(2) 0.943(2) 0.6419(10)

UCGFPSE3
Pol 1.35(4) −0.0(2) 0.9512(3) 1.924(3) 1.477(2)

UCGFHNC
Pol 1.38(5) −0.1(3) 0.9286(6) 2.066(3) 1.590(2)

NgBKH
Pol 1.13(4) −0.2(2) 0.9523(2) 1.051(2) 0.749(1)

NgBPSE3
Pol 1.16(4) −0.2(2) 0.9542(2) 1.144(2) 0.832(1)

NgBHNC
Pol 1.14(4) −0.2(2) 0.9547(3) 1.038(2) 0.774(1)

IScKH
Pol 1.06(4) −0.2(2) 0.9477(3) 0.798(2) 0.5231(8)

IScPSE3
Pol 1.06(4) −0.2(2) 0.9475(3) 0.812(2) 0.5313(9)

IScHNC
Pol 1.04(4) −0.3(2) 0.9487(3) 0.719(2) 0.4841(8)

ISc*KH
Pol 1.07(4) −0.2(2) 0.9484(3) 0.823(2) 0.5425(9)

ISc*PSE3
Pol 1.08(4) −0.2(2) 0.9490(3) 0.855(2) 0.5648(9)

ISc*HNC
Pol 1.05(4) −0.3(2) 0.9502(3) 0.759(2) 0.5136(8)

Table 4.15: k-fold statistical comparison between predicted and molecular dynamics polar

hydration free energies for neutral molecules (Mobley dataset).



93

∆GNP

Slope y-intercept R2 RMSE MUE

KH 3(1) 20(3) 0.0975(7) 25.057(9) 24.079(9)

PSE-3 3(1) 17(2) 0.1099(8) 20.455(7) 19.684(8)

HNC 3(1) 16(2) 0.1154(8) 20.161(8) 19.400(8)

UCKH
NP 0.69(8) 0.3(2) 0.587(1) 0.5699(6) 0.4518(5)

UCPSE3
NP 0.64(9) 0.4(2) 0.543(1) 0.5832(6) 0.4618(5)

UCHNC
NP 0.65(9) 0.3(2) 0.5656(10) 0.6220(6) 0.5058(5)

UCGFKH
NP 0.82(9) 0.1(2) 0.643(1) 0.4988(7) 0.3835(4)

UCGFPSE3
NP 1.0(1) 0.6(2) 0.648(1) 0.7628(6) 0.6461(6)

UCGFHNC
NP 1.0(1) 0.8(2) 0.619(1) 0.8624(6) 0.7532(6)

NgBKH
NP 1.01(8) −0.1(2) 0.7629(8) 0.4011(7) 0.2869(4)

NgBPSE3
NP 0.99(7) 0.0(1) 0.7925(7) 0.3532(6) 0.2459(4)

NgBHNC
NP 1.01(8) −0.1(2) 0.7927(8) 0.3528(7) 0.2412(4)

IScKH
NP 0.50(6) −1.3(1) 0.6141(10) 2.3227(6) 2.2797(6)

IScPSE3
NP 0.56(5) −0.0(1) 0.7284(9) 0.9308(5) 0.8529(5)

IScHNC
NP 0.59(6) 0.0(1) 0.7056(9) 0.8783(5) 0.7984(5)

ISc*KH
NP 0.8(1) 1.3(3) 0.398(1) 1.1585(9) 0.9958(8)

ISc*PSE3
NP 0.9(2) 2.7(4) 0.270(1) 2.652(1) 2.448(1)

ISc*HNC
NP 0.9(2) 2.6(5) 0.272(1) 2.681(1) 2.474(1)

Table 4.16: k-fold statistical comparison between predicted and molecular dynamics non-

polar hydration free energies for neutral molecules (Mobley dataset).
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∆H/∆ε

Slope y-intercept R2 RMSE MUE

KH 1.0(3) 2(4) 0.770(2) 2.649(6) 2.339(6)

PSE-3 1.2(4) 1(5) 0.773(2) 2.57(1) 2.034(8)

HNC 1.2(4) 1(5) 0.776(2) 2.57(1) 2.035(8)

UCKH 1.7(9) −10.5(1) 0.609(3) 19.87(3) 18.82(3)

UCPSE3 1.6(9) −11.1(1) 0.602(3) 19.33(3) 18.36(3)

UCHNC 1.6(9) −11.1(1) 0.604(3) 19.28(3) 18.30(3)

UCTKH 0.9(3) −2(4) 0.764(2) 1.825(5) 1.545(5)

UCTHNC 0.9(3) −2(3) 0.777(2) 1.751(5) 1.474(5)

UCTPSE3 0.9(3) −1(4) 0.773(2) 1.787(5) 1.510(5)

UCGFKH 1.6(7) −7(10) 0.649(3) 14.16(3) 13.23(2)

UCGFPSE3 1.8(6) −2(8) 0.750(2) 11.93(2) 10.97(2)

UCGFHNC 1.9(6) −1(8) 0.763(2) 12.21(2) 11.18(2)

UCTGFKH 0.9(3) −1(4) 0.768(2) 1.826(5) 1.547(5)

UCTGFPSE3 1.2(3) 3(5) 0.804(2) 2.334(8) 1.937(7)

UCTGFHNC 1.3(4) 4(5) 0.797(2) 2.662(9) 2.203(8)

NgBKH 1.0(3) 2(4) 0.769(2) 2.640(6) 2.332(6)

NgBPSE3 1.2(4) 1(5) 0.779(2) 2.58(1) 2.043(8)

NgBHNC 1.2(4) 1(5) 0.774(2) 2.58(1) 2.044(8)

NgBTKH 1.0(3) 2(4) 0.769(2) 2.739(6) 2.426(6)

NgBTPSE3 1.2(4) 1(5) 0.778(2) 2.67(1) 2.116(9)

NgBTHNC 1.2(4) 0(5) 0.773(2) 2.68(1) 2.118(9)

IScKH 1.0(3) −0(4) 0.762(2) 2.019(7) 1.635(6)

IScPSE3 1.0(3) 0(4) 0.768(2) 2.037(6) 1.667(6)

IScHNC 1.0(3) −0(4) 0.772(2) 2.028(6) 1.657(6)

ISc*KH 0.6(3) −1(3) 0.547(3) 3.034(7) 2.744(6)

ISc*PSE3 1.5(8) −2(7) 0.541(3) 6.47(1) 5.81(1)

ISc*HNC 1.5(9) −2(7) 0.562(3) 6.67(1) 6.00(1)

Table 4.17: k-fold statistical comparison between predicted ∆H (all UC and NgB correc-

tions) or ∆ε (uncorrected 3D-RISM and parameter free corrections) and ∆H from experi-

ment for neutral molecules (Abraham and Cabani datasets).
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T∆S

Slope y-intercept R2 RMSE MUE

KH 3(2) −2.8(152) 0.519(3) 19.27(3) 18.07(3)

PSE-3 3(2) −2.5(146) 0.527(3) 18.26(3) 17.11(3)

HNC 3(2) −1.7(144) 0.542(3) 18.19(3) 17.03(3)

UCKH 3(2) −3.6(148) 0.528(3) 19.92(3) 18.85(3)

UCPSE3 3(2) −4.5(143) 0.525(3) 19.38(3) 18.38(3)

UCHNC 3(2) −3.7(142) 0.544(3) 19.27(3) 18.26(3)

UCTKH 0.6(3) −4(3) 0.546(3) 1.454(5) 1.200(4)

UCTPSE3 0.6(3) −4(3) 0.559(3) 1.420(5) 1.160(4)

UCTHNC 0.6(3) −3(3) 0.591(3) 1.355(5) 1.113(4)

UCGFKH 2(1) −2.7(117) 0.529(3) 14.10(2) 13.18(2)

UCGFPSE3 2(1) −2.0(101) 0.542(3) 11.55(2) 10.72(2)

UCGFHNC 2(1) −0.9(102) 0.574(3) 11.69(2) 10.85(2)

UCTGFKH 0.5(3) −4(2) 0.546(3) 1.445(5) 1.195(4)

UCTGFPSE3 0.6(3) −3(3) 0.550(3) 1.511(6) 1.207(5)

UCTGFHNC 0.6(4) −3(3) 0.565(3) 1.542(6) 1.224(5)

NgBKH 0.7(4) −1(3) 0.555(3) 2.338(6) 2.062(5)

NgBPSE3 1.0(6) −1(5) 0.553(3) 2.228(8) 1.813(7)

NgBHNC 1.1(6) −1(5) 0.577(3) 2.196(8) 1.789(7)

NgBTKH 0.7(4) −1(3) 0.556(3) 2.461(6) 2.177(6)

NgBTPSE3 1.0(6) −1(5) 0.552(3) 2.338(8) 1.901(7)

NgBTHNC 1.1(6) −1(5) 0.576(3) 2.313(9) 1.889(7)

IScKH 0.7(4) −1(3) 0.545(3) 2.364(7) 2.071(6)

IScPSE3 0.8(4) −1(4) 0.558(3) 1.849(6) 1.552(5)

IScHNC 0.8(4) −1(4) 0.586(3) 1.817(6) 1.516(5)

ISc*KH 0.8(3) 2(3) 0.759(2) 4.174(8) 3.813(8)

ISc*PSE3 1.1(4) −2(5) 0.737(3) 4.16(1) 3.50(1)

ISc*HNC 1.1(4) −2(5) 0.736(3) 4.29(1) 3.62(1)

Table 4.18: k-fold statistical comparison between predicted T∆SP (all UC and NgB cor-

rections) or T∆SV (uncorrected 3D-RISM and parameter free corrections) and T∆SP from

experiment for neutral molecules (Abraham and Cabani datasets).
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