Staff View
Improving statistical mechanical solvation models for biomolecular applications

Descriptive

TitleInfo
Title
Improving statistical mechanical solvation models for biomolecular applications
Name (type = personal)
NamePart (type = family)
Johnson
NamePart (type = given)
Jesse A.
NamePart (type = date)
1986-
DisplayForm
Jesse A. Johnson
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Case
NamePart (type = given)
David A
DisplayForm
David A Case
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
York
NamePart (type = given)
Darrin
DisplayForm
Darrin York
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Wang
NamePart (type = given)
Lu
DisplayForm
Lu Wang
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Sengupta
NamePart (type = given)
Anirvan
DisplayForm
Anirvan Sengupta
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2016
DateOther (qualifier = exact); (type = degree)
2016-05
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2016
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
1 Introduction Chapter 1 contains a basic introduction to solvation models. Special attention is given to the Ornstein-Zernike and RISM statistical mechanical solvation models used throughout this work. 2 Correction of 3D-RISM Solvation Thermodynamics for Small Molecules Implicit solvent models offer a fast way to estimate the effects of solvation on solute without the complications of explicit simulations. One common test of model accuracy is to compute the transfer energy from gas to liquid for a variety of small molecules, since many of these values have been experimentally measured. Studies of the temperature dependence of these values can provide additional insights into the performance of implicit solvent models. In this work the temperature derivatives of solvation energies for the 3D-RISM integral equation approach are computed. Results for 1123 small drug-like molecules (both neutral and charged) in water are compared to results from molecular dynamics simulations and experiment. The uncorrected results are rather poor, but it is known that errors are strongly correlated with the partial molar volumes of the solutes. Several linear solvation energy corrections are examined and extended to deal with solvation enthalpies and entropies. A new temperature-dependent linear correction is introduced. 3 Crystal Structure Refinement with Periodic 3D-RISM X-ray scattering measurements from macromolecular crystals can provide valuable information about the solvent environment around biomolecules, but conventional refinement techniques use only very simplified solvation models. In this work solvent distributions for six protein structures are computed using molecular dynamics or integral equation (3D-RISM) solvation models. Bragg intensities for both models are in better agreement with experiment at all resolution ranges than those computed using the default “flat” solvent model in the refmac5 refinement program, with the greatest improvement in the 1.5 to 2.5 Å range. Results from MD simulation are generally closer to experiment than those from 3D-RISM, but the differences are small and should be balanced against the much larger computational resources required for MD simulations. The 3D-RISM solvent distributions can be derived in seconds (for unit cells with 50 Å sides), and could be updated regularly during the course of crystallographic refinement.
Subject (authority = RUETD)
Topic
Computational Biology and Molecular Biophysics
Subject (authority = ETD-LCSH)
Topic
Biophysics
Subject (authority = ETD-LCSH)
Topic
Solvation
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_7144
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xii, 103 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Jesse A. Johnson
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3RR21D2
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Johnson
GivenName
Jesse
MiddleName
A.
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2016-04-08 18:32:46
AssociatedEntity
Name
Jesse Johnson
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2016-05-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2018-05-31
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after May 31st, 2018.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
ApplicationName
pdfTeX-1.40.16
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-04-08T18:23:16
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-04-08T18:23:16
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024