
PROBABILISTIC AND POLYNOMIAL METHODS IN
ADDITIVE COMBINATORICS AND CODING

THEORY

BY JOHN KIM

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Swastik Kopparty

and approved by

New Brunswick, New Jersey

May, 2016



ABSTRACT OF THE DISSERTATION

Probabilistic and polynomial methods in additive

combinatorics and coding theory

by John Kim

Dissertation Director: Swastik Kopparty

We present various applications of the probabilistic method and polynomial method in

additive combinatorics and coding theory.

We first study the effect of addition on the Hamming weight of a positive integer.

Consider the first 2n positive integers, and fix an α among them. We show that if the

binary representation of α consists of Θ(n) blocks of zeros and ones, then addition by α

causes a constant fraction of low Hamming weight integers to become high Hamming

weight integers. Our result implies that powering by α composed of many blocks requires

exponential-size, bounded-depth arithmetic circuits over F2.

We also prove a version of the Cauchy-Davenport theorem for general linear maps.

For subsets A,B of the finite field Fp, the classical Cauchy-Davenport theorem gives a

lower bound for the size of the sumset A+B in terms of the sizes of the sets A and B.

Our theorem considers a general linear map L : Fnp → Fmp , and subsets A1, . . . , An ⊆ Fp,

and gives a lower bound on the size of L(A1×A2× . . .×An) in terms of the sizes of the

sets A1, . . . , An. Our proof uses Alon’s Combinatorial Nullstellensatz and a variation of

the polynomial method.

Lastly, we give a polynomial time algorithm to decode multivariate polynomial

codes of degree d up to half their minimum distance, when the evaluation points are an
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arbitrary product set Sm, for every d < |S|. Previously known algorithms can achieve

this only if the set S has some very special algebraic structure, or if the degree d is

significantly smaller than |S|. We also give a near-linear time algorithm, which is based

on tools from list-decoding, to decode these codes from nearly half their minimum

distance, provided d < (1− ε)|S| for constant ε > 0.
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Chapter 1

Introduction

Combinatorics, the study of discrete structures, has had applications to nearly every

field of mathematics. More recently, methods from probability and algebra have had a

major impact on the advancement of combinatorics, hinting at a much deeper connec-

tion between combinatorics and these mathematical areas. My research explores this

connection, uncovering new results in complexity theory, coding theory, and additive

combinatorics.

The two main tools we will be using are the probabilistic method and the polynomial

method. The probabilistic method is often used to establish the existence of an object

with certain desired properties by considering an appropriate random object and showing

that it is likely to have (or be close to having) the desired properties. Additionally, we

will use the probabilistic method to formulate a problem in terms of distributions of

random variables, so that we gain access to the convergence theorems and concentration

bounds in probability theory.

On the other hand, polynomials are simple algebraic objects that have found numerous

surprising combinatorial applications. The main idea behind many of these applications

is to somehow associate complex objects to low-degree polynomials, so that we can

take advantage of the nice properties of polynomials. This strategy is known as the

polynomial method.

In this thesis, we will use the probabilistic and polynomial methods to get circuit

lower bounds, sumset lower bounds, and efficient decoding algorithms for polynomial-

based error correcting codes. For circuit lower bounds, we will analyze which powering

maps are hard to compute by constant-depth polynomial-size circuits. For sumset lower

bounds, we will generalize the Cauchy-Davenport theorem in additive combinatorics.
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Lastly, for polynomial-based error correcting codes, we will find polynomial time (near-

linear time) algorithms to decode Reed-Muller codes over product sets to half (nearly

half) the minimum distance. We now describe these results in more detail.

1.1 Circuit lower bounds

One early example of the polynomial method is the Razborov-Smolensky method for

proving circuit lower bounds. The Razborov-Smolensky method is based on expressing

complex circuit computations in terms of low-degree polynomials, and using properties

of these low-degree polynomials to argue about the power of such computations. The

method was first used by Smolensky in 1993 to give another proof of the fact that the

majority function, Maj, was not representable by a constant-depth, polynomial-size

Boolean arithmetic circuit, also known as an AC0(⊕) circuit [11].

There were two key ingredients to his proof. The first was the 1987 result of

Razborov establishing that a low-depth, polynomial-size Boolean arithmetic circuit is

well-approximated by a low-degree polynomial [8]. The second ingredient was the fact

that Maj is versatile in the sense that Maj can be used to easily compute a large class

of other functions F [11]. If Maj was indeed representable as an AC0(⊕) circuit, it

turns out that the functions in F are all well-approximated by low-degree polynomials.

However, F is so large that the low-degree polynomials cannot possibly account for

every function in F . Hence, Maj cannot be an AC0(⊕) circuit.

In Chapter 2, we will use Kopparty’s variation of the Razborov-Smolensky method

to greatly expand the class of powering maps over the field F2n (mapping x 7→ xα)

that are hard for AC0(⊕) circuits [7]. As in the Razborov-Smolensky argument, the

main component will be to understand which powering maps are versatile. We will

use a sufficient condition of Kopparty’s for a powering map to be versatile, which can

be written as a condition on the distribution of a 2-dimensional random variable. We

will then apply tools from probability theory to understand what we can about the

distribution. This will allow us to give a general sufficient for the map x 7→ xα to be

hard for AC0(⊕) circuits. Our condition will be general enough to establish the hardness
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of the map x 7→ xα for most values of α.

1.2 Sumset lower bounds

We can get other interesting methods for proving lower bounds by exploiting some of

the deeper properties of polynomials. In particular, the polynomial method can also be

used to prove lower bounds on set sizes by viewing the elements of the set as the zero

set of some low-degree or ‘low-complexity’ polynomial. We can then obtain bounds on

the original set by analyzing the zero set of the polynomial.

One popular tool in additive combinatorics for controlling the zero set of a polynomial

is the Combinatorial Nullstellensatz, which gives a non-vanishing criterion for a polyno-

mial on a product set. In 1995, Alon, Nathanson, and Ruzsa used the Combinatorial

Nullstellensatz in conjunction with the polynomial method to give a short proof of the

Cauchy-Davenport theorem, which provides a lower bound on the size of the sum of two

subsets A,B ∈ Fp in terms of the sizes of A and B [13]. In Chapter 3, we generalize

their strategy to prove a lower bound on the image size of a general linear map on a

product set (joint work with Simao Herdade and Swastik Kopparty).

1.3 Polynomial-based error-correcting codes

Polynomial-based error-correcting codes are widely used to ensure the reliability of data

storage and communication. They allow us to encode information so that even if the

encoded information is corrupted by a few errors, the original information can still be

recovered via a process known as decoding. Thus, decoding algorithms are important

for facilitating faster data access and communication, enabling larger storage capacities,

and handling increased amounts of error.

The Reed-Muller code is a very general type of polynomial-based error-correcting

code. To encode a message into a codeword, we view the symbols in the message as

coefficients of a low-degree m-variate polynomial and evaluate this polynomial on a

finite grid of points Sm. Because distinct low-degree polynomials must differ on many of

these evaluations, it takes many errors to confuse one codeword with another. This key
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property allows us to correct errors by simply searching for nearby codewords. Decoding

can then be viewed in the following way:

Decoding Problem: Given a received word R, and a maximum allowable number

of errors η, find all codewords that are within Hamming distance η from R.

If the maximum allowable number of errors η (also called the decoding radius) is

small, then there is a unique codeword (if it exists) that the received word can be

decoded to. More precisely, if we define the minimum distance to be the smallest

distance between two codewords, then for η smaller than half the minimum distance,

there is at most one codeword within η from R. In this case, the decoding problem is

known as decoding to half the minimum distance or unique decoding.

Efficient decoding algorithms up to half the minimum distance are only known for

special cases of Reed-Muller codes. Arguably the most useful special case is the Reed-

Solomon code, whose codewords are evaluations of low-degree single-variable polynomials

on a set of inputs of size n. Reed-Solomon codes are well-studied and are decodable

in near-linear (O(n polylog n)) time [31]. For multivariate Reed-Muller codes, existing

decoding algorithms require either the evaluation set Sm to have special structure or

the degree of the polynomials to be very small.

In Chapter 4, we make significant progress towards the efficient decoding of general

Reed-Muller codes, where we are free to choose the finite set S ⊆ F of grid coordinate val-

ues (joint work with Swastik Kopparty). In this setting, we discovered a polynomial-time

algorithm for decoding Reed-Muller codes to half the minimum distance. Furthermore,

when the rate of the code is constant (degree at most d = Θ(|S|)), we improved the

algorithm to decode to almost half the minimum distance in near-linear time.
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Chapter 2

Integer addition and Hamming weight

2.1 Introduction

We begin with a natural, but largely unstudied question: How does the Hamming weight

of an integer (written in base 2) change under addition? To make this precise, we

take 0 < α < 2n to be a fixed integer and let S be chosen uniformly at random from

{0, 1, · · · , 2n − 1}. Write S in binary, and take X to be its Hamming weight. Let Y be

the Hamming weight of the translation S + α. Then what can we say about the joint

distribution of initial and final weights, (X,Y )?

Our question is motivated by the problem of determining the complexity of powering

maps in F2n . This problem has been studied extensively in complexity theory [7, 2, 3, 4,

5, 6, 9]. Recently, Kopparty [7] showed that the powering map x→ x
1
3 from F2n → F2n

cannot be computed with a polynomial-size, bounded-depth arithmetic circuit over F2

(a.k.a AC0(⊕) circuit). Recall that arithmetic circuits are only allowed addition and

multiplication gates of unbounded fan-in). A major advantage of working in AC0(⊕)

is that it is basis invariant. That is, determining the AC0(⊕) complexity of powering

does not depend on the choice of basis for F2n . Define Zk := Z/kZ. At the core of

Kopparty’s argument was the following shifting property of 1
3 : a constant fraction of

elements in Z2n−1 change from low to high Hamming weight under translation by 1
3 .

Definition 2.1.1. Let M = {x ∈ Z2n−1 | wt(x) ≤ n
2 }, where wt(x) is the Hamming

weight of x. We say that α ∈ Z2n−1 has the ε-shifting property if M ∪ (α + M) ≥(
1
2 + ε

)
2n.

We say that any binary string in M is light, and any binary string not in M is heavy.

Then α has the ε-shifting property if translating Z2n−1 by α takes a constant fraction
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of light strings to heavy strings.

Kopparty proved that powering by any α with the ε-shifting property requires

exponential circuit size in AC0(⊕) [7]. We use the term block to denote a maximal

length sequence of consecutive 0’s or consecutive 1’s in a binary string. Our main

result is that any α with many blocks of 0’s and 1’s in its binary representation has the

ε-shifting property, proving a conjecture of Kopparty.

Theorem 2.1.2. ∀c > 0, ∃ε > 0, such that the following holds: Let σ ∈ {0, 1}n be a

bit-string of the form σ = σ1σ2 · · ·σm, where m ≥ cn, σi is either 0Li or 1Li, and each

Li is chosen to be maximal. Let α ∈ Z2n−1 have base 2 representation given by σ. Then

α has the ε-shifting property.

Note that the theorem still applies even in the setting of integer addition, not just

when doing addition mod 2n − 1. Our result states that α with Θ(n) blocks have the

ε-shifting property. It is not difficult to show that α with o(
√
n) blocks do not have the

ε-shifting property. First, observe that o(
√
n)-sparse α (i.e. α with Hamming weight

≤ o(
√
n)) do not have the ε-shifting property because addition by α can only increase

the weight by o(
√
n). Since there are O( 2n√

n
) light binary strings of a fixed weight, we

get o(2n) light strings changing to heavy strings under translation by α.

Next, observe that any α with o(
√
n) blocks can be written as a difference of two

o(
√
n)-sparse strings: α = β − γ. Since translating by α is equivalent to first translating

by β and then by −γ, we find that α with o(
√
n) blocks do not have the ε-shifting

property. Thus, at least qualitatively, we see a strong connection between the ε-shifting

property and the number of blocks. Establishing a full characterization of the ε-shifting

property remains an interesting open question.

2.1.1 Related Work

Kopparty gave a different condition for when α has the ε-shifting property: its binary

representation consists mostly of a repeating constant-length string that is not all zeros

or ones [7]. Note that any integer expressible as a·2n+b
q , where a, b, q ∈ Z, q > 1 is odd,

and 0 < |a|, |b| < q, has binary representation of this form. As a consequence, taking
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q-th roots and computing q-th residue symbols cannot be done with polynomial-size

AC0(⊕) circuits. Our main result generalizes Kopparty’s condition, as the periodic

strings form a small subset of the strings with Θ(n) blocks.

Beck and Li showed that the q-th residue map is hard to compute in AC0(⊕) by

using the concept of algebraic immunity [1]. It is worth noting that their method does

not say anything about the complexity of the q-th root map in AC0(⊕). So in this

regard, there is something to be gained by analyzing the ε-shifting property condition.

A more detailed history of the complexity of arithmetic operations using low-depth

circuits can be found in [7].

2.2 Application

It is known that powering by sparse α has polynomial-size circuits in AC0(⊕). Kopparty’s

work shows that powering by α with the ε-shifting property requires exponential-size

circuits in AC0(⊕). We will use this result, along with our new generalized criterion for

when α has the ε-shifting property, to expand the class of α whose powers are difficult

to compute in AC0(⊕).

The proof resembles the method of Razborov and Smolensky for showing that

Majority is not in AC0(⊕) [8, 10, 11]. We can show that for α with the ε-shifting

property, if powering by α is computable by an AC0(⊕) circuit, then every function

f : F2n → F2n is well-approximated by the sum of a low-degree polynomial with a

function that sits in a low-dimensional space. The fact that there are not enough such

functions provides the desired contradiction. In this way, we show certain powers require

exponential-size circuits in AC0(⊕).

As a consequence of Theorem 2.1.2 and the above Razborov-Smolensky method,

we get that the powering by any α with Θ(n) maximal uniform blocks requires an

exponential-size AC0(⊕) circuit, thus greatly expanding the class of powers that are

hard to compute in AC0(⊕).

Theorem 2.2.1. Let α ∈ Z2n−1 have base 2 representation in the form given by

Theorem 2.1.2.
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Define Λ : F2n → F2n by Λ(x) = xα.

Then for every AC0(⊕) circuit C : F2n → F2n of depth d and size M ≤ 2n
1
5 d

, for

sufficiently large n we have:

Pr[C(x) = Λ(x)] ≤ 1− ε0,

where ε0 > 0 depends only on c and d.

2.3 The Proof of the Main Result

2.3.1 Outline of Proof

Suppose we have a bit-string of length n. The bit-string is called light if its Hamming

weight is at most n
2 . The bit-string is called heavy otherwise. It is enough to show

that translation by α in Z2n−1 transforms some positive constant fraction of the light

bit-strings into heavy bit-strings.

We choose a binary string of length n uniformly at random, translate it by α,

and look at the joint distribution of its initial weight X and final weight Y . Let

(X,Y ) = (X − E[X], Y − E[Y ]), so that when plotted, the plane is split into four

quadrants. The fraction of strings that shift weight from light to heavy is the proportion

of the distribution in the second quadrant. By symmetry, the same proportion of the

distribution should lie in the fourth quadrant. We will prove that some constant fraction

of the distribution lies in the second or fourth quadrant.

To get a handle on the distribution, we break up α into its m uniform blocks of

0’s and 1’s, and consider addition on each block separately. Addition on each block

is performed from right to left, and if the leftmost sum is at least 2, then we say the

addition produces a carry and the carry bit is 1. Otherwise, the carry bit is 0. The

distribution of the initial weight and final weight of any block is determined by the

carry bit from the addition on the previous block and the carry bit going into the next

block. Thus, if the carry bits are given, then the weight distributions on the blocks

are now independent. Although we will not be able to specify the distribution of the

carry bits, we will show that with probability 1
6 , the carry bits have a certain property,
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and whenever they have this property, then the conditional distribution of (X,Y ) has a

positive constant fraction of its mass in the second or fourth quadrants.

2.3.2 Notation and Overview

First, observe that it suffices to prove the main result for M as viewed as a subset of

Z2n instead of Z2n−1. Note that only one element, 1n ∈ Z2n , is not an element of Z2n−1.

Also, when translating by α, the resulting bit-string in Z2n−1 is either the same or one

more than the resulting bit-string in Z2n . We know that o(2n) of the light bit-strings

of Z2n transform into heavy bit-strings under translation by 1, because the only bit-

strings that change from light to heavy have weight n/2 and end in 0. By symmetry,

o(2n) of the heavy bit-strings transform into light bit-strings under translation by 1,

so if Θ(2n) light bit-strings become heavy under translation by α in Z2n , then at least

Θ(2n)− o(2n) = Θ(2n) light bit-strings become heavy under translation by α in Z2n−1.

This shows that we can work in the symmetric environment of all bit-strings of length

n, Z2n , and still achieve the result we want.

Let S ∈ Z2n be chosen uniformly at random. Let T = α+ S. Let X = wt(S) and

Y = wt(T ).

Write α = α1α2 · · ·αm, where each αi is a block of 0’s or 1’s of length Li. Write

S = S1S2 · · ·Sm, and T = T1T2 · · ·Tm, where each of the i-th parts have length Li.

Let Xi = wt(Si) and Yi = wt(Ti). Then (X,Y ) =

(
m∑
i=1

Xi,
m∑
i=1

Yi

)
. Let (X,Y ) =

(X−E[X], Y −E[Y ]). Then the part of the distribution of (X,Y ) in the second quadrant

corresponds to light bit-strings translating to heavy bit-strings. Similarly, the fourth

quadrant corresponds to heavy to light bit-string translation. To avoid having to pass to

analogously defined (Xi, Yi) all the time, any reference to the second or fourth quadrant

will be understood to be relative to
(
Li
2 ,

Li
2

)
, the mean of (Xi, Yi). We want to show that

a positive constant fraction of the distribution lies in the second or fourth quadrants.

The random variables in the sum

(
m∑
i=1

Xi,

m∑
i=1

Yi

)
are highly dependent. To get

around this, we will condition on the fixing of the carry bits. Once the carry bits

are fixed, the terms in the sum are independent. We will show that with probability
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at least 1
6 , we can find Θ(n) terms with identical distribution. Since the terms are

independent, we will use the multidimensional Central Limit Theorem to prove these

identical distributions sum to a Gaussian distribution with dimensions of size Θ(
√
n).

The remaining O(n) terms can be divided into two categories. Either the term has

non-zero covariance matrix or it is a translation along the line y = −x relative to the

mean,
(
Li
2 ,

Li
2

)
. By applying the 2-dimensional Chebyshev Inequality to the terms with

non-zero covariance matrix, we show that at least half of the distribution lies in a square

with dimensions O(
√
n). Any Gaussian with dimensions Θ(

√
n) centered in the square

of dimensions O(
√
n) will have a fixed positive proportion p of its distribution in the

second quadrant and p of its distribution in the fourth quadrant. Finally, a translation

of any magnitude along the line y = −x still gives at least p of the distribution in

the second or fourth quadrant (although we don’t know which one!). However, as the

addition map is a bijection from Z2n to itself, we get that the number of strings that go

from light to heavy equals the number of strings that go from heavy to light. So we

conclude that at least p of the distribution lies in the second quadrant and at least p of

the distribution lies in the fourth quadrant.

2.3.3 Computing the Distribution

We first compute the 2-dimensional distribution of the initial and final weights of the

i-th block conditioned on the carry bit from the (i+ 1)-th block. If the carry bit from

the i-th block is denoted by ci, then we want to understand the distribution of (Xi, Yi)

given the carry bit ci+1. Suppose that αi = 1Li . The case where αi = 0Li is similar.

Lemma 2.3.1. Suppose that αi = 1Li . The joint distribution of (Xi, Yi) conditioned on

the carry bit ci+1 is given by:

pi(x, y | ci+1 = 1) =


1

2Li

(
Li
x

)
if x = y (then ci = 1)

0 else

;
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pi(x, y | ci+1 = 0) =


1

2Li
if (x, y) = (0, Li) (then ci = 0)

1
2Li

(
Li−y+x−2

x−1

)
if Li − 1 ≥ y ≥ x− 1 ≥ 0 (then ci = 1)

.

If ci+1 = 1, then Xi = Yi and ci = 1. Hence, the probability mass function for

(Xi, Yi) given ci+1 = 1 is given by

pi(x, y | ci+1 = 1) =


1

2Li

(
Li
x

)
if x = y

0 else

.

If ci+1 = 0, then the distribution of (Xi, Yi) depends solely on the number of trailing

zeros, Zi, of Si:

Yi =


Xi if Xi+1 − Yi+1 = Li+1

Xi + Zi − 1 if Zi < Li

Li if Zi = Li

.

We therefore first compute the distribution of Zi conditioned on Xi and use that to

compute the joint distribution of (Xi, Yi). The distribution of Zi | Xi is given by

pZi(z | x) =



1 if (x, z) = (0, Li)

(Li−z−1
x−1 )
(Li

x )
if Li − z ≥ x

0 else

.

Since pi(x, y | ci+1) = pXi(x)pYi(y | x), we compute pXi(x) and pYi(y | x). As Xi is

binomial on Li trials with success probability 1
2 ,

pXi(x) =
1

2Li

(
Li
x

)
for x = 0, 1, · · · , Li.

We can also write the distribution of Yi | Xi in terms of the distribution of Zi | Xi:

pYi(yi | xi) =


pZi(yi − xi + 1 | xi) if 0 ≤ yi − xi + 1 < Li

pZi(yi − xi | xi) if (xi, yi) = (0, Li)

.
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Hence, we have the joint distribution of (Xi, Yi) is

pi(x, y | ci+1 = 0) =


1

2Li
if (x, y) = (0, Li) (then ci = 0)

1
2Li

(
Li−y+x−2

x−1

)
if Li − 1 ≥ y ≥ x− 1 ≥ 0 (then ci = 1)

.

Similarly, if αi = 0Li , then the distribution of (Xi, Yi) is as follows:

If ci+1 = 0, then Xi = Yi, ci = 0 and

pi(x, y | ci+1 = 0) =


1

2Li

(
Li
x

)
if x = y (then ci = 0)

0 else

.

When the carry bit makes the addition trivial, we call the resulting distribution the

trivial distribution. Otherwise, the carry bit ci+1 = 1. In this case, the distribution of

(Xi, Yi) turns out to be symmetric with the case where αi = 1Li and ci+1 = 0:

pi(x, y | ci+1 = 1) =


1

2Li
if (x, y) = (Li, 0) (then ci = 1)

1
2Li

(
Li−x+y−2

y−1

)
if Li − 1 ≥ x ≥ y − 1 ≥ 0 (then ci = 0)

.

When the carry bit makes the addition nontrivial, as in this case, we call the resulting

distribution the nontrivial distribution.

Fixing the carry bits leads to four types of distributions for the blocks, which are

based on the carry bit coming in from the previous block addition and the resulting

carry bit from the current block addition.

1. The block distribution is trivial and produces a carry bit that makes the subsequent

block distribution non-trivial (Trivial to non-trivial).

2. Non-trivial to trivial.

3. Non-trivial to non-trivial (block length L = 1).

4. Non-trivial to non-trivial (block length L ≥ 2).
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We make the distinction between block lengths 1 and 2 for non-trivial to non-trivial

distributions, as the latter is the only distribution with invertible covariance matrix.

Ideally, we will find many identical distributions of type 4, which will sum to a Gaussian

with large enough dimensions. This will not be possible when most of the blocks have

length 1, which we deal with separately.

Knowing the weight distribution of a block given the previous carry, it is straightfor-

ward to write down the distributions given both the previous carry and the produced

carry. Again, we assume the block αi = 1Li .

As a trivial distribution always produces a non-trivial carry, we get the trivial to

non-trivial distribution is the same is the trivial distribution:

pi(x, y | ci+1 = 1, ci = 1) =


1

2Li

(
Li
x

)
if x = y

0 else

.

A non-trivial distribution that produces a trivial carry must have (Xi, Yi) = (0, Li).

Also, a non-trivial distribution of block length 1 that produces a non-trivial carry must

have (Xi, Yi) = (1, 0).

Finally, a non-trivial distribution of block length greater than 1 that produces a

non-trivial carry has distribution:

pi(x, y | ci+1 = 0, ci = 1) =


1

2Li−1

(
Li−y+x−2

x−1

)
if Li − 1 ≥ y ≥ x− 1 ≥ 0

0 else

.

We summarize these distributions in the next lemma:

Lemma 2.3.2. Suppose that αi = 1Li . The joint distribution of (Xi, Yi) conditioned on

the carry bits ci+1 and ci is given by:

pi(x, y | ci+1 = 1, ci = 1) =


1

2Li

(
Li
x

)
if x = y

0 else

;
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pi(x, y | ci+1 = 0, ci = 0) =


1 if (x, y) = (0, Li)

0 else

;

pi(x, y | ci+1 = 0, ci = 1) =


1

2Li−1

(
Li−y+x−2

x−1

)
if Li − 1 ≥ y ≥ x− 1 ≥ 0

0 else

.

Observe that the last non-trivial to non-trivial probability distribution works for all

lengths Li ≥ 1. However, when Li = 1, (x, y) = (0, 1) with probability 1. We will still

consider this as a separate type of distribution as its covariance matrix is all zeros, and

consequently not invertible, which will be important for analysis.

2.3.4 Computing the Covariance Matrix

Lemma 2.3.3. The covariance matrix M of the trivial to non-trivial distribution of

the random vector (Xi, Yi) is given by

M =

Li
4

Li
4

Li
4

Li
4

 .

The covariance matrix M of the non-trivial to non-trivial distribution of the random

vector (Xi, Yi) is given by

M =

c d

d c

 ,

where c = Li
4

(
1 + 1

2Li−1

)
− L2

i
4

(
1 + 1

2Li−1

)
1

2Li−1
,

and d = Li
4

(
1 + 1

2Li−1

)
+

L2
i

4

(
1 + 1

2Li−1

)
1

2Li−1
− 1.

We will need the following binomial coefficient identities:

Lemma 2.3.4.

L∑
n=1

(
L

n

)
n2 =

L(L+ 1)

4
2L;

L−1∑
x=1

x(x+ 1)

(
L

x

)
= 2L−2L(L+ 3)− (L2 + L);
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L−1∑
x=1

x

(
L

x− 1

)
= 2L−1(L+ 2)− (L2 + L+ 1).

Proof. The proofs of these identities are standard and are included for completeness.

We use repeated differentiation of the binomial theorem to compute
L∑
n=1

(
L

n

)
n2.

L∑
n=1

(
L

n

)
xn = (x+ 1)L − 1.

Differentiating with respect to x yields:

L∑
n=1

(
L

n

)
nxn−1 = L(x+ 1)L−1

L∑
n=1

(
L

n

)
nxn = L(x+ 1)L−1x.

Differentiating a second time with respect to x gives:

L∑
n=1

(
L

n

)
n2xn−1 = L(L− 1)(x+ 1)L−2x+ L(x+ 1)L−1.

Plugging in x = 1 gives us the sum we want:

L∑
n=1

(
L

n

)
n2 = L(L− 1)2L−2 + L2L−1

= L2L
(
L− 1

4
+

1

2

)
=

L(L+ 1)

4
2L.

Let B =

L−1∑
x=1

x(x+ 1)

(
L

x

)
, and let C =

L−1∑
x=1

x

(
L

x− 1

)
. We can simplify B and C by

starting with the binomial theorem and applying standard generating function methods.

L∑
k=0

(
L

k

)
xk = (1 + x)L

L∑
k=0

(
L

k

)
xk+1 = x(1 + x)L.

Differentiating both sides with respect to x gives:
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L∑
k=0

(k + 1)

(
L

k

)
xk = (1 + x)L−1(1 + (L+ 1)x). (2.1)

Substituting x = 1 in equation 2.1 gives:

L∑
k=0

(k + 1)

(
L

k

)
= (1 + x)L−1(L+ 2)

C + L

(
L

L− 1

)
+ (L+ 1)

(
L

L

)
= 2L−1(L+ 2)

C = 2L−1(L+ 2)− (L2 + L+ 1).

To get B, we differentiate equation 2.1 with respect to x once more:

L∑
k=1

k(k + 1)

(
L

k

)
xk−1 = L(1 + x)L−2(2 + (L+ 1)x). (2.2)

Substituting x = 1 in equation 2.2 gives:

L∑
k=1

k(k + 1)

(
L

k

)
= L2L−2(L+ 3)

B + L(L+ 1)

(
L

L

)
= 2L−2L(L+ 3)

B = 2L−2L(L+ 3)− (L2 + L).

Proof of Lemma 2.3.3. To simplify our notation, let (X(L), Y (L)) denote some (Xi, Yi)

with Li = L. We begin with the trivial to non-trivial distribution. Since X(L) is

binomial on L trials with success probability 1
2 , V ar(X(L)) = L

4 . Since the bit string

corresponding to Y (L) can be viewed as a translation of the bit string corresponding to

X(L) in Z2L , the distribution of Y (L) is the same as the distribution of X(L). Hence,

V ar(Y (L)) = L
4 . It remains to compute Cov(X(L), Y (L)). In the case of the trivial

distribution, X(L) = Y (L). So Cov(X(L), Y (L)) = V ar(X(L)) = L
4 .

The case of the non-trivial to non-trivial distribution requires more work. For our

computation, we assume αi = 1Li . As the nontrivial distributions are symmetric in



17

x and y, the covariances will be the same. We begin by evaluating V ar(X(L)) =

E[X(L)2]− E[X(L)]2.

As the block with weight X(L) is chosen uniformly at random among all non-zero

strings of length L,

E[X(L)] =
L

2

(
1 +

1

2L − 1

)
;

E[X(L)2] =
1

2L − 1

L∑
n=1

(
L

n

)
n2.

Using Lemma 2.3.4, the variance of X(L) is given by:

V ar(X(L)) =
L(L+ 1)

4

2L

2L − 1
− L2

4

(
1 +

1

2L − 1

)2

=
L2 + L

4

(
1 +

1

2L − 1

)
− L2

4

(
1 +

1

2L − 1

)
− L2

4

(
1 +

1

2L − 1

)
1

2L − 1

=
L

4

(
1 +

1

2L − 1

)
− L2

4

(
1 +

1

2L − 1

)
1

2L − 1
.

Observe that Y is the weight of a block of length L chosen uniformly at random

from all strings except 1L. So by symmetry, V ar(Y ) = V ar(X). We now compute

Cov(X,Y ) = E[X(L), Y (L)]− E[X(L)]E[Y (L)].

E[X(L)Y (L)] =
1

2L − 1

∑
1≤y≤x+1≤L

xy

(
L− x+ y − 2

y − 1

)

=
1

2L − 1

L−1∑
x=0

x
x+1∑
y=1

y

(
L− x+ y − 2

y − 1

)

=
1

2L − 1

L−1∑
x=0

x

x∑
y=0

(y + 1)

(
L− x+ y − 1

y

)
.

Let A(x) =

x∑
y=0

(y + 1)

(
L− x+ y − 1

y

)
be the inner summation. Then by repeated

application of the hockey stick identity,

A(x) =

x∑
y=0

(x+ 1)

(
L− x+ y − 1

y

)
−
x−1∑
y=0

(x− y)

(
L− x+ y − 1

y

)
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= (x+ 1)

(
L

x

)
−
x−1∑
y=0

y∑
j=0

(
L− x+ j − 1

j

)

= (x+ 1)

(
L

x

)
−
x−1∑
y=0

(
L− x+ y

y

)
= (x+ 1)

(
L

x

)
−
(

L

x− 1

)
.

Substituting A(x) back into our expression for E[X(L)Y (L)] yields:

E[X(L)Y (L)] =
1

2L − 1

[
L−1∑
x=1

x(x+ 1)

(
L

x

)
−
L−1∑
x=1

x

(
L

x− 1

)]
.

Using Lemma 2.3.4, we get:

E[X(L)Y (L)] =
1

2L − 1
(2L−2L(L+ 3)− (L2 + L)− 2L−1(L+ 2) + (L2 + L+ 1))

=
2L

2L − 1

(
L(L+ 1)

4
− L(L+ 1)

2L
− L+ 2

2
+
L2 + L+ 1

2L

)
=

(
1 +

1

2L − 1

)(
L2 + L− 4

4
+

1

2L

)
=

(
1 +

1

2L − 1

)(
L2 + L

4
−
(

1− 1

2L

))
=

L2 + L

4

(
1 +

1

2L − 1

)
− 1.

Hence the covariance of X(L) and Y(L) is

Cov(X(L), Y (L))

=
L2 + L

4

(
1 +

1

2L − 1

)
− 1− L

2

(
1 +

1

2L − 1

)
L

2

(
1− 1

2L − 1

)
=

L2 + L

4

(
1 +

1

2L − 1

)
− 1− L2

4

(
1 +

1

2L − 1

)
+
L2

4

(
1 +

1

2L − 1

)
1

2L − 1

=
L

4

(
1 +

1

2L − 1

)
+
L2

4

(
1 +

1

2L − 1

)
1

2L − 1
− 1.
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2.3.5 Breaking up the Weight Distribution

Recall that the joint distribution of initial and final weights is the sum of the joint distri-

bution of initial and final weights for m = Θ(n) smaller parts: (X,Y ) =
m∑
i=1

(Xi, Yi) :=(
m∑
i=1

Xi,

m∑
i=1

Yi

)
. However, the terms of this sum are dependent. We can remove the

dependence by first sampling the carry bits according to their distribution. Given the

carry bits, all of the terms in the sum are independent and have one of four types of

distributions given by Lemma 2.3.2. This gives us access to the Central Limit Theorem

and the fact that covariance matrices add, both of which will be used in the proof.

We will break up (X,Y ) into a sum of a Gaussian (XG, YG), a translation (XT , YT ),

and some remainder (XR, YR), which we show is well-behaved. As the non-trivial to

non-trivial distribution with block length at least 2 (Type 4) is the only type with

invertible covariance matrix, our goal will be to find many identical distributions of

this type. By the Central Limit Theorem, these sum to a 2-D Gaussian (XG, YG) of

dimensions Θ(
√
n). This will be the main part of the sum that pushes the distribution

into the second and fourth quadrants.

It is not always possible to find many identical distributions of type 4. If there

are o(n) blocks of length at least 2, then it is trivially impossible. We deal with this

case separately with a slightly modified argument. Otherwise, there are Θ(n) blocks of

length at least 2. We will show that with probability at least 1
6 , the carry bits arrange

themselves in such a way so that there are Θ(n) distributions of type 4. This is enough

to find many identical distributions of type 4.

We then consider the sum of the remainder of the type 4 distributions along with the

trivial to non-trivial type 1 distributions, (XR, YR), and show that it is well-behaved.

As the covariance matrices add, we will be able to apply the 2-D Chebyshev inequality

to guarantee that half of the distribution lies inside an ellipse of dimensions O(
√
n).

This will be enough to guarantee some constant proportion p of the distribution of

(XG, YG) + (XR, YR) in the second quadrant, and the same proportion p in the fourth

quadrant. The rest of the distribution of (X,Y ) is a translation (XT , YT ) along the

line y = −x relative to the mean. After translation, we still have p-fraction of the
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distribution in either the second or fourth quadrant.

We first consider the case where there are m′ = Θ(n) blocks of length at least 2.

The following lemma says that with probability at least 1
6 , we get many distributions of

type 4.

Lemma 2.3.5. Suppose there are m′ = Θ(n) blocks of length at least 2. Let X be the

number of non-trivial to non-trivial distributions with block length at least 2. Then:

P
(
X >

m′

4

)
>

1

6
.

Proof.

E[X] =

m′∑
i=1

P(Block i is non-trivial to non-trivial)

=

m′∑
i=1

P(Non-trivial carry out | non-trivial carry in) · P(Non-trivial carry in)

≥
m′∑
i=1

3

4
· 1

2

=
3

8
m′.

Let Y be the number of blocks of length at least 2 that are not non-trivial to

non-trivial. Then E[Y ] ≤ 5
8m
′. By Markov’s inequality,

P(Y ≥ t) ≤ E[Y ]

t
≤ 5

8
· m
′

t
.

Taking t = 3
4m
′ yields

P(Y ≥ 3

4
m′) ≤ 5

6

P(Y ≤ 3

4
m′) ≥ 1

6

P(X ≥ 1

4
m′) ≥ 1

6
.

We now show that many distributions of type 4 implies many identical distributions

of type 4.
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Lemma 2.3.6. Suppose we have m = Θ(n) bit-strings of total length at most n. Then

there is some fixed positive length L such that l = Θ(n) bit-stings have length L.

Proof. Let nk be the number of blocks of length k. Then we have the following equations

about the total number of blocks and the total length of all the blocks:

n∑
k=1

nk = m;

n∑
k=1

k · nk ≤ n.

Since m = Θ(n), we have n
m = C = Θ(1). Multiplying the first equation by C and

subtracting from the second inequality, we get:

−C
C+1∑
k=1

nk +
∑

k>C+1

nk ≤
∑
k=1

n(k − C)nk ≤ 0.

So we have:

n

C
= m =

n∑
k=1

nk

=

C+1∑
k=1

nk +
∑

k>C+1

nk

≤ (C + 1)

C+1∑
k=1

nk

≤ (C + 1)2 max
k∈[C]

nk.

So maxk∈[C] nk ≥ 1
C(C+1)2n. Taking a = 1

C(C+1)2 , we get that there exists a fixed

length L ∈ [C] such that an bit-strings have length L, as desired.

So with probability at least 1
6 , we can find l = Θ(n) identical type 4 distributions.

Since these identical distributions are independent of each other, the Central Limit

Theorem together with Lemma 2.3.3 tells us that the distribution of their sum is a

Gaussian with covariance matrix given by
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MG =

cl dl

dl cl

 ,

where c = L
4

(
1 + 1

2L−1

)
− L2

4

(
1 + 1

2L−1

)
1

2L−1
,

d = L
4

(
1 + 1

2L−1

)
+ L2

4

(
1 + 1

2L−1

)
1

2L−1
− 1, and L ≥ 2.

Lemma 2.3.7. Suppose G is a 2-dimensional Gaussian distribution with covariance

matrix given by MG. Then a fixed positive proportion of the distribution of G lies inside

(and outside) an ellipse centered at the mean with dimensions Θ(
√
n). Furthermore, the

probability density function fG(x, y) ≥ 1
πne
− 144n

l inside a circle of radius 4
√
n centered

at the mean of G.

Proof. Observe first that c−d = 1− L2

2

(
1 + 1

2L−1

)
1

2L−1
≥ 1

9 and d ≥ 1
9 for any value of

L ≥ 2. As det(MG) = (c2− d2)l2 6= 0, MG is invertible. So letting G = (XG, YG) denote

the distribution obtained by translating G to its mean, we get that a fixed proportion

of the distribution lies in the ellipse defined by:

(
XG YG

)
M−1
G

XG

YG

 = 2.

The inverse of MG is given by:

M−1
G =

1

(c2 − d2)l2

 cl −dl

−dl cl

 .

Substituting M−1
G back into the equation of the ellipse gives:

1

(c2 − d2)l
[cXG

2 − 2dXGYG + cYG
2
] = 2

XG
2 − 2d

c
XGYG + YG

2
=

2(c2 − d2)

c
l.

We have an equation of the form x2−2axy+y2 = b, where a = d
c < 1. This describes

an ellipse rotated by π
4 counterclockwise. By rotating the ellipse clockwise by π

4 , we can

find the dimensions of the ellipse. Making the substitution:
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x
y

 =

√2
2 (x′ + y′)
√

2
2 (y′ − x′)

 ,

we get that the equation of the rotated ellipse is

x2

b
1+a

+
y2

b
1−a

= 1. (2.3)

Taking a = d
c and b = 2(c2−d2)

c l as in the ellipse for our Gaussian, we find that the

squares of the dimensions of the ellipse are given by:

b

1− a
=

2(c2 − d2)

c
l · c

c− d
= 2(c+ d)l ≥ 2

3
l;

b

1 + a
=

2(c2 − d2)

c
l · c

c+ d
= 2(c− d)l ≥ 2

9
l.

Hence, both dimensions of the ellipse are Θ(
√
n). In fact, both dimensions exceed

1
3

√
l. So the circle of radius 1

3

√
l centered at the mean lies completely inside the ellipse.

Scaling every dimension up by a factor of
√

144n
l tells us that inside the circle of radius

4
√
n centered at the mean, we have:

(
XG YG

)
M−1
G

XG

YG

 ≤ 144n

l
.

Therefore, we have the following lower bound on the probability distribution function

inside the circle of radius 4
√
n:

fG(x, y) ≥ 1

2π
√

detMG
e−

144n
l

=
1

2π
√

(c2 − d2)l2
e−

144n
l

≥ 1

2πcl
e−

144n
l

≥ 1

πn
e−

144n
l .
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The above sequence of lemmas can be used to show that if we start with many

blocks of length at least 2, then with positive constant probability, we can find many

identical distributions that sum to a Gaussian of dimensions Θ(
√
n). Suppose now that

the exponent α has a total of m blocks, but fewer than 0.01m blocks of length at least

2. Then at least 0.99 fraction of the blocks have length 1. Consider all consecutive

block pairs. At most 0.01 fraction of these pairs have their first block with length 2,

and at most 0.01 fraction have their second block with length at least 2. So at most

0.02 fraction have a block of length at least 2. Hence, 0.98 fraction of the pairs consists

of two blocks of length 1. By the Pigeonhole Principle, at least 0.49 fraction of the

pairs are either all 01 or all 10. Without loss of generality, assume that 0.49 fraction

of consecutive block pairs are 01. We now treat each block pair 01 as a single block

of length 2. The initial and final weight distribution of this larger block, given there

is no carry in and no carry out matches the type 4 distribution. We have proven the

existence of a large number of modified blocks of length 2:

Lemma 2.3.8. Suppose there are fewer than 0.01 fraction of the blocks have length at

least 2. Then at least 0.49 fraction of consecutive block pairs are 01 or at least 0.49

fraction of consecutive block pairs are 10.

Lemma 2.3.8 essentially reduces the case of having few blocks of length at least 2

to the case where there are many blocks of length at least 2 by consolidating many of

the length 1 blocks. As there are Θ(n) such consolidated blocks, and each has type

4 distribution with probability at least 3
8 , we can again find Θ(n) identical type 4

distributions by Lemma 2.3.5. Lemma 2.3.7 then says that these identical distributions

sum to a Gaussian of large dimensions. So for any α, we can find many terms in the

initial and final weight distribution summing to a large Gaussian.

2.3.6 Distribution of the Sum of the Remaining Terms

Consider the terms remaining in the distribution of (X,Y ) =

m∑
i=1

(Xi, Yi), when the

terms contributing to the Gaussian are removed. The terms with distribution types 2 or

3 are translations in the < 1,−1 > direction relative to
(
L
2 ,

L
2

)
. These will contribute to
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the translation part of the distribution (XT , YT ). The rest of the terms of type 4 along

with the terms of type 1 sum to the remainder R = (XR, YR). There are O(n) terms

remaining. By Lemma 2.3.3, the covariance matrix of each of these terms is one of the

following two forms:

L
4

L
4

L
4

L
4

 ;

c d

d c

 ,

where c = L
4

(
1 + 1

2L−1

)
− L2

4

(
1 + 1

2L−1

)
1

2L−1
, and

d = L
4

(
1 + 1

2L−1

)
+ L2

4

(
1 + 1

2L−1

)
1

2L−1
− 1.

As the terms are independent given a fixing of the carry bits, the covariance matrices

add. The total covariance matrix of the sum is:

MR =

C D

D C

 ,

where D ≤ C ≤ n
3 , with D = C only when the remainder is a sum of type 1

distributions.

Lemma 2.3.9. At least half of the distribution of the remainder lies in a circle of radius
√

2n centered at the mean.

Proof. When the remainder is a sum of type 1 distributions, then the remainder has

the form (XR, XR), where XR is a binomial distribution with LR ≤ n trials and success

probability 1
2 . So by Chebyshev’s Inequality,

P

(
|XR −

LR
2
| >

√
LR
2

)
≤ 1

2

P
(
|XR −

LR
2
| >

√
n

2

)
≤ 1

2

P
(
|XR −

LR
2
| ≤

√
n

2

)
≥ 1

2
.
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So in this case, at least half of the distribution of the remainder lies in a circle of

radius
√

n
2 . When the remainder contains some type 4 distributions, then D < C ≤ n

3 .

Hence, the covariance matrix MR is invertible. So we may apply the 2-dimensional

Chebyshev inequality to (XR, YR) to get:

P
{
RM−1

R R
T
> t
}
≤ 2

t2
.

Taking t = 2 yields

Pr

{
XR

2
+ 2

D

C
XRYR + YR

2
>

2(C2 −D2)

C

}
≤ 1

2

Pr

{
XR

2
+ 2

D

C
XRYR + YR

2 ≤ 2(C2 −D2)

C

}
>

1

2
.

Chebyshev tells us that at least half of the distribution lies in the ellipse centered

at the origin defined by the inequality above. By a similar computation as with the

Gaussian distribution, the squares of the dimensions of this ellipse are 2(C +D) and

2(C −D), both of which are less than 4n
3 . Hence, the ellipse lies inside a circle of radius

2
√

n
3 <
√

2n, and therefore over half of the distribution of the remainder must lie inside

this circle.

2.3.7 The Proof

We are ready to prove the main theorem.

Proof of Theorem 2.1.2. Suppose that α ∈ Z2n has m ≥ cn blocks in its binary repre-

sentation, where 0 < c < 1 is constant. We know that either there are 0.01m blocks

of length at least 2, or there are fewer than 0.01m blocks of length at least 2. In the

second case, Lemma 2.3.8 tells us that we can find 0.49m identical pairs of consecutive

blocks of length 1. Lemma 2.3.5 then says that with probability at least 1
6 , the carry

bits arrange themselves in such a way that there are at least 0.49
4 m ≥ 1

9m identical type

4 distributions.

If there are m′ > 1
100m blocks of length at least 2, then Lemma 2.3.5 says that with

probability at least 1
6 , the carry bits arrange themselves in such a way that there are at
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least 1
4m
′ > 1

400m type 4 distributions. Since 1
9 >

1
400 , we conclude that for any α with

m blocks, we can find 1
400m type 4 distributions with probability 1

6 .

Asm ≥ cn, the number of type 4 distributions exceeds 1
400m ≥

c
400n. By Lemma 2.3.6,

we can find l ≥
(
c

400

)3
n identical type 4 distributions each with block length L. By

Lemma 2.3.7, these sum to a Gaussian whose probability distribution function fG(x, y) ≥
1
πne
− 144n

l inside a circle of radius 4
√
n centered at the mean of G. As each type 4

distribution has mean
(
L
2 ,

L
2

)
± L

2 ·
1

2L−1
(1,−1), we decompose the Gaussian into a

Gaussian G = (XG, YG) centered at
(
Ll
2 ,

Ll
2

)
and a translation in the (1,−1) direction

which contributes to the translation term (XT , YT ).

It is worth noting that every distribution type of block length L can be decomposed

into the sum of a distribution centered at
(
L
2 ,

L
2

)
and a translation in the (1,−1) direction.

To see this, we will write the mean of each type of distribution as
(
L
2 ,

L
2

)
+ k(1,−1), for

some k depending on L.

Type 1 distributions have mean
(
L
2 ,

L
2

)
. Type 2 distributions have mean

(
L
2 ,

L
2

)
±

L
2 (1,−1). Type 3 distributions have mean

(
L
2 ,

L
2

)
± L

2 (1,−1). Type 4 distributions have

mean
(
L
2 ,

L
2

)
± L

2 ·
1

2L−1
(1,−1).

We extract the translation component from each term and call that sum (XT , YT ).

Let R = (XR, YR) = (X,Y )− (XG, YG)− (XT , YT ) be the remainder. If LT denotes the

total length of all blocks contributing to R, we have that
(
LT
2 ,

LT
2

)
is the mean of R.

Let R = R−
(
LT
2 ,

LT
2

)
. By Lemma 2.3.9, at least half of the distribution of R lies in

an circle centered at the origin with radius
√

2n. By taking the square W of side length

2
√

2n surrounding the circle, we see that at least half of the distribution of R lies in W .

For any point (p, q) in the square, consider the distribution of the GaussianG+(p, q) =

(XG+p, YG+q), which is centered at (p, q). Lemma 2.3.7 guarantees that the probability

distribution function exceeds 1
πne
− 144n

l inside a circle of radius 4
√
n centered at (p, q).

Contained within this circle is a square with side length
√

2n in the second quadrant.

Hence, the probability that G+ (p, q) lies in the second quadrant is at least 2
πe
− 144n

l .

Recall that l ≥ c3

4003n, where m ≥ cn. So we have:
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2

π
e−

144n
l ≥ 2

π
e−

144·64000000
c3

=
2

π
e−

9216000000
c2 .

Take C = 2
πe
− 9216000000

c2 . Then with probability 1
6 , at least C fraction of the distri-

bution of G + R conditioned on the carry bits lies in the second quadrant, where C

is a constant depending only on c. By symmetry, the same fraction lies in the fourth

quadrant. Finally, we must add the translation (XT , YT ) in the (1,−1) direction. No

matter the size of the translation, we are guaranteed C fraction in either the second

or fourth quadrant. Hence, we have at least C
6 of the unconditioned distribution of

(X,Y ) = (XG, YG)+(XR, YR)+(XT , YT ) lying in the second or fourth quadrants relative

to the mean
(
n
2 ,

n
2

)
, and so at least C

12 lying in either the second or fourth quadrant. By

symmetry, we get at least C
12 lying in both the second and fourth quadrants.

2.4 Heavily Shifting Numbers

We have shown that α with many uniform blocks of 0’s and 1’s have the shifting property.

An interesting related question is whether there is an α that is heavily shifting: that is,

α shifts almost all of the light strings to heavy strings. More precisely, o(1) fraction of

light strings remain light under translation by α. We already know that when α has

o(
√
n) blocks, α does not have the ε-shifting property, and can therefore not be heavily

shifting.

Our current understanding of the joint initial and final weight distribution cannot

quite show that α with Θ(n) blocks are also not heavily shifting. The reason is that we

have no handle on the size of the translation term (XT , YT ) in the (1,−1) direction. It

is possible that the translation is so large most of the time to make α heavily shifting,

though we suspect this does not happen.

It is an open problem to figure out which α are heavily shifting.
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Chapter 3

A Cauchy-Davenport theorem for general linear maps

3.1 Introduction

Let p be a prime, and let Fp denote the finite field of integers modulo p. The classical

Cauchy-Davenport theorem states that if A,B ⊆ Fp, then the sumset A+B (defined to

equal {a+ b | a ∈ A, b ∈ B}) satisfies the inequality: |A+B| ≥ |A|+ |B| − 1, provided

p ≥ |A| + |B| − 1. It is instructive to compare this with the elementary inequality

|A+B| ≥ |A|+ |B| − 1 for A,B ⊆ R (this has a simple proof using the natural order

on R). The Cauchy-Davenport theorem says that this inequality continues to hold mod

p, for p large enough.

The Cauchy-Davenport theorem can be seen as a statement about the size of the

image of the product set A×B under the the map + : Fp × Fp → Fp. Here we study a

similar phenomenon for general linear maps. Let L : Fnp → Fmp be an Fp-linear map. For

subsets A1, . . . , An ⊆ Fp, we define

L(A1, . . . , An) = {L(a1, . . . , an) | ai ∈ Ai for each i}.

(Equivalently, this is the image of A1 ×A2 × . . .×An under L.) We are interested in

a Cauchy-Davenport theorem for L: given integers k1, . . . , kn, what is the minimum

possible size, over subsets Ai ⊆ Fp with |Ai| = ki, of |L(A1, . . . , An)|? This question is

already interesting for the map L∗ : F3
p → F2

p, given by L(x, y, z) = (x+ y, x+ z).

Our main theorem, Theorem 3.2.2, gives a lower bound on the size of L(A1, . . . , An).

For now we just state an interesting special case of this theorem, where all the |Ai| = k.

While the bound itself is quite complex, the bound (surprisingly) turns out to be tight

for every linear map L when m = n− 1.

Theorem 3.1.1. Let m < n, and let L : Fnp → Fmp be a linear map with rank m. Let v
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be a nonzero vector in ker(L) with minimal support, and let s be the size of its support.

Let k be an integer with p ≥ 2k − 1.

Then for every A1, . . . , An ⊆ Fp, with |Ai| = k for all i ≤ n, we have:

|L(A1, . . . , An)| ≥ (ks − (k − 1)s) · km−s+1.

Some remarks about this theorem:

• If m = n− 1 and p ≥ 2k − 1, this lower bound is optimal for every linear map L.

See Lemma 3.2.3.

If m = n − 1 and p < 2k − 1, this lower bound can be violated for every linear

map L.

• If our sets are taken to be subsets of R instead of Fp, then for m = n − 1, an

identical lower bound holds for every linear map L : Rn → Rm, and this lower

bound is optimal for every L. As in the case of the Cauchy Davenport theorem,

the lower bound also has an elementary proof using the natural order on R.

• If m is small, and k is large, then the lower bound is approximately s · km.

Thus for the map L∗ : F3
p → F2

p mentioned above, if p ≥ 2k − 1, then for every three

sets A1, A2, A3 with |Ai| = k, we get that

|L∗(A1, A2, A3)| ≥ k3 − (k − 1)3 = 3k2 − 3k + 1,

and this is the best bound possible in term of k.

3.1.1 Proof Outline

Our proof is based on the Combinatorial Nullstellensatz [12], generalizing one of the

known proofs of the Cauchy-Davenport theorem.

The Combinatorial Nullstellensatz is an algebraic statement characterizing multi-

variate polynomials Q(Y1, . . . , Yn) which vanish on a given product set A1 × . . .× An

as those polynomials which lie in a certain explicitly given ideal. Let us recall the

Combinatorial Nullstellensatz proof [13, 12] of the Cauchy-Davenport theorem. For
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given sets A1, A2 ⊆ Fp, one wants to prove a lower bound on the size of the sumset

C = A1 + A2. Suppose C was small. The key step of this proof is to consider the

univariate polynomial T (X) ∈ Fp[X], given by:

T (X) =
∏
c∈C

(X − c),

and the bivariate polynomial Q(Y1, Y2) ∈ Fp[Y1, Y2] given by:

Q(Y1, Y2) = T (Y1 + Y2) =
∏
c∈C

(Y1 + Y2 − c).

Since C is small, T and Q are of low degree. By design, the polynomial Q vanishes

on every point (a1, a2) ∈ A1 × A2. Thus, by the Combinatorial Nullstellensatz, one

concludes that Q(Y1, Y2) must lie in a certain ideal. Then, inspecting monomials and

using the upper-triangular criterion for linear independence, one shows that no low-

degree polynomial of the form R(Y1 + Y2) (with R(X) ∈ Fp[X]) can lie this ideal. Since

Q(Y1, Y2) = T (Y1 + Y2), this a contradiction.

Our proof will follow the same high-level strategy, but with some important differences.

If L(A1, . . . , An) is small, we will find a multivariate polynomial Q of low “complexity”

which vanishes on A1×A2× . . .×An, and thus by the Combinatorial Nullstellensatz, it

must lie in a certain ideal I. We then use some linear algebra arguments, along with

the low complexity of Q, to show that Q cannot lie in I, thus deriving a contradiction.

There are two new technical ingredients that enter the proof. The first ingredient

appears in the construction of the polynomial Q. Since the range of L is a high-

dimensional vector space, there is no natural way of explictly giving a polynomial

vanishing on C = L(A1, . . . , An). Instead, we will use a dimension argument to show

the existence of a suitable polynomial T (X1, . . . , Xm) vanishing on C, and define

Q(Y1, . . . , Yn) to be T (L(Y1, . . . , Yn)). The second ingredient appears in the linear

algebra argument showing that Q does not lie in I. In order to make this argument, we

will need Q to have a very special kind of monomial structure. This monomial structure

is enforced when we choose T ; it is because of this requirement that we do not simply

take T to be a low-degree polynomial, but instead choose T from a larger space of

polynomials satisfying some constraints (this is what we have termed low complexity in

the above description).
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Organization of this paper

In the next section we give a formal statement of our main result. In Section 3.3 we

prove our main result. In Section 3.4 we discuss limitations of our methods to prove an

optimal bound in the m < n− 1 case. We conclude with some open problems.

Notation

We use [n] to denote the set {1, 2, . . . , n}. For a vector v ∈ Fn, we define its support,

denoted supp(v) to be the set of its nonzero coordinates, namely {i ∈ [n] | vi 6= 0}.

We use deg(h) to denote the total degree of a polynomial h, and degY (h) to denote

the degree in the variable Y of the polynomial h. We say a monomial M appears in a

polynomial h if in the standard representation of h as a linear combination of monomials,

M has a nonzero coefficient.

3.2 The main result

We first state our main theorem. It gives, for every linear map L : Fnp → Fmp , a lower

bound on the size of L(A1, . . . , An), in terms of the sizes of A1, . . . , An.

Definition 3.2.1. For a linear map L : Fnp → Fmp , we define the support-kernel of L to

be the set:

suppker(L) = {S ⊆ [n] | ∃v ∈ ker(L), v 6= 0, with supp(v) = S}.

Theorem 3.2.2. Let p be prime. Let n ≥ 2 be an integer. Let m < n.

Let L : Fnp → Fmp be a linear map of rank m. Let S be a minimal element of

suppker(L). Let S′ be a maximal subset of [n] \ S such that 2S
′∪S ∩ suppker(L) = {S}.

Let 1 ≤ k1, . . . , kn ≤ p. Let kmax = maxi∈S ki and kmin = mini∈S ki. Suppose

p ≥ kmax + kmin − 1.

Define

λ =

((∏
i∈S

ki

)
−

(∏
i∈S

(ki − 1)

))
·

(∏
i∈S′

ki

)
.

Then for every A1, . . . , An ⊆ Fp with |Ai| = ki, we have:

|L(A1, . . . , An)| ≥ λ.
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Taking all the ki to equal k, and observing that S′ has size m+ 1− s, we get the

theorem stated in the introduction.

The following lemma shows that when m = n − 1, and |A1| = |A2| = . . . = |An|,

then the above lower bound is the best possible.

Lemma 3.2.3. Let p be prime. Let n ≥ 2 be an integer. Let m = n− 1.

Let L : Fnp → Fmp be a linear map of rank m. Let S ⊆ [n] be the unique element of

suppker(L). Let S′ = [n] \ S, and observe that 2S
′∪S ∩ suppker(L) = S.

Let k1 = k2 = . . . = kn = k.

Define

λ =

((∏
i∈S

ki

)
−

(∏
i∈S

(ki − 1)

))
·

(∏
i∈S′

ki

)
.

Then:

1. If p ≥ 2k − 1, there exist A1, . . . , An ⊆ Fp with |Ai| = ki, such that:

|L(A1, . . . , An)| = λ.

2. If p < 2k − 1, there exist A1, . . . , An ⊆ Fp with |Ai| = ki, such that:

|L(A1, . . . , An)| < λ.

3.3 Proof of the main theorem

For a linear map L : Fnp → Fmp and integers k1, . . . , kn, define:

µ(L, k1, . . . , kn)
def
= min

A1,A2,...,An⊆Fp

|Ai|=ki

|L(A1, . . . , An)|.

The proof of the main theorem, Theorem 3.2.2 has two steps. The first step performs

elementary operations on the linear map L to bring it into a simple form, while preserving

the value of µ(L, k1, . . . , kn). The second step applies the polynomial method to give a

lower bound on µ(L, k1, . . . , kn) for these simple L. The allowable operations to simplify

the linear map are listed in Lemma 3.3.1 and the lower bound for the simpler map is

the subject of Theorem 3.3.2.
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Lemma 3.3.1. Let L : Fnp → Fmp be a linear map, and let 1 ≤ k1, . . . , kn ≤ p.

1. Let L′ : Fmp → Fmp be a full rank linear transformation. Then µ(L, k1, . . . , kn) =

µ(L′ ◦ L, k1, . . . , kn).

2. Let L′′ : Fnp → Fnp be a linear map whose matrix is a diagonal matrix with all

diagonal entries nonzero. Then µ(L, k1, . . . , kn) = µ(L ◦ L′′, k1, . . . , kn).

3. Let π : [n] → [n] be a permutation. Let Lπ : Fnp → Fnp be the linear map that

permutes coordinates according to π (i.e.; Lπ(ei) = eπ(i)). Then µ(L, k1, . . . , kn) =

µ(L ◦ Lπ, kπ−1(1), . . . , kπ−1(n)).

Proof. 1. L′ is an isomorphism, so

|L′ ◦ L(A1, . . . , An)| = |L(A1, . . . , An)|.

Taking the minimum over the choices of the setsAi, i ∈ [n], we get µ(L, k1, . . . , kn) =

µ(L′ ◦ L, k1, . . . , kn).

2. Applying L′′ to (A1, . . . , An) simply scales the set Ai by a factor of L′′i,i. In

particular, L′′ preserves the sizes of the sets. So we have:

|L ◦ L′′(A1, . . . , An)| = |L(L′′1,1A1, . . . , L
′′
n,nAn)| ≥ µ(L, k1, . . . , kn).

Taking the minimum over the choices of the sets Ai, i ∈ [n], we get µ(L ◦

L′′, k1, . . . , kn) ≥ µ(L′ ◦ L, k1, . . . , kn).

For the other direction, observe that any scaling is reversible by an inverse scaling:

|L(A1, . . . , An)| = |L ◦ L′′( 1

L′′1,1
A1, . . . ,

1

L′′n,n
An)| ≥ µ(L ◦ L′′, k1, . . . , kn).

Taking the minimum over the Ai, i ∈ [n] gives the reverse inequality.

3. Lπ permutes the indices of the sets, and so permutes the sizes of the sets. Taking

this into account, the size of the image should remain the same:

|L ◦ Lπ(Aπ−1(1), . . . , Aπ−1(n))| = |L(A1, . . . , An)| ≥ µ(L, k1, . . . , kn),

|L(A1, . . . , An)| = |L ◦ Lπ(Aπ−1(1), . . . , Aπ−1(n))|
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≥ µ(L ◦ Lπ, kπ−1(1), . . . , kπ−1(n)).

Taking the minimum over the Ai, i ∈ [n] gives both directions of the inequality.

Theorem 3.3.2. Let p be prime. Let m ≥ 1 be an integer.

Let U1, U2, . . . , Um, V ⊆ Fp be subsets of size |Ui| = ki for 1 ≤ i ≤ m, and |V | = k̂.

Suppose p ≥ k̂ + ki − 1 for each i.

Let

C = {(u1 + v, u2 + v, . . . , um + v)|ui ∈ Ui for each i, v ∈ V }.

Then

|C| ≥ k̂ ·
m∏
i=1

ki − (k̂ − 1) ·
m∏
i=1

(ki − 1).

3.3.1 Preliminaries: multivariate polynomials and Combinatorial Null-

stellensatz

In preparation for our proof of Theorem 3.3.2, we recall the statement of the Combi-

natorial Nullstellensatz, along with some important facts about reducing multivariate

polynomials modulo ideals of the kind that arise in the Combinatorial Nullstellensatz.

Lemma 3.3.3 (Combinatorial Nullstellensatz [12]). Let F be a field, and let A1, . . . , An ⊆

F. For i ∈ [n], let Pi(T ) ∈ F[T ] be given by Pi(T ) =
∏
α∈Ai

(T − α).

Let h(Y1, . . . , Yn) ∈ F[Y1, . . . , Yn]. Then h(Y1, . . . , Yn) vanishes on A1 × . . .×An if

and only if h lies in the ideal generated by P1(Y1), P2(Y2), . . . , Pn(Yn).

Now let P1(T ), . . . , Pn(T ) ∈ F[T ] be polynomials, with deg(Pi) = ki. Let I be the

ideal generated by 〈Pi(Yi)〉i∈[n].

Given this setup, we now discuss the operation of reducing a polynomial mod I. A

monomial
∏n
i=1 Y

ei
i is called legal for I if ei < ki for each i ∈ [n]. Given a polynomial h,

there is a canonical reduction mod I, denoted h, with the property that h ≡ h mod I,

and that every monomial appearing in the expansion of h is legal for I (equivalently,

for each i we have degYi(h) < ki). This canonical reduction can be obtained as follows.
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Reducing a polynomial mod Pi(Yi) = Y ki
i −

∑ki−1
j=0 ajY

j
i is simply the act of repeatedly

replacing every occurrence of Y ki
i with

∑ki−1
j=0 ajY

j
i , until the Yi degree is less than ki.

Reducing the polynomial h mod Pi(Yi) in succession for each i ∈ [n] gives the canonical

reduction h.

Here are some important (and easy to verify) points about canonical reduction:

1. h ∈ I if and only if h = 0.

2. The map h 7→ h is F-linear.

It will be important for us to understand the degrees of the monomials in h. Let

M =

n∏
i=1

Y ei
i be a monomial, and consider its reduction M mod I. If ei < ki for

each i ∈ [n], then we have M = M. Furthermore, if there is some ei ≥ ki, then

degM < deg(M). This is because the act of replacing Y ki
i with a lower degree

polynomial in Yi strictly decreases the degree. Combining these two facts, we get the

following fact.

Fact 3.3.4. With notation as above, let h(Y1, . . . , Yn) ∈ F[Y1, . . . , Yn]. Suppose M is a

monomial that (1) appears in h, (2) has deg(M) = deg(h), and (3) is legal for I.

Then M appears in the canonical reduction h.

This is because M =M, and the canonical reductions of the other monomials will

have smaller degree than M, and will therefore leave M untouched.

Very similar considerations give us the following related fact.

Fact 3.3.5. With notation as above, let h(Y1, . . . , Yn) ∈ F[Y1, . . . , Yn]. Suppose M is a

monomial that (1) appears in h, (2) has deg(M) = deg(h), and (3) is legal for I.

Then M appears in h.

3.3.2 Correlated sumsets and the polynomial method

We now prove Theorem 3.3.2.

Proof. We begin by defining some sets of monomials which will be useful to us.

In the polynomial ring Fp[Y1, . . . , Ym, Z], consider the following set of monomials:
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Γ = {Y e1
1 Y e2

2 · · ·Y
em
m Ze|0 ≤ ei ≤ ki − 1 for each i, and 0 ≤ e ≤ k̂ − 1,

and e > 0⇒ ei = ki − 1 for some i}.

We will also consider the polynomial ring Fp[X1, . . . , Xm]. To each monomial

M(Y1, . . . , Ym, Z) ∈ Γ, we associate a monomial φ(M) ∈ Fp[X1, . . . , Xm] as follows. If

M(Y1, . . . , Ym, Z) = Y e1
1 Y e2

2 · · ·Y em
m Ze, then define:

φ(M) =



m∏
i=1

Xei
i if e = 0(

m∏
i=1

Xei
i

)
·Xe

j if e > 0, where j is the first index

so that ej = kj − 1.

Let ∆ = {φ(M) | M ∈ Γ} be the set of all such monomials constructed in this way.

Note that φ is a bijection, and φ preserves the degree of each monomial. Thus, φ also

gives a bijection when we restrict to monomials in Γ and ∆ of fixed total degree. We

defined φ so that φ−1 would have the following description: Let Xf1
1 Xf2

2 · · ·X
fm
m ∈ ∆.

Let ei = min{fi, ki − 1} for each i ∈ [m]. Let e =

m∑
i=1

fi −
m∑
i=1

ei. Then

φ−1(Xf1
1 Xf2

2 · · ·X
fm
m ) = Y e1

1 Y e2
2 · · ·Y

em
m · Ze.

Note that by choice of e, φ−1 preserves degree.

With these definitions in hand, we proceed with the main parts of the proof.

Interpolating a polynomial

Suppose for contradiction that |C| < k̂ ·

(
m∏
i=1

ki

)
− (k̂ − 1) ·

(
m∏
i=1

(ki − 1)

)
. Since

|∆| = |Γ| = k̂ ·
m∏
i=1

ki−(k̂−1)·
m∏
i=1

(ki−1), there is a non-zero polynomial f(X1, . . . , Xm) =∑
K∈∆

cKK(X1, . . . , Xm) which vanishes on C. By the definition of C, this means that

g(Y1, . . . , Ym, Z)
def
= f(Y1 + Z, . . . , Ym + Z) is a non-zero polynomial vanishing on every

point (u1, u2, . . . , um, v) ∈
m∏
i=1

Ui × V .



39

Application of the Combinatorial Nullstellensatz

For each 1 ≤ i ≤ m, let Pi(Yi) =
∏
a∈Ui

(Yi − a). Also let P (Z) =
∏
a∈V

(Z − a).

By the Combinatorial Nullstellensatz,

g(Y1, . . . , Ym, Z) ≡ 0 (mod I),

where I is the ideal generated by the Pi(Yi), i ∈ [m] and P (Z).

Explicitly, we have that:

∑
K∈∆

cKK(Y1 + Z, Y2 + Z, . . . , Ym + Z) ≡ 0 (mod I),

where at least one cK is nonzero.

Consider the canonical reduction g of g mod I: since g ∈ I we get that g = 0. On

the other hand, we have by linearity of canonical reduction:

g =
∑
K∈∆

cKK(Y1, Y2, . . . , Ym, Z),

where K(Y1, Y2, . . . , Ym, Z) is the canonical reduction mod I of K(Y1+Z, Y2+Z, . . . , Ym+

Z). By Fact 3.3.4, any monomial M that appears in the expansion of K(Y1 + Z, Y2 +

Z, . . . , Ym+Z) with deg(M) = deg(K) and is legal for I, also appears inK(Y1, Y2, . . . , Ym, Z).

Arriving at a contradiction

We may now summarize the strategy for the rest of the proof. We will first find an

ordering of the monomials in ∆ such that:

1. If K,K′ are monomials in ∆ with deg(K′) < deg(K), then K′ is smaller than K in

the ordering.

2. For each K ∈ ∆, there is some monomial MK(Y1, . . . , Ym, Z) with the following

four properties:

(a) MK appears the expansion of K(Y1 + Z, Y2 + Z, . . . , Ym + Z),

(b) deg(MK) = deg(K),

(c) MK is legal for I,
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(d) MK does not appear in the expansion of K′(Y1 + Z, Y2 + Z, . . . , Ym + Z) for

any K′ ∈ ∆ smaller than K in the ordering.

Once we have such an ordering, consider the largest K in the ordering for which

cK 6= 0. By Fact 3.3.4, MK appears in K(Y1, . . . , Ym, Z). For every other K′ ∈ ∆ with

cK′ 6= 0, we will show that K′(Y1, . . . , Ym, Z) does not include the monomial MK; this

then shows thatMK appears in g with a nonzero coefficient, contradicting our equation

g = 0. This gives the desired contradiction.

Monomial MK does not appear in K′ (for K′ 6= K with cK′ 6= 0)

Suppose K′ ∈ ∆, K′ 6= K and cK′ 6= 0. We will show that MK does not appear in

K′. By choice of K, we have that K′ is smaller than K in the ordering, and hence that

deg(K′) ≤ deg(K).

Suppose MK appeared in K′. Then the following chain of inequalities:

deg(MK) ≤ deg(K′) ≤ deg(K′(Y1 + Z, . . . , Ym + Z) ≤ deg(K′) ≤ deg(K) = deg(MK),

(because of the equality of the endpoints, this is a chain of equalities), shows that

deg(MK) = deg(K′(Y1 + Z, . . . , Ym + Z)). Thus by Fact 3.3.5, we can conclude that

MK appears in K′(Y1 + Z, . . . , Ym + Z). But this contradicts the property that MK

does not appear in K′(Y1 +Z, . . . , Ym +Z) for any K′ ∈ ∆ that is smaller than K in the

ordering. Thus MK cannot appear in K′.

The ordering of ∆

All that remains now is to define the ordering of ∆, and to prove the desired properties

of this ordering.

Arrange the monomials in ∆ in order of increasing total degree. Within each fixed to-

tal degree, order by decreasing degZ(φ−1(K(X1, . . . , Xm))). Then for K(X1, . . . , Xm) ∈

∆ in that ordering, setMK = φ−1(K(X1, . . . , Xm)) = Y e1
1 Y e2

2 · · ·Y em
m Ze. We claim that

MK satisfies the four properties listed above.

(a) MK appears the expansion of K(Y1 + Z, Y2 + Z, . . . , Ym + Z):
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We show that the coefficient of MK in K(Y1 + Z, Y2 + Z, . . . , Ym + Z) is non-

zero. By the definition of ∆, degXi
(K) ≤ k̂ + ki − 2 < p for i ∈ [m],K ∈ ∆.

Also, there is at most one i such that degXi
(K) > ki − 1. Call this index j if it

exists, and let l = degXj
(K). Since φ−1(K) extracts the largest powers of Yi in

K(Y1 + Z, Y2 + Z, . . . , Ym + Z) up to ki − 1 for i ∈ [m], we get that the coefficient

of MK is 1 if j does not exist and
(

l
kj−1

)
if j exists. In both cases, the coefficient of

MK is non-zero in Fp as l < p.

(b) deg(MK) = deg(K):

Recall that φ is a bijection from one set of monomials to another which preserves

the degree of the monomials. So deg(MK) = deg φ−1(K(X1, . . . , Xm)) = deg(K).

(c) MK is legal for I:

Recall that writing K = Xf1
1 Xf2

2 · · ·X
fm
m , we have

φ−1(K) = Y e1
1 Y e2

2 · · ·Y
em
m · Ze,

where ei = min{fi, ki − 1} for each i ∈ [m], and e =
m∑
i=1

fi −
m∑
i=1

ei. So ei ≤ ki − 1,

∀i ∈ [m]. It remains to show that e ≤ k̂ − 1. Suppose fi ≤ ki − 1, ∀i ∈ [m]. Then

ei = fi, ∀i ∈ [m] and so e = 0. Otherwise, fi ≤ ki − 1 for all but one i ∈ [m], call

this index j. We have ei = fi for i 6= j and ej = kj − 1. So

e = fj − ej ≤ k̂ + kj − 2− (kj − 1) = k̂ − 1.

(d) MK does not appear in the expansion of K′(Y1 + Z, Y2 + Z, . . . , Ym + Z) for any

K′ ∈ ∆ smaller than K in the ordering :

To show that the monomials selected by φ−1 do not appear in any previous entries

of the ordering, first note that the degree of MK is too large to have appeared

in any previous K′ ∈ ∆ of lower total degree. Next, consider the expansion of a

previous K′(Y1 + Z, Y2 + Z, . . . , Ym + Z) in the ordering of the same total degree,

then MK′ = φ−1(K′(X1, . . . , Xm)) = Y
e′1

1 Y
e′2

2 · · ·Y
e′n
m Ze

′
must have e′i < ei ≤ ki − 1

for some i ∈ [m], as e′ ≥ e. By the way φ is defined, this means that degXi
(K′) = e′i,
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so degYi(K
′(Y1 + Z, Y2 + Z, . . . , Ym + Z)) = e′i. But degYi(MK) = ei > e′i. So MK

cannot be a monomial in the expansion of K′(Y1 + Z, Y2 + Z, . . . , Ym + Z).

This completes the proof that the ordering of ∆ has the desired properties, and

hence we arrive at a contradiction.

Thus we must have that |C| ≥ k̂ ·

(
m∏
i=1

ki

)
− (k̂ − 1) ·

(
m∏
i=1

(ki − 1)

)
.

3.3.3 Proving the main result

We now combine Lemma 3.3.1 and Theorem 3.3.2 to prove our main theorem, Theo-

rem 3.2.2.

Proof of Theorem 3.2.2:

By basic linear algebra, we have that |S| ≤ m+ 1, and |S ∪ S′| = m+ 1.

We first get rid of the coordinates in [n] \ (S ∪ S′). Observe that taking away

elements from any of the sets Ai cannot increase the size of the image |L(A1, . . . , An)|.

Let a ∈
∏

i∈[n]\(S∪S′)

Ai. Fix the coordinates in [n] \ (S ∪ S′) to a and consider the

resulting map M : Fm+1
p → Fmp (i.e., M(x) = L(x,a)). If L′ : Fm+1

p → Fmp is the

linear map obtained by restricting the coordinates of [n] \ (S ∪ S′) to 0, then the image

L′

( ∏
i∈S∪S′

Ai

)
is a translate of the image of M

( ∏
i∈S∪S′

Ai

)
. So we have:

|L(A1, . . . , An)| ≥

∣∣∣∣∣M
( ∏
i∈S∪S′

Ai

)∣∣∣∣∣ = L′

( ∏
i∈S∪S′

Ai

)
.

Then a lower bound on L′

( ∏
i∈S∪S′

Ai

)
gives a lower bound on |L(A1, . . . , An)|.

The next step is to use the simple transformations in Lemma 3.3.1 to greatly simplify

our linear map L′, while preserving µ(L, k1, . . . , kn). The transformations allow us to

apply elementary row operations on L′, scale the columns of L′, and rearrange the

columns of L′.

As L′ has rank m, ker(L′) has rank 1. Consider a nonzero vector v ∈ ker(L′).

Then S must be the support of v. Let î be the index in S that minimizes ki, i.e.

î = arg mini∈S ki.
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With the above row and column operations at our disposal, we perform the following

reduction of the problem. First, permute the columns so that the columns with indices

in S are on the left and move column î so that it is the first column. Then the last m

columns are now linearly independent. This is because if they were linearly dependent,

there would be a nonzero vector in the kernel of L whose support does not include

î. So there would be two nonzero vectors in ker(L) with different supports, which is

impossible. Next, apply the sequence of elementary row operations that turns the last

m columns into the identity matrix. Scale each row so that the first element is either

0 or 1. Finally, scale each of the last m columns so that they again form the identity

matrix. We are left with a column of 1’s and 0’s followed by the m by m identity matrix.

We will call this matrix L̂′, the reduction of L′.

L̂′ =



1

...

1 Im

0

...

0


.

Considering the projection P of the image of L̂′(
∏
i∈S Ai,

∏
i∈S′ Ai) onto the first

|S| − 1 coordinates, we find ourselves in the setting of Theorem 3.3.2. Letting U = Aî,

and {V1, . . . , V|S|−1} = {Ai | i ∈ S − {̂i}}, Theorem 3.3.2 tells us that

|P | ≥
∏
i∈S

ki −
∏
i∈S

(ki − 1).

Finally, note that as a′ varies in the set
∏
i∈S′ Ai, the sets L̂′(U, V1, . . . , V|S|−1,a

′)

are all translates of P and are disjoint (the disjointness follows from the fact that

suppker(L) ∩ 2S∪S
′

= {S}). Hence, the total size of the image of L̂′ is at least |P | ·∏
i∈S′ |Ai|, which is at least:((∏

i∈S
ki

)
−

(∏
i∈S

(ki − 1)

))
·

(∏
i∈S′

ki

)
,

as desired.
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Proof of Lemma 3.2.3:

We first provide a tight example for our lower bound when p ≥ 2k − 1. Using the

same transformations as above, we produce the simple linear transformation L̂ from

L. Lemma 3.3.1 implies that providing a tight example for L̂ implies the existence of

a tight example for L. We claim that setting Ai = {0, . . . , ki − 1} attains the smallest

possible image size
(∏

i∈S ki −
∏
i∈S(ki − 1)

)
·
∏
i∈S′ ki.

As before, every choice of a ∈
∏
i/∈S Ai yields |P | distinct points in the image of L̂,

where P is the projection of L̂(
∏
i∈S Ai,

∏
i∈S′ Ai) onto the first |S| − 1 coordinates. So

it suffices to show that |P | ≥
(∏

i∈S ki −
∏
i∈S(ki − 1)

)
. This is equivalent to showing

that equality is attained in Theorem 3.3.2 when the sets are all taken to be intervals

starting from 0.

Suppose we have sets Ui = {0, . . . , ki − 1}, i ∈ [m] and V = {0, . . . , k̂ − 1}. We want

to show that C = {(u1 + v, u2 + v, . . . , um + v)|ui ∈ Ui for each i ∈ [m], v ∈ V } has size

exactly equal to k̂ ·
m∏
i=1

ki − (k̂ − 1) ·
m∏
i=1

(ki − 1) as long as p ≥ k̂ + ki − 1. In particular,

this will give a tight example when the set sizes are all the same.

Let Cj = {(u1 + j, u2 + j, . . . , um + j)|ui ∈ Ui for each i ∈ [m]}, j = 0, . . . , k̂ − 1.

Then C =
⋃k̂−1
j=0 Cj . We start with |C0| =

m∏
i=1

ki, and ask how many additional elements

we add when we take the union with C1:

|C1 − C0| = |C1| − |C1 ∩ C0|

=
m∏
i=1

ki −
m∏
i=1

(ki − 1).

Since p ≥ k̂+ ki− 1, none of the sums that we take exceed p− 1, so we will continue

to add
m∏
i=1

ki −
m∏
i=1

(ki − 1) for each successive Cj . Total this gives
m∏
i=1

ki + (k̂ − 1) ·(
m∏
i=1

ki −
m∏
i=1

(ki − 1)

)
, which is equal to k̂ ·

m∏
i=1

ki − (k̂ − 1) ·
m∏
i=1

(ki − 1).

We now show that the lower bound is not tight when p < 2k − 1. In fact, the same

example of taking the sets to be intervals will produce an image whose size is strictly

smaller than our lower bound. Let Ui = {0, . . . , k − 1}, i ∈ [m] and V = {0, . . . , k − 1}
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in the statement of Theorem 3.3.2. We want to show that C = {(u1 + v, u2 + v, . . . , um +

v)|ui ∈ Ui for each i ∈ [m], v ∈ V } has size strictly less than km+1 − (k − 1)m+1.

As before, let Cj = {(u1 + j, u2 + j, . . . , um + j)|ui ∈ Ui for each i ∈ [m]}, j =

0, . . . , k − 1. Then C =
⋃k−1
j=0 Cj . Note that the element (k − 1 + p− k + 1, . . . , k − 1 +

p−k+ 1, k− 1 +p−k+ 1) = (0, . . . , 0) ∈ Cp−k+1 is in C0. But this was one of the “new”

elements of Cp−k+1 that we counted in the argument for the tight example, which was

previously not in any of the Ci, for i < p− k+ 1. Hence, the number km+1− (k− 1)m+1

is a strict overcount for the number of elements in the image.

3.4 Linear maps of smaller rank

Our lower bound in the general case n > m− 1 is not tight for every linear map. The

main reason for this is that our proof strategy only uses information about the support

of vectors in the kernel of L (and not the actual vectors). As the following example

shows, if m < n− 1 the optimal lower bound for L(A1, . . . , An) may not be determined

solely be the set of all supports of vectors in ker(L).

Example 3.4.1. Let p be a large prime, and let k � p. Consider the following 2× 4

matrices over Fp:

M =

 1 0 2 1

0 1 1 2

 ,
M ′ =

 1 0 100 1

0 1 1 100

 .
Define L : F4

p → F2
p and L′ : F4

p → F2
p by L(x) = Mx and L′(x) = M ′x. Observe that

suppker(L) and suppker(L′) both equal
( [4]
≥3

)
.

Letting A1, A2, A3, A4 = {1, 2, . . . , k} ⊆ Fp, then |L(A1, A2, A3, A4)| ≤ 16k2.

In contrast, we will show in Lemma 3.4.3 that |L′(A′1, A′2, A′3, A′4)| ≥ 100k2, for any

k-elements sets A′1, A
′
2, A

′
3, A

′
4 ⊆ Fp,

Our analysis of this example will use some results on “sums of dilates”. For a

constant λ and a set A, we define the dilate λA denote the set {λa | a ∈ A}. We will use
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the following result of Pontiveros [15] (which builds on a beautiful result of Bukh [14])

on sums of dilates in Zp.

Lemma 3.4.2. For every coprime λ1, · · · , λn ∈ Z, there exists a constant α > 0 such

that |λ1X + λ2X + · · ·+ λnX| ≥
(∑

λi
)
· |X| − o(|X|), for sufficiently large prime p,

and every X ⊆ Zp, with |X| ≤ αp.

We use this estimate on the size of the sum of dilates, to construct linear maps with

arbitrarily large image.

Lemma 3.4.3. For every positive integer constant c, there is a linear map L : F4
p → F2

p

such that for every A1, A2, A3, A4 ⊆ Fp with |Ai| = k, and any prime p sufficiently larger

than k, we have:

L(A1, A2, A3, A4) ≥ ck2.

Proof. Consider the linear map

L(A1, A2, A3, A4) = {(a1 +c ·a3 +a4, a2 +a3 +c ·a4)| (a1, a2, a3, a4) ∈ A1×A2×A3×A4}

and let A1, A2, A3, A4 ⊆ Fp be any k-elements sets.

By Ruzsa triangle inequality [16],

|A4 + c2A4| ≤
|A4 + cA3| |cA3 + c2A4|

|cA3|
=
|A4 + cA3| |A3 + cA4|

|A3|

From Lemma 3.4.2 we know that |A4 + c2A4| ≥ c2|A4|, assuming p sufficiently larger

than k = |A4|.

Hence |A4 + cA3| · |A3 + cA4| ≥ c2|A4||A3| = c2k2.

Without loss of generality, assume that |A3 + cA4| ≥ ck.

In particular, fixing a2 ∈ A2, and an element (a3 + c · a4) ∈ A3 + cA4, the subset

{(a1 + (c · a3 + a4), a2 + a3 + c · a4)|a1 ∈ A1} has at least k elements, all with the

same second coordinate. Therefore holding some element a2 ∈ A2 fixed, and letting

a3 ∈ A3, a4 ∈ A4 be any elements, we obtain |A3 + cA4| distinct second coordinates, and

so

|{(a1 + c · a3 + a4, a2 + a3 + c · a4)}|a1 ∈ A1, a3 ∈ A3, a4 ∈ A4}| ≥ ck2

We conclude that |L(A1, A2, A3, A4)| ≥ ck2.
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3.5 Questions

We conclude with some interesting open questions.

1. The main open question is to obtain the best bound for the Cauchy-Davenport

problem for every linear map.

2. Even for the case m = n− 1 and all the ki equal to k, we do not know the optimal

bound for the Cauchy-Davenport problem when p < 2k − 1. Our method can

be extended to give a better bound, but we believe that this is not the optimal

bound.

3. What can be said about the “symmetric” Cauchy-Davenport problem: what is

smallest possible size of L(A,A, . . . , A) over all sets A with |A| = k? This seems

to be closely related to the theory of sums of dilates.

4. Even over R, finding the optimal bound for the Cauchy-Davenport problem for

every linear map seems nontrivial.

5. It will be interesting to study analogues of other theorems of additive combinatorics

in the setting of linear maps.
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Chapter 4

Decoding Reed-Muller codes over product sets

4.1 Introduction

Error-correcting codes based on polynomials have played an important role through-

out the history of coding theory. The mathematical phenomenon underlying these

codes is that distinct low-degree polynomials have different evaluations at many points.

More recently, the intimate relation between polynomials and computation has led

to polynomial-based error-correcting codes having a big impact on complexity theory.

Notable applications include PCPs, interactive proofs, polynomial identity testing and

property testing.

Our main result is a decoding algorithm for multivariate polynomial codes. Let F

be a field, let S ⊆ F, let d < |S| and let m ≥ 1. Consider the code of all m-variate

polynomials of total degree at most d, evaluated at all points of Sm:

C = {〈P (a)〉a∈Sm | P (X1, . . . , Xm) ∈ F[X1, . . . , Xm], deg(P ) ≤ d}.

When m = 1, this code is known as the Reed-Solomon code [19], and for m > 1 this

code is known as the Reed-Muller code [17, 18]1.

The code C above is a subset of FSm
, which we view as the space of functions from

Sm to Fq. Given two functions f, g : Sm → F, we define their (relative Hamming)

distance ∆(f, g) = Pra∈Sm [f(a) 6= g(a)]. To understand the error-correcting properties

of C, we recall the following well known lemma, often called the Schwartz-Zippel lemma:

Lemma 4.1.1. Let F be a field, and let P (X1, . . . , Xm) be a nonzero polynomial over

1The family of Reed-Muller codes also includes polynomial evaluation codes where the individual
degree d is larger than |S|, and the individual degree is capped to be at most |S|− 1. We do not consider
the d ≥ |S| case in this paper.
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F with degree at most d. Then for every S ⊆ F,

Pr
a∈Sm

[P (a) = 0] ≤ d

|S|
.

This lemma implies that for any two polynomials P,Q of degree at most d, ∆(P,Q) ≥

(1− d
|S|). In other words the minimum distance of C is at least (1− d

|S|). It turns out

that the minimum distance of C is in fact exactly (1− d
|S|), and we let δC denote this

quantity.

For error-correcting purposes, if we are given a “received word” r : Sm → F such

that there exists a polynomial P of degree at most d with ∆(r, P ) ≤ δC/2, then we know

that there is a unique such P . The problem that we consider in this paper, “decoding C

upto half its minimum distance”, is the algorithmic task of finding this P .

4.1.1 Our Results

There is a rich history with several deep algebraic ideas surrounding the problem of

decoding multivariate polynomial codes. We first state our main results, and then

discuss its relationship to the various other known results.

Theorem 4.1.2 (Efficient decoding of multivariate polynomial codes upto half their

minimum distance). Let F be a finite field, let S, d,m be as above, and let δC = (1− d
|S|).

There is an algorithm, which when given as input a function r : Sm → F, runs in

time poly(|S|m, log |F|) finds the polynomial P (X1, . . . , Xm) ∈ F[X1, . . . , Xm] of degree

at most d (if any) such that:

∆(r, P ) < δC/2.

As we will discuss below, previously known efficient decoding algorithms for these

codes only either worked for (1) very algebraically special sets S, or (2) very low degrees

d, or (3) decoded from a much smaller fraction of errors (≈ 1
m+1δC instead of 1

2δC).

Using several further ideas, we also show how to implement the above algorithm in

near-linear time to decode upto almost half the minimum distance, provided d is not

(1− o(1))|S|.
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Theorem 4.1.3 (Near-linear time decoding). Let F be a finite field, let S, d,m be as

above, and let δC = (1− d
|S|). Assume δC > 0 is a constant.

There is an algorithm, which when given as input a function r : Sm → F, runs in

time |S|m · poly(log |S|m, log |F|) finds the polynomial P (X1, . . . , Xm) ∈ F[X1, . . . , Xm]

of degree at most d (if any) with:

∆(r, P ) < (1− o(1)) · δC/2.

Over the rational numbers, we get a version of Theorem 4.1.2 where the running time

is poly(|S|m, t), where t is the maximum bit-complexity of any point in S or in the image

of r. This enables us to decode multivariate polynomial codes upto half the minimum

distance in the natural special case where the evaluation set S equals {1, 2, . . . , n}.

We also mention that decoding Reed-Muller codes over an arbitrary product set

Sm appears as a subroutine in the local decoding algorithm for multiplicity codes [33]

(see Section 4 on “Solving the noisy system”). Our results allow the local decoding

algorithms there to run efficiently over all fields ([33] could only do this over fields of

small characteristic, where algebraically special sets S are available).

4.1.2 Related work

There have been many works studying the decoding of multivariate polynomial codes,

which prove (and improve) various special cases of our main theorem.

Reed-Solomon codes (m = 1):

When m = 1, our problem is also known as the problem of decoding Reed-Solomon

codes upto half their minimum distance. That this problem can be solved efficiently is

very classical, and a number of algorithms are known for this (Mattson-Solomon [21],

Berlekamp-Massey [20], Berlekamp-Welch [28]). The underlying algorithmic ideas have

subsequently had a tremendous impact on algebraic algorithms.

For Reed-Solomon codes, it is in fact known how to list-decode beyond half the mini-

mum distance, upto the Johnson bound (Guruswami-Sudan [22]). This has had numerous

further applications in coding theory, complexity theory and pseudorandomness.
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Special sets S:

For very special sets S, it turns out that there are some algebraic ways to reduce

the decoding of multivariate polynomial codes over Sm to the decoding of univariate

polynomial codes. This kind of reduction is possible when S equals the whole field F, or

more generally when S equals an affine subspace over the prime subfield of F.

When S = Fq, then Sm = Fmq and Sm can then be identified with the large field

Fqm in a natural Fq-linear way (this understanding of Reed-Muller codes was discovered

by [24]). This converts the multivariate setting into univariate setting, identifies the

multivariate polynomial code as a subcode of the univariate polynomial code, and

(somewhat miraculously), the minimum distance of the univariate polynomial code

equals the minimum distance of the multivariate polynomial code. Thus the classical

Reed-Solomon decoding algorithms can then be used, and this leads to an algorithm for

the multivariate setting decoding upto half the minimum distance. In fact, Pellikaan-

Wu [23] observed that this connection allows one to decode multivariate polynomial

codes beyond half the minimum distance too, provided S is special in the above sense.

Another approach which works in the case of S = Fq is based on local decoding.

Here we use the fact that Sm = Fmq contains many lines (not just the axis-parallel ones),

and then use the univariate decoding algorithms to decode on those lines from (1− d
q )/2

fraction errors. This approach manages to decode multivariate polynomial codes with

S = Fq from (1
2 − o(1)) of the minimum distance. Again, this approach does not work

for general S, since a general Sm usually contains only axis-parallel lines (while Fmq has

many more lines).

Low degree d:

When the degree d of the multivariate polynomial code is significantly smaller than |S|,

then a number of other list-decoding based methods come into play.

The powerful Reed-Muller list-decoding algorithm of Sudan [25] and its multiplicity-

based generalization, based on (m+1)-variate interpolation and root-finding, can decode

from 1 − ( d
|S|)

1
m+1 fraction errors. With small degree d = o(|S|) and m = O(1), this
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decoding radius equals 1− o(1)! However when d is much larger (say 0.9 · |S|), then the

fraction of errors decodable by this algorithm is around 1
m+1 · (1−

d
|S|) = 1

m+1 · δC .

Another approach comes from the list-decoding of tensor codes [26]. While the

multivariate polynomial codes we are interested in are not tensor codes, they are

subcodes of the code of polynomials with individual degree at most d. Using the

algorithm of [26] for decoding tensor codes, we get an algorithm that can decode from a

1− o(1) fraction of errors when d = o(|S|), but fails to approach a constant fraction of

the minimum distance when d approaches |S|.

In light of all the above, to the best of our knowledge, for multivariate polynomial

codes with d > 0.9 · |S| (i.e., δC < 0.1), and S generic, the largest fraction of errors

which could be corrected efficiently was about 1
m+1δC . In particular, the correctable

fraction of errors is a vanishing fraction of the minimum distance, as the number of

variables m grows.

We thus believe it is worthwhile to investigate this problem, not only because of its

basic nature, but also because of the many different powerful algebraic ideas that only

give partial results towards it.

4.1.3 Overview of the decoding algorithm

We now give a brief overview of our decoding algorithms. Let us first discuss the bivariate

(m = 2) case. Here we are given a received word r : S2 → F such that there exists a

codeword P (X,Y ) ∈ F[X,Y ] of degree at most d = (1− δC)|S| with ∆(P, r) < δC
2 . Our

goal is to find P (X,Y ).

First some high-level strategy. An important role in our algorithm is played by the

following observation: the restriction of a degree ≤ d bivariate polynomial P (X,Y ) to

a vertical line (fixing X = α) or a horizontal line (fixing Y = β) gives a degree ≤ d

univariate polynomial. Perhaps an even more important role is played by the following

disclaimer: the previous observation does not characterize bivariate polynomials of degree

d! The set of functions f : S2 → F for which the horizontal restrictions and vertical

restrictions are polynomials of degree ≤ d is the code of polynomials with individual

degree at most d (this is the tensor Reed-Solomon code, with much smaller distance
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than the Reed-Muller code). For such a function f to be in the Reed-Muller code, the

different univariate polynomials that appear as horizontal and vertical restrictions must

be related in some way. The crux of our algorithm is to exploit these relations.

It will also help to recap the standard algorithm to decode tensor Reed-Solomon

codes upto half their minimum distance (this scheme actually works for general tensor

codes). Suppose we are given a received word r : S2 → F, and we want to find a

polynomial P (X,Y ) with individual degrees at most d which is close to r. One then

takes the rows of this new received word (after having corrected the columns) and

decodes them to the nearest degree ≤ d polynomial. The key point is to pass some “soft

information” from the column decodings to the row decodings; the columns which were

decoded from more errors are treated with lower confidence. This decodes the tensor

Reed-Solomon code from 1/2 the minimum distance fraction errors. Several ingredients

from this algorithm will appear in our Reed-Muller decoding algorithm.

Now we return to the problem of decoding Reed-Muller codes. Let us write P (X,Y )

as a single variable polynomial in Y with coefficients in F[X]: P (X,Y ) =
d∑
i=0

Pi(X)Y d−i,

where deg(Pi) ≤ i. For each α ∈ S, consider the restricted univariate polynomial P (α, Y ).

Since deg(P0) = 0, P0(α) must be the same for each α. Thus all the polynomials

〈P (α, Y )〉α∈S have the same coefficient for Y d. Similarly, the coefficients of Y d−i in the

polynomials 〈P (α, Y )〉α∈S fit a degree i polynomial.

As in the tensor Reed-Solomon case, our algorithm begins by decoding each column

r(α, ·) to the nearest degree ≤ d univariate polynomial. Now, instead of trying to use

these decoded column polynomials to recover P (X,Y ) in one shot, we aim lower and just

try to recover P0(X). The advantage is that P0(X) is only a degree 0 polynomial, and is

thus resilient to many more errors than a degree d polynomial. Armed with P0(X), we

then proceed to find P1(X). The knowledge of P0(X) allows us to decode the columns

r(α, ·) to a slightly larger radius; in turn this improved radius allows us to recover the

degree 1 polynomial P1(X). At the ith stage, we have already recovered P0(X), P1(X),

. . . , Pi−1(X). Consider, for each α ∈ S, the function fα(Y ) = r(α, Y )−
∑i−1

j=0 Pj(α)Y d−j .

Our algorithm decodes fα(Y ) to the nearest degree d − i polynomial: note that as i

increases, we are decoding to a lower degree polynomial, and hence we are able to handle
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a larger fraction of errors. Define h(α) to be the coefficient of Y d−i in the polynomial

so obtained; this “should” equal the evaluation of the degree i polynomial Pi(α). So

we next decode h(α) to the nearest degree i polynomial (using the appropriate soft

information), and it turns out that this decoded polynomial must equal Pi(X). By the

time i reaches d, we would have recovered P0(X), P1(X), . . . , Pd(X), and hence all of

P (X,Y ). Summarizing, the algorithm repeatedly decodes the columns r(α, ·), and at

each stage it uses the relationship between the different univariate polynomial P (α, Y )

to: (1) learn a little bit more about the polynomial P (X,Y ), and (2) increase the radius

to which we can decode r(α, ·) in the next stage. This completes the description of the

algorithm in the m = 2 case.

The case of general m is very similar, with only a small augmentation needed. De-

coding m-variate polynomials turns out to reduce to decoding m−1-variate polynomials

with soft information; thus in order to make a sustainable recursive algorithm, we aim

a little higher and instead solve the more general problem of decoding multivariate

polynomial codes with uncertainties (where each coordinate of the received word has an

associated “confidence” level).

To implement the above algorithms in near-linear time, we use some tools from

list-decoding. The main bottleneck in the running time is the requirement of having to

decode the same column r(α, ·) multiple times to larger and larger radii (to lower and

lower degree polynomials). To save on these decodings, we can instead list-decode r(α, ·)

to a large radius using a near-linear time list-decoder for Reed-Solomon codes; this

reduces the number of required decodings of the same column from d to O(1) (provided

d < (1− Ω(1))|S|). For the m = 2 case this works fine, but for m > 2 case this faces a

serious obstacle; in general it is impossible to efficiently list-decode Reed-Solomon codes

with uncertainties beyond half the minimum distance of the code (the list size can be

superpolynomial). We get around this using some technical ideas, based on speeding-up

the decoding of Reed-Muller codes with uncertainties when the fraction of errors is

significantly smaller than half the minimum distance. For details, see Section 4.6.
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4.1.4 Organization of this paper

In Section 2, we cover the notion of weighted distance, which will be used in handling

Reed-Solomon and Reed-Muller decoding with soft information on the reliability of the

symbols in the encoding. In Section 3, we state and prove a polynomial time algorithm

for decoding bivariate Reed-Muller codes to half the minimum distance. We then

generalize the proof to decode multivariate Reed-Muller codes in Section 4. Finally, in

sections 5 and 6, we show that decoding Reed-Muller codes to almost half the minimum

distance can be done in near-linear time by improving on the algorithms in Section 3

and 4.

4.2 Preliminaries

At various stages of the decoding algorithm, we will need to deal with symbols and

received words in which we have varying amounts of confidence. We now introduce some

language to deal with such notions.

Let Σ denote an alphabet. A weighted symbol of Σ is simply an element of Σ× [0, 1].

In the weighted symbol (σ, u), we will be thinking of u ∈ [0, 1] as our uncertainty that σ

is the symbol we should be talking about.

For a weighted symbol (σ, u) and a symbol σ′, we define their distance ∆((σ, u), σ′)

by:

∆((σ, u), σ′) =


1− u/2 σ 6= σ′

u/2 σ = σ′

For a weighted function r : T → Σ× [0, 1], and a (conventional) function f : T → Σ,

we define their Hamming distance by

∆(r, f) =
∑
t∈T

∆(r(t), f(t)).

The key inequality here is the triangle inequality.

Lemma 4.2.1 (Triangle inequality for weighted functions). Let f, g : T → Σ be

functions, and let r : T → Σ× [0, 1] be a weighted function. Then:

∆(r, f) + ∆(r, g) ≥ ∆(f, g).
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Proof. We will show that if t ∈ T is such that f(t) 6= g(t), then ∆(r(t), f(t)) +

∆(r(t), g(t)) ≥ 1. This will clearly suffice to prove the lemma.

Let r(t) = (σ, u). Suppose f(t) = σ1 and g(t) = σ2. Then either σ 6= σ1 or σ 6= σ2,

or both. Thus either we have ∆(r(t), f(t)) + ∆(r(t), g(t)) = (1− u/2) + u/2 or we have

∆(r(t), f(t)) + ∆(r(t), g(t)) = u/2 + (1− u/2), or we have ∆(r(t), f(t)) + ∆(r(t), g(t)) =

(1−u/2)+(1−u/2). In all cases, we have ∆(r(t), f(t))+∆(r(t), g(t)) ≥ 1, as desired.

The crucial property that this implies is the unique decodability up to half the

minimum distance of a code for weighted received words.

Lemma 4.2.2. Let C ⊆ ΣT be a code with minimum distance ∆. Let r : T → Σ× [0, 1]

be a weighted function. Then there is at most one f ∈ C satisfying

∆(r, f) < ∆/2.

Furthermore, for this particular definition of weighted distance, there is a very natural

decoding algorithm, due to Forney, to find the unique f ∈ C in Lemma 4.2.2 [29]. For

each weighted symbol (x, u), we erase x with probability u. We then apply a standard

decoding algorithm that handles both errors and erasures. This successfully finds the

unique codeword f as long as 2E+F < ∆, where E denotes the number of errors and F

denotes the number of erasures. With this definition of weighted distance, the condition

that ∆(r, f) < ∆/2 is equivalent to the expected value of 2E + F being at most ∆.

4.3 Bivariate Reed-Muller Decoding

In this section, we provide an algorithm for decoding bivariate Reed-Muller codes to

half the minimum distance. Consider the bivariate Reed-Muller decoding problem. We

are given a received word r : S2 → F. Suppose that there is a codeword C ∈ F[X,Y ]

with deg(C) ≤ d, whose distance ∆(r, C) from the received word is at most half the

minimum distance |S|(|S| − d)/2. The following result says that there is a polynomial

time algorithm in the size of the input |S|2 to find C:

Theorem 4.3.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size

|S| = n. Given a received word r : S2 → F, there is a O(n3 polylog(n, |F|)) time
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algorithm to find the unique polynomial (if it exists) C ∈ F[X,Y ] with deg(C) ≤ d such

that

∆(r, C) <
n2

2

(
1− d

n

)
.

4.3.1 Outline of Algorithm

The general idea of the algorithm is to write C(X,Y ) =

d∑
i=0

Pi(X)Y d−i ∈ F[X][Y ] as a

polynomial in Y with coefficients as polynomials in F[X], and attempt to uncover the

coefficients Pi(X) one at a time.

We outline the first iteration of the algorithm, which uncovers the coefficient P0(X)

of degree 0. View the encoded message as a matrix on S × S, where the rows are

indexed by x ∈ S and the columns by y ∈ S. We first Reed-Solomon decode the rows

r(x, Y ), x ∈ S to half the minimum distance (n− d)/2 and extract the coefficient of Y d

in those decodings. This gives us guesses for what P0(x) is for x ∈ S. However, this isn’t

quite enough to determine P0(X). So we will also include some soft information which

tells us how uncertain we are that the coefficient is correct. The uncertainty is a number

in [0, 1] that is based on how far the decoded codeword Gx(Y ) is from the received

word r(x, Y ). The farther apart, the higher the uncertainty. A natural choice for the

uncertainty is simply the ratio of the distance ∆(Gx(Y ), r(x, Y )) to half the minimum

distance (n− d)/2. In the event that the Reed-Solomon decoding finds no codeword,

we make an arbitrary guess and set the uncertainty to be 1. Let f : S → F × [0, 1] be

the function of guesses for P0(x) and their uncertainties. We then use a Reed-Solomon

decoder with uncertainties to find the degree 0 polynomial that is closest to f(X). This

will give us P0(X). Finally, subtract P0(X)Y d from r(X,Y ) and repeat to get the

subsequent coefficients.

In the algorithm, we use REED-SOLOMON-DECODER(r, d) to denote theO(n polylog n)

time algorithm that performs Reed-Solomon decoding of degree d to half the minimum

distance [27, 28]. We use RS-SOFT-DECODER(r, d) to denote the O(n2 polylog n)

time algorithm that performs Reed-Solomon decoding of degree d with uncertainties to

half the minimum distance, which is based on Forney’s generalized minimum distance

decoding algorithm for concatenated codes [29].
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Algorithm 1 Decoding Bivariate Reed Muller

1: Input: r : S2 → F.

2: for i = 0, 1, . . . , d do

3: Define ri : S × S → F by

ri(X,Y ) = r(X,Y )−
i−1∑
j=0

Qj(X)Y d−j .

4: for x ∈ S do

5: Define ri,x : S → F by

ri,x(Y ) = ri(x, Y ).

6: Define Gx(Y ) ∈ F[Y ] by

Gx(Y ) = REED-SOLOMON-DECODER(ri,x(Y ), d− i).

7: σx ← CoeffY d−i(Gx).

8: δx ← ∆(ri,x, Gx).

9: end for

10: Define the weighted function fi : S → F× [0, 1] by

fi(x) =

(
σx,

δx
(n− d+ i)/2

)
.

11: Define Qi : S → F by

Qi(X) = RS-SOFT-DECODER(fi(X), i).

12: end for

13: Output:

d∑
i=0

Qi(X)Y d−i.

4.3.2 Proof of Theorem 4.3.1

Proof. Correctness of Algorithm It suffices to show that Qi(X) = Pi(X) for i =

0, 1, . . . , d, which we prove by induction. For this proof, the base case and inductive

step can be handled by a single proof. We assume the inductive hypothesis that we
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have Qj(X) = Pj(X) for j < i. Note that the base case is i = 0 and in this case, we

assume nothing.

It is enough to show ∆(fi(X), Pi(X)) < n
2

(
1− i

n

)
. Then Pi(x) is the unique poly-

nomial within weighted distance n
2

(
1− i

n

)
of fi(X). So RS-SOFT-DECODER(fi(X), i)

will output Qi(X) = Pi(X).

We first show that ri(X,Y ) is close to Ci(X,Y ) =

d∑
j=i

Pj(X)Y d−j . Observe that:

ri(X,Y )− Ci(X,Y )

= (ri(X,Y ) +
i−1∑
j=1

Pj(X)Y d−j)− (Ci(X,Y ) +
i−1∑
j=1

Pj(X)Y d−j))

= (ri(X,Y ) +
i−1∑
j=1

Qj(X)Y d−j)− C(X,Y )

= r(X,Y )− C(X,Y ).

Hence,

∆(ri(X,Y ), Ci(X,Y )) = ∆(r(X,Y ), C(X,Y )) <
n2

2

(
1− d

n

)
.

For each x ∈ S, define Ci,x(Y ) = Ci(x, Y ). Define ∆x = ∆(ri,x(Y ), Ci,x(Y )). Let

A = {x ∈ S|Gx(Y ) = Ci,x(Y )} be the set of choices of x such that Gx(Y ) = REED-

SOLOMON-DECODER(ri,x(Y ), d− i) produces Ci,x(Y ).

Then, for x ∈ A, we have

δx = ∆(ri,x(Y ), Gx(Y )) = ∆(ri,x(Y ), Ci,x(Y )) = ∆x,

which gives us an uncertainty value of

ui,x =
∆x

(n− d+ i)/2
.

For x /∈ A, either we have Gx 6= Ci,x, or the Reed-Solomon decoder does not find a

polynomial. In the first case, Lemma 4.2.1 tells us:

δx = ∆(ri,x(Y ), Gx(Y )) ≥ n− d+ i−∆(ri,x(Y ), Ci,x(Y )) = n− d+ i−∆x,
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which gives us an uncertainty value of

ui,x =
n− d+ i−∆x

(n− d+ i)/2
.

Finally, in the case where the Reed-Solomon decoder does not find a polynomial, we

get an uncertainty value of

ui,x = 1.

This means that the contribution of the corresponding guess to the weighted distance

∆(fi(X), Pi(X)) is 1/2, However, we know that since no polynomial was found, ∆x ≥
n−d+i

2 , so the contribution to the weighted distance had the Reed-Solomon decoder

found an incorrect polynomial not matching the true codeword is 1− 1
2
n−d+i−∆x
(n−d+i)/2 ≥ 1/2.

So for the purposes of upper bounding the weighted distance ∆(fi(X), Pi(X)), we treat

this case the same as decoding to the wrong polynomial.

We now upper bound ∆(fi(X), Pi(X)):

∆(fi(X), Pi(X)) ≤
∑
x∈A

1

2

∆x

(n− d+ i)/2
+
∑
x/∈A

1− 1

2

n− d+ i−∆x

(n− d+ i)/2

≤
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

1− n− d+ i−∆x

n− d+ i

=
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

∆x

n− d+ i

=
∑
x∈Sm

∆x

n− d+ i

=
∆(ri(X,Y ), Ci(X,Y ))

n− d+ i

<
n2

2

(
1− d

n

)
1

n− d+ i

=
n

2
· n− d
n− d+ i

≤ n

2
· n− i

n

=
n

2

(
1− i

n

)
.

Runtime of Algorithm

We claim that the runtime of our algorithm isO(n3 polylog n), ignoring the polylog |F|

factor from field operations. The algorithm has d + 1 iterations. In each iteration,
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we update ri, apply REED-SOLOMON-DECODER to n rows and apply RS-SOFT-

DECODER a single time to get the leading coefficient. As updating takes O(n2) time,

REED-SOLOMON-DECODER takes O(n polylog n) time, and RS-SOFT-DECODER

takes O(n2 polylog n) time, we get O(n2 polylog n) for each iteration. d+ 1 iterations

gives a total runtime of O(dn2 polylog n) < O(n3 polylog n).

4.4 Reed-Muller Decoding for General m

We now generalize the algorithm for decoding bivariate Reed-Muller codes to handle

Reed-Muller codes of any number of variables. As before, we write the codeword as

a polynomial in one of the variables and attempt to uncover its coefficients one at a

time. Interestingly, this leads us to a Reed-Muller decoding on one fewer variable, but

with uncertainties. This lends itself nicely to an inductive approach on the number

of variables, however, the generalization requires us to be able to decode Reed-Muller

codes with uncertainties. This leads us to our main theorem:

Theorem 4.4.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size

|S| = n. Given a received word with uncertainties r : Sm → F × [0, 1], there is

a O(nm+2 polylog(n, |F|)) time algorithm to find the unique polynomial (if it exists)

C ∈ F[X1, . . . , Xm] with deg(C) ≤ d such that

∆(r, C) <
nm

2

(
1− d

n

)
.

Note that to decode a Reed-Muller code without uncertainties, we may just set all

the initial uncertainties to 0. The algorithm slows by a factor of n from the bivariate case

due to having to use the RS-SOFT-DECODER instead of the faster REED-SOLOMON-

DECODER on the rows of the received word.

Proof. The proof is by induction on the number of variables, and closely mirrors the

proof of the bivariate case.

Base Case
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We are given a received word with uncertainties r : S → F × [0, 1] and asked to

find the unique polynomial C ∈ F[X] with deg(C) ≤ d within weighted distance n−d
2

of r. This is just Reed-Solomon decoding with uncertainty, which can be done in time

O(n2 polylog n).

Inductive Step

Assume that the result holds for m variables. That is, assume we have access to an

algorithm REED-MULLER-DECODER(r,m, d) which takes as input a received word

with uncertainties r : Sm → F× [0, 1], and outputs the unique polynomial of degree at

most d (if it exists) within weighted distance nm

2

(
1− d

n

)
from r. We want to produce an

algorithm for m+1 variables. Before we progress, we set up some definitions to make the

presentation and analysis of the algorithm cleaner. We are given r : Sm+1 → F× [0, 1].

View r as a map from Sm × S → F× [0, 1], and write r(X, Y ) = (r(X, Y ), u(X, Y )).

Suppose that there exists a polynomial C ∈ F[X, Y ] with deg(C) ≤ d such that

∆(r, C) <
nm+1

2

(
1− d

n

)
.

View C as a polynomial in Y with coefficients in F[X], C(X, Y ) =

d∑
i=0

Pi(X)Y d−i. The

general strategy of the algorithm is to determine the Pi’s inductively by performing

d+ 1 iterations from i = 0 to i = d, and recovering Pi(X) at the i-th iteration.

For the i-th iteration, consider the word

ri(X, Y ) =

r(X, Y )−
i−1∑
j=0

Pj(X)Y d−j , u(X, Y )

 .

Since r is close to

d∑
j=0

Pj(X)Y d−j , ri will be close to Ci =

d∑
j=i

Pj(X)Y d−j . Our goal is

to find Pi(X), the leading coefficient of Ci when viewed as a polynomial in Y . For each

x ∈ Sm, we decode the Reed-Solomon code with uncertainties given by ri(x, Y ) and

extract the coefficient of Y d−i along with how uncertain we are about the correctness

of this coefficient. This gives us a guess for the value Pi(x) and our uncertainty for

this guess. We construct the function fi : Sm → F × [0, 1] of guesses for Pi with their

uncertainties. We then apply the induction hypothesis of Theorem 4.4.1 to fi to recover

Pi.
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Algorithm 2 Decoding Reed Muller with Uncertainties

1: Input: r : Sm+1 → F× [0, 1].

2: for i = 0, 1, . . . , d do

3: Define ri : Sm × S → F× [0, 1] by

ri(X, Y ) =

r(X, Y )−
i−1∑
j=0

Qj(X)Y d−j , u(X, Y )

 .

4: for x ∈ Sm do

5: Define ri,x : S → F× [0, 1] by

ri,x(Y ) = ri(x, Y ).

6: Define Gx(Y ) ∈ F[Y ] by

Gx(Y ) = RS-SOFT-DECODER(ri,x(Y ), d− i).

7: σx ← CoeffY d−i(Gx).

8: δx ← ∆(ri,x, Gx).

9: end for

10: Define the weighted function fi : Sm → F× [0, 1] by

fi(x) =

(
σx,

δx
(n− d+ i)/2

)
.

11: Define Qi : Sm → F by

Qi(X) = REED-MULLER-DECODER(fi(X),m, i).

12: end for

13: Output:
d∑
i=0

Qi(X)Y d−i.

Correctness of Algorithm

Suppose there is a polynomial C(X, Y ) =
d∑
i=0

Pi(X)Y d−i such that

∆(r(X, Y ), C(X, Y )) <
nm+1

2

(
1− d

n

)
.
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We will show by induction that the i-th iteration of the algorithm produces Qi(X) =

Pi(X). For this proof, the base case and inductive step can be handled by a single proof.

We assume the inductive hypothesis that we have Qj(X) = Pj(X) for j < i. Note that

the base case is i = 0 and in this case, we assume nothing.

It is enough to show ∆(fi(X), Pi(X)) < nm

2

(
1− i

n

)
. Then Pi(X) is the unique

polynomial within weighted distance nm

2

(
1− i

n

)
of fi(X). This means that REED-

MULLER-DECODER(fi(X),m, i) will output Qi(X) = Pi(X).

We first show that ri(X, Y ) is close to Ci(X, Y ) =
d∑
j=i

Pj(X)Y d−j . Observe that:

ri(X, Y )− Ci(X, Y )

= (ri(X, Y ) +
i−1∑
j=1

Pj(X)Y d−j)− (Ci(X, Y ) +
i−1∑
j=1

Pj(X)Y d−j))

= (ri(X, Y ) +

i−1∑
j=1

Qj(X)Y d−j)− C(X, Y )

= r(X, Y )− C(X, Y ).

Hence,

∆(ri(X, Y ), Ci(X, Y )) = ∆(r(X, Y ), C(X, Y )) <
nm+1

2

(
1− d

n

)
.

For each x ∈ Sm, define Ci,x(Y ) = Ci(x, Y ). Define ∆x = ∆(ri,x(Y ), Ci,x(Y )).

Let A = {x ∈ Sm|Gx(Y ) = Ci,x(Y )} be the set of choices of x such that Gx(Y ) =

RS-SOFT-DECODER(ri,x(Y ), d− i) produces Ci,x(Y ).

Then, for x ∈ A, we have

δx = ∆(ri,x(Y ), Gx(Y )) = ∆(ri,x(Y ), Ci,x(Y )) = ∆x.

And for x /∈ A, we have Gx 6= Ci,x, so

δx = ∆(ri,x(Y ), Gx(Y )) ≥ n− d+ i−∆(ri,x(Y ), Ci,x(Y )) = n− d+ i−∆x.

We now upper bound ∆(fi(X), Pi(X)):

∆(fi(X), Pi(X)) ≤
∑
x∈A

1

2

δx
(n− d+ i)/2

+
∑
x/∈A

1− 1

2

δx
(n− d+ i)/2
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≤
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

1− n− d+ i−∆x

n− d+ i

=
∑
x∈A

∆x

n− d+ i
+
∑
x/∈A

∆x

n− d+ i

=
∑

x∈Sm

∆x

n− d+ i

=
∆(ri(X, Y ), Ci(X, Y ))

n− d+ i

<
nm+1

2

(
1− d

n

)
1

n− d+ i

=
nm

2
· n− d
n− d+ i

≤ nm

2
· n− i

n

=
nm

2

(
1− i

n

)
.

Runtime of Algorithm

We claim the runtime of our m-variate Reed-Muller decoder is O(nm+2 polylog n),

ignoring the polylog |F| factor from field operations. We again proceed by induction on m.

In the base case of m = 1, we simply run the Reed-Solomon decoder with uncertainties,

which runs in O(n2 polylog n) time. Now suppose the m-variate Reed-Muller decoder

runs in time O(nm+2 polylog n). We need to show that the m+ 1-variate Reed-Muller

decoder runs in time O(nm+3 polylog n).

The algorithm makes d + 1 iterations. In each iteration, we perform nm Reed-

Solomon decodings with uncertainties, and extract the leading coefficient along with its

uncertainty for each one. Each Reed-Solomon decoding takes O(n2 polylog n) time, while

computing an uncertainty of a leading coefficient takes O(n polylog n). So in this step, we

have cumulative runtime O(nm+2 polylog n). Next we do a single m-variate Reed-Muller

decoding with uncertainties, which takes O(nm+2 polylog n) by our induction hypothesis.

This makes the total runtime O(dnm+2 polylog n) ≤ O(nm+3 polylog n), as desired.
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4.5 Near-Linear Time Decoding in the Bivariate Case

In this section, we present our near-linear time decoding algorithm for bivariate Reed-

Muller codes.

Theorem 4.5.1. Let α ∈ (0, 1) be a constant. Let F be a finite field and let S ⊆ F

be a nonempty subset of size |S| = n. Let d = αn. Given a received word r : S2 → F,

there is a O(n2 polylog(n, |F|)) time algorithm to find the unique polynomial (if it exists)

C ∈ F[X,Y ] with deg(C) ≤ d such that

∆(r, C) <
n2

2

(
1− d

n
− 1√

n

)
.

4.5.1 Outline of Improved Algorithm

Recall that the decoding algorithms we presented in the previous sections make d+ 1

iterations, where d = αn, revealing a single coefficient of the nearest codeword during

one iteration. In a given iteration, we decode each row of ri(X,Y ) to the nearest

polynomial of degree d− i, extracting the coefficient of Y d−i and its uncertainty. Then

we Reed-Solomon decode with uncertainties to get the leading coefficient of C(X,Y ),

when viewed as a polynomial in Y .

The runtime of this algorithm is O(n3 polylog n). Each iteration has n Reed-Solomon

decodings and a single Reed-Solomon decoding with uncertainties. As Reed-Solomon

decoding takes O(n polylog n) time and Reed-Solomon decoding with uncertainties takes

O(n2 polylog n) time, we get a runtime of O(n3 polylog n) with d + 1 iterations. To

achieve near-linear time, we need to shave off a factor of n on both the number of

Reed-Solomon decodings and the runtime of Reed-Solomon decoding with uncertainties.

To save on the number of Reed-Solomon decodings, we will instead list decode

beyond half the minimum distance (using a near-linear time Reed-Solomon list-decoder),

and show that the list we get is both small and essentially contains all of the decoded

polynomials we require for Ω(n) iterations of i. So we will do O(n) Reed-Solomon list-

decodings total instead of O(n2) Reed-Solomon unique decodings to half the minimum

distance.
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To save on the runtime of Reed-Solomon decoding with uncertainties, we will use

a probabilistic variant of Forney’s generalized minimum distance decoding algorithm,

which runs in near-linear time, but reduces the decoding radius from 1/2 the minimum

distance to 1/2− o(1) of the minimum distance.

4.5.2 Proof of Fast Bivariate Reed-Muller Decoding

Proof of Theorem 4.5.1. As in the proof of Theorem 4.3.1, we write C =
d∑
j=0

Pj(X)Y d−j ,

and inductively find the Pi(X). Suppose that we have successfully found the first i of

the Pj(X) and are now trying to find Pi(X). Also as before, we fix x ∈ S and guess the

value of Pi(x) by Reed-Solomon decoding ri,x = r(x, Y )−
i−1∑
j=0

Pj(x)Y d−j to the nearest

polynomial of degree at most i within distance (n− d+ i)/2.

Reducing the Number of Decodings

To reduce the number of Reed-Solomon decodings, we will instead list decode past

half the minimum distance, and use the small list of polynomials we get to guess Pi(x)

for the next Ω(n) values of j. In the above setting, we have that ri,x : S → F is a

received word for a Reed-Solomon code Ci of degree at most di = d − i. Let t be the

radius to which we list decode, and let Li,x = {C ∈ Ci|∆(C, ri,x) < t} be the list of

codewords within distance t of ri,x. The radius to which we can decode while maintaining

a polynomial-size list is given by the Johnson bound:

n(1−
√

1− δi),

where δi = 1− d−i
n > 1− d

n = 1− α is the relative distance of the code. By Taylor

approximating the square root, we see that the Johnson bound exceeds half the minimum

distance by Ω(n):

n(1−
√

1− δi) > n(1− (1− δi/2 + δ2
i /8 + 3δ3

i /16))

= n(δi/2 + (1− α)2/8 + 3(1− α)3/16)

= (n− d+ i)/2 + ((1− α)2/8)n+ cn,
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where c = 3(1 − α)3/16 is a positive constant. By a standard list-size bound as

in the one in Cassuto and Bruck [30], we see that if we set the list decoding radius

t = (n − d + i)/2 + ((1 − α)2/8)n, then the size of the list |Li,x| < 1
c is constant. So

the list decoding radius exceeds half the minimum distance by Ω(n), and the list size

is constant. By Aleknovich’s fast algorithm for weighted polynomial construction [31],

the list Li,x can be produced in time (1/α)O(1)n log2 n log log n = O(n polylog n). We

will let RS-LIST-DECODER(r, d, t) denote the Reed-Solomon list decoder that outputs

a list of all ordered pairs of polynomials of degree at most d within distance t to the

received word r along with their distances to r. Since the list size is constant, all of the

distances can be computed in O(n polylog n) time.

For the next cn values of j, we search the O(1)-size list Li,x to find the nearest

polynomial of degree at most n− d+ j within distance (n− d+ j)/2 from rj,x.

Faster Reed-Solomon Decoding with Uncertainties

Once we have all the guesses for Pi(x), x ∈ S along with their uncertainties, we want

to apply a near-linear time decoding algorithm to find Pi(x). In Appendix A, we give a

description of the probabilistic GMD algorithm that gives a faster Reed-Solomon decoder

with uncertainties. We will refer to this algorithm as FAST-RS-DECODER(f, i), where

f : S → F× [0, 1] is a received word with uncertainties, and i is the degree of the code.

FAST-RS-DECODER(f, i) will output the codeword within distance (n− i−
√
n)/2 (if

it exists) with probability at least 1− 1
nΩ(1) (the Ω(1) can be chosen to be an arbitrary

constant, by simply repeating the algorithm independently several times).

Algorithm 3 Decoding Bivariate Reed Muller

1: Input: r : S2 → F.

2: Let c = ((1− α)2/8).

3: for j = 0, 1, . . . , d
2cn do

4: Let tj = n−d+j·2cn
2 + cn.

5: Define rj·2cn : S × S → F by

rj·2cn(X,Y ) = r(X,Y )−
j·2cn−1∑
i=0

Qi(X)Y d−i.
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Algorithm 3 Decoding Bivariate Reed Muller (Continued)

6: for x ∈ S do

7: Define rj·2cn,x : S → F by

rj·2cn,x(Y ) = rj·2cn(x, Y ).

8: Define Cj·2cn by

Cj·2cn = {C(Y ) ∈ F[Y ]|deg(C) < d− j · 2cn}.

9: Define Lj,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d− j · 2cn, tj).

10: end for

11: for k = 0, 1, . . . , 2cn− 1 do

12: for x ∈ S do

13: Define (Gx(Y ), δx) ∈ Lj,k,x to be the unique codeword (if any) with

δx <
n− d+ j · 2cn+ k

2

14: σx ← CoeffY d−j·2cn−k(Gx).

15: end for

16: Define the weighted function fj·2cn+k : S → F× [0, 1] by

fj·2cn+k(x) =

(
σx,

δx
(n− d+ j · 2cn+ k)/2

)
.

17: Define Qj·2cn+k : S → F by

Qj·2cn+k(X) = FAST-RS-DECODER(fj·2cn+k(X), j · 2cn+ k).

18: for x ∈ S do

19: Define

Lj,k+1,x = {(C −Qj·2cn+k(x)Y d−j·2cn−k, δC,x)

|C ∈ Lj,k,x,CoeffY d−j·2cn−k(C) = Qj·2cn+k(x)}.

20: end for

21: end for

22: end for

23: Output:

d∑
i=0

Qi(X)Y d−i.
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Correctness of Algorithm

View the received word as a matrix on S × S, where the rows are indexed by x ∈ S

and the columns by y ∈ S. For correctness, we have to show two things. First, that

Algorithm 3 produces the same row decodings Gx(Y ) as Algorithm 2. Second, that the

algorithm actually extracts the coefficients of C(X,Y ) =
d∑
i=0

Pi(X)Y d−i when viewed as

a polynomial in Y , i.e. Qi(X) = Pi(X) for i = 0, . . . , d. Define rj·2cn+k : S × S → F by

rj·2cn+k(X,Y ) = r(X,Y )−
j·2cn+k−1∑

i=0

Qi(X)Y d−i,

and define rj·2cn+k,x : S → F by

rj·2cn+k,x(Y ) = rj·2cn+k(x, Y ).

Then we want to show that in each of the d+ 1 iterations of (j, k), we have

Gx(Y ) = REED-SOLOMON-DECODER (rj·2cn+k,x(Y ), d− j · 2cn− k) .

It is enough to instead show that the list Lj,k,x contains all the polynomials of degree

at most d−j ·2cn−k within distance tj = (n−d+j ·2cn)/2+cn > (n−d+j ·2cn+k)/2

of rj·2cn+k,x(Y ). Furthermore, we want to show Qj·2cn+k(X) = Pj·2cn+k(X).

We prove this by induction on (j, k). The base case is j = k = 0. For each row

x ∈ S, we have

L0,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d− j · 2cn, t0).

The induction hypothesis is that for every (j′, k′) < (j, k) in the lexicographic order,

we have Lj′,k′,x = {(C,∆(C, rj′·2cn+k′,x))|C ∈ Cj′·2cn+k′ ,∆(C, rj′·2cn+k′,x) < tj′} and

that Qj′·2cn+k′(X) = Pj′·2cn+k′(X). We will show the corresponding statements hold

true for (j, k).

If k = 0, then the fact that the algorithm extracted the correct coefficients thus

far means that the rj·2cn are the same in both Algorithm 2 and Algorithm 3. Since

Lj,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d − j · 2cn, tj), the induction hypothesis on

Lj,0,x is met by the definition of RS-LIST-DECODER.
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If k 6= 0, then we know from the induction hypothesis that

Lj,k−1,x = {(C,∆(C, rj·2cn+k−1,x))|C ∈ Cj·2cn+k−1,∆(C, rj·2cn+k−1,x) < tj}.

We want to say that

Lj,k,x = {(C,∆(C, rj·2cn+k,x))|C ∈ Cj·2cn+k,∆(C, rj·2cn+k,x) < tj}.

We defined Lj,k,x in terms of Lj,k−1,x to be:

{(C −Qj·2cn+k−1(x)Y d−j·2cn−k+1,∆(C, rj·2cn+k−1,x))

|C ∈ Lj,k−1,x,CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x)}.

As Qj·2cn+k−1(X) = Pj·2cn+k−1(X), Lj,k,x is essentially obtained by taking the

codewords with the correct leading coefficients and subtracting off the leading term. We

claim that what we get is the set of all polynomials of degree at most d− j · 2cn− k

within distance tj of rj·2cn+k,x.

Consider any (G, δ) ∈ Lj,k,x. By definition of Lj,k,x, we know there exists a C ∈

Lj,k−1,x with CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x) such that

(G, δ) = (C −Qj·2cn+k−1(x)Y d−j·2cn−k+1,∆(C, rj·2cn+k−1,x)).

So we have

C = G+Qj·2cn+k−1(x)Y d−j·2cn−k+1

δ = ∆(C, rj·2cn+k−1,x) < tj .

As CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x), we have deg(G) is at most d− j · 2cn− k.

Also, as rj·2cn+k−1,x = rj·2cn+k,x+Qj·2cn+k−1(x)Y d−j·2cn−k+1, we have ∆(G, rj·2cn+k,x) =

∆(C, rj·2cn+k−1,x) = δ < tj . Hence, G is a polynomial of degree at most d− j · 2cn− k

within distance tj of rj·2cn+k,x.

For the reverse inclusion, suppose G is a polynomial of degree at most d−j ·2cn−k at

distance δ < tj of rj·2cn+k,x. Then C := G+Qj·2cn+k−1(x)Y d−j·2cn−k+1 ∈ Lj,k−1,x. Since



72

CoeffY d−j·2cn−k+1(C) = Qj·2cn+k−1(x), we get that G = C−Qj·2cn+k−1(x)Y d−j·2cn−k+1 ∈

Lj,k,x, as desired.

It remains to show that Qj·2cn+k(X) = Pj·2cn+k(X). As in the proof of Theorem 4.4.1,

we show that ∆(fj·2cn+k(X), Pj·2cn+k(X)) < n−j−
√
n

2 , so that the output of FAST-RS-

DECODER(fj·2cn+k(X), j) is Pj·2cn+k(X). Using the first part of the induction we just

proved, we get the same fj·2cn+k(X) as in Algorithm 2. This means we can adopt a

nearly identical argument to get to this step:

∆(fj·2cn+k(X), Pj·2cn+k(X)) ≤
∆(rj·2cn+k(X,Y ), Cj·2cn+k(X,Y ))

n− d+ j · 2cn+ k
.

From here, we get:

∆(fj·2cn+k(X), Pj·2cn+k(X)) <
n2

2

(
1− d

n
− 1√

n

)
1

n− d+ j · 2cn+ k

=
n

2
· n− d−

√
n

n− d+ j · 2cn+ k

≤ n

2
· n− j · 2cn− k −

√
n

n

=
n− j · 2cn− k −

√
n

2
.

Analysis of Runtime of Bivariate Reed-Muller Decoder

We run RS-LIST-DECODER d
2cnn = α

2cn = 4α
(1−α)2n times. Also, we run FAST-

RS-DECODER d = αn times. As both of these algorithms run in O(n polylog n) time,

the total runtime of the algorithm is O(n2 polylog(n, |F|)), after accounting for field

operations. As the input is of size n2, this is near-linear in the size of the input.

4.6 Near-Linear Time Decoding in the General Case

A more involved variation of the near-linear time decoding algorithm for bivariate Reed-

Muller codes can be used to get a near-linear time algorithm for decoding Reed-Muller

codes on any number of variables:

Theorem 4.6.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size |S| = n.

Let β > 1
2 . Given a received word r : Sm → F, there is a O (nm · polylog(n, |F|)) time
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algorithm to find the unique polynomial (if it exists) C ∈ F[X1, . . . , Xm] with deg(C) ≤ d

such that

∆(r, C) <
nm

2

(
1− d+ (m− 1)β

√
n

n

)
.

As part of the algorithm for near linear time Reed-Muller decoding, we will need

to decode Reed-Muller codes with uncertainties to various radii less than half their

minimum distance. We require the following theorem to do such decodings efficiently.

Theorem 4.6.2. Let F be a finite field and let S ⊆ F be a nonempty subset of size

|S| = n. Let β > 1
2 , and let e be an integer satisfying 0 ≤ e < n− d−mβ

√
n. Given a

received word with uncertainties r : Sm → F× [0, 1], there is a O
(
nm+1

e+1 · polylog(n, |F|)
)

time algorithm to find the unique polynomial (if it exists) C ∈ F[X1, . . . , Xm] with

deg(C) ≤ d such that

∆(r, C) <
nm

2

(
1− d+mβ

√
n+ e

n

)
.

Remark 4.6.3. The algorithm requires the use of the FAST-RS-DECODER to a radius

that is β
√
n less than half the minimum distance. As long as β > 1

2 , the FAST-RS-

DECODER runs in O(n polylog n) time.

Proof of Theorem 4.6.2. The proof is by induction on the number of variables m. The

proof of the base case of m = 2 is similar to the proof of the inductive step and will

be handled last. Assume the theorem statement is true for m, and let RM-UNC-

DECODER(f, d, s) denote the O
(
nm+1

e+1 · polylog(n, |F|)
)

time algorithm that finds the

unique polynomial (if it exists) of degree at most d within distance s from f , where

f : Sm → F× [0, 1] and s can be written as nm

2

(
1− d+mβ

√
n+e

n

)
. We want to show that

the theorem statement holds for m+ 1 variables.
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Algorithm 4 Decoding Reed Muller with Uncertainties

1: Input: r : Sm+1 → F× [0, 1].

2: for j = 0, 1, . . . , d
e+1 do

3: Let tj = n−d+j·(e+1)−β
√
n

2 .

4: Define rj·(e+1) : Sm × S → F by

rj·(e+1)(X, Y ) = r(X, Y )−
j·(e+1)−1∑

i=0

Qi(X)Y d−i.

5: for x ∈ Sm do

6: Define rj·(e+1),x : S → F by

rj·(e+1),x(Y ) = rj·(e+1)(x, Y ).

7: Define Dj,0,x(Y ) = FAST-RS-DECODER(rj·(e+1),x(Y ), d− j · (e+ 1), tj).

8: Define δx = ∆(Dj,0,x(Y ), rj·(e+1),x(Y )).

9: end for

10: for k = 0, 1, . . . , e do

11: for x ∈ Sm do

12: if deg(Dj,k,x(Y )) ≤ d− j · (e+ 1)− k then

σx ← CoeffY d−j·(e+1)−k(Dj,k,x(Y )).

13: end if

14: end for

15: Define the weighted function fj·(e+1)+k : Sm → F× [0, 1] by

fj·(e+1)+k(x) =

(
σx,min

{
1,

δx
(n− d+ j · (e+ 1) + k − β

√
n− e)/2

})
.

16: Define Qj·(e+1)+k : Sm → F by

Qj·(e+1)+k(X) = RM-UNC-DECODER(
fj·(e+1)+k(X), j · (e+ 1) + k,

nm

2

(
1− j · (e+ 1) + k +mβ

√
n

n− d+ j · (e+ 1) + k

))
.
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Algorithm 4 Decoding Reed Muller with Uncertainties (Continued)

17: for x ∈ Sm do

18: Define Dj,k+1,x : S → F by

Dj,k+1,x = Dj,k,x −Qj·(e+1)+k(x)Y d−j·(e+1)−k.

19: end for

20: end for

21: end for

22: Output:

d∑
i=0

Qi(X)Y d−i.

The algorithm proceeds as follows: As before, we write C(X, Y ) =

d∑
i=0

Pi(X)Y d−i,

and find the Pi iteratively. In the i-th iteration, decode row ri,x, x ∈ Sm to a degree

d− i polynomial within radius 1
2(n− d+ i− β

√
n− e) to get Di,x(Y ). To reduce the

number of times we decode, we will instead decode to the larger radius 1
2(n−d+i−β

√
n)

and use this decoding for e+ 1 iterations. Construct the function fi : Sm → F× [0, 1] of

(leading coefficient, uncertainty) =
(

CoeffY d−i(Di,x),
∆(ri,x,Di,x)

(n−d+i−β
√
n−e)/2

)
. Finally, decode

fi(X) to a degree i polynomial within radius nm

2

(
1− i+mβ

√
n

n−d+i

)
to get Qi(X).

Proof of Correctness

We have to show Qi(X) = Pi(X). It is enough to show that

∆(fi, Pi) <
nm

2

(
1− i+mβ

√
n

n− d+ i

)
<
nm

2

(
1− i

n

)
.

Then Pi will be the unique polynomial of degree i within distance nm

2

(
1− i+mβ

√
n

n−d+i

)
of fi. Since Qi is a polynomial of degree i within distance nm

2

(
1− i+mβ

√
n

n−d+i

)
of fi, Qi

must be equal to Pi.

When we decode ri,x to radius 1
2(n− d+ i− β

√
n− e), there are four possibilities:

1. The decoding is unsuccessful. In this case, we set Di,x to be any polynomial of

degree n− d+ i and set the uncertainty ui = 1. The contribution to ∆(fi, Pi) is

∆(fi(x), Pi(x)) = 1/2, which is bounded above by 1
2

∆(ri,x,Ci,x)

(n−d+i−β
√
n−e)/2 .
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2. The decoding succeeds and is correct. In this case, Di,x = Ci,x, so ∆(fi(x), Pi(x)) =

1
2

∆(ri,x,Ci,x)

(n−d+i−β
√
n−e)/2 .

3. The decoding succeeds, but is the wrong codeword, whose leading coefficient

disagrees with that of the correct codeword. In this case, Di,x 6= Ci,x, so

∆(fi(x), Pi(x)) = 1− 1

2

∆(ri,x, Di,x)

(n− d+ i− β
√
n− e)/2

≤ 1− (n− d+ i)−∆(ri,x, Ci,x)

(n− d+ i− β
√
n− e)

≤ 1− (n− d+ i− β
√
n− e)−∆(ri,x, Ci,x)

(n− d+ i− β
√
n− e)

≤ ∆(ri,x, Ci,x)

(n− d+ i− β
√
n− e)

.

4. The decoding succeeds, but is the wrong codeword, whose leading coefficient

matches that of the correct codeword. As in the previous case, Di,x 6= Ci,x, and

we have:

∆(fi(x), Pi(x)) =
1

2

∆(ri,x, Di,x)

(n− d+ i− β
√
n− e)/2

≤ 1− 1

2

∆(ri,x, Di,x)

(n− d+ i− β
√
n− e)/2

≤ ∆(ri,x, Ci,x)

(n− d+ i− β
√
n− e)

.

Putting it all together, we have:

∆(fi, Pi) ≤
∑

x∈Sm

∆(ri,x, Ci,x)

n− d+ i− β
√
n− e

=
∆(ri, Ci)

n− d+ i− β
√
n− e

=
∆(r, C)

n− d+ i− β
√
n− e

≤
nm+1

2

(
1− d+(m+1)β

√
n+e

n

)
n− d+ i− β

√
n− e

=
nm

2

n− d− (m+ 1)β
√
n− e

n− d+ i− β
√
n− e
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≤ nm

2

n− d−mβ
√
n

n− d+ i

=
nm

2

(
1− i+mβ

√
n

n− d+ i

)
.

Analysis of Runtime

The algorithm can be divided into two parts:

1. Constructing the fi, i = 0, . . . , d.

2. Decoding the fi to get the Pi, i = 0, . . . , d.

The dominant contribution to the runtime when constructing fi comes from all

the Reed-Solomon decodings with uncertainties we have to do to get the Di,x(Y ). For

every e+ 1 iterations, we have to decode each row x ∈ Sm again. The total number of

such decodings is given by n
e+1 · n

m = nm+1

e+1 . Since each Reed-Solomon decoding with

uncertainty can be done in O(n polylog n) time via the FAST-RS-DECODER, we have

that the runtime of this part of the algorithm is O
(
nm+2

e+1 polylog n
)

.

To understand the runtime of the second part of the algorithm, we will compute the

runtime of decoding fi for some fixed i. Note that decoding fi is a Reed-Muller decoding

with uncertainties problem with m variables. So we will write the decoding radius

nm

2

(
1− i+mβ

√
n

n−d+i

)
in the form nm

2

(
1− i+mβ

√
n+ei

n

)
and apply the induction hypothesis

to get a O
(
nm+1

ei+1 · polylog n
)

runtime. We now need to compute ei:

ei = n
i+mβ

√
n

n− d+ i
− (i+mβ

√
n)

= (i+mβ
√
n)

(
n

n− d+ i
− 1

)
=

(i+mβ
√
n)(d− i)

n− d+ i
.

The runtime for all d+ 1 iterations from i = 0, . . . , d is then

O

(
d∑
i=0

1

ei + 1
· nm+1 polylog n

)
.

It remains to bound

d∑
i=0

1

ei + 1
from above:
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d∑
i=0

1

ei + 1

≤
d∑
i=0

min

(
1,

1

ei

)

≤ 4 +
d−2∑
i=2

1

ei

≤ 4 +

∫ d−1

1

n− d+ t

(t+mβ
√
n)(d− t)

dt.

The last inequality is a simple Riemann sum bound using the fact that the function

n−d+t
(t+mβ

√
n)(d−t) decreases then increases continuously on [1, d−1]. Computing the integral

is a straightforward partial fraction decomposition:

n− d+ t

(t+mβ
√
n)(d− t)

=
n

(t+mβ
√
n)(d− t)

− 1

t+mβ
√
n

=
n

d+mβ
√
n

(
1

t+mβ
√
n

+
1

d− t

)
− 1

t+mβ
√
n

≤ 1

α

(
1

t+mβ
√
n

+
1

d− t

)
− 1

t+mβ
√
n

=

(
1

α
− 1

)
1

t+mβ
√
n

+
1

α
· 1

d− t

So we have:

∫ d−1

1

n− d+ t

(t+mβ
√
n)(d− t)

dt

≤
∫ d−1

1

[(
1

α
− 1

)
1

t+mβ
√
n

+
1

α
· 1

d− t

]
dt

≤ O

((
1

α
− 1

)
log n+

1

α
log n

)
= O

((
2

α
− 1

)
log n

)
= O(log n).

So the runtime for all d+ 1 iterations is:

O
(
(4 +O(log n)) · nm+1 polylog n

)
= O(nm+1 polylog n).
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This means the runtime for both parts of the algorithm is just O
(
nm+2

e+1 polylog n
)

.

Base Case

The algorithm for m = 2 is almost identical to that for general m, except that

we decode fi(X) to a degree i polynomial within the larger radius n
2

(
1− i+β

√
n

n

)
to

get Qi(X). Note that this radius is still less than half the minimum distance of the

Reed-Solomon code of degree i. The correctness of the algorithm follows from the fact

that Pi is still the unique polynomial within distance n
2

(
1− i+β

√
n

n

)
of fi.

We can again analyze the runtime of the two parts of the algorithm. The runtime

for finding the fi follows the same analysis as before and is O( n3

e+1 polylog n). For

decoding the fi, we simply call the FAST-RS-DECODER for d+ 1 different values of i.

This has a runtime of O(dnpolylog n) ≤ O(n2 polylog n). So we get a total runtime of

O( n3

e+1 polylog n).

The algorithm for general Reed-Muller decoding follows the same strategy as the

algorithm for Reed-Muller decoding with uncertainties to a radius less than half the

minimum distance. Recall that to get the fi in the algorithm, we only needed to

Reed-Solomon decode to a radius significantly less than half the minimum distance. We

then saved on the number of Reed-Solomon decodings by instead decoding to half the

minimum distance and reusing that decoding for many iterations. We now want to Reed-

Muller decode to near half the minimum distance. Using the same algorithm doesn’t

save on enough Reed-Solomon decodings to achieve near linear time. However, when

there are no uncertainties in the original received word, we can list decode efficiently to

a radius significantly larger than half the minimum distance. We then use the lists for

many iterations to generate the fi before list decoding again.

Proof of Theorem 4.6.1. In the case where the number of variables is 2, we are in the

setting of decoding bivariate Reed-Muller codes to near half the minimum distance,

which can be done in near-linear time by Theorem 4.5.1. Assume now that m ≥ 2 and

that we have a Reed-Muller code in m+ 1 variables.
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Algorithm 5 Decoding Reed Muller

1: Input: r : Sm+1 → F.

2: Let c = ((1− α)2/8).

3: for j = 0, 1, . . . , d
2cn do

4: Let tj = n−d+j·2cn
2 + cn.

5: Define rj·2cn : Sm × S → F by

rj·2cn(X, Y ) = r(X, Y )−
j·2cn−1∑
i=0

Qi(X)Y d−i.

6: for x ∈ Sm do

7: Define rj·2cn,x : S → F by

rj·2cn,x(Y ) = rj·2cn(x, Y ).

8: Define Lj,0,x = RS-LIST-DECODER(rj·2cn,x(Y ), d− j · 2cn, tj).

9: end for

10: for k = 0, 1, . . . , 2cn− 1 do

11: for x ∈ Sm do

12: Define (Gx(Y ), δx) ∈ Lj,k,x to be the unique codeword (if any) with

δx <
n− d+ j · 2cn+ k

2

13: σx ← CoeffY d−j·2cn−k(Gx).

14: end for

15: Define the weighted function fj·2cn+k : Sm → F× [0, 1] by

fj·2cn+k(x) =

(
σx,min

{
1,

δx
(n− d+ j · 2cn+ k)/2

})
.

16: Define Qj·2cn+k : Sm → F by

Qj·2cn+k(X) = RM-UNC-DECODER(
fj·2cn+k(X), j · 2cn+ k,

nm−1

2

(
1− j · 2cn+ k + (m− 1)β

√
n

n− d+ j · 2cn+ k

))
.
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Algorithm 5 Decoding Reed Muller (Continued)

17: for x ∈ Sm do

18:

Lj,k+1,x ← {(C −Qj·2cn+k(x)Y d−j·2cn−k, δC,x)

|(C, δC,x) ∈ Lj,k,x,CoeffY d−j·2cn−k(C) = Qj·2cn+k(x)}.

19: end for

20: end for

21: end for

22: Output:
d∑
i=0

Qi(X)Y d−i.

The decoding algorithm for a m + 1-variate Reed-Muller code is as follows: In

the i-th iteration, list decode row ri,x, x ∈ Sm to obtain a list Li,x of all degree

≤ d − i polynomials within radius 1
2(n − d + i + cn) along with their distances from

ri,x, where c = (1−α)2

8 . Search the list to get the degree ≤ d − i polynomial within

distance 1
2(n− d+ i) from ri,x, call it Di,x(Y ). We use the lists for cn iterations before

list decoding again. Construct function fi : Sm → F × [0, 1] of (leading coefficient,

uncertainty) =
(

CoeffY d−i(Di,x),
∆(ri,x,Di,x)
(n−d+i)/2

)
. Decode fi(X) to a degree i polynomial

within radius nm

2

(
1− i+mβ

√
n

n−d+i

)
to get Qi(X).

Proof of Correctness

As before, we want to show that Qi(X) = Pi(X). It is enough to show

∆(fi, Pi) <
nm

2

(
1− i+mβ

√
n

n− d+ i

)
.

We can use a similar analysis of ∆(fi, Pi) to the one in Theorem 4.6.2 to get to the

following step:

∆(fi, Pi) ≤
∆(r, C)

n− d+ i
.

So we have:

∆(fi, Pi) ≤
nm+1

2

(
1− d+mβ

√
n

n

)
n− d+ i
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=
nm

2

n− d−mβ
√
n

n− d+ i

=
nm

2

(
1− i+mβ

√
n

n− d+ i

)
.

Analysis of Runtime

Decoding the fi over the d+ 1 values of i can be done in O(nm+1 polylog n) following

the same runtime analysis from Theorem 4.6.2. For constructing the fi, we do O(nm)

Reed-Solomon list decodings taking O(n polylog n) time each. Within any given list, we

need to compute uncertainties for each element of the list. This also takes O(n polylog n)

time for each list. Finally, we update the lists at each iteration by identifying the

elements with the correct leading coefficient and taking away their leading terms. Since

the list size is constant, and there are O(nm) lists to update in each iteration, the

updating takes O(nmd) = O(nm+1) over d + 1 iterations. Hence the total runtime is

O(nm+1 polylog n) as desired.

4.7 Open Problems

We conclude with some open problems.

1. The problem of list-decoding multivariate polynomial codes up to the Johnson

radius is a very interesting open problem left open by our work. Generalizing our

approach seems to require progress on another very interesting open problem, that

of list-decoding Reed-Solomon concatenated codes. See [32] for the state of the

art on this problem.

2. It would be interesting to understand the relationship between our algorithms

and the m+ 1-variate interpolation-based list-decoding algorithm of Sudan [25].

Their decoding radii are incomparable, and perhaps there is some insight into the

polynomial method, which is known to face some difficulties in > 2 dimensions,

that can be gained here.

3. It would be interesting to see if one can decode multiplicity codes [33] on arbitrary
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product sets upto half their minimum distance. Here too, we know algorithms that

decode upto the minimum distance only in the case when S is very algebraically

special (from [34]), or if the degree d is very small compared to |S| (via an

m+ 1-variate interpolation algorithm, similar to [25]).
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A Near-Linear Time Soft Decoding of Reed-Solomon Codes

In this section, we present a near-linear time algorithm to soft decode Reed-Solomon

codes to almost half the minimum distance. This result can be used to achieve near-linear

time decoding of Reed-Muller codes to almost half the minimum distance.

Lemma A.1. Let F be a finite field and let S ⊆ F be a nonempty subset of size

|S| = n. There is a randomized algorithm FAST-RS-DECODER(r, d) that given a

received word with uncertainties r : S → F × [0, 1], finds the unique polynomial (if it

exists) C ∈ F[X] satisfying deg(C) ≤ d and ∆(r, C) < n−d−
√
n

2 with probability 3/4 in

time O(n polylog(n)).

Proof. The near-linear time algorithm for FAST-RS-DECODER(r, d) is based on For-

ney’s generalized minimum distance decoding of concatenated codes.

Given a received word r : S → F × [0, 1], suppose there is a polynomial f of

degree at most d such that ∆(f, r) < n−d−
√
n

2 . Let S = {α1, α2, . . . , αn}, and write

r(αi) = (βi, ui), i ∈ [n]. We may view r as a set of n points (αi, βi) with uncertainties

ui. The general idea of the algorithm is to erase the i-th point with probability ui, and

perform errors and erasures decoding of the resulting Reed-Solomon code. We denote

the errors and erasures Reed-Solomon decoder by EE-DECODER(r′, d), which takes a

received word r′ : S → F × [0, 1] ∪ {?} and a degree d and returns the polynomial of

degree at most d that is within n−d
2 of r′.
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Algorithm 6 Fast Reed-Solomon Decoding with Uncertainties

1: Input: r : S → F× [0, 1].

2: for i = 1, 2, . . . , n do

3: pi ← RANDOM([0, 1]).

4: Define r′ : S → (F ∪ {?}) by

r′(αi) =


βi if pi ≤ ui

? if pi > ui

.

5: end for

6: g ← EE-DECODER(r′, d).

7: Output: g.

We say that a point is an erasure if it is erased by the algorithm. We say that a

point (αi, βi) is an error if (α, β) is not an erasure and f(αi) 6= βi. Let E be the number

of errors, and let F be the number of erasures. As the resulting n− F points form a

Reed-Solomon code of block length n−F and degree d, the algorithm outputs f as long

as

2E + F < n− d.

We will use Chebyshev’s inequality to show that 2E +F < n− d with probability at

least 3
4 . To help us compute the expectation and variance of 2E + F , we write E and

F as a sum of indicator random variables. Let A = {i ∈ [n]|f(αi) = βi} be the set of

agreeing indices, and let D = {i ∈ [n]|f(αi) 6= βi} be the set of disagreeing indices. Let

T = {i ∈ [n]|(αi, βi) is erased} be the set of erasure indices.

Then we can write

E =
∑
i∈D

1i/∈T

F =
∑
i∈[n]

1i∈T .
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We then can show E[2E + F ] is less than n− d by a significant amount
√
n:

E[2E + F ] = 2
∑
i∈D

(1− ui) +
∑
i∈[n]

ui

= 2
∑
i∈D

(1− ui) +
∑
i∈D

ui +
∑
i∈A

ui

= 2

(∑
i∈D

(
1− ui

2

)
+
∑
i∈A

ui
2

)
= 2∆(f, r)

< n− d−
√
n.

Finally, we show that Var(2E + F ) is small:

Var(2E + F )

= 4Var(E) + 4Cov(E,F ) + Var(F )

= 4
∑
i∈D

ui(1− ui) + 4

E

∑
i∈D

∑
j∈[n]

1i/∈T∩j∈T

−∑
i∈D

(1− ui)
∑
j∈[n]

uj

+
∑
i∈[n]

ui(1− ui)

= 4
∑
i∈D

ui(1− ui) + 4

E

∑
i∈D

∑
j 6=i

(1− ui)uj

−∑
i∈D

∑
j∈[n]

(1− ui)uj

+
∑
i∈[n]

ui(1− ui)

= 4
∑
i∈D

ui(1− ui)− 4
∑
i∈D

ui(1− ui) +
∑
i∈[n]

ui(1− ui)

=
∑
i∈[n]

ui(1− ui)

≤ n

4
.

By Chebyshev’s inequality, Pr(2E + F ≥ n− d) ≤ 1
4 . Hence we have Pr(2E + F <

n− d) ≥ 3
4 . That is, with probability at least 3

4 , the algorithm outputs f .

We now analyze the runtime of our fast Reed-Solomon decoder. The erasures can be

done in O(n) time. Also, as the EE-DECODER is essentially a Reed-Solomon decoder

to half the minimum distance, it runs in time O(n polylog n) [27, 28]. This gives a total

runtime of O(n polylog n).

Note that by running the algorithm log n times, we get that with probability at least

1− (1/4)logn = 1− 1/nlog 4, we still find f in O(n polylog n) time.


