NaMn$_{1.5+\delta}$Ni$_{0.5-\delta}$O$_4$ SPINEL AS A HIGH-VOLTAGE POSITIVE ELECTRODE FOR SODIUM-ION BATTERIES

by

JOSHUA RYAN KIM

A Dissertation submitted to the
Graduate School – New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Materials Science and Engineering

Written under the direction of
Professor Glenn G. Amatucci
And approved by

__

__

__

__

New Brunswick, New Jersey

May 2016
Sodium-ion batteries are an emerging technology aiming to significantly reduce the associated barriers of high performance batteries (high cost, and raw material abundance) in order to enable wide scale utilization of electrochemical energy storage devices. While being similar monovalent ions, Na\(^+\) and Li\(^+\) demonstrate considerably different characteristics when considering reversible ion-insertion materials, and it is of primary interest to ascertain whether or not analogous sodium chemistries can be derived from the well established lithium-ion compositions reported in literature.

A number of high-voltage cathode materials have been identified for Li-ion battery applications, and due to the intrinsic difference in standard redox potentials between Na/Na\(^+\) and Li/Li\(^+\) (ca. 0.3V), it is desirable to consider high-voltage sodium chemistries to overcome the inevitable lower voltages associated with sodium compositions. LiMn\(_{1.5+\delta}\)Ni\(_{0.5-\delta}\)O\(_4\) spinel has been previously investigated for application in high performance Li-ion batteries, operating on a reversible redox reaction at ca. 4.7V vs. Li/Li\(^+\). Here, the spinel crystal structure provides a 3D-interconnected network of diffusional pathways, promoting facile Li\(^+\) diffusion; and is considered for study in an analogous Na-ion battery as the combination of facile diffusional pathways and a high-voltage redox reaction (theoretically at ca. 4.4V vs. Na/Na\(^+\)) would act as a significant improvement in sodium energy storage cathodes.

Herein, LiMn\(_{1.5+\delta}\)Ni\(_{0.5-\delta}\)O\(_4\) spinel is utilized to form the \(\lambda\)-Mn\(_{1.5}\)Ni\(_{0.5}\)O\(_2\) (\(\lambda\)-MNO) structure by electrochemical delithiation. The resulting materials are then investigated as a positive electrode for sodium-ion batteries, as the spinel framework enables facile 3D-interdiffusion via vacant crystallographic
sites. Three profound conclusions may be derived from this work: (1) Na⁺ insertion into the λ-MNO structure is possible, with Na⁺ demonstrating almost exclusive occupancy of the 8a tetrahedral sites. (2) The Na⁺ insertion reaction occurs at ca. 3.6V (vs. Na/Na⁺), enabling direct replacement of existing commercial Li-ion cells. (3) Na⁺ can be reversibly inserted / deinserted from the spinel host structure, with the possibility of further optimization.
I would like to thoroughly thank my thesis advisor, Dr. Glenn Amatucci, who has provided me with the unique and profound opportunity to advance my research interests in energy storage research over the passed years; for the countless hours and patience he has shown throughout my development, and the numerous lessons and situations he has thus prepared me for in the future.

Additionally, I would like to show my appreciation to my committee members: Dr. Lisa Klein, Dr, Richard Riman, and Dr. Martha Greenblatt, as they have contributed to my development over the years.

I would like to thank acknowledge Panasonic for provided financial support and funding for this project.

I would like to thank the various members of the Energy Storage Research Group (ESRG), who have acted as both a significant knowledge base and support for my endeavors over the years. Dr. Nathalie Periera has provided meaningful advice and guidance throughout my development as a researcher, taking the time to demonstrate and discuss vital techniques and topics to which I am very grateful.

I would like to thank the past graduate students: Dr. Kimberly Scott, Dr. Andrew Gmitter, Dr. Jonathon Ko, Dr. Anthony Ferrar, Dr. William Yourey, and Dr. Matthew Parkinson; current staff members: Mr. Barry Vanning, Mr. John Gural, Ms. Fadwa Badway, Ms. Irene Plitz, Ms. Linda Wu, and Ms. Anna Halajko; and fellow graduate students/classmates: Mr. Nick Faenza, and Mr. Daniel Kopp for contributing to my entire educational experience.
Dedication

I dedicate this work to my family, whom has provided me with unwavering support in all of my endeavors, whom have sacrificed so much throughout my upbringing, and whom continue to drive and inspire me.
1 Table of Contents

ACKNOWLEDGEMENT IV

DEDICATION V

LIST OF TABLES IX

LIST OF FIGURES XI

2 INTRODUCTION 1

2.1 BACKGROUND 2
2.1.1 ELECTROCHEMISTRY 2
2.2 AREAS OF FOCUS 48

3 EXPERIMENTAL TECHNIQUES 49

3.1 SYNTHESIS METHODS 49
3.2 CHARACTERIZATION TECHNIQUES 52
3.2.1 X-RAY DIFFRACTION (XRD) 52
3.2.2 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 61
3.2.3 BRUNAUER-EMMETT-TELLER (BET) SURFACE AREA 63
3.2.4 COULOMETRIC TITRATION TECHNIQUES 65

4 DELITHIATION OF LITHIUM SPINELS: Λ-MN$_{1-x}$M$_2$O$_2$ STRUCTURE 69

4.1 INTRODUCTION 69
4.2 EXPERIMENTAL TECHNIQUES 69
4.3 RESULTS & DISCUSSION 71
4.4 CONCLUSION 76

5 NA$^+$ INSERTION INTO Λ-MO, Λ-MNOF, F Λ-MNO, AND P Λ-MNO 77

5.1 INTRODUCTION 77
5.2 EXPERIMENTAL CONSIDERATIONS 77
5.3 RESULTS 78
5.3.1 NA$^+$ INSERTION INTO Λ-MNO$_2$ 78
5.3.2 NA$^+$ INSERTION INTO Λ-MNOF 81
5.3.3 NA$^+$ INSERTION INTO F Λ-MNO 94
5.3.4 NA$^+$ INSERTION INTO Λ-MN$_{0.75}$NI$_{0.25}$O$_2$ (P Λ-MNO) 111

6 NA$^+$ DEINSERTION, NA$^+$ REVERSIBILITY, AND REACTION MECHANISMS 125

6.1 INTRODUCTION 125
6.2 RESULTS 125
6.2.1 CONSTANT CURRENT / CONSTANT VOLTAGE CYCLING 125
6.2.2 NA$^+$ DE/INSERTION REACTION PATHWAY 129
6.2.3 POTENTIOSTATIC INTERMITTENT TITRATION TECHNIQUE 132
6.2.4 EX-SITU X-RAY DIFFRACTION (XRD) 138
6.2.5 \textit{Operando} X-ray Diffraction (XRD) \hfill 143
6.3 Discussion \hfill 161
6.4 Conclusion \hfill 163

7 \textbf{LI}_1\text{x}_3\text{NA}_x\text{MN}_{2-V-Z}\text{M}_y\text{NI}_Z\text{O}_4\text{ Spinel Synthesis} \hfill 165
7.1 Introduction \hfill 165
7.2 Experimental Methods \hfill 166
7.3 Results \hfill 167
7.3.1 Material Synthesis \& Characterization \hfill 167
7.3.2 Electrochemical Results: Synthesized sodium phases \hfill 178
7.4 Discussion \hfill 181
7.5 Conclusion \hfill 183

8 \textbf{Future Work} \hfill 185
8.1 Future work relevant to high voltage electrode materials \hfill 185
8.2 Future work relevant to high-voltage spinel \hfill 185
List of Tables

Table 1-1: Representative sodium cells... 18
Table 1-2: Electrolyte additives for lithium batteries ... 22
Table 1-3: Examples of commercially available ionic liquid compositions for sodium ion batteries 24
Table 1-4: Ordered phases of P2-Na$_x$CoO$_2$.. 37
Table 1-5: General NASICON chemical formula ... 40
Table 1-6: Overview of iron and vanadium polyanionic structures used in sodium batteries. Reformatted from Ref. 280 .. 43
Table 4-1: Rietveld refinement on galvanostatically discharged electrodes .. 86
Table 4-2: Calculated diffusion coefficients of Fλ -MNO vs. Na/Na$^+$ PITT cells.............................. 107
Table 4-3: Calculated diffusion coefficients for the initial Na$^+$ insertion reaction into Pλ -MNO 114
Table 4-4: Calculated diffusion coefficients for Fλ -MNO and Pλ -MNO throughout the initial Na$^+$ insertion reaction .. 123
Table 5-1: Constant current, constant voltage protocol of Fλ -MNO and Pλ -MNO cells cycled using 1M NaClO$_4$-PC:FEC2% electrolyte at 24°C .. 126
Table 5-2: Calculated diffusion coefficients for key Na$^+$ de-insertion reactions in FNa-MNO and PNa-MNO spinels ... 138
Table 5-3: Rietveld refined lattice parameters for FNa-MNO vs. Na/Na$^+$ cells. Reported (E/X)Na$_x$ values are based off electrochemical and refined XRD data respectively .. 141
Table 5-4: Rietveld refined lattice parameters for PNa-MNO vs. Na/Na$^+$ cells cycled at 3 mA/g, 50°C. Reported (E/X)Na$_x$ values are based off electrochemical and refined XRD data respectively .. 143
Table 6-1: Transition metal cation radii from Ref. 375 ... 166
Table 6-2: Multipoint BET surface area measurements of Zr-doped spinel compositions .. 172
Table 6-3: Comparison of Ti-doped LiMn$_{1.5}$Ti$_x$Ni$_{0.5}$O$_4$ (x = 0.1, 0.3, 0.5, 1.0, 1.3) as compared against previous reports in literature .. 175
List of Figures

Figure 1-1: Schematic showing key components of an electrochemical cell (a) and the flow of electrons/ions throughout discharge (b) and charge (c) processes3

Figure 1-2: Representative conductivity and viscosity values based on 1M NaClO$_4$ electrolytes of co-blended inorganic solvents adapted from ref. 17921

Figure 1-3: Spider plot of select commercial Li-ion battery chemistries comparing common performance metrics between three select cathode compositions26

Figure 1-4: Layered NaMO$_2$ structures (M = Mn, Fe, Ni, Co) exhibiting trigonal prismatic Na-coordination (a-b) of the P2 and P3-type structures respectively, and octahedral coordination (c-d) for the O2 and O3-type structures respectively.29

Figure 1-5: Voltage profile of O3-type NaCoO$_2$. Reproduced from ref. 22030

Figure 1-6: Structural phase progression of NaCrO$_2$. Reproduced from Ref. 23431

Figure 1-7: Chromium migration process during electrochemical Na$^+$ extraction. Reproduced from Ref 238 ...32

Figure 1-8: Typical voltage profile of Na$_x$VO$_2$ in a sodium metal cell. Reproduced from Ref. 241 ...33

Figure 1-9: Representative voltage profile of monoclinic O’3-NaNiO$_2$ in a sodium metal cell. Reproduced from Ref. 246 ...35

Figure 1-10: Calculated reversible capacity and operating voltage comparison for layered sodium insertion materials reprinted from Ref. 251 ...36

Figure 1-11: In-situ diffraction measurements of P2-Na$_x$CoO$_2$ showing the phase progression of the (008) diffraction peak. Reproduced from Ref. 27237
Figure 1-12: Na₃MnₓO₂ structures for given Na/Mn ratios. Reformatted from Ref. 276.

Figure 1-13: Comparison between NASICON and layered type cathode materials for sodium ion batteries. Reproduced from Ref. 281.

Figure 1-14: Crystal structure of NaCoF₃.

Figure 1-15: LiMn₂O₄ normal spinel structure. Li and Mn ions are located on the centers of the tetrahedral (green) and octahedral (purple) sites respectively.

Figure 1-16: Solid-state redox potentials (vs. Li/Li⁺) estimated by slow-scan voltammetry for Li[Mn₁ₓM₀.₅]O₄ compositions. Reprinted from Ref. 297.

Figure 2-1: Mechano-chemical synthesis schematic, demonstrating the different types of processes taking place during high-energy milling procedures.

Figure 2-2: Generic material synthesis flow-diagram including solid-state synthesis (a→d→e), co-precipitation method (a→b→c→d→e), and Pechini synthesis (a→b→c₂→d₂→e).

Figure 2-3: Bragg-Brentano geometry used for a typical X-ray diffractometer. Reproduced from Ref. 322.

Figure 2-4: Infrared spectra for LiMn₂₋ₓNiₓO₄ spinel annealed in air at 700°C. Reproduced from Ref. 306.

Figure 2-5: Schematic of an in-situ transmission FTIR electrochemical cell. Reproduced from Ref. 347.

Figure 2-6: Core-shell model for phase transformation of a spherical particle illustrating the migrating species, original phase (alpha) and reaction products (beta) with a thin and sharp interface.
Figure 3-1: CV scans for LMO, LMNOF, F-LMNO, and P-LMNO spinels vs. Li/Li$^+$. Cyclic voltammetry scans are performed with a 1M LiPF$_6$-EC/DMC electrolyte within 3.0 – 5.0V at 24°C and 0.01 mV/s scan rate. ... 72

Figure 3-2: Transmission FTIR (Fourier Transform Infrared Spectroscopy) data of Fd-3m (dashed) and P4$_1$3$_2$ (solid) lithium spinels showing characteristic vibrational modes of Ni-O and Mn-O bonds. ... 73

Figure 3-3: Characteristic voltage profiles of lithium spinel positive electrodes with 1M LiPF$_6$-EC/DMC electrolyte at 24°C cycled with a 3 mA/g current... 74

Figure 3-4: Powder X-ray Diffraction patterns of as prepared lithium spinel powders taken using Cu-kα incident radiation with a 0.02° step size and 1.5 second dwell time. .. 74

Figure 3-5: Electrochemical delithiation of Fλ-MNO against a lithium and sodium metal anode in 1M NaClO$_4$-PC:FEC2% electrolyte at 24°C... 75

Figure 3-6: Ex-situ XRD measurements on electrochemically delithiated spinel cathodes ... 76

Figure 4-1: Voltage profile of λ-MnO$_2$ (λ-MO) with a 3mA/g discharge current at 24°C, 1M NaClO$_4$-PC:FEC2%.. 79

Figure 4-2: Voltage profile of Na-MnO$_2$ showing the first cycle (red) and subsequent cycles (black) Cycled at 3 mA/g at 24°C, 1M NaClO$_4$-PC:FEC2% .. 80

Figure 4-3: Galvanostatically discharged sodium cells at 24°C, 1M NaClO$_4$-PC:FEC2% (a) and ex-situ XRD (b) measurements of λ-MNOF and C/100 discharged λ-MNOF .. 82
Figure 4-4: Spherical particle model of λ-MNOF spinel considering differences in grain boundary migration and Na$^+$ diffusion...83

Figure 4-5: combined ex-situ and operando XRD data for macrocrystalline λ-MNOF. Ex-situ data (a-b) was cycled at a C/10 rate at 24°C while operando XRD data was separately collected at a C/40 rate at 24°C, 1M NaClO$_4$-PC:FEC2% (c-d)87

Figure 4-6: Simplified core/shell model of discharged λ-MNOF cathode particle(s) 92

Figure 4-7: C/10 and C/100 discharge rates of Pechini derived Fλ-MNOF spinel at 24°C, 1M NaClO$_4$-PC:FEC2% (a) and ex-situ XRD of deconstructed cathodes (b) 94

Figure 4-8: Galvanostatic intermittent titration technique (GITT) of Fλ-MNO at 24°C with 1M NaClO$_4$-PC:FEC2% electrolyte. First discharge (a) and subsequent charge/discharge voltage profiles (b) ...95

Figure 4-9: Voltage and specific current response of the sodium insertion of Fλ-MNO spinel utilizing a PITT protocol between 2 – 4.25V and a 0.25mA/g current cutoff with 1M NaClO$_4$-PC:FEC 2% electrolyte at 24°C.. 97

Figure 4-10: Working and counter electrode voltages vs. a Na-metal reference electrode. Fλ-MNO cathode cycled at 24°C using 1M NaClO$_4$.PC:FEC2% electrolyte........... 98

Figure 4-11: Ex-situ XRD measurements throughout two-phase reaction region discharged at 3 mA/g, 24°C using 1M NaClO$_4$.PC:FEC2% ..99

Figure 4-12: C/60 operando XRD results of Na$^+$ insertion into Fλ-MNOF spinel. Full XRD 20 range (a) and discharge profile cycled at 24°C, 1M NaClO$_4$-PC:FEC2% electrolyte (b). Spinel diffraction peaks are labeled with their respective (hkl) Miller indices, and peaks marked by asterisks denote contributions from the aluminum current collector and beryllium window...102
Figure 4-13: Selected diffraction peaks from C/60 discharged Fλ-MNO given in Figure 4-12 including the (111) (a), (311) (b) and (400) (c) spinel reflections and voltage profile (d). Dashed lines are provided as a guide to depict the onset in peak shift that occurs beyond the knee in the voltage profile. Diffraction patterns shown in red correlate to the knee in the voltage profile as shown by the red arrow of (d). Peaks marked by asterisks denote diffraction contributions from the current collector/beryllium window.

Figure 4-14: Relative a-lattice parameter throughout Na⁺ insertion into Fλ-MNO spinel at 24°C, at 2.25mA/g.

Figure 4-15: Voltage profile comparison between F-MNO vs. Li/Li⁺ and Fλ-MNO vs. Na/Na⁺ with guidelines showing capacity contributions associated with the Mn³⁺/Mn⁴⁺ redox.

Figure 4-16: Discharge profiles of Fλ-MNO and λ-MnO₂ in Li-metal (dashed) and Na-metal cells (solid) respectively. λ-MnO₂ vs. Na/Na⁺ (a) Fλ-MNO vs. Na/Na⁺ (b), λ-MnO₂ vs. Li/Li⁺ (c), and Fλ-MNO vs. Li/Li⁺ (d) cells were discharged at a C/100 rate at 24°C using 1M NaClO₄-PC:FEC2% and 1M LiPF₆-EC/DMC electrolytes for sodium and lithium metal cells respectively.

Figure 4-17: Voltage profile of PNa-MNO vs. Na/Na⁺. The first discharge/charge cycle (a) 5ᵗʰ, 10ᵗʰ, and 50ᵗʰ cycles (b) are cycled at 3 mA/g at 24°C using 1M NaClO₄-PC:FEC2% electrolyte.

Figure 4-18: Potentiostatic intermittent titration technique (PITT) discharge/charge cycle for Pλ-MNO vs. Na/Na⁺ using 1M NaClO₄-PC:FEC2% at 24°C and a 0.25 mA/g current cutoff.
Figure 4-19: Ex-situ XRD comparison between Pλ-MNO and sodiated Pλ-MNO using a 3.0 mA/g discharge current at 24°C with 1M NaClO₄-PC:FEC2% electrolyte. Note: XRD pattern of the PNa-MNO ex-situ sample observes a slight 20° shift relative to the Pλ-MNO sample due to sample height displacement from the thickness of the cathode disk.

Figure 4-20: Pλ-MNO (P4₃₃₂) spinel discharged at 24°C and 3mA/g using 1M NaClO₄-PC:FEC2%. XRD scans are taken on a Δx interval of 0.02 in order to avoid significant peak broadening contributions. Dashed vertical lines are provided to illustrate the minor peak shift that occurs during single-phase Na⁺ insertion, most clearly identified by the (511) and (440) Bragg reflections.

Figure 4-21: Selected diffraction peaks from Pλ-MNO vs. Na/Na⁺ given in Figure 4-20 including the (111) (a), (311) (b) and (400) (c) spinel reflections and galvanostatically cycled voltage profile (d). Diffraction patterns shown in red correlate to the knee in the voltage profile as shown by the red arrow of (d). Peaks marked by asterisks denote diffraction contributions from the current collector/beryllium window.

Figure 4-22: Relative lattice parameters of Pλ-MNO vs. Na/Na⁺ in-operando XRD data given in Figure 4-20. Lattice parameters are normalized according to the d-spacing of the Pλ-MNO phase.

Figure 5-1: Constant current/Constant voltage Fλ-MNO and Pλ-MNO vs. Na/Na⁺ cells at 24°C, 1M NaClO₄-PC:FEC2%. Discharge capacities of Fλ-MNO (a) and Pλ-MNO (c) are given for cells using both a 2.0 and 2.5V lower potential cutoff, and a 1.0/2.0 mA/g constant voltage current cutoff as described in.
Figure 5-2: Schematic reaction pathway of dis/ordered sodium spinel cathodes constructed from a compilation of ex-situ/operando X-ray diffraction, and potentiostatic intermittent titration technique (PITT) data. Cells were held at open circuit in the fully discharged state for 10 hours, 24°C (a), discharged, and charged continuously at 24°C (b), and charged/discharged at 50°C (c). Red segments indicate two-phase regions, and black arrows indicate single-phase de/insertion mechanisms. Dashed arrows imply an additional 10 hour open circuit voltage (OCV) period imparted at the end of the first discharge. Schematic not drawn to scale. 131

Figure 5-3: Potentiostatic intermittent titration technique (PITT) of FNa-MNO vs. Na/Na⁺ during the first (a) and second (b) cycles within 2.0 - 4.25V followed by an additional high-voltage charge/discharge cycle (c) between 2.0 - 4.5V at 24°C, 1M NaClO₄-PC:FEC2%.. 134

Figure 5-4: Potentiostatic intermittent titration technique (PITT) charge/discharge PNa-MNO cathodes vs. Na/Na⁺ at 24°C using 0.25M NaBF₄-EC/DMC (a) 1M NaClO₄-PC (b) 1M NaClO₄-PC:FEC2% (c) and 1M NaClO₄-PC:FEC10% (d). FEC electrolyte additives are based off volume percentages. PITT protocol consists of 10 mV potential steps with a 0.25 mA/g (active material) current cutoff. Labeled voltages correlate to non-Cottrellian current responses seen in the measured current response.. 135

Figure 5-5: Potentiostatic intermittent titration technique (PITT) of PNa-MNO vs. Na/Na⁺ during the first (a) and second (b) cycles. Cell was cycled at 24°C using 10 mV potential steps and a 0.25 mA/g current cutoff between 2.0 - 4.25 and 2.0 - 4.5V between (a) and (b) respectively with 1M NaClO₄-PC:FEC2% electrolyte......... 137
Figure 5-6: *Ex-situ* XRD of FNa-MNO cathodes cycled at 3 mA/g, 50°C using 1M NaClO$_4$-PC:FEC2% (a) and representative voltage profile (b) .. 140

Figure 5-7: *Ex-situ* XRD of PNa-MNO spinel cycled at 3 mA/g, 50°C using 1M NaClO$_4$-PC:FEC2%(a) and representative voltage profile (b).. 142

Figure 5-8: Scaled intensity plot (a) and corresponding voltage profile (c) of *in-operando* XRD FNa$_x$-MNO within the first two cycles (2.0 – 4.25V) at 24°C, 1M NaClO$_4$-PC:FEC2%. Scaled intensity plot (b) and voltage profile (d) of high voltage charge/discharge cycle following relaxation at full discharge (4.5 – 2.0V) at 24°C. Bragg peaks are labeled at the top of (a-b) with asterisks marking aluminum and beryllium diffraction peaks from the in-situ cell. Dashed lines are added to regions pertaining to a single-phase reaction, and solid lines are oriented towards the product of the two-phase reaction. Lines M1 through M5 serve as guidelines with respect to the voltage profile. M3 and M5 indicate the onset of a two-phase reaction.......... 146

Figure 5-9: *in-operando* XRD charge/discharge cycle of FNa-MNO vs. Na/Na$^+$ *in-situ* cell at 3 mA/g, 50°C, 1M NaClO$_4$-PC:FEC2% (a) and voltage profile (b) The FNa-MNO cathode was presodiated at 50°C in a coin cell prior to assembly in the *in-situ* electrochemical cell. Dashed arrow are provided marking the shift in diffraction peaks in accordance with the single-phase Na$^+$ de/insertion reaction, while solid arrows mark the abrupt peak shift described by a two-phase reaction. Markers M1 – M3 are provided to relate the two-phase reactions with the voltage profile........... 149

Figure 5-10: Scaled intensity plot (a) and corresponding voltage profile (d) of *in-operando* XRD PNa-MNO vs. Na/Na$^+$ throughout the first two discharge/charge cycles at 3 mA/g, 24°C, 1M NaClO$_4$-PC:FEC2%, 2.0 – 4.25V. Scaled intensity plot
(b - c) and corresponding voltage profile (e) of high voltage charge/discharge cycle 4.45 – 2.0V, 24°C at 3 mA/g. Peak intensities for the 311, 222, and 400 Bragg reflections are marked by \((hkl)\) and \((hkl)'\) for the PNa-MNO and P\(\lambda\)-MNO phases respectively. Dashed lines are given to regions pertaining to a single-phase reaction, and solid lines are oriented towards the product of the two-phase reaction. Lines M1-M8 serve as guidelines with respect to the voltage profile. M1, M3, M4, M6, M7, and M8 indicate the onset of a two-phase reaction.

Figure 5-11: Charge/discharge cycle in-operando XRD of PNa-MNO at 3mA/g, 50°C, 1M NaClO\(_4\)-PC:FEC2%. 2\(\theta\) range showing 311, 222, 400 peaks (a) and the 511 spinel peak (b) with the corresponding constant current voltage profile (c). Dashed lines are given to regions pertaining to a single-phase reaction, and solid lines are oriented towards the product of the two-phase reaction. Lines M1-M3 serve as guidelines with respect to the voltage profile. M1 and M2 mark the onset of a two-phase reaction.

Figure 5-12: Combined operando XRD data for disordered (a - c) and ordered (d - f) sodium spinel cathodes under varying cycling conditions: continuous operation at 20°C (a + d), 10 hour open circuit (OCV) rest period following initial discharge at 20°C (b + e) and continuous operation at 50°C (c + f) all cycled at a current rate of 3mA/g with 1M NaClO\(_4\)-PC:FEC2% electrolyte. Vertical arrows mark the shift in relative lattice parameter of the various two-phase reactions taking place described by the \((F/P)Na_x\) values reported.

Figure 5-13: Estimated mass-attenuation coefficients of \(\lambda\)-MNO and Na-MNO with respect to common X-ray diffractometer K\(\alpha\) radiation sources.
Figure 6-1: Powder X-ray diffraction data of a hexagonal layered sodium rich phase of nominal composition Na_{0.67}Ni_{0.25}Mn_{0.75}O_2 formed by solid-state synthesis at 900°C in air for 12 hours...168

Figure 6-2: Powder X-ray diffraction data for LiMn_{1.5-x}Zr_xNi_{0.5}O_4 spinel samples (x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, and 0.4) for (a) - (h) respectively annealed at 500°C for 10 hours in air ...170

Figure 6-3: Powder X-ray diffraction data for LiMn_{1.5-x}Zr_xNi_{0.5}O_4 spinel samples (x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, and 0.4) for (a) - (h) respectively annealed at 700°C for 10 hours in air ...170

Figure 6-4: Powder X-ray diffraction data for LiMn_{1.5-x}Zr_xNi_{0.5}O_4 spinel samples (x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, and 0.4) for (a) - (h) respectively annealed at 800°C for 10 hours in air ...171

Figure 6-5: Refined lattice parameters of LiMn_{1.5-x}Zr_xNi_{0.5}O_4 (x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6) samples across considered annealing temperatures ...171

Figure 6-6: Powder X-ray diffraction data of sodium substituted Li_{1-y}Na_yMn_{1.44}Zr_{0.06}Ni_{0.5}O_4 (y = 0.1 and 0.2) compositions (a) and (b) respectively.

Arrows mark a sodium rich phase, and indexed peaks correlate to the lithium spinel.

The vertical dashed line is provided to demonstrate no significant shift in peak positions as a function of increasing Na content...172

Figure 6-7: Powder X-ray diffraction data of titanium doped spinel samples of nominal composition LiMn_{1.5-x}Ti_xNi_{0.5}O_4 (x = 0.1, 0.3, 0.5, 1.0, 1.3) for (a) – (e) respectively synthesized at 800°C in air ...173
Figure 6-8: Powder XRD of Li$_{1-y}$Na$_y$Mn$_{0.5}$TiNi$_{0.5}$O$_4$ target compositions annealed at 800°C in air for 12 hours ... 176

Figure 6-9: Powder XRD of Li$_{1-y}$Na$_y$Mn$_{0.5}$TiNi$_{0.5}$O$_4$ target compositions annealed at 800°C under pure oxygen flow for 12 hours ... 176

Figure 6-10: Powder XRD of Li$_{1-y}$Na$_y$Mn$_{0.5}$Ti$_{1.3}$Ni$_{0.5}$O$_4$ target compositions annealed at 800°C in air for 12 hours ... 177

Figure 6-11: Powder XRD of Li$_{1-y}$Na$_y$Mn$_{0.5}$Ti$_{1.3}$Ni$_{0.5}$O$_4$ target compositions annealed at 800°C under pure oxygen flow for 12 hours ... 177

Figure 6-12: Voltage profile of LiMn$_{1.44}$Zr$_{0.06}$Ni$_{0.5}$O$_4$ spinel (500°C anneal) cycled at 3mA/g, using 1M LiPF$_6$-EC/DMC electrolyte ... 178

Figure 6-13: Galvanostatically cycled λ-Zr$_{0.06}$ vs. Na/Na$^+$ using 1M NaClO$_4$-PC:FEC2% at 24°C at 10 mA/g, 2.0 – 4.25V ... 179

Figure 6-14: Galvanostatic voltage profiles of LiMn$_{1.5-x}$Ti$_x$Ni$_{0.5}$O$_4$ (x = 0.3, 0.5, 1.0, and 1.3) compositions cycled at 10 mA/g at 24°C using 1M NaPF$_6$-EC/DMC electrolyte ... 180

Figure 6-15: Galvanostatic voltage profile of electrochemically delithiated Mn$_{1.2}$Ti$_{0.3}$Ni$_{0.5}$O$_4$ cycled against a sodium metal anode using 1M NaClO$_4$-PC:FEC2% electrolyte at 24°C, 10 mA/g ... 180

Figure 6-16: Galvanostatic voltage profiles of Li$_{1-y}$Na$_y$Mn$_{1.5-x}$Ti$_x$Ni$_{0.5}$O$_4$ (x = 1.0 (a), x = 1.3 (b); y = 0.1, 0.5, 1.0) compositions cycled at 10 mA/g at 24°C using 1M NaClO$_4$-PC:FEC2% electrolyte ... 181
2 Introduction

The development of next generation energy storage technologies is essential towards meeting the growing energy demands of modern society. Conventional modes of power generation are largely based on combustion of fossil fuels, making power production a relatively straightforward process as decades of research and developments surrounding fossil fueled engines/turbines have yielded considerable improvements in terms of efficiency and ‘clean’ emissions. The problem however, comes with respect to providing uninterrupted electrical power throughout the entire electrical grid. As demand for electricity is by no means a known or constant value, generally resulting in one or more peak loads on the electrical grid throughout a given day; forcing utility companies to periodically startup and shutdown ‘peaker’ plants in order to meet the increased load on the system. This has proven to be the most efficient system based off current infrastructure, as continuous operation at peak loads results in excessive/wasted energy and raw materials, as only high output is needed during certain portions of the day. This problem becomes further exacerbated as phasing in of renewable energy sources such as wind/solar occurs; where only intermittent power production prompts a huge need for reliable and cost efficient energy storage technologies.

Over the passed decades, energy storage methodologies have significantly diversified, offering a range of suitable energy storage strategies including pumped hydro, compressed gas, and flywheel energy storage, all of which utilize stored mechanical energy for conversion into electrical energy. However, it is desirable to utilize electrochemical storage devices, as they can be implemented as stand-alone storage solutions; not requiring servicing or serious maintenance due to the lack of moving parts/need of a human operator.

Simple electrochemical storage devices have been around for hundreds of years, however, recent societal advances including mobile electronics and electric vehicles have spurred a drastic increase in research activity, producing highly engineered devices designed for optimal lifetime and performance. Electrochemical cells are often constructed in series or parallel to produce an overall battery of suitable operating voltage and output current for the given application.

In order to meet the growing demand for electrochemical energy storage, it is crucial to develop high-performance batteries that are economically competitive with traditional fossil fuels. While lithium-ion
batteries have found many applications ranging from mobile electronics to electric vehicles, sodium-ion batteries are of primary interest for large-scale applications due to the huge economic benefits in switching to a sodium-based chemistry as shown by the large discrepancy between costs of raw materials (Na$_2$CO$_3$ = 0.07-0.37 $/kg; Li$_2CO_3$ = 4.11-4.49 $/kg). The following sections of this chapter consider in greater depth, the working principles behind electrochemical devices, and key examples throughout existing literature of novel chemistries being developed for sodium-ion batteries.

2.1 Background

2.1.1 Electrochemistry

Electrochemistry is a term that encompasses all phenomena that relate chemical change to an electric potential, electric forces produced by a chemical process, and so on. Generally speaking, electrochemical cells are complex devices, designed to convert chemical energy into electrical energy via an oxidation and reduction reaction. In practice, this generally requires very careful environmental controls; as to ensure that undesired side-reactions do not compete with the primary cell chemistry.

Four main components are of particular importance for electrochemical cells. They are:

(1) The positive electrode (cathode)

(2) The negative electrode (anode)

(3) The electrolyte

(4) The separator

A typical sandwich battery structure is shown schematically in Figure 2-1. Here, and throughout the following chapters, discharge is defined as the flow of electrons through the external circuit (L) from the anode to the cathode, and charge is defined as the flow of electrons through the external circuit from the cathode to the anode as shown by Figure 2-1b-c respectively. As such, the anode and cathode undergo reduction/oxidation reactions in accordance with the direction of electron flow.
The voltage of an electrochemical cell can be visualized as the driving force behind the intrinsic redox reaction; being determined by the composition of the positive and negative electrodes, or more specifically, the differences in chemical potentials between the two electrodes. As mentioned earlier, each electrode undergoes reduction/oxidation (redox) reactions depending on the direction of electron flow in what are known by convention as ‘half-cell’ reactions. Since only relative potential differences can be measured, half-cell potentials are by convention, established relative to a standard electrode under normal conditions (the standard hydrogen electrode (SHE) and with all electroactive species assuming unity activity). The overall equilibrium voltage between the two electrodes is then determined by the difference in half-cell potentials, or by consideration of the chemical activity of the electroactive species through the Nernst equation. The equilibrium cell potential (E°cell) is related to the standard potential (E°) expressed in terms of chemical activity and concentration where \(a_i = \gamma_i c_i \):

Equation 2-1:

\[
E_{\text{cell}}^\circ = E^\circ - \frac{RT}{nF} \sum v_i \ln a_i = E^\circ - \frac{RT}{nF} \sum v_i \ln c_i
\]

The overall Gibb’s free energy (Equation 2-3) of the electrochemical cell is thus related to the standard cell potential by combination of Equation 2-1 and Equation 2-2. A positive cell potential describes a galvanic cell, which correlates to a negative value of the Gibbs free energy, and thus meaning that a quantifiable amount of work can be extracted from the system. A negative cell potential denotes an electrolytic cell, where the positive Gibbs free energy describes the amount of energy required to drive the described electrochemical reaction.

Equation 2-2:

\[
E_{\text{Cell}}^\circ = E_{\text{Cathode}}^\circ - E_{\text{Anode}}^\circ
\]

Equation 2-3:

\[
\Delta G^\circ = -nFE_{\text{Cell}}^\circ
\]
From this relationship, it is clear that simple measurements on the thermodynamics of an electrochemical cell can be made with little effort; and likewise, we can drive specified reactions in a controllable manner provided that no unprecedented electrochemical processes are taking place (e.g. contaminants, moisture, etc). It is also important to note that these relationships only hold at equilibrium conditions, and are highly dependent on the electrode surface and specific medium of the electrochemical cell; as is evident by the logarithmic relationship to the activity coefficient.

Simple measurement of the Gibbs free energy of the galvanic/electrolytic cell is possible given that we can describe the overall reaction in terms of its half-cell reaction. Below is an example for the formation of HCl from H₂ gas and Cl₂ gas:

Equation 2-4: Oxidation Reaction: \(H_2 ⇌ 2H^+ + 2e^- \)

Equation 2-5: Reduction Reaction: \(Cl_2 + 2e^- ⇌ 2Cl^- \)

Equation 2-6: Electrolyte Reaction: \(2H^+ + 2Cl^- ⇌ 2HCl \)

Equation 2-7: Net Reaction: \(H_2 + Cl_2 + 2e^- ⇌ 2HCl + 2e^- \)

The described reactions result in a potential difference between the two electrodes that is related to the driving force of the net reaction. Here, high voltage electrode materials offer a considerable benefit, as they are inherently more suitable for high power applications; requiring fewer individual cells linked in series that may further complicate devices through advanced battery management systems. However, this is often nontrivial in nature, as high-voltage materials must still operate within the electrochemical window of the electrolyte; a topic that will be touched upon in future chapters.

Considering the electrochemical activity at the interface, which will be used to describe the region of separation between the electrolyte and the electrode surface, the electrochemical processes can be described by Equation 2-8 to Equation 2-10. ‘A’ denotes the migrating ion in the electrode, \(A^{Z+} \) the migrating ion in the electrolyte, \(z \) is the number of electrons involved in the redox process, \(\mu \) is the chemical potential, and \(\phi \) describes the galvanic potential.\(^{11,12} \)

Equation 2-8: \(A ⇌ A^{Z+} + ze^- \)

Equation 2-9: \(\Delta\mu_i = \mu_{2,i} + \bar{\mu}_{1,i} = \mu_{2,i} + \mu_{1,i} + z_iF(\phi_2 - \phi_1) \)
Equation 2-10:

\[\mu_{1,A}^\ast = \mu_{2,A^2+}^\ast + RT \ln \left(\frac{a_{A^2+}}{a_{A^2+}} \right) + z \mu_{1,A^+}^\ast + zF(\varphi_2 - \varphi_1) \]

These relations make the important distinction that the chemical potential, and thus the cell voltage are directly dependent on the electrode surface, and its ability to accept and donate the migrating species ‘A’. Additionally, the act of applying or drawing a load from the electrochemical cell places it beyond equilibrium, making measurements between the anode and cathode significantly less meaningful. There are however, ways in which to overcome these shortcomings; the most common being to employ an additional third electrode to act as a reference. And since no load is applied/draw between the reference electrode and the anode/cathode, its potential remains constant, allowing the user to measure the potential of either electrode relative to the reference with added accuracy. The third electrode, or reference electrode \(E_{\text{ref}} \) is situated in close proximity to the working electrode as to minimize polarization of the electrolyte.

Electrochemical cells involve a concerted interaction between a multitude of materials: active materials, binders, conductive additives, electrolyte salt/solvent/additives, cell casing, etc. All of which require careful consideration during assembly/fabrication, as certain materials may not suit the electrochemical window in which the cell will be operating at, often resulting in material breakdown or unwanted corrosion. Since the cell voltage, and ultimately the cell capacity, are characteristic of the specific chemistry of the electrodes, electrochemical cells are generally tailored to a specific application based on metrics such as cost, reliability, and energy density.

While certain applications such as mobile electronics and electric vehicles target high energy density, these types of compounds often reflect a high cost and environmental impact, making them unattractive for wide-scale usage. Commercial high-performance electrochemical cells used today utilize lithium-based compositions, taking advantage of the small ionic size of Li\(^+\); as well as its high specific, and high gravimetric capacities. Although these types of energy storage devices have proven to be well suited to the mobile, and even automotive applications, concerns surrounding the abundance and geographic scarcity of raw materials have thus motivated additional research interested into sodium batteries.

Sodium ion batteries are of principle interest for large scale energy storage needs, as sodium precursors are both significantly more abundant and cheaper than lithium alternatives; making them an ideal candidate to meet grid-level storage needs for alternative energy power supplies such as wind and solar;13–20 Such is the motivation for this work; the following sections are aimed to establish the well-
studied Li-ion industry in order to draw meaningful analogues/strategies toward optimization of sodium-ion batteries.

2.1.1.1 Lithium batteries

Lithium-ion batteries (LIBs) operate on the same basic electrochemical principles mentioned thus far, however, in contrast to the simplified case of metal electrodes, the chemical potential of the respective electrodes is constantly changing as \(\text{Li}^+ \) is reversibly inserted and deinserted into both the anode and cathode. It is worth discerning the differences between lithium-ion, and lithium-metal cells, as the two are used almost exclusively throughout commercial and research settings respectively. The term lithium-ion is used to identify electrochemical cells whose lithium content solely exists in the ionic state eliminating some of the safety concerns around active lithium metal. Lithium-metal cells are commonplace throughout the majority of research, as they provide a stable voltage, (-3.01V vs. SHE) as opposed to graphite or other carbonaceous electrodes typically used in Li-ion cells, whose potentials deviate in accordance to the degree of lithiation.

While the lithium metal anode offers a very favorable standard reduction potential, the high reactivity of lithium metal with ambient oxygen and moisture is a primary safety concern, and thus commercial lithium-ion chemistries aim to keep all lithium in its ionic state, thereby greatly reducing the chance of a lithium-related fire in the event of a cell puncture/leak. There however, is still concern related to the inherent flammability of the inorganic solvents used in conventional inorganic electrolytes, motivating additional advances in low vapor pressure electrolytes, and solid-state electrolytes that will be touched upon in future sections.

While a large number of electrochemically active materials have been identified, the majority of Li-ion research can be identified by four main categories:

1. Insertion electrode materials\(^{21–30}\)
 a. \(\text{e.g.} \) \(\text{LiCoO}_2, \text{LiMn}_2\text{O}_4, \text{LiFePO}_4, \text{Graphite}, \text{etc.} \)

2. Conversion electrode materials\(^{31–36}\)
 a. \(\text{e.g.} \) \(\text{Li-S, CuF}_2, \text{FeF}_2 \)

3. Alloying electrode materials
 a. \(\text{e.g.} \) \(\text{Li-Si, Li-Al, Li-Zn}, \text{etc.} \)
(4) Lithium-air/hybrid fuel cells37–46

Insertion/intercalation compounds generally consist of an electrochemically active species (generally a transition metal cation) dispersed throughout an ordered array, or crystal lattice that has empty sites capable of accommodating the migrating ion species during the reduction/oxidation reaction. In this sense, the migrating ion species is inserted or intercalated onto the vacant sites of the host structure of the electrode, placing a high level of dependence on the types of structures used in electrode compositions; specifically the size, number, and level of inter-connectivity of the vacant sites within the host structure.

Conversion electrodes involve a phase transformation reaction; requiring nucleation and growth of a chemically (and usually structurally) different phase than the originating electrode material(s). Conversion based chemistries generally utilize a nanocomposite structure, typically formed by high-energy milling processes generating an intimate mixture of the active species and an electronically conductive additive. Conductive additives are generally required for conversion materials, as they are for the most part, electronically insulating or intrinsically very poor conductors such that additives are required in order to achieve reasonable performance. Compared to insertion/intercalation compounds, the redox reaction occurs at the particle surface, converting the starting material into a completely different phase, (of either different chemical or structural identity). Formation of the nanocomposite further aids in the cell performance, as a greater surface area is able to react at a given time, making it possible to engineer high rate capability into these types of cells. Conversion materials have garnered a large amount of attention over the years as the redox reaction utilizes the full range of oxidation states (of the electroactive species) is utilized. Producing more electrons per electroactive species, and thereby a higher capacity when compared against typical insertion/intercalation materials.

Alloying electrodes are similar to conversion type materials, as one or more phase-transformation reactions are typically involved. However, they can be differentiated by the fact that they are limited to generally elemental compositions (Al, Zn, Si, Sn)47–49 that share a solid-solubility with Li. Such electrodes generally exhibit high theoretical capacities, but are largely limited by the large volumetric changes that occur; resulting in eventual cell failure as will be discussed in the following sections.

Lastly, lithium-air and similar hybrid fuel cell type electrochemical cells have been of considerable interest throughout the energy storage community as they are generally capable of delivering
5-10 times greater specific energy (~3500 Wh/kg) as compared to conventional transition metal oxide compositions. Lithium-air cells are typically constructed with a porous carbon cathode, and lithium metal anode, with the redox reaction being driven by the supply of ambient air (oxygen); shown by any one of the possible oxygen reduction reactions describing the primary discharge reaction.

\[
\text{Equation 2-11:} \quad O_2 + Li^+ + e^{-} \xrightarrow{3 \text{V vs. Li/Li}^+} LiO_2
\]

\[
\text{Equation 2-12:} \quad 2LiO_2 \rightarrow Li_2O_2 + O_2
\]

\[
\text{Equation 2-13:} \quad LiO_2 + Li^+ + e^{-} \xrightarrow{3.1 \text{V vs. Li/Li}^+} Li_2O_2
\]

The reverse reaction, involves the decomposition of Li$_2$O$_2$ to Li and O$_2$ during charge:

\[
\text{Equation 2-14:} \quad Li_2O_2 \rightarrow 2Li^+ + 2e^- + O_2
\]

And while both aqueous and non-aqueous electrolytes have been reported, serious considerations of Li-air batteries for automotive and other high-performance applications favor non-aqueous compositions due to the need for precious metal catalysts in aqueous systems. The main drawback from these cell chemistries however become the overall cell lifetime, often suffering form a number of different failure modes that arise from the dendritic nature of metallic lithium.

2.1.1.2 Sodium Batteries

Falling directly beneath lithium in the periodic table, sodium can be expected to exhibit similar behavior, and thus, it is anticipated that considerable similarities may exist between Li and Na battery materials. However, differences in ionic size and charge density introduce various complications, making the application of the existing knowledge base regarding LIBs a non-trivial effort, as certain chemistries and crystal structures are physically incapable of accommodating the high volumetric strains associated with Na$^+$ de/insertion processes. Furthermore, Ong et al. have examined the specific voltage and diffusion barrier differences between Li/Na de/insertion into select layered, olivine, maricite and NASICON structures, demonstrating large drops in reaction voltages attributed predominantly to effects occurring within the cathode material itself, while also exhibiting high dependence on the specific host structure(s) used.
As mentioned previously, sodium-ion batteries have attracted considerable attention as of late due to the rising need for reliable and cost effective energy storage solutions. Sodium-ion batteries offer a range of key benefits that enable them to be a direct replacement for existing lithium-ion technology. They are:

1. Na-ion materials have lower material costs than Li-ion counterparts
 a. Sodium carbonate is < 10% the cost of lithium carbonate
 b. Cathode and electrolyte costs can account for ca. 50% of cell costs

2. Sodium is more abundant in the Earth’s crust (Na ~ 2.6% vs. Li ~ 0.005%) and is not geographically sparse

3. Na-ion materials can leverage existing infrastructure/fabrication techniques for Li-ion materials

4. Current collectors may utilize aluminum rather than copper as is used in Li-ion cells

As a whole, sodium batteries are of considerable interest for utilization in large-scale energy storage systems due to the inherent reduction in volumetric/gravimetric capacities when comparing against existing lithium technology. Here, sodium batteries intrinsically suffer lower capacity metrics in comparison to lithium based chemistries due to the differences in their respective molar masses/densities. And while high performance sodium batteries may eventually replace commercial Li-ion cells, the majority of attention is being directed towards large-scale energy storage solutions that hinge on cost analyses.

Developed in the early 1960’s, sodium sulfur batteries emerged as an incredibly simple battery chemistry utilizing elemental sodium and sulfur electrodes with a solid β"-Al2O3 electrolyte. The unique use of a ceramic electrolyte makes it necessary to maintain the cell between 280°C – 350°C in order to facilitate high Na⁺ diffusivity through the solid electrolyte, while maintaining both electrodes in a molten state. While these considerations place additional engineering considerations into the various methods/techniques of temperature regulation/insulation of an overall sodium-sulfur cell, they have been demonstrated to be exceedingly resilient against a number of failure scenarios including external short circuits, fire, and flooding damage protection. Cells of this type are highly competitive in terms of their coulombic efficiency (~100%) and service life, demonstrating excellent capacity retention beyond 5000 cycles, making this an attractive technology for large scale energy storage solutions. In fact, further development of sodium-sulfur batteries have widely focused on the implementation of room-temperature
sodium-sulfur batteries (RT Na-S), potentially opening up this cell chemistry for additional commercial/consumer type applications.52,53

Additional work into molten sodium cell chemistries by the Zeolite Battery Research Africa Project (ZEBRA) group, has identified a similar chemistry. In the charged state, the negative electrode consists of molten sodium metal, and the positive electrode is a molten Ni/NiCl mixture. An additional molten salt eutectic NaCl/AlCl\textsubscript{3} is used to promote transport of Na+ from the positive electrode to the \(\beta^+\)-alumina separator as shown by the equations listed below.

\textbf{Equation 2-15:} \quad \textit{Positive Electrode:} \quad \text{NiCl}_2 + 2Na^+ + 2e^- \rightleftharpoons \text{Ni} + 2\text{NaCl}

\textbf{Equation 2-16:} \quad \textit{Negative Electrode:} \quad \text{Na} \rightleftharpoons \text{Na}^+ + e^-

\textbf{Equation 2-17:} \quad \textit{Net Reaction:} \quad \text{NiCl} + 2\text{Na} \xleftrightarrow{2.5\text{BF}} \text{Ni} + 2\text{NaCl}

Further emphasizing the potential applications of ZEBRA batteries, the cell can be assembled in the discharged state, using only Ni and NaCl as starting materials. Additions of aluminum and iron sulfide further improve the performance of the cell, as they protect against sudden polarization of the cell and to intentionally poison the surface of the nickel particles such to prevent Ni deposition and particle growth throughout subsequent cycles respectively.54

\textbf{Equation 2-18:} \quad \text{Al} + 4\text{NaCl} \xleftrightarrow{1.5\text{BF}} \text{NaAlCl}_4

While ZEBRA batteries and similar molten electrode cells offer high capacities and excellent lifetime metrics, they require temperatures in excess of 150\textdegree C to maintain the molten state of the electrodes, requiring additional cell design to accommodate heating elements and insulating jackets, etc. Such illustrates the need for high performance sodium-ion cells operating at room temperature. The following subsections consider the various components and structures used for solid-state electrodes for sodium batteries, while drawing specific correlations and comparisons between analogous lithium compositions where applicable.
2.1.1.2.1 Negative Electrodes

Design and development of suitable negative electrodes is centered around several ideal properties:

1. Low redox voltage, such that the calculated full cell potential (Equation 2-2) is a maximum.
2. High capacity, *i.e.* accommodation of a large number of sodium ions.
3. High reversibility and stability.
4. Low cost.
5. Low volumetric change during cycling.

In practice, optimization of overall anode properties considers a combined sum of these main concerns, with special emphasis placed on certain aspects according to the intended application.

Generally speaking, motivations for Li-ion and Na-ion cells are centered around the reactivity of lithium and sodium metal anodes, with the latter being considerably more reactive, giving rise to a number of safety concerns surrounding cells using sodium metal anodes. While it is convenient to utilize sodium metal electrodes for laboratory scale measurements development of a high performance Na-ion anode material is necessary to enable the safe operation of commercial large format cells. Here, the use of an insertion material ensures that sodium metal may not be exposed to ambient air/moisture in the event of a cell rupture/leak.

2.1.1.2.1.1 Carbon Anodes

Carbonaceous materials are utilized for low cost/high capacity anodes across a variety of battery chemistries including alkaline cells, and advanced lithium-ion batteries. Containing a number of unique chemical properties, there are a considerably large number of carbon allotropes worthy of investigation for anode applications.

Graphitic materials, consisting of coherent graphene layers, have demonstrated certain limitations in specific capacity regarding Na⁺ de/insertion processes. Early reports by Doeff *et al.* consider sodium insertion properties of carbonaceous anodes derived from common crude carbon sources (petroleum coke, Shawinigan black, and microcrystalline graphite) demonstrating a significant dependence on the specific electrolyte(s) used and specific microstructure of the active material(s). In fact, the extent of sodium
insertion was found to be drastically lower than that of lithium, producing approximate compositions \(\text{ca. NaC}_{30}, \text{NaC}_{15} \) and \(\text{NaC}_{70} \) for petroleum coke, Shawinigan black, and graphite derived anodes respectively.

The relatively poor performance of graphite is somewhat surprising, as complexes for lithium are commonly reported to \(\text{ca. LiC}_6 \)\(^{56-58} \) indicating that the physical size differences between \(\text{Li}^+ \) and \(\text{Na}^+ \) offer considerable challenges to designing suitable sodium ion insertion materials. *In-situ* Raman and *ex-situ/in-situ* X-ray Diffraction offers additional insight into the structural evolution of graphite under \(\text{Na}^+ \) de/insertion, resembling the electrochemical features in LIBs,\(^{59-61} \) and suggests an additional intercalation of solvated sodium complexes in the presence of linear ether-based electrolytes, leading to exfoliation and degradation of the graphite electrode.

Additionally, Zhu *et al.* propose that \(\text{Na}^+ \) insertion begins by a high-stage \((n>2)^-\) intermediate compound \((\text{NaC}_x)\) followed by successively lower order intermediates \((\text{NaC}_x)\) resulting in the transition from a flat voltage plateau to various sloping regions, indicating substantial energy differences between the different graphite intercalation compounds (GICs).\(^{62} \) Due to size restrictions surrounding the interlayer spacing \((\text{ca. 3.4Å})\) of graphite, additional modifications of the structure of graphite anodes have proven to enable significantly higher specific capacities by nature of the expanded interlayer structure, enabling facile \(\text{Na}^+ \) intercalation. In fact, hard-carbon (non-graphitizable carbon) has demonstrated further advantages over traditional graphite anodes, demonstrating upwards of 220 mAh/g.\(^{63} \) Hard-carbons such as these however, have demonstrated severe electrolyte degradation against common ethylene carbonate (EC) and propylene carbonate (PC) based electrolytes, requiring careful modification of the electrode interface by suitable electrolyte additives. While vinylene carbonate (VC) has been demonstrated to suitably passivate the electrode interface in analogous lithium cells, VC has been shown to exhibit deleterious effects on the \(\text{Na}^+ \) insertion into hard-carbon electrodes. Further comments are provided in section 2.1.1.2.2.

More recent works\(^{64-67} \) have demonstrated the enhanced capability of porous carbon anodes derived from organic precursors for sodium ion storage. Introduction of nanoporosity coupled with high defect densities within graphene layers has since brought carbonaceous sodium anodes back into focus, exhibiting reversible capacities in excess of 300 mAh/g throughout the first 1000 cycles.

* Stage order \((n)\) refers to the number of graphene layers between \(\text{Na}^+ \) intercalation layers
Furthermore, graphene nanosheets (3-4 layers) are an interesting subcategory of graphitic anodes, introducing significantly higher surface areas and similar bulk characteristics to graphitic anodes. Capacities up to 220-260 mAh/g have been reported68,69 within the 0.01 – 2.0V potential range vs. Na with two main Na+ storage mechanisms being identified: (1) electro-adsorption/desorption and (2) bulk de/insertion. Limited by their insufficient d-spacing to accommodate Na+ de/insertion, carbon nanotubes and mesocarbon microbeads (MCMB) have not demonstrated as much utility toward Na+ storage. However, considerable improvement has been noted in pyrolyzed hollow carbon nanowires; exhibiting excellent cycling stability over 400 cycles and high reversible capacities ca. 250mAh/g.70

Graphite derivatives have commanded considerable attention over the passed few years and have prompted the development of expanded graphite structures in order to overcome the shortcomings of traditional graphitic materials. Taking a computational approach, Kang \textit{et al.} investigated the de/sodiation properties of expanded graphite structures considering both epoxide and hydroxide functional groups, discovering considerably greater performance across modified graphite oxides using epoxide functional groups, arising from strong interaction energies between Na+ and the respective functional group(s).71

Similar structural modifications can be achieved by introduction of covalently bonded sulfur. Sulfur bonded graphene (3-4 layers) has demonstrated 0.13Å increase in interlayer distance with respect to that of graphite, providing improved cycling performance and high capacity (291 mAh/g) corresponding to an NaC$_{7.7}$ intercalation product; remarkably close to the LiC$_6$ compositional limit for Li-ion batteries.72

2.1.1.2.1 Sodium alloys: Group-14 Na Anodes (Si, Sn, Pb)

Relative to carbonaceous materials, silicon is an attractive alternative anode material for LIBs (4200 mAh/g theoretical capacity) due to its high theoretical capacity. However, due to the large volumetric changes that occur during reversible Li+ de/insertion, implementation of Si based anodes has been largely inhibited. Although considerable difficulty surrounding reversible Na+ de/insertion into analogous sodium structures has proven to be largely limited by the significant differences in ionic sizes between Li+ and Na+, comparative examination of the insertion energetics of Li/Na/Mg into crystalline and amorphous silicon demonstrate the reduced volumetric changes and more-favorable insertion processes of amorphous silicon anodes for SIBs.73-75 However, more recent experimental considerations76,77 have demonstrated the relative inactivity of silicon for SIB anode applications, likely limited by poor reaction kinetics at ambient and even
elevated (60°C) temperatures. Despite some of this controversy, focus towards alloy-based anode materials for SIBs has been largely devoted to Si, due to the considerably low volumetric expansion when compared against other alloy anode compositions based on Ge, Sn, and Sb. Shimizu et al. have demonstrated electrochemical activity of SiO thick film electrodes, producing initial capacities ca. 200 mAh/g. In fact, finely dispersed Si within SiO$_2$ matrix has demonstrated high activity of Si compared to bulk Si anodes, demonstrating potential routes for future utilization of silicon-based anodes for SIBs.

Likewise, tin-based compounds have been shown to form solid-solutions with lithium and sodium, making them potential high capacity anodes for SIBs. Due to similar investigations for lithium anodes, metallic Sn have shown equal promise for anode materials, and initial DFT calculations have predicted several phase transitions including NaSn$_2$, NaSn, and Na$_9$Sn$_4$ before reaching a theoretical capacity of 847 mAh/g (Na$_{15}$Sn$_4$). However, much like the analogous Li-Sn anodes, failure mechanisms surrounding the large volumetric changes during the de/sodiation process (upwards of 420%) result in pulverization of the active material, leading to extensive degradation in electrode quality. Suitable nanocomposites/nanostructuring has, and may continue to improve the capacity retention of metallic Sn-based anodes. However, the enormous volumetric expansion during cycling has largely limited the practical implementation of metallic Sn anodes.

Alloying of Sn with additional sodium-active elements provides a potential route for utilization of Sn-based compositions without significantly sacrificing the intrinsically high discharge capacity. As such, group IV-VI Sn alloys, and similar intermetallic compounds have been investigated as potential anode materials for SIBs. While electrochemical properties of Sn-Ge lithium anode alloys are not fully understood, studies of Sn-Ge electrodes produced by glancing angle deposition have demonstrated the increased performance benefits of nanostructured thin films, with investigations into tin oxide compounds demonstrating superior performance of SnO over SnO$_2$ and SnO$_2$/C composites attributable to vast differences in electrical conductivity. As a whole, active/inactive intermetallics/composites are widely used as a buffering matrix to accommodate the large volumetric strains that arise under normal operating conditions. Dispersion of Sn within metallic Cu$_6$Sn$_5$ and Cu$_6$-Sn$_5$-TiC-C composites have demonstrated excellent rate capability and reversible capacities up to ~400 mAh/g, providing a suitable pathway towards optimization of Sn-based compounds.
Lead (Pb) has also been investigated as a potential alloying electrode material, with sputtered/composite lead electrodes exhibiting four distinct voltage plateaus96 reaching full capacity (485mAh/g; Na\textsubscript{15}Pb\textsubscript{4}) as demonstrated by Ellis et al.77 An overall phase progression is described as:

\textbf{Equation 2-19:}

\[\text{Pb} \xrightarrow{0.5V \text{ vs. Na/Na}^+} \text{NaPb}_3 \xrightarrow{0.4V \text{ vs. Na/Na}^+} \text{NaPb} \xrightarrow{0.2V \text{ vs. Na/Na}^+} \text{Na}_9\text{Pb}_4 \xrightarrow{0.13V \text{ vs. Na/Na}^+} \text{Na}_{15}\text{Pb}_4 \]

The large Na:Pb ratio in the final alloy identifies a high intrinsic Na storage capability of Pb electrodes. However, due to catalytic electrolyte decomposition that has been documented on pure Pb surfaces, it is necessary to design a suitable protective layer to prevent cell degradation. It has been proposed that maintaining the Pb electrode in a sodiated state may limit the amount of catalytic decompositions, with additional utilization of suitable SEI additives exhibiting considerable improvements over the bare Pb surfaces.96 Additional investigations into a number of M(NO\textsubscript{3})\textsubscript{2} structures has identified electrochemical activity of Pb(NO\textsubscript{3})\textsubscript{2}/Carbon composites within lithium metal cells demonstrating a high reversible capacity of >450mAh/g and 82.9% capacity retention at 50 mA/g after 45 cycles.97–99 While no known reports on utilization of Pb(NO\textsubscript{3})\textsubscript{2} in analogous sodium cells exist, it is expected that similar electrochemical activity exists, potentially offering an alternative to the pure Pb electrodes while still maintaining nearly equal capacity.

\subsection{Sodium alloys: Group-15 Na anodes (P, As, Sb, Bi)}

In addition to the aforementioned compounds, group-15 elements (P, As, Sb, Bi) also form alloying compositions with sodium. Particularly advantageous over some of the group-14 electrodes, various group-15 elements have demonstrated considerable elastic softening (upwards of 60\%) during sodiation, acting to mitigate the pulverization process that most group-14 compounds demonstrate.100 Variation in the Young’s and shear moduli of Na-P, Na-As, and Na-Sb phases arise primarily from the elastic anisotropy of their respective monoclinic crystal structures, producing 40-60\% elastic softening at full sodiation. Changes in the intrinsic mechanical properties of group-15 sodium compounds are still notably improved over those of similar group-14 compounds,101 indicating that suitable optimization with buffering elements/composites can offer further improvements in reversibility and capacity retention. Such has already been demonstrated by investigations into Sb-C, NiSb, and FeSb\textsubscript{2} composites.102–106
Multiple reports100,107--109 have demonstrated the improved capacity retention of Bi and Bi-based compounds due to minimal changes in mechanical behavior as a function of sodiation. However, observations by \textit{ex-situ} XRD and DFT calculations imply the Na+ storage mechanism occurs by an intercalation process (by nature of the large 003 interlayer spacing of 3.95Å) rather than the formation of alloying compounds107 suggesting minimal nanostructuring necessary to achieve high reversible capacities.

\subsection{Oxides (Anodes)}

Several layered and 3D-interconnected oxide structures have been identified as potential high performance sodium anodes. Lithium titanate (LTO) spinels have been widely investigated for lithium anodes, demonstrating excellent cycling stability attributable to the optimal diffusional pathways and structural stability of the spinel framework.110 Additionally, sodiated titanium oxides form a variety known layered structures demonstrating relatively stable storage capacities of 93-112 mAh/g at high rates up to 5C, making a compelling case for its implementation as an advanced anode material (Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}, Na\textsubscript{0.66}[Li\textsubscript{0.22}Ti\textsubscript{0.78}]O\textsubscript{2}, and Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-C composites).111,112

Stemming from the multiple polymorphs of TiO\textsubscript{2}, several sodium de/insertion mechanisms have been proposed. Wu \textit{et al.} have demonstrated the partial reduction to metallic Ti, Na\textsubscript{2}O, and amorphous sodium titanate by a conversion type reaction,113 along with considerably different electrochemical features as compared to Li+ de/insertion.114 Similar TiO\textsubscript{2} bronze structures have shown electrochemical activity,115 but with considerably poor capacity retention within the first 100 cycles. Separate studies on TiO\textsubscript{2} nanorods/tubes have demonstrated improved capacity retention, and reversibility,116 with improvement in performance of large diameter (>80nm) nanotubes being demonstrated for amorphous TiO\textsubscript{2}. Additional improvements of LTO based electrodes have been made through improving bulk conductivity by transition metal doping (Li\textsubscript{x}MTi\textsubscript{5}O\textsubscript{12})117 and carbon nanocomposites.112

The spinel structure is an ideal candidate for insertion based electrodes due to the 3D diffusional pathways, allowing for facile Li+/Na+ mobility through the host structure. Focus into Me\textsubscript{3}O\textsubscript{4} (Me = Co, Fe, Mn, Mg, Zn, Ca) based spinels have demonstrated high capacities (>200mAh/g) and structural stability during reversible cycling in sodium cells, while offering a low cost highly abundant alternative chemistry.118--121 Additional comments on spinel structured electrodes is covered in a following section.
2.1.1.2.1.5 Sulfides (Anodes)

Investigations on layered carbonaceous anode structures have revealed that successful adaptation of well studied lithium-based layered structures revolves around the larger interlayer spacings required for reversible Na\(^+\) de-insertion. Graphene/Transition-metal-dichalcogenide conversion-typed layered nanostructures have demonstrated promising results as electrode materials in Li-ion batteries,122-128 with similar attention being directed to MoS\(_2\)/graphene and WS\(_2\)/graphene composites.129,130 Despite the relatively open layered structure, Li\(^+\) insertion into MoS\(_2\) occurs distinctly by a conversion reaction:

\textbf{Equation 2-20:} \[4Li^+ + 4e^- + MeS_2 \rightleftharpoons 2Li_2S + Me \]

2.1.1.2.1.6 Fluorides (Anodes)

Considering some of the fluoride chemistries, CoF\(_2\) has been reported in a number of lithium-ion cells, demonstrating high discharge capacities up to 595 mAh/g when being implemented as a cathode material.131 However, when operating within 1.0 - 0.01V (vs. Li/Li\(^+\)) a reversible interfacial intercalation reaction is observed providing up to 400 mAh/g during the initial discharge reaction.132 Tan \textit{et al.} further demonstrate CoF\(_2\) as a feasible anode material for sodium-ion batteries, demonstrating an initial discharge capacity of 402 mAh/g at a current density of 553 mA/g. However, capacity retention is notably poor at 47 mAh/g after just 30 cycles. While fluorides are generally attractive due to their high electronegativity of the M-F bonds, current investigations of sodium-based chemistries are limited for anode applications.

2.1.1.2.2 Electrolytes

It has been noted133,134 that Na metal and certain carbon-based anodes do not form a stable surface-electrolyte-interface (SEI) layer, leading to substantial coulombic inefficiencies and cell degradation for common inorganic sodium electrolytes. Therefore, in order to further advance the field of SIBs, additional work on stable electrolyte compositions and additives (designed to form a stable SEI layer) is needed to provide high-performance SIBs. Moreover, particular design and optimization of suitable electrolyte compositions are highly dependent on the specific anode/cathode compositions utilized, and thus specific tailoring is needed. Generally requiring that the electrochemical potential of the anode/cathode are lower/higher than the lowest/highest un/occupied molecular orbitals (LUMO/HOMO) respectively.
Four general classes of electrolytes can be identified for sodium electrolytes: (1) inorganic electrolytes, (2) aqueous electrolytes, (3) ionic liquid electrolytes and (4) solid (polymer) electrolytes. Here brief sections are provided for these main electrolyte categories. Table 2-1 gives a representative look on select anode/electrolyte/cathode compositions reported in literature.

<table>
<thead>
<tr>
<th>Anode</th>
<th>Cathode</th>
<th>Electrolyte salt</th>
<th>Solvent</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite</td>
<td>P2: (\text{Na}0.66[\text{Ni}{0.33}\text{Mn}_{0.66}]\text{O}_2)</td>
<td>(\text{Na}_2\text{SO}_4)</td>
<td>(\text{H}_2\text{O})</td>
<td>135</td>
</tr>
<tr>
<td>NaTi(_2)(PO(_4))(_2)/Activated Carbon</td>
<td>(\lambda)-MnO(_2)</td>
<td>(\text{Li}_2\text{SO}_4 + \text{Na}_2\text{SO}_4)</td>
<td>(\text{H}_2\text{O})</td>
<td>136</td>
</tr>
<tr>
<td>SnO(_2)</td>
<td>Na</td>
<td>(\text{NaBF}_4)</td>
<td>tetraethylene glycol dimethyl ether</td>
<td>137</td>
</tr>
<tr>
<td>Na</td>
<td>(\text{NaV}6\text{O}{15}) nanorods</td>
<td>(\text{NaClO}_4)</td>
<td>EC:DEC</td>
<td>138</td>
</tr>
<tr>
<td>TiO(_2): Anatase Li(_2)Ti(_3)O(_7): Cu doped</td>
<td>Na</td>
<td>(\text{NaClO}_4)</td>
<td>EC:DMC</td>
<td>113-117</td>
</tr>
<tr>
<td>Na</td>
<td>(\text{NaCrO}_2)</td>
<td>(\text{NaClO}_4)</td>
<td>EC:DMC</td>
<td>139</td>
</tr>
<tr>
<td>TiO(_2): Anatase SnO(_2@)MWCNT Hard Carbon</td>
<td>Na</td>
<td>(\text{NaClO}_4)</td>
<td>EC:PC</td>
<td>140-142</td>
</tr>
<tr>
<td>Fe(_2)O(_4):C</td>
<td>(\text{Na}[\text{Ni}{0.25}\text{Fe}{0.5}\text{Mn}_{0.25}]\text{O}_2)</td>
<td>(\text{NaClO}_4)</td>
<td>EMS:FEC</td>
<td>143</td>
</tr>
<tr>
<td>Spherical Carbon Co(_3)O(_4)</td>
<td>Na</td>
<td>(\text{NaClO}_4)</td>
<td>PC</td>
<td>144-145</td>
</tr>
<tr>
<td>Na</td>
<td>Oligopyrene (OPr) (\text{Na}_2\text{FeP}_2\text{O}_7) (\text{Na}2\text{Fe}2(\text{Fe}{2}\text{Mn}{1})\text{P}_2\text{O}_7) (\text{Na}_2\text{C}_6\text{O}_6) (disodium rhodizinate) (\text{FeS}_2) (\text{VO}_2) (\text{Na}_2\text{V}_2(\text{PO}_4)_3) (\text{Na}_2\text{M}_2(\text{PO}_4)_2\text{F}_3) (M=(\text{Ti},\text{Fe},\text{V}) (\text{(NH}_4))(\text{V}_2\text{O}_7)</td>
<td>(\text{NaClO}_4)</td>
<td>PC</td>
<td>9,146-154</td>
</tr>
<tr>
<td>Na</td>
<td>P2: (\text{Na}0.66[\text{Ni}{0.33}\text{Mn}_{0.66}]\text{O}2) (\text{Na}0.7[\text{Fe}{0.7}\text{Mn}{0.3}]\text{O}_2)</td>
<td>(\text{NaClO}_4)</td>
<td>PC:FEC</td>
<td>155,156</td>
</tr>
<tr>
<td>Hard Carbon</td>
<td>Na</td>
<td>(\text{NaClO}_4)</td>
<td>PC:FEC</td>
<td>142</td>
</tr>
<tr>
<td>Disordered carbon</td>
<td>(\text{Na}[\text{Ni}{0.3}\text{Mn}{0.7}]\text{O}_2)</td>
<td>(\text{NaClO}_4)</td>
<td>PC:FEC</td>
<td>157</td>
</tr>
<tr>
<td>Na</td>
<td>(\text{NaFe}4(\text{Ni}{0.5}\text{Ti}_{0.5})_2\text{O}_2)</td>
<td>(\text{NaFSI})</td>
<td>PC</td>
<td>158</td>
</tr>
<tr>
<td>Na</td>
<td>Na({13.5})C({60})({140})({10})({2}) iron-nickel hexacyanoferrate P2: (\text{Na}{0.6}[\text{Mn}{0.65}\text{Fe}{0.35}\text{Ni}_{0.15}]\text{O}_2) (\text{Na}_2\text{CO}_3\text{M}2\text{Ni}{0.5}(\text{PO}_4)_2\text{P}_2\text{O}_7) (\text{Na}_2\text{CO}_3(\text{PO}_4)_2\text{P}_2\text{O}_7) (\text{Na}_2\text{FeP}_2\text{O}_7) (\text{FeF}_3) / reduced graphene oxide</td>
<td>(\text{NaPF}_6)</td>
<td>EC:DEC</td>
<td>159-167</td>
</tr>
</tbody>
</table>
Inorganic Electrolytes

Inorganic solvents utilize various polar groups (carbonyl (C=O), sulfonyl (S=O), ethers (-O-), etc.) to dissolve the electrolyte salt, and are widely used throughout commercial electrochemical devices due to their high dielectric strengths, excellent ionic conductivity, and large electrochemical window. Due to the differences in ionic radii and charge densities between Li$^+$ & Na$^+$, large differences in solvation properties

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Inorganic Solvent</th>
<th>Polar Groups</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCrO$_2$</td>
<td>NaPF$_6$</td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>Mn$_2$O$_4$ / Fe$_2$O$_3$ / Co$_3$O$_4$</td>
<td>Na</td>
<td>NaPF$_6$</td>
<td>EC:DEC:PC</td>
</tr>
<tr>
<td>TiO$_2$: Anatase</td>
<td>Na</td>
<td>NaPF$_6$</td>
<td>EC:DMC:PC</td>
</tr>
<tr>
<td>Na</td>
<td>P2: Na${x,66}$Fe${y,33}$Mn${z,66}$O${2}$</td>
<td>NaPF$_6$</td>
<td>PC</td>
</tr>
<tr>
<td>Na</td>
<td>NaCrO$_2$</td>
<td>NaPF$_6$</td>
<td>PC</td>
</tr>
<tr>
<td>Na</td>
<td>(NH$_4$)$_2$V6O${16}$</td>
<td>NaPF$_6$</td>
<td>PC</td>
</tr>
<tr>
<td>Na</td>
<td>NaCrO$_2$</td>
<td>NaTFSI</td>
<td>EC:DEC:PC</td>
</tr>
<tr>
<td>TiO$_2$: Anatase</td>
<td>Na</td>
<td>NaTFSI</td>
<td>EC:DMC:PC</td>
</tr>
<tr>
<td>Na$_2$Ni$_3$(PO$_4$)$_2$P$_2$O$_7$</td>
<td>2M NaOH-aqueous</td>
<td>bis(trifluoromethylsulf onyl)amide (NaNTf2) : 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulf onyl)amide (C4mpyrNTf2)</td>
<td>170</td>
</tr>
<tr>
<td>Na</td>
<td>Cu</td>
<td>Na$_2$FeP$_2$O$_7$ bis(fluorosulfonyl)amide : N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide</td>
<td>171</td>
</tr>
<tr>
<td>Na</td>
<td>Cu</td>
<td>Na[FSA]-[C2C1im][FSA]</td>
<td>172</td>
</tr>
<tr>
<td>Na</td>
<td>Cu</td>
<td>NaCrO$_2$</td>
<td>Na[FSA]-[C3C1Pyr][FSA]</td>
</tr>
<tr>
<td>Sn film</td>
<td>Na</td>
<td>NaTFSI : 1-butyl-3-methylimidazolium bis(trifluoromethylsulf onyl)imide</td>
<td>175</td>
</tr>
<tr>
<td>Petroleum coke</td>
<td>Na</td>
<td>NaFSA:KFSA (56:44 mol%)</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.1.2.2.1 Inorganic Electrolytes

Inorganic solvents utilize various polar groups (carbonyl (C=O), sulfonyl (S=O), ethers (-O-), etc.) to dissolve the electrolyte salt, and are widely used throughout commercial electrochemical devices due to their high dielectric strengths, excellent ionic conductivity, and large electrochemical window. Due to the differences in ionic radii and charge densities between Li$^+$ & Na$^+$, large differences in solvation properties
have been reported between analogous Li/Na electrolyte compositions owing to differences in conductivity and charge transfer kinetics.175,177,178 Here, the differences in solvation properties are largely due to the charge densities between Li+ and Na+, with the former being significantly higher than the latter, leading to differences in solubility for a number of sodium electrolyte salts (NaBF\textsubscript{4}, NaPF\textsubscript{6}, NaClO\textsubscript{4}, etc.).

Decades of electrolyte research surrounding LIBs have identified a number of inorganic solvents, which have been dually applied to sodium electrolytes. Cyclic/linear carbonates such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) have been utilized in sodium metal/ion cells, but are generally plagued by poor capacity retention due to the catalytic degradation of the electrolyte at the electrode surfaces. The surface-electrolyte-interface (SEI) layer is a common problem throughout both lithium and sodium batteries, and often requires the formation of a stable passivating layer to promote long-term cycling.

Commonly employed sodium electrolytes are based off of sodium hexafluorophosphate (NaPF\textsubscript{6}), sodium perchlorate (NaClO\textsubscript{4}), sodium triflate (NaCF\textsubscript{3}SO\textsubscript{3}), sodium bis(trifluoromethylsulfonyl)imide (NaTFSI), and similar sodium salts mixed with an inorganic solvent capable of completely dissolving the electrolyte salt. Co-blending of inorganic solvents179 is typically performed when optimizing rheological properties of the electrolyte, as illustrated by Figure 2-2, which considers the inverse relationship between ionic conductivity and viscosity.
However, due to the continuous corrosion that has been known to occur on metallic sodium electrodes133 there is an inherent need to introduce electrolyte additives whose sole purpose is to preferentially decompose onto the electrode surfaces, forming a passivation layer protecting against additional electrolyte decomposition. Due to the overwhelming base of knowledge surrounding lithium electrolytes and novel SEI forming additives, it is both a convenient and reasonable starting point to consider established SEI forming additives for lithium metal/ion cells.

Initial investigations into similar electrolyte additives for sodium-based chemistries are comparatively limited, and have only identified fluorinated ethylene carbonate (FEC) as a stable SEI forming agent.143,157 Table 2-2 provides a short overview of established and newly tested electrolyte additives studied for lithium metal/ion cells. With further attention being drawn towards SIBs, it is expected that further progress in this field will rely upon interpolated data from Li-ion electrolytes.
<table>
<thead>
<tr>
<th>Anode</th>
<th>Cathode</th>
<th>Electrolyte Salt</th>
<th>Electrolyte Additive</th>
<th>Abbrev.</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>LiCoO₂</td>
<td>LiPF₆</td>
<td>poly(dimethylsiloxane-co-(siloxane-g-acrylate))</td>
<td>PDMS-A</td>
<td>180</td>
</tr>
<tr>
<td>Li</td>
<td>LiCoO₂</td>
<td>LiPF₆</td>
<td>poly(dimethylsiloxane-co-phenylsiloxane)</td>
<td>PDMS-P</td>
<td>180</td>
</tr>
<tr>
<td>Li</td>
<td>LiCoO₂</td>
<td>LiPF₆</td>
<td>poly[dimethylsiloxane-c-(siloxane-g-ethylene oxide)]</td>
<td>PDMS-EO</td>
<td>180</td>
</tr>
<tr>
<td>Li</td>
<td>LiCoO₂</td>
<td>LiPF₆</td>
<td>2,2'-Bithiophene</td>
<td>2TH</td>
<td>181</td>
</tr>
<tr>
<td>Li</td>
<td>LiCoO₂</td>
<td>LiPF₆</td>
<td>2,2':5',2''-Terthiophene</td>
<td>3TH</td>
<td>181</td>
</tr>
<tr>
<td>Li</td>
<td>LiCoO₂</td>
<td>LiPF₆</td>
<td>2,2'-Bis[4-((4-maleimidophenoxy)phenyl)propane]</td>
<td>BMP</td>
<td>182</td>
</tr>
<tr>
<td>Li</td>
<td>LiMn₁.₅Ni₀.₅O₄</td>
<td>LiPF₆</td>
<td>N-methylpyrrole</td>
<td>MPL</td>
<td>183</td>
</tr>
<tr>
<td>Graphite</td>
<td>LiFePO₄ & Li[Ni₀.₃Co₀.₃Mn₀.₃]O₂</td>
<td>LiPF₆ / LiBF₄ / LiTFSI / LiBOB</td>
<td>adiponitrile</td>
<td>ADN</td>
<td>184</td>
</tr>
<tr>
<td>Graphite</td>
<td>LiFePO₄ & Li[Ni₀.₃Co₀.₃Mn₀.₃]O₂</td>
<td>LiPF₆ / LiBF₄ / LiTFSI / LiBOB</td>
<td>γ-butyrolactone</td>
<td>GBL</td>
<td>184</td>
</tr>
<tr>
<td>Graphite</td>
<td>Li[Li₀.₂Ni₀.₁₅Mn₀.₅₅Co₀.₃]O₂</td>
<td>LiPF₆</td>
<td>4-(perfluorooctyl)-1,3-dioxolan-2-one</td>
<td>PFO</td>
<td>185</td>
</tr>
<tr>
<td>Graphite</td>
<td>Li[Li₀.₂Ni₀.₁₅Mn₀.₅₅Co₀.₃]O₂</td>
<td>LiPF₆</td>
<td>4-(perfluorohexyl)-1,3-dioxolan-2-one</td>
<td>PFH</td>
<td>185</td>
</tr>
<tr>
<td>Graphite</td>
<td>Li[Li₀.₂Ni₀.₁₅Mn₀.₅₅Co₀.₃]O₂</td>
<td>LiPF₆</td>
<td>4-(perfluorobutyl)-1,3-dioxolan-2-one</td>
<td>PFB</td>
<td>185</td>
</tr>
<tr>
<td>Graphite</td>
<td>Li[Li₀.₂Ni₀.₁₅Mn₀.₅₅Co₀.₃]O₂</td>
<td>LiPF₆</td>
<td>4-trifluoromethyl)-1,3-dioxolan-2-one</td>
<td>TFM</td>
<td>185</td>
</tr>
<tr>
<td>Graphite</td>
<td>Li[Li₀.₂Ni₀.₁₅Mn₀.₅₅Co₀.₃]O₂</td>
<td>LiPF₆</td>
<td>methyl phenyl carbonate</td>
<td>MPC</td>
<td>186</td>
</tr>
<tr>
<td>Graphite</td>
<td>Li[Li₀.₂Ni₀.₁₅Mn₀.₅₅Co₀.₃]O₂</td>
<td>LiPF₆</td>
<td>ethyl phenyl carbonate</td>
<td>EPC</td>
<td>186</td>
</tr>
<tr>
<td>Graphite</td>
<td>Li[Li₀.₂Ni₀.₁₅Mn₀.₅₅Co₀.₃]O₂</td>
<td>LiPF₆</td>
<td>diphenyl carbonate</td>
<td>DPC</td>
<td>186</td>
</tr>
<tr>
<td>Graphite</td>
<td>Li[Li₀.₂Ni₀.₁₅Mn₀.₅₅Co₀.₃]O₂</td>
<td>LiPF₆</td>
<td>vinylene carbonate / prop-1-ene-1,3-sultone / ethylene sulfite / trimethylene sulfate / 1,3,2-dioxathiolane-2,2-dioxide / methylene methanedisulfonate / tris(trimethylsilyl) phosphate</td>
<td>VC / PS / ES / TMS / DTD / MMD / TMSP</td>
<td>187</td>
</tr>
<tr>
<td>Graphite</td>
<td>Li[Li₀.₂Ni₀.₁₅Mn₀.₅₅Co₀.₃]O₂</td>
<td>LiPF₆</td>
<td>di(methylsulfonfonyl) methane</td>
<td>DMSM</td>
<td>188</td>
</tr>
<tr>
<td>Li</td>
<td>LiMn₁.₅Ni₀.₅O₄</td>
<td>LiPF₆</td>
<td>ethyl methyl sulfone / dimethyl sulfone</td>
<td>EMS / DMS</td>
<td>189</td>
</tr>
<tr>
<td>Li</td>
<td>Li-rich NMC</td>
<td>LiPF₆</td>
<td>tris(2,2,2-trifluoroethyl) phosphite</td>
<td>TTFP</td>
<td>190</td>
</tr>
<tr>
<td>Graphite</td>
<td>LiMn₂O₄</td>
<td>LiPF₆</td>
<td>methyl vinyl sulfone / ethyl vinyl sulfone</td>
<td>MVS / EVS</td>
<td>191</td>
</tr>
<tr>
<td>Li</td>
<td>Cyclam</td>
<td>LiPF₆</td>
<td>1,4,8,11-tetraazacyclotetradecane</td>
<td>TACTD</td>
<td>192</td>
</tr>
</tbody>
</table>
2.1.1.2.2.2 **Aqueous Electrolytes**

Due to the highly exothermic reaction involving Na metal and H$_2$O, aqueous electrolytes are not compatible with alkali metal batteries. Due to overall costs and safety concerns surrounding inorganic solvents, utilization of an abundant and low cost solvent such as H$_2$O would be highly advantageous. However, aqueous electrolytes are typically limited by their narrow electrochemical window, making it necessary to carefully match anode/cathode compositions such that H$_2$ and O$_2$ evolution does not occur during normal cell operation. Early reports of aqueous Na–ion electrolytes utilized for Na$_{0.44}$MnO$_2$ (C$_{th}$ = 160 mAh/g) have been demonstrated by Sauvage et al., leading to the development of an Activated carbon/Na$_{0.44}$MnO$_2$ hybrid cell. Further improvements have been made by switching to λ-MnO$_2$ delivering specific capacities up to 390.7 mAh/g, with excellent capacity retention of 85 mAh/g after 500 cycles at 136 mA/g with NaSO$_4$ based aqueous electrolytes.

Similar large-format energy storage devices have been constructed with activated carbon/NaTi$_2$(PO$_4$)$_3$ composite anodes demonstrating the scalability and economic benefits of aqueous sodium batteries. More recent investigations on polyanionic compounds using aqueous sodium electrolytes have been reported for Na$_2$FeP$_2$O$_7$, Na$_3$Ti$_2$(PO$_4$)$_3$, and even LiFePO$_4$. While aqueous electrolytes are highly attractive due to the benign and low cost nature as compared to conventional electrolytes, they are overshadowed by conventional inorganic solvents due to the limited voltage stability of H$_2$O that restricts its usage to only low voltage cell chemistries.

2.1.1.2.2.3 **Ionic Liquid (IL) Electrolytes**

Commercial high-performance batteries generally employ inorganic electrolytes, and as such, have attributed LIBs as inherent safety risks due to the high volatility and flammability of inorganic solvents. The interest of developing ‘safe’ electrolyte compositions for LIBs has demonstrated a number of nonflammable molten eutectic electrolyte salts capable of addressing the needs for high safety margins in LIBs. General development of ionic liquid electrolytes focusing on a combination of desirable properties: low vapor-pressure, non-flammable, high thermal stability, high ionic-conductivity, and wide electrochemical window. As their name suggests, ionic liquids (ILs) are primarily composed of a mixture of two or more lithium/sodium salts, whose melting points are relatively close, or well below room temperature such that they are liquid at reasonable temperatures.
Chloroaluminate molten salts have seen notable interest over the years as an ambient temperature ionic-liquid, demonstrating high cycling efficiency of sodium. However, major considerations of sodium ionic liquid electrolytes have been centered around bis(fluorosulfonyl)amide and bis(trifluorosulfonyl)amide (FSA and TFSA respectively) based ionic liquids. Monti et al. have investigated the solvation characteristics of [Na(TFSI)]\(^{1-}\) charge carriers in comparison to their lithium ionic liquid analogues. Detailed vibrational characterization identifies [Na(TFSI)]\(^{3-}\) as the primary charge carrier, compared to the [Li(TFSI)]\(^{+}\) charge carriers observed for lithium IL compositions. The increased solvation of the larger Na\(^+\) cation has wide implications on ILs by impacting overall IL viscosity and ionic conductivity of the electrolyte as a whole, generally making sodium IL compositions increasingly viscous as compared to analogous lithium ILs.

Ionic liquids themselves, offer considerable thermal and electrochemical stability, yet are still generally outweighed by conventional inorganic electrolyte compositions due to the need for elevated temperatures to reach appreciable conductivity values. A short table of commercially available ILs is provided below for completeness.

Table 2-3: Examples of commercially available ionic liquid compositions for sodium ion batteries

<table>
<thead>
<tr>
<th>Cation</th>
<th>Anion</th>
<th>Abbrev.</th>
<th>mp</th>
<th>mS/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-butyl-1-methylpyrrolidinium</td>
<td>bis(fluorosulfonyl)imide</td>
<td>[C(_4)C(_1)pyr][FSI]</td>
<td>-17.7°C</td>
<td>5.7V @ 20°C, 6.9 @ 20°C</td>
</tr>
<tr>
<td>1-butyl-1-methylpyrrolidinium</td>
<td>bis(trifluoromethyl)sulfonyl)imide</td>
<td>[C(_4)C(_1)pyr][TFSI]</td>
<td>-6°C</td>
<td>6.0V @ 25°C, 2.7 @ 25°C</td>
</tr>
<tr>
<td>1-ethyl-3-methylimidazolium</td>
<td>bis(fluorosulfonyl)imide</td>
<td>[C(_3)C(_1)im][FSI]</td>
<td>-13°C</td>
<td>4.29V @ RT</td>
</tr>
<tr>
<td>1-methyl-1-(2-methoxyethyl)pyrrolidinium</td>
<td>bis(fluorosulfonyl)imide</td>
<td>[C(_1)C(_1)-O-C(_2)pyr][FSI]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1-methyl-1-(2-methoxyethyl)pyrrolidinium</td>
<td>bis(trifluoromethyl)sulfonyl)imide</td>
<td>[C(_1)C(_1)-O-C(_2)pyr][TFSI]</td>
<td>5.4°C</td>
<td>-</td>
</tr>
<tr>
<td>1-methyl-1-(2-methoxypropyl)pyrrolidinium</td>
<td>bis(trifluoromethyl)sulfonyl)imide</td>
<td>[C(_1)C(_1)-O-C(_3)pyr][TFSI]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2.1.1.2.4 Polymer gel Electrolytes

Polymer-gel electrolytes aim to solve the same problem of volatile/flammable electrolyte compositions by immobilizing the liquid electrolyte within a free-standing body.208-210 Polymer-gel electrolytes stem from the formation of suitable micro/nano ceramic dispersions, which act to retain the electrolyte within a porous matrix. While immobilization of the electrolyte in this manner adds additional safety measures when considering cell ruptures & leaks, there exist several drawbacks toward typical polymer-gel electrolytes: (1) Low liquid retention capacity (2) poor dimensional stability, and (3) interfacial stability concerns.

Here it is necessary to highlight that while most polymer-gel electrolytes utilize inorganic electrolytes, they are still viewed as considerably safer than the former, as the polymer matrix works to prevent loss of the electrolyte in the event of a cell rupture/leak. Polymer compositions such as poly(methyl methacrylate), poly(vinylidene fluoride), poly(vinylidene fluoride-co-hexafluoropropylene), and poly(ethyleneoxide) are typically used throughout literature, with additions of colloidal dispersions of ceramic particles (SiO\textsubscript{2}) being commonly performed to increase mechanical properties of the free-standing electrolyte.208

Since the polymer matrix serves as an immobilizing porous body, additional ionic liquid polymer-gel electrolytes can be formed, demonstrating good ionic conductivities on the order of conventional inorganic electrolytes (5.7 mS/cm).209

2.1.1.2.3 Positive Electrodes

Transition metal oxides make up the majority of cathode compositions considered for practical energy storage usage. While there are a number of possible stoichiometries and crystallographic structures capable of providing ample electrochemical activity, there exist fundamental properties ideal cathode chemistries should provide:

1. Low raw material/production cost
2. Low toxicity of precursors/active materials
3. High gravimetric & volumetric capacity (Ah)
4. High gravimetric & volumetric energy (Wh)
5. High rate capability
(6) High thermal stability & safety

(7) Long cycle/calendar life

Due to the inverse relationship these criteria generally have on one another, high-performance cathode compositions are generally tailored according to the specific operating conditions expected under real-load conditions. Figure 2-3 considers a spider plot comparing common cell metrics between existing commercial Li-ion batteries.

Figure 2-3: Spider plot of select commercial Li-ion battery chemistries comparing common performance metrics between three select cathode compositions

As individual electrode materials possess certain advantages and drawbacks, blended cathode compositions are yet another strategy towards developing optimal energy storage devices, combining advantageous properties from two or more specific compositions.211 This technique is more commonly practiced within established lithium-based chemistries, as understanding of the exact Na+ de/insertion process into many sodium-ion cathodes is not sufficiently understood/optimized for blended cathode compositions.
Overall, the end goal for SIBs is to offer a highly competitive alternative to existing lithium batteries. However, it is often the case that crystal structures/chemistries that have demonstrated excellent properties for LIBs are not easily adapted to analogous sodium chemistries. Jian *et al.* have proposed a methodology towards designing high-capacity cathode materials for SIBs, targeting the development of Li-rich layered compounds for direct application in an analogous Na-rich layered compounds. However, current synthesis techniques have not been able to produce direct sodium analogues, often requiring additional delithiation and subsequent sodiation by electrochemical or ion-exchange methods demonstrating potential barriers to commercialization of SIB technologies. The following sections are aimed at individual chemistries identified as potential cathode materials.

2.1.1.2.3.1 Transition metal oxides

Cathode compositions are commonly based on transition metal oxides, as MO$_6$ (M = Mn, Fe, Co, Ni, Cr) octahedra are capable of a variety of different packing schemes; forming edge/corner shared octahedral networks, double/triple octahedral chains, lamellar structures, and more. Transition metal oxide compounds provide a wide array of crystal structures/allotropes that have been investigated for electrochemical storage applications; With respect to cathode compositions, it is desirable to utilize an open structure capable of accommodating reversible de-insertion of Na$^+$ with minimal volumetric change. However, structures with large interstitial sites are often less stable in their unpopulated (delithiated/desodiated) state, requiring electrochemical cycling within a restricted de-insertion range such to prevent collapse of the crystal structure. Li$_{1-x}$CoO$_2$ is commonly cycled within a narrow reversibility range ($0 < x < 0.5$) in order to prevent degenerative structural transformations that arise from the complete delithiation of the O3-type layered structure. Cobalt oxides have also been investigated for sodium batteries, with early investigations by Delmas *et al.* demonstrating multiple phase transitions that occur with reversible Na$^+$ de-insertion due to shifting of CoO$_2$ planes. While various transition metal oxides have proven to be suitable for sodium-ion batteries, the majority of focus has been directed towards layered manganese oxides which will be discussed in the following sections.

Parant *et al.* have identified a number of layered manganese oxide structures of interest for sodium-ion batteries, and following works by Delmas have established a convenient notation to discern
between the subtle crystallographic differences between layered oxides based on the site preference of the alkali ion ‘A’. As a whole, particular layered cathode compositions A_xMO_2 may be classified as one of the following structure types:

1. O3/O’3/P3-type structures225,226
2. P2/P’2/O2-type structures$^{214,215,223–229}$
3. O6-type structures$^{230–232}$
4. T2-type structures223,225,228,229

The P/O/T notation is provided to designate the coordination of the alkali metal ‘A’ (Li/Na), with P, O, and T indicating trigonal-prismatic, octahedral, and tetrahedral coordinations within the host structure respectively. The specific numbers (P2/P3/O2/O3) correlate to the number of MO$_2$ layers within a single unit cell, and primed superscripts describe a monoclinic structural distortion that typically arises due to cooperative Jahn-Teller distortion of the MO$_6$ octahedra. The close structural relation between the P3 and O3-type structures is realized as a gliding of the MO$_2$ layers, often resulting in easy transformation between the P3 and O3 structures when changing the A-M ratio; the same is the case for P2 and O2-type structures. Identification of the T2-structure has been documented only for layered lithium-based compositions,223 as Na$^+$ exhibits a high affinity towards P and O sites due to size considerations between Li$^+$ and Na$^+$. Figure 2-4 considers the P2, P3, O2 and O3 structures. It is important to note that the α-NaFeO$_2$ structure is equivalent to the O3-structure, with the latter being the preferred notation throughout this section.
Figure 2-4: Layered NaMO$_3$ structures (M = Mn, Fe, Ni, Co) exhibiting trigonal prismatic Na-coordination (a-b) of the P2 and P3-type structures respectively, and octahedral coordination (c-d) for the O2 and O3-type structures respectively.

2.1.1.2.3.1.1 P3/O3-type structures

The O3-structure consists of alternating layers of trigonally distorted MO$_6$ (M = Li, V, Cr, Mn, Fe, Co, Ni) edge sharing octahedra with space group R-3m, with oxygen stacking sequencing:

With A, B, and C indicating oxygen layers and [M] denoting the transition metal. As will be discussed below, the O3 and P3 structures are very similar, only being distinguished by a small relative shifting of the metal oxide layers yielding trigonal-prismatic or octahedral sites between the oxide layers. The P3-structure has an oxygen stacking sequence of:

With Na1 and Na2 indicating one of two possible prismatic sites.
The O3-structure has demonstrated to be highly advantageous for electrochemical de/insertion materials, with early synthesis attempts for O3-type lithium chemistries often requiring soft chemistry techniques such as ion-exchange of the analogous NaCoO$_2$ in order to achieve the O3 structure.\cite{227} As mentioned previously, structural distortions of the O3-structure are systematically observed during electrochemical cycling. Figure 2-5 provides a general voltage profile for NaCoO$_2$ as it relates to the P'3/O'3/O3 structures. As the P2-type NaCoO$_2$ has demonstrated considerably better performance, additional comments on NaCoO$_2$ are provided in a latter section.

![Figure 2-5: Voltage profile of O3-type NaCoO$_2$. Reproduced from ref. 220](image-url)
NaCrO$_2$ also demonstrates an O3-structure, with early investigations by Braconnier et al. demonstrating minimal interest in the chromium oxides due to low discharge capacities. However, more recent considerations have demonstrated high reversible capacities of up to 120 mAh/g$^{234-236}$ corresponding to reversible de/intercalation limits NaCrO$_2$ – Na$_{0.5}$CrO$_2$ with good capacity retention over 50 cycles.237 Further improvement in capacity retention has been demonstrated through carbon coating of NaCrO$_2$ particles with discharge capacities of 99 mAh/g at 150C rates being reported.139,235 Additionally, several ex-situ/in-situ XRD studies238,239 have demonstrated the structural transformations as described by Equation 2-21 and Figure 2-6, which follow a very similar progression as seen for NaCoO$_2$.

Equation 2-21:

$$ (O3) \text{Na}_{1.6}CrO_2 \rightarrow (O3 + O'3) \text{Na}_{0.91-0.83}CrO_2 \rightarrow (P'3)\text{Na}_{0.74}CrO_2 \rightarrow (P'3)\text{Na}_{0.48}CrO_2 $$

![Figure 2-6: Structural phase progression of NaCrO$_2$. Reproduced from Ref. 234](image)
Kubota et al. have observed a migration of Cr$^{4+}$ from the interslab layers into the interslab space confirmed by Rietveld refinement to a proposed $\text{Na}_{0.06}\text{Cr}_{\text{oct}0.1}\text{Cr}_{\text{tet}0.2}(\text{Cr}_{\text{oct}0.7})\text{O}_2$ structural model in which Cr$_{\text{oct}}$, Cr$_{\text{tet}}$, and (Cr$_{\text{oct}}$) denote the occupancy of chromium on octahedral/tetrahedral sites within the interslab space, and octahedral sites within the interslab space respectively. Drastic reduction in discharge capacity upon charging to a 4.5V cutoff, which corresponds to complete extraction of Na$^+$, has been attributed to irreversible migration of chromium into the interslab layers.\(^{238}\) Figure 2-7 provides a visual representation of the proposed chromium migration process.

While NaCrO$_2$ presents itself as a potential sodium-ion insertion material, several drawbacks include (1) the need to restrict cycling within a narrow $0.5 < x < 1.0$ range, and (2) general concerns around the use of a chromium-based chemistry. Here, it is important to note that Cr$^{4+}$ does not pose the same toxicological concerns as Cr$^{6+}$ as pointed out by Xia and Dahn.\(^{236}\) However the majority of chromium minerals and chromium metal supplies within the U.S. are based off imports from South Africa, Kazakhstan, Russia and Mexico, making resources potentially limited and of relatively high cost when compared against other transition metals.\(^{10}\)

![Chromium migration process during electrochemical Na$^+$ extraction. Reproduced from Ref\(^ {238}\)](image)

First investigations into vanadium oxides (O3-NaVO$_2$) originally synthesized by Barker et al., demonstrated very low capacities and poor control over phase purity,\(^ {240}\) with more recent works demonstrating phase pure samples and capacities up to 126 mAh/g\(^ {241}\) generating a renewed interested in layered vanadium compounds. However, pure NaVO$_2$ is highly reducing, requiring it to be handled in a completely oxygen free atmosphere to prevent the spontaneous oxidation reaction described by Equation
2-22, where “Na\text{VO}_2” denotes a combination of NaVO_2 and Na_{0.66}VO_2. Due to the difficulty in preparing O3-type NaVO_2, cells are typically assembled with varying amounts of the O’3-type Na_{0.66}VO_2 with recovery of the O3 structure occurring upon discharge.241 Due to a similar migration process described for NaTiO_2/NaCrO_2, the reversible range of NaVO_2 is limited to 0.5 < x < 1.0 in Na\textsubscript{x}VO_2, as can be seen by the drastic drop in cell performance in Figure 2-8. Overall, NaTiO_2 & NaVO_2 does not present itself as a suitable cathode for common battery applications, as its difficult synthesis and relatively low voltages are considerable drawbacks in comparison to other transition metal compositions.242-244 Additional vanadium compounds, falling within the NASICON structural family are of more practical interest, and will be discussed in a following section.

Equation 2-22:

\[
NaVO_2 + \frac{(1-x)}{4}O_2 \rightarrow "Na_{x}VO_2" + \frac{(1-x)}{2}Na_{2}O
\]

![Figure 2-8: Typical voltage profile of Na\textsubscript{x}VO_2 in a sodium metal cell. Reproduced from Ref.241](image)

While O3/O’3/P’3/P3-type layered oxides have demonstrated considerable cell performance,221,235,236,238,241,245,246 the use of abundant, and environmentally 'green’ transition metals such as Fe and Mn are of particular interest; especially when considering the growing demand for large-scale energy storage applications. NaFeO_2 is commonly found in two crystallographic forms; namely, the α and β phases. The α and β phases exhibit rhombohedral (O3-structure) and tetragonal crystal structures respectively, leading to drastically different electrochemical properties. β-NaFeO_2 has presented itself as a
multiferroic material,247 being of little interest for SIB cathodes due to the narrow 1-dimensional diffusional channels through which Na+ diffuse. In fact, Takeda \textit{et al.} have identified considerable kinetic limitations in the stabilization of the α-NaFeO\textsubscript{2} phase, as β-NaFeO\textsubscript{2} is metastable below 760°C, typically requiring dissolution of the β-NaFeO\textsubscript{2} phase into a molten sodium source (Na\textsubscript{2}O or NaOH) to facilitate precipitation of the α-NaFeO\textsubscript{2} phase.248

Investigations into layered iron oxide compositions for SIBs are promising for future cathode compositions. However, fully charged iron oxide cathodes are highly unstable, as the chemical instability of Fe4+ poses concerns around self discharge that must be addressed before realizing Fe3+/Fe4+ based electrodes.249 As such, O3-type iron compositions often require substitutional doping with Mn or Co to maintain structural stability250,251 leading to the underutilization of pure α-NaFeO\textsubscript{2} over the years.252–254 Yabuuchi \textit{et al.} have also noted such difficulties in utilizing α-NaFeO\textsubscript{2} and have demonstrated considerable performance of Na$_x$[Fe$_{0.5}$Mn$_{0.5}$]O$_2$ O3 and P2-type structures.222 Additionally, Tabuchi \textit{et al.} have successfully synthesized α-NaFeO\textsubscript{2} type LiFeO\textsubscript{2} by a hydrothermal synthesis technique, circumventing the traditional ion-exchange synthesis methods.255–257 And more recent investigations on LiFeO\textsubscript{2} cathodes have demonstrated high reversible capacities (> 120 mAh/g) with further improvement by transition metal doping (A$_x$[Fe$_{1-x}$M$_x$]O$_2$, A = Na, Li; M = Co, Mn, Ni).250,258–260 Overall, renewed interests in LiFeO\textsubscript{2} are likely to trickle down into sodium cathode research as seen with previous analogous systems. And while a battery with a primary chemistry such as that offered by NaFeO\textsubscript{2} presents itself as an ideal case of highly abundant and low cost materials, further efforts are needed to ensure satisfactory capacity retention.

In particular, O3-type materials utilizing the NaFeO\textsubscript{2}-NaNiO\textsubscript{2} solid solution have demonstrated a large increase in cell capacity and efficiency; with increasing nickel content resulting in greater capacities at high voltage.261 Utilization of the Ni2+/Ni4+ redox reaction is of interest due to the attributed high voltages. However, pure NaNiO\textsubscript{2} observes a cooperative Jahn-Teller distortion of NiO\textsubscript{6} octahedra, resulting in potentially irreversible structural transformations.262–264 In fact, early investigations into the electrochemical behavior of monoclinic O’3-NaNiO\textsubscript{2} demonstrated very poor discharge capacities.265 However, more recent studies have reported considerable deintercalation limits, with capacities ranging up to 199 mAh/g (0.15 < x < 1.0 in Na$_x$NiO\textsubscript{2}).246 Figure 2-9 shows the step-wise voltage profile of O’3-NaNiO\textsubscript{2}. And despite frequent interests in NaNiO\textsubscript{2} as a potential cathode material, it is largely limited by
the careful synthesis methods needed to yield phase pure powders, and is often utilized in conjunction with additional transition metals in order to prevent cooperative Jahn-Teller distortions.224,261,266,267

![Figure 2-9: Representative voltage profile of monoclinic O’3-NaNiO2 in a sodium metal cell. Reproduced from Ref. 246](image)

Re-emerging interests in iron and nickel based layered structures continue to demonstrate considerable improvement over initial cathode designs, and due to their desirable electrochemical properties, are of potential interest for high performance SIBs.

2.1.1.2.3.1.2 P2-type structures

While O3-type positive electrode materials have both demonstrated electrochemical activity and high rate capabilities; they are however, limited to approximately 50% of their theoretical capacities due to structural degradation that occurs when fully desodiating O3-NaMO2 (M = Co, Ni, Cr, V, Mn) compositions. More recent investigations into layered cathode compositions have focused around the P2-type structure. The P2-structure consists of metal oxide layers with oxygen stacking sequence:

With Na1 and Na2 indicating occupancy of one of two possible trigonal prismatic sites. Side-by-side comparison of P2 and O3 sodium cathode compositions have demonstrated a significant advantage of the P2 structure as illustrated by Figure 2-10. The P2 structure commonly observes small structural distortions during cycling as previously demonstrated for P3/O3-type structures, with orthorhombic and monoclinic distortions occurring due to similar mechanisms involving the relative gliding of oxide layers.268 In-situ characterization by Xu et al. have further stabilized the P2 structure at high voltages by
introducing Li onto the transition metal sites; thereby allowing for greater Na\(^+\) occupancy at high voltages, further stabilizing the P2 structure in Na\(_x\)\([Li_yNi_{1-y}Mn_{1-y-z}O_2\) (0 < x, y, z < 1).\(^266\) Utilizing similar compositions, Dahn \textit{et al.} have formed O2-type Li\(_{0.16}\)Mn\(_{0.83}\)O\(_2\) by ion-exchange of P2-type Na\(_{0.66}\)\([Li_{0.16}Mn_{0.83}]O_2\) bronzes.\(^269\) While the P2 and O2 structures vary only in their oxygen stacking sequences, the O2 structure is typically only found in such ion-exchanged lithium compositions,\(^227\) making P2-type structures of primary interest throughout this section.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2-10.png}
\caption{Calculated reversible capacity and operating voltage comparison for layered sodium insertion materials reprinted from Ref.\(^{251}\)}
\end{figure}

A number of studies have been centered around the P2-Na\(_x\)CoO\(_2\) phase due to its high electronic and ionic conductivities. Additionally, a the large inter-dependence of Na\(^+\)/vacancy ordering has proven to demonstrate a number of hexagonal/orthorhombic superstructures, illustrating a large contrast against the O3-NaCoO\(_2\).\(^{270-274}\) Delmas \textit{et al.} have identified multiple bi-phasic domains throughout electrochemical de/intercalation of P2-Na\(_x\)CoO\(_2\) as shown by Figure 2-11. Here, inflections in the voltage profile reflect the
different phase transitions occurring within P2-Na$_x$CoO$_2$. In particular, throughout the 0.55 < x < 1.0 range, several distinct ordered phases have been identified, and are listed in Table 2-4.

![Figure 2-11: in-situ diffraction measurements of P2-Na$_x$CoO$_2$ showing the phase progression of the (008) diffraction peak. Reproduced from Ref. 272](image)

Table 2-4: Ordered phases of P2-Na$_x$CoO$_2$

<table>
<thead>
<tr>
<th>Phase</th>
<th>Voltage vs. Na/Na$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_{1/2}$CoO$_2$</td>
<td>3.45V</td>
</tr>
<tr>
<td>Na$_{4/7}$CoO$_2$</td>
<td>3.15V</td>
</tr>
<tr>
<td>Na$_{2/3}$CoO$_2$</td>
<td>2.80V</td>
</tr>
<tr>
<td>Na$_{0.72}$CoO$_2$</td>
<td>2.56V</td>
</tr>
<tr>
<td>Na$_{0.76}$CoO$_2$</td>
<td>2.47V</td>
</tr>
<tr>
<td>Na$_{0.79}$CoO$_2$</td>
<td>2.38V</td>
</tr>
</tbody>
</table>
While layered P2-NaCoO$_2$ is attributed with exceptional ionic and electronic conductivities, making it an ideal intercalation host material, attention has been shifted to alternative chemistries that circumvent the need for cobalt.

As such, P2-type layered compounds based on Mn/Fe chemistries are highly desirable with a number of reports demonstrating considerable performance gains over similar O3-type structures. While notable success has been had in the synthesis of O3-type NaMnO$_2$ it is frequently observed that manganese-based oxides form a number of 3D or 2D structures based on sodium content as shown in Figure 2-12. Early studies into layered manganese oxides have reported three distinct layered phases: (1) α-Na$_{0.7}$MnO$_{2+y}$, (2) β-Na$_{0.7}$MnO$_{2+y}$, and (3) α-NaMnO$_2$, with an ideal P2-structure, an orthorhombic distorted P2-structure and the O’3-structures respectively; α-Na$_{0.7}$MnO$_{2+y}$ has been observed in the range $0.05 < y < 0.25$ and β-Na$_{0.7}$MnO$_{2+y}$ for $y < 0.05$ stable below and above 600°C (in air) respectively. Here, an over-stoichiometric notation is used, which is equivalent to a manganese deficient Na$_{0.7x}$Mn$_x$O$_2$ with $x = 2/(2+y)$.
Early attention was placed on P2-type manganese bronzes for utilization in analogous Li-ion cathodes derived from ion-exchange techniques. Use of the sodium phases was historically chosen due to the lack of synthesis techniques capable of providing the lithium analogue; often resulting in the structural decomposition to a spinel phase.227 Moreover, P2-type sodium compositions typically do not observe an O2-type phase transition, resulting in smooth voltage profiles typical of solid-solution intercalation reactions.215

Within current literature, investigations into P2-type structures can be largely regarded as the primary choice for commercial SIBs, as intercalation limits and discharge capacities are systematically higher as compared to P3/O3-type structures. As mentioned previously, cooperative Jahn-Teller distortions are frequently observed for layered phases consisting of a single transition metal, thereby relying on a mixture of transition metals to optimize both structural stability and voltage characteristics.
P2-type Na_{0.66}[Mn_{1-x}M_x]O_2 (M = Fe, Co, Ni) compositions have demonstrated considerably higher discharge capacities and capacity retention over undoped P2 layered oxides; with P2-type NaMn_{1-x}M_xO_2 (M = Ni, Fe) compositions demonstrating an optimal balance between benign materials and optimal electrochemical performance, with initial discharge capacities ranging upwards of 200mAh/g. Overall, P2-type structures are widely studied for their high capacities and cell performances, which exceed certain Li-ion technologies as previously highlighted.

2.1.1.2.3.2 NASICON (NAtrium Super Ionic CONductor) Structures

NASICON type structures are of particular interest due to the large open structure afforded by the large polyanionic chemistries. In general, NASICON structures consist of a general formula described by the table below.

<table>
<thead>
<tr>
<th>General NASICON chemical formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMM X_3O_{12} or AMM (XO_4)_3</td>
</tr>
</tbody>
</table>

NASICON structures have been of particular interest for battery applications for a number of years, often being implemented as both solid-state electrolytes and electrode materials. While NASICON structures can form a number of different crystal structures, many are described by a rhombohedral structure (space group R-3c) of interconnected (M/M')O_6 octahedra and PO_4 tetrahedra where the conducting ions are situated on one of two interstitial sites: (1) between (M/M')O_6 octahedra along the c-axis (6b-sites), and (2) located between O_6MO_6 or O_6M_2O_5 slabs, perpendicular to the c-axis with trigonal prismatic coordination (18e-sites).

Within the NASICON family, vanadium phosphates and fluorophosphates have seen considerable attention due to the large 3-dimensional structures that allow for facile diffusion of Na^+, and relatively high...
reported voltages due to polyanionic inductive effects. Overall, NASICON structures represent a wide range of feasible host structures for facile Na⁺ de/insertion kinetics, with particular interest in iron-based compositions for reasons mentioned in earlier sections. Barpanda et al. report a novel Na₂Fe₅(SO₄)₃ structure, with an average operating voltage ca. 3.8V (vs. Na/Na⁺), in the range of commercial Li-ion devices. An exhaustive review on NASICON structures for both lithium and sodium-ion batteries is provided by Masquellier et al., with an account of interesting iron and vanadium-based NASICON structures provided in Table 1-6.²⁸⁰

As a whole, the NASICON and similar polyanion structures offer a large host structure capable of facile Na⁺ de/insertion. However, when comparing against conventional layered structures, NASICON/polyanion structures suffer from lower specific and volumetric capacities, as illustrated by the relative differences between sulfate/phosphate compounds against the O3 and O2 layered compounds in Figure 2-13.
Figure 2-13: Comparison between NASICON and layered type cathode materials for sodium ion batteries. Reproduced from Ref. 281
Table 2-6: Overview of iron and vanadium polyanionic structures used in sodium batteries.
Reformatted from Ref. 280

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>initial/final active material</th>
<th>redox couple</th>
<th>av. potential (vs. Na)</th>
<th>Theoretical capacity (mAh/g)</th>
<th>Energy density (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASICON</td>
<td>Fe₄(MoO₄)₃/NaFe₅(MoO₄)₃</td>
<td>Fe³⁺/Fe²⁺</td>
<td>2.7</td>
<td>91</td>
<td>246</td>
</tr>
<tr>
<td>NASICON</td>
<td>Fe₃(WO₄)₃/Na₂Fe₂(WO₄)₃</td>
<td>Fe³⁺/Fe²⁺</td>
<td>2.7</td>
<td>63</td>
<td>170</td>
</tr>
<tr>
<td>NASICON</td>
<td>Fe₂(SO₄)₃/NaFe₂(SO₄)₃</td>
<td>Fe³⁺/Fe²⁺</td>
<td>3.3</td>
<td>134</td>
<td>442</td>
</tr>
<tr>
<td>NASICON</td>
<td>Na₃Fe₂(Po₄)₃/NaFe₂(SO₄)₃</td>
<td>Fe³⁺/Fe²⁺</td>
<td>2.5</td>
<td>115</td>
<td>287</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>Na₃Fe₂(AsO₄)₃/Na₂Fe₂(AsO₄)₃</td>
<td>Fe³⁺/Fe²⁺</td>
<td>2.4</td>
<td>90</td>
<td>216</td>
</tr>
<tr>
<td>olivine-type</td>
<td>NaFePO₄/FePO₄</td>
<td>Fe³⁺/Fe²⁺</td>
<td>3.0</td>
<td>154</td>
<td>462</td>
</tr>
<tr>
<td>layered</td>
<td>Na₃FePO₄F/NaFePO₄F</td>
<td>Fe³⁺/Fe²⁺</td>
<td>3.0</td>
<td>124</td>
<td>372</td>
</tr>
<tr>
<td>alluaudite</td>
<td>Na₃Fe₄(Po₄)₄/Na₂Fe₃(Po₄)₄</td>
<td>Fe³⁺/Fe²⁺</td>
<td>2.6</td>
<td>130</td>
<td>338</td>
</tr>
<tr>
<td>layered</td>
<td>NaFe(SO₄)₂/Na₃Fe(SO₄)₂</td>
<td>Fe³⁺/Fe²⁺</td>
<td>3.5</td>
<td>99</td>
<td>346</td>
</tr>
<tr>
<td>NASICON</td>
<td>Na₃V₂(Po₄)₃/NaV₂(Po₄)₃</td>
<td>V⁵⁺/V⁴⁺</td>
<td>3.4</td>
<td>118</td>
<td>401</td>
</tr>
<tr>
<td>NASICON</td>
<td>NaV₂(Po₄)₃/NaV₂(Po₄)₃</td>
<td>V⁵⁺/V⁴⁺</td>
<td>3.85</td>
<td>59</td>
<td>227</td>
</tr>
<tr>
<td>NASICON</td>
<td>Na₃V₂(Po₄)₃/Na₃V₂(Po₄)₃</td>
<td>V⁵⁺/V⁴⁺</td>
<td>1.6</td>
<td>118</td>
<td>189</td>
</tr>
<tr>
<td>NASICON</td>
<td>NaVPO₄F/VPO₄F</td>
<td>V⁵⁺/V⁴⁺</td>
<td>3.7</td>
<td>143</td>
<td>529</td>
</tr>
<tr>
<td>NASICON</td>
<td>Li₁₋₃Na₃₋₅V₂(Po₄)F₁₋₃/VPO₄₋₅F₀₋₇</td>
<td>V⁵⁺/V⁴⁺, V⁴⁺/V³⁺</td>
<td>4.0</td>
<td>142</td>
<td>568</td>
</tr>
<tr>
<td>NASICON</td>
<td>Na₃V₂(Po₄)₂F₃/Na₃V₂(Po₄)₂F₃</td>
<td>V⁵⁺/V⁴⁺</td>
<td>3.9</td>
<td>128</td>
<td>499</td>
</tr>
</tbody>
</table>

2.1.1.2.3.3 Fluorides

A number of metal trifluorides NaMF₃ (M = Fe, Mn, Ni, Co, Ti, V) have been identified as potential electrode materials for sodium ion batteries, and are of particular interest due to the high electronegativity of the metal-fluorine bond, high theoretical capacity, and overall high safety (zero oxygen release from cathode). Metal trifluorides generally adopt a perovskite structure consisting of a 3-dimensional network of (tilted) corner shared MF₆ octahedra as shown in Figure 2-14.
In particular, FeF$_3$ is considered as a suitable cathode material for lithium and sodium batteries.283–285 However, due to the overall insulating nature of metal fluorides, appreciable capacity is only realized when forming nanocomposites with conductive carbons; exhibiting discharge capacities from < 100 mAh/g to ca. 200 mAh/g.285

2.1.1.2.3.4 **Spinel Structure**

In addition to the aforementioned layered oxides, the spinel structure has demonstrated considerable utility in LIBs, and thereby is of potential interest for analogous SIBs. The chemical formula AB_2O_4 and B(AB)O_4 describe the normal and inverse spinel structures respectively. The normal spinel structure describes the case where A ions exclusively occupy the tetrahedral sites, and B ions occupy the octahedral sites of the FCC stacked oxygen lattice. Alternatively, the term ‘inverse’ implies A ions lying solely on octahedral sites, while $\frac{1}{2}$ of the B ions occupy the tetrahedral sites. While certain exceptions exist, larger cations have a tendency to occupy the octahedral sites, with the smaller cation residing on the tetrahedral sites. Here it is important to note that specific oxidation states of the A & B cations are not solely restricted to $2^+/3^+$ oxidation states, and may/will change such to meet the condition of electroneutrality.

Komaba \textit{et al.} have considered the inverse spinel Fe$_2$O$_4$ ([Fe$^{3+}_{0.1}$]$_{6d}$[Fe$_{1.3x}$]$^{2+}$Fe$_{1.25}$]$^{3+}$[O$_{4.1}$]$_{16d}$ for x <0.05) demonstrating more than 190 mAh/g throughout the first 10 cycles at 20 mA/g, and have speculated that Fe ion migration from 8a to adjacent 16c sites is responsible for the gradual amorphization with continual cycling in Na-ion cells using an acetylene black counter electrode.287 Here, iron-based spinels
offer considerable capacity, and provide a convenient and benign electrode chemistry meriting further future study.

Figure 2-15 considers the LiMn$_2$O$_4$ spinel structure, a cathode composition of interest for LIB applications due to the 3-dimensional diffusional pathways through which Li$^+$ ions diffuse. This section is primarily devoted to the LiMn$_2$O$_4$ spinel (space group Fd-3m) in which lithium and manganese occupy the 8a tetrahedral and 16d octahedral sites respectively. At the current writing of this manuscript, there exist only a limited number of reports on Na$^+$ insertion into spinel structured host materials, and thus the analogous lithium spinel is used as a frame of reference for potential future applications for sodium spinels.

Figure 2-15: LiMn$_2$O$_4$ normal spinel structure. Li and Mn ions are located on the centers of the tetrahedral (green) and octahedral (purple) sites respectively.

Due to the multiple sites which the ‘A’ and ‘B’ cations may occupy, the Wyckoff letters (8a, 16c, 16d, 32e, etc.) are utilized to describe the respective site occupancies of the mono/multivalent cations that compose a typical spinel lattice. In the stoichiometric lithium spinel, Li$^+$ ions reversibly de/insert into the vacant 8a sites of the (Li)$_{8a}$[Mn$_2$]$_{16d}$[O$_4$]$_{32e}$ network, throughout the 0 < Li$_x$ < 1 compositional range. This reaction takes place at ca. 4.0V (vs. Li/Li$^+$) with an additional insertion reaction occurring at ca. 3.0V (vs. Li/Li$^+$) as excess lithium thereby begins to insert onto adjacent 16c octahedral sites, inducing a first order transition to a rock salt phase Li$_2$Mn$_2$O$_4$ = (Li)$_{8a}$[Li]$_{16c}$[Mn$_2$]$_{16d}$[O$_4$]$_{32e}$. The λ-MnO$_2$ phase (initially reported
by Hunter) can be synthesized by either chemical or electrochemical extraction of Li$^+$ from LiMn$_2$O$_4$ spinel, and is notably stable in the fully delithiated state. However, to the knowledge of the author, there exist no current reports on direct synthesis of the λ-MnO$_2$ phase.

Primary modes of capacity loss in manganese spinels are widely due to dissolution of Mn$^{2+}$, arising from the disproportionation of Mn$^{3+}$. Mn$^{3+}$ is also a Jahn-Teller active cation, inducing cooperative distortional effects once surpassing a critical concentration of Mn$^{3+}$ within the spinel structure. Several methodologies have been utilized to suppress the Jahn-Teller distortion, and ultimate degradation of the spinel structure; incorporating surface coatings and doping of the 16d sites such to (1) reduce the quantity of Mn$^{3+}$ (2) increase the average oxidation state of Mn and (3) introduce a high-voltage redox reaction.

Regardless, manganese spinels have already demonstrated considerable electrochemical activity and utility for lithium cells, with similar progress being made in utilizing manganese spinels for sodium batteries. Commercial large-format energy storage cells utilizing λ-MnO$_2$ positive electrodes in an aqueous Na$_2$SO$_4$ electrolyte have demonstrated energy metrics of 19.7 Wh/kg at high power densities (3500 W/kg for potential application in grid-level storage. Several reports have investigated the modification of the LiMn$_2$O$_4$ spinel by Na substitution onto the tetrahedral sites. With reported spinel compositions demonstrating only minimal Na substitution is possible (0 < Na < 0.01 in (Li$_{1-x}$Na$_x$)$_8$Mn$_{16}$O$_{48}$) before a secondary Na$_{0.44}$MnO$_2$ phase begins to form. In fact, Guo et al. have noted that partial substitution of Na$^+$ onto the tetrahedral sites induces migration of Li$^+$ to the 16d octahedral sites by displacement of manganese.

Introduction of a lower valence cation onto the 16d octahedral sites has proven to enhance the stability of the spinel structure, by mitigating a first-order phase transition (Fd-3m \rightarrow I4$_1$/amd) caused by the accumulation of Jahn-Teller active Mn$^{3+}$. Actively increasing the manganese oxidation state in this manner circumvents the disproportionation reaction 2Mn$^{3+} \rightarrow$ Mn$^{4+}$ + Mn$^{2+}$ which leads to eventual degradation in cell performance by dissolution of Mn$^{2+}$ into the electrolyte. The disproportionation reaction is further exacerbated by large amounts of HF forming within the electrochemical cell as a result of the thermal decomposition of common LiPF$_6$ based electrolytes, often requiring salt stabilizers, and/or surface coatings to protect the electrode surfaces.
Ohzuku et al. have investigated the series of spinel structures \((Li)_{8a}[Mn_{1.5}M_{0.5}]_{16d}[O_4]_{32e}\) (M = Ti, Cr, Fe, Co, Ni, Cu, Zn) identifying several ~5.0V cathode materials of considerable interest for high-power applications shown in Figure 2-16.\(^{297}\) While Cr, Fe, Co, Ni, and Cu compositions all exhibit high-voltage redox reactions, \(Li[Mn_{1.5}Ni_{0.5}]O_4\) demonstrates the largest high-voltage capacity, with a minimal ~4.0V contribution (Mn\(^{3+}/Mn^{4+}\)) making it of primary interest for high-voltage lithium cells.\(^{26,296,298–306,310–313}\)

The nickel doped \(Li[Mn_{1.5}Ni_{0.5}]O_4\) (LMNO) spinel is fundamentally different from the pure manganese spinel, as all electrochemical activity lies on the Ni\(^{2+}/Ni^{4+}\) redox, with manganese acting solely as a spectator ion; constantly in the 4\(^+\) oxidation state. While the spinel structure is still retained with Ni substitution, additional cation ordering can be observed, where Ni occupies alternating MeO\(_6\) octahedral layers along the [1,1,1] direction, resulting in a primitive cubic crystal structure of space group P4\(_{3}32\).\(^{296}\)

In order to discern between the ordered (P4\(_{3}32\)) and disordered (Fd-3m) lithium spinels, a convenient notation is suggested where P-LMNO and F-LMNO describe the ordered and disordered LiMn\(_{1.5}Ni_{0.5}O_4\) spinels respectively, and (P/F)\(\lambda\)-MNO describes the ordered and disordered delithiated (vacant) spinels respectively. The current work proposes Na\(^+\) insertion onto the 8a sites of the (F/P)\(\lambda\)-MNO...
spinels, formulating a new cathode composition: \((F/P)\text{Na}_x\text{-MNO}\) where \(\text{Na}_x\) describes the average 8a site occupancies of the \((F/P)\lambda\text{-MNO}\) spinels respectively.

2.2 Areas of focus

The following chapters of this manuscript are devoted to the examination of the lithium spinel \(\text{LiMn}_2\text{Ni}_x\text{O}_4\) \((x = 0, 0.44, 0.5)\) for application in analogous sodium-ion batteries. Specific challenges and characteristic behavior surrounding the \(\text{Na}^+\) insertion reaction, and subsequent cycling are discussed in detail using both electrochemical and physical characterization techniques; allowing for a coherent picture of the reaction phase-progression and overall evaluation of sodium spinel as a potential cathode material.

With these considerations additional research areas are identified and initial results into optimized spinel compositions are provided throughout the following chapters.
3 Experimental Techniques

3.1 Synthesis Methods

Material synthesis involves the successful conversion of raw materials to a finished product, with the majority of raw materials being provided in a powder/granular form. As this manuscript is primarily focused on material compositions for positive electrode applications in Li/Na-ion batteries, a number of different techniques have been utilized to produce high quality powder/thin-film electrodes, which will be discussed below.

Solid-state synthesis is a common method of preparing powder samples from two or more solid precursors. The majority of solid-state, and solid-state adapted synthesis methods share common steps including mixing of precursors, densification (to improve particle-to-particle contact), and calcination; where elevated temperatures are utilized to both drive chemical reactions and promote accelerated diffusional processes to form a uniform product. Mixing processes may be done in a variety of different ways, ranging from simple grinding with a mortar & pestle to high energy milling with hardened steel or ceramic media. In general, increasing the input energy into the mixing process yields a finer, more intimate mixture(s); making high-energy milling techniques preferred. Such describes mechano-chemical synthesis314 (Figure 3-1) techniques, where precursors are pulverized by milling media, thereby generating a large amount of heat, which aids to induce chemical reactions and producing a homogenous nanocomposite.299,301,303,304 As such, mechano-chemical synthesis techniques such as this generally require significantly shorter annealing durations, and even lower temperatures than those relying on bulk diffusional processes, as diffusional distances are significantly shorter given the degree of mixing already afforded by the mechanical milling process.
Figure 3-1: Mechano-chemical synthesis schematic, demonstrating the different types of processes taking place during high-energy milling procedures.

Here it is important to emphasize that traditional solid-state synthesis techniques involving mechanical mixing of powder precursors are generally the most economical and scalable, commonly being used throughout a number of industrial processes.

While solid-state synthesis techniques require considerable mechanical energy and/or high temperatures to promote completion of the desired reaction(s), a considerably higher degree of control and precision is offered when moving towards solution-based synthesis techniques. Alternative solution-based methods have proven to be equally effective at creating highly mixed precursors, only requiring further calcination to yield nano/macro-crystalline powders. The co-precipitation method is commonly utilized to synthesize a number of oxide powders of highly uniform particle size and morphology by precipitation of mixed hydroxide intermediates followed by several filtering/washing/drying/mixing steps prior to calcining at high temperature. While the co-precipitation method offers a huge degree of control over chemical composition, this technique is largely limited by the number and types of insoluble products that may form in solution, typically requiring additional mechanical mixing steps to produce the desired product. It then becomes obvious, that an ideal synthesis route would encompass the superior mixing capabilities of solution-synthesis, while eliminating additional mechanical mixing steps.

Molten-salt synthesis techniques have demonstrated further control over particle morphologies and crystallinity in addition to reducing trace level impurities by reaction with an sol-gel formed intermediates.
The Pechini synthesis technique is commonly used for fabricating high quality electrode materials300 for electrochemical devices, as it enables a highly uniform and finely mixed oxide upon final calcination. Initially intended for use for lead/alkaline-earth titanates/niobates,315 the Pechini method encompasses the use of a hydroxyxcarboxylic acid:polyhydroxy alcohol solution to chelate metal cations; forming a polymeric resin intermediate \textit{via} an esterification reaction. The Pechini method greatly diverges from the co-precipitation method by effectively solidifying the dissolved metal cations in a polymeric intermediate resin, whereas the co-precipitation method would typically result in one or more mixtures of crystals of varying composition(s) forming upon evaporation of the solvent.

By nature of dissolving precursors into a suitable acid/alcohol solution, the Pechini technique allows for an intimate degree of mixing on the atomic level, superior to that obtained through energy-intensive mechanical milling. Instead, the polymeric resin binds the mixture of transition metal cations within a cross-linked network of bridging oxygen and organic radical bonds. In particular: alpha-hydroxyxcarboxylic acids (commonly citric acid) chelates with the transition metal precursors to form a polybasic acid, which further undergoes polyesterification when heated in the presence of a polyhydroxy alcohol. Specific choice of the polyhydroxy alcohol as reported in316 controls the progression of the esterification reaction, yielding drastically different particle morphologies. Ethylene glycol is commonly chosen for Pechini synthesis of cathode materials300,317–321 producing a very fine and homogenous mesostructure that results from the evolution of micropores during final burn-off of excess organics. With regard to electrode materials, the Pechini technique is highly attractive, as it enables the synthesis of a high-quality, mesoporous network of nanocrystalline particles. The Pechini method itself is only largely limited by the types of compatible precursors, and with specific examples being discussed in later chapters.
Figure 3-2: Generic material synthesis flow-diagram including solid-state synthesis (a→d→e), co-precipitation method (a→b→c→d→e), and Pechini synthesis (a→b→c2→d2→e).

3.2 Characterization Techniques

3.2.1 X-ray Diffraction (XRD)

The interaction between X-ray radiation and matter is the basis of a crucial scientific technique used to probe the fundamental and complex processes that occur within crystalline and non-crystalline bodies. While diffraction is a particularly powerful tool when utilized for crystalline bodies, fundamental and important information on liquids and amorphous solids can also be obtained through this simple, yet profound technique. This chapter will encompass the various subtleties surrounding X-ray diffraction (XRD) on crystalline materials, experimental considerations, and meaningful deductions that can be made from experimental diffraction data.

3.2.1.1 Powder diffraction, Bragg-Brentano geometry, and experimental considerations

As the Braggs’ equation demonstrates, utilizing X-ray diffraction for material characterization is highly sensitive to the relative positioning between the sample and our measurement device. Early X-ray ‘detectors’ simply comprised of an X-ray sensitive film, producing dark spots/rings according to the respective intensities of the corresponding (hkl) planes. With the progression of X-ray detectors and computing power, it is commonplace to utilize a solid-state detector in what is termed Bragg-Brentano
geometry. Figure 3-3 illustrates the layout of the Bragg-Brentano geometry, seen almost unanimously throughout laboratory diffractometers. Compared to diffraction experiments utilizing film-based detection, (commonly referred to as cameras) diffractometers only sample a narrow range of the diffraction cone\(^\dagger\), generating a 2-dimensional plot of 2\(\theta\) vs. diffracted intensity.

![Bragg-Brentano geometry](image)

Figure 3-3: Bragg-Brentano geometry used for a typical X-ray diffractometer. Reproduced from Ref. 322

When considering diffraction of a crystalline body, descriptions and calculations are frequently based off of a single crystalline domain known commonly as a single crystal. While single crystal diffraction is a powerful technique, it is often incredibly difficult to fabricate high quality single crystals of sufficient size for diffraction analysis; as such, typical XRD samples are polycrystalline in nature, composed of many regions which can be said to be continuous with respect to the dimensions of a single unit-cell. Individual crystalline regions as described here are typically interrupted by an interface known as a grain boundary: an interface where the crystallographic orientations of two neighboring crystals are tilted by some angle.

\(^\dagger\) The diffraction cone is a term used to refer to the shape of the diffracted X-ray beam that satisfies the Bragg condition; for a given single-crystal/polycrystalline sample, a lattice plane which satisfies the Bragg condition will diffract X-rays in all directions at an angle equal to the incident beam, thereby creating a conical shape.
The overall size and morphology of the crystalline regions are widely controlled by the particular method of material synthesis and processing steps involved; yielding polycrystalline samples ranging from monodispersed nanocrystals to highly asymmetric columnar or plate shaped crystals on the order of hundreds of microns in diameter. Exotic crystal shapes such as these demonstrate the intrinsic symmetry within the crystalline phase under investigation, and introduce diffracted intensities that greatly differ from those of randomly distributed crystallites, which is taken as a general assumption of powder XRD. Such is the problem of preferential orientation, where the observed diffraction data of certain \((hkl)\) planes are over/under-emphasized by nature of the statistically higher amount of a given \((hkl)\) planes relative to another. Similarly, the number of coherent diffracting planes will influence the diffracted intensities, with larger particle sizes contributing to sharper, more defined peaks than crystallites of finer dimensions. In order to separate the contributions between particle size and preferred orientation, the Scherrer equation\(^{223}\) takes into account the half-peak broadening that occurs due to varying crystallite size. It can be stated as:

Equation 3-1:

\[
t_{hkl} = \frac{K \lambda}{\sqrt{\beta_{obs}^2 - \beta_{ref}^2 \cos \theta}}
\]

The Scherrer equation describes how the mean crystallite size pertaining to a specific set of planes \((t_{hkl})\), X-ray wavelength \((\lambda)\), peak breadth measured at half maximum intensity \((\beta_{obs}, \beta_{ref})\) for the observed and reference sample respectively, and the Bragg angle \((\theta)\) are interrelated. \(K\) is a dimensionless scalar known as the shape factor, with a value close to unity. Here it is important to note the inclusion of a reference/standard sample in the calculation of the crystallite size. This is done in order to account for broadening of XRD peaks arising from specific instrumental considerations. As such, the ideal reference sample for such analysis should possess a number of qualities:

1. Possess zero strain within the crystal lattice
2. Exhibit negligible broadening due crystallite size
3. Be consistently analyzed anytime changes in instrumental optics/stages/alignment are made.

In fact, a plot of X-ray intensities against their 2\(\theta\) positions, should in theory, produce what is termed a 'stick-pattern' where diffracted beam intensities are only observed at those angles where the Bragg condition is satisfied. However, typical powder samples are generally, comprised of a random
distribution of crystallites, where certain \((hkl)\) planes of differing particles are satisfying the Bragg condition at any given time, contributing a finite amount of background noise that is superimposed onto the measured intensities. Peak breadths can be easily visualized by considering two separate crystallites that are in almost identical orientations. As the first particle is aligned such that it satisfies the Bragg condition, the second particle, which is rotated slightly from particle 1 is not contributing any coherent diffraction, and thereby is not adding to the observed peak intensity. However, as the diffractometer continues to rotate through the given \(2\theta\) range, particle 2 will begin to coherently diffract, with particle 1 no longer satisfying the Bragg condition. It is clear that outside of a single-crystal sample, a finite amount of peak breadth is inevitable; making it experimentally difficult to analyze samples comprising of asymmetrically shaped particles or those that are nanocrystalline in nature. It is also important to note additional sources of peak broadening, which may arise from the temperature factor (B-factor, or \(B_{eq}\)), which consider the displacement of atoms due to thermal vibrations.

3.2.1.2 Crystal structure solution & Rietveld refinement

The discovery of unique elements, and the eventual composition of the periodic table, undoubtedly presented early researchers with the great mystery as to how are individual atoms are arranged within a solid body to contribute to the various properties of everyday objects. Such is the topic of crystal structure solution. In fact, early crystal structure ‘solution’, simply involved the inferring of the internal symmetry and atomic arrangement from the physical appearance of high quality crystals, and was not replaced until the early 1900’s. The first crystal structure to be successfully solved (NaCl) was performed by W. L. Bragg following the early and pioneering works of M. V. Laue, which was based on the geometric relationships of diffraction spots in a typical Laue diffraction pattern. While this technique was only successful for a handful of simple crystal structures with a high degree of symmetry, it has since opened the doorway to complex inorganic and organic crystal structures. The overall structure solution model consists of four (non-trivial) steps:

1. Collection of highly quality (single-crystal/powder) diffraction pattern
2. Indexing of diffraction pattern
3. Determination of diffraction peak intensities
4. Structure solution
It was only after the realization that the 3-dimensional crystal lattice may be easily represented by Fourier methods that the Patterson method was developed for the interpretation of Fourier maps, eventually leading to “direct method” software(s) for structure solution. Such methods give a picture of the internal atomic arrangement by mapping of the electron density within the crystal structure. While powder diffraction had demonstrated significant utility in phase identification and quantitative analysis, such methods were frequently left for analysis of single-crystal specimens, and full utility of powder diffraction was only realized through adaptation of neutron diffraction techniques developed simultaneously by Georg Will (1962) and Hugo Rietveld (1965).

Widely praised for his pioneering work on structure refinement, Rietveld established the method of structure refinement by least squares refinement in which a theoretical XRD pattern is fitted to all the measured intensities of the diffraction profile. Largely differing from structure solution methods, the Rietveld method requires preexisting knowledge on the specimen; namely a ‘best-guess’ crystal structure is needed to begin meaningful Rietveld analysis. Equation 3-2 describes the refinement process. M is the function being minimized, \(W_i \) is the statistical weight fraction of element i, and \(y_{i}^{\text{obs}} \) & \(y_{i}^{\text{calc}} \) are the intensities of the observed and calculated XRD patterns respectively.

This technique provides a significant step forward in ‘solving’ crystal structures, as structure determination previously could only be reliably done for very simple materials due to the problem of convoluted Bragg reflections, and the need to separate individual \((hkl)\) intensities for implementation in one of the various structure solution techniques (Patterson methods, etc.). While this technique was initially developed for use with monochromatic neutron diffraction, it equally applies for time of flight, synchrotron, and monochromatic X-ray diffraction; the latter being the focus of this section.

Equation 3-2:

\[
M = \sum_i W_i (y_{i}^{\text{obs}} - y_{i}^{\text{calc}})^2
\]

The Rietveld method alone is incredibly efficient at dealing with convoluted peaks that may arise from overlapping peaks within a single or multiphase specimen given that certain care has been taken in the initial indexing of the diffraction pattern, with most ‘failed’ attempts of Rietveld refinement being the
result of a poorly conditioned initial structure, or due to insufficient data for the given number of refined parameters.

Differing from the high quality specimens utilized throughout single-crystal diffraction, powder diffraction samples introduce certain deviations in peak shape(s) to the overall diffraction pattern, with special consideration of the peak shape dependence of particle size and lattice stress/strain being necessary for high quality Rietveld refinement. Peak shape considerations have sprouted a number of different peak-shape functions to best describe the specific contributions both the instrumental setup and sample impart on the diffraction profile. While neutron diffraction experiments almost exclusively exhibit a Gaussian peak shape, implementation of the Rietveld technique for X-ray diffraction has also resulted in the utilization of additional peak shape functions becomes necessary.323 Equation 3-3 and Equation 3-4 describe the Gaussian, and Pseudo-Voigt (Lorentzian + Gaussian) peak shapes respectively.

\textbf{Equation 3-3:}
\[y_{obs} = I_{calc} e^{-\frac{4\ln(2)(\theta_{obs} - \theta_{calc})^2}{2 \eta \theta_{calc}}} \]

\textbf{Equation 3-4:}
\[y_{obs} = I_{calc} [\eta L(2\theta_{obs} - 2\theta_{calc}) + (1 - \eta)G(2\theta_{obs} - 2\theta_{calc})] \]

Where \(y_{obs} \) describes the observed intensity at position \(2\theta_{obs} \), \(H_{calc} \) is the full width at half maximum, \(2\theta_{calc} \) is the peak center of the reflex, \(I_{calc} \) is the calculated intensity of the reflex, and \(\eta \) is a weighting term.

Meaningful structure refinement then becomes possible once the number of observations (observed diffraction peaks) exceeds the number of refined parameters such that minimization of \(M \) yields a global minimum, representing a solution of minimum variance.325 It is of particular importance to realize that in performing a least-squares fit, various local minima ‘solutions’ are likely to arise, and sensibility of the refined parameters should always be verified throughout each step of refinement in order to rule out such false solutions.

As the Rietveld method includes all measured data points, the background intensity and how it is accounted for, is a crucial step in the refinement process. Equation 3-2 assumes that the background intensities have been subtracted, which often becomes difficult when specimens contain a large background, or contain additional amorphous phases. Generally, the background is modeled by considering data points between diffraction peaks where no diffraction contribution is taking place, making it important to consider only high-quality diffraction data for Rietveld refinement, as minor diffraction peaks require a
sufficient incident X-ray/neutron intensity to be easily discernable from the background. However, such considerations always become exceedingly more difficult when dealing with amorphous phases, with various software packages (Topas, FULLPROF) allowing for modeling of additional amorphous/semi-crystalline phases during the refinement process.

Here it is important to emphasize that the Rietveld technique is a means of structure refinement rather than structure solution, as some initial ‘best guess’ is required to calculate diffraction intensities, and reach a meaningful result via the least squares approach. Assuming proper care has been taken to check for sensibleness in the refined parameters, the quality of the least squares refinement is generally measured by multiple residual values calculated as:

\[R_p = \frac{\sum |Y_{obs} - Y_{calc}|}{\sum Y_{obs}}; \quad R_{wp} = \frac{M}{\sqrt{\sum wY_{obs}^2}} \]

\(R_p \) and \(R_{wp} \) describe the ‘profile’ and ‘weighted profile’ residual values; more commonly summarized as \(\chi^2 \) or the Goodness-of-fit (GOF = X).

3.2.1.3 In-situ diffraction electrochemical cells

Dealing with structural changes resulting from the de/insertion of alkali ions (Li/Na) into a crystalline host, electrode materials are of prime interest for in-situ & operando XRD study. Particularly, in-situ diffraction is a very accurate means of measuring the lattice parameters during normal electrochemical cycling, providing valuable physical measurements which can be directly correlated to the characteristic voltage profile of the active material(s) under investigation.

In this case, in-situ diffraction is well suited for distinguishing between single-phase and two-phase reactions, which frequently occur within insertion/conversion type materials. While single-phase reactions are generally characterized by a smooth/sloping voltage profile indicative of a solid-solution type behavior, the latter demonstrates a very stable voltage plateau attributed to structural changes (typically compositional/structural) that occur throughout the de/insertion process. While, the voltage profile alone can distinguish the difference between the two reaction mechanisms, little can be said as to the extent of the structural change (volumetric change) by examination of the electrochemical data alone. Such is the case for Li\textsubscript{4}Ti\textsubscript{5}O\textsubscript{12},326 which observes a two-phase redox reaction, but with zero volumetric change; demonstrating the importance of in-situ and operando physical measurements of electrode materials.
In order to record meaningful in-situ measurements, one must consider the experimental setup; particularly the cell chemistry, and mode of measurement desired. Cell chemistry places important restrictions onto the general makeup of the electrochemical cell body with cell assemblies ranging from stainless steel casings to aluminized polymeric pouches depending on possible interactions cell body materials may have on the electrochemistry. This is highlighted when comparing the differences in material suitability between aqueous and conventional inorganic electrolytes; the latter requiring a completely dry and oxygen free environment due to the highly reactive nature of the Li/Na metal anodes typically used.59,327,328 The majority of in-situ electrochemical cells can be divided into two main categories based on the geometry with the incident radiation: (1) Transmission and (2) Reflection (standard diffraction). Within these two categories, only X-ray and neutron electrochemical cells are considered, with additional considerations on infrared spectroscopy covered separately.

3.2.1.3.1 Transmission-geometry in-situ electrochemical cells

When imaging samples in transmission geometry, it is foremost important to realize that the data obtained is an averaged summary of the bulk characteristics, as opposed to phenomena restricted to the outermost surfaces of the active particles under investigation. As such, in-situ measurements are typically limited to high intensity X-ray/neutron sources,329–340 as typical laboratory diffractometers are not able to produce X-rays capable of penetrating the entire cell stack‡. Differing from the conventional Bragg-Brentano geometry, utilization of a 2D area detector allows for fast collection times with additional spatial resolution as opposed to conventional 1D diffraction spectra. Generally speaking, utilizing high-intensity beams such as those provided by synchrotron/neutron user facilities seldom requires the used of a specially designed electrochemical cell, as the incident beam intensity is sufficient to penetrate the typical stainless steel casing of conventional coin cell type batteries, and it is customary to simply utilize commercial lithium/sodium-ion cells for in-situ characterization, eliminating potential concerns around quality/lack of hermetic seals in specially designed electrochemical cells.

‡ The term cell stack is used to refer to the typical construction of an electrochemical cell: outer casing, current collector, positive electrode, separator + electrolyte, negative electrode, current collector, outer casing in that order
3.2.1.3.2 Reflection-geometry in-situ electrochemical cells

The reflection geometry is the same as that previously described for Bragg-Brentano based diffractometers, and is the most common cell design when utilizing laboratory X-ray sources. Compared to high intensity beam lines, which can produce X-ray energies in excess of several MeV, conventional laboratory diffractometers are limited to relatively ‘soft’ X-rays operating ca. 8 keV (Cu source), placing prime concern around the attenuation of the X-ray beam.

Due to attenuation of the incident beam, the typical stainless steel casing which acts as both a rigid support and current collector, are replaced with an X-ray transparent window, allowing for sufficient diffracted beam intensities to be measured. While Kapton, and similar polymeric films have been documented,341,342 beryllium is a commonly used X-ray window, as it provides suitable mechanical and electrical properties to ensure that the electrode of interest maintains a flat reference plane while also circumventing the need to use additional current collectors. Here it is important to distinguish, that due to the proportional relationship between X-ray attenuation and atomic number, selection of low Z-compounds for X-ray windows is necessary. In fact, movement away from beryllium windows is only necessary when considering high-voltage materials, often reporting aluminum foil windows on the order of a few microns,343 or implementing modified cell assemblies that act to electronically isolate the beryllium from the electrochemical cell;344 thereby preventing dissolution of the beryllium, and contamination of the electrolyte.

Despite these considerations, the large variety between laboratory X-ray diffractometers presents itself as an unsolvable problem with no single design capable of being deemed ‘ideal’. The individual design of the electrochemical cell is then only limited by the physical constraints of the individual sample mounts within the diffractometer and considerations of the experimentalist; with many reports designing custom machined assemblies designed for easy loading, cleaning, and mounting within their respective diffractometers.327,337,343,345

While initial concerns are largely centered around the specifics of the cell construction, it is important to note that alignment of the in-situ cell within the diffractometer is a crucial step that will determine the intrinsic error in the measured diffraction data due to the relationship between sample height displacement from the diffracting plane and the measured d-spacings. A number of solutions are possible...
including (1) correction/alignment of in-situ cell according to an internal standard (2) designing the in-situ cell to be accurately and reproducibly installed in between diffraction measurements or (3) to perform successive X-ray scans without altering the cell alignment to ensure zero relative change in sample height between XRD measurements. The latter is the preferred technique used throughout this manuscript, and allows for a reliable account for the phase evolution throughout electrochemical cycling.

3.2.2 Fourier Transform Infrared Spectroscopy (FTIR)

Infrared spectroscopy works off of the general interactions between the chemical bonds within a sample and electromagnetic radiation; in particular, the vibrational and rotational energy levels associated with the liquid/solid samples. The topic of infrared absorption and Raman spectroscopy has been covered by numerous texts, with only relevant applications towards battery components (electrode/electrode surfaces/electrolyte) being considered within this section.

As mentioned throughout the previous sections, electrode materials generally consist of a mixture of transition metal cations within their respective 3-dimensional networks (layered, spinel, NASICON, etc.). Fourier Transform Infrared Spectroscopy (FTIR) is particularly powerful in identifying cationic ordering within electrode materials (resulting from specific synthesis conditions) that would otherwise require advanced synchrotron or neutron sources. Taking the example of LiMn$_{1.5}$Ni$_{0.5}$O$_4$ (P-LMNO) spinel, FTIR allows for quick discrimination between the disordered (random distribution of Mn and Ni on octahedral sites) and ordered phases by nature of the increasing absorption of the Ni-O band around 588 cm$^{-1}$ as illustrated by Figure 3-4.
Figure 3-4: Infrared spectra for LiMn$_{2.4}$Ni$_x$O$_4$ spinel annealed in air at 700°C. Reproduced from Ref. 306.

Various *in-situ* studies have also been made, particularly investigating the state of the electrolyte and the progression of the SEI layer under dynamic conditions. 347–352 Experimental investigations of this type require specially designed electrochemical cells as shown by Figure 3-5, with careful assembly and control over thickness of the active electrode(s) being crucial due to the need to operate in a transmission geometry.
Figure 3-5: Schematic of an in-situ transmission FTIR electrochemical cell. Reproduced from Ref. 347

It is important to note, that considerable absorption/background noise takes place due to the electrolyte used within the electrochemical cell, placing further experimental limitations to the cell geometries compatible in in-situ measurements. Overall, FTIR/Raman are powerful tools, often used to characterize the very thin/fragile passivating SEI layer that enables long-term cyclability in the majority of electrochemical cells (excluding ionic-liquid based cells). Surface specific characterization techniques such as these are further being supplemented by in-situ atomic force microscopy (AFM)353,354 and similar microprobe techniques, to give a full picture of the unique chemistries that take place at the electrode surfaces.

3.2.3 Brunauer-Emmett-Teller (BET) surface area

In 1938, Brunauer, Emmett, and Teller described a theory of multilayer gas adsorption onto a solid surface, serving as the basis for modern surface area measurements.355 The BET theory is itself an extension of the Langmuir theory, which describes the monolayer adsorption of gas molecules onto a solid surface, and is based on a number of assumptions:356

1. Adsorption occurs solely on well-defined surface sites
2. Molecules can act as a single adsorption site for a molecule in an upper layer
(3) The outermost layer is in equilibrium with the gas phase
 a. Similar molecular adsorption/desorption rate

(4) Desorption is a kinetically limited process
 a. Heat of adsorption must be provided

(5) At the saturation pressure, the molecule layer number tends towards infinity
 a. Equivalent to the sample being surrounded by a liquid phase

As a whole, surface area calculations are based on the application of the adsorption isotherm described by:

Equation 3-5: \[\frac{1}{v[(p_0/p)-1]} = \frac{c-1}{v_m c} \left(\frac{p}{p_0} \right) + \frac{1}{v_m c}; \quad c = e^{(E_1-E_L)/RT} \]

Here, \(p \) and \(p_0 \) indicate the equilibrium and saturation pressure of adsorbates at the adsorption temperature, \(v \) is the quantity of adsorbed gas, \(v_m \) is the quantity of gas resulting from monolayer adsorption, and \(c \) is a term called the BET constant; itself including \(E_1 \) and \(E_L \): the heat of adsorption for the 1\(^{st}\) and 2\(^{nd}\) – \(n^{th}\) layers respectively. Within BET measurements, adsorbates are generally confined to non-corrosive gases (nitrogen, argon, helium, krypton), making routine surface area measurement a simple matter, by the conveniently linear form the adsorption isotherm provides:

Equation 3-6: \[S_{BET} = \frac{v_m N s}{V a} \]

\(S_{BET} \) describes the specific BET surface area, \(N \) is Avogadro’s number, ‘\(S \)’ is the adsorption cross section of the adsorbing species, ‘\(V \)’ is the molar volume of the adsorbate gas, and ‘\(a \)’ is the mass of the sample.

BET surface area measurements play an important role in electrode design; enabling tuning of the specific rate capability of a material, to describing the poor electrochemical performance by nature of excessive surface area (that only acts to catalytically decompose the electrolyte). In either case, BET provides a quick and reliable means of measuring surface areas of nano/macro-crystalline samples, making it a crucial analytical tool for electrochemists. Additionally, average pore size distributions can be further elucidated by examination of multipoint BET measurements, and are of considerable importance when
considering the active surface area of a sample. Utilization of multiple \(p/p \) measurements, an inferred pore radius can be extracted considering the layers of adsorbed species.\(^{357,358}\)

3.2.4 Coulometric Titration Techniques

Early investigations into alloying-type anode materials utilizing coulometric titration techniques have grown into powerful electrochemical characterization tools, providing valuable information on reaction thermodynamics and kinetics of electrode materials. In particular, coulometric titration techniques including Galvanostatic intermittent titration (GITT), and potentiostatic intermittent titration (PITT) were designed to measure the chemical diffusion coefficients of solid alloy electrode materials. Movement from measurements by chemical tracer,\(^{359}\) and similar destructive evaluation methods has accounted for a large expansion into reported diffusion measurements of electrode materials. Previously, the measurement of diffusion coefficients have been made by inferred data from galvanostatically cycled electrodes,\(^{360-363}\) mainly taking into account only the time and current flow associated with the de/intercalation process.

Taking a first-principles approach, Wen et al. established the potentiostatic technique\(^ {364}\) where sudden potential steps are imparted on a planar electrode with a uniform initial concentration \((C_0)\) of the mobile species ‘\(A \)’ in the bulk. Once the potential is changed, a new activity of ‘\(A \)’ is imposed by the new concentration gradient at the electrode surface \(C_s \). In order to maintain the surface concentration at a constant value \(C_s \), a continual supply of ‘\(A \)’ through the electrolyte takes place as ‘\(A \)’ diffuses through the electrode until reaching a bulk concentration of \(C_s \) throughout the entirety of the electrode. The magnitude of the current response thereby provides a measure of the chemical diffusion flux, giving a simplified calculation of the diffusion coefficient by one of two approximations:

Equation 3-7: \[I(t) = z_A F S (C_s - C_0) \sqrt{\frac{D}{\pi t}} \quad \text{for} \ t \ll L^2/D \]

Equation 3-8: \[I(t) = \frac{2z_A F S (C_s - C_0)D}{L} e^{-\frac{\pi^2 D t}{4L^2}} \quad \text{for} \ t \gg L^2/D \]

Here, \(S \) is the cross-sectional area common to the sample electrode and electrolyte, \(Z_A \) is the charge number of the electroactive species, \(F \) is Faraday’s constant, \(L \) describes the characteristic diffusional length, and \(C_s/C_0 \) described the surface and initial concentrations of ‘\(A \)’ within the electrode sample. Due to the tight control over potential ranges, PITT offers itself as a high-resolution
electrochemical technique as close examination of single/multi-phasic regions can be studied independently. However, ohmic potential drop within the electrolyte, and transient charge buildup at the electrode surfaces often cannot be avoided, providing subtle drawbacks of the PITT method. Utilization of a pulsed Galvanostatic technique further exceeds the shortcomings of the PITT method, where constant current pulses are provided to the electrochemical cell followed by prolonged rest periods where the system is allowed to return to equilibrium. Diffusion coefficients can be determined by the approximation:

Equation 3-9: \[\tilde{D} = \frac{4L^2}{\pi t} \left(\frac{\Delta E_s}{\Delta E_t} \right)^2 \] for \(t << \frac{L^2}{D} \)

Where \(\Delta E_s \) and \(\Delta E_t \) represent the change in the steady-state voltage and total change in voltage during the constant current pulse respectively. The GITT method overcomes the ohmic voltage drop, which is present as an added time-independent constant, easily subtracted by the extrapolation of \(E \) vs. \(t^{1/2} \) to \(t = 0 \). However, due to the changing concentration gradient at longer time scales, the GITT method can only be utilized over a compositional range where the titration curve can be assumed to be linear:

Equation 3-10: \[(E(t) - E(t = 0))_{t=0} = \frac{ILV_M}{3ZAFSD} \] for \(t > \frac{L^2}{D} \)

Where ‘I’ is constant current pulse, and \(V_M \) is the molar volume of the electrode sample. While these simple electrochemical techniques can yield valuable information on the reaction kinetics within electrode materials, these treatments are however, still limited to single-phase de/insertion type electrodes as only diffusional processes are accounted for. In order to extend this technique into materials that exhibit phase transformations during de/insertion, the consideration of the interphase boundary migration is needed. Due to this shortcoming, ‘traditional’ PITT, and especially GITT are generally regarded are unreliable methods for diffusion coefficient calculations within multiphasic compositions, frequently only providing apparent diffusional data, as considerations of the boundary migration become necessary.

As described ‘traditional’ PITT/GITT methods are modeled based on flat electrode geometry, requiring added considerations when moving toward spherical particle geometries, which are far more
Further extending on the traditional coulometric titration techniques, Funabiki and Levi, have proposed moving-boundary models taking into account added energetic interactions that occur during phase transformations for PITT and GITT.368,369 Here, the diffusion is considered to be the only factor controlling boundary migration during the phase transformation. However, it is important to realize that the phase transformation occurs under nonequilibrium conditions; being itself a combination of diffusion and interface migration, making it exceedingly difficult to accurately reflect true characteristics of the electrode material within the two-phase region still.

Further extending on this approach, Zhu and Wang370 introduce additional considerations on the strain energy imparted by the lattice mismatch between the two phases during the phase transformation process in LiFePO\textsubscript{4} electrodes. The mixed-control phase transformation model is based on the layer growth and interface migration of the secondary phase, as the diffusing species moves through the particle surface (secondary phase) to the interface; driving the gradual rearrangement of the crystal lattice of the parent phase into the secondary phase. Consideration of the strain energies within the interphase region further highlights the uncertainty in measuring the two-phase region by traditional PITT/GITT. While traditional coulometric titration techniques commonly report \textit{ca.} 2-3 orders of magnitude difference between the single-phase and two-phase regions, the mixed-control method estimates the actual difference in diffusion coefficients to be within a factor of 10, with the large discrepancy in the former calculations being caused by not considering boundary migrational effects. While it is possible to separate the two factors, it is however often the case that only the boundary migration is of importance, as it is the rate limiting process throughout the described reaction.

Considering two phases α and β, the $\alpha \rightarrow \beta$ transformation requires two simultaneous processes: (1) β-phase layer growth & interface migration, and (2) diffusion of ‘A’ from the surface into the interface, and through the β-phase layer as shown schematically by Figure 3-6. The mixed control phase-transformation model demonstrates that the driving force ΔG_d for the $\alpha \rightarrow \beta$ transformation is primarily the sum of the chemical driving force ΔG_{chem}, strain accommodation energy ΔG_{strain}, and the interface energy ΔG_{int}:

\textbf{Equation 3-11:} \hspace{1cm} \Delta G_d = \Delta G_{\text{chem}} + \Delta G_{\text{strain}} + \Delta G_{\text{int}}
In the simplified case of a planar electrode, the interface energy may be ignored, with added geometric terms arising when considering spherical particles and additional geometries. Overall the terms for the chemical and strain components then become simple relations of the relative concentrations of ‘A’ in the α/β-phases and the equilibrium potential:

\[\Delta G_{chem} = \left(\frac{c^i_{\beta} - c^i_{\alpha}}{c_{max}} \right) FE^i_d - \left(\frac{c^{eq}_{\beta} - c^{eq}_{\alpha}}{c_{max}} \right) FE_{eq} \]

\[\Delta G_{accom} = \left(\frac{c^{eq}_{\beta} - c^{eq}_{\alpha}}{c_{max}} \right) FE_{eq} - \left(\frac{c^i_{\beta} - c^i_{\alpha}}{c_{max}} \right) FE^i_d = f(x_i) \]

With \(c^i_{\beta} \) and \(c^i_{\alpha} \) representing the interfacial concentrations of ‘A’ in the β and α-phases respectively. \(c^{eq}_{\beta} \) and \(c^{eq}_{\alpha} \) are the equilibrium concentrations of ‘A’ in the β and α-phases respectively. \(c_{max} \) is the maximum concentration of ‘A’ possible within the host structure, F is the Faraday constant, \(E^i_d \) is the dynamic interfacial potential measured during discharge, and \(E_{eq} \) is the strain-free equilibrium potential.

Figure 3-6: core-shell model for phase transformation of a spherical particle illustrating the migrating species, original phase (alpha) and reaction products (beta) with a thin and sharp interface.

Coulometric titration is a valuable technique, as it enables detailed thermodynamic studies on electrode materials in-situ/operando; allowing for detailed studies on intercalation kinetics and order/disordered phase transformations.
Delithiation of lithium spinels: λ-Mn$_{1-x}$M$_x$O$_2$ Structure

4.1 Introduction

Early work by Hunter293 has identified the λ-MnO$_2$ structure as a stable crystallographic form of manganese oxide. Unlike the α, β, and δ-MnO$_2$ forms, λ-MnO$_2$ is a metastable phase, itself being the delithiated product of LiMn$_2$O$_4$, carried out by either chemical or electrochemical delithiation.292 In order to properly investigate the Na$^+$ de/insertion characteristics, the delithiated λ-MnO$_2$ is taken as a starting material. Chemical and electrochemical delithiation describe two common techniques used to extract the Li$^+$ ions, where the former generally yields a protonated spinel structure as H$^+$ replaces Li$^+$, and the latter consists of electrochemically oxidizing the Mn cations during the Li$^+$ extraction process. Herein, lithium spinels of nominal composition LiMn$_{2-x}$Ni$_x$O$_4$ ($x = 0, 0.44, 0.5$) were used to produce their respective λ-Mn$_{1+y}$Ni$_y$O$_2$ ($y = \frac{1}{2}x$) structures for examination of the Na$^+$ insertion reaction into the λ-Mn$_{1+y}$Ni$_y$O$_2$ structure.

4.2 Experimental techniques

Lithium spinels for use in lithium/sodium cells were purchased and synthesized: Li$_{(1+x)}$Mn$_{(2-x)}$O$_4$ (LMO) was received from CHEMetal, while additional spinel samples: Li$_{1.1}$Mn$_{1.5}$Ni$_{0.5}$O$_{3.8}$F$_{0.2}$ (LMNOF), LiMn$_{1.5}$Ni$_{0.5}$O$_4$ (P-LMNO), and LiMn$_{1.56}$Ni$_{0.44}$O$_4$ (F-LMNO) were prepared according to solid state and Pechini methodologies respectively as described in299,315,321,371. Spinel powders were dried at 300°C and stored in a dry room at 24°C and relative humidity <1.0%. The spinel powder samples were cast into free standing positive electrodes consisting of 69.8% active material, 3.8% conductive carbon (SP, MMM) and 6% poly(vinylidene fluoride-co-hexafluoropropylene) (Kynar 2801, Elf Atochem) binder along with 20% propylene carbonate (PC) plasticizer. After successive extraction of PC with diethyl ether and drying under dry air, 3/8” disks were punched from the electrodes. Positive electrode disks were dried in a vacuum chamber at 120°C for a minimum of 10 hours and stored in an Argon filled glove box. Electrodes were initially charged vs. Na/Na$^+$ in order to extract Li$^+$ and to create a vacant host structure for Na$^+$ intercalation studies. Delithiated electrodes were removed from the initial 2032 type aluminum clad coin cells (Hohsen) and rebuilt with fresh glass fiber separator (Whatman GF/D) and Na metal (Sigma Aldrich: 262714) anodes.
prior to the first discharge against Na/Na+. Within the following sections λ-MNO derived from disordered (Fd-3m) and ordered (P4$_3$32) lithium spinels and their corresponding sodiated analogues (Na$_x$-MNO) are abbreviated as Fλ-MNO, Pλ-MNO, FNa$_x$-MNO and PNa$_x$-MNO respectively.

While reports on sodium ion battery electrolytes have demonstrated a number of different aqueous, non-aqueous, ionic liquid and solid-state electrolytes, few optimal compositions have been identified. Direct analogues from existing lithium electrolytes are rarely successful, as the solvation and passivation properties of Na metal differ from that of Li. Due to these limitations, use of 1M NaClO$_4$-PC is chosen as a baseline electrolyte due to favorable solubility of the electrolyte salt and extensive use throughout other SIB studies135,372. While maintaining good conductivity at room temperature, stability concerns associated with residual moisture of the perchlorate salt (45.5 ppm) and electrochemical limitations of the PC based electrolyte should be noted, leading to observation of competing oxidation of the electrolyte during high voltage and high temperature studies as will be discussed in detail throughout the following sections. Due to these concerns comparative analysis with additional sodium electrolytes and utilization of a monofluoro ethylene carbonate (FEC) electrolyte additive is chosen for the majority of the presented results, as PC does not form a stable SEI layer with the sodium metal anode. FEC has proven to successfully passivate Na metal cells61, and is utilized in a 2 vol% 1M NaClO$_4$-PC:FEC electrolyte throughout this study referred to as 1M NaClO$_4$-PC:FEC2% except when explicitly mentioned otherwise.

Multipoint BET surface area measurements were performed using a Micrometrics ASAP 2020 analyzer. Degassing conditions were run at 120°C for a minimum of 12 hours on the lithium spinel powder samples mentioned previously. Surface area and pore size distribution analysis was performed using N$_2$ gas.

Moisture content of electrolyte salts and powder samples were performed using a Karl Fischer Metrohm KF 831 Coulometer & 860 Thermoprep oven. Powder samples were heated to 200°C with a dry N$_2$ carrier gas flow rate of 80 mL/min. Electrolyte conductivity was measured with a Metrohm 6.0908.110 conductivity cell and a Solartron SI 1260 impedance analyzer under ambient conditions.

X-ray diffraction (XRD) characterization of powder and electrode disk samples was conducted on a Bruker D8 Advance diffractometer (Cu Kα, $\lambda = 1.5406\text{"}A$). Ex-situ XRD measurements were conducted on discharged and cycled (vs. Na/Na$^+$) positive electrodes after disassembly and removal of electrolyte by
rinsing with dimethyl carbonate (DMC) in an Ar filled glove box. XRD samples were prepared by sealing the positive electrodes onto glass slides using Kapton film to minimize moisture contamination during the XRD scan. Rietveld refinement was run utilizing the TOPAS software package using a 5th order Chebychev polynomial function to fit the background, while also refining sample height displacement, atomic positions and occupancies assuming a pseudo-voigt peak shape. Initial refinement of delithiated λ-MNOF, and $F\lambda$-MNO samples provide the fixed oxygen atomic positions used throughout ex-situ XRD data analysis. Reported refined samples were modeled with a Fd-3m/P4\textsubscript{3}32 space group assuming Na+ exclusively on the 8a tetrahedral sites. Corrections based on the quantities of the Kapton film cover, conductive and binder additives were not made, as their contribution to the XRD profile was negligible.

4.3 Results & Discussion

BET surface areas of LMO, LMNOF, F-LMNO, and P-LMNO powder samples were 1.1, 1.2, 5.7, and 4.6 m2/g respectively. Electrochemical characterization of the initial lithium spinels was conducted by Galvanostatic cycling and by cyclic voltammetry (CV) using a 3 mA/g cycling current and 0.01 mV/s scan rate respectively. Here, lithium spinel samples were cycled against a lithium metal positive electrode with a 1M LiPF\textsubscript{6}-EC/DMC (50:50 vol) electrolyte. The corresponding CV curves are given in Figure 4-1.

Here, the CV curves demonstrate the electrochemically active redox couples throughout the LMO, LMNOF, P-LMNO, and F-LMNO samples respectively. Nickel doped spinel samples exhibit a high-voltage redox couple at ca. 4.7V with minor traces of the Mn3+/Mn4+ redox intended by the off-stoichiometric compositions chosen for the LMNOF and F-LMNO samples used throughout this study. Overall, CV scans indicate that the lithium spinel samples are both electrochemically active, primarily working on the Mn3+/4+ and Ni2+/3+ redox reactions, and are in agreement with the voltage profiles provided in Figure 4-3.
Figure 4-1: CV scans for LMO, LMNOF, F-LMNO, and P-LMNO spinels vs. Li/Li⁺. Cyclic voltammetry scans are performed with a 1M LiPF6-EC/DMC electrolyte within 3.0 – 5.0V at 24°C and 0.01 mV/s scan rate.

Additional Fourier Transform Infrared Spectroscopy (FTIR) was performed on the lithium spinel cathode powders using a transmission geometry in order to validate the formation of the P4₃₃₂ (P₆-MNO) spinel. Figure 4-2 considers the Ni-O and Mn-O vibrational modes indicating successful formulation of the ordered spinel, as demonstrated throughout previous literature.³⁰³,³⁰⁶
Figure 4-2: Transmission FTIR (Fourier Transform Infrared Spectroscopy) data of Fd-3m (dashed) and P4_32 (solid) lithium spinels showing characteristic vibrational modes of Ni-O and Mn-O bonds.

X-ray diffraction (XRD) patterns, and corresponding Rietveld refined patterns of standard spinel samples LMO, LMNOF, F-LMNO, and P-LMNO are shown in Figure 4-4. All observed peaks can be assigned to Bragg reflections consistent with a Fd-3m/P4_32 spinel crystal structure. The Rietveld refined lattice parameters of a = 8.236Å, 8.169Å, 8.167Å, and 8.160Å for LMO, LMNOF, F-LMNO and P-LMNO samples respectively are in good agreement with those previously reported63,179,207,295,300,304.
Figure 4.3: Characteristic voltage profiles of lithium spinel positive electrodes with 1M LiPF$_6$ EC/DMC electrolyte at 24°C cycled with a 3 mA/g current.

During delithiation, charge capacities consistently demonstrate between 145 – 150 mAh/g with open circuit potential >4.7V (vs. Na/Na$^+$) indicating that complete electrochemical delithiation has
taken place. The high open circuit voltages in the 4.4 - 4.7V range suggest extensive Li plating on the Na metal anode as seen in Figure 4-5. Although the concentration of Li⁺ in the prepared sodium cells is extremely low following delithiation (~1mol%), fresh sodium anodes and electrolyte were provided in rebuilt Na/Na⁺ cells to ensure the following intercalation studies are free of any mixed Li⁺/Na⁺ de/insertion effects.

![Graph showing electrochemical delithiation of Fe₅-MNO](image)

Figure 4-5: Electrochemical delithiation of Fe₅-MNO against a lithium and sodium metal anode in 1M NaClO₄-PC:FEC2% electrolyte at 24°C

Figure 4-6 provides *ex-situ* XRD measurements following electrochemical delithiation. λ-MO, λ-MNOF, Fe₅-MNO, and P₅-MNO notations are used here to indicate the delithiated spinel structure, which can be distinguished by the rightward shift in the diffraction peaks, indicating a substantial contraction in the lattice parameter consistent with the combined effect of depopulation of the 8a sites and smaller ionic radii of the Ni⁴⁺ cation.
4.4 Conclusion

Electrochemical delithiation was utilized in order to form the λ-MO, λ-MNOF, Fλ-MNO, and Pλ-MNO spinels ($a = 8.052, 8.001, 8.000,$ and 7.994Å respectively) for further investigation as a potential sodium-ion electrode material. Electrochemical and structural characterization reveal that lattice parameters and active redox couples are in good agreement with those previously reported, and additional ex-situ XRD measurements on the λ-MO, λ-MNOF, Fλ-MNO, and Pλ-MNO phases exhibit a pure spinel phase of smaller lattice parameter indicating a significant contraction in the spinel lattice due to removal of lithium.

The following sections utilize the delithiated λ-MO, λ-MNOF, Fλ-MNO, and Pλ-MNO spinel compositions in order to investigate their potential use in future sodium-ion batteries.
5 Na⁺ insertion into λ-MO, λ-MNOF, Fλ-MNO, and Pλ-MNO

5.1 Introduction

In order to make direct comparisons between lithium and sodium spinel electrodes, the λ-spinel phase is produced by electrochemical delithiation as mentioned throughout the previous section. As described in the later chapters, the direct synthesis of the sodium spinel has proven to be exceedingly difficult due to differences in site preference and additional steric effects, often resulting in the formation of a layered structure. In particular, the λ-MO, λ-MNOF, Fλ-MNO, and Pλ-MNO compositions are chosen for the following reasons: (1) The undoped λ-MO provides a suitable benchmark against which a meaningful comparison to the nickel-doped spinels can be formed. (2) The λ-MNOF composition has demonstrated itself as an attractive Li-ion cathode, demonstrating considerable capacity retention at both ambient and elevated temperatures. (3) The Fλ-MNO, and Pλ-MNO spinels are both synthesized by a modified Pechini process, producing a mesoporous network of nanocrystallites, providing shorter diffusional pathways by nature of the relative differences in particle size compared to the solid-state derived λ-MNOF, while also considering the differences attributed to ordering of the transition metal cations between the Fλ-MNO and Pλ-MNO spinels respectively.

Throughout this section, two key features are demonstrated: that (1) the spinel structure is retained after insertion of Na⁺, and (2) that Na⁺ insertion occurs predominantly onto the 8a tetrahedral sites seen by complementary electrochemical and structural characterization; providing valuable insight into the reaction mechanisms at play throughout the initial discharge reaction, while demonstrating near theoretical capacity during the first discharge.

5.2 Experimental Considerations

Electrochemical characterization was performed on λ-MO, λ-MNOF, Fλ-MNO, and Pλ-MNO spinel positive electrodes, with bare sodium metal anodes in sodium electrolyte in 2032 type coin cells as mentioned previously. Ex-situ XRD was performed on discharged λ-MO, λ-MNOF, Fλ-MNO, and Pλ-MNO spinels following a delithiation and electrolyte extraction method discussed earlier.
An adjustable 3-axis stage and \textit{in-situ} XRD electrochemical cell was assembled comprising a stainless steel cell base and beryllium window. LMO, LMNOF, F-LMNO, and P-LMNO positive electrodes were cast into free standing positive electrodes as described previously and punched into 5/16” diameter disks prior to removal of PC plasticizer. The resulting cathode disks were centered and laminated onto 5/8” carbon coated aluminum mesh disks that are designed to provide an electrical contact to the \textit{in-situ} cell body. Extraction of the PC plasticizer was performed after lamination onto aluminum mesh disks at 120°C with 40 psi applied pressure. The cell parts and cathodes were dried under vacuum at 120°C prior to assembly to remove residual moisture. Cell assembly was performed as described in earlier work.373 Prior to \textit{in-situ} and \textit{operando} XRD measurements, the 3-axis stage was aligned with the incident X-ray beam to optimize the signal to noise ratio of the (111) spinel reflection. Electrochemical delithiation was performed prior to assembly in the \textit{in-situ} cell.

Three-electrode cells were utilized to validate possible polarization of the sodium metal anode. These specially designed cells consist of modified Swagelok body using sodium metal as the reference and counter electrodes.49 Cell bodies were dried at 120°C under vacuum prior to assembly in an Argon filled glovebox, and assembled using glass fiber separator and Mylar sleeves to insulate the electrodes from the cell body.

Galvanostatic and potentiostatic cycling was performed using a Bio-Logic VMP3 multichannel potentiostat/galvanostat and MacPiles galvanostat. Galvanostatic Intermittent Titration Technique (GITT) and Potentiometric Intermittent Titration Technique (PITT) were performed on 2032 Hohsen coin cells assembled in an Argon filled glovebox. GITT protocols consisted of 1-hour pulses of 7.58 mA/g of active material followed by 5-hour open circuit rest periods within the voltage range of 2.0-4.0V. PITT protocols were cycled with 10 mV steps with a current cutoff of 0.25 mA/g of active material within the voltage range of 2.0-4.25V.

5.3 Results

5.3.1 Na+ insertion into \(\lambda\)-MnO\textsubscript{2}

Figure 5-1a considers the discharge profile of \(\lambda\)-MO at a 3mA/g current rate at 24°C. As opposed to the voltage profile seen for \(\lambda\)-MO vs. Li/Li+, there is a significant drop in the voltage plateau from \textit{ca}.\textsuperscript{37
3.7V (vs. Li/Li⁺) to 3.12V (vs. Na/Na⁺). The first plateau is attributed to Na⁺ insertion onto the 8a tetrahedral sites. Beyond the 0 < x < 1 range, a second voltage plateau can also be identified at ca. 2.37V as Na⁺ begins to occupy the adjacent 16c octahedral sites, resulting in a structural decomposition into a layered structure shown by the ex-situ XRD profile of Figure 5-1b.

![Voltage profile of λ-MnO₂ (λ-MO) with a 3mA/g discharge current at 24°C, 1M NaClO₄-PC:FEC2%](image)

Figure 5-1: Voltage profile of λ-MnO₂ (λ-MO) with a 3mA/g discharge current at 24°C, 1M NaClO₄-PC:FEC2%.

Figure 5-1b also considers the initial λ-MO phase, demonstrating the abrupt change in crystal structure to a layered phase. Peaks marked by asterisks are attributable to the Kapton film used to encapsulate the cycled electrodes for ex-situ measurement. Although Na⁺ insertion onto the adjacent 16c sites allows for a large increase in capacity, excessive strain in the spinel lattice and critical buildup in Jahn-Teller active cations (Mn³⁺) results in the irreversible decomposition into an Orthorhombic layered phase. This irreversible change is evident by the change in the characteristic voltage profile; as demonstrated in Figure 5-2. Here, the initial discharge/charge cycle is shown in red, which is then completely indistinguishable by the 3rd and later cycles shown in black. Structural decomposition into the layered phase has been well documented, especially in the case of reversible Li⁺ de/insertion, which is induced by the cooperative Jahn-Teller distortion of the MnO₆ octahedra.¹⁸,²⁸⁴,³⁰⁹
In summary, reversible Na\textsuperscript+ de/insertion \(\lambda\)-MnO\(_2\) structure induces irreversible structural transformations, which is readily apparent by the drastic change in the voltage profile described by Figure 5-2. This decomposition into a layered structure does not come as a surprise, as reversible Li\textsuperscript+ de/insertion exhibits the same structural change, and is attributed to the critical accumulation of Mn3+, further resulting in distorted MnO\textsubscript{6} octahedra by nature of the cooperative Jahn-Teller distortional effects.
5.3.2 Na⁺ insertion into λ-MNOF

As discussed previously, the λ-MNOF spinel stoichiometry has been previously optimized²⁹⁹ for Li⁺ de/insertion, and its investigation as a suitable sodium insertion compound is of particular interest to contrast the different behaviors of Li⁺/Na⁺ ion de/insertion.

Figure 5-3 provides the discharge voltage profiles at C/10, C/25, C/50, C/100, C/200, and C/400 current-rates for λ-MNOF at 24°C demonstrating discharge capacities of 89.2, 102, 114.7, 118.8, 126.7, and 125.1 mAh/g respectively. Both the C/200 and C/400 discharge rates exhibit very similar capacity values, indicating complete reaction of λ-MNOF is feasible at a C/200 rate. Rietveld refinement was conducted on ex-situ XRD measurements, and is provided in Table 4-1.

The sodium insertion reaction occurs at ca. 3.6V vs. Na/Na⁺, which is notably lower than that expected when solely considering differences in standard redox between Na and Li. As will be discussed in greater detail in the following sections, this is largely due to added energetic ‘penalties’ that arise when incorporating Na⁺ into the spinel host structure, as the specific site and strain energies greatly differ between Na⁺ and Li⁺. In fact, this becomes further exemplified in the λ-MNOF samples, as the relatively large particle sizes (ca. 200-700 nm) of the λ-MNOF spinel inherently limits the rate-capability of the Na⁺ de/insertion reaction, and motivates the need to consider high surface area spinel samples used in the following sections.

Following complete discharge to 2.0V (vs. Na/Na⁺), the resulting cathodes were analyzed by ex-situ XRD. Of the considered discharge rates, the C/10 discharge rate shows the existence of three phases: (1) residual λ-MNOF spinel (a=8.009(2) Å) due to incomplete sodiation, (2) the sodiated spinel of expanded unit cell (a=8.414(2) Å), and (3) an additional phase which may also be indexed with an Fd-3m symmetry of intermediate lattice parameter (a=8.186(1) Å) between the vacant λ-MNOF and sodiated Na-MNOF structures. This is shown in Figure 4-5 and Table 4-1.

Due to the potential of lattice instability of Na spinels, additional known layered sodium phases were also modeled throughout the Rietveld refinements of discharged λ-MNOF vs. Na/Na⁺ cells. The relative poor fitting of the considered layered phases as compared to the Fd-3m Na-MNOF spinel support the retention of the spinel framework throughout Na⁺ insertion.
After discharge, the C/25 and C/100 discharged λ-MNOF vs. Na/Na$^+$ cells only exhibit the existence of both the sodiated Na-MNOF spinel (a=8.426(2) Å and 8.446(2) Å, respectively) and the intermediate spinel of approximate composition Na$_{0.1-0.4}$-MNOF spinel (a=8.190(3) Å and 8.196(7) Å respectively). Whereas the C/200 discharged λ-MNOF vs. Na/Na$^+$ cell only resulted in the presence of the fully sodiated Na-MNOF phase suggesting that complete insertion of Na$^+$ onto the vacant 8a tetrahedral sites has taken place, consistent with the initial discharge capacity near its theoretical value.

Figure 5-3b provides the ex-situ XRD scans of the λ-MNOF samples after discharging at C/100. A significant shift in all the Bragg reflections to larger d-spacings are noted along with the appearance of the (220) Bragg reflection at ca. 30° 2θ is consistent with an expansion of the spinel lattice, and occupation of a relatively higher atomic number element (as compared to Li) on the 8a tetrahedral sites. While Ni$^{2+}$ has demonstrated the ability to occupy the 8a sites, the lack of sufficient thermal energy to break the existing Mn/NiO$_6$ octahedral network, and electrochemically active redox both indicate that the 8a sites are exclusively populated by Na$^+$. XRD patterns are further quantified by Rietveld refinement given in Table 4-1, and discussed in detail below.

![Figure 5-3b](image-url)

Figure 5-3: Galvanostatically discharged sodium cells at 24°C, 1M NaClO$_4$-PC:FEC2% (a) and ex-situ XRD (b) measurements of λ-MNOF and C/100 discharged λ-MNOF
Considering the multiphasic nature of *ex-situ* XRD samples at discharge rates higher than C/25, Figure 5-4 demonstrates a spherical particle, and provides a schematic representation as to the observed multiphasic electrode compositions. As will be discussed in detail, reaction kinetics associated with the Na\(^{+}\) insertion processes are largely limited by grain boundary migration, posing considerable difficulties when dealing with low surface area electrodes at high charge/discharge rates. As noted by *ex-situ* XRD, three distinct spinel phases can be observed when cycling at progressively higher rates, as inhomogeneous regions begin to form within a single particle. Although this reaction model has yet to be validated directly, it provides a realistic account for the intermediate spinel phase without considering additional complex side reactions.

![Diagram](image)

Figure 5-4: Spherical particle model of \(\lambda\)-MNOF spinel considering differences in grain boundary migration and Na\(^{+}\) diffusion

Ex-situ and preliminary *in-situ* XRD of \(\lambda\)-MNOF vs. Na/Na\(^{+}\) cells exhibit an additional third phase (presumably of an intermediate sodium content) that is likely the result of the kinetic limitations of the sodium insertion reaction.
Figure 5-5 shows the ex-situ XRD profile of λ-MNOF vs. Na/Na+ discharged to 2.0V at a C/10 with special emphasis in the 18° - 20° 2θ range (b) in which the additional phase can be seen between the (111) Bragg reflections of the sodiated and non-sodiated spinel. This unknown composition (denoted as Naₓ-MNOF) can also be assigned to an Fd-3m space group, possibly indicating that a separate two-phase reaction is initiated as a result of the relatively (as compared to diffusional kinetics) high discharge rate, or an intermediate spinel composition is formed due to large strain/concentration gradients forming within individual particles.
Refined parameters of the λ-MNOF are provided at the top of Table 4-1 in order to draw comparisons between the vacant λ-MNOF structure and the fully sodiated Na-MNOF. The fully sodiated cell result in a lattice parameter approximately 5% greater than the host λ-MNOF, and voltage profiles across the considered discharge rates all suggest that the Ni$^{4+}$$\rightarrowNi^{2+}$ reaction is taking place at ca. 3.6V (vs. Na/Na$^+$). Equation 5-1 illustrates the proposed insertion reaction in which Na$^+$ is inserted onto the 8a tetrahedral sites of the λ-MNOF spinel, with the additional spinel phases of the discharged λ-MNOF cells being likely described by the large kinetic limitations of the λ-MNOF spinel as illustrated by Figure 5-4.

\begin{equation}
(\text{Na}_0.87)_{8a}[\text{Mn}_1.56\text{Ni}_0.44]_{16d}[\text{O}_4]_{32e}\rightarrow(\text{Na}_0.87)_{8a}[\text{Mn}_1.56\text{Ni}_0.44]_{16d}[\text{O}_4]_{32e}+(\text{Na}_0.87)_{8a}[\text{Mn}_1.56\text{Ni}_0.44]
\end{equation}
Table 5-1: Rietveld refinement on galvanostatically discharged electrodes

<table>
<thead>
<tr>
<th>Phase</th>
<th>Delithiated LMNOF</th>
<th>C/10 Discharge</th>
<th>C/25 Discharge</th>
<th>C/100 Discharge</th>
<th>C/200 Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M-100%</td>
<td>Na$_2$MNOF 82.68%</td>
<td>Na$_2$MNOF 4.90%</td>
<td>Na$_2$MNOF 12.60%</td>
<td>Na$_2$MNOF 97.32%</td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.999(1)</td>
<td>8.414(2)</td>
<td>8.186(1)</td>
<td>8.009(2)</td>
<td>8.426(1)</td>
</tr>
<tr>
<td>Unit Cell Vol (Å³)</td>
<td>511.9(9)</td>
<td>595.9(9)</td>
<td>548.5(6)</td>
<td>513.7(7)</td>
<td>598.2(8)</td>
</tr>
<tr>
<td>Na (Oce)</td>
<td>(0.0,0)</td>
<td>(0.8499)</td>
<td>(0.1)</td>
<td>(0.9465)</td>
<td>(0.294)</td>
</tr>
<tr>
<td>Mn (Oce)</td>
<td>(0.75)</td>
<td>(0.75)</td>
<td>(0.75)</td>
<td>(0.75)</td>
<td>(0.75)</td>
</tr>
<tr>
<td>Ni (Oce)</td>
<td>(0.58/0.58)</td>
<td>(0.25)</td>
<td>(0.25)</td>
<td>(0.25)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>O (Oce)</td>
<td>(0.38809, 0.38809, 0.38809)</td>
<td>(0.95)</td>
<td>(0.95)</td>
<td>(0.95)</td>
<td>(0.95)</td>
</tr>
<tr>
<td>F (Oce)</td>
<td>(0.38809, 0.38809, 0.38809)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C/10 Discharge</th>
<th>C/25 Discharge</th>
<th>C/100 Discharge</th>
<th>C/200 Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{av}</td>
<td>1.50</td>
<td>1.35</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>3.64</td>
<td>3.07</td>
<td>3.11</td>
<td>2.96</td>
</tr>
<tr>
<td>GOF</td>
<td>2.43</td>
<td>2.27</td>
<td>2.24</td>
<td>2.20</td>
</tr>
</tbody>
</table>

Figure 5-5: combined ex-situ and operando XRD data for macrocrystalline λ-MNOF. Ex-situ data (a-b) was cycled at a C/10 rate at 24°C while operando XRD data was separately collected at a C/40 rate at 24°C, 1M NaClO₄-PC:FEC2% (c-d)
Close examination of Figure 4-5 indicates that the final peak position of the Na\textsubscript{x}-MNOF phase does not appreciably change beyond completion of the first discharge. This type of behavior may be explained by either (1) an intermediate sodium phase, potentially related to an ordering of Na+ along the tetrahedral sites, or (2) incomplete extraction of lithium containing electrolyte during the initial electrochemical delithiation step.

Figure 5-5c exhibits a small shoulder peak at \textit{ca.} 18.5° 2\theta, which proceeds by a small shift in position during the first discharge to 18.41°, and finally stabilizes at 18.45° 2\theta after the first charge cycle.
where it then becomes effectively ‘inactive’ throughout the remaining 4 cycles. While the shoulder peak described in Figure 5 would suggest some degree of lithium remaining in the spinel. However, the consistency between ex-situ and in-situ XRD measurements suggest that this phase is either a sodium spinel or mixed Li/Na spinel as implied by the relatively high lattice parameter, with the initial shoulder observed in Figure 5c.
Figure 5-5c potentially being described by residual lithium caused by the poor electrolyte extraction as described in Chapter 4.

The core/shell model proposed by Figure 5-4 can be further expanded to explain the apparent ‘inactivity’ of the intermediate spinel phase, as it is likely that the same multiphasic core/shell model can be applied to the in-situ XRD data shown in
Figure 5-5c. In this case, the absence of the λ-MNOF at the end of the discharge is likely a result of reduction in the λ-MNOF core beyond XRD detection limits (a result of the differences in discharge rate: C/10 vs. C/40). Here, direct validation of the multiphasic core/shell model is not suitable with the given experimental considerations, and a simplified core/shell particle model is provided in Figure 5-6 where the λ-MNOF and Na_x-MNOF regions can be summarized as a single domain of an average sodium content.
The simplified core/shell model provides an intuitive explanation for the relative ‘inactivity’ of the Na$_x$-MNOF core, as the majority of Na$^+$ de/insertion is expected to take place predominantly throughout the volume of the particle shell due to the relatively large diffusional lengths of the 200-700 nm sized particles. This new model illustrates the important aspect of particle size and distribution when considering Na$^+$ de/insertion reaction kinetics, as the relatively large particle sizes of the λ-MNOF spinel results in a finite volume of material that becomes practically unusable due to the exceedingly low discharge/charge rates necessary to accommodate the low Na$^+$ bulk diffusivity.

Initial *in-situ* XRD results (Figure 4-5c-d) demonstrate that reversible cycling of Na-MNOF cathodes does not recover the initial λ-MNOF phase, as indicated by the relative peak positions of the observed diffraction peaks; motivating further study of the Na$^+$ deinsertion rate mechanism(s) preventing the complete removal of Na$^+$ from the spinel host lattice.

From these considerations, it is clear that full reaction of the λ-MNOF spinel is dependent on both the grain boundary migration and bulk Na$^+$ diffusion. Here the grain boundary migration and bulk diffusion coefficient are relatively constant (regardless of applied current rate), being only largely controlled by temperature and strain accommodation in the spinel host lattice. Although reduction of the average particle size is likely to observe the same phenomena, the effective volume of the intermediate spinel (Na$_x$) will be
negligible from considerations of the experimental detection limits of XRD. In fact, movement towards nanocrystalline (50-80nm) particle sizes no longer observes this apparent rate limiting behavior, indicating that reduction of the particle size is a necessary step towards reaching high discharge capacities due to the limiting kinetic considerations.

Movement to a Pechini synthesis route (covered in the next section) greatly improves the rate capability as evidenced by the high discharge capacities and phase purity of *ex-situ* XRD measurements on discharged cathodes. BET surface area analysis (5.8 m2/g vs. 1.2 m2/g for the LMNO-P and LMNOF samples respectively) and previous characterization of this material by FESEM and Williamson Hall technique show that the Pechini synthesis route has reduced the spinel crystallite size from 200-700 nm to 50-80 nm, while creating a mesoporous network that is more suitable for wetting of the electrode surface and reversible ion intercalation.
5.3.3 Na+ insertion into F\textsubscript{λ}-MNO

Movement towards a Pechini synthesis technique was chosen to enhance the rate capability by greatly reducing the diffusional distances that appeared to greatly limit the \(\lambda\)-MNOF spinel mentioned previously. Here, a disordered spinel (F\(\lambda\)-MNO) is discussed in terms of the initial Na+ insertion reaction.

Figure 5-7 considers F\(\lambda\)-MNO vs. Na/Na+ cells discharged at a C/10 and C/100 rate, with their respective \textit{ex-situ} XRD patterns. Refined lattice parameters are in close agreement with one another: \(a=8.439(0)\) Å and \(a=8.461(4)\) Å respectively, with no residual or intermediate phase observed by XRD. Although not definitive, this observation is consistent with the previous multiphasic core/shell model proposed in the previous chapter. Most importantly, both \textit{ex-situ} XRD patterns depict a single phase, but differ greatly in their observed discharge capacity. It is therefore believed that a similar core/she shell reaction mechanism is a play. However, due to the small particle sizes attributable to the Pechini derived F\(\lambda\)-MNO (50-80 nm), the inner core of individual particles large enough to satisfy the \(~5\text{ wt}\%\) detection limit of XRD. While it is once again, important to distinguish that there is insufficient data to fully support this reaction model, it is apparent that the Pechini derived F\(\lambda\)-MNO demonstrates a higher rate capability when considering Na+ insertion as determined by both the higher discharge capacities and larger average lattice parameter reported by XRD. Given current analyses, it is assumed that complete reaction of individual particles takes place throughout the following chapters.

![Figure 5-7: C/10 and C/100 discharge rates of Pechini derived F\(\lambda\)-MNO spinel at 24°C, 1M NaClO\textsubscript{4}, PC:FEC2% (a) and \textit{ex-situ} XRD of deconstructed cathodes (b)
5.3.3.1 Coulometric Titration: GITT/PITT

GITT was utilized as a low rate, near equilibrium electrochemical protocol to examine whether near theoretical specific capacities could be achieved as well as to gain insight on the voltage variation and phase progression associated with the Na⁺ insertion mechanism; the results are shown in Figure 5-8.

During the initial Na⁺ insertion reaction (Figure 5-8a), the open circuit potentials are relatively invariant at 3.65V across the majority of the discharge until x~0.8 indicating that the two-phase reaction has completed within the confines of our applied electrochemical protocol. Further discharge then appears to proceed through a single-phase reaction between 3.5-2V, and a final discharge capacity of 134.2 mAh/g is observed (99.53% theoretical capacity) throughout the combined two-phase & single-phase insertion reactions. This demonstrates complete Na⁺ insertion into the Fλ-MNO structure is possible given a sufficiently slow rate.

Figure 5-8: Galvanostatic intermittent titration technique (GITT) of Fλ-MNO at 24°C with 1M NaClO₄-PC:FEC2% electrolyte. First discharge (a) and subsequent charge/discharge voltage profiles (b)

After the initial insertion of Na⁺ there is significant difficulty in extracting all the sodium from the sodiated structure considering the 4.0V cutoff (Figure 5-8b). Initial GITT results suggest a variation in the relaxed potential with Na⁺ deinsertion characteristic of a single-phase process, and demonstrates a
reversible Na\(^+\) window between \(x = 0.55\) and \(x = 1.0\). Here, GITT results illustrate that the following Na\(^+\) de/insertion reaction is highly reversible, itself taking place throughout a single-phase de/insertion reaction process. However, only limited capacity is realized (\(ca.\) 60 mAh/g) due to the limited sodium extraction from the spinel host lattice, with further examination of the Na\(^+\) deinsertion reaction mechanism being covered in the following chapters.

In order to further elucidate the onset of the single-phase reaction, potentiostatic intermittent titration technique (PITT) cycling conditions were imposed to provide quasi-equilibrium conditions throughout the Na\(^+\) insertion process. Corresponding PITT data is given in Figure 5-9. The two-phase Na\(^+\) insertion reaction occurs across multiple 10 mV steps in the 3.68-3.58V range, with the majority of the capacity occurring within a very narrow voltage range: 3.65 - 3.60V. The relative invariance supports a two-phase insertion behavior consistent with the GITT results presented above.

Superimposed in Figure 5-9 is the specific current response across the applied potentials. Within the 3.65-3.60V range of interest, each step is associated with a strong non-Cottrellian current response characteristic of a multiphasic reaction, with each potential step throughout the two-phase region demonstrating a peak in current followed by a gradual decay until reaching a 0.25 mA/g current cutoff (per gram of active material). This behavior is reported until the overall cell potential drops below \(ca.\) 3.58V at which the current response then follows a Cottrellian-like \(t^{1/2}\) dependence. This transition to a single-phase reaction occurs at \(ca.\) \(x = 0.87\), just as the voltage drops below 3.6V at the knee in the recorded voltage profile; consistent with the previous GITT results. Combined with existing XRD data, the overall intercalation reaction of Na\(^+\) into the F\(\alpha\)-MNO structure is expected to occur \(via\) a two-phase intercalation reaction onto the vacant 8a tetrahedral sites up to an average sodium composition of \(ca.\) \(x = 0.87\) followed by further Na\(^+\) insertion onto 8a sites \(via\) a single-phase reaction until full sodiation has taken place (\(x = 1.0\)).
Figure 5-9: Voltage and specific current response of the sodium insertion of F\(\lambda\)-MNO spinel utilizing a PITT protocol between 2 – 4.25V and a 0.25mA/g current cutoff with 1M NaClO\(_4\)-PC:FEC 2% electrolyte at 24°C

Since there is always concern regarding the accuracy of high-resolution electrochemical techniques in a two-electrode configuration, a 3-electrode Swagelok cell described in previous works\(^{371}\) was used to determine the contribution to the overall cell potential from the sodium metal anode. Results are shown in the red voltage profile of Figure 5-10. The working potential of F\(\lambda\)-MNO vs. Na/Na\(^+\) counter electrode (solid curve) and F\(\lambda\)-MNO vs. Na/Na\(^+\) reference electrode (dashed) are nearly identical, indicating the negligible polarization of the negative electrode, and high level of confidence in the existing two-electrode data.
5.3.3.2 Ex-situ X-ray Diffraction (XRD)

Additional Fl-MNO electrodes were galvanostatically discharged at a C/200 rate with Δx cutoffs of 0.4, 0.6, and 0.8 in order to validate the two-phase region previously observed with PITT. Ex-situ XRD measurements were taken at different points within the two-phase reaction regime. Refined Na⁺ occupancies for the sodiated phase (Na-MNO) of 0.894 and 0.890 along with similar lattice parameters (a=8.391(7) Å & a=8.412(1) Å respectively) for the x=0.4 and x=0.6 samples support the proposed two-phase insertion reaction process described in Equation 5-2. This conclusion is also supported by the high-resolution electrochemical techniques described above, suggesting that once the Fl-MNO phase is fully converted to the Na₀.₈₇-MNO phase, the insertion reaction proceeds in a single-phase manner as described by Equation 5-3. Here, it is important to distinguish that although refined sodium occupancies suggest a higher degree of sodiation within the spinel, the relatively low scattering strength of Na makes it difficult to elucidate the exact Na occupancy by refinement techniques alone, and except where mentioned exclusively, Na occupancies are reported based off of electrochemical data.

Equation 5-2: \((Na_{0.87})_{8a}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e} \xrightarrow{3.65-3.61V} (Na_{0.87})_{8a}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e} \)

Equation 5-3: \((Na_{0.87})_{8a}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e} \rightarrow (Na_{0.87+x})_{8a}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e} \)
Figure 5-11: *Ex-situ* XRD measurements throughout two-phase reaction region discharged at 3 mA/g, 24°C using 1M NaClO₄-PC:FEC2%
5.3.3.3 *Operando* X-ray Diffraction (XRD)

Further validation of the reaction mechanism was performed by *in-operando* at both a C/60 and C/40 (not shown) discharge rate.

Figure 5-12 considers a stacked XRD plot in which scans are taken on a continual basis with a maximum interval between sequential XRD scans of $x = 0.03$, which is presumed to produce negligible artifacts/peak broadening. Asterisks are provided to mark the diffraction peaks correlating to the aluminum current collector and beryllium window used for the *in-situ* cell. (111) (220) (311) (222) (400) (511) and (440) spinel reflections are labeled for the Na-MNO spinel.
Operando XRD measurements of Na⁺ insertion into Fλ-MNO at C/60 and C/40 discharge rates reveal a common progression of phase evolution: Initial insertion of Na⁺ results in the formation of a larger lattice parameter phase of high sodium content (Na₀.₈₇MNO) as PITT results described above, followed by a single-phase insertion mechanism evidenced by a consistent shift in diffraction peaks to higher d-spacings. Here both the C/60 and C/40 discharge rates were utilized to potentially investigate the aforementioned core/shell reaction mechanism described in an earlier chapter. However, due to insufficient X-ray flux, such investigations were inconclusive, yet still validate the combined two-phase/single-phase reaction progression described by high-resolution electrochemistry independent of the chosen discharge rates.
Figure 5-12: C/60 *operando* XRD results of Na⁺ insertion into Fλ-MNO spinel. Full XRD 2θ range (a) and discharge profile cycled at 24°C, 1M NaClO₄-PC:FEC2% electrolyte (b). Spinel diffraction peaks are labeled with their respective (hkl) Miller indices, and peaks marked by asterisks denote contributions from the aluminum current collector and beryllium window.
A final discharge capacity of 124.04 mAh/g was achieved for the cell discharged at a C/60 rate, corresponding to ca. 92% theoretical capacity. In-situ XRD scans taken during open circuit periods following the C/60 discharge did not exhibit any relaxation of the observed sodium spinel peaks, indicating that the reaction does not proceed beyond the intended discharge, and that structural degradation does not appear to be an issue. The vertical guidelines of Figure 4-13 demonstrate the magnitude of the peak shift in the Na-MNO Bragg reflections, and as anticipated by the earlier ex-situ XRD results, it appears that the onset of the Mn⁴⁺→Mn³⁺ reduction facilitates the dominating single-phase reaction as can be seen by the onset of peak shift marked at the voltage profile knee of Figure 4-13d.

Peak shift contributions from misalignment of the in-situ electrochemical cell may be easily ruled out, as the aluminum mesh current collector acts as an internal standard and indicates no such shift in peak position; thereby indicating that a partially sodiated spinel phase is nucleated, which then proceeds by a single-phase reaction to reach a final composition of Na₀.⁹⁸MNO, and Na₀.⁹¹MNO for the C/40, and C/60 discharged sodium cells respectively.

Comparison of the C/40 and C/60 operando cells provides further insight to the possible rate dependence on the observed onset of the single-phase reaction. The C/60 and C/40 results show the same evidence of a mixed two-phase/single-phase sodium insertion reaction, however, the ratios of the capacity contribution from the respective two-phase and single-phase regions do not directly correlate; potentially indicating inhomogeneous electrochemical processes occurring throughout the particle volume as discussed earlier.

Termination of the two-phase reaction for the C/40 and C/60 operando cells occurred at Naₓ values of 0.78, and 0.70 respectively, which differs from the PITT measurements mentioned previously (x = 0.87). Due to the quasi-equilibrium conditions of the PITT protocol, and apparent kinetic limitations of the two-phase reaction, it is of no tremendous surprise that there is a considerable deviation between the PITT and galvanostatically cycled cells. Most importantly, operando measurements validate that the onset of the two-phase/single-phase insertion behavior occurs beyond the ca. 3.6V plateau. Operando C/60 and C/40 Fκ-MNO vs. Na/Na⁺ cells provide valuable information into the structural evolution throughout electrochemical cycling: linking the observed shift in reaction mechanism to the voltage profile. Operando
XRD data supports the proposed insertion reactions of Equation 5-2 and Equation 5-3, suggesting that the shift in reaction mechanism occurs as a result of the Mn⁴⁺/Mn³⁺ reaction. This can potentially be explained by the relative size differences between Mn⁴⁺ and Mn³⁺, with the latter acting to prop open the spinel structure, facilitating easier Na⁺ diffusion through a single-phase reaction. Further remarks on the origins of the single-phase behavior are provided in following sections.

Figure 5-14 compares the relative change in the measured lattice parameter from the C/60 in-situ cell. Here, reported lattice parameters are normalized to the Fl-MNO spinel (a = 8.000Å) and remain constant throughout the first ca. 33 hours of operation while generating a secondary spinel phase (a ~ 8.44Å) in a typical two-phase insertion reaction. In agreement with the previous electrochemical data, the measured lattice parameter of the sodiated spinel thereby undergoes a systematic increase throughout the single-phase region upon completion of the two-phase reaction. Here it is also important to consider potential error in the measured lattice parameters, as the initial alignment of the in-situ electrochemical cell was performed to maximize the intensity of the diffraction peaks, rather than to focus the cathode onto the diffraction plane. Errors in the measured d-spacings are calculated to be less than 2.9% as given by Equation 5-4, where D is the sample displacement normal to the diffracting plane, and R is the goniometer radius. In order to avoid such errors, the relative change in lattice parameters are reported here, and in following sections, using either the vacant λ-phase spinel or the fully sodiated spinel as a point of reference.

Equation 5-4:

\[
\frac{\Delta d}{d} = - \frac{D \cos^2 \theta}{R \sin \theta}
\]
Figure 5-13: Selected diffraction peaks from C/60 discharged Fλ-MNO given in Figure 4-12 including the (111) (a), (311) (b) and (400) (c) spinel reflections and voltage profile (d). Dashed lines are provided as a guide to depict the onset in peak shift that occurs beyond the knee in the voltage profile. Diffraction patterns shown in red correlate to the knee in the voltage profile as shown by the red arrow of (d). Peaks marked by asterisks denote diffraction contributions from the current collector/beryllium window.
5.3.3.4 Discussion

5.3.3.4.1 Reaction Mechanism

The combination of electrochemical and physical characterization techniques previously covered gives a complementary view of the different reaction pathways taking place throughout the initial Na⁺ insertion. The overall reaction pathway consists of both a two-phase and single-phase Na⁺ insertion reaction as described by Equation 5-2 and Equation 5-3. The observed two-phase behavior is sensible when considering to the significant mismatch in lattice parameters between the Fλ-MNO and the Na₀.₈₇MNO phases and the subsequent strain energy associated with the Na⁺ insertion onto the 8a tetrahedral sites.

Following the completion of the initial two-phase reaction, the insertion process thereby proceeds along a solid-solution behavior as seen by both in-operando XRD and high-resolution electrochemistry data. The transition to a single-phase reaction mechanism significantly improves the reaction kinetics as demonstrated by the calculated diffusion coefficients in Table 5-2. Here, the observed differences in kinetics between the two-phase and single-phase insertion reactions are not entirely surprising, as additional limitations of the grain boundary between the sodiated and desodiated phases must be
considered. The reported diffusion coefficient for the two-phase region in fact, more accurately describes the grain boundary migration between the Fλ-MNO and the Na0.87MNO phases; explaining the ca. 3 order of magnitude difference. Although assumptions surrounding the calculation of the diffusion coefficient for the two-phase reaction here, and in following sections are based off an ideal solid-solution behavior, calculation within the two-phase region occurs without any loss of ‘significance’ in the data, as grain boundary migration will remain the dominant factor throughout the considered two-phase reaction(s).

Although not conclusive, preliminary data suggests some correlation of the initiation of the single-phase reaction with the Mn⁴⁺ → Mn³⁺ reduction reaction, as existing Na⁺ within the spinel lattice and difference in ionic radii of Mn⁴⁺/Mn³⁺ both act to prop open the spinel host lattice, allowing for facile Na⁺ diffusion. While additional analysis may be done on the specific reaction pathways as a function of Mn³⁺ content (present in the Fλ-MNO due to the initial intended non stoichiometry of the spinel), such works are left for future investigations.

Figure 5-15 considers two discharge voltage profiles: (1) Fλ-MNO vs. Li/Li⁺ and (2) Fλ-MNO vs. Na/Na⁺. Dashed lines are provided to demonstrate the electrochemical contribution from the Mn³⁺/Mn⁴⁺ redox for the Fλ-Mn₁.₅₆Ni₀.₄₄O₄ composition in particular, which can be more accurately described by Equation 5-5.

<table>
<thead>
<tr>
<th>Na⁺ insertion reaction</th>
<th>Diffusion Coefficient [cm²/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fλ-MNO → FNa₀.₈₇MNO</td>
<td>1.61 E -16</td>
</tr>
<tr>
<td>FNa₀.₈₇MNO → FNa₀.₈₇+xMNO</td>
<td>5.05 E -13</td>
</tr>
</tbody>
</table>
Figure 5-15: Voltage profile comparison between F-MNO vs. Li/Li\(^+\) and \(\text{F}_\lambda\)-MNO vs. Na/Na\(^+\) with guidelines showing capacity contributions associated with the Mn\(^{3+}/Mn^{4+}\) redox.

Equation 5-5

\[
(\text{8a})_{[\text{Mn}^{3+}_{0.06}]_{16d}[\text{Mn}^{4+}_{1.5}]_{16d}[\text{Ni}^{4+}_{0.44}]_{16d}[\text{O}_4]_{32e}}
\]

Considering Figure 5-15, it is also important to note that Na\(^+\) insertion also appears to occur onto the adjacent 16c octahedral sites, as can be seen by the shift in slope of the voltage profile between the 0.97 < Na\(_x\) < 1.03 compositional range. Here, the ‘spilling’ of Na\(^+\) onto the adjacent lattice sites does not come as a drastic surprise, as the relative interatomic distances between 8a sites is relatively small when considering the large cationic radii of Na\(^+\), likely resulting in distorted tetrahedral coordinations of inserted Na\(^+\) or partial occupancy of the 16c sites in order to reduce repulsive and lattice strain effects from neighboring Na\(^+\). In fact an additional study on the lattice site occupancy of Na\(^+\) throughout the 0 < Na\(_x\) < 1.0 compositional range would give valuable insight into the potential limitations of the sodium spinel, and origins of the two-phase/single-phase reaction transition. While in-situ vibrational studies as described in Chapter 1 may provide data related to the tetrahedral/octahedral nature of the sodium sites specifically, Na\(^+\) insertion is regarded as occurring predominantly on the 8a tetrahedral sites throughout the following sections based off of electrochemical and X-ray characterization.
Figure 5-8, Figure 5-9, and Figure 5-10 all illustrate that following the initial discharge reaction, Na\(^+\) deinsertion is only successful in extracting a narrow range of Na\(^+\) from the FNa-MNO spinel host. Further remarks are provided throughout the following chapter.

5.3.3.4.2 Insertion Potentials Associated With the Spinel Host Structure

As reported by\(^{301,312}\) Li\(^+\) insertion into F\(\lambda\)-MNO occurs between 4.7-4.75V. The observed voltage for insertion of Na\(^+\) into \(\lambda\)-MNOF and F\(\lambda\)-MNO shows a significantly different behavior than the anticipated 0.3V difference from considerations of the difference in standard reduction potentials of Li and Na. Overpotential contributions from the negative electrode were found to be negligible, indicating that the observed voltage differences between the Li and Na spinels are due solely to characteristics of the \(\lambda\)-MNOF/F\(\lambda\)-MNO host structure.

To gain insight into the nature of the significant voltage differences between the sodium and lithium spinels, a direct comparison between F\(\lambda\)-MNO and \(\lambda\)-MnO\(_2\) was considered using both a lithium and sodium metal counter electrode. Their voltage profiles are given in Figure 5-16. Although not covered in detail, the additional reaction occurring at ca. 2.4V (vs. Na/Na\(^+\)) in Figure 5-16a is related to a structural decomposition into a layered phase induced by a cooperative Jahn-Teller distortion of Mn\(^{3+}\) cations.

The overall voltage difference between Li\(^+\) and Na\(^+\) insertion is approximately 1.1V (between Figure 5-16d & Figure 5-16b) for F\(\lambda\)-MNO and 1.0V (between Figure 5-16c & Figure 5-16a) for \(\lambda\)-MnO\(_2\). The observed difference in voltage between the lithium and sodium metal cells are approximately 0.7V larger than the 0.3V difference expected from simple derivation from the discrepancies in standard redox potentials of the respective metal anodes alone, suggesting energetic barrier(s) attributed to the Na\(^+\) insertion into the spinel structure. This/these barrier(s) is/are similar between both the nickel substituted and unsubstituted spinels, and three electrode studies have shown (Figure 5-10) that the overpotential of the Na/Na\(^+\) reaction is not a contributor to the overall cell potential, thereby attributing the disparity in potential to the ability of the host structure to accommodate the Na\(^+\). Since the nickel substitution of \(\lambda\)-MNOF and F\(\lambda\)-MNO acts to increase the observed potential by approximately 0.5V consistently relative to \(\lambda\)-MnO\(_2\) regardless of the intercalating species (Li\(^+\) or Na\(^+\)) further generalization of this behavior can be said to be characteristic of Na\(^+\) insertion into the Fd-3m spinel structure.
This insertion occurs without structural decomposition or rearrangement as evidenced by the comparative voltage profiles and XRD data shown previously, as ex-situ XRD data indicates that insertion of Na\(^+\) has been occurring solely on the vacant 8a tetrahedral sites. Here, it is also important to elucidate that potential Na\(^+\) insertion onto the adjacent 16c octahedral sites is likely occurring (< 8%) below 2.2V (vs. Na/Na\(^+\)). However, throughout the remaining chapters, Na\(^+\) insertion behavior will be described as occurring exclusively onto the 8a sites, as further in-depth characterization methods are necessary to elucidate the occupancy of the 16c sites.

Overall, a consistent ca. 0.6V difference is observed between the F\(\lambda\)-MNO and \(\lambda\)-MnO\(_2\) sodium cells; with an average voltage difference of 1.10V and 1.0V demonstrated between the lithium and sodium cells respectively. This simple comparison allows for two profound conclusions regarding the Na\(^+\) insertion reaction onto the F\(\lambda\)-MNO host lattice: (1) The Ni\(^{2+}\)/Ni\(^{4+}\) redox reaction is still the predominant electrochemical reaction being considered, indicating that a similar insertion reaction is occurring between Li\(^+\) and Na\(^+\), and (2) the high-voltage F\(\lambda\)-MNO phase sees additional energetic penalties associated with the Na\(^+\) insertion reaction attributed to the both steric and specific lattice site energy differences between Li\(^+\) and Na\(^+\).
Figure 5-16: Discharge profiles of FL-MNO and λ-MnO$_2$ in Li-metal (dashed) and Na-metal cells (solid) respectively. λ-MnO$_2$ vs. Na/Na$^+$ (a) FL-MNO vs. Na/Na$^+$ (b), λ-MnO$_2$ vs. Li/Li$^+$ (c), and FL-MNO vs. Li/Li$^+$ (d) cells were discharged at a C/100 rate at 24°C using 1M NaClO$_4$-PC:FEC2% and 1M LiPF$_6$-EC/DMC electrolytes for sodium and lithium metal cells respectively.

5.3.4 Na$^+$ insertion into λ-Mn$_{0.75}$Ni$_{0.25}$O$_2$ (Pλ-MNO)

5.3.4.1 Results

Lithium spinels have consistently demonstrated significantly different cycling characteristics as a function synthesis conditions due to formation of a primitive ordered P4$_3$32 spinel in which nickel substitutions are distributed along alternating layers along the [111] direction. It is therefore of particular interest to examine the characteristics that govern Na$^+$ insertion into the Pλ-MNO spinel. Here, Pλ-MNO spinel was formed by additional heat treatment of FLi-MNO at 700°C in air for 12 hours. The resulting XRD and FTIR data are covered in Figure 4-2 and Figure 4-4, with the Pλ-MNO spinel being formed by the same method as described throughout Chapter 4.

Initial galvanostatic cycling (3mA/g cycling current at 24°C between 2.0 – 4.25V) of Pλ-MNO (vs. Na/Na$^+$) demonstrates a similar voltage profile as that previously seen for FL-MNO vs. Na/Na$^+$ cells.
throughout the initial discharge reaction of Figure 5-17a. Considerable change in the voltage profile following the initial discharge/charge cycle can be seen in Figure 5-17b and is discussed further in the following chapter. Here, the initial Na⁺ insertion observes a final capacity of 112.3 mAh/g, (73% theoretical capacity) which is considerably low when considering the initial discharge capacities of typical Fλ-MNO cathodes (~90% theoretical capacity) under similar galvanostatic conditions.

![Figure 5-17: Voltage profile of PNa-MNO vs. Na/Na⁺. The first discharge/charge cycle (a) 5th, 10th, and 50th cycles (b) are cycled at 3 mA/g at 24°C using 1M NaClO₄-PC:FEC2% electrolyte.](image)

5.3.4.2 Coulometric Titration

PITT was used to determine Na⁺ insertion kinetics and specific reaction mechanisms taking place within the Pλ-MNO spinel. Figure 5-18 considers both the voltage profile and current response throughout the first discharge/charge cycle operated between 2.5 – 4.25V (vs. Na/Na⁺) at 24°C using a 1M NaClO₄-PC:FEC2% electrolyte and a 0.25 mA/g current cutoff.

As Na⁺ begins, a two-phase reaction is apparent by the non-Cottrellian current response throughout the ~8 10 mV potential steps within the 3.69 - 3.61V potential range. The two-phase reaction then comes to a stop at an average composition of PNa₀.₆₃MNO, and thereby continues along a single-phase insertion reaction as evidenced by both the sloping voltage profile and the current response. Notably
different from the $F\lambda$-MNO, $P\lambda$-MNO reaches just over 81% theoretical capacity, suggesting that some additional Na$^+$ insertion barriers exist when considering the ordered $P\lambda$-MNO spinel.

Judging from the PITT and galvanostatic data alone, the initial Na$^+$ insertion reaction appears to progress in a similar two-phase/single-phase reaction pathway as previously described for $F\lambda$-MNO, except with a considerable difference in the amount of sodium in the spinel host lattice. Equation 5-6 and Equation 5-7 considers the two step reaction pathway for the initial Na$^+$ insertion into $P\lambda$-MNO. However, considering the consistently low discharge capacities of the $P\lambda$-MNO, despite the quasi-equilibrium conditions PITT cycling affords, it is expected that a considerable amount of unreacted $P\lambda$-MNO phase is still present, making Equation 5-6 and Equation 5-7 inaccurate representations of the Na$^+$ insertion reaction, as is highlighted and discussed in the following sections.

![Figure 5-18: Potentiostatic intermittent titration technique (PITT) discharge/charge cycle for $P\lambda$-MNO vs. Na/Na$^+$ using 1M NaClO$_4$-PC:FEC2% at 24°C and a 0.25 mA/g current cutoff](image)

Equation 5-6:

\[
(\text{Na}_{0.65})_{8d}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e} \rightarrow (Na_{0.65})_{8d}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e}
\]
Equation 5-7:

\[(\text{Na}_{0.65})_{8a}[\text{Mn}_{1.56}\text{Ni}_{0.44}]_{16d}[\text{O}_4]_{32e} \rightarrow (\text{Na}_{0.65+x})_{8a}[\text{Mn}_{1.56}\text{Ni}_{0.44}]_{16d}[\text{O}_4]_{32e}\]

Table 5-3 provides the calculated diffusion coefficients throughout the initial Na\(^+\) insertion reaction for both the two-phase and the single-phase reactions. Here, the reported Na\(^+\) insertion reactions are based off of in-situ XRD data due to incomplete reaction of the Pl-MNO under normal galvanostatic and PITT cycling conditions. It is once again important to illustrate that calculation of the diffusion coefficients in this manner is based on assumptions around a solid-solution behavior, and only realistically describes the grain boundary migration between the Pl-MNO/PNa\(_{0.93}\)MNO phases for the two-phase reaction described. This however does not diminish the meaningfulness of the data, as the grain boundary migration is the rate-limiting process throughout the considered two-phase reaction, as can be seen by the ca. 3 orders of magnitude difference in the calculated diffusion coefficients of Table 5-3.

Table 5-3: Calculated diffusion coefficients for the initial Na\(^+\) insertion reaction into Pl-MNO

<table>
<thead>
<tr>
<th>Na(^+) insertion reaction</th>
<th>Diffusion Coefficient [cm(^2)/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pl-MNO (\rightarrow) PNa(_{0.93})MNO</td>
<td>4.67 E -16</td>
</tr>
<tr>
<td>PNa({0.93})MNO (\rightarrow) PNa({0.93+x})MNO</td>
<td>8.26 E -13</td>
</tr>
</tbody>
</table>

The following charge (desodiation) occurs primarily by a single-phase Na\(^+\) deinsertion reaction as indicated by the PITT and in-situ XRD data of the following sections. However, Figure 5-18 sees an additional non-Cottrellian current response at ca. 3.92V (vs. Na/Na\(^+\)) indicating a minor two-phase reaction taking place during the Na\(^+\) deinsertion process. Additional reactions can be seen above 4.2V, however, due to the inherent limitations of the PC based electrolyte, further contrasting data is needed to elucidate the specific processes taking place during desodiation. Further discussion on the desodiation process is left for the following chapter.

5.3.4.3 Ex-situ X-ray Diffraction (XRD)

Figure 5-19 considers a discharged Pl-MNO vs. Na/Na\(^+\) cathode using the same ex-situ XRD sample preparation techniques described previously. The cell was discharged to 2.0V (vs. Na/Na\(^+\)) using a
3.0 mA/g current at 24°C using a 1M NaClO₄-PC:FEC2% electrolyte, reaching a final discharge capacity of 106.7 mAh/g (~79% theoretical capacity). Asterisks pertain to diffraction peaks from the Kapton film, and (hkl)' and (hkl)" Bragg reflections are used to indicated the initial Pλ-MNO and an intermediate PNaₐ-MNO phase respectively. This behavior is very similar to that observed for λ-MNOF cathodes in which multiple spinel phases have been demonstrated as a result of the kinetic limitations of the active material.

As will be discussed in the following chapter, in order to draw further comparisons between the ordered (PNa-MNO) and disordered (FNa-MNO) sodium spinels, Pλ-MNO cathodes are initially discharged at 50°C in order to facilitate complete reaction of the Pλ-MNO particles; achieving similar discharge capacities to Fλ-MNO (24°C). Various limitations of the Pλ-MNO spinel are also expected from the comparatively low surface area of the Pλ-MNO powder samples: 4.6 m²/g vs. 5.7 m²/g for the ordered and disordered spinels respectively. Additional comments are provided in the following chapter.

Figure 5-19: Ex-situ XRD comparison between Pλ-MNO and sodiated Pλ-MNO using a 3.0 mA/g discharge current at 24°C with 1M NaClO₄-PC:FEC2% electrolyte. Note: XRD pattern of the PNa-MNO ex-situ sample observes a slight 2θ shift relative to the Pλ-MNO sample due to sample height displacement from the thickness of the cathode disk.

Nevertheless, discharged Pλ-MNO (vs. Na/Na⁺) cathodes exhibit three key features: (1) Na⁺ insertion is occurring on the 8a tetrahedral sites, as can be inferred by the significant growth in intensity of the (220) Bragg reflection as compared to Pλ-MNO. Due to both the reversibility of the PNa-MNO spinel, and the relatively low temperatures used, possible migration of Mn/Ni onto the 8a tetrahedral sites is ignored as insufficient thermal energy is provided to break the M-O bonds. (2) Na⁺ insertion begins by a
two-phase reaction as indicated previously by galvanostatic and PITT electrochemical data, which can be easily observed in Figure 5-19 due to the remaining P\(\lambda\)-MNO phase as marked by the \((hkl)^{'}\) Bragg peaks. And (3) there exist significant kinetic limitations of the ordered (P\(\lambda\)-MNO) spinel as compared to the disordered (F\(\lambda\)-MNO) spinel, which limits the initial Na\(^{+}\) insertion reaction, and subsequent cycles, as will be discussed later.

5.3.4.4 Operando X-ray Diffraction (XRD)

Continuous XRD scans were performed under in-operando conditions on a P\(\lambda\)-MNO vs. Na/Na\(^{+}\) cell using a 3mA/g current at 24°C and a 1M NaClO\(_4\)-PC:FEC2% electrolyte. X-ray scans were taken on a Na\(_x\) = 0.02 interval, which is assumed to introduce negligible contribution on the resulting diffraction data. Bragg peaks are labeled with asterisks and are indexed as \((hkl)/(hkl)^{'}\) in accordance with the previous section. Vertical guide-lines are provided to demonstrate a minor peak shift in the PNa-MNO spinel Bragg reflections indicating a single-phase Na\(^{+}\) de/insertion behavior.
Figure 5-20 provides the stacked XRD scans throughout the first discharge/charge cycle of the Pλ-MNO vs. Na/Na’ cell.
Figure 5-21 considers only the (111), (311) and (400) spinel reflections, and more clearly demonstrates the two-phase and single-phase Na⁺ insertion reactions taking place during the initial discharge. Further remarks regarding the successive Na⁺ de/insertion processes depicted in Figure 4-21 is reserved for the following chapter.

In Figure 4-21 the Na⁺ insertion reaction initiates by a two-phase reaction producing a sodiated spinel of larger lattice parameter as indicated by the relative peak positions between the (hkl)' and the (hkl) reflections. As compared to the earlier ex-situ XRD data, no (hkl)'' phase can be identified, possibly due to the relatively low diffraction intensities resulting from the specific experimental setup of the in-situ electrochemical cell discussed within the experimental section. Nonetheless, the operando XRD data clearly validates the combined two-phase/single-phase reaction pathway throughout the initial Na⁺ insertion as shown earlier by the PITT data. In fact, the operando XRD data enables a more definitive look at the initial two-phase reaction that is occurring, as the initial P₃-MNO phase offers a convenient internal reference peak from which a precise lattice parameter can be calculated for the two-phase reaction product.
Figure 5-20: P₄-MNO (P4₃2) spinel discharged at 24°C and 3mA/g using 1M NaClO₄-PC:FEC2%. XRD scans are taken on a Δx interval of 0.02 in order to avoid significant peak broadening contributions. Dashed vertical lines are provided to illustrate the minor peak shift that occurs during single-phase Na⁺ insertion, most clearly identified by the (511) and (440) Bragg reflections.
Figure 5-21: Selected diffraction peaks from P1-MNO vs. Na/Na⁺ given in Figure 4-20 including the (111) (a), (311) (b) and (400) (c) spinel reflections and galvanostatically cycled voltage profile (d). Diffraction patterns shown in red correlate to the knee in the voltage profile as shown by the red arrow of (d). Peaks marked by asterisks denote diffraction contributions from the current collector/beryllium window.
Figure 5-22 considers the relative change in lattice parameter throughout the initial Na\(^+\) insertion reaction. As the initial two-phase reaction begins, a second spinel phase (PNa-MNO) of approximate lattice parameter ca. 8.419Å is formed, and undergoes further expansion of the spinel lattice to a value of ca. 8.433Å by the end of discharge. As noted previously, full theoretical capacity is seldom achieved at ambient (24°C) conditions when considering the Pλ-MNO spinel. The fully sodiated PNa\(_{1.0}\)MNO spinel is quantified by the Pλ-MNO vs. Na/Na\(^+\) coin cells discharged at 50°C, which produce a sodiated spinel phase with an approximate lattice parameter of ca. 8.453Å. Considering the relative changes in lattice parameter between the vacant and fully sodiated spinel structures, an approximate value of the initially formed two-phase reaction product can be assigned as described by Equation 5-8 and dEquation 5-9.

Figure 5-22: Relative lattice parameters of Pλ-MNO vs. Na/Na\(^+\) in-operando XRD data given in Figure 4-20. Lattice parameters are normalized according to the d-spacing of the Pλ-MNO phase.

Equation 5-8: \((Na_{0.93})_{8a}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e} \rightleftharpoons (Na_{0.93})_{8a}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e} \)

dequation 5-9: \((Na_{0.93})_{8a}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e} \rightarrow (Na_{0.93+x})_{8a}[Mn_{1.56}Ni_{0.44}]_{16d}[O_4]_{32e} \)
Both galvanostatic and potentiostatic electrochemical data of Figure 5-17 and Figure 5-18 demonstrate that Na\(^{+}\) deinsertion into the ordered P\(\lambda\)-MNO host structure is a reversible process. However, it is apparent that there exist some further kinetic barriers preventing the complete Na\(^{+}\) insertion reaction into the P\(\lambda\)-MNO phase as compared to that previously considered for the F\(\lambda\)-MNO spinel, as both the voltage profile characteristics and observed discharge capacities see a significant change following the initial discharge.

Considering the Na\(^{+}\) deinsertion process, and the subsequent cycles beyond the initial discharge, the ordered PNa-MNO spinel demonstrates that further difficulties arise when extracting Na\(^{+}\) from the spinel host structure; resulting in low charge capacities, and sodiated spinel phases that deviate from the initial P\(\lambda\)-MNO as apparent by the final peak positions of the diffraction peaks at the end of charge throughout Figure 4-21. The expanded lattice parameter, and limited discharge capacities of successive cycles demonstrate only a narrow reversible compositional range within the ordered spinel of ca. 0.61 < Na\(_x\) < 0.99 prompting further investigation of the specific Na\(^{+}\) deinsertion reaction mechanisms, which is the subject of the following chapter.

Two intrinsic properties of the ordered spinel can be offered as a potential source for the difference in the initial two-phase reaction between the F\(\lambda\)-MNO and P\(\lambda\)-MNO spinels at this point: (1) the P\(\lambda\)-MNO spinel has a notably smaller lattice parameter as compared to the F\(\lambda\)-MNO; 7.994Å vs. 8.000Å respectively. And (2) existing literature\(^{26,304,313}\) on the ordered PLi-MNO spinel has suggested that the likewise relatively poor performance of the ordered (vs. disordered) spinel may arise from a reduction in electrical conductivity of the ordered spinel resulting from the specific electronic band structure differences between the ordered and disordered spinel.

As the origins of the initial two-phase reaction are attributed to the large difference in lattice parameter between the vacant and sodiated spinels, specific differences between the ordered and disordered spinels are not readily apparent. It is proposed that the relatively smaller lattice parameter of the P\(\lambda\)-MNO phase presents itself with considerably smaller 8a tetrahedral sites; explaining the relatively poor Na\(^{+}\) insertion kinetics of the ordered spinel, and potentially explaining the P\(\lambda\)-MNO \(\rightarrow\) PNa\(_{0.93}\)MNO two-phase reaction, as poor insertion kinetics would result in some degree of Na\(^{+}\) ‘pile-up’ as compared to the F\(\lambda\)-
MNO \rightarrow FNa$_{0.87}$MNO two-phase reaction. This theory however does not correlate with the existing calculated diffusion coefficients from the PITT data given in Table 5-4. The reported diffusion coefficients suggest that Na$^+$ diffusivity in the ordered spinel is significantly higher as compared against Fλ-MNO, which largely contrasts with previous considerations based solely on the differences in lattice parameters between the vacant and sodiated spinels respectively.

Table 5-4: Calculated diffusion coefficients for Fλ-MNO and Pλ-MNO throughout the initial Na$^+$ insertion reaction

<table>
<thead>
<tr>
<th>Na$^+$ insertion reaction</th>
<th>Diffusion Coefficient Fλ-MNO [cm2/s]</th>
<th>Diffusion Coefficient Pλ-MNO [cm2/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-phase reaction</td>
<td>1.61 E-16</td>
<td>4.67 E-16</td>
</tr>
<tr>
<td>Single-phase reaction</td>
<td>5.05 E-13</td>
<td>8.26 E-13</td>
</tr>
</tbody>
</table>

Due to the disagreement between these considerations, it is therefore suspected that predominant differences between the Fλ-MNO and Pλ-MNO spinels are due to the differences in electronic band structure, which has demonstrated characteristically different behavior within analogous lithium cells. Further investigation into these differences is however, beyond the scope of this work, and is left for future considerations.

The initial two-phase insertion reaction described by Equation 5-8 is solely based off XRD data, and provides a more accurate account to the reaction mechanisms within the Pλ-MNO spinel as compared to that inferred by the PITT data, and will be referred to in the following chapters. Here, the combined use of high-resolution electrochemistry and physical characterization techniques illustrates the large kinetic limitations of the ordered spinel, and provides a number of important points for further consideration. (1) The initial two-phase reaction occurs between the Pλ-MNO phase and a sodiated phase of approximate composition PNa$_{0.93}$MNO, which contains considerably more Na$^+$ than the analogous two-phase reaction into the Fλ-MNO spinel. (2) Even under quasi-equilibrium conditions (24°C) complete sodiation of the Pλ-MNO phase is not attainable, only being achieved when cycling at elevated temperatures (50°C). (3) Initial galvanostatic and potentiostatic cycling has illustrated that the Na$^+$ de/insertion reaction mechanism(s) of successive cycles deviate from those seen throughout the initial Na$^+$ insertion reaction; primarily occurring along a single-phase Na$^+$ de/insertion reaction. (4) Desodiation from the ordered spinel does not produce
the original Pλ-MNO phase, effectively limiting the attainable discharge capacity of successive cycles within the narrow $0.61 < \text{Na}_x < 0.99$ compositional range; indicating that there exist additional kinetic limitations of the PNa-MNO spinel when considering Na$^+$ deinsertion.
6 Na⁺ deinsertion, Na⁺ reversibility, and reaction mechanisms

6.1 Introduction

The previous chapter has considered the insertion of Na⁺ into the vacant λ-MnO₂, λ-MNOF, λ-MNO, and λ-MNOF spinel host structures, through both electrochemical and physical characterization techniques. Due to the robust spinel framework, the large volumetric strains associated with the Na⁺ insertion reaction can be accommodated, and demonstrate moderate capacities and excellent reversibility within a narrow compositional range of ca. $\Delta N_a = 0.5$. This narrow cycling compositional range presents itself as one of the key limiting factors in considering λ-Mn$_{2-x}$Ni$_x$O$_4$ spinel for high power sodium-ion batteries, as a substantial amount of Na⁺ remains locked in the spinel host, thereby limiting the theoretical capacity of successive cycles.

In order to fully utilize the potential of a sodium spinel cathode, further investigations into the energetic barriers preventing the complete extraction of Na⁺ from the spinel host structure are necessary, and should eventually result in the optimization of the spinel crystal structure such that factors such as the discharge capacity, rate capability, reversibility and cost are considered.

Throughout this chapter, the specific desodiation reaction(s) for the λ-MNO and λ-MNO will be discussed. Although the λ-MnO₂, and λ-MNOF spinels are excluded from this analysis, their individual characteristics are expected to be similar to that of the λ-MNO spinel with some considerable deviations due to specific differences in their respective active redox reactions, and particle sizes/surface areas.

6.2 Results

6.2.1 Constant current / constant voltage cycling

In order to promote the desodiation reaction from both the λ-MNO and λ-MNO spinels, (F/P)λ-MNO vs. Na/Na⁺ cells were cycled using a constant current (3mA/g), constant voltage electrochemical protocol while examining the effect of increasing charging potentials. The specific potential cutoffs and current cutoffs for the constant voltage segments are outlined in Table 5-1Table 6-1.
Table 6-1: Constant current, constant voltage protocol of Fλ-MNO and Pλ-MNO cells cycled using 1M NaClO₄/PC:FEC2% electrolyte at 24°C

<table>
<thead>
<tr>
<th></th>
<th>1st Cycle</th>
<th>2nd Cycle</th>
<th>3rd – nth Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge</td>
<td>4.25V; 1.0 & 2.0 mA/g</td>
<td>4.35V; 1.0 & 2.0 mA/g</td>
<td>4.45V; 1.0 & 2.0 mA/g</td>
</tr>
<tr>
<td>Discharge</td>
<td>2.0V</td>
<td>2.0V</td>
<td>2.0V</td>
</tr>
<tr>
<td>Charge</td>
<td>4.25V; 1.0 & 2.0 mA/g</td>
<td>4.35V; 1.0 & 2.0 mA/g</td>
<td>4.45V; 1.0 & 2.0 mA/g</td>
</tr>
<tr>
<td>Discharge</td>
<td>2.5V</td>
<td>2.5V</td>
<td>2.5V</td>
</tr>
</tbody>
</table>
Figure 6-1 considers the discharge capacities and characteristic voltage profiles of Fλ-MNO (a-b) and Pλ-MNO (c-d). For Fλ-MNO samples (Figure 5-1a), cells discharged to 2.0V had an initial discharge capacity between 132-141 mAh/g (Nax = 0.867 - 0.928 respectively), and 124-129 mAh/g (Nax = 0.813 - 0.849 respectively) when discharged to 2.5V. And for Pλ-MNO cells (Figure 5-1c), initial discharge capacities are notably low at 112 mAh/g and 97 mAh/g for both the 2.0 and 2.5V potential cutoffs respectively.

The relatively low initial capacity of the Pλ-MNO suggests a finite amount of unreacted Pλ-MNO phase remaining at the end of the initial discharge, consistent with previous operando XRD data discussed throughout the earlier text. While the Pλ-MNO cells demonstrated relatively poor cycling characteristics when compared against Fλ-MNO, Pλ-MNO cells discharged to 2.0V exhibit a comparatively high discharge capacity throughout the first ca. 10 cycles of operation than those (Pλ-MNO) discharged to 2.5V. This suggests that the residual Pλ-MNO is contributing to minor additions in discharge capacity beyond the first cycle, also seen by changes in relative intensities throughout operando studies, which will be covered in the following sections.

Differences in cycling performance across the various constant voltage protocols may also suggest contrasting failure mechanisms between the disordered and ordered spinels; chiefly, the FNa-MNO spinel observes a more drastic reduction in capacity when discharging to 2.0V, which has been previously demonstrated involve some minor Na⁺ insertion onto the adjacent 16c octahedral sites. While no evidence of an irreversible structural transformation has been found, partial irreversible decomposition to an orthorhombic phase could explain the disparity between FNa-MNO vs. Na/Na⁺ cells discharged to 2.0 and 2.5V.
Figure 6-1: Constant current/Constant voltage Fλ-MNO and Pλ-MNO vs. Na/Na\(^+\) cells at 24°C, 1M NaClO\(_4\), PC:FEC2%. Discharge capacities of Fλ-MNO (a) and Pλ-MNO (c) are given for cells using both a 2.0 and 2.5V lower potential cutoff, and a 1.0/2.0 mA/g constant voltage current cutoff as described in
Overall, cells maintain appreciable cycle efficiency of ca. 90-95%, with a gradual reduction in performance. Most of this reduction in performance is likely associated to the degradation of the NaClO₄-PC:FEC2% electrolyte as evidenced by the discoloration of electrolyte upon cell disassembly. Additional \textit{ex-situ} XRD analysis on cells cycled beyond 50 cycles indicate that the spinel structure is maintained without evidence of structural decomposition or formation of additional phases, clearly demonstrating that the Na⁺ insertion reaction into the (F/P)Naₓ-MNO structure is highly reversible.

6.2.2 Na⁺ de/insertion reaction pathway

Despite utilizing increasing charging potentials, and a range of constant voltage charging techniques, it appears that the desodiation reaction is still largely limited by additional energetic barriers, as the discharge capacities do not see any appreciable improvement as a function of voltage cutoff/constant voltage segment, which would be expected to arise from increased amounts of desodiation. This result may in fact be due to the limited stability of the PC based electrolyte used, in which efforts of the increasing potential cutoffs and prolonged exposure at high voltage predominantly contribute to oxidation of the electrolyte rather than to drive the desired Na⁺ deinsertion reaction.

While additional desodiation strategies are covered in the following sections, Figure 6-2 is provided in order to assist and guide the reader through the mechanistic pathways described for both the disordered and ordered sodium spinels within the following sections. Within Figure 6-2, segments marked by red arrows indicate a two-phase Na⁺ de/insertion reaction occurring between two spinel compositions, and those shown by black arrows denote Na⁺ de/insertion by a solid-solution reaction mechanism. Dashed segments correlate to data collected following an extended open circuit period at full discharge for the (F/P)λ-MNO spinels respectively. Parts (a – c) for the (F/P)λ-MNO will be discussed in detail throughout the following sections, and pertain to unique reaction pathways observed dependent on cycling conditions.

The initial Na⁺ insertion of FNaₓ-MNO takes place by a two-phase reaction (Fλ-MNO → FNa₀.88MNO) followed by Na⁺ insertion by a single-phase reaction (0.88 < x < 1.0 in FNaₓ-MNO) saturating the remaining 8a tetrahedral sites as discussed in the previous Chapters. Recovery of the original Fλ-MNO structure is only realized when activating a kinetically sluggish two-phase reaction that occurs beyond 4.25V, after which, the following discharge then proceeds in the same manner as the original Na⁺ insertion shown in reaction pathway (c1). These kinetic limitations prevent complete desodiation of the
FNa\textsubscript{x}-MNO structure under normal operating conditions, thereby largely limiting discharge capacities of successive cycles to a narrow Na+ de/insertion range of \textit{ca.} 0.55 < x < 1.0 as discussed previously.

When operating under standard conditions (\textit{i.e.} 24\textdegree C, 2.0 – 4.25V) the desodiation reaction remains largely incomplete, and an alternative pathway is identified during the following sodiation. This is shown by reaction pathway (a1), which is purely single-phase in nature, as entrapped Na+ acts to prop open the spinel structure facilitating a relatively fast solid-solution type behavior.

The ordered PNa\textsubscript{x}-MNO spinel follows a similar trend in which the final reformation of the P\textsubscript{\lambda}-MNO structure is dependent on an additional two-phase reaction occurring beyond 4.25V (reaction pathway c2). Additional two-phase reactions are also observed below 4.25V (pathways a2 – b2) indicating a difference in the reaction pathway between ordered and disordered spinels during Na+ de/insertion. As will be discussed, FNa\textsubscript{x}-MNO begins to follow a very similar trend when relaxing at open circuit in the fully discharged state (pathway b1), suggesting additional kinetic/phase stability considerations, which will be covered in detail below.
Figure 6-2: Schematic reaction pathway of dis/ordered sodium spinel cathodes constructed from a compilation of ex-situ/operando X-ray diffraction, and potentiostatic intermittent titration technique (PITT) data. Cells were held at open circuit in the fully discharged state for 10 hours, 24°C (a), discharged, and charged continuously at 24°C (b), and charged/discharged at 50°C (c). Red segments indicate two-phase regions, and black arrows indicate single-phase de/insertion mechanisms. Dashed arrows imply an additional 10 hour open circuit voltage (OCV) period imparted at the end of the first discharge. Schematic not drawn to scale.
6.2.3 Potentiostatic Intermittent Titration Technique

6.2.3.1 \(F\lambda\)-MNO/FNa-MNO spinel

Potentiostatic intermittent titration technique (PITT) was utilized as a low rate, near equilibrium electrochemical technique to identify the Na\(^+\) de/insertion reaction mechanisms. Figure 6-3 shows the PITT data of \(F\lambda\)-MNO during the first two discharge/charge (2.0–4.25V) cycles (Figure 6-3a and Figure 6-3b respectively) and a following high-voltage (4.5–2.0V) charge/discharge cycle (Figure 6-3c).

During the first discharge, a non-Cottrellian current response is observed across a range of 10 mV steps (3.65 – 3.60V) indicating a multi-phasic reaction taking place during the initial Na\(^+\) insertion reaction \((F\lambda\)-MNO \(\rightarrow\) FNa\(_{0.87}\)MNO) followed by Na\(^+\) insertion via a solid-solution mechanism to a final composition FNa\(_{1.0}\)MNO; consistent with previous data shown in Section 1.1.1. The following deinsertion reaction to 4.25V is characteristically single-phase, as seen by the current response.

Although the rate of the PITT protocol is extremely low, the deinsertion reaction reaches only 82\% charge capacity with the remaining 18\% of tetrahedral sites being occupied by Na\(^+\) (FNa\(_{0.18}\)MNO). The limited extent of the charge reaction provides a direct explanation for the large drop in observed discharge capacities beyond the initial discharge (Figure 5-1), and due to the extremely slow-rate afforded by the PITT protocol, it is likely that additional energetic barriers are preventing the complete desodiation reaction.

During the second cycle (Figure 6-3b) a small multi-phasic reaction is initially observed during discharge, otherwise proceeding by a single-phase insertion mechanism. Across the 3 PITT cycles, discharge capacities show gradual degradation, presumably due to the concerns with electrolyte stability and the prolonged exposure at high voltage during PITT cycling. Similar to the first cycle, the extent of desodiation for Figure 6-3b reaches the same upper limit as in the previous cycle, providing confidence that additional energy barrier(s) is/are preventing further desodiation. The following discharge taking place between Figure 6-3b and Figure 6-3c (not shown) no longer demonstrates any multiphasic characteristics, showing a purely single-phase insertion mechanism occurring throughout the entire potential range. It is therefore assumed that Na\(^+\) de/insertion within FNa\(_{x}\)-MNO occurs primarily by a single-phase reaction mechanism within 2.0 – 4.25V under the quasi equilibrium conditions imparted by the PITT protocol.
Figure 6-3c considers the effects of increasing the potential cutoff to 4.5V during the PITT protocol. Charging to 4.5V induces additional two-phase reactions that can be observed both during charge and discharge. The reformed two-phase reaction during discharge is remarkably similar to the two-phase reaction seen during the initial sodiation of the Fλ-MNO; indicating that the previous charge was successful in extracting a significant amount of the entrapped Na+. Two non-Cottrellian regions are seen in Figure 6-3c: (1) during charge at 4.37V and (2) during the subsequent discharge at 3.65V. It should be noted that due to the extent of desodiation, which extends the desodiation to negative “Na_x” values, there is also a significant amount of electrolyte decomposition that is evident. While the observed reaction at high-voltage may be due to reaction(s) occurring within the electrolyte, the re-established non-Cottrellian region at 3.65V during the subsequent discharge is a good indication that the observed reaction at 4.37V during desodiation is related to reformation of the original Fλ-MNO structure. In other words, the high-voltage charge was successful in extracting the majority of the 18% of entrapped Na+, and the two-phase reaction seen at 3.65V describes a similar reaction as seen during the first cycle.

In addition to the high-voltage PITT data shown in Figure 6-3c, cells subjected to the same PITT protocol using additional electrolytes have demonstrated similar characteristics, as is shown by Figure 5-4. This was performed to see if any improvements in the anodic electrolyte decomposition component of the high voltage reaction could be enabled. While the alternative electrolytes demonstrated significant electrolyte decomposition, cells exhibited a single large two-phase re-sodiation region following the 4.5V charge segment. This finding gives further confidence that the high-voltage non-Cottrellian current response observed in Figure 6-3c is not simply a side reaction associated with the composition of the electrolyte. This conclusion will be further supported by XRD results presented later in this Chapter.

Of the electrolyte compositions investigated, none afforded an appreciable improvement in the anodic oxidation of the electrolytes over the 1M NaClO4-PC:FEC2% (2 vol%) composition used herein. In summary, the PITT results indicate that full desodiation of the spinel structure is limited by the need to initiate an additional two-phase reaction to yield the Fλ-MNO phase. Initiation of the two-phase desodiation reaction is only apparent above 4.3V under near equilibrium PITT conditions, motivating elevated temperature/voltage-cutoff studies throughout the following sections.
Figure 6-3: Potentiostatic intermittent titration technique (PITT) of FNa-MNO vs. Na/Na\(^+\) during the first (a) and second (b) cycles within 2.0 - 4.25V followed by an additional high-voltage charge/discharge cycle (c) between 2.0 - 4.5V at 24°C, 1M NaClO\(_4\)-PC:FEC2%
Figure 6-4: Potentiostatic intermittent titration technique (PITT) charge/discharge PNa-MNO cathodes vs. Na/Na\(^+\) at 24°C using 0.25M NaBF\(_4\)-EC/DMC (a) 1M NaClO\(_4\)-PC (b) 1M NaClO\(_4\)-PC:FEC2% (c) and 1M NaClO\(_4\)-PC:FEC10% (d). FEC electrolyte additives are based off volume percentages. PITT protocol consists of 10 mV potential steps with a 0.25 mA/g (active material) current cutoff. Labeled voltages correlate to non-Cottrellian current responses seen in the measured current response.
6.2.3.2 **P\(\lambda\)-MNO/PNa-MNO spinel**

Similar PITT conditions were also utilized for P\(\lambda\)-MNO vs. Na/Na\(^+\) sodium cells in order to probe the desodiation reaction mechanism(s) at progressively higher voltage cutoffs under quasi-equilibrium conditions. Figure 6-5 provides the first two PITT discharge/charge cycles of P\(\lambda\)-MNO vs. Na/Na\(^+\) at 24°C between 2.5 – 4.45V. P\(\lambda\)-MNO progresses initially by a two-phase Na\(^+\) insertion reaction onto the 8a tetrahedral sites across a voltage range of 3.69 – 3.62V, similar to the disordered spinel discussed above. Despite the slower rate afforded by the PITT conditions, initial discharge capacity only realizes ca. 81% theoretical capacity (123.6 mAh/g), implying that a considerable amount of residual P\(\lambda\)-MNO remains in the following cycle. As discussed previously, residual P\(\lambda\)-MNO plays a minor role throughout the successive charge/discharge cycles, and illustrates the significant differences in rate capability between the F\(\lambda\)-MNO and P\(\lambda\)-MNO spinels.

Following the first discharge (Figure 6-5a), the voltage profile during the charge reaction closely resembles that of a two-phase reaction, with a very flat profile and prolonged duration at individual 10mV steps. However, the only non-Cottrellian regions throughout the entire charge are observed at 3.86V and 3.94V; indicating a minor multi-phasic reaction. This reaction proceeds to completion relatively quickly, (compared to the initial discharge reaction) and the remaining voltage steps reveal relatively slow solid-solution deinsertion behavior. A distinct voltage plateau can be seen at 4.44V during charge (of Figure 6-5a), which also displays a non-Cottrellian current response, however due to concerns around the electrolyte stability at these relatively high voltages, it remains unclear as to whether this correlates to a reaction occurring within the electrode, or the electrolyte.

The second discharge (Figure 6-5b) demonstrates a single large non-Cottrellian response at 3.75V, and although occurring at a higher voltage than the initial discharge reaction, it is attributed to the reformation of the initial discharge reaction (P\(\lambda\)-MNO \(\rightarrow\) PNa\(_{0.93}\)MNO) (as shown later by *operando* XRD) as additional PITT cycling of P\(\lambda\)-MNO within 2.0 – 4.25V does not demonstrate the same two-phase behavior beyond the initial discharge. The reformation of a non-Cottrellian response following the high-voltage cutoff is believed to imply that a significant amount of Na\(^+\) has been removed from the spinel structure, enabling the second cycle to follow a similar reaction pathway as the initial discharge, with additional support provided in the later sections. The continued presence of a non-Cottrellian response
throughout the second charge (3.88 and 3.90V) is in agreement with observations made during the first cycle, likely indicating a ‘small’, yet reversible, two-phase reaction interrupting an overall single-phase deinsertion mechanism.

Additional operando data (provided in later sections) further supports the formation of a two-phase reaction during desodiation, which characterizes the previously discussed ‘energetic barriers’ preventing the complete desodiation from the (F/P)Na-MNO spinel as an additional kinetically limited two-phase reaction occurring at ca. 3.9V. Due to the previous electrolyte study performed on FNa-MNO, additional electrolytes were not considered, as the PC:FEC2% composition has been demonstrated to be the ideal choice amongst those considered.

Figure 6-5: Potentiostatic intermittent titration technique (PITT) of PNa-MNO vs. Na/Na⁺ during the first (a) and second (b) cycles. Cell was cycled at 24°C using 10 mV potential steps and a 0.25 mA/g current cutoff between 2.0 - 4.25 and 2.0 - 4.5V between (a) and (b) respectively with 1M NaClO₄-PC:FEC2% electrolyte
6.2.3.3 (F/P)Na-MNO PITT Summary

Considering the observed reaction mechanisms thus far, Table 6-2 provides calculated diffusion coefficients for the respective Na+ de/insertion processes for the ordered and disordered spinel samples. Further comments are provided in the discussion section.

Table 6-2: Calculated diffusion coefficients for key Na+ de/insertion reactions in FNa-MNO and PNa-MNO spinels

<table>
<thead>
<tr>
<th>Diffusion Coefficient [cm2/s]</th>
<th>Fλ-MNO</th>
<th>Pλ-MNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st cycle, two-phase sodiation</td>
<td>1.61 E -16</td>
<td>4.67 E -16</td>
</tr>
<tr>
<td>1st cycle, single-phase sodiation</td>
<td>5.05 E -13</td>
<td>8.26 E -13</td>
</tr>
<tr>
<td>2nd cycle, two-phase desodiation</td>
<td>6.32 E -17</td>
<td>1.96 E -16</td>
</tr>
<tr>
<td>2nd cycle, two-phase sodiation</td>
<td>1.84 E -16</td>
<td>6.93 E -17</td>
</tr>
</tbody>
</table>

6.2.4 Ex-Situ X-ray Diffraction (XRD)

6.2.4.1 Fλ-MNO/FNa-MNO spinel

An ex-situ XRD characterization study was performed in order to gain a more detailed analysis of the reaction pathway throughout the desodiation reaction. Figure 6-6 provides a stacked plot of the ex-situ XRD measurements across various states of charge (SOC) as monitored by the galvanostatic cycling conditions. Cells were initially discharged at 3mA/g (50°C) reaching full theoretical capacity prior to being stopped during charge at incremental Δx values before undergoing disassembly and electrolyte extraction for ex-situ XRD measurement.

Table 6-3 provides Rietveld analysis on the ex-situ diffraction data. As concerns surrounding the electrolyte stability has been mentioned throughout the preceding sections, it is assumed that the reported SOC and Na$_x$ values throughout Table 6-3, which are based solely on electrochemical data, may deviate from their actual values; especially so towards higher voltages. Evidence of this deviation arises in the refined lattice parameters, which are utilized to calculate approximate Na occupancy values given as ‘XNa$_x$’.

Considering Figure 6-6, ex-situ measurements at 70% Na occupancy still demonstrates the 111, 220, 311, 222, 400, 511 and 440 spinel reflections, given in order of 2θ position respectively, indicating
that 8a sites are still highly populated by Na+. Further extraction of Na+ to 60\% Na+ occupancy, shows that the FNa\textsubscript{x}-MNO 220 reflection (at \textit{ca.} 30° 2θ) is no longer discernable from the background intensity, indicating a reduction in 8a site occupancy as anticipated. Significant peak shifts can be seen systematically throughout the various \textit{ex-situ} samples, indicating that the overall dimensions of the spinel lattice contracts an appreciable amount as Na+ is extracted. Although the (220) spinel reflection is no longer discernable (Na is not particularly strong at scattering X-rays) from the background at the higher states of charge, the relative occupancy of successive \textit{ex-situ} XRD scans may still be inferred by the relative change in the lattice parameter. Overall, the observed peak shifts are in good agreement with the PITT data, which indicate a predominantly single-phase deinsertion mechanism.

At 30\% Na occupancy (3.98V), the Na\textsubscript{x}-MNO peaks become significantly broad before returning to approximately the same FWHM. Here, the emergence of a very broad set of spinel diffraction peaks is believed to mark the onset of a small two-phase reaction occurring between two FNa\textsubscript{x}-MNO compositions of similar lattice parameter. Although the existing PITT data has only demonstrated two-phase desodiation behavior towards voltages exceeding 4.0V, it is feasible that cycling at elevated temperatures has acted to improve the reaction kinetics of the proposed high-voltage two-phase reaction. Additional support is provided when considering the following \textit{operando} XRD studies.
Figure 6-6: Ex-situ XRD of FNa-MNO cathodes cycled at 3 mA/g, 50°C using 1M NaClO₄-PC:FEC2% (a) and representative voltage profile (b)
Table 6-3: Rietveld refined lattice parameters for FNa-MNO vs. Na/Na+ cells. Reported (E/X)Na\textsubscript{x} values are based off electrochemical and refined XRD data respectively.

<table>
<thead>
<tr>
<th>X2</th>
<th>a1 (Å)</th>
<th>a2 (Å)</th>
<th>ENa\textsubscript{x}</th>
<th>XNa\textsubscript{x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.49</td>
<td>8.408(7)</td>
<td>-</td>
<td>0.7</td>
<td>0.84</td>
</tr>
<tr>
<td>2.04</td>
<td>8.330(3)</td>
<td>-</td>
<td>0.6</td>
<td>0.68</td>
</tr>
<tr>
<td>2.46</td>
<td>8.304(7)</td>
<td>-</td>
<td>0.5</td>
<td>0.63</td>
</tr>
<tr>
<td>2.62</td>
<td>8.242(1)</td>
<td>-</td>
<td>0.4</td>
<td>0.50</td>
</tr>
<tr>
<td>2.56</td>
<td>8.198(1)</td>
<td>8.132(2)</td>
<td>0.3</td>
<td>0.41 / 0.27</td>
</tr>
<tr>
<td>2.28</td>
<td>8.155(5)</td>
<td>8.094(4)</td>
<td>0.2</td>
<td>0.32 / 0.19</td>
</tr>
<tr>
<td>2.75</td>
<td>8.075(7)</td>
<td>-</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>2.34</td>
<td>8.061(2)</td>
<td>-</td>
<td>0.03</td>
<td>0.12</td>
</tr>
</tbody>
</table>

6.2.4.2 P\textsubscript{λ}-MNO/PNa-MNO spinel

Previous data on the FNa-MNO spinel demonstrated that the movement towards high temperature and high-voltage potentials enabled further desodiation from the spinel structure. The same approach has been adopted for the PNa-MNO spinel within this section.

Similar to the previous PITT data, high temperature cycling has evidently facilitated further desodiation from the PNa-MNO structure. However, based on the refined lattice parameters of the ex-situ XRD measurements, desodiation efforts remain unable to recover the P\textsubscript{λ}-MNO phase (a = 7.994Å). While it is projected that ca. 25\% of 8a sites are still populated, Figure 6-7 observes what appears to be a distinct sign of a two-phase reaction occurring during charge.

At the early stages of charge, the Na\textsubscript{x}-MNO peaks are notably asymmetric, which is considered to be the onset of a multi-phasic reaction, as indicated by the multiple lattice parameters reported in Table 6-4. At 40% occupancy, (highlighted in red) it is clear that the excessively broad peaks are a result of the growth in intensity from the shoulder peaks seen in the earlier ex-situ measurements. Beyond Na\textsubscript{x} = 0.4, peak shapes are considerably more symmetric, no longer indicating the presence of convoluted/shoulder peaks. The ex-situ data is in agreement with the prior PITT data, as it suggests that the reaction mechanism switches between a two-phase and a single-phase deinsertion mechanism following the initial discharge reaction.
Figure 6-7: Ex-situ XRD of PNa-MNO spinel cycled at 3 mA/g, 50°C using 1M NaClO₄:PC:FEC2% (a) and representative voltage profile (b).
Table 6-4: Rietveld refined lattice parameters for PNa-MNO vs. Na/Na+ cells cycled at 3 mA/g, 50°C. Reported (E/X)Na\text{\textsubscript{x}} values are based off electrochemical and refined XRD data respectively.

<table>
<thead>
<tr>
<th>X(^2)</th>
<th>a1 (Å)</th>
<th>a2 (Å)</th>
<th>ENa\text{\textsubscript{x}}</th>
<th>XNa\text{\textsubscript{x}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.89</td>
<td>8.391(6)</td>
<td>-</td>
<td>0.7</td>
<td>0.84</td>
</tr>
<tr>
<td>2.62</td>
<td>8.346(5)</td>
<td>8.190(4)</td>
<td>0.6</td>
<td>0.74 / 0.41</td>
</tr>
<tr>
<td>2.34</td>
<td>8.318(9)</td>
<td>8.235(2)</td>
<td>0.5</td>
<td>0.68 / 0.50</td>
</tr>
<tr>
<td>2.52</td>
<td>8.275(9)</td>
<td>8.199(5)</td>
<td>0.4</td>
<td>0.59 / 0.42</td>
</tr>
<tr>
<td>2.13</td>
<td>8.154(2)</td>
<td>-</td>
<td>0.3</td>
<td>0.33</td>
</tr>
<tr>
<td>2.62</td>
<td>8.131(3)</td>
<td>-</td>
<td>0.2</td>
<td>0.28</td>
</tr>
<tr>
<td>2.59</td>
<td>8.118(2)</td>
<td>-</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>2.92</td>
<td>8.109(2)</td>
<td>-</td>
<td>0.0</td>
<td>0.23</td>
</tr>
</tbody>
</table>

6.2.5 Operando X-ray Diffraction (XRD)

6.2.5.1 Experimental Considerations

To further validate the reactions seen in the previous PITT and ex-situ XRD results, operando XRD was utilized during galvanostatic cycling (3mA/g) at 24°C and 50°C. XRD measurements were taken on a continuous basis such that the change in composition (Na\text{\textsubscript{x}}) throughout each scan was less than 3%, presumably introducing negligible effects on the diffraction spectra. A removable heating element was used to bring the body of the in-situ electrochemical cell up to 50°C (±1°C) and was maintained throughout the entire duration of the experiment.

Specifically considering cells operating at 50°C, the (F/P)\text{\textsubscript{λ}}-MNO cathode was previously discharged (50°C) in a coin cell prior to assembly in the in-situ cell due to the limited hermeticity of the in-situ cell.

6.2.5.2 F\text{\textsubscript{δ}}-MNO/FNa-MNO spinel
Figure 6-8(a, b) considers only the (311), (222), and (400) spinel reflections as they offer the greatest signal-to-background ratio. Within Figure 5-8, (hkl) and (hkl)’ reflections denote the initial FNa-MNO and Fλ-MNO phases respectively. Markers and arrows are used to indicate the reaction progression, with solid and dashed arrows representing two-phase and single-phase reaction mechanisms respectively. Here, and in similarly constructed scaled intensity figures, diffraction peaks are visualized from a top-down view (best read left-to-right, bottom-to-top), observing peak position as a function of both time and cell voltage.

During the first two cycles (shown in Figure 5-8 a, c) the Fλ-MNO phase is consumed by a two-phase reaction, further succeeded by a Na⁺ insertion reaction via solid-solution within the sodiated FNaₓ-MNO spinel during the first discharge. The following desodiation, and second cycle all together, follow a strictly single-phase Na⁺ de/insertion mechanism as can be seen by the systematically shifting nature of the Bragg peaks. Operando measurements are in good agreement with the first two-cycles seen within the PITT data mentioned earlier, consistently describing a similar reaction mechanism progression, and building further confidence in the proposed reaction pathway of Figure 6-2 (a1).

Following the continuous cycling shown in Figure 5-8a, the in-situ cell was left in the fully discharged state for ca. 12 hours prior to being restarted within a larger potential window (4.5 – 2.0V). The resulting operando XRD data, and voltage profile are given in Figure 5-8b, and Figure 5.8d. Here, the FNa-MNO phase can be seen to deviate from the purely single-phase Na⁺ de/insertion reaction previously seen during continuous cycling. As the desodiation begins, diffraction peaks similarly begin to shift towards higher 2θ angles, implying the reduction in the FNa-MNO lattice parameter. At ca. 11 hours (marker M3), diffraction peaks become exceedingly broad, which is believed to be due to a minor two-phase reaction
occurring between two FNa-MNO spinels of similar composition. Previous *ex-situ* XRD data also exhibited a similar peak broadening feature *ca.* 4.0V, building further confidence in this finding.

Following the minor two-phase deinsertion reaction, the diffraction peaks once again exhibit a systematic/gradual peak shift throughout the remainder of the charge protocol; characteristic of a single-phase deinsertion reaction. Marker M4 visually highlights the end of the charge protocol, and demonstrates the relative positions of the spinel diffraction peaks; all of which are at their respective highest 20 values, indicating some minimum in the Na\(^+\) occupancy within the FNa-MNO spinel.

Upon switching to discharge, the diffraction peaks thereby demonstrate a consistent shift in position to lower 20 values, indicating that the spinel lattice parameter is increasing through a single-phase Na\(^+\) insertion reaction. Marker M5 highlights an additional two-phase reaction, seemingly related to the minor two-phase reaction seen during the previous charge reaction. Following the short two-phase Na\(^+\) insertion reaction, diffraction peaks once again exhibit a systematic shift in 2θ position, indicating a single-phase Na\(^+\) insertion mechanism.

The deviation in the Na\(^+\) de/insertion reaction pathway (shown schematically by Figure 6-2b), comes without any apparent loss in Na\(^+\) de/insertion reversibility, as both the capacities and relative lattice parameters at the end of charge/discharge remain approximately the same between Figure 5-8a and Figure 5-8b. However, the additional two-phase reactions are suspected to introduce significant concerns surrounding the kinetics of the Na\(^+\) de/insertion reaction as illustrated by the calculated diffusion coefficients of Table 6-2. Further comments are provided in the following sections.
Figure 6-8: Scaled intensity plot (a) and corresponding voltage profile (c) of *in-operando* XRD FNa$_x$-MNO within the first two cycles (2.0 – 4.25V) at 24°C, 1M NaClO$_4$-PC:FEC2%. Scaled intensity plot (b) and voltage profile (d) of high voltage charge/discharge cycle following relaxation at full discharge (4.5 – 2.0V) at 24°C. Bragg peaks are labeled at the top of (a-b) with asterisks marking aluminum and beryllium diffraction peaks from the in-situ cell. Dashed lines are added to regions pertaining to a single-phase reaction, and solid lines are oriented towards the product of the two-phase reaction. Lines M1 through M5 serve as guidelines with respect to the voltage profile. M3 and M5 indicate the onset of a two-phase reaction.
In order to further enhance the Na$^+$ deinsertion kinetics, additional *operando* XRD measurements were made at 50°C.

Figure 6-9 provides a scaled intensity plot of the (311), (222), and (400) Bragg reflections; with the corresponding voltage profile for the FNa-MNO spinel. The following data pertains to the reaction pathway described by Figure 6-2 (c1).

During charge, Na$^+$ deinsertion takes place within a single-phase seen by the constantly shifting Bragg peaks. At 4.0V, (shown by marker M1) a two-phase reaction is initiated, generating a second spinel phase with an approximate lattice parameter of 8.04Å. As shown through previous PITT and *ex-situ* XRD data, it is clear that a two-phase reaction is consistently initiating at *ca.* 4.0V.

Elevated temperature provides a tremendous advantage in terms of the relative ‘strength’ of the two-phase reaction, as the newly formed secondary phase is nearly completely desodiated. It is expected that complete recovery of the Fλ-MNO is possible by these means, as a gradual shift in the diffraction peak positions is evident upon completion of the two-phase reaction; however, the *in-situ* cell was forcibly switched to discharge prior to reaching a 4.5V cutoff in order to preserve the electrolyte from further oxidation.

As the discharge reaction is initiated, an immediate decrease in intensity and large overpotential is observed, both supportive of a two-phase reaction. Due to sensitivity limitations of the XRD setup, the secondary spinel phase is not measurable by XRD until some time after the discharge is initiated (Marker M3). This resulting two-phase reaction occurs at *ca.* 3.3V, and despite occurring at a lower voltage compared to the initial Na$^+$ insertion reaction, (which is somewhat expected due to the large extent of electrolyte degradation) it is presumed to be equivalent to the initial Na$^+$ insertion reaction described in Chapter 1 based on the relative difference in lattice parameters between the two spinel compositions. Further considerations are covered in the discussion section.

In summary, the collection of ambient and elevated temperature *operando* XRD studies support the development of a two-phase discharge reaction upon sufficient desodiation of the FNa$_x$-MNO spinel. The high voltage two-phase reaction presents itself as the rate limiting step, preventing easy desodiation of
the spinel structure, thereby contributing to the major cause of poor cell performance beyond the first discharge.
Figure 6-9: \textit{in-operando} XRD charge/discharge cycle of FNa-MNO vs. Na/Na' \textit{in-situ} cell at 3 mA/g, 50°C, 1M NaClO$_4$-PC:FEC2\% (a) and voltage profile (b) The FNa-MNO cathode was presodiated at 50°C in a coin cell prior to assembly in the \textit{in-situ} electrochemical cell. Dashed arrow are provided marking the shift in diffraction peaks in accordance with the single-phase Na' de/insertion reaction, while solid arrows mark the abrupt peak shift described by a two-phase reaction. Markers M1 – M3 are provided to relate the two-phase reactions with the voltage profile.
Due to the widely differing electrochemical characteristics obtained via PITT (between Fd-3m and P4_32), operando XRD was used in a similar fashion as described for FNa-MNO, to contrast the behaviors between the ordered and disordered spinel structures. As the ordered spinel structure only differs in the arrangement of the manganese and nickel cations, XRD patterns are nearly indistinguishable (albeit with differing lattice parameters induced by a small amount of Mn^{3+} in the disordered spinel).

Figure 6-10 provides a scaled intensity plot of the Pλ-MNO vs. Na/Na^{+} in-situ cell cycled at a 3mA/g rate (2.0 – 4.25V) at 24°C. Figure 5-10a & Figure 5-10d combine the operando XRD and electrochemical data for the (311), (222), and (400) spinel reflections, and the overall reaction pathway are illustrated by Figure 6-2 (a2). Markers M2 and M5 are visual guidelines to indicate the end of discharge for the respective cycles; markers M1, M3, M4, M6, M7, and M8 all indicate the beginning of two-phase reactions taking place. Beryllium and aluminum peaks are seen as constant vertical lines marked by asterisks, and scaled intensities are normalized to each respective 2θ range.

The initial Na^{+} insertion reaction is consistent with the PITT data from Figure 6-5, as it progresses initially by a two-phase reaction (shown by solid arrows) with the (311), (222), and (400) Pλ-MNO diffraction peaks diminishing in intensity to produce the sodiated spinel (PNa_{0.93}MNO) at lower 2θ angles. The PNa_{0.93}MNO phase can be seen relatively early on (marker M1) and progresses along a single-phase reaction pathway once the cell voltage drops below ca. 3.4V. Dashed arrows up to marker M2 indicate a small shift in peak position consistent with the single-phase insertion onto residual 8a tetrahedral sites of the PNa-MNO spinel occurring during the initial discharge. It is important to note that the (222) spinel reflection exhibits the same de/insertion mechanisms as described in this section, however, due to the proximity and convolution of the PNa-MNO (222) reflection with the Pλ-MNO (311)' diffraction peak, annotations & analyses of the (222) peak are excluded.

During the following charge, Na^{+} deinsertion occurs within a single-phase seen by consistent peak shifts toward higher 2θ angles. At ca. 3.9V, (marker M3) (hkl) diffraction peaks become exceedingly broad along with a dramatic change in observed peak intensities, suggesting that a small two-phase reaction is taking place. This reaction goes to completion comparatively quickly before resuming along a single-phase deinsertion mechanism shown by the gradual shift in diffraction peak positions. These results are in good
agreement with the PITT data shown in Figure 6-5, where a small non-Cottrellian region was observed at 3.86V. Here, it is once again apparent that the shift in \((hkl)\) diffraction peaks does not continue to their original 2\(\theta\) positions, indicating that a substantial amount of Na\(^+\) remain on the 8a tetrahedral sites of the PNa-MNO spinel.

The second discharge of

Figure 6-10a follows a reversed phase progression as that previously described for the initial desodiation reaction; being mostly single-phase in nature, interrupted by a minor two-phase reaction shown by marker M4. The second charge reaction proceeds in the same fashion as the first charge reaction described above.

After 3 complete cycles, the in-situ electrochemical cell was left in the fully discharged state for ca. 12 hours before being restarted at 3 mA/g, 24\(^\circ\)C, 4.5 – 2.0V as shown schematically in Figure 6-2 (b2).

Figure 6-10b considers the 2\(\theta\) range containing the (311), (222), and (400) PNa-MNO diffraction peaks, and

Figure 6-10c considers the (511) and (440) peaks. Desodiation proceeds by a solid-solution behavior seen by the changing positions of the PNa-MNO peaks marked by dashed arrows for the respective \((hkl)\) diffraction peaks. Similar to the earlier cycles shown in

Figure 6-10a &

Figure 6-10d, a short two-phase reaction can be seen (marker M7), as a large amount of peak broadening occurs across all \((hkl)\) reflections; marking the presence of two PNa-MNO spinels of similar lattice parameter. This two-phase reaction can be most clearly seen by consideration of the (511) and (440) PNa-MNO diffraction peaks.

Figure 6-10c). This two-phase reaction initiates around ca. 3.9V and resumes along a single-phase pathway to the end of charge.

Similar to that seen during the continuous cycling of
Figure 6-10a, (1) minor two-phase reactions can be observed both during the Na$^+$ deinsertion and Na$^+$ insertion reactions, and (2) peak positions do not return to their original 2θ values (Pλ-MNO phase), indicating that 8a sites are still populated by residual Na$^+$. Considering Figure 6-10a, (hkl)' diffraction peaks demonstrate an interesting change in intensities throughout the charge/discharge cycles. Further discussion is provided in the following sections.
Figure 6-10: Scaled intensity plot (a) and corresponding voltage profile (d) of *in-operando* XRD PNa-MNO vs. Na/Na⁺ throughout the first two discharge/charge cycles at 3 mA/g, 24°C, 1M NaClO₄·PC:FEC2%, 2.0 – 4.25V. Scaled intensity plot (b-c) and corresponding voltage profile (e) of high voltage charge/discharge cycle 4.45 – 2.0V, 24°C at 3 mA/g. Peak intensities for the 311, 222, and 400 Bragg reflections are marked by \((hkl)\) and \((hkl)'\) for the PNa-MNO and Pλ-MNO phases respectively. Dashed lines are given to regions pertaining to a single-phase reaction, and solid lines are oriented towards the product of the two-phase reaction. Lines M1-M8 serve as guidelines with respect to the voltage profile. M1, M3, M4, M6, M7, and M8 indicate the onset of a two-phase reaction.
High temperature (50°C) *operando* XRD and electrochemical results are reported in Figure 6-11. The following results describe the reaction pathway shown in Figure 6-2 (c2). As seen previously in the PITT/ex-situ/operando XRD results reported earlier, there is an observed two-phase region that occurs during charge at *ca.* 3.9V illustrated by marker M1. This reaction is in agreement with previous PITT data, which suggests a small multi-phasic region occurring at *ca.* 3.88V; further validated by similar results obtained by the earlier ex-situ (50°C) and *operando* XRD (24°C) data.

Upon completion of an initial minor two-phase Na⁺ deinsertion reaction at *ca.* 4.0V, the reaction mechanism immediately changes back to single-phase behavior, and continues until reaching a second two-phase reaction at *ca.* 4.27V (marker M2). The two-phase reaction marked by M2 is notably more pronounced as evidenced by the larger change in diffraction peak position, indicating a substantial difference in lattice parameter between the two separate spinel phases. Due to the limited stability of the electrolyte used, it is expected that the electrochemical efficiency of the Na⁺ deinsertion reaction is relatively poor, requiring a significant amount of time to drive the desodiation reaction to completion. The two phases involved are once again, of very similar lattice parameter, as the subtle reaction can only be clearly seen by examination of the high angle peaks as in Figure 6-11b.

The final two-phase reaction produces a PNa-MNO spinel with a lattice parameter of *ca.* 8.02Å. Throughout the charge, diffraction peaks continue to grow in intensity, and begin to demonstrate a minor degree of peak shift, suggesting that the reaction once again switches to a single-phase deinsertion mechanism until full recovery of the Pλ-MNO phase (*a* = 7.994Å) is achieved. However, the electrochemical protocol is forcibly switched to discharge in order to preserve the condition of the electrolyte, but is anticipated to proceed in the manner described to produce the fully vacant spinel. It is also important to note that although an extensive amount of electrolyte decomposition has taken place, the XRD measurements are only sensitive to the structural evolution of the cathode itself, therefore giving a reliable account of the relative changes in the crystal structure throughout the desodiation reaction.

Marker M3 indicates the beginning of the following discharge, where a clear two-phase reaction is observed; producing a spinel phase of significantly larger lattice parameter. In accordance with similar data obtained for FNaₓ-MNO, the re-formation of the initial two-phase reaction appears to be primarily dependent on depopulating the 8a sites. While electrochemistry typically offers tremendous sensitivity in discerning the degree of Na⁺ de/insertion, obvious stability concerns introduce fundamental limitations to the precision of such experimental techniques; requiring the compilation of the many experimental techniques presented herein to construct a coherent account of the Na⁺ de/insertion behavior into (F/P)Naₓ-
MNO. In summary, PNa-MNO follows a considerably different reaction pathway as compared to FNa-MNO, with additional two-phase reactions, likely accounting for the relatively poor performance of the PNa-MNO spinel. Further considerations are provided in the discussion section.
Figure 6-11: Charge/discharge cycle in-operando XRD of PNa-MNO at 3mA/g, 50°C, 1M NaClO$_4$-PC:FEC2%. 2θ range showing 311, 222, 400 peaks (a) and the 511 spinel peak (b) with the corresponding constant current voltage profile (c). Dashed lines are given to regions pertaining to a single-phase reaction, and solid lines are oriented towards the product of the two-phase reaction. Lines M1–M3 serve as guidelines with respect to the voltage profile. M1 and M2 mark the onset of a two-phase reaction.
6.2.5.4 Operando XRD Comparisons: FNa-MNO vs. PNa-MNO

Operando XRD was used to systematically measure structural changes within the dis/ordered spinel cathodes under both ambient (24°C) and elevated temperatures (50°C). A comparative summary of operando XRD measurements across (F/P)Na-MNO cells is provided in Figure 6.12. Relative changes in lattice parameters are calculated with respect to the initial (F/P)λ-MNO and fully sodiated (F/P)Na-MNO spinels for Figure 6.12 (a, b, d, e) and Figure 6.12 (c, f) respectively. Data presented within Figure 6.12 are compiled from in-situ data as described within the previous sections.

Figure 6.12 (a, d) provide the relative lattice parameters for the (F/P)Na-MNO spinels under continuous cycling (24°C, 2.0 – 4.25V) conditions respectively.

Figure 6.12 (b, e) consider (F/P)Na-MNO cells left in the fully discharged state for ca. 10 hours (24°C, 2.0 – 4.25V). And Figure 6.12 (c, f) provide (F/P)Na-MNO vs. Na/Na⁺ operando XRD data at elevated temperature (50°C, 4.5 – 2.0V) respectively. Inserted sodium (Na⁺) values are based off of relative lattice parameters assuming a linear relationship as described by Vegard’s law.

Figure 6.12 (a, d) consider the change in relative lattice parameter for the disordered (FNa-MNO) and ordered (PNa-MNO) spinels, respectively, throughout the first two cycles within 2.0 – 4.25V at 24°C. During the initial discharge, a two-phase reaction is observed between the disordered and ordered spinels, producing sodiated spinels 0.44Å and 0.43Å larger than the (F/P)λ-MNO phases respectively. Contrasting behaviors between the disordered and ordered spinels can be readily observed, as sodiation within the Pλ-MNO phase proceeds only to ca. PNa₀.₉₅MNO as opposed to the disordered spinel which reaches full sodiation to FNa₁.₀MNO. Vertical arrows throughout Figure 6.12 indicate two-phase reactions occurring between respective (F/P)Na-MNO phases. The limited rate capability of the Pλ-MNO leaves appreciable amounts of Pλ-MNO behind, providing incremental capacity throughout the following cycles as shown later on. The remaining Pλ-MNO phase provides a physical account for the reduced discharge capacity of Pλ-MNO, only providing incremental capacity to subsequent cycles as demonstrated in section 6.2.1.

Following charge/discharge cycles further emphasize the difference in reaction pathway between (F/P)Na-MNO, as PNa-MNO observes a combined single-phase/two-phase de/insertion behavior as evidenced by the gradual and abrupt shifts in lattice parameter of Figure 6-12d. The Na⁺ de/insertion behavior of PNa-MNO draws a sharp contrast against the purely single-phase nature of FNa-MNO in Figure 6-12a. However, much like PNa-MNO, additional minor two-phase reactions can be observed in FNa-MNO when relaxing at open circuit in the fully discharged state as seen in
Figure 6-12b. While FNa-MNO consistently demonstrates this hysteric dependence on relaxation time, PNa-MNO retains the same reaction pathway independent of relaxation time (Figure 6-12e). This behavior may be related to possible migration of Na⁺ onto adjacent 16c sites and is the subject of future investigations. It should be noted that the lower voltage cutoff is sufficient to initiate insertion onto the 16c sites, as a lower voltage reaction is apparent in Figure 6-3 at ca. 2.2V.

Overall, all cells (dis/ordered) cycled at ambient temperatures consistently observe desodiation limitations, as lattice parameters are consistently ca. 0.20 - 0.25Å larger than their respective (F/P)λ-MNO spinels at the end of charge, indicating residual Na⁺ occupancy; consistent with earlier galvanostatic and PITT results.

The remaining Na⁺ in the FNa-MNO structure demonstrate an additional energetic barrier preventing complete desodiation, which is not realized until activating an additional two-phase reaction as seen by operando XRD (Figure 6-9a) and PITT (Figure 6-3c and Figure 6-3b). Considering PNa-MNO, similar energetic barriers are apparent, as recovery of the original Pλ-MNO phase requires activation of a high voltage two-phase reaction as previously described for FNa-MNO.

(F/P)Na-MNO cathodes demonstrate an abrupt change in lattice parameter during charge (at 50°C) as kinetic barriers surrounding the desodiation reaction are largely mitigated (Figure 6-12 c, f). Here, relative lattice parameters are reported relative to that of the fully sodiated FNa-MNO and PNa-MNO structures. Following an extended charging period, both the FNa-MNO and P Na-MNO spinels exhibit a two-phase reaction during the subsequent discharge, which is believed to be identical to the Na⁺ insertion reaction described by Equation 5-2 and Equation 5-8.

The two-phase reaction seen on discharge produces a sodiated spinel phase of approximate composition Na₀.₈₈MNO and Na₀.₉₃MNO for the disordered and ordered spinels respectively. The sodiated spinels formed during the two-phase reaction are equivalent to those observed during the initial discharge reaction for (F/P)λ-MNO, and provides further support that full theoretical capacity can be maintained beyond the first discharge. These findings suggest that the observed two-phase reactions during the initial sodiation are primarily a result of the large difference in lattice parameter between the vacant and sodiated spinel structures, potentially indicating that rate capabilities can be further optimized by enlarging the
(F/P)\(\lambda\)-MNO unit cell such that the slow two-phase reactions are suppressed in favor of single-phase insertion mechanisms.

It is apparent that the two-phase reactions may impart considerable kinetic barriers to practical performance. In order to quantify the extent of these contributions, diffusion coefficients were calculated from the obtained PITT data and shown in Table 5-4. While calculations are based on ‘traditional’ coulometric titration\(^{364}\) considerations, their results offer a relative benchmark between the ordered and disordered spinels. Na\(^+\) mobility exhibits a consistent difference of ca. 3 orders of magnitude when relating the diffusion coefficients between the two-phase and single-phase regions described herein, prompting a desire to push Na\(^+\) de/insertion mechanisms toward a purely single-phase behavior throughout the entire 0 < Na\(_x\) < 1 compositional range. Further considerations are provided in the following chapter.
Figure 6-12: Combined operando XRD data for disordered (a - c) and ordered (d - f) sodium spinel cathodes under varying cycling conditions: continuous operation at 20°C (a + d), 10 hour open circuit (OCV) rest period following initial discharge at 20°C (b + e) and continuous operation at 50°C (c + f) all cycled at a current rate of 3mA/g with 1M NaClO4-PC:FEC2% electrolyte. Vertical arrows mark the shift in relative lattice parameter of the various two-phase reactions taking place described by the (F/P)Na_x values reported.
6.3 Discussion

Considering the *in-operando* XRD data for the FNa-MNO and PNa-MNO spinels, a number of important remarks are provided to clarify the scaled intensity plots; particularly with regard to the observed intensities shown throughout.

Figure 6-8 to Figure 6-11. Within
Figure 6-8 FNa-MNO demonstrates a combined single-phase/two-phase reaction pathway as previously described, with relatively large fluctuations in the observed diffraction peaks throughout the respective charge/discharge cycles. At the end of discharge (markers M1 & M2) intensities of the (311), (222), and (400) diffraction peaks are notably more pronounced than measurements taken during charge. This result is believed to be a combined effect of the increased mass-attenuation coefficient of the sodiated (F/P)Na-MNO spinel, and potential ordering of Na\(^+\) that occurs on the available 8a (or combined 8a/16c) sites.

Figure 6-10 shows the PNa-MNO spinel, and contains a number of XRD features in addition to those previously mentioned for FNa-MNO. Due to the partial reaction of the P\(\lambda\)-MNO \(\rightarrow\) PNa\(_{0.93}\)MNO two-phase reaction, a considerable amount of the P\(\lambda\)-MNO phase remains throughout the discharge/charge cycles within Figure 6-10, which are marked by \((hkl)’\). Here, of key interest are the fluctuations in the diffraction peak intensities of the (311)’ and (400)’ peaks within Figure 6-10a. Throughout the discharge/charge cycles, both the (311)’ and (400)’ diffraction peaks undergo a reversible de/increase in measured intensity, indicative of fluctuating amounts of the P\(\lambda\)-MNO phase. This however, largely contrasts with the previously proposed Na\(^+\) de/insertion reactions, as reformation of the P\(\lambda\)-MNO phase requires an additional two-phase deinsertion reaction; only achieved herein by utilization of quasi-equilibrium cycling conditions and/or elevated temperatures. This gives further support that the previously described intensity fluctuations are primarily due to the changing mass-attenuation of
the cathode as Na⁺ is reversibly inserted and deinserted into the (F/P)λ-MNO host structure; demonstrated by Figure 6-13.

Figure 6-13: Estimated mass-attenuation coefficients of λ-MNO and Na-MNO with respect to common X-ray diffractometer Kα radiation sources.

In the case of the PNa-MNO *operando* XRD data mentioned previously (Figure 6-10a), the apparent fluctuations in the (311)' and (400)' diffraction peaks can be explained by the increased mass-attenuation coefficient of the PNa-MNO phase. Here, the increased mass-attenuation coefficient acts to ‘shield’ the Pλ-MNO phase from the incident radiation, owing to the apparent minimum and ‘maximum’ in intensity of the (311)' and (400)' diffraction peaks throughout the discharge/charge cycles of Figure 6-10a. These considerations also support the core/shell reaction mechanism described by Figure 5-6, and suggest that complete Na⁺ insertion into the (F/P)λ-MNO structure can be further optimized by sufficient nanostructuring of the (F/P)Li-MNO spinel precursors.

6.4 Conclusion

Both the FNa-MNO (disordered) and PNa-MNO (ordered) sodium spinels exhibit uniquely different de/insertion reaction mechanisms as compared to their lithium analogues, and highlight key reaction mechanisms/pathways whose understanding is central to further optimizing the spinel structure for reversible Na⁺ de/insertion. Overall, Na⁺ insertion into the disordered and ordered spinels initiates by a two-
phase reaction (Fλ-MNO \rightarrow FNa_{0.87}MNO and Pλ-MNO \rightarrow PNa_{0.93}MNO respectively) followed by Na\(^+\) insertion onto the remaining 8a tetrahedral sites by a solid-solution type reaction.

Both sodiated spinels demonstrate a number of different reaction mechanisms by nature of a kinetically limiting two-phase deinsertion reaction which produces the original (F/P)λ-MNO structure. As this reaction has only been described herein by utilization of slow quasi-equilibrium cycling conditions, or by elevated temperature studies, separate reaction pathways are frequently observed; as the reversible Na\(_x\) de/insertion range is considerably restricted to ca. 0.55 < FNa\(_x\) < 1.0 and 0.6 < PNa\(_x\) < 1.0 for the disordered and ordered spinels respectively.

High-resolution PITT electrochemical cycling also illuminates the considerable differences in reaction kinetics between the single-phase and two-phase processes described throughout chapter 1, and further indicates that the utilization of sodium spinels for high power Na-ion cathodes can further benefit from the superior single-phase reaction; chiefly, if optimization/modification of the spinel structure can be performed such that the Na\(^+\) de/insertion mechanism occurs primarily by a single-phase mechanism, a significant increase in rate capability, and increased capacity retention is predicted. Such is the topic of the following chapter.
7 \(\text{Li}_{1-x}\text{Na}_x\text{Mn}_{2+y}\text{M}_y\text{Ni}_z\text{O}_4 \) spinel synthesis

7.1 Introduction

As demonstrated throughout the previous chapters, the spinel structure has proven to be a robust and stable platform for reversible Na\(^+\) cycling. However, due to the physical size of Na\(^+\) relative to the 8\(a\) tetrahedral sites of the (F/P)\(\lambda\)-MNO structure, the Na\(^+\) insertion/deinsertion reaction(s) is/are considerably hindered by poor diffusional kinetics as reflected by calculated diffusion coefficients, and limited reversible capacities. Considering the comparatively high diffusivity of Li\(^+\) within the spinel framework, it is feasible to predict that enlarging the crystal lattice of the vacant (F/P)\(\lambda\)-MNO structure would provide substantial improvements in cell performance regarding Na\(^+\) de/insertion, due to the enlarged diffusional pathways that are more capable of accommodating the Na\(^+\).

Considering the nickel doped high-voltage spinel \(\lambda\)-Mn\(_{0.78}\text{Ni}_{0.22}\text{O}_4 \) (F\(\lambda\)-MNO) and \(\lambda\)-Mn\(_{0.75}\text{Ni}_{0.5}\text{O}_4 \) (P\(\lambda\)-MNO), expansion of the unit cell should ideally be performed such that it does not interfere with the electrochemically active species, i.e. the nickel content should ideally remain unchanged. Considering the (F/P)\(\lambda\)-MNO parent spinel, the nickel substitution acts to push the average oxidation state of manganese to \(\text{ca.} \) +4 oxidation state, where its presence can be largely regarded as a ‘spectator cation’ as it does not contribute to any significant portion of the electrochemical redox reaction. Due to its relatively inactive role, direct substitution of manganese for a suitably larger transition metal cation may potentially enlarge the spinel structure sufficiently, and in the process facilitate more beneficial Na\(^+\) de/insertion kinetics.

Considering the available +4 transition metals, Table 7-1 compares the ionic radii of key transition metals of interest. Throughout this chapter, Zr and Ti are selected as substitutional dopants, as Zr demonstrates the largest ionic radii of those considered, and Ti offers an intermediate sized dopant and also meets necessary criteria concerned with environmental toxicity, and raw material abundance as compared to other 4d-transition metals.
Table 7-1: Transition metal cation radii from Ref. 375

<table>
<thead>
<tr>
<th>Element</th>
<th>Ionic Radius [Å]</th>
<th>% Difference Relative to Mn⁴⁺</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.605</td>
<td>+ 14.1</td>
<td>Highly abundant</td>
</tr>
<tr>
<td>V</td>
<td>0.58</td>
<td>+ 9.4</td>
<td>-</td>
</tr>
<tr>
<td>Cr</td>
<td>0.55</td>
<td>+ 3.7</td>
<td>Toxicity concerns (Cr⁶⁺)</td>
</tr>
<tr>
<td>Fe</td>
<td>0.585</td>
<td>+ 10.3</td>
<td>Unstable in +4 oxidation state</td>
</tr>
<tr>
<td>Zr</td>
<td>0.72</td>
<td>+ 35.8</td>
<td>-</td>
</tr>
<tr>
<td>Nb</td>
<td>0.68</td>
<td>+ 28.3</td>
<td>-</td>
</tr>
<tr>
<td>Mo</td>
<td>0.65</td>
<td>+ 22.6</td>
<td>-</td>
</tr>
<tr>
<td>Tc</td>
<td>0.645</td>
<td>+ 21.6</td>
<td>Costly</td>
</tr>
<tr>
<td>Ru</td>
<td>0.62</td>
<td>+ 16.9</td>
<td>Costly</td>
</tr>
<tr>
<td>Hf</td>
<td>0.71</td>
<td>+ 33.9</td>
<td>Costly</td>
</tr>
<tr>
<td>Ta</td>
<td>0.68</td>
<td>+ 28.3</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>0.66</td>
<td>+ 24.5</td>
<td>-</td>
</tr>
</tbody>
</table>

7.2 Experimental methods

Material synthesis was carried out by two separate methods described within Section 3.1; namely by solid-state synthesis and a modified Pechini technique. The modified Pechini technique consisted of dissolving stoichiometric quantities of metal acetates (lithium acetate, sodium acetate) and metal nitrates (manganese nitrate, nickel nitrate, zirconium oxynitrate) into aqueous solution followed by a chelation and esterification reaction within a 4:1 ethylene glycol (EG) / citric acid (CA) mixture (mol%). Weights of acetate/nitrate precursors were determined such to give a 4:1:1 ratio of EG:CA:M where M denotes the total moles of dissolved cations.

Reported solid-state synthesized samples were prepared by mixing stoichiometric quantities of transition metal oxides/hydroxides (sodium carbonate, nickel(II) oxide, manganese(IV) oxide, lithium hydroxide, sodium peroxide, nickel(II) hydroxide, manganese oxide hydroxide, titanium oxide: anatase) by either a wet-milling or high-energy milling process. Wet-milling consisted of roll milling initial oxide precursors (*i.e.* sodium carbonate, nickel(II) oxide, manganese(IV) oxide) with zirconia milling media in acetone for a minimum of 5 hours. High energy milled samples were mixed *via* a zirconia high energy planetary mill (Retsch) for 1 hour at 400 rpm. The resulting powder samples were annealed in an alumina crucible in either ambient air, or under pure oxygen flow as stated in the following section.

Phase identification of powder samples was performed using X-ray diffraction on a Bruker D8 Advance diffractometer using Copper Kα radiation. Reported lattice parameters are based off of Rietveld
refinement of XRD data using the TOPAS software package, assuming a 5th order Chebychev polynomial background, sample height displacement correction, and pseudo-voigt peak shapes. Refinement models assume an Fd-3m space group, and random distribution of Mn/Ni/M (M = Zr, Ti) cations along the 16d octahedral sites.

Cathodes were fabricated by the same casting technique as described in the earlier chapters, with the exception of the LiMn$_{1.5-x}$Ti$_x$Ni$_{0.5}$O$_4$ (x = 0.3, 0.5, 1.0, 1.3) spinel samples which were SPEX milled for 15 minutes with 10 wt% conductive carbon (SP, MMM) prior to mixing with poly(vinylidene fluoride-co-hexafluoropropylene (Kynar 2801), SP, and a propylene carbonate (PC) plasticizer to form a similar free standing electrode.

7.3 Results

7.3.1 Material Synthesis & Characterization

Throughout the following sections doped spinel samples are commonly referred to as M_x or equivalently, LiMn$_{1.5-x}$M$_x$Ni$_{0.5}$O$_4$ where M denotes the specific transition metal cation of interest. In fact, Li$_{1-y}$Na$_y$Mn$_{1.5-x}$M$_x$Ni$_{0.5}$O$_4$ compositions reported herein correlate to a ‘target composition’ that is meant to distinguish the relative ratios of the transition metal cations prior to annealing, and does not reflect the actual stoichiometry of the formed phase(s).

In order to investigate the phase stability of a sodium spinel, solid-state synthesis techniques used to fabricate the analogous lithium spinel (LMNO) were adapted with sodium precursors. Na$_2$CO$_3$, NiO, and MnO$_2$ were mixed in a 2:1:3 molar ratio throughout a multi-step wet milling process described by Hagh. Figure 7-1 provides the powder XRD data following a 900°C air anneal for 12 hours. Indexed peaks correlate to a hexagonal layered phase of approximate composition Na$_{0.67}$Mn$_{0.37}$Ni$_{0.25}$O$_2$, which is in good agreement with previous sodium-rich layered oxides reported throughout Section 2.1.1.2.3.1. Here, an analogous synthesis technique used to form the LMNO spinel has demonstrated that the significantly larger ionic size of Na$^+$ destabilizes the spinel crystal structure, forming a layered compound. A minor secondary phase can also be seen (as shown by arrows) which signifies an unknown sodiated manganese phase that is ignored throughout the remainder of this work, as only the formation of spinel phases are of primary interest.
In order to incorporate Na⁺ into the tetrahedral sites of the spinel crystal structure, it is clear that modification of the average size of the tetrahedral sites need to be sufficiently increased such that steric destabilization effects do no arise as seen in Figure 7-1.

Modification of the unit cell in this sense is performed by substitutional doping of the transition metal cations: specifically Mn⁴⁺, as it contributes to no appreciable electrochemical redox reaction. By substitutional doping with a physically larger transition metal, the average size of the 16d octahedral sites is expected to increase; thereby increasing the overall tetrahedral sites in the process. As depicted by Table 7-1, a number of +4 transition metals may serve as a feasible dopant. However, only Ti and Zr are chosen due to the combined considerations of electrochemically active redox reactions, relative ionic size, and environmental considerations (essential for promising Na-ion compositions).

Figure 7-2, Figure 7-3, and Figure 7-4 consider 500°C, 700°C and 800°C 10 hour air anneals for LiMn_{1.5−x}Zr_{x}Ni_{0.5}O_{4} (x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4) compositions (a) – (h) respectively. Arrows throughout Figure 7-2, and Figure 7-3 show evidence of an orthorhombic ZrO₂ phase, which become more distinguishable as the annealing temperature is increased, eventually resulting in a cubic ZrO₂ phase shown in Figure 7-4. Considering only the spinel phase, Figure 7-5 provides the refined lattice parameters of the 500°C, 700°C, and 800°C air anneals mentioned previously. Here, it is clear that the
lattice parameter of the synthesized spinel reaches a maximum at a composition of $\text{ca. LiMn}_{1.44}\text{Zr}_{0.06}\text{Ni}_{0.5}\text{O}_{4}$ across all considered annealing temperatures suggesting some maximum in solid-solubility.

As shown throughout Figure 7-2 through Figure 7-4, secondary phases become exceedingly more prominent as a function of increased Zr content, suggesting that beyond the Zr$_{0.06}$ composition, the spinel crystal structure is unable to accommodate the relatively large Zr$^{4+}$ cations, and a precipitated ZrO$_2$ phase forms at the particle surfaces. However, as demonstrated by the 500°C annealed samples, refined lattice parameters see an additional peak at a compositions of $\text{ca. LiMn}_{1.0}\text{Zr}_{0.5}\text{Ni}_{0.5}\text{O}_{4}$. This observation is seemingly due to the relatively low annealing temperature (500°C), preventing significant loss of the Zr due to poor diffusion kinetics, and also resulting in much broader diffraction peaks due to combined particle size and strain considerations. However, due to the multiphasic nature of compositions beyond Zr$_{0.06}$ (LiMn$_{1.44}$Zr$_{0.06}$Ni$_{0.5}$O$_4$) across all temperatures, it is believed that this composition represents the solid-solubility limit for Zr within the LMNO spinel. Here, it is important to distinguish that formation of the Li-Mn-Zr-Ni spinel was produced throughout a single annealing process as opposed to a multi-step solid-state reaction as described for LMNO stoichiometries by Nader et al.303 This is also supported by the systematic increase in measured surface area as a function of Zr content given in Table 7-2.
Figure 7-2: Powder X-ray diffraction data for LiMn$_{1.5-x}$Zr$_x$Ni$_{0.5}$O$_4$ spinel samples (x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, and 0.4) for (a) - (h) respectively annealed at 500°C for 10 hours in air.

Figure 7-3: Powder X-ray diffraction data for LiMn$_{1.5-x}$Zr$_x$Ni$_{0.5}$O$_4$ spinel samples (x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, and 0.4) for (a) - (h) respectively annealed at 700°C for 10 hours in air.
Figure 7-4: Powder X-ray diffraction data for LiMn$_{1.5-x}$Zr$_x$Ni$_{0.5}$O$_4$ spinel samples ($x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3$, and 0.4) for (a) - (h) respectively annealed at 800°C for 10 hours in air.

Figure 7-5: Refined lattice parameters of LiMn$_{1.5-x}$Zr$_x$Ni$_{0.5}$O$_4$ ($x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5,$ and 0.6) samples across considered annealing temperatures.
Table 7-2: Multipoint BET surface area measurements of Zr-doped spinel compositions

<table>
<thead>
<tr>
<th>Anneal Temperature</th>
<th>Zr$_{0.02}$</th>
<th>Zr$_{0.06}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500°C air</td>
<td>27.83 m2/g</td>
<td>41.55 m2/g</td>
</tr>
<tr>
<td>600°C air</td>
<td>21.51 m2/g</td>
<td>29.82 m2/g</td>
</tr>
<tr>
<td>700°C air</td>
<td>8.223 m2/g</td>
<td>13.85 m2/g</td>
</tr>
<tr>
<td>800°C air</td>
<td>2.650 m2/g</td>
<td>3.874 m2/g</td>
</tr>
</tbody>
</table>

Given that the Zr$_{0.06}$ composition has demonstrated itself as the practical limit of solid-solubility within the manganese-nickel spinel, systematic substitution of Li for Na was performed in order to assess whether the incorporated Zr has sufficiently enlarged the spinel crystal structure to accommodate the larger Na$^+$ cations. Figure 7-6 provides powder XRD data for Li$_{1-y}$Na$_y$Mn$_{1.44}$Zr$_{0.06}$Ni$_{0.5}$O$_4$ ($y = 0.1, 0.2$) target compositions. While the major crystalline phase can be indexed as a cubic spinel, the systematic growth of a secondary sodiated manganese oxide phase (marked by arrows in Figure 7-6) suggests that further expansion of the spinel lattice is necessary. The dashed line provides a visual indication of the similar lattice parameters between the two samples, suggesting that little to no change in lattice parameter has occurred. In fact, refined lattice parameters of the spinel phases suggest that no appreciable amounts of Na have been successfully incorporated into the spinel phase, promoting the increasing amount of secondary sodiated phase(s) as a function of increasing sodium content.

![Figure 7-6: Powder X-ray diffraction data of sodium substituted Li$_{1-y}$Na$_y$Mn$_{1.44}$Zr$_{0.06}$Ni$_{0.5}$O$_4$ ($y = 0.1$ and 0.2) compositions (a) and (b) respectively. Arrows mark a sodium rich phase, and indexed peaks correlate to the lithium spinel. The vertical dashed line is provided to demonstrate no significant shift in peak positions as a function of increasing Na content.](image-url)
Additionally, Ti was investigated as a similar dopant cation. Figure 7-7 shows powder XRD data of Ti-doped LiMn$_{1.5}$Ti$_x$Ni$_{0.5}$O$_4$ ($x = 0.1, 0.3, 0.5, 1.0, 1.3$) spinels synthesized by a mechanochemical synthesis technique followed by a 10 hour 800°C air anneal. Dashed lines are also provided for the (111), (311) and (400) spinel reflections in order to demonstrate the shift in diffraction peaks correlating to a systematic increase in the lattice parameter. While exhibiting only a minor secondary phase, Figure 7-7e marks a titanium rich NiTiO$_3$ phase, which is once revoked from further considerations. Here, almost complete solubility of titanium within the spinel host lattice is in agreement with previous reports376,377 and comes as little surprise when considering the 14.1% difference in ionic radii between Ti$^{4+}$/Mn$^{4+}$ as compared to 35.8% between Zr$^{4+}$/Mn$^{4+}$.

Figure 7-7: Powder X-ray diffraction data of titanium doped spinel samples of nominal composition LiMn$_{1.5}$Ti$_x$Ni$_{0.5}$O$_4$ ($x = 0.1, 0.3, 0.5, 1.0, 1.3$) for (a) – (e) respectively synthesized at 800°C in air.
Table 7-3 compares the refined lattice parameters of Ti-doped spinels discussed previously against those already demonstrated throughout literature. Here, the refined lattice parameters are in good agreement with those previously reported, giving a high level of confidence in the reported stoichiometries and incorporation of Ti onto the intended 16d octahedral sites.

Given that incorporation of the Ti$^{4+}$ onto the spinel host structure has largely increased the lattice parameter, it is of primary interest as to whether or not a sodium spinel can be directly synthesized using the given Ti stoichiometries. Following this methodology, $\text{Li}_{1-y}\text{Na}_y\text{Mn}_{1.5-x}\text{Ti}_x\text{Ni}_{0.5}\text{O}_4$ ($x = 1.0, 1.3; \ y = 0.1, 0.5, 1.0$) target compositions were formed by the same mechanochemical synthesis method in order to determine the stability of Na$^+$ within the expanded spinel host lattice.

\[\text{Li}_{1-y}\text{Na}_y\text{Mn}_{1.5-x}\text{Ti}_x\text{Ni}_{0.5}\text{O}_4 \ (x = 1.0, 1.3; \ y = 0.1, 0.5, 1.0) \]
samples were annealed both in air and under a pure oxygen atmosphere, with powder XRD data provided in Figure 7-8, Figure 7-9, Figure 7-10, and Figure 7-11 respectively. Throughout Figure 7-9 to Figure 7-11, diffraction peaks marked by arrows correlate to a spinel phase, and those shown throughout (b) – (c) with miller indices correspond to a hexagonal (layered) phase respectively. The minor additional phase(s) present throughout (a) – (c) relate to a multitude of sodiated manganese/nickel oxide phases, and are not considered throughout this section.

Considering the $\text{Li}_{1-y}\text{Na}_y\text{Mn}_{1.5-x}\text{Ti}_x\text{Ni}_{0.5}\text{O}_4$ ($x = 1.0; \ y = 0.1, 0.5, 1.0$) compositions in Figure 7-8 and Figure 7-9, little difference is provided when changing between an air and oxygen atmosphere, predominantly exhibiting a spinel (a) or hexagonal layered phase (b) – (c) with additional phase impurities being largely ignored, as the primary objective of this chapter is to stabilize a spinel crystal structure. Similar annotations and observations can also be made for the $\text{Li}_{1-y}\text{Na}_y\text{Mn}_{1.5-x}\text{Ti}_x\text{Ni}_{0.5}\text{O}_4$ ($x = 1.3; \ y = 0.1, 0.5, 1.0$) compositions in Figure 7-10, and Figure 7-11 and further electrochemical results are provided in the following section.
Table 7-3: Comparison of Ti-doped LiMn$_{1.5-x}$Ti$_x$Ni$_{0.5}$O$_4$ (x = 0.1, 0.3, 0.5, 1.0, 1.3) as compared against previous reports in literature

<table>
<thead>
<tr>
<th>Sample</th>
<th>REF 376</th>
<th>REF 377</th>
<th>Experimental Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiNi${0.3}$Mn${1.5}$O$_4$</td>
<td>8.170(3)</td>
<td>8.169 (P4$_3$32)</td>
<td>8.167 (Fd-3m)†</td>
</tr>
<tr>
<td>LiNi${0.3}$Mg${0.2}$Mn$_{1.5}$O$_4$</td>
<td>8.179(3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${1.45}$Ti$_{0.05}$O$_4$</td>
<td>-</td>
<td>8.175 (P4$_3$32)</td>
<td>-</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${1.4}$Ti$_{0.1}$O$_4$</td>
<td>-</td>
<td>8.178 (P4$_3$32)</td>
<td>8.175</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${1.3}$Ti$_{0.2}$O$_4$</td>
<td>-</td>
<td>8.189 (Fd-3m)</td>
<td>-</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${1.2}$Ti$_{0.3}$O$_4$</td>
<td>8.204(5)</td>
<td>8.201 (Fd-3m)</td>
<td>8.199</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${1.1}$Ti$_{0.4}$O$_4$</td>
<td>8.218(3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${1.0}$Ti$_{0.5}$O$_4$</td>
<td>8.232(5)</td>
<td>8.228 (Fd-3m)</td>
<td>8.227</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${0.8}$Ti$_{0.7}$O$_4$</td>
<td>8.262(3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${0.5}$Ti$_{1.0}$O$_4$</td>
<td>8.304(3)</td>
<td>8.295 (Fd-3m)</td>
<td>8.299</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${0.3}$Ti$_{1.2}$O$_4$</td>
<td>8.324(3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${0.2}$Ti$_{1.3}$O$_4$</td>
<td>-</td>
<td>-</td>
<td>8.330</td>
</tr>
<tr>
<td>LiNi${0.5}$Mn${0.15}$Ti$_{1.35}$O$_4$</td>
<td>8.350(6)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LiNi${0.5}$Ti${1.4}$O$_4$</td>
<td>8.361(6)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

† Lattice parameter based off of LiNi$_{0.44}$Mn$_{1.56}$O$_4$ composition
Figure 7-8: Powder XRD of Li$_{1+y}$Na$_y$Mn$_{0.5}$TiNi$_{0.5}$O$_4$ target compositions annealed at 800°C in air for 12 hours

Figure 7-9: Powder XRD of Li$_{1+y}$Na$_y$Mn$_{0.5}$TiNi$_{0.5}$O$_4$ target compositions annealed at 800°C under pure oxygen flow for 12 hours
Figure 7-10: Powder XRD of Li$_{1-y}$Na$_y$Mn$_{0.5}$Ti$_{1.3}$Ni$_{0.5}$O$_4$ target compositions annealed at 800°C in air for 12 hours

Figure 7-11: Powder XRD of Li$_{1-y}$Na$_y$Mn$_{0.5}$Ti$_{1.3}$Ni$_{0.5}$O$_4$ target compositions annealed at 800°C under pure oxygen flow for 12 hours
7.3.2 Electrochemical Results: Synthesized sodium phases

Figure 7-12 provides a voltage profile of the LiMn$_{1.44}$Zr$_{0.06}$Ni$_{0.5}$O$_4$ spinel cycled against a lithium metal anode with 1M LiPF$_6$-EC/DMC electrolyte. Inset within Figure 7-12 is a cyclic voltammogram using a 0.01 mV/s sweep rate within a similar lithium metal cell; labeled peaks correlate to the active Ni$^{2+}$/Ni$^{4+}$ redox, which has remained relatively invariant from the undoped LMNO spinel reported in Section 4.3. The peaks centered at ca. 4.0V show that a significant amount of Mn$^{3+}$ is present, suggesting an oxygen deficient spinel. However, as oxygen deficiency is not of primary concern, the stoichiometry of the Zr$_{0.06}$ sample is regarded as ca. LiMn$_{1.44}$Zr$_{0.06}$Ni$_{0.5}$O$_4$. Figure 7-12 demonstrates a large amount of electrolyte decomposition throughout the 5.0V charge, which is in agreement with the previously reported surface area of the 500°C annealed Zr$_{0.02}$ samples (which is expected to be approximately equivalent for the Zr$_{0.06}$ sample). The following discharge sees an initial capacity of 105 mAh/g, and observes a gradual decline (not shown) due to the considerably high surface areas of active material, resulting in catalytic breakdown of the electrolyte.

![Figure 7-12](image_url)

Figure 7-12: Voltage profile of LiMn$_{1.44}$Zr$_{0.06}$Ni$_{0.5}$O$_4$ spinel (500°C anneal) cycled at 3mA/g, using 1M LiPF$_6$-EC/DMC electrolyte

Following the same electrochemical delithiation process as described previously, Figure 7-13 considers the Na$^+$ insertion into the Zr$_{0.06}$ spinel composition at a current rate of 10 mA/g at 24°C.

Throughout the initial discharge, a stable voltage plateau is reached at 3.5V (vs. Na/Na$^+$), followed by a gradual slope in the voltage profile with an additional voltage step occurring at ca. 3.0V (resulting from the Mn$^{3+}$ content of the initial Zr$_{0.06}$ spinel) demonstrating a final discharge capacity of 117 mAh/g. Here, the Na$^+$ insertion reaction is likely to proceed in a similar manner as that already discussed for Fλ-MNO and
Pλ-MNO spinel samples: by an initial two-phase reaction followed by single-phase Na⁺ insertion onto residual 8a tetrahedral sites. Further comments are provided in the discussion section.

Figure 7-13: Galvanostatically cycled λ-Zr₀.₀₆ vs. Na/Na⁺ using 1M NaClO₄-PC:FEC2% at 24°C at 10 mA/g. 2.0 – 4.25V

Figure 7-14 shows the voltage profile of LiMn₁.₅₋ₓTiₓNi₀.₅O₄ (x = 0.3, 0.5, 1.0, 1.3) vs. Li/Li⁺ coin cells cycled at 10 mA/g, 24°C. Throughout Figure 7-14 discharge capacities see a progressive decline as a function of increasing Ti content. In fact, little evidence of the Ni²⁺/Ni⁴⁺ redox is present for the LiMn₁.₅₋ₓTiₓNi₀.₅O₄ (x = 1.0, 1.3) samples, as seen by the limited high-voltage discharge capacities, and from ex-situ XRD measurements performed on charged cathodes; suggesting minor delithiation occurring throughout the 5.0V charge protocol.

Due to the apparent electrochemical ‘inactivity’ of high Ti content spinel samples, and sufficient formation of a λ-Ti₀.₃ phase (delithiated Ti₀.₃), the Ti₀.₃ composition was used in a similar manner as described throughout Chapter 5 in order to study the Na⁺ insertion process into λ-Ti₀.₃. Figure 7-15 shows the galvanostatic discharge/charge throughout the first 2 cycles at 24°C with a 10 mA/g current rate using the same 1M NaClO₄-PC:FEC2% electrolyte used in the previous chapters. Further comments are provided in the discussion section.
Figure 7-14: Galvanostatic voltage profiles of LiMn_{1.5-x}Ti_xNi_{0.5}O_4 (x = 0.3, 0.5, 1.0, and 1.3) compositions cycled at 10 mA/g at 24°C using 1M NaPF_6-EC/DMC electrolyte.

Figure 7-15: Galvanostatic voltage profile of electrochemically delithiated Mn_{1.2}Ti_{0.3}Ni_{0.5}O_4 cycled against a sodium metal anode using 1M NaClO_4-PC:FEC2% electrolyte at 24°C, 10 mA/g.

Although the Li_{1-y}Na_yMn_{1.5-x}Ti_xNi_{0.5}O_4 compositions mentioned in the previous section notably did not yield a sodiated spinel phase, Figure 7-16 provides their respective voltage profiles at 24°C with a 10 mA/g applied current. The Li_{1-y}Na_yMn_{1.5-x}Ti_xNi_{0.5}O_4 (x = 1.3; y = 0.1, 0.5, 1.0) samples in Figure 7-16b see considerably lower capacities as compared to the x = 1.0 compositions (Figure 7-16a), further supporting potential concerns surrounding electrical conductivity with high Ti containing samples. As a whole, the y = 0.5 compositions (Li_{0.5}Na_{0.5}) see the greatest capacities, potentially arising from the additional Li^+ de/insertion processes. Due to the relatively similar nature of the
y = 0.5 and the y = 1.0 compositions, it is expected that a similar de/insertion process is taking place between the two layered compositions, and that the superior nature of the y = 0.5 samples is due to the initial Li content; being the result of the initial synthesis composition.

![Galvanostatic voltage profiles](image)

Figure 7-16: Galvanostatic voltage profiles of Li$_{1-y}$Na$_y$Mn$_{1.5-x}$Ti$_x$Ni$_{0.5}$O$_4$ ($x = 1.0$ (a), $x = 1.3$ (b); $y = 0.1, 0.5, 1.0$) compositions cycled at 10 mA/g at 24°C using 1M NaClO$_4$-PC:FEC2% electrolyte

7.4 Discussion

Zr and Ti-doped spinels demonstrate strikingly similar voltage characteristics as compared to the parent LMNO. Considering the Zr$_{0.06}$ composition, the low temperature Pechini synthesis technique has resulted in a large amount of Mn$^{3+}$ as can be seen by both the redox reaction occurring at ca. 4.0V in both the galvanostatic voltage profile and the cyclic voltammogram shown in Figure 7-12. The evidence of a large quantity of Mn$^{3+}$ may also explain the relatively high reported lattice parameters across the Zr$_x$ spinel compositions annealed at 500°C, due to the relatively larger ionic radii of Mn$^{3+}$ with respect to Mn$^{4+}$.

Preliminary data on Na$^+$ insertion into the delithiated Zr$_{0.06}$ spinel (λ-Zr$_{0.06}$) suggests a similar reaction pathway as that previously seen in Chapter 5. In particular, the Zr$_{0.06}$ composition only affords ca. a +0.01Å increase in the lattice parameter (with respect to the F-LMNO spinel mentioned in the earlier chapters), which does not appear to have sufficiently enlarged the 8a tetrahedral sites such to drive the Na$^+$ insertion reaction to a predominantly single-phase de/insertion reaction mechanism. However, it is likely that the two-phase reaction products will be considerably different from those reported for Fλ-MNO and Pλ-MNO by nature of the moderately expanded spinel crystal structure; potentially motivating future works
in this area. While additional work should be done to validate the Additional comments are provided in the following chapter.

Here, utilization of the 500°C Zr₅₀₀ composition was chosen due to the slightly larger reported lattice parameter in comparison to the 700°C and 800°C annealed samples. Considering the lower reported surface areas of the 700/800°C Zr₅₀₀ compositions, it is expected that these samples would demonstrate significantly less catalytic decomposition of the electrolyte. However, due to the limited solubility, and hence limited extent of expansion the Zr-substitution affords, additional physical/electrochemical characterization was not explored.

The Ti-doped samples solely utilized a solid-state synthesis method due to incompatibility concerns surrounding titanium precursors. Primary electrochemistry investigations demonstrate that the Ti-doped spinel becomes progressively more electrochemically inactive as a function of increasing Ti content, eventually showing no evidence of the Ni²⁺/Ni⁴⁺ redox at the considered Ti₁.₀ and Ti₁.₃ compositions. While this has been attributed to low electrical conductivity of the Ti-O bonds, initial efforts to increase the electrical conductivity of the Ti-doped samples through formation of a carbonaceous nanocomposite still suffer similar difficulties as those discussed in literature, and may suggest additional limiting factors at play.

The Ti₀.₃ composition was chosen for study in an analogous sodium-metal cell, as this sample demonstrated the greatest high voltage capacity, while still considerably expanding the parent LMNO spinel structure. Ti₀.₃ cathodes were initially delithiated as described previously in Chapter 4. Figure 7-15 considers the same 2.0 – 4.25V voltage window as previously discussed for the (F/P)λ-MNO samples in Chapter 5, and sees considerable differences in both voltage and the reversible cycling range beyond the initial discharge. While the Ti-doped spinel was suspected to increase the operating voltage of the Na⁺ insertion process, it in fact, has been drastically lowered from ca. 3.6V (vs. Na/Na⁺) to ca. 2.9V. Additionally, Figure 7-15 is notably more characteristic of a single-phase insertion process, as can be seen by the gradually sloping voltage profile.

Although additional physical and electrochemical characterization of the Na⁺ insertion into the Ti₀.₃ spinel composition is not reported, it is postulated that the expansion of the spinel lattice in this instance has greatly mitigated the initial two-phase Na⁺ insertion reaction previously reported for the (F/P)λ-MNO
spinels, and resulted in a primarily single-phase Na\(^+\) insertion mechanism. Following the initial Na\(^+\) insertion reaction, there appear to be similar deinsertion kinetic limitations as previously discussed for the (F/P)Na-MNO spinels, meriting additional future study. Here, despite the further reduction in operating voltage, it is evident that further structural/electrochemical investigations are necessary to validate the single-phase/two-phase Na\(^+\) insertion reaction.

Lastly, electrochemical properties of the layered sodium phases were also investigated for both the Ti\(_{1.0}\) and Ti\(_{1.3}\) target compositions. Here, the term ‘target composition’ is meant to indicate the relative stoichiometries of the various transition metals prior to annealing, which is expected to deviate from those actually observed due to deviation from the ideal spinel compositions desired. Figure 7-16 considers the Li\(_{1-y}\)Na\(_y\)Mn\(_{1.5-x}\)Ti\(_x\)Ni\(_{0.5}\)O\(_4\) (x = 1.0, 1.3; y = 0.1, 0.5, and 1.0) compositions within a sodium-metal coin cell. Capacities see a systematic increase with increasing sodium content (excluding y = 1.0 samples), with only the y = 0.5, and 1.0 samples showing any appreciable capacity, as the y = 0.1 composition is still largely a lithium spinel phase; demonstrating equally low activity in a lithium-metal cell.

Based off the preliminary data of Li\(_{1-y}\)Na\(_y\)Mn\(_{1.5-x}\)M\(_x\)Ni\(_{0.5}\)O\(_4\) (M = Zr, Ti) target compositions, further predictions can be made regarding the solid-solubility of various transition metal cations within the LMNO parent spinel. In particular, due to the relatively low differences in their ionic radii with respect to Mn\(^{4+}\), it is anticipated that M = V, Cr, Fe, and Ru will show similar solid-solubility limits as those previously seen for M = Ti; and M = Tc, Mo, W, Ta, and Nb are likely to exhibit some limited solid-solubility as demonstrated by the Zr-doped samples.

7.5 Conclusion

Substitutional doping of physically large cations onto the 16d octahedral sites has demonstrated to be effective at increasing the average lattice parameter of the LiMn\(_{1.5-x}\)M\(_x\)Ni\(_{0.5}\)O\(_4\) (M = Zr, Ti) spinel compositions. Although only preliminary data is provided, it is believed that the expansion of the lattice parameter has promoted Na\(^+\) insertion onto the 8a tetrahedral sites by a predominantly single-phase insertion reaction as seen through galvanostatically discharged sodium-metal cells. However, additional physical and electrochemical characterization is needed to further bolster this claim. Similar behavior is also predicted for a range of other doped spinel compositions, i.e., LiMn\(_{1.5-x}\)M\(_x\)Ni\(_{0.5}\)O\(_4\) (M = V, Cr, Fe, Ru) due to the similarity in ionic radii relative to Mn\(^{4+}\).
Direct synthesis of a sodium spinel Li$_{1+y}$Na$_y$Mn$_{1.5-x}$M$_x$Ni$_{0.5}$O$_4$ (M = Zr, Ti) has not been demonstrated, as systematic increasing quantities of Na continually result in the formation of a layered hexagonal crystal structure, potentially indicating that the sodium spinel is a metastable phase, due to the large steric effects that arise from the relatively large size of Na$^+$.
8 Future work

8.1 Future work relevant to high voltage electrode materials

Utilization of 4.7V LiMn$_{1.5\delta}$Ni$_{0.5-\delta}$O$_4$ (Fd-3m and P4$_3$32) in an analogous sodium metal cell has demonstrated that there is a considerably larger drop in operating voltage of ca. 1.1V than that predicted form differences in standard redox potentials; suggesting that additional factors such as the electronic structure and differences in charge density are of significant importance for adapting existing high-voltage lithium chemistries to analogous sodium systems. The large drop in voltage may in fact be of considerable utility, as a number of cathode compositions with active redox reaction exceeding ca. 5.0V (vs. Li/Li$^+$) have been identified. However, practical use in a Li-ion cell is not possible due to limitations of modern electrolytes. In fact, implementing such chemistries in a Na-ion cell may drop the voltage sufficiently to operate within the stability ranges of common electrolytes.

The methods and procedures discussed throughout this work may serve as a template against which further testing and optimization of high-voltage Na-ion cathodes (derived from high-voltage Li-ion cathodes) may be derived.

8.2 Future work relevant to high-voltage spinel

Within the previous chapters, (F/P)$_\lambda$-MNO cathodes have demonstrated a range of interesting features which are of further interest. The questions and points of interest that arise are:

1. Why is there a difference in reaction mechanism when holding FNa-MNO in a fully discharged state for prolonged periods of time?
2. FNa-MNO and PNa-MNO cathode exhibit drastically different reaction pathways; where does this originate?
3. How can the multiphasic nature of high rate discharged cathodes be explained? Is the proposed core/shell model valid?
4. Does the λ-Zr$_{0.06}$ spinel observe any superior reaction kinetics/reaction pathways as a result of the Zr-substitution?
(5) What type of Na$^+$ insertion reaction mechanism(s) is/are taking place within the Ti-doped (Ti$_{0.3}$)
spinel? Is this an ordered (P4$_3$32) or disordered (Fd-3m) structure?

(6) Is Na$^+$ truly residing on the centers of the 8a tetrahedral sites? Is there any partial occupation of the
adjacent 16c sites?

(7) Can additional expanded spinel structures be formed using additional transition metals? What is
their specific benefit/advantage over the (F/P)$_{\lambda}$-MNO parent spinel?

(8) Can a direct synthesis method be used to form a sodium spinel in the discharged state?
References

94. Wang, D. *et al.* Facile fabrication of Pb(NO3)2/C as advanced anode material and its lithium

110. Liu, Y. et al. Mesoporous Co3O4 sheets / 3D graphene networks nanohybrids for high-
193

143. Oh, S. M. *et al.* Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. *Nano Lett.* **14**, 1620–1626 (2014).

146. Han, S. C., Bae, E. G., Lim, H. & Pyo, M. Non-crystalline oligopyrene as a cathode material with a high-voltage plateau for sodium ion batteries. *J. Power Sources* **254**, 73–79 (2014).

149. Song, W. *et al.* Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. *J. Power Sources* **256**, 258–263 (2014).

156. Yuan, Z., Xuehang, W., Wenwei, W. & Kaituo, W. Synthesis and electrochemical performance of Na0.7Fe0.7Mn0.3O2 as a cathode material for Na-ion battery. *Ceram. Int.* **40**, 13679–13682 (2014).

158. Singh, G. *et al.* Electrochemical performance of NaFex(Ni0.5Ti0.5)1−xO2 (x = 0.2 and x = 0.4)

161. Yuan, D. *et al.* P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery. *Electrochim. Acta* **38**, 79–81 (2014).

162. Nose, M. *et al.* Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries. *Electrochem. commun.* **34**, 266–269 (2013).

Sauvage, F., Laffont, L., Tarascon, J. M. & Baudrin, E. Study of the insertion/deinsertion

Yoshida, H., Yabuuchi, N. & Komaba, S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. *Electrochem. commun.* **14**, 60–63 (2012).

260. Suresh, P., Shukla, a. K. & Munichandraiah, N. Synthesis and characterization of LiFeO2 and LiFe0.9Co0.1O2 as cathode materials for Li-ion cells. J. Power Sources 159, 1395–1400 (2006).

277. Inada, R. *et al.* Properties of aerosol deposited NASICON-type Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte thin films. *Ceram. Int.* **5**, 0–32 (2015).

296. Santhanam, R. & Rambabu, B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. *J. Power Sources* **195**, 5442–5451 (2010).

309. Vivekanandhan, S., Venkateswarlu, M. & Satyanarayana, N. Effect of different ethylene glycol

320. Fu, F. *et al.* A hierarchical micro/nanostructured 0.5Li2MnO3·0.5LiMn0.4Ni0.3O2 material synthesized by solvothermal route as high rate cathode of lithium ion battery. *Electrochem. commun.* **44**, 54–58 (2014).

335. Yoon, W. S. *et al.* Structural study of the coating effect on the thermal stability of charged MgO-
coated LiNi 0.8Co 0.2O 2 cathodes investigated by in situ XRD. *J. Power Sources* **217**, 128–134 (2012).

348. Ma, R. *et al.* Ex situ FTIR spectroscopy study of LiVPO4F as cathode material for lithium-ion batteries. *Ionics (Kiel).* 725–730 (2012). doi:10.1007/s11581-012-0807-8

Hwang, B. J., Wu, Y. W., Venkateswarlu, M., Cheng, M. Y. & Santhanam, R. Influence of synthesis conditions on electrochemical properties of high-voltage Li1.02Ni0.5Mn1.5O4 spinel

