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ABSTRACT OF THE DISSERTATION

Energy-Aware Reliable Communication

By HAJAR MAHDAVI-DOOST

Dissertation Director:

Roy D. Yates

Emerging applications of short-range communication such as the Internet of Things

and body area networks highlight the importance of processing energy, as compared to

transmit energy. In this thesis, we investigate fundamental limits of reliable communi-

cation when receiver processing is powered by random energy sources and subject to

constraints on energy storage. We propose a receiver model that captures the trade-off

between sampling energy and decoding energy. The model relies on the decoding energy

being a decreasing function of the capacity gap between the code rate and the channel

capacity. The receiver can save energy in sampling by dropping a fraction of samples,

at the cost of reducing the effective capacity and thus increasing the energy needed

for decoding. While sampling and decoding energies are typically comparable, the key

issue is that the sampling is a real-time process; the samples must be collected during

the transmission time of that packet. Thus the energy harvesting rate and battery size

may constrain the sampling rate. This model allows us to characterize the maximum

throughput of a basic communication channel with limited processing energy. This is

done based on striking the balance between the sampling and decoding energy, subject
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to limited random arrival of energy, and limited battery size.

We further extend this result to multi-user scenarios, where multiple transmitters

communicate with a single receiver with limited energy. We introduce the concept of

receive multi-user diversity, in which the receiver decodes the messages experiencing

the strongest channels in order to reduce the decoding energy per user.

Next, we propose using hybrid automatic retransmission request (HARQ) with soft

combining to reduce the processing energy and improve the throughput under limited

receiver energy. In this protocol, the receiver keeps requesting additional redundancy

in order to increase the capacity gap, which in turn reduces the processing energy.

We compare the performance of incremental redundancy (IR) HARQ, and Repetition-

HARQ. In these systems, the decoding energy is a decreasing function of the capacity

gap but an increasing function of the code-length. The IR-HARQ protocol yields a

better capacity gap, but increases the code-length, while Repetition-HARQ offers less

improvement in the capacity gap, but does not increase the effective code-length. Thus,

contrary to systems without receiver energy constraints in which IR-HARQ always

performs better, here, depending on the system parameters, Repetition-HARQ can

outperform IR-HARQ.

Finally, we study energy efficiency and energy harvesting in LTE networks. We

formulate a single-cell downlink scheduling problem that enforces constraints on the

selection of transmission parameters. Linear cost constraints on the set of channels

are also imposed in order to accommodate energy efficiency considerations. We show

that the resulting problem is NP-hard and we propose a deterministic multiplicative-

update algorithm for which we establish an approximation guarantee. We also consider

the problem of downlink scheduling in an LTE network powered by energy harvesting

devices. We formulate optimization problems that seek to maximize two popular energy

efficiency metrics subject to LTE network constraints and energy harvesting causality

constraints. We focus on a key sub-problem and show that this problem is NP-hard.

Then we reformulate it as a constrained submodular set function maximization problem

which can be solved with a constant-factor approximation using a greedy algorithm.

iii



Acknowledgements

First of all, I would like to thank my advisor, Professor Roy D. Yates, for his invaluable

guidance and support, to complete my thesis. In particular, he patiently taught me to

precisely and rigorously articulate my mathematical arguments. During my years as

a graduate student, he gave me space to grow into an independent researcher, aiming

high, and not giving up. One of the most important things that I learned from Roy

is that every challenging obstacle is indeed an opportunity for an interesting research

initiative.

I would like to express my sincere gratitude to Dr. Narayan Prasad. I was fortunate

to have him as my mentor during the course of my internship in NEC Labs America.

He also continued working with me afterwards supervising the work done as part of my

thesis. During the last year, in a close and daily-basis collaboration, he shared with me

his deep and diverse knowledge on algorithm design, discrete optimization, and wireless

standards. He has been a great mentor in my research and a role model for hard work

and dedication.

I also would like to thank Professor Dipankar Raychaudhuri, Rich Howard and Rich

Martin for their thoughtful comments and discussions throughout my research and

also Ivan Seskar for his technical support and help with the resources in WINLAB. I

would like to thank Professor Athina Petropulu and Emina Soljanin for their guidance,

support, and encouragement. They are not only extraordinary researchers but also

great inspirational female role models. I am also grateful for the comments I received

from Professor Narayan Mandayam and Predrag Spasojevic on my research. I wish

to thank my colleagues in WINLAB and ECE department at Rutgers who created a

friendly and comfortable working environment. I gained great insight into my research

through several discussions I had with many of them.

iv



I would like to give special thank to my NJ friends who have been there always

for me. They made the years I spent in Ph.D. program an amazing and unforgettable

experience. I couldn’t complete this work without their help and support.

The greatest acknowledgment goes to my family, my parents and my brothers, for

their tremendous support and encouragement. In particular, I would thank my mom

and dad for their unconditional love and belief they had in me, from my early childhood.

They instilled in me a desire to learn and made sacrifices so I would have access to high

quality education to follow my dreams.

Last but not least, I would like to extend my deepest gratitude, to the love of my

life, Mohammad, for his tremendous love, patience, support, and understanding during

the course of my study. His encouragement and optimism gave me motivation and hope

through the ups and downs of my Ph.D. journey. Thank you Mohammad for standing

by my side in this journey. Without your sacrifices and supports, I wouldn’t be able to

complete this thesis. I also would like to thank my wonderful daughter, Saba, for being

such a good girl and always cheering me up. Her understanding and patience during

my graduate study was beyond my expectations. Her endless joy and passion always

gave me energy to continue my work and finally complete my thesis.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Energy Trade-off at the Receiver . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Receiver Sampling and Decoding: Power Comparisons . . . . . . . . . . 7

1.4. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Energy Harvesting Receivers: Finite Battery Capacity . . . . . . . . 11

2.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1. Energy Harvesting Model . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2. Variable-Timing Transmission . . . . . . . . . . . . . . . . . . . . 13

2.1.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4. Preliminaries: Chernoff Hoeffding Inequality . . . . . . . . . . . 15

2.2. Achievability: Deterministic Energy Arrivals . . . . . . . . . . . . . . . . 16

2.2.1. Low Harvesting Rate . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2. High Harvesting Rate . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3. Achievability: Random Energy Arrivals . . . . . . . . . . . . . . . . . . 20

2.3.1. Low Harvesting Rate . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2. High Harvesting Rate . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4. Outerbound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



2.5. Optimum Code Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3. Energy-Harvesting Receivers in Fading Channels . . . . . . . . . . . . 47

3.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1. Energy Harvesting Model . . . . . . . . . . . . . . . . . . . . . . 49

3.2. Achievability: Channel Selective Sampling . . . . . . . . . . . . . . . . . 49

3.3. Variable Timing: Achievable Rates . . . . . . . . . . . . . . . . . . . . 53

3.4. Outerbound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4. Opportunistic Reception in a Multiuser Slow-Fading Channel with an

Energy Harvesting Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2. Single User System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1. Throughput Optimization . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2. Single User Performance/ Self-imposed Threshold . . . . . . . . 69

4.3. Multiuser System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5. Hybrid ARQ in Block-Fading Channels with an Energy Harvesting

Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2. ARQ Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Classic ARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Repetition-HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . 77

IR-HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1. Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3. Decoding Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Classic ARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Repetition-HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



IR-HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

IR-HARQ with subset selection . . . . . . . . . . . . . . . . . . . 80

5.4. Decision Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6. Energy-Aware Downlink Scheduling in LTE-Advanced Networks . . 86

6.1. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.1. Optimization framework . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.2. Backlogged traffic model . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.3. Finite queue model . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.4. Hardness result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2. A Unified Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1. Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7. Optimizing Energy Efficiency over Energy-Harvesting LTE Cellular

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.1. Practical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.2. Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2. A Constant Factor Approximation Algorithm . . . . . . . . . . . . . . . 130

7.3. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 149

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

viii



List of Figures

1.1. Number of iterations versus the sampling rate in the belief propagation

iterative algorithm in LDPC code from DVB-S.2 with block length n =

64, 800 and code rate R = 3/4 bits/s/Hz. . . . . . . . . . . . . . . . . . 4

1.2. Number of iterations versus the sampling rate in the belief propagation

iterative algorithm in an Irregular LDPC decoder based on Richardson

and Urbanke’s 2001 paper, n = 1000, R = 1/2 bits/sec/Hz. . . . . . . . 5

1.3. Normalized decoding energy f(λ) = ED(λ) for a fixed R and C as func-

tion of the sampling rate λ. The total energy per symbol of the receiver

is minimized at λ = λ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Stored energy (in µJ) in different time intervals of variable-timing trans-

mission with random energy harvesting. The intervals marked “C,” “S,”

and “D” mark when the receiver is (C)harging the battery, (S)ampling a

packet, and (D)ecoding that packet. Here Wt = 5 µJ or Wt = 1 µJ with

probability 0.1 each and Wt = 0 µJ with probability 0.8 while W̄ = 0.6

µJ . Also, β = 0.3 µJ , n = 1000 and the sampling rate λ = 0.9. . . . . . 13

2.2. Variable-timing optimum policy: Transmitted packets are labeled x1,x2, . . .

while intervals marked “C”, “S”, and “D” mark when the receiver is

(C)harging the battery, (S)ampling a packet, and (D)ecoding that packet.

The corresponding graph depicts the receiver’s stored energy. . . . . . . 16

2.3. Stored energy over the sampling interval modeled as the energy queue.

Comparing to Fig. 2.1 and Fig. 2.2, here just a single (S)ampling interval

is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4. Total energy as a function of the sampling rate when λ̂n = β+W̄+nα−1 <

λ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



2.5. Sampling rate, communicate rate and the total normalized energy versus

R (bits/s/Hz) for W̄ = 0.3µJ , β = 0.5µJ , C = 10 bits/s/Hz, n = 106. . 46

3.1. Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Variable-timing optimum policy: Transmitted packets are labeled x1,x2, . . .

while intervals marked “C,” “S,” and “D” mark when the receiver is

(C)harging the battery, (S)ampling a packet, and (D)ecoding that packet.

The corresponding graph depicts the receiver’s stored energy. . . . . . . 49

3.3. Capacity of the effective channel under channel selective sampling versus

the threshold gain in Rayleigh fading. . . . . . . . . . . . . . . . . . . . 52

3.4. Normalized decoding energy, ED(γ), versus sampling energy, ES(γ) =

Pr [G ≥ γ] for a fixed R under channel selective sampling strategy. The

total energy requirement is minimum at Minimum Energy Point. . . . . 53

3.5. The achievable rate for channel selective sampling strategy and the strat-

egy at which the sampling is optimized independently from channel with

optimum parameters in terms of the transmit power. . . . . . . . . . . . 55

4.1. Optimum threshold γ̃ and optimum throughput versus nW̄ for R = 0.3

bits/s/Hz, ν = 1.69, η = 0.42. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2. Comparing the achievable service rate of the opportunistic selection with

what suggested in (4.34), n = 106. . . . . . . . . . . . . . . . . . . . . . 70

4.3. Comparison of the number of users being served in the opportunistic and

random selection for two W̄ = 100 µJ and W̄ = 1000 µJ when R = 0.3

bits/s/Hz, ν = 1.69, η = 0.42, n = 106. . . . . . . . . . . . . . . . . . . . 71

4.4. The sum-rate versus the number of users for R = 0.3, 0.6, 0.9 bits/s/Hz

when η = 0.1, ν = 2.5× 10−4 and W̄ = 100 µJ , n = 108. . . . . . . . . . 73

5.1. Throughput versus the arrival energy rate of nW̄ for the code rate of

R = 3 bits/s/Hz, n = 106. . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2. Throughput versus the arrival energy rate of nW̄ for the code rate of

R = 0.5 bits/s/Hz, n = 106. . . . . . . . . . . . . . . . . . . . . . . . . 84

x



5.3. Throughput versus the code rate R for the energy arrival nW̄ = 0.3

J/slot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4. Throughput versus the code rate R for the energy arrival nW̄ = 2 J/slot. 85

6.1. Weighted sum rate vs number of RBs for λ = 10, θ = 10 . . . . . . . . . 112

6.2. Weighted sum rate vs number of users for λ = 10, θ = 10 . . . . . . . . 112

6.3. Comparison of weighted sum rate vs number of RBs for the case with

λ = 10 and θ = 10, and the case with the optimized λ and θ = 10 . . . . 112

7.1. A feasible allocation for a system with N = 4 RBs, L = 3 subframes per

block, K = 2 users and M = 3 modes. . . . . . . . . . . . . . . . . . . . 124

7.1. Achieved GEE versus Number of used RBs: Large Queue-sizes . . . . . 142

7.2. Achieved GEE versus Number of used RBs: Small Queue-sizes . . . . . 143

7.3. Achieved GEE versus Number of used RBs: Large Queue-sizes . . . . . 144

7.4. Achieved GEE versus Number of used RBs: Large Queue-sizes and L = 3

subframes per block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.5. Achieved GEE versus Number of used RBs: Small Queue-sizes and L = 3

subframes per block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xi



1

Chapter 1

INTRODUCTION

1.1 Overview

Energy harvesting offers the promise of unbounded lifetime extension to battery pow-

ered devices; however, the randomness of the energy source and it being limited have

introduced new challenges. Recently, there has been considerable research on communi-

cation systems that rely on energy harvesting at the transmitter; see, for example, [1–6]

for point-to-point channels and [7–13] for small networks. A survey of problem formula-

tions appears in [14]. Although circuit and processing costs have been addressed in [15]

and [16], the primary emphasis has been on the energy costs of transmission. Even in

networks with energy harvesting relays [10, 12, 13], the energy cost of receiving at the

relays is ignored. However, communication over short distances can achieve high rates

with relatively small transmit power. In this case, the energy consumption associated

with the complex detection and decoding operations of the receiver becomes the dom-

inant system constraint. Yet, with some exceptions [17], there has been little work on

the problem of energy harvesting at the receiver. Known results are technology depen-

dent; for example, practical energy consumption models of the receiver front-end have

appeared in [18, 19]. This thesis mainly addresses the problem of energy harvesting at

the receiver which is based on our publications [20–24]. Shortly after our work, some

papers appeared on optimizing the communication scheme when both transmitter and

receiver are harvesting energy. They formulate an optimization problem and solve it

using the convexity of the decoding energy in terms of the code rate [25,26]. However,

our model is beyond the model assumed in these papers in the sense that we will also

consider the sampling energy expenditure. In terms of the decoding energy, we will
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compare our model with the practical decoding schemes like LDPC codes. We also

mainly optimize the communication under a fixed code rate assumption although we

also discuss optimizing of the code rate as well.

In the context of LDPC code, the decoding energy depends on the required number

of iterations and the structure of the parity check matrix [27–31]. Based on message

passing, lower bounds on the decoding energy have been derived in [32] and, under an

alternate model, in [33].

We introduce a simple model that decomposes the processing tasks in two stages: (1)

sampling and (2) decoding. We model the sampler such that each symbol sample has a

fixed energy requirement. Thus the energy consumption of the sampler is proportional

to the sampling rate, i.e., the fraction of symbol periods in which signal samples are

collected. Since the complexity of decoding decreases with the sampling rate, we observe

an energy trade-off: we can increase the sampling rate to reduce the decoding energy

or collect fewer samples at the expense of additional decoding energy.

The common wisdom, at least among researchers studying decoders, has been that

the energy consumption of the sampler is relatively inconsequential compared to that

of the decoder. While this may be true, the primary conclusion of this work is that

the energy consumption of the sampler, even if it is small, cannot be ignored in an

energy harvesting receiver. Depending on the receiver’s finite battery capacity, the

per-symbol energy cost of the sampler, relative to the average energy harvesting rate,

impacts the reliable communication rate. The key issue is that sampling is a real-time

process. When the receiver chooses to sample a packet, the signal samples must be

collected during the transmission time of that packet. Thus, the combination of stored

battery energy and energy harvested during a slot must be sufficient to ensure the

correct sampling rate. By contrast, once the samples have been collected, the decoding

can occur offline at a processing rate (and thus energy consumption) matched to the

energy harvesting process. This observation leads us to characterize how the battery

capacity of the harvesting receiver must grow with the code block length to guarantee

reliable communication rates.
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1.2 Energy Trade-off at the Receiver

Here, we examine energy trade-off ignoring the constraints imposed by the harvesting

process or receiver battery size. The receiver must sample the packet and reliably

decode it. Due to the randomness of the energy arrivals, the receiving process may be

interrupted. This can result in only a subset of transmitted symbols being sampled. On

the other hand, a receiver may choose to sample only a subset of symbols in order to

save energy for future operations. When the code has block length n and the sampler

recovers samples of s out of n symbols, we say the sampling rate is s/n. We model

this selective sampling as an erasure channel concatenated to the original physical

channel; symbols that are not sampled are erased. According to [34], if the original

physical channel is memoryless with capacity C and the erasures are independent of

the inputs and outputs of that channel and the sampling rate converges in probability

to λ or in other words, the proportion of erasures converges in probability to 1−λ (the

erasures may have memory), then the capacity of such a channel is CH = λC. Fixing

a sufficiently long blocklength n will ensure that a codeword that is sampled at rate λ

will be decoded correctly with high probability if R < λC.

When the transmitter sends packets at rate R over a channel with capacity CH , in

various settings, the decoding energy is described through the capacity gap,

δ = 1− R

CH
. (1.1)

As an example, in Forney′s concatenated codes, decoding energy per channel use, ED,

grows exponentially with 1/δ [35], while in LDPC and Turbo codes, decoding energy

scales like (1/δ) log(1/δ) [27, 28, 30, 31, 36]. Also in polar codes, decoding energy grows

polynomially in 1/δ [37]. Decoding energy, can be viewed as an increasing function of

the code rate R that diverges as R approaches capacity [32]. It can also be viewed as

a decreasing function of the capacity for a fixed code rate R.

We assume that just λ fraction of the received symbols are sampled, the capacity
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Figure 1.1: Number of iterations versus the sampling rate in the belief propagation
iterative algorithm in LDPC code from DVB-S.2 with block length n = 64, 800 and
code rate R = 3/4 bits/s/Hz.

gap would be

δ = 1− R

λC
, (1.2)

and ED is characterized as a function of δ the same way as the literature [27–29,35–38]

suggests.

According to the decoding complexity models in [27–29, 35–38], for a fixed R and

C, the decoding energy is a convex non-increasing function of the normalized code rate

λ. To see this, we consider an AWGN channel, with a concatenated erasure channel

with erasure rate 1− λ. Fig. 1.1 plots the number of iterations of an LDPC code from

DVB-S.2 (Digital Video Broadcasting second generation) standard with n = 64, 800

and R = 3/4 bits/sec/Hz. The code is irregular with a specific structure [39]. Fig.

1.2 is based on an Irregular LDPC decoder [40], n = 1000, R = 1/2 bits/sec/Hz

and the degree distributions are optimized based on the capacity-approaching codes in

Richardson et al. [29]. We can see that in both figures, the decoding complexity is a

convex non-increasing function. Even if it is not convex, the lower convex-envelope of

that can be obtained through time sharing.

We assume ν units of energy is expended for sampling. The decoding energy per
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Figure 1.2: Number of iterations versus the sampling rate in the belief propagation
iterative algorithm in an Irregular LDPC decoder based on Richardson and Urbanke’s
2001 paper, n = 1000, R = 1/2 bits/sec/Hz.

symbol consumed by the receiver to reliably decode one packet as a function of the

sampling rate λ is denoted by ED(λ).

E = E(λ) = [νλ+ ED(λ)]. (1.3)

Due, to the convexity of ED(·), for a given R and C that there is an optimal sampling

rate λ∗ = s∗/n such that

λ∗ = arg min
R/C<λ≤1

E(λ) (1.4)

and

E∗ = νλ∗ + ED(λ∗) (1.5)

is the minimum energy per symbol period required to decode a single rate R codeword

although R is not included in the notation as we assume it is fixed. Without loss of

generality, we can assume ν = 1. Furthermore, we emphasize that although energy is

expended only on symbols that are sampled, E∗ amortizes the energy cost of sampling

over all symbols, sampled or not. We also note that constraints on the harvesting or

on the battery size may preclude the receiver from sampling at the optimal rate λ∗. If
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Figure 1.3: Normalized decoding energy f(λ) = ED(λ) for a fixed R and C as function
of the sampling rate λ. The total energy per symbol of the receiver is minimized at
λ = λ∗.

the boundary conditions are not binding, then the minimum in (1.4) occurs when

0 =
dE(λ)

dλ
= 1 +

dED(λ)

dλ
, (1.6)

implying dED(λ)/dλ|λ=λ∗ = −1. A geometric representation of this relationship is

shown in Figure 1.3. Here, the total energy consumption at each point (λ, ED(λ)) is

equal to λ+ ED(λ). So, if a 45-degree line is plotted crossing that point, it will cut the

λ-axis and ED-axis at λ + ED(λ). The convexity of ED(λ) dictates that the minimum

energy is achieved by slightly shifting this 45-degree line with slope −1 until it is tangent

to the curve. Note that the sampling rate λ cannot be below λ0 = R/C as the code

rate R needs to be under the total capacity Cλ. At λ = λ0, the gap to the capacity

goes to zero and the decoding energy goes to infinity.

We note that this model is consistent with the practical decoding models in [27–

29, 31, 35–38]. In addition, we observe that this model does impose restrictions that

preclude certain performance enhancements. For example, in a slowly varying channel,
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the receiver could exploit channel state information (CSI) to collect its symbol samples

when the channel is unusually good. Similarly, the transmitter and receiver could

coordinate transmission and reception so that a power-constrained transmitter could

use more power for those symbols that the receiver will sample. A coordinated sleep

protocol is the limiting case of this approach.

1.3 Receiver Sampling and Decoding: Power Comparisons

For receivers, one may ask whether the power consumption of the sampler or the de-

coder is dominant. Although the power consumption of each system component will

necessarily depend on circuit technology, ballpark comparisons that assume the same

circuit technology for each can be instructive. Consider first a system in which a 1 Gb/s

data stream is encoded at rate 1/2 and then modulated using a 64-QAM constellation.

In this case, 2×109/6 ≈ 333×106 complex symbols per second are transmitted over an

AWGN channel. With bandwidth B ≈ 333 MHz, effective number of bits ENOB = 10,

Vdd = 1.5V, channel length Lmin = 0.16µm, and corner frequency of the 1/f noise

fcor = 1 MHz, the ADC power formula [18,19]

PADC ≈
3V 2

ddLmin(2B + fcor)

10−0.1525ENOB+4.838
(1.7)

estimates PADC ≈ 228 mW. According to [41], PDecoder = 690 mW for the same circuit

and system characteristics. Thus, PDecoder ≈ 3PADC in this example system.

We note that the receiver could use a smaller signal constellation, but this will

increase the transmission bandwidth, which eventually increases PADC. For example, 4-

QAM modulation will raise PADC to 683 mW, which is almost the same as the decoding

power.

At lower bit rates, Table 5 in [42] compares different LDPC decoders for IEEE

802.11n applications. For example, code length 1944, 130 nm channel length, code

rate 1/2, and throughput of 250 Mb/s yields PDecoder = 76 mW. Assuming a 16-

QAM modulation, the symbol rate is 2× 250/4 = 125M complex symbols per second,

implying B ≈ 125 MHz. Again using the ADC power formula (1.7), PADC = 71 mW.
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Thus PDecoder ≈ PADC in this example.

Even though PADC in (1.7) does not include RF front-end power, these simple

comparisons suggest that the sampler and decoder have comparable energy consumption

and that a receiver energy model should include both system components. Moreover,

these simple examples highlight the need for an abstract system model that separates

the analysis of rechargeable receivers from technology-specific implementation details.

1.4 Notations

We say g(n) ∈ o(n) if

lim
n→∞

g(n)

n
= 0. (1.8)

The sequence Xn converges in probability to X, written Xn
P−→ X, if for every ε > 0,

lim
n→∞

P [|Xn −X| < ε] = 1. (1.9)

1(X) is an indicator function which is one if the expression X is true or the event

X occurs and it is zero otherwise. [X]+ is X if X ≥ 0 and it is zero otherwise. d·e and

b·c also denote the ceiling and the floor of a value, respectively.

1.5 Thesis Outline

This work examines how the limited and unreliable source of energy in energy harvest-

ing receivers constrains reliable communication. To model the harvesting receiver, we

decompose the processing tasks in two parts: first is sampling or Analog-to-Digital-

Conversion (ADC) stage which includes all RF front-end processing, and second is

decoding. While sampling and decoding energies are typically comparable, the key is-

sue is that the sampling is a real-time process; the samples must be collected during

the transmission time of that packet. Thus the energy harvesting rate and battery size

may constrain the sampling rate. In Chapter 2, we propose a system in which, for a
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given code rate, channel capacity, and battery size, the receiver can choose the sam-

pling rate to balance the sampling and decoding energy costs and the sender employs a

variable-timing codeword transmission scheme that ensures the receiver has the energy

resources needed to sample and decode each transmission. We prove the optimality of

the combined scheme in a time-invariant channel.

We extend this approach to time-varying fast-fading channels in Chapter 3, where

the knowledge of the channel state information is not available at the transmitter. In

this case, we will show that channel state knowledge at the receiver can improve the

performance of the system. We propose a channel-selective sampling strategy that

optimizes a tradeoff between the energy costs of sampling and decoding at the receiver.

Based on this tradeoff, we derive a policy maximizing the communication rate and we

characterize an energy-constrained rate region.

In a time-varying slow-fading channel, opportunistic transmission when the channel

is strong is known to yield a significant gain. A similar result appears in the context of

multiuser channels where multiuser diversity gain is achieved by serving users with the

strongest channels. In contrast, in Chapter 4, we exploit opportunistic channel selection

to reduce the processing energy at the receiver. This saving is derived by increasing the

gap between the instantaneous capacity and the code rate, which in turn reduces the

required decoding energy. The reduction in processing energy then enables the receiver

to sample and process a larger fraction of the packets. We first analyze the single-user

case, and propose a signaling scheme that achieves the optimum rate. We then extend

this result to a multiuser system.

In Chapter 5 we consider a point-to-point communication channel using Incremental

Redundancy Hybrid Automatic Repeat reQuest (IR-HARQ), with limited processing

energy. Unlike conventional cases where the processing energy is not limited, here

even if the receiver can decode a message, it may still ask the transmitter to send

extra redundant bits in order to increase the capacity gap and reduce the processing

energy. On the other hand, the extra redundant bits will increase the code length,

and may increase the processing energy. To resolve this issue, the receiver can decide

to use the extra redundant bits at the receiver, only if it reduces the overall decoding
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energy (not just increasing the capacity gap). The other approach is to use Repetition-

HARQ scheme, in which the transmitter retransmits the previous packets in response to

request for extra redundant bits. This allows the receiver to combine the packets using

Maximum Ratio Combining (MRC), and thus keep the effective code length constant.

We show that in contrast to the traditional systems, here the Repetition-HARQ could

outperform IR-HARQ.

In Chapter 6, we study energy-aware communication under LTE constraints. We

consider the problem of energy efficiency in such systems and formulate a problem sub-

ject to LTE constraints along with energy constraints. After showing the hardness of

the problem, we examine approximation algorithms. However, the classical greedy al-

gorithms do not yield a useful approximation guarantee. So, we propose a deterministic

multiplicative updates based algorithm and establish its approximation guarantee.

We will look at two energy efficiency metrics in Chapter 7 and seek to optimize

them subject to LTE constraints while assuming that the transmitter is powered by

energy harvesting devices dictating energy causality constraints. As the problem is

intractable, we seek to optimize a sub-problem and show that it can be reformulated

as a constrained submodular set function optimization problem which can be solved

approximately using greedy algorithms.

And finally, in Chapter 8, we will present our future directions. They will include

working on some extensions to multiuser channels, IR-HARQ schemes and receiver

energy optimization in LTE networks.
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Chapter 2

Energy Harvesting Receivers: Finite Battery Capacity

Harvesting receivers dictate a re-examination of traditional system models. Specifically,

receiver design choices influence system performance characteristics that are manifested

in both the channel model and the receiver energy consumption. We formulate a model

based on a physical channel, a receiver front-end sampler, and a receiver decoder such

that channel capacity and sampler energy consumption are jointly specified, indepen-

dent of the energy trade-off in the receiver between sampling and decoding.

2.1 System Model

We assume a block coding strategy such that a message
{

1, . . . , 2nR
}

is communicated

by the transmission of a codeword consisting of n uses of a channel. We will often

call a transmitted codeword a packet and refer to the transmission period of a code-

word as a slot. Slots are indexed by i = 1, 2, . . . such that the codeword transmitted

in slot i is given by the vector xi =
[
xn(i−1)+1 xn(i−1)+2 · · · , xni

]
of transmitted

symbols. When analyzing just a codeword, the transmitted code word is denoted as

x =
[
x1 x2 · · · , xn

]
with symbol periods indexed from 1 to n. The transmitter sends

out the next codeword xi+1 following an idle period of duration τi. This delay can be

chosen such that the receiver is ready to sample and decode the next packet. We call

this a variable-timing transmission strategy, in contrast to the traditional fixed-timing

transmission in which τi = 0 so that the end of one slot coincides with the start of the

next.

In any event, the receiver front-end processes a symbol or waveform input to produce

the symbols y =
[
y1 · · · yn

]
. We refer to this operation as sampling even though
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it may also incorporate demodulation, filtering and quantization. In addition, we refer

to the random mapping from x to y as a physical channel even though elements of the

sampling process in the receiver front-end contribute to this mapping. For example, in

an AWGN channel, the additive noise in the channel is amplifier noise in the receiver

front-end.

We model the energy consumption of the ADC and other RF processing elements in

the front-end as requiring ν energy units per sample. The constant ν is both technology

and application dependent. That is, in designing a receiver front-end, the sampling and

quantization of the ADC is designed to support the channel bandwidth and SNR needed

for communication at intended rates. The receiver front-end design choices are then

embodied in the channel from x to y. We refer to this as the original physical channel

and we assume it is memoryless and has single letter capacity C. As C depends on

the performance of the receiver front-end, which is coupled to the sampling energy ν,

it is useful to think of ν as fixed for a physical channel of capacity C. Without loss of

generality we assume ν = 1. That is, energy is measured in the unit of the required

energy to take one sample. We note that as the communication rate R increases,

greater precision in sampling is always preferable and often essential, and thus ν is a

nondecreasing function of the code rate R. However, for a fixed code rate, the above

model is reasonable.

2.1.1 Energy Harvesting Model

The energy provided by the environment can be described by a discrete time exogenous

stochastic process Wt of energy arrivals in each symbol period. We assume that the

energy arrival, Wt, is an i.i.d. discrete non-negative random process with PMF PWt

and mean W̄ . We assume that the energy arrives in integer multiples of the unit

sampling energy. In addition, we focus on the case W̄ < 1 for which the energy arrival

in one symbol period in average is not enough to take a sample. Moreover, we make

the technical assumption that the energy arrivals are almost surely bounded. In other

words, P [Wt ∈ [0, b]] = 1 for some b > 0. Since a harvesting device cannot harvest

energy unboundedly, this constraint is appropriate for the energy harvesting model.
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Figure 2.1: Stored energy (in µJ) in different time intervals of variable-timing trans-
mission with random energy harvesting. The intervals marked “C,” “S,” and “D” mark
when the receiver is (C)harging the battery, (S)ampling a packet, and (D)ecoding that
packet. Here Wt = 5 µJ or Wt = 1 µJ with probability 0.1 each and Wt = 0 µJ with
probability 0.8 while W̄ = 0.6 µJ . Also, β = 0.3 µJ , n = 1000 and the sampling rate
λ = 0.9.

2.1.2 Variable-Timing Transmission

We focus on variable-timing transmission in which after each packet transmission, the

transmitter waits for a predetermined time, τ(n), to transmit the next packet. The de-

pendence on the block length n is necessary since sampling a longer packet may require

more energy to be stored in the battery. Also the decoding energy grows with n as

well. During this waiting time interval, the receiver decodes the previously transmitted

packet in τd(n) time units and then, collects energy for sampling the next packet in

τc(n) time units. So, we have

τ(n) = τd(n) + τc(n). (2.1)

Note that for the ease of argument we use symbol periods as the time units.

Fig. 2.1 depicts the time intervals for charging, sampling and decoding with random

energy arrivals. The optimal decoding and charging time interval is determined by the

choice of a sampling rate striking a best tradeoff between sampling and decoding energy

in order to maximize the communication rate.

If the harvesting rate or the battery size is large enough, we have the freedom to

design a policy that samples packets at the optimal rate λ∗ as in (1.4). However,
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sampling a packet is an online process that must be completed during the transmission

of that packet. Thus the sampling rate may be constrained by the receiver energy that

is available in that transmission slot, including both the arrival energy and the stored

energy in the battery.

We note that the expected arrival energy in an n-symbol packet is nW̄ , which scales

with n. In order for the battery to support higher sampling rates, we will see that the

battery size must also scale with n. Thus, we describe an energy harvesting system by

a battery growth rate β such that we employ a battery of size B = βn when the block

length is n.

With a finite battery, the sampling rate λ∗ may not be achievable. In particular, if

λ∗ > W̄ , then harvesting alone will be insufficient to meet the energy requirements for

sampling. In this case, pre-charging the battery to βn, along with harvesting energy

nW̄ during the packet transmission will enable sampling up to rate β + W̄ . However,

if β + W̄ < λ∗, then sampling rate λ∗ will not be achievable. We define

λ̃ = min
{
λ∗, β + W̄

}
. (2.2)

It will be shown later that the sampling rate that maximizes the communication rate

will converge to λ̃ for large n.

2.1.3 Performance Metrics

Assume that the transmitter sends packets/codewords 1, . . . , N(t) by time t with code

rate R. We define the reliable communication rate as the average number of message

bits reliably communicated to the receiver per symbol period where “reliably” means

that all message bits transmitted are delivered with probability of error that goes to

zero as the block length goes to infinity. Accordingly, we define

ρn(t) =
nR

t

N(t)∑
i=1

I
(n)
i , (2.3)
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where the binary indicator I
(n)
i = 1 if the receiver reliably decodes the n-symbol packet

i. For the overall average communication rate, we define

ρ = lim
n→∞

lim
t→∞

ρn(t). (2.4)

We seek to find the maximum reliable communication rate, over all feasible policies.

2.1.4 Preliminaries: Chernoff Hoeffding Inequality

Taking S samples in n channel uses, a sampling rate of λ is said to be achievable if

lim
n→∞

P
[
S/n < λ− nα−1

]
= 0, for some α < 1. (2.5)

According to Hoeffding’s inequality [43], for a set of m independent random variables

{X1, . . . , Xm}, such that P [Xi ∈ [0, b]] = 1 we have

P

[∣∣∣∣∣
m∑
i=1

Xi ≤ E

[
m∑
i=1

Xi

]∣∣∣∣∣ > d

]
≤ 2 exp

(−2d2

mb2

)
. (2.6)

We usually employ the Chernoff-Hoeffding in the following format. For m = n i.i.d.

energy arrivals such that P [Wt ∈ [0, b]] = 1,

P

[
n∑
t=1

Wt ≤ nW̄ − d
]
≤ exp

(
−2d2

nb2

)
. (2.7)

Note that we will often choose d as a function of n such that limn→∞ d/n → 0 while

limn→∞ d2/n→∞ as in the following lemma for which d = nα for some α ∈ (1/2, 1).

Lemma 2.1 Let τ(n) =
⌈
nÊ/W̄

⌉
. For 1/2 < α < 1,

P

τ(n)∑
t=1

Wt ≤ nÊ − nα
 ≤ exp

(
− 2n2α−1

b2(Ê/W̄ + 1/n)

)
.

Throughout the rest of this work, b > 0 and α ∈ (1/2, 1) are fixed parameters.
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Figure 2.2: Variable-timing optimum policy: Transmitted packets are labeled x1,x2, . . .
while intervals marked “C”, “S”, and “D” mark when the receiver is (C)harging the
battery, (S)ampling a packet, and (D)ecoding that packet. The corresponding graph
depicts the receiver’s stored energy.

2.2 Achievability: Deterministic Energy Arrivals

When the arrival energy is limited, and especially when the battery size is bounded, the

communication rate depends directly on the receiver energy policy. We now describe the

charging, sampling and decoding cycle associated with a variable-timing transmission

with sampling rate λ. Following [20], we outline the approach for a deterministic energy

arrival process in which the energy arrival in any symbol period t is Wt = W̄ for all t.

We will first analyze the problem under the assumption of λ > W̄ , i.e., the deterministic

energy arrival rate does not support the intended sampling rate, and then we will go

through the case λ ≤ W̄ where the sampling can be supported by the energy arrival

rate. Note that, λ ≤ λmax = min{β + W̄ , 1} always holds. Consideration of stochastic

energy arrivals is deferred to Section 2.3.

2.2.1 Low Harvesting Rate

When W̄ < λ, the arrival energy is not large enough to support the sampling. So the

receiver needs to pre-charge the battery before the transmission starts. This is due to

the fact that sampling is real-time process and as the samples arrive, the sampler need

to take them and this process cannot be deferred to a later time when enough energy

is available. Variable-timing provides the flexibility to send the next packet when the

receiver is ready. As depicted in Fig. 2.2, the transmitter sends packet xi following

an idle period of duration τi−1 that enables the receiver to decode packet xi−1 and

pre-charge the battery for sampling packet xi. Specifically, as shown in the figure, the
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receiver starts by collecting energy n(λ − W̄ ) in time τ0. Next, the transmitter sends

packet x1 in slot 1 and the receiver samples this packet while also harvesting energy at

rate W̄ . However, sampling the packet drains the receiver battery such that the battery

is empty at the end of the slot. What follows is a decoding period in which the receiver

decodes the sampled packet. The receiver stores no energy in this interval because the

decoder is run on a “pay as you go” basis; the decoder runs at a speed such that its

energy consumption is matched to the energy harvesting rate W̄ . When decoding of

packet x1 is completed, the receiver stores energy at rate W̄ in preparation for sampling

the next packet. This process of sampling and decoding each packet and pre-charging

the battery for sampling the next packet is repeated for each packet. Assuming that

all packets are sampled at rate λ, the time required for decoding and pre-charging is

the same for all packets (except for the first and last packet).

Denoting the time interval needed for decoding and pre-charging by τd(n) and τc(n),

respectively, since energy nED(λ) is collected for decoding the previous packet, we have

τd(n) =

⌈
nED(λ)

W̄

⌉
. (2.8)

Then, energy n(λ − W̄ ) is harvested to pre-charge the battery prior to sampling the

next packet. When this stored energy is added to the energy nW̄ that is harvested

while sampling, the receiver will have sufficient energy to sample at rate λ. Thus,

τc(n) =

⌈
n(λ− W̄ )

W̄

⌉
. (2.9)

Then, the total time between transmissions i− 1 and i is

τi(n) = τ(n) = τd(n) + τc(n)

=

⌈
nED(λ)

W̄

⌉
+

⌈
n(λ− W̄ )

W̄

⌉
<
nED(λ) + n(λ− W̄ )

W̄
+ 2. (2.10)

And, τ0(n) = τc(n) and τL(n) = τd(n).
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Assume in a [1, T ] time interval, N(T ) = L packets are transmitted. Assume that

using the above algorithm, the receiver decodes all L packets. So, according to (2.3),

and having I
(n)
i = 1 for all packets given that τ(n) is chosen appropriately, we have

ρn(T ) =
nR

T

N(T )∑
i=1

I
(n)
i =

nRL

T
. (2.11)

Since this requires time

T = Ln+
L∑
i=0

τi = Ln+ Lτ(n), (2.12)

the throughput is

ρn(T ) =
nRL

Ln+ Lτ(n)
=

nR

n+ τ(n)
= ρn. (2.13)

Applying (3.19) to (2.13) and taking n to infinity, we have

ρ = lim
n→∞

ρn ≥
(

W̄

ED(λ) + λ

)
R. (2.14)

2.2.2 High Harvesting Rate

When W̄ ≥ λ,, the sampling rate can be supported by the energy arrival and no pre-

charging is required. That is, the sampling is finished early along the transmission at

time τs(n) < n and the rest of the transmitted symbols are ignored. We have

τs(n) =

⌈
nλ

W̄

⌉
. (2.15)

At time τs, the receiver has zero stored energy since all harvested energy was used for

sampling. Decoding starts immediately after τs and it takes τd(n) time units as given

by (2.8). If τs(n) + τd(n) ≤ n, no extra time is needed for decoding and the rate R is

not reduced by the process of energy harvesting. Otherwise, time τs(n) + τd(n) − n is
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needed for decoding. So, the time gap is

τ(n) = [τs(n) + τd(n)− n]+

=

[⌈
nλ

W̄

⌉
+

⌈
nED(λ)

W̄

⌉
− n

]+

≤
[
nλ∗ + nED(λ)

W̄
+ 2− n

]+

. (2.16)

Substituting (2.16) in (2.13), the communication rate in (2.11) is lower bounded as

ρ ≥ Rmin{1, W̄

ED(λ) + λ
}. (2.17)

Equation (2.14) and (2.17) suggest that to maximize the communication rate, we

need to choose λ to minimize the total required energy λ + ED(λ). According to Fig.

1.3 , we can see that if there is no bound on the battery size, this minimum will happen

at the sampling rate λ∗. However, when the battery is limited, the sampling rate λ∗

may not be achievable and β+ W̄ yields the minimum energy. Thus, the sampling rate

at which the energy requirement is minimum is

λ̃ = min {λ∗, β + W̄}, (2.18)

and then the total minimum energy would be

Ẽ = ED(λ̃) + λ̃. (2.19)

Thus, the maximum achievable rate is

ρ = Rmin{1, W̄
Ẽ
}. (2.20)

In general, we must consider the following possibilities:

• ED(λ∗) + λ∗ ≤ W̄ : No extra time is required for pre-charging and decoding. The

sampling at rate λ∗ and decoding is done before the packet transmission time is

over; the achievable throughput is R.
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• λ∗ ≤ W̄ : Setting the sampling rate at λ∗ to minimize the energy, no pre-charging

the battery is needed for sampling as enough energy arrives in each symbol period.

• W̄ < λ∗ < β + W̄ : The energy collected in one block is not enough to sample

at rate λ∗. However, the battery has enough capacity to store such energy. This

implies that some time should be spent before sampling to collect energy required

for sampling at rate λ∗.

• β + W̄ < λ∗: Not only is the energy collected in one slot insufficient for sampling

at rate λ∗, the battery is also not big enough to enable sampling at this rate. By

fully charging the battery prior to sampling, the largest possible sampling rate is

β + W̄ . In this case, the convexity of the decoding energy function, as shown in

Fig. 1.3, dictates that the minimum total energy occurs at the maximum sampling

rate. Therefore, to maximize the communication rate, we should set the sampling

rate at β + W̄ .

As a result, the following theorem is concluded.

Theorem 2.1 A variable-timing transmission system with packets encoded at rate R

while the receiver is harvesting energy deterministically at rate W̄ can achieve the com-

munication rate

ρ = Rmin{1, W̄
Ẽ
}.

In the sequel, we show that Theorem 2.1 holds when the energy arrival process Wt

is an i.i.d. random process with E[Wt] = W̄ . With a stochastic energy arrival process,

the time required to pre-charge the battery, the number of symbol samples collected,

and the time required to harvest the energy to run the decoder may all be random.

However, as the block length n grows, the law of large numbers will prevail and these

variations will be relatively insignificant.

2.3 Achievability: Random Energy Arrivals

In the stochastic case, we verify Theorem 2.1 in three steps:
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• Starting from an empty battery, we first charge the battery such that the battery

reaches the target level nµ such that

µ = min
{[
λ∗ − W̄

]+
, β
}
. (2.21)

This requires charging the battery for time

τc(n) =
⌈nµ
W̄

⌉
. (2.22)

We note that if λ∗ < W̄ , then no pre-charging is required.

• With the battery charged, sampling of the next transmitted packet occurs at the

optimal rate λ̃.

• Finally, decoding is done while energy harvesting continues. When λ∗ > W̄ , the

sampling is in progress until the end of the slot and decoding starts after the

packet transmission time is over. The decoding time is set to

τd(n) =

⌈
nED(λ̃) + nα

W̄

⌉
. (2.23)

However, when λ∗ ≤ W̄ , the sampling is done early in the middle of the packet

transmission and it is not efficient to wait until the end of the slot to start de-

coding. In this case, the decoding is started immediately after the samples are

taken.

In the following subsections, we describe these three steps when λ∗ > W̄ . We will

explain the other case in Section 2.3.2.

2.3.1 Low Harvesting Rate

We first analyze the problem assuming W̄ < λ∗.
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Pre-charging the battery

Here, charging the battery for time τc(n) implies that we harvest energy

U0 =

τc(n)∑
t=1

Wt. (2.24)

The concentration inequality in Lemma 2.1 yields

P [U0 ≤ nµ− nα] ≤ exp

[
− 2n2α−1

b2(µ/W̄ + 1/n)

]
. (2.25)

That is, for large n, the initial battery storage is asymptotically close to nµ with high

probability.

Packet Sampling

Starting the sampling period with energy U0, the stored energy at the start of symbol

period t is denoted by Ut−1. The energy Wt−1 harvested in symbol period t − 1 is

available for sampling symbol t. If Ut−1 +Wt−1 ≥ 1, then the symbol t is sampled. The

stored energy at time t is

Ut = min
{
nβ, [Ut−1 +Wt−1 − 1]+

}
. (2.26)

During the sampling interval, harvested energy is used only for sampling; each sample

requires one unit of energy. Thus, by energy conservation, the number of samples

collected is

S = U0 +

n−1∑
t=1

Wt − V − Un, (2.27)

where V denotes the energy that is discarded over the sampling period because the

battery is full and Un is the extra energy left in the battery at the end of the time slot.

We now prove that the sampling rate λ̃ in (2.18) is achievable. Fig. 2.3 shows a

sample path of the stored energy, Ut over a sampling interval. According to this figure,

the arrival energy Wt > 0, can be viewed as a job with service time Wt arriving at an
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n

Ut
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Busy

Y0 Y1

BusyIdle

0

YK

. . .

Figure 2.3: Stored energy over the sampling interval modeled as the energy queue.
Comparing to Fig. 2.1 and Fig. 2.2, here just a single (S)ampling interval is shown.

energy queue at time t. The queue service time distribution associated with this job is

given by PWt|Wt>0. As the energy arrivals are i.i.d., the inter-arrival time between two

consecutive job arrivals is a geometric random variable with expected value 1/P [W > 0].

Thus the “jobs” are arriving as a memoryless random process and the energy queue is

considered as discrete-time M/G/1.

We observe that excess energy due to limited battery is discarded only during busy

periods in which Ut ≥ 1. The busy period i starts at time ti if Uti ≥ 1 while Uti−1 = 0.

This busy period is over the first time t > ti such that Ut = 0.

We assume that there areK+1 busy periods 0, 1, . . . ,K over a time slot. Busy period

0 starts with energy U0. Busy periods i, i = 1, 2, . . . ,K start from zero initial energy.

We use Vi and Yi to denote the energy discarded in busy period i and the length of busy

period i, respectively. Assuming that the sampling continues indefinitely, V1, V2, . . . are

i.i.d.. Note however that if Un ≥ 1, the packet ends while the busy period K is still in

progress. In this case, we assume a model such that energy arrival, energy harvesting

and sampling continue to the end of the busy period past time n while the samples

taken after time n are ignored. Under this model, the energy V discarded during the

block satisfies

V =

K−1∑
i=0

Vi + V ′K ≤
K∑
i=0

Vi, (2.28)
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where V ′K is the energy loss in busy period K by time n due to the limited battery.

Achievable Sampling Rate

According to (2.27), there are two components of energy loss. First is the residual

energy in the battery at time n, Un which is upper bounded by YK . We will show

that this energy is negligible. The second component of energy waste is the new arrival

energy that is discarded because the battery is full. We will show that this is also

negligible.

To show the former, we note that knowledge that K = k can influence the condi-

tional distribution of V1, . . . , Vk. Specifically, when K is large the busy periods are short

and the likelihood of energy loss is small. In addition, the length of a busy period with

unbounded battery is an upper bound to YK . Using these facts, we prove the following

lemma.

Lemma 2.2

E[Yi] ≤
E[W |W > 0]

1− W̄ , i = 1, 2, ...,K − 1

and

E[YK ] ≤ ηW ≡
E
[
W 2|W > 0

]
(1− W̄ )2 E[W |W > 0]

.

Proof:

Assume that a sample point Θ in the sample space of the energy arrivals maps into

a sequence of energy arrivals {wt}. Then {uit} is the sample path of the stored energy

(starting from zero energy) in busy period i and yi is the length of this busy period

while sampling is done when the battery energy is at least one unit. Assume that {ũit}

is the sequence of the stored energy corresponding to the same sample point Θ starting

from zero energy when the battery is unconstrained. ỹi is also the length of the busy

period corresponding to {ũit}. Assume at t1, uit and ũit hit B. Note that uit = ũit for

t ≤ t1 as both sequences start from zero energy and experience the same energy arrival

while sampling in every symbol period. But after t1, ũt may get larger than ut if the
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arrival energy is larger than 1. From that point on, ũit is never less than uit. So,

 ũit = uit, t ≤ t1
ũit ≥ uit, t > t1.

(2.29)

So, (2.29) implies that ũit crosses zero no earlier than uit, so

yi ≤ ỹi. (2.30)

As this is true for all sample paths Θ in sample space, so we have

E[Yi] ≤ E
[
Ỹi

]
. (2.31)

According to [44], the mean of the busy period Ỹ for an M/G/1 queue starting from a

zero queue when there is no limit on the size of the queue (unbounded battery) is

E
[
Ỹi

]
=

E[W |W > 0]

1− W̄ . (2.32)

So, (2.31) and (2.32) imply

E[Yi] ≤
E[W |W > 0]

1− W̄ , i = 1, 2, ...,K − 1. (2.33)

Note that E[Yi] is limited and doesn’t grow with n. We use Y and Ỹ as the random

variables identical to Yi and Ỹi, i = 1, 2, . . .K respectively.

On the other hand, as the block is terminated in the busy period K, the random

incidence effect suggests that the length of this busy period be larger than the other

ones, therefore, according to Section 2.13 in [45],

fỸK (ỹ) =
ỹfỹ(ỹ)

E
[
Ỹ
] , (2.34)

where the coefficient 1/E
[
Ỹ
]

is derived from the fact that the pdf must integrate to 1.
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Then, taking the expectation of ỸK yields

E
[
ỸK

]
=

E
[
Ỹ 2
]

E
[
Ỹ
] . (2.35)

According to Section 5.8 in [44], where different moments of the busy period of an

M/G/1 queue are derived using the Laplace transform, we have

E
[
Ỹ 2
]

=
E
[
W 2|W > 0

]
(1− W̄ )3

. (2.36)

It follows from (2.32), (2.35) and (2.36) that

E
[
ỸK

]
=

E
[
W 2|W > 0

]
(1− W̄ )2E[W |W > 0]

. (2.37)

Thus the claim follows (2.31) and (2.37). 2

Using the Markov inequality,

P [YK ≥ nα] ≤ ηW
nα

(2.38)

Obviously, as Un ≤ YK , we have

P [Un ≥ nα] ≤ ηW
nα

. (2.39)

Thus, the leftover energy in the battery at the end of the block, is not arbitrarily

large with a high probability. Now, we show that the energy loss V due to the limited

battery is not significant. Assume the Moment Generating Function (MGF) of W ,

which is defined as gW (r) = E[exp(rW )], exists (i.e., is finite) in an interval (r−, r+),

such that r− < 0 and r+ > 0. Defining X = W − 1, we define the semi-invariant

MGF [46] of X as

γX(r) , ln gX(r) = lnE[exp(rX)] (2.40)

Recalling that we have assumed W̄ < 1, it follows that E[X] < 0.
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Lemma 2.3 There exists r∗ > 0 where γX(r∗) = 0 such that for some h(n)

P [V0 > 0|U0 = nβ − h(n) ≥ 0] ≤ exp(−r∗h(n)).

Proof: Here, we focus on the first busy period. Defining Xt = Wt−1, assuming that

during a busy period the samples are taken, we have the following iterative relationship

for the stored energy at the battery at the end of symbol period t

Ut = max{Ut−1 +Xt−1, 0}. (2.41)

Assuming the first busy period ends at time t1, it follows

P [Ut ≥ B] ≥ P [V0 > 0] ∀t ∈ [0, t1] (2.42)

So, it is sufficient to derive the probability of Ut hitting B while the stored energy starts

from the energy level U0. Note that we assume W0 = 0 so, X0 = −1. We have

Ut = max{Ut−1 +Xt−1, 0}

= max{Ut−2 +Xt−2 +Xt−1, Xt−1, 0}

...

= max{(X0 + ...Xt−1 +Xt−1), (X1 + ...Xt−2 +Xt−1), . . . , (Xt−2 +Xt−1), Xt−1, 0}.

(2.43)

So for some a,

P [Ut ≥ a]

= P [max{(X0 + ...+Xt−2 +Xt−1), . . . , (Xt−2 +Xt−1), Xt−1, 0} ≥ a] . (2.44)

This probability is equal to the probability that a random walk based on Xt crosses a

by the trial t. According to [46], it can be shown that (2.44) implies that

P [Ut ≥ a] ≤ P [Ut+1 ≥ a]
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And since this sequence is increasing and it can not exceed 1, it has a limit when t→∞

which is denoted as P [U ≥ a].

We are interested to know the probability of Ut crossing B for the first time before

crossing 0. Given U0 = B−h(n), this is equivalent to the event that Ût = Ut−B+h(n),

for some h(n), crosses h(n) before crossing h(n) − B. As E[X] < 0, according to

Corollary 9.4.1 in [46], the Wald’s identity for two thresholds will result in the following

exponential bound

P [UJ ≥ B] = P
[
ÛJ ≥ h(n)

]
≤ exp(−r∗h(n)), (2.45)

where r∗ is chosen such that γ(r∗) = 0, while γ(r) = γX(r) = lnE[exp(rX)] (semi-

invariant MGF). To prove that such an r∗ > 0 exists, we define gX(r) = E[exp(rX)].

Then, we have

gX(r) = E[exp(rX)] (2.46a)

dgX(r)

dr
= g′X(r) = E[X exp(rX)] (2.46b)

d2gX(r)

dr2
= g′′X(r) = E

[
X2 exp(rX)

]
. (2.46c)

Also, as γX(r) = ln gX(r),

γ′X(r) =
E[X exp (rX)]

E[exp (rX)]
=
g′X(r)

gX(r)
, (2.47)

so,

γ′X(0) = E[X] < 0, (2.48)

and

γ′′(r) =
E
[
X2 exp (rX)

]
E[exp (rX)]− (E[X exp (rX)])2

(E[exp (rX)])2

=
g′′X(r)gX(r)− g′X(r)2

gX(r)2 . (2.49)



29

On the other hand, according to exercise 1.26 in [46], if the MGF of W exists on

I(W ), the MGF of X = W − 1 also exists on that interval. Also, it can be seen that

g′′X−c(r) ≥ 0. As suggested in that exercise, choosing c = g′X(r)/gX(r) will result in

g′′X(r)gX(r) − g′X(r)2 ≥ 0. It then follows from (2.49) that γ′′X(r) ≥ 0. So γX(r) is

convex in (r−, r+) and considering (2.48) and γX(0) = 0, we conclude that γX(r) cuts

the r-axis in the positive region. Therefore, such an r∗ > 0 as in (2.45) exists. 2

If limn→∞ h(n) = ∞, then as n → ∞ the above probability goes to zero. As a

result, in order to avoid energy loss in busy period zero, the pre-charging interval is set

such that limn→∞ h(n) =∞.

Lemma 2.3 can easily be extended to other busy periods. Knowing that other busy

periods start from zero stored energy, that is h(n) = nβ, the following corollary holds.

Corollary 2.1 There exists r∗ > 0 satisfying γX(r∗) = 0 such that

P [Vi > 0] ≤ exp(−nβr∗) ∀i ≥ 1.

Lemma 2.4 For random variables A1, A2, . . . , Am

P

[
m∑
i=1

Ai ≤ 0

]
≤

m∑
i=1

P [Ai ≤ 0].

Proof: It is easy to see this for two random variables A1 and A2. We have

{A1 +A2 ≤ 0} ⊆ {A1 ≤ 0} ∪ {A2 ≤ 0}, (2.50)

then

P [A1 +A2 ≤ 0] ≤ P [A1 ≤ 0 ∪A2 ≤ 0] ,

≤ P [A1 ≤ 0] + P [A2 ≤ 0] (2.51)

where here we used the general union bound. The same is proved form random variables

using induction. 2

Now using Lemma 2.2, Lemma 2.3, Lemma 2.4, and Corollary 2.1, we prove the
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following theorem.

Theorem 2.2 If λ∗ > W̄ ,

P
[
S/n < λ̃− 2nα−1|U0 = nµ− nα

]
≤ ε(n),

where ε(n) = exp(−r∗h(n)) + n exp(−nβr∗) + 2n−αηW + exp

(
−2(nα/2− W̄ )2

(n− 1)b2

)
while

h(n) = nα if λ∗ ≥ W̄ + β and h(n) = nβ − nλ∗ + nW̄ + nα otherwise. Note that

limn→∞ ε(n) = 0 in both cases.

Proof: Using (2.27) and (2.28), the number of samples S satisfies

S ≥ U0 +

n−1∑
t=1

Wt −
K∑
i=0

Vi − Un. (2.52)

This implies

P
[
S/n < λ̃− 2nα−1|U0 = nµ− nα

]
≤ P

[
U0 +

n−1∑
t=1

Wt −
K∑
i=0

Vi − Un < nλ̃− 2nα|U0 = nµ− nα
]

= P

[
nmin{λ∗ − W̄ , β} − nα +

n−1∑
t=1

Wt −
K∑
i=0

Vi − Un < nmin{β + W̄ , λ∗} − 2nα

]
.

If λ∗ − W̄ ≥ β, then U0 = nβ − nα and λ̃ = β + W̄ . The above expression then

reduces to

P
[
S/n < λ̃− 2nα−1|U0 = nµ− nα

]
≤ P

[
nβ − nα +

n−1∑
t=1

Wt −
K∑
i=0

Vi − Un < nβ + nW̄ − 2nα

]

= P

[
n−1∑
t=1

Wt −
K∑
i=0

Vi − Un < nW̄ − nα
]
. (2.53)
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Since K ≤ n, we have

K∑
i=1

Vi ≤
n∑
i=1

Vi, (2.54)

Eq. (2.53) is equivalent to

P
[
S/n < λ̃− 2nα−1|U0 = nµ− nα

]
≤ P

[
n−1∑
t=1

Wt − V0 −
n∑
i=1

Vi − Un < nW̄ − nα
]
.

(2.55)

We define the random variables Ai, i = 0, 1, . . . , n+ 2 as

A0 = −V0 (2.56a)

Ai = −Vi, i = 1, 2, . . . , n (2.56b)

An+1 = −Un + nα/2 (2.56c)

An+2 =
n−1∑
t=1

Wt − (n− 1)W̄ + nα/2− W̄ . (2.56d)

Following Lemma 2.3, we choose h(n) = nα, 1/2 < α < 1. So, we have

P [A0 < 0] = P [V0 > 0] ≤ exp(−nαr∗). (2.57)

where the upper bound goes to zero as n→∞. For the consequent busy periods, i ≥ 1,

following Corollary 2.1,

P [Ai < 0] = P [Vi > 0] ≤ exp(−nr∗β), i = 1, 2, . . . ,K. (2.58)



32

Then, (2.55) is equivalent to

P
[
S/n < λ̃− 2nα−1|U0 = nµ− nα

]
≤ P [A0 +A1 + . . . An+2 < 0] (2.59)

(a)

≤ P [A0 < 0] +

n∑
i=1

P [Ai < 0] + P [An+1 ≤ 0] + P [An+2 ≤ 0] (2.60)

≤ ε(n). (2.61)

Note that we have used Lemma 2.4 in (a). P [An+1 ≤ 0] and P [An+2 ≤ 0] are also upper

bounded using (2.39) and (2.7), respectively. Note that the bound, ε(n), goes to zero

as n goes to infinity.

If β > λ∗ − W̄ , then U0 = nλ∗ − nW̄ − nα and λ̃ = λ∗. Then,

P
[
S/n < λ̃− 2nα−1|U0 = nµ− nα

]
≤ P

[
nλ∗ − nW̄ − nα +

n−1∑
t=1

Wt −
K∑
i=0

Vi − Un < nλ∗ − 2nα

]
(2.62a)

= P

[
n−1∑
t=1

Wt −
K∑
i=0

Vi − Un < nW̄ − nα
]
, (2.62b)

which is the same expression as (2.53). Note that in this case, h(n) = nβ−nλ∗+nW̄ +

nα. Therefore, according to Lemma 2.3 we have

P [V0 > 0] ≤ exp(−r∗h(n)), (2.63)

where as limn→∞ h(n) = ∞, the above probability goes to zero for large n. Following

the same steps as in (2.60) through (2.61), the claim is proved in this case as well.

2
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Achievable Communication Rate

Choosing the decoding time interval, τd(n) as in (2.23) ensures that ED(λ̃) energy arrives

in this time interval with high probability. Using Lemma 2.1,

P

τd(n)−1∑
t=1

Wt ≤ nED(λ̃)

 ≤ exp

(
− 2n2α−1

b2((ED(λ̃) + nα−1)/W̄ + 1/n)

)
. (2.64)

We assume that a packet is decoded if the sampling rate λ̃ is achieved but is dis-

carded otherwise. Decoding cannot be done partially and it needs to be done fully after

sampling. The decoding is completed only if after τd symbol periods, at least nED(λ̃)

energy units are harvested. Otherwise, the packet is discarded.

In general, failure in decoding packet i can be due to an insufficient number of

samples or insufficient energy for decoding. Insufficient samples can be caused by low

energy in the charging period such that the accumulated energy over the τc interval

is not enough to achieve λ̃. It also can be the result of low energy arrival during the

sampling period; here, the initial energy may be enough but still insufficient energy

arrival during the transmission may lower the sampling rate.

P
[
S < nλ̃− 2nα

]
=P

[
S ≤ nλ̃− 2nα|U0 ≥ nµ− nα

]
P [U0 ≥ nµ− nα]

+ P
[
S < nλ̃− 2nα|U0 < nµ− nα

]
P [U0 < nµ− nα] (2.65a)

≤ P
[
S < nλ̃− 2nα|U0 = nµ− nα

]
+ P [U0 < nµ− nα] (2.65b)

≤ ε(n) + exp

[
− 2n2α−1

b2(µ/W̄ + 1/n)

]
, (2.65c)

where ε(n) is defined in Theorem 2.2. P [U0 ≥ nµ− nα] and P
[
S < nλ̃− 2nα|U0 < nµ

]
in (2.65a) are both upper bounded by 1. Note that P

[
S ≤ nλ̃− 2nα|U0 ≥ nµ− nα

]
is

also upper bounded by P
[
S ≤ nλ̃− 2nα|U0 = nµ− nα

]
. That is, as the initial stored

energy goes up, the probability of taking samples less than a threshold goes down. Eq.

(2.65b) follows from the upper bounds in Theorem 2.2 and (2.25) respectively. The
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probability that packet i fails to be decoded satisfies

P
[
I

(n)
i = 0

]
= P

[
{S < nλ̃− 2nα} ∪ {

τd−1∑
t=1

Wt < nED(λ̃)}
]

(2.66a)

≤ P
[
S < nλ̃− 2nα

]
+ P

[
τd−1∑
t=1

Wt ≤ nED(λ̃)

]
(2.66b)

≤ ε(n) + exp

[
− 2n2α−1

b2(µ/W̄ + 1/n)

]
+ exp

(
− 2n2α−1

b2((ED(λ̃) + nα−1)/W̄ + 1/n)

)
, (2.66c)

where (2.66b) follows from the union bound and (2.66c) follows from the upper bound

(2.65c) and (2.64). As a result,

lim
n→∞

P
[
I

(n)
i = 1

]
= 1. (2.67)

We assume that each episode of pre-charging, sampling and decoding starts with

zero energy at the battery to facilitate the analysis. In particular, if there is any energy

left from previous episode it is discarded. As a result, a renewal occurs at the start of

each episode.

According to (2.3), the communication rate is

ρn = lim
t→∞

ρn(t)

= lim
t→∞

nR

t

N(t)∑
i=1

I
(n)
i

=

(
lim
t→∞

nRN(t)

t

) lim
t→∞

1

N(t)

N(t)∑
i=1

I
(n)
i

 . (2.68)

Since N(t) =

⌊
t

n+ τ(n)

⌋
,

lim
t→∞

N(t)

t
=

1

n+ τ(n)
. (2.69)

In addition, since limt→∞N(t) = ∞ and the I
(n)
i are i.i.d., the law of large numbers
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implies

lim
t→∞

1

N(t)

N(t)∑
i=1

I
(n)
i = P

[
I

(n)
i = 1

]
. (2.70)

Then,

ρn =

(
nR

n+ τ(n)

)
P
[
I

(n)
i = 1

]
. (2.71)

We have

τ(n) = τc(n) + τd(n)

=
⌈nµ
W̄

⌉
+

⌈
nED(λ̃) + nα

W̄

⌉

<
n

W̄
(min{λ∗ − W̄ , β}+ ED(λ̃) + nα/n) + 2

=
n

W̄
(λ̃− W̄ + ED(λ̃) + nα/n) + 2. (2.72)

Recalling that Ẽ = λ̃+ ED(λ̃),

lim
n→∞

n

n+ τ(n)
≥ W̄

λ̃+ ED(λ̃)
=
W̄

Ẽ
. (2.73)

The communication rate would be

ρ = lim
n→∞

ρn = lim
n→∞

nRP
[
I

(n)
i = 1

]
n+ τ(n)

(2.74a)

= R

(
lim
n→∞

n

n+ τ(n)

)(
lim
n→∞

P
[
I

(n)
i = 1

])
(2.74b)

≥ RW̄

Ẽ
, wp1. (2.74c)

Note that the first parentheses in (2.74b) is lower bounded using (2.73) and the second

parentheses limn→∞ P
[
I

(n)
i = 1

]
= 1 using (2.66c).
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2.3.2 High Harvesting Rate

When λ∗ ≤ W̄ , no pre-charging period is required. As the sampling rate is small

compared to the arrival energy, the sampling is finished before the packet transmission

is over. Note that since λ∗ ≤ W̄ , then λ∗ ≤ W̄ + β, so λ̃ = λ∗. It will be shown that

if sampling is done by time τs =
⌈
nλ∗/W̄

⌉
, the sampling rate will converge to λ∗ in

probability.

Lemma 2.5 If λ∗ ≤ W̄ , and the sampling is stopped at time τs,

lim
n→∞

P
[
S/n < λ∗ − nα−1

]
= 0.

Proof: For the number of samples taken from a packet we have

S ≥
τs−1∑
t=1

Wt −
Ks∑
i=1

Vi − Uτs , (2.75)

where Ks is the number of busy periods in [1, τs] and Vi is the energy discarded in busy

period i due to limited battery. Uτs is the stored energy in the battery at time τs. Then,

P
[
S/n < λ∗ − nα−1

]
≤ P

[
τs−1∑
t=1

Wt −
Ks∑
i=1

Vi − Uτs < nλ∗ − nα
]

≤ P

[
τs−1∑
t=1

Wt −
τs∑
i=1

Vi − Uτs < (

⌈
nλ∗

W̄

⌉
− 1)W̄ + W̄ − nα

]
, (2.76)

where nλ∗ is upper bounded by W̄
⌈
nλ∗
W̄

⌉
. Also, we used the fact that τs ≥ Ks. Similar

to what we did in the proof of Theorem 2.2, we define the random variables Ai, i =

1, . . . , τs + 2, as

Ai = −Vi, i = 1, 2, . . . , τs (2.77a)

Aτs+1 = −Uτs + nα/2 (2.77b)

Aτs+2 =

τs−1∑
t=1

Wt − (τs − 1)W̄ + nα/2− W̄ . (2.77c)
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Following the same steps as in (2.60) through (2.61),

P
[
S/n < λ∗ − nα−1

]
≤ (

nλ∗

W̄
+ 1) exp(−nβr∗) +

n−αηW
2

+ exp

(
−2(nα/2− W̄ )2

(nλ∗/W̄ )b2

)
,

which goes to zero as n→∞.

2

Decoding is started at time τs + 1 for τd time units as defined in (2.23). If W̄ ≤

λ∗ + ED(λ∗), then

n ≤ nλ∗

W̄
+
nED(λ∗)
W̄

≤ τs + τd. (2.78)

Thus, τs + τd time units are spent for sampling and decoding. This includes a time

interval of length τs + τd − n following the packet transmission in which decoding is

completed. On the other hand, if W̄ > λ∗+ED(λ∗)+nα−1+2/n, then n > τs+τd, so not

only the pre-charging period is zero, but also no extra time is spent for decoding so the

rate would be R. Note that if for some n, λ∗+ED(λ∗) < W̄ ≤ λ∗+ED(λ∗)+nα−1 +2/n,

then there exists n1 such that for all n > n1, W̄ > λ∗ + ED(λ∗) + nα−1 + 2/n. It

follows that the throughput is

ρ ≥ lim
n→∞

nR

n+ [τs + τd − n]+

= Rmin{1, W̄E∗ }. (2.79)

Summary of Algorithm

In summary, the receiver calculates the required gap between the packets, τ(n) and

reports it to the transmitter. This value is calculated using W̄ , β and the decoding

function ED(λ) which yields λ∗ and ED(λ∗). The proposed algorithm is as follows:

• If λ∗ > W̄ , the transmitter sends the new packets every τc + n + τd time units.

The receiver charges the battery during τc, samples the packet with sampling rate

λ̃ and decodes the packet during τd.
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• If λ∗ ≤ W̄ , the transmitter sends the new packets every n + [τs + τd − n]+ time

units. Starting from zero energy in the battery, the receiver takes samples until

time τs and then starts decoding.

Theorem 2.3 In a variable-timing transmission system with packets encoded at rate

R while the energy arrival at the receiver is i.i.d. with mean W̄ and the battery capacity

is nβ for an n-length code, the communication rate of

ρ = Rmin{1, W̄
Ẽ
}

is achievable where λ̃ = min {λ∗, β + W̄} and Ẽ = λ̃+ ED(λ̃).

2.4 Outerbound

We would like to show that under any policy the achievable rate in Theorem 2.3 is

optimum for large number of packets and large number of symbols in a packet. It is

obvious that the communication rate never exceeds R. So, we need to prove that it

doesn’t exceed RW̄/Ẽ .

We start by defining

λ̂n = min{λ∗, β + W̄ + nα−1} (2.80)

and

Ên = λ̂n + ED(λ̂n) (2.81)

as a function of the block length n. Note that limn→∞ Ên = Ẽ . We may drop n when

the dependency on n is clear from the text.

Let’s consider an arbitrary policy in which Mn packets are decoded in the time

interval [1, T ] obtaining the communication rate

ρn(T ) =
nRMn

T
. (2.82)
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We prove the following outerbound.

Theorem 2.4

P
[
ρn(T ) ≥ RW̄

Ẽ
+ δ(n, T )

]
≤ εA(n, T ) + ε2(T ),

where

δ(n, T ) =
R(W̄ + 2Tα−1)

(1− ε1(n)) Ê
− RW̄

Ẽ
,

ε1(n) = exp

(
−2n2α−1

b2

)
,

ε2(T ) = exp

(
−2T 2α−1

b2

)
,

εA(n, T ) = exp

−2 (1− ε1(n))
(
Tα − n(1− ε1(n))Ê

)2

(
T (W̄ + 2Tα−1)

)
(nÊ)

 .

Note that for 0.5 < α < 1, limn→∞ limT→∞ δ(n, T ) = 0 and limn→∞ limT→∞ εA(n, T ) =

0. Also, limn→∞ ε1(n) = 0 and limT→∞ ε2(T ) = 0.

Defining

An =

⌊
T (W̄ + 2Tα−1)

n̂nÊ

⌋
, (2.83)

where n̂n = n(1− ε1(n)), we have

nRAn
T

=
nR

T

⌊
T (W̄ + 2Tα−1)

n̂nÊ

⌋
≤ R(W̄ + 2Tα−1)

(1− ε1(n)) Ê
(2.84)

=
RW̄

Ẽ
+ δ(n, T ), (2.85)

where RW̄/Ẽ is added and subtracted in going from (2.84) to (2.85). It then follows

from (2.82) that

P
[
ρn(T ) ≥ RW̄

Ẽ
+ δ(n, T )

]
≤ P [Mn ≥ An] . (2.86)
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So, to prove the claim, it is enough to show that

P [Mn ≥ An] ≤ εA(n, T ) + ε2(T ). (2.87)

Proof: Denoting the arrival energy in the transmission block of decoded packet i as

Qi, (2.6) implies that

P
[
Qi ≥ nW̄ + nα

]
≤ exp

(
−2n2α−1

b2

)
= ε1(n), (2.88)

where α ∈ (0.5, 1). We define

Xi = nÊ1
(
Qi < nW̄ + nα

)
. (2.89)

Thus (2.88) implies

P [Xi = 0] ≤ ε1(n), (2.90)

Note that Qi and consequently Xi are i.i.d. random variables. Note that Xi is a lower

bound for the energy expended in sampling and decoding packet i. To see this, suppose

energy expended for packet i were Xi. In the atypical case, when the arrival energy is

plentiful and Qi ≥ nW̄+nα, the energy cost Xi of sampling and decoding is taken to be

zero. On the other hand, Xi = nÊ corresponds to the typical case when Qi < nW̄ +nα.

In this case, the available energy for sampling cannot exceed nβ+nW̄+nα. As a result,

the sampling rate is limited as

λ < β + W̄ + nα−1 = λ̂n. (2.91)

As depicted in Fig. 2.4, the total energy is convex and non-increasing in λ for λ < λ∗.

Thus, the expended energy cannot be below nÊ . So, Xi = nÊ is a lower bound for the

expended energy for this case.

We note that to have Mn ≥ An, it is necessary to have at least An packets decoded.
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b
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λ̂n

Ê
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Figure 2.4: Total energy as a function of the sampling rate when λ̂n = β+ W̄ +nα−1 <
λ∗.

Hence, energy conservation dictates that

P [Mn ≥ An] ≤ P

[
An∑
i=1

Xi ≤
T∑
t=1

Wt

]
. (2.92)

We define the event

D =

{
T∑
t=1

Wt ≤ TW̄ + Tα

}
, (2.93)

to represent a typical energy arrival over the total T time slots. Applying the law of

total probability to (2.93) yields

P

[
An∑
i=1

Xi ≤
T∑
t=1

Wt

]
= P

[{
An∑
i=1

Xi ≤
T∑
t=1

Wt

}
∩D

]
+ P

[{
An∑
i=1

Xi ≤
T∑
t=1

Wt

}
∩Dc

]

≤ P

[
An∑
i=1

Xi ≤ TW̄ + Tα

]
+ P [Dc] . (2.94)
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According to the Hoeffding’s inequality (2.6), we have

P [Dc] ≤ exp

(
−2T 2α−1

b2

)
= ε2(T ). (2.95)

Note that P [Xi = 0] = ε0 ≤ ε1(n) and P
[
Xi = nÊ

]
= 1 − ε0 > 1 − ε1(n). We

lower bound the energy expenditure of the receiver by a fictitious enhanced system

that expends energy Yi to sample and decode the decoded packet i. If Xi = 0, then,

Yi = Xi. On the other hand, if Xi = nÊ , Yi = nÊ with probability p and Yi = 0 with

probability 1− p, where p = (1− ε1(n))/(1− ε0). Thus, Yi has PMF

P [Yi = y] =

 ε1(n) y = 0,

1− ε1(n) y = nÊ .
(2.96)

This implies

P

[
An∑
i=1

Xi ≤ TW̄ + Tα

]
≤ P [Cn] , (2.97)

where

P [Cn] = P

[
An∑
i=1

Yi ≤ TW̄ + Tα

]
. (2.98)

Then, noting that Yi’s are i.i.d., and having

E

[
An∑
i=1

Yi

]
= AnE[Yi] = Ann (1− ε1(n)) Ê = Ann̂nÊ , (2.99)

we would like to upper bound (2.97) using the Hoeffding inequality (2.6). So, we rewrite

(2.97) as

P [Cn] = P

[
An∑
i=1

Yi ≤ Ann̂nÊ +
(
TW̄ + Tα −Ann̂nÊ

)]
(2.100)
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By (2.83), An >
T (W̄ + 2Tα−1)

n̂nÊ
− 1, so,

P [Cn] ≤ P

[
An∑
i=1

Yi ≤ Ann̂nÊ +

(
TW̄ + Tα −

(
T (W̄ + 2Tα−1)

n̂nÊ
− 1

)
n̂nÊ

)]

= P

[
An∑
i=1

Yi ≤ Ann̂nÊ −
(
Tα − n̂nÊ

)]
(2.101)

Now, we apply the Hoeffding inequality (2.6) to (2.101), yielding

P [Cn] ≤ exp

(
−2(Tα − n̂nÊ)2

An(nÊ)2

)

≤ exp

(
−2 (1− ε1(n)) (Tα − n̂nÊ)2

T (W̄ + 2Tα−1)(nÊ)

)
= εA(n, T ). (2.102)

where in (2.102), we used the fact that (2.83) implies An ≤
T (W̄ + 2Tα−1)

n̂nÊ
. 2

We conclude that

lim
n→∞

lim
T→∞

P
[
ρn(T ) ≤ RW̄

Ẽ
+ δ(n, T )

]
= 0, (2.103)

which proves the optimality of the achievable schemes.

2.5 Optimum Code Rate

So far we studied the maximum communication rate for a fixed code rate R with

variable-timing transmission. Now, we look at the maximization problem over both

sampling rate and the code rate. Following the model in [27,28], we assume the decoding

energy is a function, f of R/Cλ, that is f(R/Cλ) = ED(λ) for a fixed R and C.

According to Theorem 2.3, for a fixed R and λ, C and W̄ , the rate of W̄R/(λ+f(R/Cλ))
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is achievable. We wish to maximize the achievable rate as follows.

ρ̆ = max
R,λ

W̄R

λ+ f(R/Cλ)
(2.104a)

s.t. 0 < R < Cλ (2.104b)

λ ≤ λmax, (2.104c)

where

λmax , min
{
β + W̄ , 1

}
. (2.105)

We assume that ED(R/Cλ) is zero only at R = 0. Also we assume that the function of

f(z), where z = R/Cλ, is differentiable.

According to the KKT optimality conditions, complementary slackness implies that

the Lagrange multipliers corresponding to the strict inequalities should be zero. Defin-

ing µ as the Lagrange multiplier, the Lagrangian is

L(λ,R, µ) =
W̄R

f(R/Cλ) + λ
− µ(λmax − λ). (2.106)

If µ = 0, then, ∂L/∂λ = 0 and ∂L/∂R = 0, yielding

1− R

Cλ2
f ′
(
R

Cλ

)
= 0 (2.107a)

f

(
R

Cλ

)
+ λ− R

Cλ
f ′
(
R

Cλ

)
= 0. (2.107b)

Eq. (2.107) gives f(R/Cλ) = 0, implying R̆ = 0, which conflicts with our modeling

assumptions. So, µ 6= 0 and, according to complementary slackness, the constraint

(2.104c) should be active at the optimum point. So, λ̆ = λmax at this point and

d

dR

(
W̄R

f(R/Cλmax) + λmax

) ∣∣∣∣∣
R=R̆

= 0. (2.108)
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This implies

f

(
R̆

Cλ

)
= f ′

(
R̆

Cλ

)
R̆

Cλmax
− λmax. (2.109)

Then, for the optimum communication rate we will have

ρ̆ =
W̄Cλmax

f ′(R̆/Cλmax)
.

Fig. 2.5 shows how the communication rate changes with the code rate. Here, we

used the decoding energy model in [27], that is f(z) =
1

1− z log

(
1

1− z

)
. At each

code rate, the total energy is minimized. As the code rate goes up, the optimum

sampling also goes up until some point where it reaches β + W̄ which is the maximum

achievable sampling rate. From this point on, the sampling rate is fixed at maximum

and increasing R, shrinks the capacity gap and increases the decoding energy. For

a short while, increasing R would be dominant and although the decoding energy is

growing, still the communication rate goes up but after reaching the peak, the growth

of the decoding energy would dominate and the communication rate falls down. We

can see that the total energy is a non-decreasing convex function of the code rate.
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Figure 2.5: Sampling rate, communicate rate and the total normalized energy versus R
(bits/s/Hz) for W̄ = 0.3µJ , β = 0.5µJ , C = 10 bits/s/Hz, n = 106.
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Chapter 3

Energy-Harvesting Receivers in Fading Channels

We consider the operation of an energy harvesting receiver in a point-to-point fading

channel with additive white Gaussian noise (AWGN). Knowledge of the channel state

information is not available at the transmitter. The limited rate of harvesting energy at

the receiver along with the time variation of the channel can degrade the performance

of the system. However, we will show that channel state knowledge at the receiver

can improve the performance of the system. We propose a channel-selective sampling

strategy that optimizes a tradeoff between the energy costs of sampling and decoding at

the receiver. Based on this tradeoff, we derive a policy maximizing the communication

rate and we characterize an energy-constrained rate region. We extend the results to

the receivers with finite battery capacity. We will consider the fading channel under

two models: fast-fading and slow-fading. In the fast-fading case the channel gain from

symbol to symbol period is an i.i.d. sequence; but in the slow-fading case, the channel

is fixed during a block length and it changes i.i.d. to the next block.

3.1 System Model

In this chapter, we consider a fast fading AWGN channel such that the channel gain,

Ht, is fixed during one symbol period but changes independently and identically in

the next symbol period. The relationship between the transmit and received signal at

symbol period t is

Yt = HtXt + Zt, (3.1)
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Gt

channel selective sampler

Xt Yt+ decoder

Zt

Figure 3.1: Channel Model

where Zt is the AWGN noise at time t. We define

Gt = ‖Ht‖2 (3.2)

as the instantaneous channel gain.

We consider an idealized model in which the estimate of the channel Ht is available

before the arrival of the sample xt. In such an idealized setting, acquiring channel state

information at the receiver doesn’t affect the sampling rate and the final communication

rate. We also assume that the block length, n, is long enough to realize the ergodic

variation of the fading channel.

The capacity of this physical channel depends on the performance of the receiver

front-end, which is coupled to the sampling energy. In this system, it is useful to think

of the sampling energy per sampled symbol ν fixed for a physical channel of capacity

C. Without loss of generality, we assume ν = 1.

According to [47], the ergodic capacity of the fading channel (3.1) with average

transmitted power p = E
[
‖Xt‖2

]
is

C = E
[
log(1 +

pGt
σ2

)

]
. (3.3)

Thus, the gap to the capacity would be

δ = 1− R

λE
[
log(1 +

pGt
σ2

)

] . (3.4)

This model extends the model in Chapter 2 where the channel is time-invariant. Here,

we propose a channel selective sampling strategy which dictates correlation between
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Figure 3.2: Variable-timing optimum policy: Transmitted packets are labeled x1,x2, . . .
while intervals marked “C,” “S,” and “D” mark when the receiver is (C)harging the
battery, (S)ampling a packet, and (D)ecoding that packet. The corresponding graph
depicts the receiver’s stored energy.

the sampling rate and the channel gain and based on this model we will optimize the

communication rate.

3.1.1 Energy Harvesting Model

Here we assume that energy W̄ arrives deterministically in every symbol period. We

believe this is an appropriate model when code words are transmitted in milliseconds

and the coherence time of the energy harvesting process is on the order of minutes

or hours. On the other hand, when codewords are much longer than the harvesting

coherence time, it also can be shown that system performance chiefly depends on the

average harvesting rate W̄ = E[Wt].

3.2 Achievability: Channel Selective Sampling

In the variable-timing transmission setting, the packets are transmitted apart by some

time τ which is reserved for decoding the previous sampled packet and also collecting

energy for sampling the current packet; see Fig. 3.2. What we need to characterize for

such a protocol is the time interval between two transmissions, τ which is computed at

the receiver and fed to the transmitter just one time before starting the communication.

Based on our discussion in previous chapters, we know that not only sampling a

subset of the symbols is enough but also it may save energy at the receiver, leading

to a better throughput in energy-limited receivers. Furthermore, to take advantage of

receiver CSI in the sampling process in order to enhance the performance of the system,
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we may wish to sample a subset of the symbols for which the channel is good. However,

how do we know if there will be enough energy available to take those samples? This

is more apparent when the process of harvesting energy is stochastic. However, even

in a deterministic energy arrival setting when the rate of harvesting energy is limited,

energy may not be available to take samples when the channel is good.

Another point to be addressed is that how large should the channel gain be so that

the corresponding sample is taken? Assume we set a threshold, γ, on the channel gain.

Any symbol which experiences a channel gain above this threshold is taken and the rest

are dropped. We would like to find the optimum threshold, γ∗ which maximizes the

rate, ρ.

We define the new random process Ĝt as

Ĝt(γ) ,

 Gt Gt ≥ γ,

0 otherwise.
(3.5)

Note that Ĝt(γ) is an i.i.d. sequence, with each sample identical to Ĝ(γ). Also, note

that the number of samples taken through this strategy is a random variable which is

a function of the threshold gain, γ.

When the channel (3.1) is concatenated with the channel selective sampler as in

Fig. 3.1, the capacity of the effective channel is

Ĉ(γ) = E

[
log(1 +

pĜ(γ)

σ2
)

]
. (3.6)

Under the channel selective sampling, the capacity gap δ becomes the function of

the sampling threshold, γ. Specifically,

δ(γ) = 1− R

Ĉ(γ)
. (3.7)

Thus the decoding energy is also a function of the gap to the capacity. In this chapter,
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we use f(·) to describe this relationship. We also assume ED(·) is a function of γ. Then,

ED(γ) = f (δ(γ)) = f
(

1−R/Ĉ(γ)
)
. (3.8)

As an example, according to the conjecture in [27], f(δ) = (α/δ) log(1/δ), so

ED(γ) =
α

δ(γ)
log

1

δ(γ)
(3.9)

for some coefficient α. Then, using (3.7),

ED(γ) =
α

1−R/Ĉ(γ)
log

(
1

1−R/Ĉ(γ)

)
. (3.10)

Assuming harvested energy is sufficient, the number of taken samples, S, is

S =
n∑
t=1

1(Gt ≥ γ). (3.11)

According to the law of large numbers,

lim
n→∞

S

n
= E[1(Gt ≥ γ)] = Pr [G ≥ γ] w.p.1. (3.12)

Thus, the sampling rate, or the normalized sampling energy is equal to λ = Pr [G ≥ γ].

As the threshold level γ is increased, fewer samples are taken, so the capacity (3.6) is

decreased. This relationship is depicted in Fig. 3.3 where we have used Rayleigh fading

model. The channel gain is unit-mean exponential and the noise zero-mean and unit

variance. In this figure, the transmit power is unity and R = 0.4.

It can be seen that increasing γ, will decrease the capacity, shrinking the gap between

rate and the capacity which consequently leads to an increase in the decoding energy.

While increasing γ will increase the decoding energy, it makes it less likely that the

gain of the channel be over the threshold which reduces the sampling energy. Thus,

Pr [G ≥ γ] decreases. So, with changing γ the tradeoff curve in Fig. 3.4 is obtained. We

have used the model in [27] for LDPC decoder complexity as in (3.9) and (3.10).

Due to the convexity of the decoding energy, the total energy in Fig. 3.4, the total
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Figure 3.3: Capacity of the effective channel under channel selective sampling versus
the threshold gain in Rayleigh fading.

energy requirement is minimum at the point where the 45-degree line is tangent to the

decoding energy curve. We call the sampling rate at this point λ∗. We wish to select

the channel gain threshold such that the sampling rate is λ∗. So, we choose γ∗ such

that

λ∗ = Pr [G ≥ γ∗] (3.13)

or in other words

γ∗ = arg min
γ

Pr [G ≥ γ] + ED(γ), (3.14)

Setting the corresponding threshold to γ∗, the decoding energy is ED(γ∗) and, the

total minimum energy is

E∗ = Pr [G ≥ γ∗] + ED(γ∗)

= λ∗ + E∗D, (3.15)
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Pr [G ≥ γ] for a fixed R under channel selective sampling strategy. The total energy
requirement is minimum at Minimum Energy Point.

where E∗D = ED(γ∗).

We will show that with appropriate choice of τ , we can make sure that enough energy

is available to achieve the sampling rate λ∗, under the channel selective sampling policy

with the parameter threshold γ∗.

3.3 Variable Timing: Achievable Rates

To be able to sample at λ∗, we need the stored battery energy and energy harvesting rate

to be sufficiently large. If λ∗ > W̄ , the energy collected during the packet transmission

is not enough for sampling; so it is required to charge the battery before the packet

transmission. As W̄ units of energy arrives in each symbol period, we require the initial

energy at the start of receiving the packet be

U0 = nλ∗ − nW̄ . (3.16)
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Thus it takes

τS = (nλ∗ − nW̄ )/W̄ (3.17)

time units to collect this energy. Also, it takes

τD = nE∗D/W̄ (3.18)

time units to collect energy for decoding the previous sampled packet. So,

τ = τS + τD =
(nλ∗ − nW̄ ) + nE∗D

W̄
(3.19)

and the communication rate is

ρ =
nR

(nλ∗ − nW̄ + nE∗D)/W̄ + n

=
RW̄

λ∗ + E∗D
=
RW̄

E∗ . (3.20)

A timing diagram of this achievable scheme is shown in Fig. 3.2.

On the other hand, if W̄ ≥ λ∗, it is not necessary to collect energy and even there is

extra energy arriving during symbol arrivals which can be expended for decoding. So,

while τS = 0, if E∗D + λ∗ > W̄

τD =
nE∗D − nW̄ + nλ∗

W̄
.

time units are required for decoding. Consequently, the rate would be

ρ =
nR

(nE∗D − nW̄ + nλ∗)/W̄ + n
=
RW̄

E∗ . (3.21)

If W̄ ≥ E∗D + λ∗, then no extra time other than the packet arrival time interval, n,

is required and the rate would be ρ = R.
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Figure 3.5: The achievable rate for channel selective sampling strategy and the strategy
at which the sampling is optimized independently from channel with optimum param-
eters in terms of the transmit power.

Fig. 3.5, compares the performance of this policy with the one with no receiver

CSI. We will show that the channel selective policy with the parameter threshold γ∗ is

optimum.

3.4 Outerbound

Assume an arbitrary policy decoding M packets in T time slots. Assume λi fraction of

symbols are sampled from packet i while Ei units of energy are expended for sampling

and decoding it. We define ai = bnλic. Let A ⊂ {1, 2, . . . , n} denote the subset of time

slots t with the best ai channel gains. We use Y
(n)

1 , Y
(n)

2 , . . . Y
(n)
n to denote the random

variables G1, G2, . . . Gn sorted in decreasing order. We define the threshold γ(λi) such

that P [Gt ≥ γ(λi)] = λi. We start by verifying the following lemma.

Lemma 3.1 Y
(n)
ai converges in distribution to γ(λi) as n→∞ where P [Gt ≥ γ(λi)] =

λi.
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Proof: Let N(y) = | {t ∈ [1, n]|Gt ≥ y} | denote the number of samples of Gt greater

than y. Since the Gt are i.i.d., N(y) has the binomial distribution

P [N(y) = j] =

(
n

j

)
FG(y)jFG(y)n−j , (3.22)

where FG(·) and FG(y) denote CDF and complementary CDF, respectively. Note that

N(y) has expected value and variance

µn = nFG(y), σ2
n = nFG(y)FG(y)). (3.23)

Now we observe that

P
[
Y (n)
ai ≥ y

]
= P [N(y) ≥ ai] = P

[
N(y)− µn

σn
≥ ai − µn

σn

]
.

As n → ∞, the binomial CDF of N(y) approaches a Gaussian (µn, σ
2
n) distribution.

Thus

lim
n→∞

P
[
Y (n)
ai ≥ y

]
= lim

n→∞
Q

 ai − nFG(y)√
nFG(y)FG(y)

. (3.24)

Since limn→∞ ai/n = λi,

lim
n→∞

P
[
Y (n)
ai ≥ y

]
= lim

n→∞
Q

 n(λi − FG(y))√
nFG(y)FG(y)

. (3.25)

If y > γ(λi), then FG(y) < λi. This implies limn→∞ P
[
Y

(n)
ai ≥ y

]
= 0. On the other

hand, if y < γ(λi), then FG(y) > λi and limn→∞ P
[
Y

(n)
ai ≥ y

]
= 1. 2

We define Ii(Gt) as the mutual information of symbol t in the decoded packet i. The

total normalized energy expended for packet i, Ei, can be lower bounded as

Ei ≥ λi + h(

∑
t∈A Ii(Gt)
n

), (3.26)
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where h(·) is the decoding energy as a function of the accumulated mutual information.

In other words, h(x) = f(1−R/x). Noting that if symbol t ∈ A, then 1(Gt ≥ Y (n)
ai ) = 1,

for some δ > 0 we have

1

n

∑
t∈A

Ii(Gt) =
1

n

n∑
t=1

Ii(Gt)1(Gt ≥ Y (n)
ai ) (3.27)

≤ 1

n

n∑
t=1

[
Ii(Gt)1(Gt ≥ γ(λi)− δ) + Ii(Gt)1(Y (n)

ai ≤ Gt < γ(λi)− δ)
]

≤ 1

n

n∑
t=1

Ii(Gt)1(Gt ≥ γ(λi)− δ) +
1

n
Ii(γ(λi))

n∑
t=1

1(Y (n)
ai ≤ Gt < γ(λi)− δ), (3.28)

where in the second term, Ii(Gt) is upper bounded by Ii(γ(λi)). According to the

strong law of large numbers, for the first term in (3.28) we have

lim
n→∞

1

n

n∑
t=1

Ii(Gt)1(Gt ≥ γ(λi)− δ) = E[Ii(G)|G ≥ γ(λi)− δ]P [G ≥ γ(λi)− δ] . (3.29)

For the second term in (3.28), according to the law of large numbers, we have

1

n

n∑
t=1

1(Y (n)
ai ≤ Gt < γ(λi)− δ) = P

[
Y (n)
ai ≤ G < γ(λi)− δ

]
. (3.30)

The probability in (3.30) is upper bounded as

P
[
Y (n)
ai ≤ G < γ(λi)− δ

]
≤ P

[
Y (n)
ai < γ(λi)− δ

]
, (3.31)

and according to Lemma 3.1,

lim
n→∞

P
[
Y (n)
ai < γ(λi)− δ

]
= 0. (3.32)

Thus, (3.28) yields

lim
n→∞

1

n

∑
t∈A

Ii(Gt) ≤ E[Ii(G)|G ≥ γ(λi)− δ]P [G ≥ γ(λi)− δ] . (3.33)
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Using (3.26) and considering the energy conservation,

n
M∑
i=1

[
λi + h

(
1

n

∑
t∈A

Ii(Gt)

)]
≤ n

M∑
i=1

Ei ≤ TW̄ . (3.34)

This implies

ρn(T ) =
nRM

T
≤ RMW̄∑M

i=1

[
λi + h

(
1

n

∑
t∈A Ii(Gt)

)] , (3.35)

and taking the limit while using (3.33)

ρ = lim
n→∞

lim
T→∞

ρn(T ) ≤ MRW̄∑M
i=1 [λi + h (E[Ii(G)|G ≥ γ(λi)]P [G ≥ γ(λi)])]

=
MRW̄∑M

i=1 [P [G > γ(λi)] + ED(γ(λi))]
. (3.36)

where in the last equality, we used (3.6) and (3.8), implying

h (E[Ii(G)|G ≥ γ(λi)]P [G ≥ γ(λi)]) = h(Ĉ(γ(λi))) = ED(γ(λi)).

The upper bound is maximized when the total energy in the dominator is minimized.

Due to the convexity of the energy function,

λ∗ = arg min
λ

P [G > γ(λ)] + ED(γ(λ)), (3.37)

or γ∗ as defined in (3.14) exist. So, the lower bound on the energy expenditure in all

the packets 1 to M would be E∗ as defined in (3.15). Thus,

ρ ≤ RW̄

E∗ . (3.38)

Theorem 3.1 For a fading channel with time-varying channel gain Gt and energy

harvesting at the receiver, equipped with an unbounded battery, the optimum rate is
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given by

ρ =
RW̄

E∗ ,

where

E∗ = Pr [G ≥ γ∗] + ED(γ∗),

and

γ∗ = arg min
γ

Pr [G ≥ γ] + ED(γ),

and

λ∗ = Pr [G ≥ γ∗].

This rate is achieved using a variable-timing transmission protocol along with the

channel selective sampling strategy with the threshold γ∗.

3.5 Conclusion

We have considered a fading channel with energy harvesting at the receiver and an

idealized situation at which the fading gain is known at the receiver before sampling

the corresponding symbol. We have modeled the problem and obtained a tradeoff

between the decoding energy and the characteristics of the channel. Based on this

model, we proposed a channel selective sampling strategy and proved its optimality.

We also characterized the optimal rate. The idealized model, used in this chapter,

provides an upperbound to the systems in which the receiver samples must be used to

estimate the channel.

Although the results in this chapter are reached using a deterministic model, we can

extend them to the case with stochastic energy arrival when the codewords are long

enough to experience the ergodic variation of the harvesting.
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Chapter 4

Opportunistic Reception in a Multiuser Slow-Fading

Channel with an Energy Harvesting Receiver

In this chapter, we focus on slow fading (block fading) channels where at the receiver

side, the processing energy is harvested with limited rate. The transmitter sends data

packets sequentially, where each packet carries coded data, separately encoded with a

fixed rate. For each packet, the receiver should decide to sample and decode the packet

or drop it and save the energy for next coming packets.

We derive an optimum policy to maximize the average throughput of the system.

We show that a policy including a waiting period to charge the battery and a thresh-

old for the channel gain to decide whether a packet should be decoded achieves the

optimum rate with probability one. We then extend this result to multiuser systems

with limited processing power at the receiver side. Serving the users with best channel

gains increases the gap between the instantaneous capacity and the code rate, which

in turn reduces the decoding energy. This saving in the processing energy requirement

of each user allows the receiver to utilize its limited harvested energy to serve more

users. In multiple access fading channels, serving the users with the strongest channels

is known to provide a multiuser diversity gain [48–50] that can reduce the required

transmit power or equivalently improve the overall rate. The results of this chapter

extend the concept of multiuser diversity to reduce processing power at the receiver.

4.1 System Model

We consider a communication system where K transmitters wish to communicate with

one receiver with a slow-fading (block-fading) channel between transmitters and the

receiver. Time is slotted, with each slot consisting of n channel uses. We will often
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call a transmitted codeword a packet. We assume fixed-timing transmission strategy in

which the packets are transmitted in every slot without any delay. Let the n-dimensional

vectors
−→
X i
t,
−→
Y i
t,
−→
Z i
t respectively denote transmitted signal with average power p, re-

ceived signal, and additive white Gaussian noise (AWGN) in slot t of the user i. The

communication in slot t is modeled as

−→
Y i
t = H i

t

−→
X i
t +
−→
Z i
t, (4.1)

where H i
t denotes the complex channel coefficient of user i in time slot t. The channel

coefficients H i
t are fixed over the slot t, but vary independently both from one slot to

another and from one user to another [47]. In addition, H i
t for each user is known

at the receiver causally, but not at the transmitters. We assume that receiver channel

estimation takes negligible time compared to the packet length n. As there are K users,

this requires n � K. The channel gain, Git =
∣∣H i

t

∣∣2 , is an i.i.d. sequence identical to

G. The superscript i is dropped for single user system. During time-slot t, the capacity

of the channel (4.1) for user i with channel gain Git = g, is

C(g) = log2

(
1 +

gp

σ2

)
. (4.2)

We assume that the quantization bits are large enough so that the effect of the quan-

tization error on the capacity is negligible.

When the sampling rate is λ, the energy per symbol (normalized energy) consumed

by the receiver to reliably decode one packet will be

E = E(λ, g) = νλ+ ED (λ, g) . (4.3)

We conclude for a given g that there is an optimal sampling rate λ∗(g) such that

E∗(g) = min
R/C(g)<λ≤1

E(λ, g) = νλ∗(g) + ED (λ∗, g) (4.4)

is the minimum energy per symbol period required to decode a single rate R codeword.
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Note that ED and as a result E are increasing functions of packet length, n. We also

observe that ED is a function of the code rate R. As a result, the optimum sampling

rate and the minimum energy both depend on the code rate. We further assume that

sampling and decoding are done jointly; any codeword which is sampled is decoded

immediately and there is no option of keeping a codeword in the buffer and sampling

the next codeword.

In this chapter, we use the above model to design opportunistic schemes for a

single user and multiuser slow-fading channel to maximize the overall throughput or

the expected number of users being served in every slot. We will show that choosing

the users opportunistically will result in a larger capacity gap implying lower energy

consumption at the receiver and ultimately better performance and multiuser diversity

gain.

Similar to Chapter 3, here we assume that the energy W̄ arrives deterministically

in every symbol period. We believe this is an appropriate model when codewords are

transmitted in milliseconds and the coherence time of the energy harvesting process is

on the order of minutes or hours. On the other hand, when codewords are much longer

than the harvesting coherence time while the harvesting process is i.i.d., it was shown

in Section 2.3 that system performance depends chiefly on the average harvesting rate.

4.2 Single User System

In this section, we assume a single transmitter communicating with a receiver through a

slow-fading channel. According to the channel quality, the receiver may choose to sam-

ple and decode the transmitted codeword or it may save its stored energy for subsequent

time slots in which the channel quality is better.

We assume that if a codeword is received at time t, an optimum number of samples,

nλ∗(Gt) is taken and therefore, the optimum energy of E∗(Gt) is used for sampling and

decoding. The policy or scheme S is defined by the binary indicator IS(t) such that

IS(t) = 1 iff the codeword in the time slot t is received (sampled and decoded.). We

note that S may or may not be designed such that the arrival energy nW̄ is always
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sufficient for the energy requirements. For a given policy S, the stored energy Ut in the

battery at time t satisfies

Ut =
[
Ut−1 + nW̄ − IS(t)nE∗(Gt)

]+
. (4.5)

To mark whether the receiver has sufficient energy at time t to decode packet t, we

need to evaluate the indicator 1
(
Ut−1 + nW̄ ≥ E∗(Gt)

)
. If this value is 1, the scheme

is feasible at time t. For any feasible scheme S, the average throughput ρS is defined

as

ρS = lim inf
T→∞

R

T

T∑
t=1

IS(t). (4.6)

The objective is to maximize the average throughput (4.6) while ensuring the feasibility

of the scheme at every time slot. We note that maximization of the rate ρS may be

complex in that the optimal rate will be achieved by a packet processing policy that is

a function of the receiver energy state.

4.2.1 Throughput Optimization

We introduce the delayed-start threshold scheme, S̃, such that after some delay, T1 =

T1(T ) ∈ o(T ), packet t is decoded if the channel gain is above a threshold γ̃ and the

receiver has sufficient energy to sample and decode it. During the delay interval no

packet is received and just the arrival energy is collected. We will see that choosing

T1 = T 2/3 ensures that the throughput is not compromised. As the policy S̃ will be

designed to be feasible, the stored energy Ũ under S̃ can be specified recursively for

t ≥ 1 by

Ũt = Ũt−1 + nW̄ − nE∗(Gt)IS̃(t), (4.7a)

IS̃(t) =

0 t ≤ T1,

1
(
Gt ≥ γ̃, Ũt−1 + nW̄ ≥ nE∗(Gt)

)
t > T1.

(4.7b)
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Furthermore, the threshold γ̃ is selected such that

P [Gt ≥ γ̃]E[nE∗(Gt)|Gt ≥ γ̃] = nW̄ . (4.8)

Note that (4.8) has a unique solution as the left side is a non-increasing continuous

function of γ and at some point it becomes equal to nW̄ . Note also that γ̃ is such that

C(γ̃) > R.

Theorem 4.1 For the policy S̃ as defined in (4.7),

ρS̃ ≥ RP [G ≥ γ̃] w.p.1.

Proof: The throughput of the policy S̃ is

ρS̃ = R lim inf
T→∞

∑T
t=T1+1 IS̃(t)

T

= R lim inf
T→∞

(
T − T1

T

)(∑T
t=T1+1 IS̃(t)

T − T1

)
. (4.9)

Since limT→∞ T1/T = 0,

ρS̃ = R lim inf
T→∞

∑T
t=T1+1 IS̃(t)

T − T1
. (4.10)

Defining Vt = nW̄ − nE∗(Gt)IS̃(t) as the energy increment in time t, the stored energy

of the delayed start policy is

Ũt = nW̄T1 +

t∑
τ=T1+1

Vτ , t > T1. (4.11)

To analyze the delayed start policy (4.7), we define

V̂t = nW̄ − nE∗(Gt)1 (Gt > γ̃) , (4.12a)

Ût = nW̄T1 +
t∑

τ=T1+1

V̂ (τ), t > T1. (4.12b)
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We note that (4.7b) implies IS̃(t) ≤ 1 (Gt ≥ γ̃). Thus, Vt ≥ V̂t and it follows from

(4.11) and (4.12b) that Ũt ≥ Ût. Thus (4.7b) implies

IS̃(t) ≥ 1 (Gt ≥ γ̃) 1
(
Ût−1 + nW̄ ≥ nE∗(Gt)

)
. (4.13)

Moreover, since E∗(γ) is decreasing in γ, it follows that

ρS̃ ≥ lim inf
T→∞

R

T − T1

T∑
t=T1+1

1 (Gt ≥ γ̃) X̂t. (4.14)

where X̂t denotes the indicator sequence

X̂t = 1
(
Ût−1 + nW̄ ≥ nE∗(γ̃)

)
. (4.15)

We now show that the sequence X̂T1+1, . . . , X̂T goes to one with probability one. It is

sufficient to show that limT→∞ P
[⋂T

t=T1+1{X̂t = 1}
]

= 1. By the union bound,

P

 T⋂
t=T1+1

{X̂t = 1}

 ≥ 1−
T∑

t=T1+1

P
[
X̂t = 0

]
. (4.16)

Note that since Gt is i.i.d., V̂t is i.i.d.. From (4.8) and (4.12a), we observe that E[V̂t] = 0.

From (4.12a), (4.15) and noting that V̂t ∈
[
nW̄ − nE∗(γ̃), nW̄

]
, and choosing T1 = T 2/3

it follows from the Chernoff-Hoeffding inequality that

P
[
X̂t = 0

]
= P

 t−1∑
τ=T1+1

V̂τ ≤ nE∗(γ̃)− nW̄ − nW̄T1

 ≤ εT (t) (4.17)

where

εT (t) = exp
−2[W̄ (1 + T 2/3)− E∗(γ̃)]2

(t− T 2/3 − 1)E∗(γ̃)2
. (4.18)
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It then follows from (4.16) that

lim
T→∞

P

 T⋂
t=T1+1

{X̂t = 1}

 ≥ lim
T→∞

1−
T∑

t=T1+1

P
[
X̂t = 0

]
a
≥ lim

T→∞
1− (T − T 2/3)εT (T ) = 1, (4.19)

where (a) is true since εt(T ) ≤ εT (T ). Note that limT→∞ εT (T ) = 0. As a result,

X̂t → 1 w.p.1. In (4.14), the event Gt ≥ γ̃ and the indicator X̂t are independent. It is

straightforward to see that (4.14) can be rewritten as

ρS̃ ≥ R

lim inf
T→∞

1

T − T1

T∑
t=T1+1

1 (Gt ≥ γ̃)

(lim inf
T→∞

X̂t

)
. (4.20)

According to the strong law of large numbers, we have

lim inf
T→∞

1

T − T1

T∑
t=T1+1

1 (Gt ≥ γ̃) = P [G ≥ γ̃] w.p.1, (4.21)

and therefore, ρS̃ ≥ RP [G ≥ γ̃] w.p.1. 2

It can be seen that the key is that after the delayed start, the available energy in

the battery is lower bounded by the process in which packet t is decoded if just the

threshold constraint Gt ≥ γ̃ is satisfied. This in turn is lower bounded by the stored

energy of the process in which the energy to process a packet is upper bounded by E∗(γ̃),

the energy needed for a packet just meeting the threshold channel quality constraint.

We show that the collected energy by time T1 is sufficient to decode almost all packets

after T1 with the channel above the threshold.

We now show that no scheme can do better than this opportunistic selection scheme.

Assume an arbitrary feasible scheme S decodes MT packets transmitted in T time slots.

It is easy to see that a noncausal scheme that decodes the MT packets with the best

MT channel gains would require less total energy. We use this observation to prove the

following claim.

Theorem 4.2 If S is a feasible receiver that decodes MT packets in T slots such that
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limT→∞MT /T = β, then β ≤ P [Gt ≥ γ̃].

Proof: To prove this claim, we will need to define bT = bβT c and γ(β) such that it

satisfies

FGt(γ(β)) = P [Gt ≥ γ(β)] = β. (4.22)

In addition, we use Y
(T )

1 , Y
(T )

2 , . . . Y
(T )
T to denote the random variables G1, G2, . . . , GT

sorted in decreasing order and we define Yβ,T , Y
(T )
bT

. According to Lemma 3.1, Yβ,T

converges in distribution to γ(β) as T →∞.

Over T slots, the scheme S has total receiver energy consumption satisfying Etotal ≤

TW̄ . Let BT ⊆ {1, 2, . . . , T} denote the subset of time slots t with the best bT − 1

channels. The normalized energy required to decode this subset of packets is

E∗T =
∑
t∈BT

E∗(Gt) ≤ Etotal ≤ TW̄ . (4.23)

We define the indicator Iβ,T (t) to equal 1 if t ∈ BT and zero otherwise. This permits

us to write

W̄ ≥ 1

T

T∑
t=1

E∗(Gt)Iβ,T (t). (4.24)

Since the Gt are i.i.d., the random variables E∗(Gt)Iβ,T (t) are identically distributed.

Thus, taking the expectation of (4.24), we obtain

W̄ ≥ 1

T

T∑
t=1

E[E∗(Gt)Iβ,T (t)] = E[E∗(Gt)Iβ,T (t)]. (4.25)

Using Fβ,T (y) denote the CDF of Yβ,T , we can write

W̄ ≥
∫

E[E∗(Gt)Iβ,T (t)|Yβ,T = y]dFβ,T (y). (4.26)
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where

E[E∗(Gt)Iβ,T (t)|Yβ,T = y] = E[E∗(Gt)|Yβ,T = y, Iβ,T (t) = 1]P [Iβ,T (t) = 1|Yβ,T = y] .

(4.27)

We observe that symmetry implies that

P [Iβ,T (t) = 1|Yβ,T = y] =
bT − 1

T
(4.28)

since each Gt is equally likely to be one of the bT − 1 channel gains better than Yβ,T .

In addition,

E[E∗(Gt)|Yβ,T = y, Iβ,T (t) = 1] = E[E∗(Gt)|Gt ≥ y]. (4.29)

Thus (4.26), (4.27), (4.28) and (4.29) imply

W̄ ≥
∫

E[E∗(Gt)|Gt ≥ y]

(
bT − 1

T

)
dFβ,T (y). (4.30)

As T → ∞, bT /T → β and, by Lemma 3.1, Fβ,T (y) converges to a unit step at γ(β).

Letting T →∞ in (4.30), we obtain

W̄ ≥ β E[E∗(Gt)|Gt ≥ γ(β)]. (4.31)

It follows from (4.22) that

W̄ ≥ P [Gt ≥ γ(β)]E[E∗(Gt)|Gt ≥ γ(β)]. (4.32)

Now we recall that P [Gt ≥ y]E[E∗(Gt)|Gt ≥ y] is a non-increasing function of y. Thus,

(4.8) and (4.32) imply γ̃ ≤ γ(β). Moreover, since P [Gt ≥ y] is decreasing in y,

β = P [Gt ≥ γ(β)] ≤ P [Gt ≥ γ̃] . (4.33)

2
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Figure 4.1: Optimum threshold γ̃ and optimum throughput versus nW̄ for R = 0.3
bits/s/Hz, ν = 1.69, η = 0.42.

We note that Theorem 4.2 implies that ρS ≤ RP [G ≥ γ̃] for any scheme S.

4.2.2 Single User Performance/ Self-imposed Threshold

As depicted in Fig. 4.1, the threshold γ̃ decreases with increasing W̄ and as a result the

throughput improves. For this figure, we used the decoding energy model in [27] as

ED =

(
η

1−R/λC(g)

)
log

(
1

1−R/λC(g)

)

where η is a coefficient and C(g) is defined in (4.2). For fixed code rate R, we define

the service rate as the average number of packets decoded per slot. In Fig. 4.2, we plot

the service rate as a function of threshold γ̃. When the receiver employs the threshold

γ > γ̃, the arrival energy per slot exceeds the average energy required per slot and the

resulting service rate is P [G > γ], the probability that the channel is above threshold.

On the other hand, when γ < γ̃, the energy demand is larger than the arrival energy in

a slot; even if the channel gain is above the threshold, the packet may not be decoded

due to insufficient energy at the receiver. In this case, one might guess the service rate
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would be W̄/E[E∗(G)|G ≥ γ]. In general, it appears that the service rate of

min

{
P [G ≥ γ] ,

W̄

E[E∗(G)|G ≥ γ]

}
(4.34)

would be achievable. However, when γ < γ̃, the available energy in the battery is

typically close to zero. In this case, whenever the stored energy reaches a level sufficient

to sample and decode a packet, the packet is sampled immediately. So the receiving

decision in slot t is strongly dependent on the energy level of the battery in that slot.

And since the energy level is often low, packets are decoded very selectively. That is,

we call this phenomenon a self-imposed threshold. That is, when the energy level is

low, only packets transmitted through very good channels are decoded. Due to this

fact, we see in Fig. 4.2 that the achievable rate is much higher than the rate suggested

by (4.34). Evaluation of the service rate in this situation requires an analysis of the

continuous-value Markov chain Ut with state dependent reward IS(t). The complexity

of this analysis highlights the value of the outer bound result of Theorem 4.2.
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4.3 Multiuser System

Assume there are K users transmitting at a fixed rate R and fixed average power p over

orthogonal Rayleigh fading channels where the channel gain of user i in slot t is denoted

as Git. Energy harvesting limits the energy available at the receiver so that it may not

be possible to decode all the packets. The objective is to maximize the sum-rate as

defined as

ρSK = lim inf
T→∞

R

T

T∑
t=1

K∑
i=1

I
(i)
S (t), (4.35)

where I
(i)
S (t) = 1 if the user i’s packet transmitted at time t is decoded.

We observe that the K-user system can be viewed as a faster-paced single user

system. In particular, imagine that a slot is divided into K minislots such that the

receiver harvests energy nW̄/K in each minislot and user k transmits in minislot k of

each slot. With the minislots as the unit of time, we have a system with one packet

transmitted each time unit and energy nW̄/K harvested in each time unit. From our

single-user analysis, we know that we cannot do better than a threshold policy such that
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we attempt to decode every packet with channel gain above a threshold γ̃K satisfying

E[E∗(Gt)|Gt ≥ γ̃K)]P [G ≥ γ̃K ] = W̄/K, (4.36)

which results in the rate

ρSK = RK P [G ≥ γ̃K ] =
RW̄

E[E∗(Gt)|Gt ≥ γ̃K)]
. (4.37)

For a fixed code rate, R, and a fixed sampling rate, λ, the capacity gap corresponding

to the selected users, increases with K, which reduces the required decoding energy.

The sampling rate is selected such that the minimum energy is consumed to sample and

decode each packet. This implies serving more users under a limited energy harvesting

rate leading to the maximum sum-rate. Fig. 4.3 compares the number of users being

served in this opportunistic scheme with the one for random selection for two choices of

W̄ as K is growing. It can be seen that while the service rate of the random selection

is fixed with K, it is growing for the opportunistic selection. We note that while the

threshold grows with the number of users, the number of the selected channels above

the threshold also grows with K. Therefore the number of users being served grows

with K.

Note that the sum-rate also depends on the code rate, R. Increasing R reduces the

capacity gap, thus increasing the processing energy while also increasing the number

of information bits communicated when a packet is decoded. As it can be seen in Fig.

4.4 for larger number of users, increasing the processing energy appears to be the more

dominant effect and the system throughput suffers as the code rate is increased.

4.4 Conclusions

In this chapter, we exploited the variation of channel over both time and users to

reduce the processing power per decoded packet at the receiver. This is in contrast

with conventional systems in which this channel variation is used to save transmit

power or increase the packet code rate. This saving in the receiver processing power is
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when η = 0.1, ν = 2.5× 10−4 and W̄ = 100 µJ , n = 108.

particularly useful in energy harvesting systems where the rate of energy arrival at the

receiver may constrain the packet decoding rate.

We have shown that an energy-constrained receiver can benefit from a multiuser

diversity effect in which the users with unusually good channels enable increased effi-

ciency in the receiver sampling and decoding. In our numerical examples, we observe

that this effect is not especially sensitive to the choice of transmitter code rate. This

insensitivity arises primarily because users operating at reduced code rates enable the

energy-constrained receiver to process more users.
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Chapter 5

Hybrid ARQ in Block-Fading Channels with an Energy

Harvesting Receiver

In this chapter, we propose using ARQ to reduce the processing energy at the receiver,

and therefore increase the overall throughput, when the receiver harvests energy with

a limited rate. Conventionally, ARQ is used to improve the throughput and reliability,

as well as to reduce the delay [51–54] in a fading channel with limited transmit power.

In this chapter, however, our focus is on the receiver, where processing power is limited.

ARQ can help to improve the capacity gap, which is defined as the gap between the code

rate and the mutual information between transmitter and receiver. We will focus on

the most popular ARQ schemes: (1) IR-HARQ, which sends additional parity symbols

in each retransmission, (2) Repetition-HARQ, which repeats sending the same coded

packet in each retransmission. We observe that depending on the parameters of the

problem, Repetition-HARQ can perform better than IR-HARQ. This is in contrast to

systems without any constraint on receiver processing power. This is due to the fact

that the decoding energy is a decreasing function of the capacity gap and an increasing

function of the code-length. IR-HARQ yields a better capacity gap, but increases the

code-length, while Repetition-HARQ offers less improvement in the capacity gap, but

does not increase the effective code-length. We also propose the scheme of IR-HARQ

with subset selection which optimizes the subset of packets contributing to the decoding.

5.1 System Model

We consider a point-to-point communication system with a block-fading channel be-

tween the transmitter and the receiver. Time is slotted, where each slot t consists of
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n channel uses. Let the n-dimensional vectors
−→
X t,

−→
Y t,
−→
Z t respectively denote the

transmitted signal, the received signal, and the additive white Gaussian noise (AWGN)

in slot t. We consider a narrow-band block fading environment, where the channel

coefficient Ht ∈ C is fixed during the time slot t, but varies independently from one slot

to another. The communication in slot t is modeled as

−→
Y t = Ht

−→
X t +

−→
Z t. (5.1)

Ht is known at the receiver causally, but it is not available at the transmitter. The

average transmit power is p and the AWGN noise is i.i.d. across time with average zero

and variance σ2. The channel gain, Gt = |Ht|2 , is an i.i.d. sequence, with distribution

identical to random variable G.

During the time-slot t with channel gain Gt, the maximum mutual information

between the transmit signal and the received signal at each channel use (symbol period),

denoted by Ct, is equal to Ct = C(Gt), where

C(g) = log2

(
1 +

gp

σ2

)
. (5.2)

For a set of slots T = {1, . . . , k}, we can show that the maximum mutual infor-

mation between transmitted signals {−→X t}t∈T and received signals {−→Y t}t∈T is equal to

kn
∑

t∈T Ct.

In general, the processing energy at the receiver includes the energy consumption

of sampler, decoder and RF front end. In this chapter, we only focus on the decoding

energy, assuming the energy consumption by the other components is fixed. We follow

the decoding energy model presented in the Chapter 1. That is, for a super-block

containing L blocks of data of length n, the decoding energy ED is

ED = LnED(δ) = LnED(1−R/C), (5.3)

In this work, we assume that the energy arrival process is deterministic, with a

constant rate of nW̄ Joules per time slot, which is available at the beginning of each
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slot. The receiver is equipped with an unlimited-capacity battery to store the energy.

5.2 ARQ Schemes

In this chapter, we consider various forms of ARQ schemes. Here we briefly describe

these alternatives.

Classic ARQ

In this scheme, the transmitter uses a Gaussian codebook of length n and rate R to

send nR bits in slot t, using n-symbol coded packets in
−→
X t. Each coded packet requires

one slot time for transmission. The receiver may decide to decode the message from

−→
Y t. In this case, the receiver sends back an ACK to let the transmitter know its

decision. Otherwise, if the receiver decides not to decode the message, it drops
−→
Y t

and sends a NAK to the transmitter. We assume the ACK/NAK is received by the

receiver reliably. If the transmitter receives an ACK, it starts sending a new message.

Otherwise, it retransmits the previous signal again in slot t+ 1, i.e.,
−→
X t+1 =

−→
X t. The

receiver receives
−→
Y t+1 through a statistically independent new channel, and decides

to whether decode the message from
−→
Y t+1, or drops it, and asks for a retransmission

by returning a NAK. The retransmissions continue until the message is decoded from

the last received packet. We consider no delay constraint for the system, so the NAK

feedback and retransmission can be repeated until the message is decoded reliably. The

receiver decision on whether to decode the message or to ask for a retransmission is

based on the energy required for decoding and also the available accumulated energy

in the battery. We note that there are two necessary conditions for decoding: (i) the

rate R needs to be less than maximum mutual information in the last time slot where

decoding occurs and (ii) the available energy in the battery must exceed the required

decoding energy. We assume that n is large enough that decoding can be executed

with arbitrary small probability of error. We also ignore the energy consumption of the

ACK/NAK signal as well as any delay or unreliability of the feedback channel.
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Repetition-HARQ

In Repetition-HARQ, the same coded packet is repeatedly transmitted and the receiver

combines the received copies through MRC until the message is decoded reliably.

IR-HARQ

In contrast to the previous two methods, IR-HARQ avoids retransmitting the same

codeword in every retransmission. In this scheme, the transmitter utilizes a Gaussian

codebook, with 2nR very long codewords. To transmit a message of nR bits, the

transmitter chooses the corresponding codeword, and sends the first n symbols of the

codeword. If the receiver asks for retransmission by returning a NAK, the transmitter

sends the second n symbols of that codeword and so on. Here, the receiver employs

the contributions of all received packets to decode a message; therefore, the additional

redundancy added at each step helps the receiver to decode the message successfully.

This model is contrast to [55] where in each retransmission the transmitter sends out a

punctured code with a different power level while the bits are selected probabilistically.

We note that if we truncate all the codewords, and only keep the first kn symbols of each

codeword, for some positive integer k, the new codebook is equivalent to a Gaussian

codebook of rate R/k.

5.2.1 Objective Function

Assume the number of decoded messages by slot t is denoted by m(t). The throughput,

ρ, is defined as the average number of successfully decoded information bits per symbol

period:

ρ(R, W̄ ) = lim inf
t→∞

R
m(t)

t
. (5.4)

Note that the throughput is a function of R and W̄ . In this work, the objective is

to design the decoding and retransmission policy in order to maximize the throughput

while the energy causality constraint is satisfied. Energy causality guarantees that the

total energy used at the receiver up to slot t must be less than tnW̄ for all t.



78

5.3 Decoding Energy

The limited energy arrival rate forces the receiver to keep requesting retransmissions to

not only increase the capacity gap and reduce the decoding energy, but also to collect

and save enough energy for decoding in the battery. Therefore, the retransmission time,

and thus the average throughput, is a function of the decoding energy. In order to

maximize the throughput, it is therefore important to have a close look at the decoding

energy of each of these ARQ schemes.

Assume that in an ARQ scheme, the transmission for nR information bits uses

slots T = {1, 2, . . . ,K} (i.e. K − 1 retransmissions), for some positive integer K. The

receiver decodes the data at the end of slot K. We note that in general K is random, a

function of channel realizations and energy of the battery. Here we discuss the decoding

energy of each scheme for a given K = k and channel gains g1, . . . gk.

For simplicity of exposition, we define a short-hand notation

fR(C) , nED(1− R

C
), (5.5)

which is a decreasing function of C.

Classic ARQ

Since in this scheme, the receiver drops all earlier packets and decodes the data from

the very last received packet, the decoding energy is equal to fR(Ck), where Ck = C(gk)

is the maximum mutual information per channel use during slot k.

Repetition-HARQ

The message is encoded into a length-n codeword (coded packet) and retransmitted

until the receiver decides to decode the message. From maximum ratio combing, we

know that the sufficient statistics for decoding the message from {−→Y t}kt=1 is
∑k

t=1 h
∗
t

−→
Y t,

where ht denotes the channel coefficients in slots t = 1, . . . , k. Therefore, the maximum
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mutual information between the transmitter and the receiver is

C

(
k∑
t=1

gt

)
= log2

(
1 +

p

σ2

k∑
t=1

gt

)
, (5.6)

and the decoding energy is equal to

fR

(
C

(
k∑
t=1

gt

))
. (5.7)

IR-HARQ

As we explained in subsection 5.1, the mutual information between transmitted signals

{−→X t}t∈T and received signals {−→Y t}t∈T in k slots is equal to n
∑k

t=1Ct = n
∑k

t=1C(gt).

The required energy to decode the first message after k transmissions is

knED
(

1− R/k∑k
t=1Ct/k

)
= kfR

(
k∑
t=1

Ct

)
. (5.8)

The fact that the energy of decoding is not only a function of the capacity gap, but

also a function of the code length, has some interesting implications. These implications

lead to some results that are contrary to observations that are valid for ARQ systems

with no constraint on the decoding energy.

• Let us compare the decoding energy of the IR-HARQ and Repetition-HARQ

systems. Since C(·) is concave, C
(∑k

t=1 gt

)
≤∑k

t=1C(gt). Since fR(C) is a de-

creasing function of C, therefore fR

(
C
(∑k

t=1 gt

))
≥ fR(

∑k
t=1C(gt)). However,

it is not enough to conclude that the decoding energy of IR-HARQ is less than

that of Repetition-HARQ. The reason is that in Repetition-HARQ, the effective

length of the code after MRC is fixed and equal to one slot, i.e. n. However,

in IR-HARQ, the length of a codeword is equal to the length of k slots, i.e. kn.

Recall that the decoding energy linearly scales with k. This is reflected in the

prefactor k in the decoding energy of IR-HARQ in (5.8). As a result, depend-

ing on the parameters of the problem, either the Repetition-HARQ or IR-HARQ

would perform better. This is in contrast with the case where decoding energy is
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not limited, and IR-HARQ always performs better than Repetition-HARQ [52].

• Let us now focus on the decoding energy for IR-HARQ itself. Every packet

received at slot t̂ ∈ {1, . . . , k} increases
∑

tCt =
∑

tC(gt) by C(gt̂), improving

the capacity gap. On the other hand, it also increases the code length by one

slot. Therefore, it is not clear if the received packet during t̂ indeed reduces the

decoding energy. For example, if gt̂ is very small, the contribution of the packet

sent in time slot t̂ in reducing the capacity gap is negligible, however it increases

the length of the code by one slot. Therefore, it increases the decoding energy.

In contrast, in HARQ without an energy constraint at the receiver, every single

observation, as long as the corresponding channel gain is not equal to zero, is

helpful, no matter how small it is. We suggest the scheme of IR-HARQ with

subset selection which is explained next.

IR-HARQ with subset selection

Because the decoding energy is a function of both the capacity gap and the code-

length, it is sometimes better in IR-HARQ to ignore some received packets in decoding

the message. Thus, we propose that the receiver chooses a subset T ⊂ {1, . . . , k} of

received packets to decode the message. If the receiver decodes the message from the

received packets in slots T , then the decoding energy is equal to

n|T |ED
(

1− R/|T |∑
t∈T Ct/|T |

)
= |T |fR

(∑
t∈T

Ct

)
. (5.9)

Therefore, the minimum energy of decoding is equal to

min
T ⊂{1,...,k}

|T |fR
(∑
t∈T

Ct

)
. (5.10)

Note that in IR-HARQ with subset selection, the transmission scheme is the same

as IR-HARQ, the only difference is that in the process of decoding or calculating the

decoding energy, we use only a subset of the transmitted packets.

Remark: We note that to find the optimum subset of slots in (5.10), we do not need
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to go through all subsets of {1, 2, . . . , k}. Consider a permutation π = (π(1), . . . , π(k))

of the set {1, 2, . . . , k}, such that Cπ(1) ≥ Cπ(2) ≥ . . . ≥ Cπ(k). Then, among all

subsets T , with cardinality `, for some `, 1 ≤ ` ≤ k, the subset {π(1), . . . , π(`)} of the

received packets achieves the largest mutual information and as a result requires the

least decoding energy. Therefore, the minimum energy of decoding is equal to

min
`∈{1,...,k}

`fR

(∑̀
i=1

Cπ(i)

)
. (5.11)

The complexity of the above optimization is linear in k.

5.4 Decision Policy

To derive the the optimum decision policy, maximizing the throughput, one option is

to use dynamic programming to develop a recursive optimization problem [56], which

yields the best decision at each slot based on the collected packets, stored energy in the

battery, and the expected performance in the future. However, the energy left in the

battery after each decoding couples the decision process for different messages making

the problem non-trivial.

As an alternative solution, here we propose a scheme in which the receiver decides to

decode a packet if (1) it has enough energy accumulated in the battery to decode it, (2)

the required energy to decode is less than a threshold γ. Otherwise a retransmission is

requested. The threshold γ is selected such that the throughput is maximized. Note that

the condition (2) presumes that the capacity gap is positive. Otherwise, the decoding

energy is unboundedly large. In the next section, we present simulation results for this

scheme.

In the threshold-based classic ARQ, the retransmission is continued until the receiver

receives a packet through a good enough channel gain which requires decoding energy

less than a threshold γ, and at the same time, the battery has enough energy to decode

the message. Since in classic ARQ in each slot, the receiver drops the previous packets,

this problem reduces to another problem, in which in each slot, the transmitter sends

a new coded packet, and the receiver opportunistically decodes the packet. In Chapter
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4 (and also [23],) we proved that a threshold-based algorithm, concatenated with a

waiting time at the beginning achieves the optimum performance under this setting1.

The optimum throughput ρ∗ is equal to

ρ∗ = RPr[fR(Ct) ≤ γ∗] w.p.1, (5.12)

where the optimum threshold γ∗ is the solution to the following equation

Pr[fR(Ct) ≤ γ∗]E[fR(Ct)|fR(Ct) ≤ γ∗] = nW̄ .

The threshold-based algorithm we propose here is motivated by this result.

5.5 Simulation Results

In this section, we compare various ARQ schemes applying threshold-based decision.

Here, we let ED(δ) = (1/δ) log(1/δ) [27, 31] and p/σ2 = 1. The channel coefficient H

has a Rayleigh distribution with second moment 1.

Figures 5.1 and 5.2 compare throughput versus nW̄ for all four schemes for R = 3

bit/s/Hz and R = 0.5 bit/s/Hz, respectively. We have the following observations:

• As discussed, depending on the values of R and W̄ , the Repetition-HARQ can

perform either better or worse than IR-HARQ with subset selection.

• For large values of W̄ , the system cares less about the energy, so it seeks to

increase the mutual information to exceed R as early as possible to start decoding

the message. Since IR-HARQ improves the overall mutual information faster than

Repetition-HARQ, it performs better for large W̄ . For small W̄ , energy is the

main constraint and thus Repetition-HARQ performs better.

• Since both the effective code length and the capacity gap in classic ARQ are less

than or equal to those of IR-HARQ, it is possible that the classic ARQ outperforms

1In contrast to Chapter 4 where the threshold was on the channel gain, here we put the threshold
on the decoding energy.
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Figure 5.1: Throughput versus the arrival energy rate of nW̄ for the code rate of R = 3
bits/s/Hz, n = 106.

IR-HARQ, but it never outperforms IR-HARQ with subset selection. Subset

selection always results in an effective code length that minimizes the decoding

energy.

• IR-HARQ performs poorly when R is small because the code length grows quickly

with retransmissions.

In ARQ-based schemes, the transmitter relies on the channel statistics to set the rate

R, such that the overall throughput is maximum. One important question is whether,

Repetition-HARQ can still perform better than IR-HARQ for the optimum choice of R.

Figures 5.3 and 5.4 compare throughput versus R for all four schemes for two different

energy arrival rates of nW̄ = 0.3 J/slot and nW̄ = 2 J/slot, respectively. We can

see in Fig. 5.3, that for nW̄ = 0.3 J/slot, the maximum throughout of Repetition-

HARQ is ρ = 0.26 bit/s/Hz bits per channel use, which is larger than the maximum

throughput achieved by all other schemes. On the other hand, for nW̄ = 2 J/slot, the

maximum throughput of IR-HARQ with and without subset selection is larger than

that of Repetition-HARQ.
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Chapter 6

Energy-Aware Downlink Scheduling in LTE-Advanced

Networks

LTE cellular networks have become ubiquitous. The present deployments are predomi-

nantly based on Release 8, whereas newer ones (Release 13 is currently being finalized)

will incorporate features that have been standardized in later releases. The key fea-

tures of the LTE downlink (DL) are OFDMA and MIMO. As a result, a subframe

scheduler that exploits these two features is a key component of an LTE base station.

In subframe scheduling, which is done every millisecond, portions of the available band-

width, referred to as Resource Blocks (RBs), are assigned to users. Data is sent to each

scheduled user over its assigned RBs after an encoding process. The latter process

comprises an outer encoder to generate up to two codewords and an inner encoder for

transmit diversity or spatial multiplexing (spatial precoding.) A rich body of work

has investigated the problem of subframe scheduling. Due to the fine timescale and

processing power limitations, practical implementations greatly favor deterministic and

low-complexity algorithms. Thus, in our view the contributions [57] and [58] have been

particularly influential in demonstrating that the multi-carrier DL scheduling prob-

lem with finite queues and with two MIMO modes, respectively, can be approximately

solved (with a constant-factor guarantee) by simple greedy algorithms. These works

were then extended in [59] which imposed several practical LTE constraints. Recent

advances include [60] and [61] which have incorporated and analyzed the impact of

quantized (imperfect) channel state information (CSI) arising from specific LTE CSI

feedback modes.

Our focus in this chapter is to incorporate energy efficiency in the LTE subframe

scheduler design. The main motivation behind energy efficiency is to reliably transmit as
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many bits as possible for every joule of energy spent, subject to QoS guarantees (cf. [62]

for a comprehensive survey). Recent research in this area has also considered renewable

energy sources [63,64]. A key aspect that arises when considering LTE networks is that

certain signal attributes cannot (or should not) be changed dynamically at the time

scales of subframe scheduling. These attributes for instance include:

• The choice of the transmitting node (or base station) especially in deployments

with non-fibre backhaul.

• The choice of the transmit power level on an RB when it is assigned to a user.

• The maximum transmit rank (or number of data streams) that can be transmitted

by a node.

These restrictions are a consequence of the limited control signaling support provided

in the standard. Keeping in mind these limitations, we follow an approach for energy-

aware subframe scheduler design that generalizes the one outlined in [63], which con-

trolled the number of assigned RBs and the number of activated transmit antennas.

The latter approach enabled [63] to incorporate renewable energy sources and is emi-

nently suitable for energy efficiency as well. In our generalization, we start by adopting

the transmission mode concept from [59] that can model the important LTE features

and constraints, and also allows us to bound the maximum assignable transmit rank.

The latter allows us to control the number of activated RF chains, which is propor-

tional to the consumed baseband circuit power and subsumes the control of the number

of activated physical antennas. Furthermore, we place a price on utilizing each RB

and impose a cost constraint that a feasible set of scheduled RBs must satisfy, thereby

significantly generalizing the control of number of allocated RBs advocated in [63].

Our framework allows us to approximately solve the single-cell subframe scheduling

problem under a variety of important but seemingly intractable constraints that are

discussed in the next section. Consequently, our proposed algorithm can be used as

a sub-routine in energy efficient resource allocation, which has received significant at-

tention spanning: point-to-point links [65,66], the single-cell downlink [67,68] followed
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by the multi-cell downlink [68–70]. These works formulate resource allocation prob-

lems that are typically continuous optimization ones and fractional programming has

emerged as a popular tool to solve such problems [62]. On the other hand, we rely on

discrete combinatorial optimization tools which can directly consider resources (that

are in general discrete) without resorting to any continuous relaxations.

The problem we formulate (not surprisingly) is NP hard, but unlike those in [57,59],

it cannot in general be reformulated to a form on which the classical greedy algo-

rithm [71] yields a meaningful guarantee. This is a major complication since the de-

signed algorithm must be simple and deterministic. Consequently, we turn to the mul-

tiplicative updates based method that was used to maximize a submodular set function

subject to multiple knapsack constraints [72] (cf. the definitions in the appendix). Di-

rect adaptations of the algorithms from [72] are either not possible or do not yield a

useful guarantee since the problem at hand involves the combination of a matroid and

(non-binary) knapsack constraints. We thus design a novel algorithm and build upon

the intricate analysis developed in [72] to demonstrate that our algorithm achieves a

meaningful guarantee. In particular, we show that it achieves an approximation factor

that scales as 1/ ln(n), where n is proportional to the problem dimension. A key feature

of our algorithm is that we work with a submodular form of the cost constraint instead

of a linear constraint. This is a departure from the method in [73] where submodular

constraints are successively approximated as linear. We are able to considerably en-

hance the analysis of [72] to incorporate such a submodular constraint and show that

our approach offers significant performance improvements as well.

6.1 Problem formulation

6.1.1 Optimization framework

We consider the downlink sub-frame scheduling problem with the objective of max-

imizing the weighted sum of throughputs. We begin by discussing several practical

constraints:

[C1]: An orthogonality constraint on each RB, i.e., at most one user from the
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active user set U can be scheduled on each RB. Also, the number of users scheduled

in a subframe cannot exceed a certain threshold, K̄. The latter constraint helps in

reducing the control channel signaling overhead.

[C2]: The transmission mode on all the RBs allocated to the same user needs to

be identical over a subframe. Each transmission mode must be selected from a given

finite set M of cardinality M . This generic constraint is very useful in incorporating

several practical and mandatory ones. For instance, a mode can represent the transmit

(spatial) rank assigned to the user (LTE Release 10 and beyond), or the choice between

spatial multiplexing and transmit diversity (LTE Release 8 and beyond), or it can

indicate a transmit precoder drawn from a finite codebook (LTE Release 8). Thus, by

imposing the one transmission mode per scheduled user constraint, we can account for

mandatory constraints imposed by several LTE releases.

[C3]: The bit loading on any RB must conform to choices permissible under the

selected mode. This constraint facilitates in modeling the finite modulation and coding

scheme (MCS) constraints. In addition, to address the bursty user traffic demands, the

total number of bits assigned to each scheduled user u must not exceed its given queue

(buffer) size Qu. Note that the user traffic demands are typically bursty, hence it is

very important to incorporate finite queue sizes.

[C4]: The set of all the RBs that are utilized must satisfy one or more linear

cost constraints. Incorporating these cost constraints together with the maximum rank

constraint, is very useful for energy-aware scheduler design.

Having described the constraints that we impose, we define the expected throughput

obtained upon scheduling user u with mode m on RB n and loading bn bits, as

bn(1− pmu,n(bn)), bn ∈ Bm, (6.1)

where pmu,n(bn) is the corresponding block error probability. The throughput in (6.1) is

zero at bn = 0. Bm denotes the set of all possible bit loadings that can be done on any

RB under mode m and we assume 0 ∈ Bm. The set Bm can be any arbitrary finite set
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or it can be an uncountable set. We define

Bm
max = max{b : b ∈ Bm}.

Then, letting αu > 0 denote the given (input) weight assigned to user u and maximizing

over the bit loading, we obtain the maximum expected weighted throughput

rmu,n = αu max
bn∈Bm

{bn(1− pmu,n(bn))}. (6.2)

The throughput model in (6.1) allows us to accommodate imperfections (or errors) in

the channel state information at the scheduler (cf. [60]) and is more general than the

typical model used in many previous works (e.g. [57, 58]), where any variable number

of bits bn (subject to an upper bound) can be allocated on RB n and then all of them

are then successfully delivered. Indeed, this latter model, henceforth referred to as the

0− 1 throughput model, assumes that each error probability is a step function, i.e.,

pmu,n(bn) = 1
(
bn > Bm

u,n

)
, (6.3)

Bm
u,n > 0 denotes the maximal number of information bits that can be successfully

loaded on RB n when scheduling user u with mode m. In addition, under this model

the set Bm is assumed to be an interval [0, Bm
max], with Bm

max ≥ Bm
u,n, for all u,m, n.

We define xmu,n as the indicator variable which is one if user u is scheduled on RB n

with transmission mode m, and zero otherwise. Let K,M be the total number of users

and transmission modes, respectively. Let N = {1, · · · , N} denote the set of available

RBs. We use the non-negative scalars {an|n ∈ N} to denote the normalized prices

associated with each of the RBs. Without loss of generality, we assume an ∈ [0, 1],

for all n ∈ N and impose a constraint
∑

n∈R an ≤ 1 that each feasible set R ⊆ N

of allocated RBs must satisfy. Notice here that by setting an = 1/J for all n and

some J ≥ 1, we can ensure that no more than J RBs are chosen. Another example

is where the cost constraint can impose a sum power constraint, wherein higher prices

are assigned to some RBs compared to others. The former ones can be those RBs on
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which transmission with a boosted power is permitted to service edge users in an FFR

(Fractional Frequency Reuse) configuration. Furthermore, the bound on the maximal

assignable transmit rank can be used to limit the number of RF chains that need

to be activated. Then, for each instance, the input comprises of the set of prices,

the maximum assignable rank, user weights and buffer sizes, the user limit and the

throughput in (6.1) for all u,m, n. To improve readability some proofs for the claims

for this chapter have been deferred to the appendix.

6.1.2 Backlogged traffic model

Under this model, using (6.2) we can formulate the scheduling problem as

max
{xmu,n∈{0,1}}

K∑
u=1

N∑
n=1

M∑
m=1

rmu,nx
m
u,n (6.4a)

subject to

M∑
m=1

K∑
u=1

xmu,n ≤ 1, 1 ≤ n ≤ N, (6.4b)

M∑
m=1

max
1≤n≤N

xmu,n ≤ 1, 1 ≤ u ≤ K, (6.4c)

K∑
u=1

M∑
m=1

max
1≤n≤N

xmu,n ≤ K̄, (6.4d)

N∑
n=1

K∑
u=1

M∑
m=1

anx
m
u,n ≤ 1. (6.4e)

Note that the set of constraints (6.4b) requires that on each RB at most one user with

one transmission mode can be scheduled. Each of the M modes conforms to the given

maximum rank bound. The set of constraints (6.4c) stipulates that each user can only

have one transmission mode (i.e., one common transmission mode is used across all

RBs allocated to the user). The constraint (6.4d) requires that the maximum number

of scheduled users cannot exceed K̄, for any given K̄ such that 1 ≤ K̄ ≤ K. The last

constraint (6.4e) dictates that the sum cost of all occupied RBs should be no greater

than unity.
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6.1.3 Finite queue model

Under this model, we assume that user u has a finite queue size Qu. Denote bmu,n as

the number of information bits allocated to user u on RB n with transmission mode m

(these bits are however counted towards the weighted sum throughput objective only

when user u is assigned RB n with mode m, i.e., only when xmu,n = 1). The scheduling

problem is then formulated as,

max
{xmu,n,bmu,n}

K∑
u=1

N∑
n=1

M∑
m=1

αux
m
u,nb

m
u,n(1− pmu,n(bmu,n)) (6.5a)

subject to

M∑
m=1

K∑
u=1

xmu,n ≤ 1, 1 ≤ n ≤ N, (6.5b)

M∑
m=1

max
1≤n≤N

xmu,n ≤ 1, 1 ≤ u ≤ K, (6.5c)

K∑
u=1

M∑
m=1

max
1≤n≤N

xmu,n ≤ K̄, (6.5d)

N∑
n=1

K∑
u=1

M∑
m=1

anx
m
u,n ≤ 1, (6.5e)

M∑
m=1

N∑
n=1

bmu,n ≤ Qu, 1 ≤ u ≤ K, (6.5f)

xmu,n ∈ {0, 1} & bmu,n ∈ Bm,∀ u,m, n, (6.5g)

where the set of constraints (6.5f) model the queue size limit for each user.

6.1.4 Hardness result

To prove the hardness of the problems in (6.4) and (6.5) it suffices to consider the 0−1

throughput model (6.3) and instances where the sum cost constraint is irrelevant (i.e.,∑
n∈N an ≤ 1). We then see that (6.4) subsumes the problem formulated in [58] since

it considers more than two transmission modes. On the other hand, (6.5) subsumes

the problem formulated in [57] since it considers more than one mode. Invoking the

hardness results established in [57,58], we can deduce the following result.

Remark 6.1 Problem (6.4) is NP-hard. There exists a δ > 0, such that it is NP-hard
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to obtain (1− δ)-approximation to problem (6.5).

The simplified version of the problem in (6.5) considered in [57] is a combinatorial

auction problem without any cost constraint and with submodular valuations, i.e.,

where the RBs have to be distributed among the users with each user’s utility being a

submodular set function. For this problem the classical greedy algorithm [71] is well

suited. Regarding the original version in (6.5), we can show the following.

Theorem 6.1 For the 0 − 1 throughput model, assuming K̄ ≥ K, problem (6.5) is

a combinatorial auction problem with a linear cost constraint and valuations that are

fractionally sub-additive (but not necessarily submodular).

The proof is found in the appendix.

6.2 A Unified Scheduling Algorithm

We develop a unified algorithm to solve the downlink scheduling problems in (6.4) and

(6.5). We show that this algorithm achieves a good approximation ratio under both

the traffic models.

Our objective is to construct a set S of scheduled users, a set R of selected RBs with∑
n∈R an ≤ 1, a transmission mode and a distinct set of RBs in R allocated to each

user u ∈ S. To achieve this objective, we adopt a two staged approach where the first

stage selects a set of users in which each user is assigned one mode and a distinct set of

RBs. This selection is feasible with respect to all constraints of (6.4) and (6.5) except

for the cost constraint. Consequently, in the second stage the output of the first stage

is pruned in order to obtain a (fully) feasible solution. The key insight we use is to

enforce the cost constraint in a soft manner in the first stage. This allows us to obtain

a solution from the first stage that is close to optimal, while not significantly violating

the cost constraint. Then, pruning the solution so obtained yields a feasible solution

for which a good approximation guarantee can be derived. We remark here that we

select the cost constraint as the one which will be enforced in a soft manner in the first

stage. This is because after appropriate reformulation (as will be revealed later), all

the other constraints together form a single matroid and can be strictly enforced in the
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first stage while ensuring an approximate optimality. The pseudo-code of our two-stage

algorithm is illustrated in Algorithm 1, which we next proceed to elucidate.

We begin by considering the first stage of the algorithm. We denote U as the set

of candidate users that have not been selected so far, and we initialize U = {1, · · · ,K}

together with S = ∅. We define a current value Vn for each RB n ∈ N , representing the

weighted throughput of the current allocation on that RB, and initially we set Vn = 0

for all n ∈ N . Note that we can also consider each Vn to be the weighted throughput

barrier that a new selection (of user and mode) should exceed on RB n in order to obtain

an assignment. After each iteration we use the scalar w to track the accumulated cost

of all the occupied RBs, i.e.,

w = λ
∑
n∈N an1(Vn>0), (6.6)

and w is initialized to one. Further, we let λ be a scalar that we can initialize to any

value strictly greater than 1. The role of λ is to enforce the cost constraint in a soft

manner. The approximation ratio does depend on λ and its impact is investigated in

the simulation results.

The first stage of our algorithm is iterative. At each iteration, in order to select

a new user (and its mode), we need to solve the following problem for each candidate

user u ∈ U and each mode m ∈ {1, · · · ,M}:

max
{v(u,n,m)}

N∑
n=1

max{v(u, n,m)− Vn, 0}

subject to
N∑
n=1

an1 (Vn = 0 & v(n, u,m) > 0) ≤ λ/w,

N∑
n=1

an1 (v(n, u,m) > 0) ≤ 1, (6.7)

where v(u, n,m) denotes the weighted throughput obtained upon assigning user u to

RB n with mode m. The first constraint in (6.7) ensures that the sum cost over all

assigned RBs that were hitherto unoccupied; i.e., each assigned RB n for which Vn = 0,

does not exceed λ/w. Imposing this constraint at each iteration ensures that upon
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termination of the first stage, the sum cost over all occupied RBs is not too large but

can exceed unity (soft constraint). The second constraint ensures that the sum cost

of all assigned RBs does not exceed unity. Let {v̂(u, n,m)}n∈N denote a good feasible

solution to (6.7). Then, we define

g(u,m) =

N∑
n=1

max{v̂(u, n,m)− Vn, 0},

to be the net gain of adding user u to S with transmission mode m. The exact com-

putation of v̂(u, n,m) (and thus of g(u,m)) depends on the traffic model and will be

discussed shortly. Next, let

(u∗,m∗) = argmaxu∈U ,m≤Mg(u,m).

We then add the user u∗ to the scheduled user list (and remove it from U), assign

its transmission mode to be m∗. For each RB n ∈ N , if v̂(u∗, n,m∗) > Vn, then it

is allocated to user u∗ and removed from its previous allocation if it was allocated

previously to any user. This ensures that each user is selected at most once (with one

mode) and that each RB is always assigned to at-most one user. Note that the RB

allocation is subject to change as an assigned RB may be re-allocated to another user

later or that RB itself may be dropped from the set R that is eventually selected. Vn

is now updated as

Vn = max{Vn, v̂(u∗, n,m∗)}, n ∈ N , (6.8)

followed by updating w according to (6.6). The first stage of the algorithm terminates

when any of the following conditions are satisfied:

1. U = ∅,

2. |S| = K̄,

3. g(u∗,m∗) = 0.

In the second stage we first consider the set of all selected RBs R′ = {n : Vn > 0}.
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We declare the obtained solution feasible if
∑

n∈R′ an ≤ 1 and set R = R′. Otherwise,

we follow a pruning procedure detailed below. Under this procedure, we solve the

following standard knapsack problem

max
R⊆R′

{∑
n∈R

Vn

}

s.t.
∑
n∈R

an ≤ 1, (6.9)

using any suitable approximation algorithm [74] to determine the feasible subset R.

Finally, considering each user u which is assigned one or more RBs within the set R,

we re-select its best mode without changing the RB allocation. Note that the latter

optimization is decoupled across users and is simple since the RB allocations are not

altered.

As promised above, we now consider the sub-problem (6.7) that needs to be solved

at each iteration, for each one of the two following traffic models.

Backlogged traffic model: Under the backlogged traffic model, without loss of

optimality, we can deduce that if the nth RB is selected then v(u, n,m) must be the

maximum weighted expected throughput of allocating user u on RB n with transmission

mode m, i.e.,

v(u, n,m) = znr
m
u,n, (6.10)

where zn ∈ {0, 1} is an indicator variable that is one if RB n is chosen and is zero

otherwise. Hence, g(u,m) can be calculated by solving the following problem

max
{zn∈{0,1}, ∀ n}

N∑
n=1

max{znrmu,n − Vn, 0}

s.t.

N∑
n=1

an1 (Vn = 0) zn ≤ λ/w,

N∑
n=1

anzn ≤ 1. (6.11)

Finite queue model: Given u, m and the queue size Qu for user u, the weighted
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Algorithm 1 Unified Scheduling Algorithm

1: U = {1, · · · ,K},S = ∅, Vn = 0 for 1 ≤ n ≤ N , λ > 1, w = 0.
2: while Termination conditions not satisfied do
3: for all u ∈ U do
4: for m = 1 to M do
5: Compute the value v̂(u, n,m) on each RB n and the net gain

g(u,m), while satisfying
∑N

n=1 an1 (Vn = 0 & v̂(n, u,m) > 0) ≤ λ/w and∑N
n=1 an1 (v̂(n, u,m) > 0) ≤ 1

6: end for
7: end for
8: (u∗,m∗) = arg maxu∈U ,1≤m≤M g(u,m).
9: If g(u∗,m∗) = 0, go to 19.

10: Add user u∗ to S with mode m∗ and remove it from U .
11: for n = 1, · · · , N do
12: if v̂(u∗, n,m∗) > Vn then
13: Allocate RB n to user u∗, after removing it from any previously assigned

user.
14: Vn = v̂(u∗, n,m∗).
15: end if
16: end for
17: Update w = λ

∑N
n=1 an1(Vn>0)

18: end while
19: Determine R′ = {n : Vn > 0}
20: if

∑
n∈R′ an > 1 then

21: Determine a subset R ⊆ R′ such that
∑

n∈R an ≤ 1 via pruning.
22: else
23: Set R = R′
24: end if
25: Re-select the optimal transmission mode for each user over its assigned RBs within

the set R of selected RBs.
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throughput v(u, n,m) is a function of the bit loading bn on any selected RB n, i.e.,

v(u, n,m) = znαubn(1 − pmu,n(bn)). As a result, the major issue here is to find a good

bit allocation subject to the queue size constraint. Towards that end, we define a set

Bmu = {b ∈ Bm : b ≤ Qu}. Without loss of generality, we assume that the set Bmu
has at-least one strictly positive entry (otherwise we can simply remove mode m as a

candidate mode for user u). Then, the problem of interest can be posed as the following.

max
N∑
n=1

max{znαubn(1− pmu,n(bn))− Vn, 0}

s.t. bn ∈ Bmu ,∀ n; zn ∈ {0, 1},
N∑
n=1

bn ≤ Qu,

N∑
n=1

an1 (Vn = 0) zn ≤ λ/w,

N∑
n=1

anzn ≤ 1. (6.12)

Clearly, the problem in (6.12) subsumes that in (6.11). Notice also that the penultimate

constraint in (6.12) is vacuous (in lieu of the last one) whenever λ/w ≥ 1.

We next propose a simple approximation algorithm to solve both (6.11) and (6.12).

We let

r̄mu,n = αu max
bn∈Bmu

{bn(1− pmu,n(bn))},

with

B̄m
u,n = arg max

bn∈Bmu
{bn(1− pmu,n(bn))},

and define a subset of candidate RBs

Rcand = {n ∈ N : r̄mu,n > Vn & an1 (Vn = 0) ≤ λ/w}.

Clearly there is no reason to allocate to user u any RBs outside of Rcand. Moreover, if

Rcand is empty we can simply set v̂(u, n,m) = 0 for all n ∈ N . Otherwise, we define
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three conditions

D1 :
∑

n∈Rcand

B̄m
u,n ≤ Qu, (6.13)

D2 :
∑

n∈Rcand

an1 (Vn = 0) ≤ λ/w,

D3 :
∑

n∈Rcand

an ≤ 1.

If all these conditions are satisfied (i.e., are true) we can optimally solve (6.12) by

setting

v̂(u, n,m) =

 r̄mu,n n ∈ Rcand

0 n ∈ N \ Rcand

For the remaining possibilities we first determine the effective normalized RB costs

ān = an1 (Vn = 0) /(λ/w), ∀ n.

Then, we set scalar ζ1 = 1 (ζ3 = 1) if the condition D1 (D3) is not satisfied and set

ζ1 = 0 (ζ3 = 0) otherwise. Another scalar is defined as ζ2 = 0 whenever the condition

D2 is satisfied or when λ/w ≥ 1 (which is always true in the first iteration) and is set

to be one otherwise. Finally, we select any scalar θ such that θ > ζ1 + ζ2 + ζ3. Then, we

determine a good feasible (suboptimal) solution to (6.12) using the greedy procedure

that is outlined in Algorithm 2. Some comments on Step 4 of Algorithm 2 are in order.

We suppose that the locally optimal RB ˆ̀ together with the corresponding optimal bit

loading b̂ˆ̀ (which we assume must exist) can be efficiently determined. This is indeed

true when the set Bm (and thus Bmu ) is finite. It is also true for the 0− 1 throughput

model in which an optimal bit loading for the inner maximization on any RB ` is given

by b̂` = B̄m
u,`. Further, in case that the optimal bit loading on any RB is not unique,

we select the largest one among all such optimal loadings. While the approximation

guarantee that will be proved next holds true for any arbitrarily fixed tie breaking rule,

we have seen in our simulation results that the recommended method works better.

We now proceed to establish an approximation guarantee for Algorithm 1. Towards
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Algorithm 2 Greedy Bit Allocation

1: Set v̂(u, n,m) = 0, ∀ n = 1, · · · , N and G = 0 and V̆n = Vn, ∀ n ∈ Rcand

2: Initialize θ, ζ1, ζ2, ζ3 and ān, ∀ n.
3: while ζ1 + ζ2 + ζ3 ≤ θ do
4: Determine

ˆ̀ = arg max`∈Rcand
max b`∈Bmu

b`>0

{
αub`(1−pmu,`(b`))−V̆`
ζ1b`/Qu+ζ2ā`+ζ3a`

}
and let b̂ˆ̀ denote the corre-

sponding optimal bit loading.

5: if ζ1θ
b̂ˆ̀/Qu ≤ θ and ζ2θ

āˆ̀ ≤ θ and ζ3θ
aˆ̀ ≤ θ then

6: Set v̂(u, ˆ̀,m) = αub̂ˆ̀(1− pmu,ˆ̀(b̂ˆ̀)) and G = G+ v̂(u, ˆ̀,m)− V̆ˆ̀

7: Set V̆ˆ̀ = v̂(u, ˆ̀,m)
8: end if
9: Update ζ1 = ζ1θ

b̂ˆ̀/Qu and ζ2 = ζ2θ
āˆ̀ and ζ3 = ζ3θ

aˆ̀

10: end while
11: Determine ˆ̀= arg max`∈Rcand

{r̄mu,` − V`}
12: if r̄m

u,ˆ̀
− Vˆ̀> G then

13: Set v̂(u, ˆ̀,m) = r̄m
u,ˆ̀

and v̂(u, n,m) = 0, ∀ n 6= ˆ̀.

14: end if

this end, we first derive a guarantee for Algorithm 2, where we need to consider only

the case with non-empty Rcand and ζ1 + ζ2 + ζ3 > 0.

Proposition 6.1 Algorithm 2 is a constant-factor approximation algorithm for the

problem in (6.12), where the constant factor is given by η = 1
2

(
1− 1

exp(1/θ)

)
.

Proof: We recall the definition of the set Rcand and define a ground set of tuples

Ψ̃ = {(`, b`), ∀ ` ∈ Rcand & b` ∈ Bmu : b` > 0}. Note that for the same RB ` we can

have several distinct tuples in Ψ̃ corresponding to different bit loading b`. Then, we

define a normalized non-negative set function f : 2Ψ̃ → IR+, such that f(∅) = 0 and for

all other subsets A ⊆ Ψ̃, we have

f(A) =
∑

`′∈Rcand

max
(`,b`)∈A

{1
(
`′ = `

) [
αub`(1− pmu,`(b`))− V`

]+}.
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We can now express the problem in (6.12) as

max
A⊆Ψ̃
{f(A)}

s.t.
∑

(`,b`)∈A
b` ≤ Qu,

∑
(`,b`)∈A

a`1 (V` = 0) ≤ λ/w,

∑
(`,b`)∈A

a` ≤ 1. (6.14)

It can be readily verified that the set function f(·) is a normalized non-decreasing

submodular set function (cf. the definitions given in the appendix). Consequently,

the problem in (6.14) is that of maximizing such a set function subject to three linear

packing (knapsack) constraints. The conditions in (6.13) identify which of the three

knapsack constraints are vacuous. For each constraint i the corresponding scalar ζi

is defined to be one only if it is relevant. Then, in case only one of the constraints

is relevant, Algorithm 2 reduces to the greedy algorithm of [75], which considered

submodular set function maximization subject to one knapsack constraint, and yields

a guarantee of 1 − 1√
e
. Moreover, in each case, Algorithm 2 is a simple enhancement

of the multiplicative updates based algorithm of [72], which considered submodular set

function maximization subject to multiple general knapsack constraints. The direct

adaptation of the algorithm from [72] would skip the check in Step 5. Then, if the

solution obtained upon termination (of the while-loop) is infeasible, it would compare

objective value attained by just the last tuple added, against that yielded by all the

other selected tuples (i.e., the first to the penultimate one) together, and pick the

choice yielding the larger objective value. Our enhancement, which allows us to unify

the algorithms from [75] and [72], can be readily seen to yield a solution at-least as good

as this direct adaptation. Consequently, we can claim the guarantee of 1
2

(
1− 1

exp(1/θ)

)
for all θ > 3 established in [72] (for the problem with three knapsack constraints). The

desired result then corresponds to the latter smaller guarantee. 2

We are now ready to establish the approximation guarantee for Algorithm 1. Towards
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that end, we define a ground set containing all possible 3−tuples Ψ = {(u,m,b)}, where

for each such 3−tuple (or element) e = (u,m,b), u denotes the user and m denotes the

mode and b = [b1, · · · , bN ]T ∈ IRN+ is an N length bit loading vector such that for each

RB ` ∈ N , b` ∈ Bm and
∑

`∈N b` ≤ Qu. Further,
∑

`∈N an1 (b` > 0) ≤ 1. With these

qualifications we can conclude that Ψ includes all possible elements, where each such

element represents a valid assignment of mode, RBs and bits to a user. Furthermore,

we define a family of subsets of Ψ, denoted by I, as follows.

I =

A ⊆ Ψ :
∑

(u′,m′,b′)∈A
1
(
u′ = u

)
≤ 1 ∀ u ∈ U & |A| ≤ K̄

 . (6.15)

In words, any subset of 3−tuples from Ψ in which each user appears at-most once

and whose cardinality does not exceed the user limit K̄ is a member of I and vice

versa. Then, we define a normalized non-negative set function h : 2Ψ → IR+, such that

h(∅) = 0 and for all other subsets A ⊆ Ψ

h(A) =
∑
n∈N

max
(u,m,b)∈A

{αubn(1− pmu,n(bn))}. (6.16)

The following result follow from the basic definitions provided in the appendix.

Lemma 6.1 The set function h(·) is a normalized non-decreasing submodular set func-

tion and (Ψ, I) is a matroid.

We can now reformulate the problem in (6.5) as

max
A⊆Ψ
{h(A)}

s.t. A ∈ I∑
(u,m,b)∈A

∑
n∈N

an1 (bn > 0) ≤ 1. (6.17)

Some comments on this reformulation are in order. First, from the definition of I it

follows that by restricting A ∈ I we have ensured that each user is selected at-most

once with one mode and that the associated bit loading is feasible, thereby meeting
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the per-user mode and bit loading constraints of (6.5). Then, the definition of the set

function h(·) ensures that each RB is implicitly assigned to at-most one user (since

only the weighted throughput of at-most one user is chosen via the max(·) function).

Consequently, any feasible solution to (6.17) maps to a feasible one for (6.5) yielding

the same objective value and vice versa. Thus, we have reformulated the problem in

(6.5) as that of maximizing a submodular objective subject to one matroid and one

knapsack constraint. A subtle and useful point is that, without loss of optimality, we

can replace the linear knapsack constraint in (6.17) with a submodular one, i.e.,

max
A⊆Ψ
{h(A)}

s.t. A ∈ I,∑
n∈N

an1 (∃(u,m,b) ∈ A : bn > 0) ≤ 1. (6.18)

To see that the formulations in (6.17) and (6.18) are equivalent, we first note that any

optimal solution for (6.17) is clearly feasible for (6.18). On the other hand, given any

optimal solution Oopt for (6.18), we can transform it to one that yields the same objec-

tive value but is feasible for (6.17), by considering each element ê = (û, m̂, b̂) ∈ Oopt

and each RB n ∈ N , and forcing b̂n = 0 if αûb̂n(1 − pm̂û,n(b̂n)) is not the maximum

weighted throughput on RB n among all elements in Oopt (ties can be broken arbitrar-

ily). This reformulation (6.18) with the submodular form of the constraint is used in

designing Algorithm 1. The utility of (6.18) is that it can help sub-optimal algorithms

since it expands the set of feasible solutions. Considering the problem in (6.18), let Oopt

denote an optimal solution and let Ô denote the final output yielded by Algorithm 1.

Further, let O denote the intermediate solution obtained after stage one of Algorithm

1. With some abuse of notation, let aO denote total cost of all the RBs occupied under

O, i.e., aO =
∑

n∈R′ an, where R′ is defined in Step 19 of Algorithm 1. Recall that the

intermediate solution O need not be feasible with respect to the cost constraint, i.e.,

we can have aO > 1. We next show that the intermediate solution O at-most incurs a

constant-factor loss with respect to the optimal one. To prove this result we build upon

the brilliant proof of Theorem 1.3 of [72]. The key challenges we have to surmount are
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that: the ground set Bm can be uncountable and that the sub-problem (6.12) can only

be approximately solved and that the submodular form of the constraint is employed.

For convenience, we use the notation 1 (n ∈ A) for any RB n ∈ N and subset A ⊆ Ψ

to return one if there exists an element e = (u,m,b) ∈ A under which the bit loading

on the nth RB is strictly positive (bn > 0), and return zero otherwise. Define

aA =
∑
n∈N

an1 (n ∈ A) , ∀ A ⊆ Ψ.

Further, for any set A ⊆ Ψ and element e ∈ Ψ, we let

hA(e) = h(A ∪ e)− h(A).

Then, let ej ∈ Ψ, j = 1, · · · , J be the element (3−tuple) chosen by Algorithm 1 at

the jth iteration of stage-1 and J is the number of iterations after which stage-1 of the

algorithm terminates. Letting wj denote the scalar w after the jth iteration of stage-1

of Algorithm 1, we see that wj = λ
∑N
n=1 an1(n∈{e1,··· ,ej}), ∀ j = 1, · · · , J .

Proposition 6.2 The intermediate solution yielded by Algorithm 1, O, satisfies,

h(O) ≥ h(Oopt)η

η + λ+ 1
, (6.19)

where η is the constant factor for the approximation guarantee of Algorithm 2 and λ is

the parameter used for tracking the (soft) cost constraint as in (6.6).

Proof: We begin by expanding the elements of the ground set Ψ as the following

ordered sequence of elements: V = {e1,F1, e2,F2, · · · , eJ ,FJ}. Here, F1 is the set

formed by elements from Ψ \ e1 that are also distinct from {ej}Jj=2. In particular,

all elements that share the same user as in e1 belong to F1 (such elements cannot

be selected by the Algorithm at any later stage). In addition, each element, e, that

violates the soft cost constraint, i.e., (a{e1,e} − ae1)w1 > λ and does not belong to the
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set {e2, · · · , eJ}, is included in F1. Similarly, each set

Fj ⊆ Ψ \ (F1 ∪ · · · ∪ Fj−1 ∪ {e1, · · · , eJ}), j = 2, · · · , J − 1

includes all elements that share the same user as in ej . In addition, each Fj includes

all elements that violate the soft cost constraint, i.e., (a{e1,··· ,ej ,e} − a{e1,··· ,ej})wj > λ

and do not belong to the set F1 ∪ F2 ∪ · · · ∪ Fj−1 ∪ {ej+1, · · · , eJ}. The last set FJ
is the set of remaining elements Ψ \ (F1 ∪ · · · ∪ FJ−1 ∪ {e1, · · · , eJ}). Notice that

an element e in this set FJ can have a user distinct from the one in eJ and satisfy

(a{e1,··· ,eJ ,e} − a{e1,··· ,eJ})wJ ≤ λ, only if either |O| = J = K̄ or hO(e) = 0. In other

words, only when the algorithm terminated either due to the user limit being reached

or no remaining element offering a strictly positive gain. Let F̃j = ej ∪Fj j = 1, · · · , J .

The main intuition that we leverage from [72] is as follows. Consider a traversal of the

ordered sequence V (starting from e1) such that Algorithm 1 selects elements e1, · · · , eJ
while discarding the rest. Suppose we can show that at every instance in this traversal

the cardinailty of the set selected by Algorithm 1 remains at least a certain constant

fraction of that selected by the optimal one. Then, invoking the approximate local

optimality of the selection made by Algorithm 1 in each iteration, we can establish the

desired result.

To obtain the bound in (6.19) we use the standard simple inequality (which follows

from monotonicity and submodularity of h(·))

h(Oopt) ≤ h(O) +
∑

e∈Oopt\O
hO(e) (6.20)

Then, we can discard all elements e from Oopt that belong to Oopt \ O and for whom

hO(e) = 0. Let Õopt denote the set after expurgating such elements from Oopt and note

that

h(Oopt) ≤ h(O) +
∑

e∈Õopt\O
hO(e) (6.21)
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We next invoke Lemma 6.2 which is stated in the appendix. Let

Oj = ∪j`=1e`, j = 1, · · · , J

with O0 = ∅ so that O = OJ . Using Lemma 6.2 in (6.21) and again invoking the

monotonicity and submodularity of h(·), we obtain the inequality

h(Oopt) ≤ h(O) +
J∑
j=1

∑
e∈Õopt

Ij \O
hOj−1(e) (6.22)

Then, a key observation we can deduce is that all elements in ∪J`=jF` were eligible for

selection by Algorithm 1 at the jth iteration. This assertion follows from the construc-

tion of the sets F`, ` = 1, · · · , J . Invoking Proposition 6.1 we know that the bit loading

determined from Algorithm 2 for each possible user and mode combination has at-least

η optimality. Consequently,

hOj−1(ej) ≥ ηhOj−1(e), ∀e ∈ ∪J`=jF` (6.23)

Using (6.32) we see that Õopt
Ij \ O ⊆ ∪

J
`=jF` with |Õopt

Ij \ O| ≤ λ + 1. Using these

observations along with (6.23) in (6.22), yields that

h(Oopt) ≤ h(O) +

J∑
j=1

∑
e∈Õopt

Ij \O

hOj−1(ej)

η

≤ h(O) +
J∑
j=1

(λ+ 1)hOj−1(ej)

η
= h(O)

(
1 +

λ+ 1

η

)

which is the desired result. 2

Theorem 6.2 Algorithm 1 yields an Ω
(

1
ln(min{N,K̄})−ln(ln(min{N,K̄}))

)
approximation

guarantee for the problem in (6.17) (or (6.5)).

Proof: We will prove this theorem by first showing that

h(Ô) ≥ γh(O)

aO + 1
(6.24)
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where γ ∈ (0, 1) is a constant. We next prove that aO (which represents the sum cost

after stage one) scales at-most logarithmically.

Suppose (6.24) holds. Then, define a sequence Sk, k = 0, 1, · · · , J , where J is the

number of iterations in stage-1, such that S0 = 0 and Sk =
∑N

n=1 an1 (n ∈ {e1, · · · , ek}) , ∀ k =

1, · · · , J . Thus, wk = λSk , ∀ k = 1, · · · , J . Also, O = {e1, · · · , eJ} and aO = SJ =∑N
n=1 an1 (n ∈ {e1, · · · , eJ}). Notice that Sk−Sk−1 ≤ aek , k = 1, · · · , J and that each

ek being feasible must satisfy aek ≤ 1, ∀ k ≥ 1 so that S1 − S0 = S1 ≤ 1 ≤ λ. In

addition, each ek must satisfy the (soft) constraint Sk − Sk−1 ≤ λ

λSk−1
, ∀ k ≥ 2. Then,

upon defining Sk = SJ , ∀ k > J , we can deduce that {Sk}∞k=0 represents a sequence

in the family S(λ) defined in Lemma 6.3 stated in the appendix. Next, we note that

in this sequence the number of strictly positive increments Sk − Sk−1, ∀ k ≥ 1 can be

at-most min{N, K̄} (recall that K̄ ≤ K). Using this observation and invoking Lemma

6.3 together with Proposition 6.2, we can conclude that the theorem is true.

It remains thus to prove (6.24). To do so, we notice first that h(O) =
∑

n∈R′ Vn.

Further, let ϑ be the approximation guarantee of the method employed in Step 21 (in

stage-2) of Algorithm 1. For instance, simple greedy type methods for the standard

knapsack problem in (6.9) yield ϑ = 1/2 [74]. Therefore,

h(Ô) ≥ ϑ
∑
n∈A

Vn, ∀ A ⊆ R′ :
∑
n∈A

an ≤ 1. (6.25)

Then, suppose that all the RBs in R′ can be divided into L bins such that the sum of

cost of the RBs in each bin is less than or equal to one. We can immediately infer using

(6.25) that h(Ô) ≥ ϑh(O)
L . This is because the profit over each bin (i.e., sum of {Vn}

over RBs in that bin) cannot exceed h(Ô)/ϑ and the sum profit over all L bins is equal

to h(O) =
∑

n∈R′ Vn. A simple bound on such L can be derived using the standard bin

packing argument. In particular, there must be only one bin for which the sum cost is

less than or equal to 1/2, else we could combine two such bins into one bin. As a result

L− 1 bins must have their respective costs no less than 1/2. Thus, the total cost of all

the RBs in R′ (which is the sum cost over all L bins), aO, must be at-least L−1
2 , from

which we can deduce that L ≤ 2aO + 1. This proves (6.24). 2
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We remark that by leveraging the proof of Lemma 6.2 we can show that

wJ ≤ min{N, K̄}λ2

, which yields a firm bound

aO = logλ(wJ) ≤ logλ(min{N, K̄}) + 2 logλ(λ).

Utilizing this bound in the proof of Theorem 7.2 and invoking Proposition 6.2, we can

deduce that the approximation guarantee of Algorithm 1 is at-least

ηϑ

(η + λ+ 1)(2 logλ(min{N, K̄}) + 4 logλ(λ) + 1)
.

We also extended the algorithm incorporating multiple more general cost constraints

that can be used to approximately solve the scheduling problem under network resource

(bandwidth) sharing constraints [76]. This extension is shown to yield the same guar-

antee as the original version with one cost constraint.

6.2.1 Benchmarking

In this section we list alternative approaches to design algorithms for (6.5) or (6.17)

that are more direct adaptations of known techniques.

Alternative-1: We let naive-greedy denote the direct adaptation of the classical

greedy algorithm of [71] to the problem in (6.17). A smarter alternative is to apply

the greedy method on the formulation in (6.18) which uses the submodular constraint

instead of the knapsack one. In particular, given the elements eg1, · · · , egj−1 selected so

far, where eg0 = ∅, we simply choose the next one, egj , as

arg max
e∈Ψ\{eg1,··· ,e

g
j−1}
{h({eg1, · · · , egj−1, e})− h({eg1, · · · , egj−1})}

s.t. {eg1, · · · , egj−1, e} ∈ I,∑
n∈N

an1
(
n ∈ {eg1, · · · , egj−1, e}

)
≤ 1. (6.26)
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This problem can in turn be approximately solved using Algorithm 2. The process

terminates if no such egj can be found. Invoking the fact that h(·) is also sub-additive

and that eg1 is the (approximately) optimal choice among all (singleton) elements in Ψ,

i.e., h(eg1) ≥ ηh(e), ∀ e ∈ Ψ, we can show that Alternative-1 yields an approximation

factor Ω
(

1
min{N,K̄}

)
.

Alternative-2: This alternative first models the matroid constraint in (6.17) asK+

1 knapsack constraints. Indeed, out of these K + 1 constraints, the first K constraints

enforce the fact that each user can be selected at-most once whereas the last one enforces

the user limit (cardinality) constraint. Then, accounting for the sum cost constraint we

have a submodular maximization problem subject to K + 2 linear constraints. Direct

adaptation of the multiplicative updates algorithm of [72] yields an approximation ratio

Ω(1/K). We note here that although the first K + 1 constraints are binary and sparse,

the last constraint is not binary valued so that the column sparse multiplicative updates

algorithm from [72] is not applicable.

Comparing these two alternatives with Algorithm 1, we see that the latter one

achieves a significantly better approximation ratio. Finally, we provide upper bounds

to bound the optimality gap of Algorithm 1 for every input instance. For the backlogged

traffic model, we note that the constraints of (6.4) involving the max function can be

easily converted into linear inequality constraints so the problem in (6.4) is indeed a

integer linear programming problem (ILP). Upon relaxing (6.4) by allowing {xmu,n ∈

[0, 1]} we can obtain the LP upper bound. Considering the general finite queue model,

we note that (6.5) is not an ILP. Nevertheless, specializing to the 0 − 1 throughput
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model we can obtain the following LP upper bound.

max
{xmu,n}

K∑
u=1

N∑
n=1

M∑
m=1

αux
m
u,nB

m
u,n

subject to
M∑
m=1

K∑
u=1

xmu,n ≤ 1, 1 ≤ n ≤ N

M∑
m=1

max
1≤n≤N

xmu,n ≤ 1, 1 ≤ u ≤ K

K∑
u=1

M∑
m=1

max
1≤n≤N

xmu,n ≤ K̄

N∑
n=1

K∑
u=1

M∑
m=1

anx
m
u,n ≤ 1

M∑
m=1

N∑
n=1

xmu,nB
m
u,n ≤ Qu, 1 ≤ u ≤ K

xmu,n ∈ [0, 1] ∀ u,m, n, (6.27)

6.3 Simulation Results

We conducted a systematic evaluation of our proposed algorithms over a homogeneous

single-cell system and the 0 − 1 throughput model. To outer bound the performance

we employed the LP upper bound (6.27), whereas for comparison with other schemes

yielding an achievable weighted sum throughput we used the naive greedy as well as

the Alternative-1 algorithms. For practical considerations, we restricted our attention

to these latter two schemes since they are both deterministic and have a low complexity

comparable to Algorithm 1. In our study, we chose the number of modes to be M =

4. We also fixed λ = θ = 10 when implementing Algorithms 1 and 2, respectively,

and implemented the pruning step of Algorithm 1 in a greedy manner. Further, we

considered an = 1
dN/ ln(N)e , n ∈ N so that the cost constraint mandates that no more

than ln(N) RBs out of the N can be allocated. Under the 0 − 1 model, the maximal

bit loadings, {Bm
u,n}, as well as the queue sizes were generated using the half-normal

distribution. We remark that the latter two choices were observed to capture harder

input instances where the gap to the upper bound for our algorithm was relatively
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larger. Other choices for generating the maximal bit loadings (such as using Rayleigh

fading and the Shannon formula) were seen to result in smaller gaps.

We obtained average performance over 500 input traces considering following two

scenarios:

Scenario I: The number of RBs, N , was varied between 10 to 40, while keeping

the number of users and the user limit fixed at, K = K̄ = 20. The user weights were

chosen to be identical to unity. The percentage gains obtained by Alternative-1 and

our Algorithm 1 as well the LP bound over the naive greedy method are depicted in

Figures 6.1a and 6.1b, which cover the cases with large and small queue size regimes,

respectively.

Scenario II: The number of users, K, was varied between 10 to 30, with the user

limit K̄ set to b2K
3 c, while keeping the number of RBs fixed at, N = 40. User weights

were generated randomly using the uniform distribution, independently across traces.

The percentage gains obtained over the naive greedy method are depicted in Figures

6.2a and 6.2b, which again cover the cases with large and small queue size regimes,

respectively.

From the figures, we see that substantial gains can be achieved by our proposed

algorithm. The gap to optimal seems larger in the regime with the small queue sizes.

One reason could be that Algorithm 2 can introduce a larger sub-optimality in solv-

ing the sub-problems since the queue constraints are active more often. However, we

caution that the LP bound itself can be loose in this regime. Finally, we evaluated the

performance of Algorithm 1 for different values of λ in Figs. 6.3a and 6.3b (θ was fixed

at 10 as before) over the first scenario described above. For each trace we implemented

Algorithm 1 for 10 different values of λ and selected the best one to obtain the opti-

mized result. The other result always uses the choice λ = 10 as before. We see that

good gains are obtained in the small queue sizes regime. More importantly, the choice

λ = 2 was observed to be the best choice for fixed λ and indeed fixing λ = 2 resulted

in almost the same performance as that shown in Figs. 6.3a and 6.3b when the best λ

was chosen for each trace. A systematic way to optimize and determine good (fixed)

choices of λ and θ is an open problem.



112

10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

Number of RBs

P
e
rc

e
n
ta

g
e
 G

a
in

s

 

 

Alt−1

Algo−1

LP

(a) Backlogged model
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(b) Finite queues

Figure 6.1: Weighted sum rate vs number of RBs for λ = 10, θ = 10
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(b) Finite queues

Figure 6.2: Weighted sum rate vs number of users for λ = 10, θ = 10
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Figure 6.3: Comparison of weighted sum rate vs number of RBs for the case with λ = 10
and θ = 10, and the case with the optimized λ and θ = 10
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6.4 Conclusions

We proposed a novel algorithm for energy-aware subframe scheduling over the LTE

downlink. The proposed algorithm is simple enough to be implementable and we rig-

orously established its performance guarantee. The main advantage of the algorithm is

that it can lead to substantial improvements over other greedy algorithms of compara-

ble complexity, both in terms of a provable approximation guarantee as well as average

case performance obtained in simulations. We note that in certain special cases when

cost constraints involve identical prices, the constraint structure can be exploited to

in-fact achieve constant-factor approximations.
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Appendix

Definition 6.1 Let Ψ be a ground set and h : 2Ψ → IR+ be a non-negative set function

defined on the subsets of Ψ, that is also normalized (h(∅) = 0) and non-decreasing

(h(A) ≤ h(B), ∀ A ⊆ B ⊆ Ψ). Then, the set function h(·) is a submodular set

function if it satisfies,

h(B ∪ a)− h(B) ≤ h(A ∪ a)− h(A), ∀A ⊆ B ⊆ Ψ & a ∈ Ψ \ B.

Next, for any given subset B ⊆ Ψ, {ηq, Tq} is said to be a fractional cover of B, if

ηq ∈ [0, 1], Tq ⊆ Ψ ∀ q and
∑

q:a∈Tq ηq ≥ 1, ∀ a ∈ B. The set function h(·) is

fractionally sub-additive if for any given subset B ⊆ Ψ and its fractional cover {ηq, Tq},

it satisfies

h(B) ≤
∑
q

ηqh(Tq).

Note that considering all such normalized and non-decreasing set functions, the class

of fractionally sub-additive set function subsumes that of submodular set functions and

is subsumed in turn by the class of sub-additive set functions [77].

Definition 6.2 (Ω, I), where I is collection of some subsets of Ω, is said to be a matroid

if I is an independence family, i.e.,

• I is downward closed, i.e., A ∈ I & B ⊆ A ⇒ B ∈ I

• For any two members F1 ∈ I and F2 ∈ I such that |F1| < |F2|, there exists

e ∈ F2 \ F1 such that F1 ∪ {e} ∈ I. This property is referred to as the exchange

property.



115

Proof: ( Theorem 6.1) We first show that for the 0 − 1 throughput model (6.3)

the problem in (6.5) can be cast in the form of a combinatorial auction problem (a.k.a.

welfare maximization problem) where items (RBs) in N have to be assigned in a non-

overlapping manner to the K bidders (users) and each valuation function is given by a

set function, hu : 2N → IR+. To do so, we define

hu(R) = αu max
m
{min{Qu,

∑
n∈R

Bm
u,n}}, R ⊆ N .

Then, we can express (6.5) as

max
{Su⊆N}Ku=1

K∑
u=1

{hu(Su)}

s.t.
K∑
u=1

1 (` ∈ Su) ≤ 1, ∀ ` ∈ N ,

K∑
u=1

∑
`∈Su

a` ≤ 1. (6.28)

Note that in (6.28) unlike the standard form there is an additional linear cost constraint

on the items in (6.5). Note that for each user u, the set function hu(·) need not be

submodular even in the backlogged model. Invoking the definition given above, for any

set S ⊆ N and any fractional cover {ηq, Tq} of S, we have to prove hu(S) ≤∑q ηqhu(Tq).

We proceed by assuming, without loss of generality, that the user weights are unity

αu = 1, ∀ u. Then, let m∗ be the mode that is optimal for the user u and set S, i.e.

hu(S) = min

{
Qu,

∑
n∈S

Bm∗
u,n

}
. (6.29)

Suppose that hu(S) =
∑

n∈S B
m∗
u,n ≤ Qu. Then,

hu(Tq) ≥ min

Qu,∑
n∈Tq

Bm∗
u,n

 ≥ min

Qu, ∑
n∈Tq∩S

Bm∗
u,n

 =
∑

n∈Tq∩S
Bm∗
u,n. (6.30)
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It follows that

∑
q

ηqhu(Tq) ≥∑q ηq
∑

n∈Tq∩S B
m∗
u,n

=
∑

n∈S B
m∗
u,n

∑
q:n∈Tq

ηq︸ ︷︷ ︸
≥1

≥∑n∈S B
m∗
u,n = hu(S),

which settles the result for this case. It remains to prove the result when hu(S) =

Qu ≤
∑

n∈S B
m∗
u,n. In this case we can find a subset R ⊆ S such that

∑
n∈RB

m∗
u,n ≥ Qu

but all its strict subsets A ⊂ R satisfy
∑

n∈AB
m∗
u,n < Qu. Upon obtaining such an R,

we can partition the cover {Tq} into two parts {Tq}q∈I1 and the remaining sets of the

cover are in {Tq}q∈I2 . Since
∑

n∈Tq B
m∗
u,n ≥ Qu ∀ q ∈ I1, we have hu(Tq) = Qu ∀ q ∈ I1.

Consequently,

∑
q

ηqhu(Tq) ≥ Qu
∑
q:q∈I1

ηq︸ ︷︷ ︸
∆
=β

+
∑
q:q∈I2

ηq
∑

n∈Tq∩R
Bm∗
u,n

= Quβ +
∑
n∈R

Bm∗
u,n

∑
q∈I2:n∈Tq

ηq (6.31)

Notice that if β ≥ 1 (which must always hold when R is a singleton set) the desired

inequality is already proved. On the other hand, if β < 1 then since {ηq, Tq} is a

fractional cover of S, we can deduce that for each n ∈ R,

∑
q∈I2:n∈Tq

ηq ≥ 1−
∑

q∈I1:n∈Tq
ηq ≥ 1− β,

which using (6.31) and the fact that
∑

n∈RB
m∗
u,n ≥ Qu, yields the desired result. 2

Lemma 6.2 The optimal solution (after expurgation), Õopt, can be partitioned as
Õopt = Õopt

I1 ∪ · · · ∪ Õ
opt
IJ , where

Õopt
Ij ⊆ ∪J`=jF̃`,

|Õopt
Ij | ≤ λ+ 1, ∀ j = 1, · · · , J (6.32)

Proof: First note that there can be at-most K̄ ≤ K elements in the set Õopt and all

those elements must have distinct users, since Õopt has to satisfy the matroid constraint
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in (6.17). Further, without loss of optimality, we can assume that Õopt also satisfies the

(stricter) linear knapsack constraint in (6.17) so that
∑

e∈Õopt ae ≤ 1. Then, to prove

this lemma it suffices to show that

|Õopt ∩ (∪j`=1F̃`)| ≤ j(λ+ 1), ∀ j = 1, · · · , J. (6.33)

Indeed, suppose that (6.33) holds. Then, one way of constructing the sets {Õopt
Ij }

J
j=1

satisfying (6.32) is as follows. All members of Õopt ∩ F̃1 are included in Õopt
I1 , which

we note from (6.33) are at-most λ + 1 in number. Then, all elements from Õopt ∩ F̃2

are included in Õopt
I1 , followed by all the elements from Õopt ∩ F̃3 and so on, until the

cardinality of Õopt
I1 reaches λ + 1. Note that if only a partial subset of elements from

Õopt∩F̃` (for some ` ≥ 2) can be included without violating the cardinality bound λ+1,

then any arbitrary subset of Õopt∩F̃` which ensures |Õopt
I1 | = λ+1 can be included. The

construction of Õopt
Ij j ≥ 2, begins once λ+1 elements have been included in Õopt

Ij−1
, and

proceeds in a similar manner considering all the remaining elements Õopt \ (∪j−1
`=1Õ

opt
I` ).

If at any j all elements in Õopt have been included, then the sets {Õopt
I` }

J
`=j+1 are simply

defined to be empty sets. The key point is that at any step j ≥ 2, due to (6.33) the

set of remaining elements Õopt \ (∪j−1
`=1Õ

opt
I` ), will not have any elements from ∪j−1

`=1F̃`
which ensures that the construction satisfies (6.32).

We next prove (6.33) via contradiction. Suppose first that ∃ j ∈ {1, · · · , J − 1} for

which

|Õopt ∩ (∪j`=1F̃`)| > j(λ+ 1). (6.34)

Note that by construction O ∩ (∪j`=1F̃`) = {e1, · · · , ej} so that |O ∩ (∪j`=1F̃`)| = j.

Considering the set Õopt∩ (∪j`=1F̃`), collect all elements which have an identical user as

some element in {e1, · · · , ej}. There can be at-most j such elements since each element

in Õopt must have a distinct user. Let Mj
1 denote the set obtained by expurgating all

such elements from Õopt ∩ (∪j`=1F̃`). Thus, we have that

|Õopt ∩ (∪j`=1F̃`)| ≤ j + |Mj
1|. (6.35)
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Next, consider the set Mj
1. Each element in this set must belong to one of the sets

F`, ` = 1, · · · , j. Indeed, each e ∈Mj
1 was assigned to some F`, ` ∈ {1, · · · , j} because,

it satisfied (a{e1,··· ,e`,e} − a{e1,··· ,e`})w` > λ. We remind that such an element could not

have been declared infeasible on account of sharing a common user (due to construction

of Mj
1) or on account of user limit being reached (since j ≤ J − 1). Then, notice that

ae ≥ a{e1,··· ,e`,e} − a{e1,··· ,e`}, ∀ ` and that the sequence {w`}j`=1 is non-decreasing, i.e.,

w` ≤ wj ,∀ ` ∈ {1, · · · , j}. Therefore,

|Mj
1| ≤

∑
e∈Mj

1

aewj
λ

. (6.36)

Further, since Mj
1 ⊆ Õopt we must have

∑
e∈Mj

1
ae ≤ 1. Using this fact in (6.36) and

substituting in (6.35), we obtain

|Õopt ∩ (∪j`=1F̃`)| ≤ j +
wj
λ
. (6.37)

Finally, we can expand
wj
λ as

wj
λ

=
w1

λ
+
w2

λ
− w1

λ︸ ︷︷ ︸+ · · · , wj
λ
− wj−1

λ︸ ︷︷ ︸ . (6.38)

Considering each term in the RHS of (6.38) we see that w1
λ = λae1

λ ≤ 1 ≤ λ, since

ae1 ≤ 1 and λ > 1. On the other hand, for 2 ≤ ` ≤ j,

w`
λ
− w`−1

λ
=
w`−1(λ

a{e1,··· ,e`}−a{e1,··· ,e`−1} − 1)

λ

≤
w`−1(a{e1,··· ,e`} − a{e1,··· ,e`−1})λ

λ

≤ λ2

λ
= λ. (6.39)

The penultimate inequality follows from the fact that yx − 1 ≤ xy, ∀ y ≥ 0 and

x ∈ [0, 1]. The last inequality follows from that fact that e` (for any `) was added after

verifying that it satisfied the soft constraint

w`−1(a{e1,··· ,e`} − a{e1,··· ,e`−1}) ≤ λ.

Since there are exactly j terms in the RHS of (6.38) and as shown in (6.39) each term is

upper-bounded by λ, we see that
wj
λ ≤ jλ. We can now use (6.37) to obtain the desired
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contradiction of (6.34) and conclude that (6.33) is true for all j = 1, · · · , J − 1. Lastly,

at j = J , if J = K̄ then the desired result in (6.33) is trivially true. If J < K̄ then

the stage-1 of the algorithm did not terminate on account of user limit being reached.

Thus, any element e ∈ Õopt that lies in FJ and does not share a common user with

eJ must satisfy (a{e1,··· ,eJ ,e} − a{e1,··· ,eJ})wJ > λ, since such an element cannot have

an incremental gain hO(e) = 0 (due to construction of Õopt). The argument provided

above can now be directly reused to conclude that (6.33) is true for j = J as well. 2

Lemma 6.3 Let S(λ) denote a family of non-negative and non-decreasing sequences
parameterized by the scalar λ > 1. Each sequence {Sk}∞k=0 in S(λ) must satisfy S0 = 0
and Sk+1−Sk ≤ λ

λSk
, ∀ k ≥ 0. Then, given any positive scalar ∆ such that ∆ ln(λ) > 1,

there exists a finite integer k̂ ≥ 1, such that Sk ≤ ∆(ln(k) − ln(ln(k))), ∀ k ≥ k̂ holds
true for all sequences in the family S(λ).

Proof: Let ∆ be any positive scalar such that α = ∆ ln(λ) > 1. Suppose there

exists a sequence {Sk}∞k=0 in S(λ) which satisfies Sk ≥ ∆(ln(k) − ln(ln(k))), ∀ k ≥ k′

for some k′ ≥ 1. Such a sequence is clearly diverging. However, since it belongs

to the family S(λ), we must have that the increments δk+1 = Sk+1 − Sk, ∀ k must

satisfy δk+1 ≤ λ
λSk
≤ λ(ln(k))α

kα , ∀ k ≥ k′. Then, since α > 1 we must have that the

sum of increments converges, i.e.,
∑

k:k>k′ δk < ∞ which is a contradiction. Therefore

for any series {Sk}∞k=0 in S(λ), we cannot have a positive integer k′ such that Sk ≥

∆(ln(k) − ln(ln(k))), ∀ k ≥ k′. We can obtain a sharper observation that since Sk′

is finite (indeed Sk ≤ kλ, ∀ k) and Sk′+N = Sk′ +
∑N

j=1 δk′+j , we cannot have Sk ≥

∆(ln(k)−ln(ln(k))), ∀ k : k′ ≤ k ≤ k′+N for all large enough N . To summarize, we can

conclude that for any given integer k′ ≥ 1, there exists a large enough integer N ′ ≥ 1

such that no sequence in S(λ) can have a segment (spanning k′, k′ + 1, · · · , k′ + N ′)

which is point-wise greater than ∆(ln(k)− ln(ln(k))), ∀ k : k′ ≤ k ≤ k′ +N .

Next, we show that there exists a fixed k̆ ≥ 1 for which the following holds true for

all sequences in S(λ),

Sk+1 ≥ ∆(ln(k + 1)− ln(ln(k + 1)))⇒

Sk ≥ ∆(ln(k)− ln(ln(k))), ∀ k ≥ k̆. (6.40)



120

We establish (6.40) via contradiction. Suppose there exist a sequence whose pair

Sk+1, Sk is such that Sk+1 = ∆(ln(k + 1) − ln(ln(k + 1))) + θ & Sk = ∆(ln(k) −

ln(ln(k)))− η for some η ≥ 0 and θ ≥ 0. Using the fact that δk+1 ≤ λ
λSk

= λη+1(ln(k))α

kα

we have that

δk+1 = ∆ ln

(
(k + 1) ln(k)

k ln(k + 1)

)
+ θ + η ≤ λη+1(ln(k))α

kα
⇒(

k

ln(k)

)α
(∆ ln

(
(k + 1) ln(k)

k ln(k + 1)

)
+ θ + η) ≤ λη+1 (6.41)

Then since all increments are bounded above by λ, we must have that η ≤ λ. Thus a

necessary condition for (6.41) to be true is(
k

ln(k)

)α
∆ ln

(
(k + 1) ln(k)

k ln(k + 1)

)
≤ λλ+1 (6.42)

However, it can be verified that since α > 1, limk→∞
(

k
ln(k)

)α
∆ ln

(
(k+1) ln(k)
k ln(k+1)

)
= ∞.

Thus, there must exist a sufficiently large k̆ such that
(

k
ln(k)

)α
∆ ln

(
(k+1) ln(k)
k ln(k+1)

)
>

λλ+1, ∀ k ≥ k̆. This yields the desired contradiction and establishes (6.40). The

implication from (6.40) is that if any sequence in S(λ) satisfies Sk̆+N ≥ ∆(ln(k̆+N)−

ln(ln(k̆ + N))) for any N ≥ 1, then that sequence must also satisfy Sk ≥ ∆(ln(k) −

ln(ln(k))), ∀ k : k̆ ≤ k ≤ k̆ +N .

Finally, we can combine these above two results to prove the lemma. 2
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Chapter 7

Optimizing Energy Efficiency over Energy-Harvesting

LTE Cellular Networks

Deployment of energy harvesting devices to harness renewable energy sources in LTE

networks offers two-fold avantages. Foremost, it will reduce the carbon footprint of

these networks which are seeing an exponential growth. Secondly, it can also extend the

lifetime of such networks. This is particularly vital in scenarios where easy accessibility

for maintenance cannot be ensured. However, a renewable energy source providing

gradual and unreliable energy supply adds an energy causality constraint to the system,

which needs to be considered in the radio resource management (RRM). This subject

has been studied under different scenarios and assumptions; see, cf. [3,78] for the point-

to-point channel, [7, 9] which consider networks with a small number of nodes, [2] for

off-line scheduling algorithms and [5] for on-line ones. Recent works like [79, 80] focus

on the joint allocation of energy and subchannels over a system where the harvested

energy levels and subchannel gains can be predicted in advance for a scheduling period.

Further advances have been made in [81] where online weighted sum rate maximization

is considered and in [82] where optimization of the proportional fairness utility over

such a system is setup as a biconvex optimization problem. A general framework for

utility optimization over such networks has been recently proposed [83].

Energy efficiency has become an increasingly popular RRM paradigm in wireless

networks, cf. [62] for a comprehensive overview. A popular energy efficiency met-

ric is the system or global energy efficiency (GEE), which is defined as the ratio of

the achieved weighted sum thoughput and the energy consumed. Another important

variant that has received wide attention is the weighted sum of individual energy ef-

ficiencies (WSEE). These two metrics have been optimized recently for the single-cell
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downlink [67], followed by the multi-cell one [68]. Fractional programming has emerged

as a popular tool to solve the resulting problems, which typically are formulated as

continuous optimization problems.

Our goal in this chapter is to optimize energy efficiency metrics over multi-channel

wireless networks that conform to the LTE standard while satisfying energy causality

constraints imposed by the energy harvesting process. Optimizing energy efficiency

over such networks requires us to carefully account for certain mandatory constraints

placed by the LTE standard on the choice of transmission parameters, which are all

discrete valued. We demonstrate that formulations which aim to optimize the GEE

and the WSEE over a single-cell energy harvesting downlink, respectively, subject to

all the main LTE constraints are indeed tractable approximately and thereby circum-

venting the need for continuous relaxation of the underlying discrete variables. We

prove this by showing that a key sub-problem that aims to maximize the weighted sum

rate under linear causality constraints on the set of used resource blocks (RBs) (or sub-

channels) can be cast as a constrained submodular maximization problem. We remark

here that submodular maximization [71] can be regarded as the analogue of concave

maximization, over discrete (combinatorial) problems. Our result enables us to derive

constant-factor approximation algorithms for optimizing both GEE and WSEE over

LTE networks powered by energy harvesting devices, which to the best of our knowl-

edge, are the first such algorithms. The proposed algorithms are deterministic and

simple, thus amenable to implementation in base-stations. Simulations show that they

readily outperform other heuristics of comparable complexities.

7.1 Problem formulation

We focus on a single-cell downlink in an LTE network that comprises of a base station

serving K active users. Over each subframe (of duration 1 millisecond) the available

bandwidth is partitioned into N time-frequency units referred to as RBs and each RB

is the minimum assignable time-frequency resource unit. The base station is equipped

with a battery of infinite storage capacity and a renewable energy source that provides

energy E` (Joules) in each subframe ` [80]. We assume that E` can be accurately
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estimated in advance, which is true for a renewable source such as solar, which can

be accurately predicted for durations up to one hour. We then incorporate a setup (as

in [80]) where the channel estimates are known in advance for each block of L contiguous

subframes, i.e., at the beginning of each block, channel estimates for all users for each

one of the subframes in that block are available at the base station scheduler. While

such a non-causal assumption might seem implausible, we note that in a practical

system channel estimates are obtained from each user with a certain periodicity (such

as 5 or 10 ms in LTE networks). A very typical assumption (especially for low user-

mobility scenarios) is to treat the user channels (on each RB) as block fading with a

coherence time equal to the configured periodicity. This assumption clearly fits our

framework, and indeed the latter also covers interpolation schemes where the estimates

for all subframes in a block are obtained at the beginning of that block, based on all the

past available channel estimates as well as ACK/NACK feedback. Thus, we consider

a block of L contiguous subframes and suppress dependence on the block index. We

define

N = N1 ∪N2 · · · NL,

where

N` = {(`− 1)N + 1, · · · , `N},

denotes the set containing RBs in the `th, ` = 1, · · · , L subframe of a block.

7.1.1 Practical Constraints

We consider two figures of merit pertaining to energy efficiency and optimize them over

each block, under a set of important practical constraints. Constraints C1, C2, and C3

are the same as those introduced in Chapter 6 except that the the constraint on the

number of scheduled users K̄ is over the users that are assigned at least one RB over

the scheduling block (instead of a subframe). Also, all the RBs assigned to the same

user are assigned the same mode over a scheduling block. Due to the harvesting energy,

the transmit energy is constrained differently as follows.

[C4]: The transmit energy, ρ, expended over each RB used for data transmission
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Figure 7.1: A feasible allocation for a system with N = 4 RBs, L = 3 subframes per
block, K = 2 users and M = 3 modes.

should be identical and this common per-RB transmit energy ρ must be chosen from

a finite set P. We justifiably assume that P has only strictly positive entries. Indeed,

this constraint models a common way of operating LTE networks. In the current LTE

deployments (that conform to LTE Release 8), the users attached to a cell are first

conveyed a cell-specific reference signal (CRS) power spectral density using an integer

which spans {−60, · · · , 50}, where each value conveys power in dBm per 15 kHz [84].

The transmit energy expended on each RB that is used for data transmission to a

scheduled user is a scalar times this CRS power spectral density. Typical operation

employs a cell-specific scalar that is identical for all users attached to that cell, thereby

resulting in an identical energy spent on each used RB. We note here that the LTE

downlink aims to extract frequency selective scheduling gains (enabled due to OFDMA).

It exploits the observation that further optimizing transmit powers in the frequency

domain (in conjunction with frequency selective scheduling) provides marginal gains

at the cost of increased signaling support and complexity. In addition, such power

optimization can have a detrimental effect on ACK/NACK based link adaptation. In
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this context, we recall a similar observation made in [85] that constant power allocation

(over a set of “good” channels) is close to the optimal power allocation over those

channels (determined via waterfilling).

[C5]: The per-RB energy, ρ, together with the set of used RBs should not violate

the energy harvesting constraints. The energy causality requires that the energy used

till the end of any subframe in the block doesn’t exceed the energy available by that

subframe. Consequently, for any given energy per-RB, ρ, and the energy harvested

per-subframe `, E`, we can first determine L RB cardinality limits J1, · · · , JL which

define a system of linear inequalities. In particular, the number of assigned RBs in the

first sub-frame should not exceed

J1 =

⌊
E0 + E1 − ϑ

γρ

⌋
,

where E0 denotes the energy stored in the battery at the start of the block, ϑ ≥ 0

represents the circuit energy consumed over each subframe and γ ≥ 1 is the inverse of

the power amplifier efficiency. Further, the number of assigned RBs in the first and

second sub-frames together should not exceed

J1 + J2 =

⌊
E0 + E1 + E2 − 2ϑ

γρ

⌋
,

and so on. For simplicity, we assume that the incoming energy in each subframe ` can

at least provide the circuit energy, i.e., E` ≥ ϑ ∀ `. Alternatively, we can also suppose

that the circuit energy is supplied by another non-renewable source in which case we

have

J1 =

⌊
E0 + E1

γρ

⌋
,

and

J1 + J2 =

⌊
E0 + E1 + E2

γρ

⌋
,

and so on. Another variation where RBs are used in a block only after guaranteeing

that the energy available at the start of the next one exceeds the required circuit energy,

can also be incorporated. In each case, these linear inequalities arise due to increasing
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renewable energy that is available as we traverse across the subframes of the block. A

feasible resource allocation is depicted in Fig. 7.1.

7.1.2 Objective Functions

We consider the following two energy efficiency metrics, which have beed defined to

conform to identical energy per RB constraint (C4).

Global Energy Efficiency (GEE): Ratio of the weighted sum rate (computed

per block) and the corresponding energy consumption (Joules per block)

GEE(ρ, J,R) =

∑
n∈R ψnrn
Lϑ+ Jγρ

, (7.1)

where R ⊆ N denotes the set of RBs chosen for data transmission over L subframes. J

denotes the number of used RBs (i.e., cardinality of the set R) and rn denotes the rate

(throughput) achieved on RB n ∈ R. ψn, ∀ n ∈ N denote the weights (or priorities)

specified for all the available RBs.

Weighted Sum of Energy Efficiencies (WSEE):

WSEE(ρ, J,R) =
∑
n∈R

ψn
rn

δn + γρ
, (7.2)

where δn > 0 is the given circuit energy consumed corresponding to RB n. A default

choice could be to set each δn as the total circuit energy Lϑ amortized over all NL RBs

in the block, i.e., δn = ϑ/N for all n.

Each one of the two metrics will be optimized (in each scheduling block) over the

choice of the per-RB energy ρ, the number of used RBs, J , the set R of cardinality J

and the choice of users (with their respective modes and bit loading) scheduled on those

RBs, subject to the set of constraints C1-to-C5 described above. Our first observation

is:

Lemma 7.1 Without loss of optimality, we can replace each J` by J ′`, ∀ ` = 1, · · · , L,

where the integers J ′` : J ′` ≤ N, ∀` are recursively defined as J ′` = min{N, J`+
∑`−1

q=1(Jq−

J ′q)}, ∀ `.
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Indeed, any set of RBs R ⊆ N that is feasible under the linear inequalities defined by

{J`}L`=1, i.e., satisfies |R ∩ {∪`j=1Nj}| ≤
∑`

j=1 Jj , ∀ ` = 1, · · · , L, also remains feasible

under the linear inequalities defined by {J ′`}L`=1 and vice versa. Consequently, with a

slight abuse of notation, henceforth we use J` to denote J ′`, so that J` ≤ N, ∀ `.

We now define the two problems of interest as

max{GEE(ρ, J,R)} s.t. C1,C2,C3,C4 & C5, (PI)

max{WSEE(ρ, J,R)} s.t. C1,C2,C3,C4 & C5, (PII)

In order to solve these two problems, we let xmu,n be the indicator variable which is one

if user u is scheduled on RB n with transmission mode m, and zero otherwise, and

define a key sub-problem of maximizing the weighted sum rate for any given ρ and J .

max
{xmu,n,bmu,n}

K∑
u=1

L∑
`=1

∑
n∈N`

M∑
m=1

ψ′u,nx
m
u,nb

m
u,n(1− pmu,n(bmu,n, ρ)) (7.3a)

subject to

M∑
m=1

K∑
u=1

xmu,n ≤ 1, n ∈ N (7.3b)

K∑
u=1

M∑
m=1

max
n∈N

xmu,n ≤ K̄ (7.3c)

M∑
m=1

max
n∈N

xmu,n ≤ 1, 1 ≤ u ≤ K (7.3d)

∑
n∈N1∪···∪N`

K∑
u=1

M∑
m=1

xmu,n ≤ min

∑̀
q=1

Jq, J

 , ∀ ` (7.3e)

M∑
m=1

∑
n∈N

bmu,n ≤ Qu, 1 ≤ u ≤ K (7.3f)

xmu,n ∈ {0, 1} & bmu,n ∈ Bm,∀ u,m, n. (7.3g)

where {ψ′u,n}u∈U ,n∈N are given weights, and bmu,n denotes the number of information

bits allocated on RB n when user u is assigned to that RB with transmission mode m.

The set of constraints (7.3b) and (7.3c) describe the OFDMA orthogonality constraint

and the user limit constraint, respectively (constraint C1). The set of constraints

(7.3d) stipulates that each user can only have one transmission mode across all RBs
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allocated to it (constraint C2). Similarly, the constraint (7.3e) dictates that the total

number of all occupied RBs should be no greater than J while satisfying the energy

causality constraints (C5). The set of constraints (7.3f) and (7.3g) enforce the queue

size limit for each user and permissible bit loadings (constraint C3). We note that

(7.3) is a more practical and fully combinatorial analogue of the problem considered

in [80]. We can verify that (7.3) subsumes the problem in [57] if we consider the 0− 1

throughput model (6.3) with just one available mode and no linear causality constraints

or cardinality bound on the set of used RBs. So, (7.3) is at least as hard as the one

posed in [57]. Invoking the hardness result established for the latter problem in [57],

we can deduce that (7.3) is NP-hard. Notice also that (7.3) is a sub-problem of both

(PI) and (PII), obtained for any choice of ρ and J , upon setting ψ′u,n = ψn/(Lϑ+ γρJ)

and ψ′u,n = ψn/(δn + γρ), ∀ n, respectively. These observations can be be used to show

that both (PI) and (PII) are intractable. Moreover, we also can assert the following

result.

Proposition 7.1 For any constant α ∈ (0, 1], an α−approximation algorithm for (7.3)

can be used to design α−approximation algorithms for each one of the problems (PI)

and (PII).

Proof: We only prove the result for GEE since the one for WSEE is straightforward.

Suppose that we have an α−approximation algorithm for (7.3) that for any given choice

of ρ, J , and other input parameters provides a feasible solution (satisfying constraints

C1-to-C3 and C5) which yields an objective value no less than α times the optimal

objective value for that input. Then, for each ρ ∈ P and each J ∈ {1, · · · ,∑L
`=1 J`},

let us invoke the algorithm at hand (with weights ψ′u,n = ψn/(Lϑ + γρJ)) to obtain a

feasible solution and let Ô(ρ, J) denote the corresponding weighted sum rate. We can

deduce that Ô(ρ, J) ≥ αmax{GEE(ρ, J,R)}, where the latter maximization is subject

to constraints C1-C3 and C5. Thus, by selecting the best among solutions obtained

after considering all finitely many feasible choices of ρ, J (which can be no greater than

NL|P|), we obtain one yielding a GEE no less than α times the optimal GEE. 2

As a result we focus on designing a constant-factor approximation algorithm for (7.3),
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which as proved above yields constant-factor approximation algorithms for both (PI)

and (PII). Before that we demonstrate one useful exception when the optimal GEE can

be efficiently determined. Towards this end, for each mode m and user u, we define a

set Bmu = {b ∈ Bm : b ≤ Qu}. Without loss of generality, we can assume that the set

Bmu has at-least one strictly positive member (otherwise we can simply remove mode m

as a candidate mode for user u). Further, for each RB n we let

r̄mu,n(ρ) = max
bn∈Bmu

{bn(1− pmu,n(bn, ρ))},

and recall that the set P is assumed to contain only strictly positive entries.

Proposition 7.2 Suppose that for each ρ ∈ P there exists

(u∗,m∗, n∗) = arg max
u∈U ,m∈M,n∈N

{
ψnr̄

m
u,n(ρ)

}
.

If

ψn∗ r̄
m∗
u∗,n∗(ρ)

Lϑ+ γρ
≥ max

u∈U,n∈N :(u,n)6=(u∗,n∗)
& m∈M

{
ψnr̄

m
u,n(ρ)

γρ

}
, (7.4)

then, an optimal solution to (PI) is given by

max
ρ∈P

max
u∈U ,m∈M,n∈N

{
ψnr̄

m
u,n(ρ)

Lϑ+ γρ

}
. (7.5)

Proof: The simple but key observation that supports this proposition is that for any

non-negative scalars a, b, c, d, such that b 6= 0, d 6= 0,

a

b
≥ c

d
⇔ a

b
≥ a+ c

b+ d
≥ c

d
. (7.6)

Recalling (7.1) let R̂, Ĵ denote the set of RBs and its cardinality that is optimal with

respect to the GEE at some ρ, and let {R̂n}n∈R̂ denote the weighted rates achieved

on those RBs. Further, recall that each RB can be assigned to at most one user with

one mode and expand R̂ = {n1, · · · , nĴ} where R̂n1 ≥ R̂n2 ≥ · · · ≥ R̂nĴ . Assume (7.4)
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holds at that ρ (where we note that (u∗,m∗, n∗) can depend on ρ). Suppose first that

user u∗ is present in (or scheduled under) the optimal solution at hand. In this case,

let n` ∈ {n1, · · · , nĴ} be an RB such that n` = n∗ if user u∗ has been assigned RB n∗

in that optimal solution, otherwise n` can be chosen to be any RB assigned to user u∗

in that optimal solution. Then, invoking (7.4) with (7.6) we see that

ψn∗ r̄
m∗
u∗,n∗(ρ)

Lϑ+ γρ
≥
R̂n + ψn∗ r̄

m∗
u∗,n∗(ρ)

Lϑ+ 2γρ
≥ R̂n
γρ

holds for all n ∈ R̂ \ {n`}, whereas ψn∗ r̄
m∗
u∗,n∗(ρ) ≥ R̂n` . Then, since

R̂n1

γρ
≥ R̂n2

γρ
≥ · · · ≥

R̂nĴ
γρ

,

we can repeatedly invoke (7.6) to obtain

ψn∗ r̄
m∗
u∗,n∗(ρ)

Lϑ+ γρ
≥
ψn∗ r̄

m∗
u∗,n∗(ρ) +

∑
n∈R̂\{n`} R̂n

Lϑ+ γρ+ (Ĵ − 1)γρ
≥
∑

n∈R̂ R̂n

Lϑ+ Ĵγρ
,

which settles the result. The other case where the user u∗ is not present in the solution

at hand can be proved analogously. 2

Notice that since the set P is assumed to contain only strictly positive entries, the GEE

is well defined even when ϑ = 0 and indeed the condition in (7.4) is always satisfied

when ϑ = 0. Proposition 7.2 implies that for all small enough ϑ, a GEE optimal solution

involves using only one RB and hence can be efficiently determined.

7.2 A Constant Factor Approximation Algorithm

We next proceed to re-formulate (7.3). Towards this end, we define a ground set

containing all possible 3−tuples Ψ = {(u,m,bmu )}, where for each such 3−tuple (or

element) e = (u,m,bmu ), u denotes the user and m denotes the mode and bmu =

[bmu,1, · · · , bmu,NL]T ∈ IRNL+ is an NL length bit loading vector such that on each RB

n ∈ N , the bit loading is permissible, bmu,n ∈ Bm and across all RBs the buffer size

constraint is satisfied, i.e.,
∑

n∈N b
m
u,n ≤ Qu. Furthermore, we define a family of subsets
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of Ψ, denoted by I, as

I =

A ⊆ Ψ : |A| ≤ K̄,
∑

(u′,m′,bm′
u′ )∈A

1
(
u′ = u

)
≤ 1 ∀ u ∈ U


.

In words, any subset of 3−tuples from Ψ in which each user appears at-most once and

whose cardinality does not exceed the user limit K̄ is a member of I. Then, we define

a normalized non-negative set function h : 2Ψ → IR+, such that h(∅) = 0 and for all

other subsets A ⊆ Ψ

h(A) = max
zn∈{0,1}
∀ n

{∑
n∈N

zn max
(u,m,bmu )∈A

{ψ′u,nbmu,n(1− pmu,n(bmu,n, ρ))}
}
,

s.t.
∑

n∈∪`j=1Nj

zn ≤ min

J,∑̀
q=1

Jq

 , ` = 1, · · · , L. (7.7)

We can now reformulate the problem in (7.3) as

max
A⊆Ψ
{h(A)}

s.t. A ∈ I. (7.8)

Some comments on this reformulation are in order. First, from the definition of I it

follows that by restricting A ∈ I we have ensured that each user is selected at-most

once with one mode and that the associated bit loading is feasible, thereby meeting

the per-user mode and bit loading constraints of (7.3). Then, the definition of the set

function h(·) ensures that each RB is implicitly assigned to at-most one user (since only

the weighted throughput of at-most one user is chosen via the inner max(·) function)

and that the linear causality constraints are imposed in determining the weighted sum

rate (via the indicator variables {zn}). Consequently, any feasible solution to (7.8)

maps to a feasible one for (7.3) yielding the same objective value and vice versa. Then,

we have the following theorem which is our main result.

Theorem 7.1 The set function h(·) is a normalized non-decreasing submodular set
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function and (Ψ, I) is a matroid.

Proof: The fact that (Ψ, I) is a matroid follows upon verifying the exchange property

stated in the appendix of Chapter 6. Moreover, it can also be readily verified that

the set function h(·) is a normalized non-decreasing set function. Then, to prove the

submodularity of this set function we first establish that

h(A ∪ e′)− h(A) ≥ h(B ∪ e′)− h(B), (7.9)

for any two subsets A,B ⊆ Ψ with A ⊆ B and any 3−tuple e′ = (u′,m′,bm
′

u′ ) ∈ Ψ whose

bit loading vector bm
′

u′ satisfies bm
′

u′,t ≥ 0 for any one RB t ∈ N , whereas bm
′

u′,n = 0 ∀ n ∈

N , n 6= t. Let E ⊆ Ψ denote the set of all such 3−tuples whose bit loading vectors have

a positive entry in at-most one RB. We first define an NL length vector ∆A, where

∆An = max
(u,m,bmu )∈A

{ψ′u,nbmu,n(1− pmu,n(bmu,n, ρ))} n ∈ N .

Then, we define L sets RA` , ` = 1, · · · , L in a recursive manner as follows. The set RA1
is defined as the set containing the min{J, J1} RBs corresponding to the min{J, J1}

largest members of {∆An }n∈N1 . Each subsequent set RA` , ` = 2, · · · , L is defined as the

set containing the min{J, J1 + · · ·+ J`} RBs corresponding to the min{J, J1 + · · ·+ J`}

largest members of {∆An }n∈N`∪RA`−1
. Thus, we have the following telescoping relations,

RAL ∩N` ⊆ RAL−1 ∩N` ⊆ · · · ⊆ RA` ∩N`, ` = 1, · · · , L. (7.10)

With this definition, note that each RA` , ∀ ` is an optimal set of RBs (for the given A)

chosen from N1 ∪ · · · ∪ N` that maximizes the weighted sum rate subject to the first

` causality constraints. Hence, we can compute h(A) using the objective in (7.7) after

setting indicator variables {zn} to be one for all RBs in RAL and zero for all other RBs.

Next, we define the weighted rate barrier at each RB n, V An , n ∈ N`, ∀ `, as

V An = max
{

∆An ,max{V Amin,`, V
A

min,`+1, · · · , V Amin,L}
}
, (7.11)
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where V Amin,` = minn∈RA` {∆
A
n }, ∀ ` : 1 ≤ ` ≤ L. The operational meaning of the

weighted rate barrier at RB n, V An , is that if we augment A by adding any 3−tuple

e = (u,m,bmu ) ∈ E : bmu,n > 0, then

h(A ∪ e)− h(A) =
[
ψ′u,nb

m
u,n(1− pmu,n(bmu,n, ρ))− V An

]+
.

In other words, the weighted throughput offered by the added 3−tuple on RB n,

ψ′u,nb
m
u,n(1− pmu,n(bmu,n, ρ)), must exceed the barrier V An to improve the objective.

In an analogous manner, we define the vector ∆B, the sets RB` , ` : 1 ≤ ` ≤ L,

and the weighted rate barrier at each RB n, V Bn , n ∈ N . The following deduction is

straightforward

∆An ≤ ∆Bn , n ∈ N , (7.12)

whereas

V Amin,` ≤ V Bmin,`, 1 ≤ ` ≤ L,

follows from (7.12) and the definitions of sets RA` ,RB` , l after some algebra. Combining

these two facts, we obtain that

V An ≤ V Bn , n ∈ N . (7.13)

Next, upon defining G = ψ′u′,tb
m′
u′,t(1− pm

′
u′,t(b

m′
u′,t, ρ)) we can see that h(A∪ e′)− h(A) =[

G− V At
]+

and h(B ∪ e′)− h(B) =
[
G− V Bt

]+
. Invoking (7.13) it can now be verified

that (7.9) holds true. We will leverage this result to show that (7.9) holds for any

3−tuple e′ = (u′,m′,bm
′

u′ ) ∈ Ω \ B, without the restriction that e′ ∈ E , thereby proving

the theorem. For convenience, we adopt the notation that for all n = 1, · · · , NL, bm
′

u′,(n)

denotes the NL length vector formed by retaining the first n components of bm
′

u′ and

setting the remaining ones to zero, i.e.,

bm
′

u′,(n) = [bm
′

u′,1, · · · , bm
′

u′,n, 0, · · · , 0].
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Similarly, we let bm
′

u′,n̄ denote the NL length vector formed by retaining only the nth

component of bm
′

u′ and setting all the other ones to zero, i.e.,

bm
′

u′,n̄ = [0, · · · , 0, bm′u′,n, 0, · · · , 0].

Considering the difference h(B ∪ e′)− h(B), we expand it as

h(B ∪ e′)− h(B) = h(B ∪ (u′,m′,bm
′

u′,(1)))− h(B) +

NL∑
n=2

(
h(B ∪ (u′,m′,bm

′
u′,(n)))− h(B ∪ (u′,m′,bm

′
u′,(n−1)))

)
(7.14)

From the result we have proved, we see that since (u′,m′,bm
′

u′,(1)) ∈ E ,

h(B ∪ (u′,m′,bm
′

u′,(1)))− h(B) ≤ h(A ∪ (u′,m′,bm
′

u′,(1)))− h(A).

Notice then from the definition of the set function h(·) (7.7), we have that for any set

B ⊆ Ω,

h(B ∪ (u′,m′,bm
′

u′,(n)))− h(B ∪ (u′,m′,bm
′

u′,(n−1)))

= h((B ∪ (u′,m′,bm
′

u′,(n−1))) ∪ (u′,m′,bm
′

u′,n̄))

− h(B ∪ (u′,m′,bm
′

u′,(n−1))).

Noting that since each 3−tuple (u′,m′,bm
′

u′,n̄) ∈ E , it allows us to again invoke the result

proved earlier to deduce this fact

h((B∪(u′,m′,bm
′

u′,(n−1))) ∪ (u′,m′,bm
′

u′,n̄))

− h(B ∪ (u′,m′,bm
′

u′,(n−1)))

≤ h((A ∪ (u′,m′,bm
′

u′,(n−1))) ∪ (u′,m′,bm
′

u′,n̄))

− h(A ∪ (u′,m′,bm
′

u′,(n−1)))

= h(A ∪ (u′,m′,bm
′

u′,(n)))− h(A ∪ (u′,m′,bm
′

u′,(n−1))).
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Combining this fact and (7.14), we get the desired result.2

From Theorem 7.1 we can infer that the reformulated problem in (7.8) is one of maxi-

mizing a submodular objective subject to one matroid constraint. Thus, we can adapt

the classical greedy method [71] for the latter optimization problem. However, the main

hurdle we need to overcome is that of selecting the locally optimal 3−tuple (given a set

of selected 3−tuples). In particular, the sub-problem we have to solve at each iteration,

given a set Ĝ of 3−tuples selected so far, for each un-selected user u and mode m can

be posed as

max
bmu ∈IRNL+

bmu,n∈Bm∀ n∈N &
∑
n∈N bmu,n≤Qu

{h(Ĝ ∪ (u,m,bmu ))− h(Ĝ)}. (7.15)

An important obervation that follows from the submodularity of h(·) is the following.

Lemma 7.2 The problem in (7.15) is the maximization of a normalized non-decreasing

submodular set function subject to one knapsack constraint.

Thus, (7.15) can itself be solved approximately (with a constant-factor η = 1 − 1√
e

guarantee) using an enhanced greedy method [75]. Notice that the knapsack constraint

becomes vacuous for the full buffer traffic model and in this case the enhanced greedy

method returns the optimal solution. Our proposed algorithm is an adaptation of the

classical greedy algorithm that at each iteration invokes the enhanced greedy method,

to the particular problem at hand (7.8). Then, invoking the approximation guarantee

derived for the classical greedy method when used to maximize a submodular set func-

tion under a matroid constraint, with an approximately locally optimal choice at each

step, [86], we obtain the following.

Theorem 7.2 Let Oopt denote an optimal solution to (7.8) and let O denote the one

yielded by our proposed Algorithm. Then,

h(O) ≥ ηh(Oopt)
η + 1

, (7.16)

where the constant η = 1 − 1√
e
. Further, in the special case of backlogged (full buffer)

traffic model η = 1.
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We now provide a detailed description of our proposed algorithm. Towards this end,

recalling the definition of the subset E ⊆ Ψ as the set of all 3−tuples whose bit loading

vectors have a positive entry in at-most one RB, we introduce our adaptation of the

classical greedy method in Algorithm 3, which repeatedly invokes an adaptation of the

enhanced greedy method, described in Algorithm 4. On perusing Algorithms 3 and 4

we see that the key step that needs to be efficiently solved is (7.21) (or (7.22)). This

can be done as follows. Let A = Ĝ ∪ ê and consider any e = (u,m,bmu ) ∈ E for which

bmu,n > 0. Then, from the proof of Theorem 7.1 we can deduce that

h(Ĝ ∪ ê ∪ e)− h(Ĝ ∪ ê) =
[
ψ′u,nb

m
u,n(1− p(bmu,n, ρ))− V An

]+
.

Therefore given any subset A ⊆ Ψ, updating the weighted rate barrier upon inclusion

of a new 3−tuple e, i.e., determining V
A∪e
n , ∀ n ∈ N , is the key hurdle we have to

surmount. This is achieved by the following result.

Proposition 7.3 For any given subset A ⊆ Ψ and its corresponding optimal RB set

RAL , define the set of bottleneck subframes in the scheduling block as

SA =

` ∈ {1, · · · , L} : |RAL ∩ (∪`j=1Nj)| = min

J,∑̀
j=1

Jj


 . (7.17)

Then, the weighted rate barrier V An for any n ∈ N`, ` = 1, · · · , L can also be written as

V An = max

{
∆An , min

s∈RAL∩(∪ˆ̀
j=1Nj)

{∆As }
}
, (7.18)

where ˆ̀ = min{j ∈ SA : j ≥ `}. Furthermore, upon inclusion of any new 3−tuple

e = (u,m,bmu ) ∈ E, such that bmu,n > 0 for that n ∈ N`, the set RA∪eL can be determined

using

RA∪eL =

 RAL D ≤ 0 or n ∈ RAL ,

(RAL \ {s̆}) ∪ {n} else,
(7.19)
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where

D = ψ′u,nb
m
u,n(1− p(bmu,n, ρ))− V An ,

and

s̆ = arg min
s∈RAL∩(∪ˆ̀

j=1Nj)
{∆As },

and ties can be broken arbitrarily.

Proof: We first show that the alternate expression given for the weighted rate barrier,

V An , n ∈ N`, in (7.18) is indeed equivalent to the one in (7.11). Note first that the

last subframe must always be a bottleneck subframe, i.e., L ∈ SA, ∀A. Consider a

3−tuple (or element) e = (u,m,bmu ) ∈ E whose bit vector has a positive entry on the

RB n of interest (bmu,n > 0) and let R = ψ′u,nb
m
u,n(1 − p(bmu,n, ρ)) denote the weighted

rate of element e on RB n. Then, to ensure an improvement in the utility upon adding

e to A, a trivial necessary condition is R > ∆An so that V An ≥ ∆An . Next, let ˆ̀ be

the first bottleneck subframe that is either at or after the subframe ` which contains

the RB n of interest. By definition of a bottleneck subframe, the optimal set RAL
includes the maximum possible number of RBs from subframes 1, · · · , ˆ̀. This implies

that the best weighted rates obtained over RBs in subframes ˆ̀+ 1, · · · , L under the set

A, i.e., {∆As },∀ s ∈ ∪Lj=ˆ̀+1
Nj , are not collectively large enough to ensure that a higher

weighted sum rate utility can be obtained by assigning fewer than min{J,∑ˆ̀

j=1 Jj} RBs

to the first ˆ̀ subframes. Consequently, we can deduce that the telescoping relation in

(7.10) can be further refined to

RAL ∩Nj = RAL−1 ∩Nj = · · · = RAˆ̀ ∩Nj ,∀ j = 1, · · · , ˆ̀, (7.20)

which also means that

RAˆ̀ = RAL ∩ (∪ˆ̀
k=1Nk) ⊆ RAj , j = ˆ̀+ 1, · · · , L,

so that

V A
min,ˆ̀

≥ V Amin,j , j = ˆ̀+ 1, · · · , L.
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This fact upon invoking (7.11) proves the equivalence of the expressions in (7.18) and

(7.11) whenever ˆ̀ = `. Then, suppose that ˆ̀> `. Here, it can be seen that the best

weighted rate on each RB s ∈ RA`′ \ RAˆ̀ , ∆As , is no greater than the best weighted rate

on any RB t ∈ RAˆ̀ \ RA`′ , ∆At , for all `′ = `, · · · , ˆ̀− 1. This is because otherwise by

swapping RB t in RAˆ̀ \ RA`′ by RB s in RAˆ̀ \ RA`′ , we can obtain a higher weighted

sum rate while retaining feasiblity. In other words, such a swap will yield a feasible

set of RBs in ∪ˆ̀
j=1Nj because of (7.10) and the fact that subframes `, · · · , ˆ̀− 1 are

not bottleneck subframes, and this feasible set will provide a higher weighted sum rate

(under set A) which contradicts the weighted sum rate optimality ofRAˆ̀ . Thus, we have

the additional result V A
min,ˆ̀

≥ V Amin,j , j = `, · · · , ˆ̀− 1 which establishes the equivalence

of the expressions in (7.18) and (7.11) whenever ˆ̀> ` as well.

Next, to prove the result in (7.19) we note that the result is trivially true when

D ≤ 0 or n ∈ RAL . Hence, we assume that D > 0 and n /∈ RAL . Clearly, in this case

we must have that n ∈ RA∪eL . Then notice that upon inlcuding e, the best weighted

rate on only RB n ∈ N` is improved,whereas the best weighted rates on all RBs in all

other subframes, i.e., RBs in the set N \{n}, are not changed. Consequently, it can be

verified that the subframe ˆ̀will remain a bottleneck subframe and the selection of RBs

on subframes ˆ̀+ 1, · · · , L will not change, i.e., RAL ∩ (∪L
j=ˆ̀+1

Nj) = RA∪eL ∩ (∪L
j=ˆ̀+1

Nj).

Therefore, we have to compare RAˆ̀ = RAL ∩ (∪ˆ̀
j=1Nj) and RA∪eˆ̀ = RA∪eL ∩ (∪ˆ̀

j=1Nj),

keeping in mind that their cardinalities are identical. Again invoking the fact that the

best weighted rates on the first ` − 1 subframes are not changed, we can deduce that

the number of RBs assigned to the first ` − 1 subframes in RA∪eˆ̀ must be no greater

than that in RAˆ̀ , which further implies that

RA∪eˆ̀ ∩ (∪`−1
j=1Nj) ⊆ RAˆ̀ ∩ (∪`−1

j=1Nj).

Furthermore, we can deduce that if

|RAˆ̀ ∩ (∪ˆ̀
j=`+1Nj)| ≤ |RA∪eˆ̀ ∩ (∪ˆ̀

j=`+1Nj)|,
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then

RAˆ̀ ∩ (∪ˆ̀
j=`+1Nj) ⊆ RA∪eˆ̀ ∩ (∪ˆ̀

j=`+1Nj),

and vice versa. Similarly at subframe ` since we improve the best weighted rate at

one RB n ∈ N`, we have that if |(RA∪eˆ̀ ∩ N`) \ {n}| ≥ |RAˆ̀ ∩ N`| then RAˆ̀ ∩ N` ⊆

(RA∪eˆ̀ ∩ N`) \ {n} and vice versa. Next, invoking the weighted sum rate optimality of

RAˆ̀ (under the best weighted rates induced by the set of 3−tuples A), we can argue

that

|RA∪eˆ̀ ∩ (∪`−1
j=1Nj)| ≥ |RAˆ̀ ∩ (∪`−1

j=1Nj)| − 1.

This is because otherwise we can move an RB assignment from subframes `, · · · , ˆ̀ to

the first ` − 1 subframes without reducing (or with improving) the weighted sum rate

while retaining feasibility, until the relation is satisfied. The same argument also allows

us to conclude that |RA∪eˆ̀ ∩ (∪ˆ̀
j=`+1Nj)| ≤ |RAˆ̀ ∩ (∪ˆ̀

j=`+1Nj)| + 1. Together, these

observations suffice to conclude that (7.19) holds true. 2

Finally, we note that Algorithm 3 can be initialized with V ∅n = 0, ∀ n ∈ N and

any arbitrary choice of R∅L satisfying the cardinality and causality constraints |R∅L ∩

{∪`j=1Nj}| = min{J,∑`
j=1 Jj}, ∀ ` = 1, · · · , L.

Algorithm 3

1: Initialize with set of modes, M, selected set of 3−tuples, Ĝ = φ, and user set U ′ = U .
2: Repeat
3: Invoke Algorithm 4 to determine ê as the tuple in Ψ \ Ĝ which offers (approximately) the

largest gain among all tuples e ∈ Ψ \ Ĝ such that Ĝ ∪ e ∈ I.
4: If G = h(Ĝ ∪ ê)− h(Ĝ) > 0 then

5: Update Ĝ = Ĝ ∪ ê and U ′ = U ′ \ {û}, where ê = (û, m̂, b̂).
6: End If
7: Until U ′ = φ or G = 0.
8: Output Ĝ.

7.3 Extensions

In this section we briefly comment on extensions of our results to a multi-cell setting

where inter-cell interference coordination is important. Our first observation is that any

given time-frequency resource partition among cells in which each cell is allowed to only

use a subset of the available RBs in a scheduling block, can be readily accommodated.
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Algorithm 4

1: Initialize with user set, U ′, and set of modes, M and set of selected tuples Ĝ
2: For each user u ∈ U ′ and each mode m ∈M do
3: Define ê = (û, m̂, b̂m

u ) with û = u, m̂ = m, b̂m
u = 0 and set w = 0 and gain G = 0.

4: While w < Qu Do
5: Determine ĕ = (u,m, b̆m

u ) ∈ E as

arg max
e=(u,m,bm

u )∈E∑
n∈N bmu,n>0;w+

∑
n∈N bmu,n≤Qu

{
h(Ĝ ∪ ê ∪ e)− h(Ĝ ∪ ê)∑

n∈N bmu,n

}
(7.21)

6: Update b̂mu,n̆ = b̆mu,n̆ where b̆mu,n > 0 at n = n̆ and b̆mu,n = 0, ∀ n = N \ n̆
7: Update G = G+ h(Ĝ ∪ ê ∪ ĕ)− h(Ĝ ∪ ê) and w = w + b̆mu,n̆.
8: End While
9: Determine

ĕ = arg max
e=(u,m,bm

u )∈E∑
n∈N bmu,n≤Qu

{
h(Ĝ ∪ e)− h(Ĝ)

}
(7.22)

10: If G < h(Ĝ ∪ ĕ)− h(Ĝ)
11: Update ê = ĕ and G = h(Ĝ ∪ ĕ)− h(Ĝ)
12: End If
13: End For
14: Output the 3−tuple ê along with its computed gain G, where that gain is largest among all

computed gains over users in U ′ and modes in M.

In particular, in each cell we can simply set the throughput to be zero for all users,

modes and bit loadings, on each RB that is prohibited for that cell. Our second ob-

servation is more involved. We first note that per-subframe cardinality bounds can be

imposed in order to limit the radiated energy per subframe (and hence the interference

imposed on users served by other cells). In particular, we will show that additional

per-subframe cardinality bounds can be placed on the formulation in (7.3) which can

then be approximately solved via Algorithm 3. Indeed, let C`, ` = 1, · · · , L denote L

per-subframe cardinality bounds. Using the same observation as in Lemma I we can

assume without loss of generality that J` ≤ C` ≤ N, ∀ ` and consider the following
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extension of (7.3)

max
{xmu,n,bmu,n}

K∑
u=1

L∑
`=1

∑
n∈N`

M∑
m=1

ψ′u,nx
m
u,nb

m
u,n(1− pmu,n(bmu,n, ρ)) (7.23a)

subject to
M∑
m=1

K∑
u=1

xmu,n ≤ 1, n ∈ N , (7.23b)

K∑
u=1

M∑
m=1

max
n∈N

xmu,n ≤ K̄, (7.23c)

M∑
m=1

max
n∈N

xmu,n ≤ 1, 1 ≤ u ≤ K, (7.23d)

∑
n∈N1∪···∪N`

K∑
u=1

M∑
m=1

xmu,n ≤ min

∑̀
q=1

Jq, J

 , ∀ `, (7.23e)

∑
n∈N`

K∑
u=1

M∑
m=1

xmu,n ≤ C`,∀ `, (7.23f)

M∑
m=1

∑
n∈N

bmu,n ≤ Qu, 1 ≤ u ≤ K, (7.23g)

xmu,n ∈ {0, 1} & bmu,n ∈ Bm,∀ u,m, n. (7.23h)

Defining the set of 3−tuples, Ψ, as before, we can reformulate (7.23) as in (7.8) but

where

h(A) = max
zn∈{0,1}
∀ n

{∑
n∈N

zn max
(u,m,bmu )∈A

{ψ′u,nbmu,n(1− pmu,n(bmu,n, ρ))}
}

s.t.
∑

n∈∪`j=1Nj

zn ≤ min

J,∑̀
q=1

Jq

 ,

∑
n∈N`

zn ≤ C`, ∀ ` = 1, · · · , L. (7.24)

It can be shown that Theorem 7.1 applies in this case as well and Algorithm 3 when ini-

tialized with a feasible choice ofR∅L that satisfies |R∅L∩{∪`j=1Nj}| = min{J,∑`
j=1 Jj}, |R∅L∩

N`}| ≤ C` ∀ `, yields exactly the same guarantee as in Theorem 7.2. Finally, in im-

plementing Algorithm 3 we can use Proposition 7.3 after a simple change in (7.18)
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Figure 7.1: Achieved GEE versus Number of used RBs: Large Queue-sizes

to

V An = max

{
∆An ,∆

A
`,C`

, min
s∈RAL∩(∪ˆ̀

j=1Nj)
{∆As }

}
, (7.25)

where ∆A`,C` is the (C`)
th largest member of {∆An }n∈N` with n̂` denoting the correspond-

ing RB and ˆ̀ = min{j ∈ SA : j ≥ `}. Similarly, upon inclusion of any new 3−tuple

e = (u,m,bmu ) ∈ E , such that bmu,n > 0 for that n ∈ N`, the set RA∪eL can be determined

using

RA∪eL =


RAL D ≤ 0 or n ∈ RAL ,

(RAL \ {n̂`}) ∪ {n} V An = ∆A`,C` ,

(RAL \ {s̆}) ∪ {n} else.

(7.26)



143

0 5 10 15 20 25 30 35 40
8

10

12

14

16

18

20

Number of RBs

G
EE

 

 
Baseline
Prior. Art.
Proposed

Figure 7.2: Achieved GEE versus Number of used RBs: Small Queue-sizes

7.4 Simulation Results

We conducted a numerical study by evaluating the achieved average GEE over 1000

random input traces and the 0−1 throughput model. For simplicity, we first consider a

scheduling block length of one (L = 1). This allows us to compare our algorithm with

two benchmarks that entail deterministic algorithms of comparable complexity, and

which have been suggested for constrained weighted sum rate maximization (subframe

scheduling). We will later consider the more general multi-subframe per block case. In

our study, we fixed all RB weights, {ψn}, to be identical, the number of modes, M , to

be 4 and the number of RBs , N , to be 40. The number of users, K, as well as user

limit K̄ were chosen to be 20. The usable RB set cardinality, J , was varied from 1 to

N . We chose one representative value for the per-RB energy ρ along with values for

the harvested energy per subframe E1 and the baseband circuit energy ϑ (the power

amplifier efficiency was chosen to be 1) which resulted in J1 = N . We note that these
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Figure 7.3: Achieved GEE versus Number of used RBs: Large Queue-sizes

chosen values were fixed across all the 1000 traces. On the other hand, the per-user

per-RB rates were generated in an i.i.d. manner across traces. In the results presented

here these rates were generated using the half-normal distribution. Similar trends were

observed for other distributions.

The first benchmark we compare against is an extension of the greedy algorithm from

[57,59] that incorporates an additional knapsack constraint to limit the number of used

RBs to some specified J . In particular, this extension follows the approach of [57, 59]

(which we remind does not consider a limit on the number of usable RBs), until the RB

cardinality constraint is reached. The other benchmark can accommodate any arbitrary

linear cost constraint on the set of used RBs and proposes an approximation algorithm

whose approximation guarantee decays logarithmically in the system dimension [87].

Compared to the algorithm in [87], the one proposed here offers a superior constant

factor approximation guarantee. Moreover, while the algorithm proposed in [87] can
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Figure 7.4: Achieved GEE versus Number of used RBs: Large Queue-sizes and L = 3
subframes per block

incorporate a generic linear constraint, it cannot incorporate multiple linear causality

constraints as the one proposed here.

In Fig. 7.1 we consider the large queue-size regime and plot the energy efficiency

achieved (defined as the ratio of the weighted sum rate (computed per subframe) and

the energy consumed per subframe) by our proposed algorithm, as well as the afore-

mentioned two benchmarks, for each value of J = 1, · · · , N . Fig. 7.2 is the counterpart

of Fig. 7.1 under a small queue size regime. From the figures it is seen that our pro-

posed algorithm is significantly superior to the direct extension of the existing greedy

methods (Baseline) and also outperforms the one from [87] (Prior art). Next, to assess

the gap to optimality, we compare the performance offered by our algorithm with a

linear programming (LP) based upper bound to (7.3) that can be obtained after some

manipulations upon relaxing the binary indicator variables. In Fig. 7.3 we plot the

performance (GEE) achieved by our algorithm and the upper bound (which we remind
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Figure 7.5: Achieved GEE versus Number of used RBs: Small Queue-sizes and L = 3
subframes per block

need not be achievable). It is evident that our algorithm performs quite close to the

optimal.

Finally, to benchmark the performance of our proposed algorithm over a more gen-

eral case, we let each scheduling block have a length of L = 3 subframes, with each

subframe comprising of N = 15 RBs. We assume that the circuit power is supplied

by a non-renewable source and that causality constraints are specified via parameters

J1 = 15, J2 = 10 & J3 = 5. The other parameters are chosen as in the previous ex-

amples. Then, in Fig. 7.4 and Fig. 7.5 we plot the performance (GEE) achieved by

our algorithm and the LP upper bound for the large and small queue size regimes, re-

spectively. Also plotted in these two figures are the performance of two myopic policies

denoted by Myopic-I and Myopic-II, respectively. In Myopic-I we simulate a variation

of the “spend what you get” policy [88]. At each subframe, this policy only exploits

the CSI pertaining to that subframe and seeks to use the maximum number of RBs
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possible under the energy available at the subframe. This policy is suitable for sce-

narios in which there is strict causality in the availability of CSI (and the evolution of

CSI across subframes cannot be easily modeled). This policy utilizes the battery for

storing energy that cannot be utilized, where such an excess energy remains when the

available energy cannot be exhausted even upon using all the N RBs in a subframe.

Recall from Lemma 7.1 that the parameters {J`}L`=1 we set are essentially the number

of RBs this Myopic policy must use in each subframe, when not further constrained by

a limit on the total number of usable RBs. To implement this policy, we first consider

subframe 1 and specialize our proposed algorithm to a block length of one subframe

with a cardinality bound min{J, J1} on the number of usable RBs. In each subsequent

subframe, `, we obtain the scheduling decision by specializing Algorithm 3 to a block

length of one subframe with a cardinality bound min{J −∑`−1
j=1 Jj , J`} on the number

of usable RBs and with the additional restrictions that:

1. Any user previously scheduled in any preceding subframe can only be scheduled

in subframe ` with the same previously assigned mode and cannot be assigned

more than the remaining bits in its buffer.

2. The total number of distinct scheduled users up to subframe ` cannot exceed K̄.

We note that the latter two constraints are easy to incorporate. The other Myopic-II

policy is the variant of the “spend what you get” policy which does not use the battery so

that any excess energy needs to be discarded. For the Myopic-II policy we accordingly

set the parameters as J1 = 15, J2 = 2, J3 = 5 to model the event that the energy arrival

in subframe 2 is small and no excess energy from subframe 1 can be used in subframe 2.

From these figures we can deduce that the performance of our algorithm is quite close

to the optimal. Moreover, there is significant gain compared to the myopic policies

especially when the total number of usable RBs J is limited. This is because since

the mypoic policies are committed to using as many RBs as possible in each subframe,

they are unable to utilize many good RBs at the subsequent subframes. As expected

both myopic policies have identical performance for J : 1 ≤ J ≤ 15 since exactly the

same scheduling decisions would be obtained for the first subframe under either policy.
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Surprisingly Myopic-II can outperform Myopic-I for some values of J : 16 ≤ J ≤ 22.

Here, the fact that only two RBs can be used in the second subframe seems to be

an advantage for the former policy because it forces the policy to consider the third

subframe with fewer restrictions (recall that a user once scheduled can only be scheduled

again under the same mode). For J > 22, Myopic-II policy degrades since it cannot

exploit the battery to use more than 22 RBs. Notice that our proposed algorithm can

be readily adapted to such myopic policies. Under the original non myopic policy, our

algorithm judiciously considers all three subframes to obtain its scheduling decision and

thus outperforms both myopic scheduling ones.

7.5 Conclusions

We proposed novel algorithms for optimizing global energy efficiency and weighted sum

of energy efficiencies, respectively, over energy harvesting LTE OFDMA networks. The

proposed algorithms were shown to guarantee constant-factor approximation and are

simple enough to be implementable. An important avenue for future work is to extend

our results for the multi-cell case.
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Chapter 8

Conclusions and Future Work

In this thesis, we studied communication systems and protocols under energy con-

straints. At the receiver side, we investigated the fundamental limits of reliable com-

munication when the processing is powered by random energy sources and subject to

constraints on energy storage. This would be more vital in short-range communication

applications where the receive energy is comparable to the transmit energy. We propose

a model for the processing energy at the receiver that captures the trade-off between

sampling energy and decoding energy. The model relies on the decoding energy being a

decreasing function of the capacity gap between the code rate and the channel capacity.

While sampling and decoding energies are typically comparable, the key issue is that

the sampling is a real-time process; the samples must be collected during the transmis-

sion time of that packet. Thus the energy harvesting rate and battery size may limit

the sampling rate. This model allows us to characterize the maximum throughput of a

basic communication channel with limited processing energy.

We extended this result to fading channels and multi-user scenarios with limited

processing energy at the receiver. We showed how to capture the receive multi-user

diversity, in which the receiver decodes the messages experiencing the strongest channels

in order to reduce the decoding energy per user and thus decode more data messages.

Next, we studied using HARQ protocol as a scheme to save energy at the receiver.

Unlike conventional cases where the processing energy is not limited, here even if the

receiver can decode a message, it may still ask the transmitter to send extra redundant

bits in order to increase the capacity gap and reduce the processing energy. On the other

hand, the extra redundant bits will increase the code length which in turn may increase

the processing energy. Thus, the receiver requests retransmission as long as it reduces
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the overall decoding energy. We also considered using Repetition-HARQ scheme along

with MRC at the receiver. Although in this scheme the capacity is not improved as fast

as in IR-HARQ, the key advantage is that the effective code length is kept constant.

We show that in contrast to the traditional systems, here the Repetition-HARQ could

outperform IR-HARQ.

We also investigated the problem of energy efficiency and energy harvesting in LTE

networks. We formulated problems targeting maximization of weighted sum rate under

either energy constraints or energy causality constraints imposed by energy harvesting

devices. We showed the problems under consideration are NP-hard and proposed effi-

cient algorithms to solve them approximately using submodular optimization. We also

derived approximation guarantees for all scenarios.

Based on our work on energy-aware communication in both the transmitter and the

receiver, we will seek to work in the following directions as the future work.

• ARQ optimization: As a future direction, we will seek to analyze the IR-HARQ

under energy harvesting at the receiver to derive the optimal decision strategy

including the optimal threshold on the energy. The challenge is that any decision

on decoding a message or not decoding and requesting extra redundancy would

affect the future decisions. This memory is introduced by the existence of the

battery that can store the energy for the future use. The mathematical framework

to deal with this problem involves a dynamic programming problem subject to

several constraints which is not trivial to solve. The next step will be to consider

the more efficient IR-HARQ scheme in which in each retransmission, a punctured

code is transmitted. Here, in the first transmission, the systematic bits along

with some redundant bits from a long code book are transmitted and in the

next retransmissions, a subset of the redundant bits are selected randomly for

transmission with a different power level.

• Multi-user channels with limited processing energy: To approach the capacity of

multi-user channels, researchers have proposed a variety of signaling and coding

techniques such as superposition coding, dirty-paper coding, successive and joint
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decoding, etc. However, the computational complexity (or equivalently the pro-

cessing energy) of these coding techniques, as a function of the parameters of the

channel has not been well–understood. In addition, it is not clear if these tech-

niques would enlarge the achievable rate region of the channel, if the processing

energy at the transmitter or the receiver is limited. One research direction is

to model and analyze the fundamental limits of communication over multi-user

channels, with limited processing energy.

• Low data rates with sporadic data: In some applications, such as body sensors, the

data rate is low. Using a code with a simple structure like repetition code would

be good enough for such a system. In addition, as there is not always data for

transmission, it is sent in irregular and scattered time intervals. So, the system

stays idle for a long portion of the time. However, the receiver needs to spend

some energy sensing the channel regularly to check for the new data. Designing

efficient communication systems under these constraints is of practical interest.

• Resource scheduling with energy harvesting for multi-cell networks: The exten-

sions made to enforce per-subframe cardinality bounds in Chapter 7 can be im-

posed in order to limit the radiated energy per subframe and hence the interfer-

ence imposed on users served by other cells. Based on this fact, we could extend

scheduling results under energy harvesting constraints to multi-cell LTE networks.

• Resource scheduling based on receivers’ processing energy (LTE): In this thesis,

we have investigated the resource allocation, including resource blocks (time-

frequency blocks) assignment and mode (e.g., pre-coder matrix ) selection, in

wireless cellular systems, when the power at the transmitter is limited and ran-

dom. The same problem can be considered when the processing power at the

receiver side is limited. In that case, we may assign resource blocks and data

rates to maximize the throughput, when the processing energy is the bottleneck.



152

References

[1] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvesting com-
munication system,” IEEE Trans. Commun., vol. 60, no. 1, pp. 220 –230, Jan.
2012.

[2] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for battery limited
energy harvesting nodes,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1180
–1189, Mar. 2012.

[3] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with
energy harvesting nodes in fading wireless channels: Optimal policies,” IEEE J.
Sel. Areas Commun., vol. 29, no. 8, pp. 1732 –1743, Sep. 2011.

[4] O. Ozel and S. Ulukus, “Achieving AWGN capacity under stochastic energy har-
vesting,” IEEE Trans. Info. Theory, vol. 58, no. 10, pp. 6471–6483, 2012.

[5] M. Khuzani, H. Saffar, E. Alian, and P. Mitran, “On optimal online power policies
for energy harvesting with finite-state Markov channels,” in Proc. IEEE ISIT, July
2013, pp. 1586–1590.

[6] K. Tutuncuoglu, O. Ozel, A. Yener, and S. Ulukus, “Binary energy harvesting
channel with finite energy storage,” in Proc. IEEE ISIT, July 2013, pp. 1591–
1595.

[7] J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy harvesting recharge-
able transmitter,” IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 571–583,
Feb. 2012.

[8] J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple access channel
with rechargeable nodes,” in Proc. IEEE ICC, June 2011, pp. 1 –5.

[9] K. Tutuncuoglu and A. Yener, “Sum-rate optimal power policies for energy har-
vesting transmitters in an interference channel,” CoRR, vol. abs/1110.6161, 2011.

[10] O. Orhan and E. Erkip, “Throughput maximization for energy harvesting two-hop
networks,” in Proc. IEEE ISIT, July 2013, pp. 1596–1600.

[11] P. Blasco, D. Gunduz, and M. Dohler, “Low-complexity scheduling policies for
energy harvesting communication networks,” in Proc. IEEE ISIT, July 2013, pp.
1601–1605.

[12] C. Huang, R. Zhang, and S. Cui, “Throughput maximization for the gaussian relay
channel with energy harvesting constraints,” IEEE J. Sel. Areas Commun., vol. 31,
no. 8, pp. 1469–1479, August 2013.



153

[13] D. Gunduz and B. Devillers, “Two-hop communication with energy harvesting,”
in 4th IEEE International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), Dec 2011, pp. 201–204.

[14] D. Gunduz, K. Stamatiou, N. Michelusi, and M. Zorzi, “Designing intelligent
energy harvesting communication systems,” IEEE Communications Magazine,
vol. 52, no. 1, pp. 210–216, January 2014.

[15] O. Orhan, D. Gunduz, and E. Erkip, “Throughput maximization for an energy
harvesting communication system with processing cost,” in Information Theory
Workshop (ITW), 2012 IEEE, Sept 2012, pp. 84–88.

[16] J. Xu and R. Zhang, “Throughput optimal policies for energy harvesting wireless
transmitters with non-ideal circuit power,” IEEE J. Sel. Areas Commun., vol. 32,
no. 2, pp. 322–332, February 2014.

[17] K. Tutuncuoglu and A. Yener, “Communicating with energy harvesting trans-
mitters and receivers,” in Information Theory and Applications Workshop (ITA),
2012, Feb. 2012, pp. 240 –245.

[18] S. Cui, A. Goldsmith, and A. Bahai, “Energy-constrained modulation optimiza-
tion,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2349 – 2360, Sept. 2005.

[19] E. Lauwers and G. Gielen, “Power estimation methods for analog circuits for ar-
chitectural exploration of integrated systems,” IEEE Trans. Very Large Scale In-
tegration (VLSI) Systems, vol. 10, no. 2, pp. 155 –162, Apr. 2002.

[20] H. Mahdavi-Doost and R. Yates, “Energy harvesting receivers: Finite battery
capacity,” in Proc. IEEE ISIT, 2013.

[21] ——, “Fading channels in energy-harvesting receivers,” in Proc. CISS, 2014.

[22] R. Yates and H. Mahdavi-Doost, “Energy harvesting receivers: Optimal sampling
and decoding policies,” in IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Dec 2013, pp. 367–370.

[23] H. Mahdavi-Doost and R. Yates, “Opportunistic reception in a multiuser slow-
fading channel with an energy harvesting receiver,” in Proc. IEEE ICC, 2015.

[24] H. Mahdavi-Doost and R. D. Yates, “Hybrid ARQ in block-fading channels with
an energy harvesting receiver,” in Proc. IEEE ISIT, June 2015, pp. 1144–1148.

[25] O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener, “Capacity of the energy har-
vesting channel with energy arrival information at the receiver,” in Information
Theory Workshop (ITW), 2014 IEEE, Nov 2014, pp. 331–335.

[26] A. Arafa and S. Ulukus, “Optimal policies for wireless networks with energy har-
vesting transmitters and receivers: Effects of decoding costs,” IEEE J. Sel. Areas
Commun., vol. 33, no. 12, pp. 2611–2625, Dec 2015.

[27] A. Khandekar and R. McEliece, “On the complexity of reliable communication on
the erasure channel,” in Proc. IEEE ISIT, 2001.



154

[28] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Efficient erasure
correcting codes,” IEEE Trans. Info. Theory, vol. 47, no. 2, pp. 569 –584, feb 2001.

[29] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching
irregular low-density parity-check codes,” IEEE Trans. Info. Theory, vol. 47, no. 2,
pp. 619–637, Feb 2001.

[30] I. Sason and R. Urbanke, “Complexity versus performance of capacity-achieving ir-
regular repeat-accumulate codes on the binary erasure channel,” IEEE Trans. Info.
Theory, vol. 50, no. 6, pp. 1247–1256, June 2004.

[31] T. Richardson and R. Urbanke, “The renaissance of Gallager’s low-density parity-
check codes,” IEEE Communications Magazine, vol. 41, no. 8, pp. 126 – 131, Aug.
2003.

[32] P. Grover, K. Woyach, and A. Sahai, “Towards a communication-theoretic un-
derstanding of system-level power consumption,” IEEE J. Sel. Areas Commun.,
vol. 29, no. 8, pp. 1744 –1755, Sept. 2011.

[33] P. Grover, A. Goldsmith, and A. Sahai, “Fundamental limits on the power con-
sumption of encoding and decoding,” in Proc. IEEE ISIT, July 2012, pp. 2716–
2720.

[34] S. Verdu and T. Weissman, “The information lost in erasures,” IEEE Trans. Info.
Theory, vol. 54, no. 11, pp. 5030 –5058, nov. 2008.

[35] D. Forney, “Concatenated codes,” Ph.D. dissertation, M.I.T., 1965.

[36] I. Sason, “On universal properties of capacity-approaching ldpc code ensembles,”
IEEE Trans. Info. Theory, vol. 55, no. 7, pp. 2956–2990, 2009.

[37] V. Guruswami and P. Xia, “Polar codes: Speed of polarization and polynomial
gap to capacity,” in IEEE Proc. FOCS, 2013, pp. 310–319.

[38] N. Alon and M. Luby, “A linear time erasure-resilient code with nearly optimal
recovery,” IEEE Trans. Info. Theory, vol. 42, no. 6, pp. 1732–1736, Nov 1996.

[39] MATLAB, “Low-density parity-check codes from DVB-S.2 standar,” http://www.
mathworks.com/help/comm/ref/dvbs2ldpc.html.

[40] S. Information Theory at the Chalmers University of Technology, Gothenburg,
“Generation of LDPC codes,” http://itpp.sourceforge.net/4.3.1/ldpc gen codes.
html, 2013.

[41] M. Mansour and N. Shanbhag, “A 640-mb/s 2048-bit programmable ldpc decoder
chip,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 684–698, March
2006.

[42] M. K. Roberts and R. Jayabalan, “An area efficient and high throughput multi-
rate quasi-cyclic LDPC decoder for IEEE 802.11n applications,” Microelectronics
Journal, no. 0, pp. –, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0026269214002225

http://www.mathworks.com/help/comm/ref/dvbs2ldpc.html
http://www.mathworks.com/help/comm/ref/dvbs2ldpc.html
http://itpp.sourceforge.net/4.3.1/ldpc_gen_codes.html
http://itpp.sourceforge.net/4.3.1/ldpc_gen_codes.html
http://www.sciencedirect.com/science/article/pii/S0026269214002225
http://www.sciencedirect.com/science/article/pii/S0026269214002225


155

[43] W. Hoeffding, “Probability inequalities for sums of bounded random variables,”
Journal of the American Statistical Association, vol. 58, no. 301, pp. 13–30, March
1963. [Online]. Available: http://www.jstor.org/stable/2282952?

[44] L. Kleinrock, Queueing Systems. John Wiley and Sons, Inc., 1975.

[45] R. C. Larson and A. R. Odoni, Urban Operations Research. Prentice-Hall, NJ,
1981.

[46] R. G. Gallager, Stochastic Processes: Theory for Applications. Cambridge Uni-
versity Press, 2014.

[47] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge
University Press, 2005.

[48] R. Knopp and P. Humblet, “Information capacity and power control in single-cell
multiuser communications,” in Proc. IEEE ICC, vol. 1, 1995, pp. 331–335 vol.1.

[49] D. Tse and S. Hanly, “Multiaccess fading channels. I. polymatroid structure, op-
timal resource allocation and throughput capacities,” IEEE Trans. Info. Theory,
vol. 44, no. 7, pp. 2796–2815, 1998.

[50] L. Li and A. Goldsmith, “Capacity and optimal resource allocation for fading
broadcast channels .i. ergodic capacity,” IEEE Trans. Info. Theory, vol. 47, no. 3,
pp. 1083–1102, 2001.

[51] J. M. Wozencraft and M. Horstein, “Coding for two-way channels,” Tech. Rep.
383, Res. Lab. Electron., MIT, Cambridge, MA, Jan. 1961.

[52] G. Caire and D. Tuninetti, “The throughput of hybrid-ARQ protocols for the
gaussian collision channel,” IEEE Trans. Info. Theory, vol. 47, no. 5, pp. 1971–
1988, Jul 2001.

[53] D. Chase, “Code combining–a maximum-likelihood decoding approach for combin-
ing an arbitrary number of noisy packets,” IEEE Trans. Commun., vol. 33, no. 5,
pp. 385–393, May 1985.

[54] D. Rowitch and L. Milstein, “On the performance of hybrid FEC/ARQ systems
using rate compatible punctured turbo (RCPT) codes,” IEEE Trans. Commun.,
vol. 48, no. 6, pp. 948–959, June 2000.

[55] E. Soljanin, R. Liu, and P. Spasojevic, “Hybrid arq with random transmission
assignments,” DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 2003.

[56] E. Visotsky, V. Tripathi, and M. Honig, “Optimum ARQ design: a dynamic pro-
gramming approach,” in Proc. IEEE ISIT, June 2003.

[57] M. Andrews and L. Zhang, “Scheduling algorithms for multi-carrier wireless data
systems,” in ACM Mobicom 2007, Sep. 2007.

[58] S. Lee, S. Choudhury, A. Khoshnevis, S. Xu, and S. Lu, “Downlink MIMO with
frequency-domain packet scheduling for 3gpp lte,” in IEEE Infocom, Brazil, 2009.

http://www.jstor.org/stable/2282952?


156

[59] H. Zhang, N. Prasad, and S. Rangarajan, “MIMO downlink scheduling in LTE and
LTE-advanced systems,” in Proc. 2012 IEEE INFOCOM Miniconference, Orlando,
FL, Mar. 2012.

[60] H. Ahmed, K. Jagannathan, and S. Bhashyam, “Queue-aware optimal resource
allocation for the LTE downlink with best M sub-band feedback,” IEEE Trans.
Wireless Comm., To appear.

[61] S. N. Donthi and N. B. Mehta, “Joint performance analysis of channel quality indi-
cator feedback schemes and frequency-domain scheduling for LTE,” IEEE Trans.
Vehicular Tech., Sept. 2011.

[62] A. Zappone and E. Jorswieck, “Energy efficiency in wireless networks via fractional
programming theory,” Foundations and Trends in Comm. and Info. Theory, 2015.

[63] A. Kwasinski and A. Kwasinski, “Integrating cross-layer LTE resources and energy
management for increased powering of base stations from renewable energy,” in
Proc. 2015 IEEE WiOpt, 2015.

[64] Z. Wang, V. Aggarwal, and X. Wang, “Optimal energy-bandwidth allocation for
energy harvesting interference networks,” in Proc. 2014 IEEE ISIT, 2014.

[65] E. V. Belmega and S. Lasaulce, “Energy-efficient precoding for multiple antenna
terminals,” IEEE Trans. on Signal Proc., Jan. 2011.

[66] G. Miao, N. Himayat, and G. Y. Li, “Energy-efficient link adaptation in frequency-
selective channels,” IEEE Trans. on Commun., Feb. 2010.

[67] D. Ng, E. Lo, and R. Schober, “Energy-efficient resource allocation in ofdma sys-
tems with large numbers of base station antennas,” IEEE Trans. on Wireless
Comm., Sep. 2012.

[68] L. Venturino, A. Zappone, C. Risi, and S. Buzzi, “Energy-efficient scheduling and
power allocation in downlink OFDMA networks with base station coordination,”
IEEE Trans. on Wireless Comm., vol. 14, no. 1, pp. 1–14, Jan. 2015.

[69] D. Ng, E. Lo, and R. Schober, “Energy-efficient resource allocation in multi-cell
OFDMA systems with limited backhaul capacity,” IEEE Trans. on Commun., Oct.
2012.

[70] L. Venturino and S. Buzzi, “Energy-aware and rate-aware heuristic beamforming in
downlink MIMO OFDMA networks with base station coordination,” IEEE Trans.
on Vehicular Tech., To appear 2015.

[71] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approxima-
tions for maximizing submodular set functions-I,” Mathematical Programming,
July 1978.

[72] Y. Azar and I. Gamzu, “Efficient submodular function maximization under lin-
ear packing constraints,” in 39th Intl. Colloquium on Automata, Languages and
Programming, 2012.



157

[73] R. Iyer and J. A. Bilmes, “Submodular optimization with submodular cover and
submodular knapsack constraints,” NIPS, 2013.

[74] D. Pisinger and P. Toth, “Knapsack problems,” Handbook of Combinatorial Opti-
mization, 1998.

[75] H. Lin and J. Bilmes, “Multi-document summarization via budgeted maximization
of submodular functions,” in HLT10: Human Language Technologies, 2010, pp.
912–920.

[76] H. Mahdavi-Doost, N. Prasad, and S. Rangarajan, “En-
ergy efficient downlink scheduling in LTE-advanced networks,”
Rutgers University and NEC Labs America, Tech. Rep.
https://www.dropbox.com/s/kblg09zjh9ylp70/EESLong.pdf?dl=0, 2015.

[77] U. Feige, “On maximizing welfare when utility functions are subadditive,” STOC,
2006.

[78] X. Kang, Y.-K. Chia, C. K. Ho, and S. Sun, “Cost minimization for fading channels
with energy harvesting and conventional energy,” IEEE Trans. Wireless Commun.,
vol. 13, no. 8, pp. 4586–4598, Aug 2014.

[79] D. Ng, E. Lo, and R. Schober, “Energy-efficient resource allocation in OFDMA
systems with hybrid energy harvesting base station,” IEEE Trans. Wireless Com-
mun., vol. 12, no. 7, pp. 3412–3427, July 2013.

[80] Z. Wang, X. Wang, and V. Aggarwal, “Energy-subchannel allocation for energy
harvesting nodes in frequency-selective channels,” in Proc. IEEE ISIT, June 2015,
pp. 2712–2716.

[81] W. Zeng, Y. Zheng, and R. Schober, “Online resource allocation for energy har-
vesting downlink multiuser systems: Precoding with modulation, coding rate, and
subchannel selection,” IEEE Trans. Wireless Commun., vol. 14, no. 10, pp. 5780–
5794, Oct 2015.

[82] N. Tekbiyik, T. Girici, E. Uysal-Biyikoglu, and K. Leblebicioglu, “Proportional
fair resource allocation on an energy harvesting downlink,” IEEE Trans. Wireless
Commun., vol. 12, no. 4, pp. 1699–1711, April 2013.

[83] H. Li, J. Xu, R. Zhang, and S. Cui, “A general utility optimization framework for
energy harvesting based wireless communications,” CoRR, vol. abs/1501.01345,
2015. [Online]. Available: http://arxiv.org/abs/1501.01345

[84] 3GPP, “Evolved universal terrestrial radio access (E-UTRA)-radio resource control
(RRC),” TR36.331 V10.7.0, Mar. 2013.

[85] W. Yu and J. Cioffi, “Constant power water-filling: Performance bound and low-
complexity implementation,” IEEE Transactions on Communications, vol. 54,
no. 1, Jan. 2006.

[86] P. Goundan and A. Schulz, “Revisiting the greedy approach to submodular set
function maximization,” manuscript, Jun. 2007.

http://arxiv.org/abs/1501.01345


158

[87] H. Mahdavi-Doost, N. Prasad, and S. Rangarajan, “Energy efficient downlink
scheduling in lte-advanced networks,” in 8th International Conference on Com-
munication Systems and Networks (COMSNETS), Jan 2016, pp. 1–8.

[88] M. Gorlatova, A. Bernstein, and G. Zussman, “Performance evaluation of resource
allocation policies for energy harvesting devices,” in International Symposium on
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt),
May 2011, pp. 189–196.


	Abstract
	Acknowledgements
	List of Figures
	INTRODUCTION
	Overview
	Energy Trade-off at the Receiver
	Receiver Sampling and Decoding: Power Comparisons
	Notations
	Thesis Outline

	Energy Harvesting Receivers: Finite Battery Capacity
	System Model
	Energy Harvesting Model
	Variable-Timing Transmission
	Performance Metrics
	Preliminaries: Chernoff Hoeffding Inequality

	Achievability: Deterministic Energy Arrivals
	Low Harvesting Rate
	High Harvesting Rate

	Achievability: Random Energy Arrivals
	Low Harvesting Rate
	High Harvesting Rate

	Outerbound
	Optimum Code Rate

	Energy-Harvesting Receivers in Fading Channels
	System Model
	Energy Harvesting Model

	Achievability: Channel Selective Sampling
	Variable Timing: Achievable Rates 
	Outerbound
	Conclusion

	Opportunistic Reception in a Multiuser Slow-Fading Channel with an Energy Harvesting Receiver
	System Model
	Single User System
	Throughput Optimization
	Single User Performance/ Self-imposed Threshold

	Multiuser System
	Conclusions

	Hybrid ARQ in Block-Fading Channels with an Energy Harvesting Receiver
	System Model
	 ARQ Schemes
	Classic ARQ
	 Repetition-HARQ
	 IR-HARQ

	Objective Function

	Decoding Energy
	Classic ARQ
	Repetition-HARQ
	IR-HARQ
	IR-HARQ with subset selection


	Decision Policy 
	Simulation Results

	Energy-Aware Downlink Scheduling in LTE-Advanced Networks
	Problem formulation
	Optimization framework
	Backlogged traffic model
	Finite queue model
	Hardness result

	A Unified Scheduling Algorithm
	Benchmarking

	Simulation Results
	Conclusions

	Appendices
	Optimizing Energy Efficiency over Energy-Harvesting LTE Cellular Networks
	Problem formulation
	Practical Constraints
	Objective Functions

	A Constant Factor Approximation Algorithm
	Extensions
	Simulation Results
	Conclusions

	Conclusions and Future Work
	References

