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Switch mode operation has long been employed in power electronic systems

due to the need for high efficiency.  In recent years, this mode of operation has

also been exploited in signal processing applications such as switched capacitor

filters and switched capacitor radio frequency (RF) power amplifiers.  While these

systems have advantages in terms of weight,  efficiency, and heat dissapation

they  are  inherently  highly  nonlinear.   This  makes  accurate  analysis  both

challenging and computationally intensive.

State-space  based  analysis  is  a  powerful  mathematical  technique  often

employed  for  control  system  design,  analysis,  and  implementation.   These

modeling  tools  are  now  gaining  attention  for  the  analysis  of  switch  mode

systems.  This dissertation investigates the feasibility of applying a number of

these techniques, including system balancing, time scale analysis, model order

reduction, and working with the general solution to the state-space form to these

nonlinear systems, for the purposes of design analysis, system minimization, and

simulation.
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Two basic but  dissimilar switched mode power converters are analyzed by

employing a number techniques.  The first of these systems is a common boost

converter  and  the  second  is  a  Class  E  power  converter  that  employs  the

technique  of  zero  voltage  switching  in  order  to  improve  both  efficiency  and

radiated  RF  emissions.   In  addition  to  the  state-space  based  modeling

techniques each power converter is also simulated using commercially available

SPICE  simulation  tools.   Finally,  a  rudimentary  Class  E  power  converter  is

constructed  and  tested  in  order  to  check  the  validity  of  these  mathematical

models.
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Chapter 1

Introduction

1.1 Motivation

Power conversion and control systems are found nearly everywhere within the

technologies that support our daily lives.  As both environmental concerns and

economic  challenges  continue  to  drive  power  systems  towards  greater

efficiencies  the  design  and  analysis  of  these  systems  becomes  a  greater

challenge.  In addition to high energy conversion efficiencies control  systems

need to extract the maximum power available from a given renewable resource

at  any  given  point  in  time.   In  the  case  of  portable  electronic  equipment

consumers require these devices to be designed for high reliability, high power

density, minimal weight, and long battery life.  In order to accomplish these goals

new circuit topologies have been developed.  

1.2 Switched Mode Systems

In the past, many electronic systems adopted a mode of operation where the

active  elements  used  in  these  systems  conduct  current  within  their  linear

operating region. This avoids abrupt changes in device behavior and leads to

systems that are easier to analyze.  However, system efficiency when operating

within the linear region is typically quite poor.  The power dissipation in a device

is the product of the voltage across the device and the current passing through

the device.  When operating within the linear region both the voltage across the
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device and the current through the device are nonzero at all times.  In order to

improve efficiency and reduce the power dissipated by these devices a switching

topology may be employed.   In this  configuration the active device is rapidly

switched between being fully on or maximum conductivity to fully off or minimum

conductivity.  This switching action means that, in the ideal case at any given

point in time, the voltage across the device will be zero when there is current

passing through it or the current passing through the device will be zero while

there is a nonzero voltage across it.  Ideally, the power dissipated by the device

would be zero and unity efficiency would be achieved.  In practice, this ideal

realization cannot be achieved, however,  even under real-world conditions far

greater efficiencies are achieved with a switching topology over a linear topology.

For this reason power electronic systems are almost exclusively operated in a

switched mode [1, 2].

Physical  devices cannot switch from one state to another in zero time and

during  this  switching  interval  the  potential  exists  for  both  a  nonzero  voltage

across  the  device  and  a  nonzero  current  through  the  device  to  occur

simultaneously.  The product of these quantities will result in a nonzero power

dissipation during switching events.  Furthermore, the higher the frequency of

operation, the more often these switching events will occur and the greater the

potential switching losses will be.  One circuit configuration that addresses this

problem  is  the  Class  E  topology.   In  a  Class  E  power  converter  a  nearly

sinusoidal current passes through a resonant circuit allowing the voltage across
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the active element to drop to zero at regular intervals.  The active element is

switched  on  only  when  this  zero  voltage  condition  occurs  eliminating  these

losses, in the ideal case, and allowing higher frequency operation without greatly

sacrificing efficiency.  Higher frequency operation has the advantage of reducing

the  size,  weight,  and  cost  of  magnetic  components  such  as  inductors  and

transformers.

1.3 The State-Space Representation

While  the  performance  of  switched  systems  certainly  has  advantages  the

analysis  and  simulation  of  these  systems  is  very  challenging  [3,  4].   The

switching nature of these systems means that they are highly nonlinear and often

have abrupt changes in voltage and current.  

The general evolution of electronics necessitates a corresponding evolution in

the mathematical analysis tools used to design and implement these systems.

The state-space approach to system analysis can handle arbitrary large systems.

By breaking up a (potentially large) nonlinear switched system into a set of LTI

subsystems this technique can be extended to work with power electronic circuits

[3].  Even nonlinear circuit elements (such as inductors with ferromagnetic cores)

can be included in the analysis.

Large and complicated devices, that have many components, lead to a high

system order.   Multiple  switching  elements  as  well  as  nonlinear  components

require numerous linear time invariant LTI subsystems to accurately represent
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them.  The time required for circuit  analysis can be greatly reduced, in many

cases, by the technique of model order reduction.  In the early 1980's [5] system

order reduction techniques based on a balancing transformation were developed.

This work was further refined around the turn of the century [6, 7, 8] and now a

number of balanced model order reduction techniques are available.  In addition

to system analysis these order reduction techniques can also be employed to

simplify control system design and implementation.  Another popular and efficient

technique  for  system  model  order  reduction  is  the  method  of  time  scale

separation also known as the singular perturbation method [6]. 

1.4 Objectives

The objective of this research is to investigate the practicality of a number of

modern  mathematical  techniques  used  to  minimize,  analyze,  and  simulate

systems that are represented in the state-space form.  These techniques are

specifically applied to two switched mode systems.  The first of these systems is

a commonly used boost converter and the second is a Class E power converter.
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Chapter 2

Power Electronic System Details

2.1 General

Power  electronic  systems  are  employed  to  control  and  convert  electrical

energy  as  it  flows  from  one  point  to  another.   In  order  to  minimize  power

dissipation and improve system efficiency power electronic systems are almost

exclusively  operated  in  a  switched  mode  and  are  therefore  inherently  highly

nonlinear.   This  makes  their  design,  analysis,  and  simulation  both

computationally intensive and challenging.

2.2 The Boost Converter

One of the more common tasks in electronic systems design is to increase a

DC voltage from one value to another.  One way to accomplish this is to convert

the DC voltage to an AC voltage by using an astable multivibrator and then use a

transformer to increase the AC voltage to some desired value.  A rectifier and

filter stage then follows in order to convert the higher AC voltage to a steady DC

voltage.

This  architecture  has  the  advantages  of  allowing  a  large  increase  in  DC

voltage as well as providing electrical isolation between input and output.  The

disadvantage is that it has a large number of components and is therefore costly

to implement.  When electrical isolation is not a requirement and only a modest

increase in DC voltage is needed a classic boost converter can accomplish the
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same task with a simpler circuit configuration.

Figure 2.1 details the boost converter circuit topology.  In the ideal case, only

four components,  a load, and a voltage source are needed to implement this

circuit (the control drive signal is not taken into account here).  

Fig. 2.1. Boost Converter.

An analysis of basic circuit  operation starts with MOSFET M1 being turned

fully on.  After a current is established through inductor L1 the MOSFET is turned

off.  Inductors store energy in a magnetic field and act as a short term current

source in operation.  Current continues to flow through L1 and it both charges

capacitor C1 and is supplied to the load R1.  The voltage across an inductor is

defined as

v L=L
diL(t)

dt
. (2.1)

As the current flowing through L1 slowly drops the derivative of the current iL(t)
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becomes negative; therefore, the polarity of the voltage across L1 is reversed.

During this time (when MOSFET M1 is turned off) the supply voltage Vin and the

inductor  voltage  are  connected  in  a  series-aiding  configuration  resulting  in  a

voltage boost above the supply voltage.  After a fixed time period the MOSFET is

turned back on and the cycle repeats.  Diode D1 prevents the capacitor C1 from

discharging through MOSFET M1 during the period of the cycle when it is turned

on.

The output voltage can be controlled by adjusting the duty cycle with a near

unity  duty  cycle  corresponding  to  a  maximum output  voltage  [9].   Usually  a

feedback regulator is employed for this purpose.  The output voltage is sensed

and compared to a reference voltage and the duty cycle is adjusted accordingly.

2.2.1 Detailed Boost Converter Model

A high-fidelity model of a basic boost converter was analyzed by Davoudi et al.

(2013)  [3, 10] by including all of the expected parasitic circuit elements.  In the

ideal  case,  the  basic  converter  (see  Figure  2.1)  has  only  four  components

(excluding load and power source) and only two of these circuit elements store

energy.   Therefore  the  ideal  converter  is  essentially  a  second  order  system.

When all of the component parasitics [11] are included, however, there are eight

circuit  elements that store energy (see Figure 2.2) leading to an eighth order

system.
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Fig. 2.2. Detailed Boost Converter.

2.2.2 Obtaining the State-Space Equations for the Boost Converter

Due to the switching nature of the boost converter each possible combination

of switch states leads to a different circuit topology.  Each topology is analyzed

independently but is connected by the state values at each switching transition.

The general algorithm used to convert the detailed schematic into a set of state

space  equations  for  analysis  consists  of  two  primary  steps.   First,  inductor

voltages are defined in terms of the time rate of change of current through each

inductor.  Similarly,  capacitor currents are defined in terms of the time rate of

change of the voltage across each capacitor.  This step results in one derivative

being defined for each energy storage element and leads to one state variable

for each of these elements.  Second, a series of loop equations are written based

on the circuit configuration.  After these two primary steps, obtaining the state-
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space form is simply a matter of simplifying the loop equations and rearranging

terms.

State-
Space

Variable

Description

iL Current through inductor - L1

vCL Voltage across inductor parasitic capacitance - L1

VC Voltage across capacitor - C1

iLC Current through capacitor parasitic inductance - C1

iLsw Current through switch (MOSFET) parasitic inductance

vCsw Voltage across switch (MOSFET) parasitic capacitance

iLd Current through diode parasitic inductance - D1

vCd Voltage across diode parasitic capacitance - D1
Table 2.1. State variable assignments.

Table  2.1  lists  the  chosen  state  variable  assignments  for  the  basic  boost

converter.  Note that these assignments differ for those in Davoudi's original work

but the end results of the analysis are the same.  This is because the system

state-space matrix is not unique for a given system.  The following state-space

equations were derived for this system

ẋ (t)=
d x (t)
dt

= A[
iL( t)
vCL(t )
vC (t)
iLC(t)
iLsw(t)
vCsw(t)
iLd (t)
vCd (t )

]+B[vg(t)vd(t)],

(2.2)
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y (t)=C [
iL(t)
vCL(t)
vC(t )
iLC( t)
iLsw(t )
vCsw(t )
iLd (t)
vCd (t)

]+D[v g(t)vd (t)], where

A=[
−r L
L

1
L

0 0 0 0 0 0

−1
CL

0 0 0 1
CL

0 1
CL

0

0 0 0 1
C

0 0 0 0

0 0
−1
LC

−(rc+r LOAD)

LC
0 0

r LOAD
LC

0

0
−1
Lsw

0 0 0
−1
Lsw

0 0

0 0 0 0
1
C sw

−1
rswCsw

0 0

0
−1
Ld

0
r LOAD
Ld

0 0 −(r Ld+rLOADLd
+

rCd r d
Ld (rCd+rd )) −( 1

Ld
−

rCd
Ld (rCd+rd ))

0 0 0 0 0 0
rd

Cd (rCd+rd)
−1

Cd (rCd+r d)

],
B=[

0 0
0 0
0 0
0 0
1
Lsw

0

0 0
1
Ld

−rCd
Ld(rCd+rd)

0 1
C d(rCd+rd)

],
(2.3)
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C=[
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

],  and

D=[
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

].
2.3 The Class E Power Converter

As  stated  above,  switching  power  converters  are  more  efficient  than  their

linear counterparts, however, only in the ideal case do most of these systems

approach 100% efficiency.  Much of the losses in these systems occur during the

time of the switching transition.  This is when voltages and currents either drop or

rise abruptly.  During this period the switching device typically has both a nonzero

voltage across it as well as a nonzero current through it.  Therefore the product

of voltage and current or dissipated (lost) power will be nonzero.  The higher the

switching frequency the greater the power losses owing to the fact that more

switching transitions will result in a greater percentage of the overall  time that

these switching losses will occur.

Another issue with abrupt voltage and current transitions, which are inherent in

the majority of  switched mode power  systems,  is  that  these rapid  transitions



   12

translate  to  high  frequency harmonics  in  the  frequency domain.   These high

frequency harmonics are considered parasitic in nature and have the potential to

excite high frequency modes within the system.  They can also lead to radiated

emissions at radio frequencies and are a potential source of radio interference

[12].

While  these  issues  are  significant  there  are  circuit  configurations  that  can

greatly minimize them.  The class E power converter,  proposed by  Gutmann

1980  [13]  and  further  investigated  by Redl,  Molnar,  and  Sokal 1986  [14,15],

accomplishes  this  using  the  technique  of  zero  voltage  switching.   It  is

conceptually very similar to the class E RF power amplifier [16] in operation and

efficiency.  But there are other benefits and difficulties with this design.  A basic

class E power converter is depicted in Figure 2.3.  Unlike the more common

power converter topologies which convert one DC voltage to another DC voltage,

the  class  E  configuration  converts  a  DC  voltage  to  an  AC  voltage  (which

approximates a sinewave shape) at a predetermined frequency.  This allows the

output  voltage  to  be  either  stepped  up  or  down,  over  a  wide  ratio,  by

incorporating a transformer with  a ferromagnetic  core at  the output.   Another

advantage of using a transformer is that it can provide electrical isolation which is

often useful.  This is particularly true in line connected applications.  The voltage

across the switching device periodically crosses zero volts and switching takes

place very near that time.  This greatly reduces the losses associated with the

switching process as well as parasitic high frequency harmonic currents which
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helps to minimize radiated RF emissions.  

One of the disadvantages of the class E configuration is that it is difficult to

linearly adjust the output voltage over a wide range.  Although the output voltage

can be adjusted, to some degree, by varying the switching frequency [17].

Despite the difficulties, this configuration has been studied over the past three

decades, is likely a good overall choice for photovoltaic (PV) applications, and is

an  excellent  choice  to  further  investigate  various  modern  state-space  based

analysis techniques.

Fig. 2.3. A basic Class E converter.

2.3.1 Obtaining the State-Space Equations for the Simple Class E Power

Converter

In  order  to  simplify  the  simulation  process  it  is  useful  to  work  with  a
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rudimentary  model  of  a  Class  E  power  converter.   This  model  omits  the

commutation  diode  across  the  switching  transistor  as  well  as  a  number  of

common parasitic circuit elements.  Figure 2.3 above is the schematic diagram

for this simplified system.

As the simplified Class E power converter  incorporates only one switching

element (a MOSFET transistor) only two circuit topologies are possible.  Four

energy storage elements are present in the circuit which leads to a system with

four state variables.  These variables are listed in the table below.  The same

general algorithm to find the state-space equations was employed here as was

used for the boost converter.  Basically, inductor voltages are defined in terms of

the time rate of change of current through each inductor.  Similarly, the capacitor

currents are defined in terms of the time rate of change of the voltage across

each capacitor.   Next, a series of loop equations are written based on the circuit

configuration.  The final step in the process is just a matter of simplifying the

equations and rearranging terms.

State-
Space

Variable

Description

iL1 Current through inductor - L1

iL2 Current through inductor - L2

VC1 Voltage across capacitor - C1

VC1 Voltage across capacitor - C2
Table 2.2. State variable assignments.

The following state space equations were derived for this system
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ẋ (t)= A [
iL 1(t )
iL 2(t )
vC 1(t)
vC 2(t)

]+ B vDD (t) ,

(2.4)

y (t) = C[
iL1(t )
iL2(t )
vC 1(t)
vC 2(t)

]+ D vDD( t) , where

A=[
−R3

L1

0
−1
L1

0

0
−RL
L2

1
L2

−1
L2

1
C1

−1
C1

−1
R1C1

0

0 1
C2

0 0
], B=[

1
L1

0
0
0
],

(2.5)

C=[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

],  and

D=[
0
0
0
0
].
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Chapter 3

The Simulation Process

3.1 General

Accurate system analysis and implementation necessitates a rich collection of

mathematical  tools.   Traditional  systems  analysis  techniques,  which  are

commonly employed for the analysis of switch mode systems, often rely on an

averaged circuit  model which provides a fast simulation [18].  The techniques

discussed herein do not employ an averaged circuit model but rather subdivide a

complex and nonlinear system into a set a linear subsystems that are analyzed

independently.   These  subsystems  are  connected  together  across  switching

events via the continuity of state variables.  Both high fidelity (for highly detailed

and accurate analysis) and reduced order (for fast system simulation) models are

evaluated using these techniques.

3.2 Analyzing a Nonlinear System as a Set of Linear Systems

One approach for the analysis of switch mode systems proposed by Davodi, et

al.  (2013) [3] is to break these systems up into a series of linear subsystems

based on the topology of the system at any given point in time.  Every time a

switching device changes state, be that switching device a transistor, diode, relay

or saturateable reactor, the circuit topology changes.  This new configuration can

be modeled as a linear subsystem and analyzed independently.

This technique can also be used for nonlinear devices that do not operate as a
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switch (a device with multiple fixed states).  Some nonlinear devices, such as

inductors, predictably change their value as a function of the current that passes

through the device.  His work also suggests that these nonlinear devices can be

analyzed as an independent set of linear devices with fixed values depending on

how their characteristics change with different operating conditions.

Over  a  period  in  time,  these  techniques  lead  to  many  subsets  of  linear

systems, which are analyzed independently.  While this technique does lead to

many separate circuit subsystems it is nevertheless practical for analysis using

modern state space techniques.  A further improvement in analysis time can be

realized  by  incorporating  the  technique  of  model  order  reduction  on  each

individual  circuit  subset.   This  allows for  faster  analysis  and simulation when

high-resolution is not required.

While  this  analysis  technique  is  a  powerful  mathematical  tool  there  are  a

number of analysis requirements that must be met in order to ensure accurate

simulation.  The system states must be observed during computation as they are

used to determine changing component values such as the switching state of

diodes  and  inductor  values.   When  inductors  with  significant  hysteresis  are

employed in the system a prior state history is required as the inductance value

requires  a  knowledge  of  which  direction  the  current  through  the  device  is

changing.   Perhaps  most  importantly,  each  time  the  system  configuration

changes, each new subcircuit topology must be initialized by using the final state

values of the prior subcircuit. This provides a continuity of system states and thus
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a smooth transition between circuit  topologies.   This  can be a very complex

problem when system order reduction has been employed on the various circuit

subsystems in order to improve analysis and simulation efficiency.

3.3 Multi-Resolution Modeling

Physical systems of high order can be difficult to simulate.  Complex systems

can  require  considerable  computational  resources  and  simulation  time  for

accurate results.  This issue can be further complicated when there is a need to

conduct the simulation in real time.  One solution to this problem is to come up

with a simplified, approximate, and reduced order model that does a good job of

representing the desired system under a wide range of operating conditions.  

While using a reduced order model can be an acceptable solution in many

situations there are times when the full  system, with all  of  its complexity and

parasitic  elements,  needs  to  be  examined.   For  example,  in  switched  mode

power  supplies  various  parasitic  elements  can  introduce  brief  but  significant

voltage  spikes  to  the  system  that  can  exceed  the  maximum  rating  of  the

semiconductor devices.  But  even in the cases where high resolution system

simulation is essential it is usually not necessary to examine the system in such

high detail at all times.

A multi-resolution system modeling technique has been evaluated by Davoudi,

et al. (2013) [3].  Their method involves working with multiple system models.  A

set  of  reduced  order  system  models,  which  largely  represent  the  system
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dynamics, is used for the bulk of the simulation for improved speed and efficiency

and a set of full order system models is employed to provide all of the operational

detail at the times when the greatest accuracy is needed.

3.4 System Model Order Reduction Via Balancing 

Balancing is a common method used prior to system model order reduction.  A

Linear Time Invariant (LTI) system has the generalized state space form 

ẋ(t )= Ax(t)+Bu(t )
(3.1) 

y (t )= Cx (t)+Du (t)

where A∈ℝ
nxn , B∈ℝ

nxm , C∈ℝ
pxn , and D∈ℝ

pxm .

The  vector  x(t )  represents  the  system  states.   The  vector  u(t )

represents  the  system  inputs  and  the  vector  y (t )  represents  the  system

outputs.  The assumption is made that the original system (3.1) is controllable,

observable, and asymptotically stable. 

The technique that follows is often referred to in the literature as "Lyapunov

Balanced Model Reduction" [8].  From a physical point of view balancing a LTI

system in this manner involves transforming the system into a basis where the

systems states that are difficult to control are also difficult to observe.  This is

accomplished via a similarity transformation.  Once this has been achieved those

states that are the most difficult to control/observe can simply be removed by

truncation (or other techniques) resulting in a new, reduced order system that has

similar characteristics to that of the original system. 
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The  first  step  in  the  balancing  procedure  is  to  find  two  related  Lyapunov

equations associated with the original system which are 

AW c+W c A
T
=−BBT

(3.2) 
ATW o+W o A=−CTC

where Wc is the controllability Grammian and Wo is the observability Grammian.

Finding the unique solution for the above two algebraic equations for Wc  and Wo

results in a new "balanced" representation where Wc and Wo  are diagonal and

identical, that is Wc=Wo.  All the states in this new system are equally controllable

and observable. 

Taking the product of the controllability/observability Grammian and finding the

positive  square  root  of  the  eigenvalues  for  the  resulting  matrix  leads  to  the

Hankel singular values.  

The controllability Grammian is related to the minimum energy required to take

a system from some initial state  x0  to a new final state  x f  using a set of

finite inputs.  In a similar fashion the observability Grammian is a measure of how

easily the initial state vector  x0  can be estimated from the system output(s).

This assumes that there is no input to the system.

By convention, the Hankel singular values are reported from greatest to least.

The first (and largest) Hankel singular value is known as the "Hankel Norm" of

the original system.  The values in their reported order are a measure of how

controllable and observable a particular system state is and has the advantage of

indicating  which  states  must  be  maintained  to  in  order  to  provide  a  good
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representation of the original system response. 

If  the  order  of  the  Hankel  signal  values  are  plotted  as  the  independent

variables and the magnitude of these values is plotted as the dependent variable

a point where there's often an abrupt decrease in the magnitude of the Hankel

singular values is clearly visible.  A plot of this type is sometimes referred to as a

“scree” plot in the literature [19].  This location can be thought of as a dividing line

between  the  strongly  controllable/observable  system  states  that  must  be

preserved for good reduced order model performance and those states which are

less important for the reduced order model.    

3.5 Order Reduction Via Balanced Truncation 

Once the system is balanced,  the simplest  way to  create a reduced order

model is to completely remove or "truncate" those system states which appear to

have little influence based on the magnitude of the Hankel singular values.  This

method generally works well and provides a reduced order model that has a wide

frequency range.  However, a DC offset is frequently introduced which can cause

errors in the steady-state system behavior as compared to that of the original

system [20].   Another  method to  reduce the  model  order  that  minimizes this

problem is the method of model order reduction via balanced residualization. 

3.6 Order Reduction Via Balanced Residualization 

The balanced linear time-invariant system can be represented in the form 
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d x1( t)

dt
= A11 x1(t)+A12 x2(t)+B11u (t)

d x2( t)

dt
= A21 x1(t)+A22 x2(t )+B22u(t) (3.3) 

y (t )= C11 x1( t)+C22 x2(t )+Du(t ).

The matrix  A22  has shown to be asymptotically stable by Glover  (1984)

[21]. And defining a quasi-steady-state system based on the original balanced

system as 

d x1( t)
dt

= A11 x1(t)+A12x2(t )+B11u(t)

0 = A21 x1(t)+A22x2(t )+B22u(t) (3.4)

y (t )= C11 x1( t)+C22 x2(t )+Du(t ).

From the second equation in (3.4) 

x2(t) =−A22
−1

(A21x1(t )+B22u(t )). (3.5) 

This equation leads to the residualized reduced order system as shown by [22].

This reduced order model has the form 

d x1( t)
dt

= Ar x1(t)+Bru (t)

(3.6)
y = C r x1(t )+D ru(t )

where

A r= A11−A12 A22
−1A21 , Br = B11−A12 A22

−1B22
(3.7)

C r = C11−C 22 A22
−1 A21 , Dr = D−C22 A22

−1B22 .

As  shown  in  [22]  the  reduced  order  model  defined  by  the  above  system
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preserves  the  DC  gain  of  the  original  system,  as  well  as  being  a  good

approximation  for  the  frequency spectrum at  low  to  medium frequencies.   It

should  be  noted,  however,  that  at  higher  frequencies  the  truncation  method

provides a better match to the response of the original system [6]. 

While  both  system  order  reduction  via  balanced  truncation  and  balanced

residualization yield good results for a number of systems these techniques can

yield less than satisfactory results when working with lightly damped systems

with  highly  oscillatory  modes.   This  situation  can  occur  due  to  the  parasitic

elements in some electronic systems.  In order to obtain a reduced order model

that  provides  a  good  approximation  in  these  cases  the  technique  known  as

singular perturbations can be employed.

3.7 Method of Singular Perturbations

The  order  reduction  methods  discussed  above  work  well  for  analyzing

systems that are characterized by dynamics which are present at low to medium

frequencies.  When the order of a linear system is reduced by the method of

balanced  truncation  significant  steady-state  error,  for  the  step  response,  can

often be observed.  This is simply due to the reduced order system and the

original system having different DC gains, however, even this can be corrected

[6].  Although, the low frequency response is most often dominant in real world

systems there are situations where this is not the case.  High frequency modes

can also be observed in real world systems and, if these modes are minimally
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damped, these modes can have a significant effect on system performance.  This

can be observed when the system has one (or more) pairs of complex conjugate

poles that are located just to the left of the imaginary axis.  When these modes

are observed the prior order reduction methods do not yield satisfactory results in

many cases.  While the dividing line between highly oscillatory and non-highly

oscillatory modes is somewhat relative this phenomena can be often observed

when considering all of the parasitic elements within a power electronic system.

Often spurious oscillations occur at a frequency that is many orders of magnitude

higher than the fundamental operating frequency of the system.  When designing

a feedback controller is important to take these high frequency system dynamics

into  account.   For  this  reason  an  analysis  method  which  provides  accurate

results when significant high frequency dynamics are present was proposed by

[6].  The Method of Singular Perturbations used in control system applications [6]

will be discussed here.

Starting with the state space form of a linear system 

d x (t)
dt

=A x (t)+Bu(t) ,

(3.8)
y (t)=C x (t)+Du(t) ,

the  goal  is  to  separate  the  state  space  variables  into  their  fast  and  slow

components.   In addition, a small  singular perturbation parameter  μ< <1  is

introduced into (3.8).  This can be represented in the following form [6]

dx1( t)
dt

=A1 x1(t)+A2 x2(t)+B1u (t) ,
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μ
dx2(t)
dt

=A3 x1( t)+A4 x2(t)+B2u (t) , (3.9)

y (t)=C1 x1(t )+C2 x2(t )+Du (t) ,

where x2( t)  represents the fast state space variables and x1( t)  represents

the slow state space variables.

In order to exactly decouple the above singularly perturbed system into both a

slow and fast subsystem the Chang transformation [23] is applied

[z1(t )
z2(t )]=[I−μML −μM

L I ][x1(t )
x2(t )],

(3.10)

[x1(t)
x2(t)]=[ I μM

−L I−μML][z1(t )
z2(t )].

The matrices L and M satisfy the algebraic equations

A4 L−A3−μ L(A1−A2L)=0,
(3.11)

M A4−A2+μ[ML A2−(A1−A2L)M ]=0.

The exact slow fast decomposition [6] can be represented in the following form

d z1(t)
dt

=(A1−A2 L) z1(t)+(B1−MB2−μMLB1)u(t) ,

μ
dz2(t)
dt

=(A4+μ L A2) z2(t)+(B2+μ LB1)u (t) , (3.12)

y (t)=(C1−C2L)z1(t)+(C2−μC2LM +μC1M) z2(t)+Du (t) .

Solving for the matrices  L and  M can be a somewhat complicated process

depending on the value of the singular perturbation parameter μ [7]. 

In order to represent equation (3.12) in a somewhat more elegant form the
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following notation is used

A s=A1−A2L ,   A f=A4+μ L A2,

B s=B1−M B2−μMLB1,   B f=B2+μ LB1, (3.13)

C s=C 1−C2 L ,   C f=C 2−μC2LM+μC1M.

This reduces the above system (3.12) to the following

d z1(t)
dt

=A s z1(t)+Bsu(t ),

μ
d z2(t )
dt

=A f z2(t)+Bf u(t ), (3.14)

y (t)=C s z1(t )+C f z2(t)+Du (t) .

For  the  outputs,  the  fast  and  slow system  components  are  separated  as

follows

ys=C s z1(t)+Du(t) ,
(3.15)

y f=C f z2( t).

When a perfect approximation is required at higher frequencies the following

slow-fast system decomposition can be used

Gs(s)=C s(sI−A s)
−1B s+D ,

(3.16)
Gf (s)=C f (μ sI−A f )

−1B f ,

where the total system transfer function is

G(s)=Gs(s)+Gf (s ). (3.17)

For  many  practical  applications,  however,  there  are  approximate  transfer

functions that provide satisfactory results and are somewhat less computationally



   27

intensive.  These include the modified generalized residualization method [6]

Gsf≈C s(sI−A s)
−1

(B1−A2 A f
−1B f )+D−C2 A f B f , (3.18)

and the corrected truncation method, which compensates for the DC gain when

using the order reduction via balanced truncation method described above.  The

transfer function for this corrected system is [6]

Gtrunc
corr

(s)=C11(sI−A11)
−1B11+C 11A11

−1B11−C A
−1B+D . (3.19)

A very useful transfer function approximation for systems with lightly damped,

high frequency modes is [6]

Gfapp(s)≈C f (μ sI−A f )
−1Bf+(D−C s A s

−1B s) . (3.20)

This approximation focuses on the fast dynamics of the system and also adds

a DC term.  The slow dynamics are not considered.

3.7.1 Computation of the L and M Matrices

The Chang transformation allows an exact slow/fast system decomposition to

be performed.  This requires both the L and M matrices to be determined.  The

process begins with  determining the  L matrix.  There are multiple  methods to

accomplish this, however, no one method works best under all conditions.  Three

methods  are  commonly  employed  to  determine  the  L matrix.  These  are  the

method of fixed-point iterations [24], Newton's method [25] (which is also iterative

in nature), and the eigenvector method [7].
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3.7.1.1 The Method of Fixed Point Iterations

Although it is very slow, the method of fixed-point iterations often works well

when the perturbation parameter μ is a relatively small number, but it may fail to

converge at all if μ is too large.  The iterative algorithm [24] for this approximate

method is

L(i+1 )
=A4

−1 A3+μ A4
−1L(i )

(A1−A2 L
(i)
) , (3.21)

which converges with O(μ)* accuracy per step.

The first step in this method, as well as Newton's method below, is to make an

initial guess for the matrix L.  This can accomplished by setting μ=0 in the first

term of (3.21) and solving for the approximate L matrix [6].  This gives

L(0)
=A4

−1 A3. (3.22)

When  this  method  does  converge  it  does  so  slowly  (linear  convergence)

requiring tens or perhaps even hundreds of iterations to arrive at a satisfactory

approximation for the matrix L.

3.7.1.2 Newton's Method

Another option, when working with a relatively small perturbation parameter, is

Newton's method.  This method, when it does converge, does so very rapidly

(quadratic convergence) with O(μ2) accuracy per step.  Provided that L(0) is a

good  approximation  for  L [26]  (μ is  sufficiently  small)  Newton's  method  will

quickly converge to the desired solution.

* O(µ) is defined by O(µ) < kε, where k is a bounded constant.
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The iterative algorithm for Newton's method [25] is

D1
(i)L( i+1)

+ L(i+1)D2
(i)
=Q(i) , (3.23)

 where

D1
(i)
=A4+μ L(i )A2,  

D2
(i)
=−μ(A1−A2L

(i)
) ,  and

Q(i)
=A3+μ L(i)A2L

(i) ,  i=0, 1,2,…

3.7.1.3 The Eigenvector Method

The  situation  often  arises  where  the  perturbation  parameter  μ is  not

particularly small.  In these situations the eigenvector method is best employed.

The  eigenvector  method  always  provides  a  solution,  however,  it  can  be

numerically sensitive when the eigenvalues of the corresponding eigenvectors

are close to each other [7].  

It is also a far more involved process than either of the two iterative methods

described above.  The eigenvector method requires finding a solution of the non-

symmetric, non-square, algebraic Riccati equation.

3.8 Non-Symmetric,  Non-Square,  Algebraic  Riccati  Equation  of  

Singularly Perturbed Systems

3.8.1 General Case

A general nonsymmetric, nonsquare, algebraic Riccati equation is defined by

[27, 28, & 29]

L A11 −A22L+L A12L−A21 = 0 (3.24)



   30

where  11A  and  22A  are square matrices of  dimensions  11 nn   and  22 nn 

respectively,  and the non-square matrices are  12A of  dimensions  21 nn   and

21A  of  dimensions  12 nn  .   A  solution  of  the  nonsymmetric,  non-square

algebraic  Riccati  equation  defined  in  (3.24)  L of  dimensions  12 nn   can  be

obtained from the generalized eigenvectors of  the corresponding  nn  matrix

(see for example, [27, 28, &  7])

H = [A11 A12

A21 A22
]
n×n

. (3.25)

Using  for  example  the  algorithm  of  [7,  28]  requires  that  a  matrix  V  of

dimensions nn  be formed from the corresponding real eigenvectors of H  and

for all complex-conjugate eigenvectors of  H , we put in matrix  V  both its real

and imaginary parts and discard their complex-conjugate pairs.  Partitioning the

matrix V  as

V n×n = [V 1
n×n1 V 2

n×n2 ] = [V 11
n1×n1 V 21

n1×n2

V 12
n2×n1 V 22

n2×n2] (3.26)

any solution for L  can be obtained using the following formula [27, 28, &  7]

L= V 12V 11
−1. (3.27)

Hence, any collection of 1n  eigenvectors of matrix H  that provides an invertible

matrix 11V  will be provide a solution.  Since there are many permutations of the

eigenvectors of  H , in general, there are no problems with the existence of a

solution of equation (3.24).
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The nonsymmetric nonsquare algebraic Riccati equation has attracted a lot of

attention of applied mathematicians in the recent years since it appears in many

applications:  transport  theory,  queueing  theory,  stochastic  fluid  models,

radioactive transfer, Markov chains, and control systems, see for example [30,

31, 32, 33, 34, 35, & 36].  It follows from these new papers that, in addition to the

engineering community's popular eigenvector method, the other methods can be

used for solving (3.24) or (3.28), like Newton's method, iterative method, and the

doubling  algorithm.   Papers  [32,  33,  34,  35,  &  36]  present  results  for  the

nonsymmetric, nonsquare algebraic Riccati equation that comes from transport

theory, when the H matrix has a special structure.  Namely, in [32, 33, 34, 35, &

36] H is the so-called M-matrix.  A real M-matrix is defined by NIM  , where

the square matrix  N  has all  nonnegative elements and    is  a positive real

scalar such that    , where    is its spectral radius of  N.  A comprehensive

survey of numerical methods for solving all types of algebraic Riccati equations

can be found in a recent book [37].

3.8.2 The Case of Singularly Perturbed Linear Systems

For  singularly  perturbed  linear  systems,  the  non-symmetric  non-square

algebraic Riccati equation is given by

−μ L A11+A22L−A21+μ L A12L = 0 (3.28)

where  the  unknown  matrix  L  is  of  dimension  nnnnn  2121 , ,
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2,1,2,1,  jiAij , are constant matrices of appropriate dimensions, and μ  is

a  small  positive  singular  perturbation  parameter.   As  indicated above  for  the

general  case,  all  real  solutions  of  (3.28)  have  been  characterized  via  the

eigenvectors  and  eigenvalues  of  the  following  nn  matrix  formed  from the

coefficient matrices of (3.28)

H = [−μ A11 μ A12

A21 −A22
] (3.29)

As a quadratic  algebraic  matrix  equation  (3.28)  has many real  solutions a

solution of (3.28) can be obtained in terms of eigenvectors of (3.29) as shown in

[27, 28, & 7] (see also [38]).  The following lemma is a variant of the results

established in [27, 39].

Lemma:  [27,  39],  Let  L  be  a  solution  of  (4.8)  obtained  using  2/nl 

eigenvectors corresponding to the stable subspace and  ln 5.0  eigenvectors

corresponding  to  the  unstable  subspace.   Then  the  matrix

−μ A11 + μ A21L=−μ(A11−A21 L)  will  have  l  stable  and  ln 5.0  unstable

eigenvalues.  Moreover, the similarity transformation

T = [ I 0
X I] (3.30)

puts matrix H defined in (3.29) into a block triangular form given by

T−1HT = [−μ(A11 −A12L) μ A12

0 −(A22+μ L A12)] (3.31)

Algorithm of [7, 28], consistent with the previous Lemma is given below.
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Step 1: Form  a  matrix  V  using  all  real  eigenvectors  of  H and  for  all

complex-conjugate eigenvectors put  in  V  both real  and imaginary parts  and

discard their complex-conjugate pairs. 

Step 2: Partition  the  matrix  V  as  where  1V  is  formed  by  using  l

eigenvectors spanning the stable subspace

 V n×n = [V 1
n×n1 V 2

n×n2 ] = [V 11
n1×n1 V 21

n1×n2

V 12
n2×n1 V 22

n2×n2] (3.32)

Step 3: Find L  using the formula

L= V 12V 11
−1 (3.33)

It will be an interesting research topic to develop the Schur method for solving

(3.28)  following  the  ideas  of  [40]  for  solving  the  symmetric  square  algebraic

Riccati equation.  Since the Schur vectors are intermediate steps in finding the

eigenvectors that will reduce computational requirements.

3.9 Flexible Space Structure Example

Both the method of fixed point iterations and Newton's method are relatively

simple to implement and are very often useful when the value of the singular

perturbation parameter is small.  The eigenvector method, on the other hand, is

far more computationally complex but is best employed when the value of the

singular  perturbation is  relative large.   As an example of  what  is  involved in

determining the  L matrix via the eigenvector method the dynamics of a flexible

space structure were simulated.   This  structure was chosen due to its  highly
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oscillatory and lightly damped modes which made it a challenge to simulate.  Due

to these issues the method of singular perturbations was chosen as an order

reduction technique.  This system had been previously been analyzed in an early

draft of [6] using multiple techniques.

Excellent  high  frequency results  are  possible  by  using  the  exact  slow/fast

decomposition  (3.14)  although  this  method  is  somewhat  computationally

intensive.   When  a  system  is  dominated  by  minimally  damped  and  high

frequency modes, there are approximations that both maintain the DC gain of the

slow subsystem and are accurate at high frequencies.  In order to employ these

approximations both the L and M matrices must first be determined.

3.9.1 Determination of the L and M Matricies – An Example

Starting with the system transfer function [41] 

G(s)=
0.00001s2

+0.011s+1
s6

+0.222s5
+22.1242s4

+3.5445s3
+122.4433s2

+11.3231s+11.11
(3.34)

the first step is to balance the system.  After the first step was accomplished the

next step was to separate the system into its slow and fast components via the

Chang  transformation  which  requires  both  the  L and  M matrices  to  be

determined.

The L matrix is determined first.  Separating the balanced system and putting

together the H matrix yields
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H = [
0.0153 2.1451 0.0181 0.0966 0.0477 −0.0161

−2.1451 0.0034 0.0932 0.0111 0.0102 −0.0166
0.0181 −0.0932 0.0217 0.1882 0.0717 −0.0200

−0.0966 0.0111 −0.1882 0.0385 0.0371 −0.1136
−0.0477 0.0102 −0.0717 0.0371 0.0379 −1.9768
−0.0161 0.0166 −0.0200 0.1136 1.9768 0.0216

] .
Using the eigenvectors of H to form the matrices V11 and V12 gives

V 11 = [
0.6949 0 0.1271 −0.0150

−0.0013 0.6935 0.0103 0.1341
−0.0224 −0.0057 −0.0351 −0.0067
0.0073 0.0356 −0.0110 −0.0371

]  and

V 12 = [0.0141 0.1322 −0.0019 −0.6931
0.1285 −0.0091 −0.6945 0 ] .

The L matrix is determined using (3.33) and once this matrix is available the M

matrix is the solution to the linear Sylvester equation

M A4−A2+μ1(M LA2−(A1−A2 L)M )=0 (3.35)

where A1, A2, and A4 are defined in (3.9).  The calculated L and M matrices are

L= [−0.3916 −0.7607 −7.0494 17.3925
1.0191 0.3722 24.6767 −3.5556] and

M=[
0.0012 0.0030

−0.0040 −0.0018
0.0141 0.0689
0.0975 0.0278

]  note that the MATLAB code for these calculations is

located in the appendix.

3.9.2 Step Response Results

With  the  first  system  balanced  and  separated  into  its  slow  and  fast
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components  a  total  of  four  order  reduction  techniques  were  employed  for

simulation purposes.  The step responses of these reduced order models are

plotted in Figure 3.1 along with the step response of the original system.  

It can be clearly seen from the step response that balanced truncation does

appear  to  capture  the  high  frequency response  of  the  system,  however,  the

steady  state  DC  value,  along  with  the  low  frequency  response  are  totally

unsatisfactory.  Balanced residualization, on the other hand, captures both the

DC and high frequency response accurately.   Unfortunately,  this method also

appears to miss the low frequency response.  Just as expected this system was

challenging to approximate. 

As significant  high frequency modes are clearly present  in this  system the

method of balanced residualization via singular perturbations was employed.  In

[6] two very useful fast subsystem approximations are presented.  The first of

these (3.20) is repeated here 

Gfapp(s)≈C f (μ sI−A f )
−1B f+(D−C s A s

−1B s)  

and the second approximation is

Gfapp2(s)≈C2f (μ sI−A2f)
−1B2f+D2f (3.35)

where

A2f=A22−A21A11
−1 A12 ,  B2f=B22−A21 A11

−1B11 ,
(3.36)

C2f=C22−C11 A11
−1 A12 ,  D2f=D−C11 A11

−1B11 .
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Fig. 3.1. Flexible space structure step response.

As can be seen from the plots of Figure 3.1 the first of these fast subsystem

approximations does an excellent job of capturing the correct DC level as well as

the low and medium frequencies, however, at least for the chosen value of the

parameter μ, some of the high frequency response is lost.  The second of these

approximations  does  an  excellent  job  of  following  the  step  response  of  the

balanced system over the entire frequency range, but this accuracy comes at the

cost of more complicated computation.
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Chapter 4

Simulation Results for Boost and Class E Converters

4.1  General

The two switched mode power converter configurations were simulated using

different techniques.  The MATLAB programming language was largely used for

simulations modeled using the state-space form.  Commercial SPICE software

was also used.  The simulation results varied widely.  Detailed full order models

expressed in the state-space form, in general, required significantly more time to

simulate than the SPICE models but they also produced the most reliable results.

Also note that the code for many of the MATLAB simulations has been included

in the appendix for reference.

4.2 Boost Converter Results

Figures  4.1  through  4.8  detail  the  simulation  results  for  a  standard  boost

converter based on Dr. Davoudi's component values [10].  The voltage across

the switching transistor is shown in Figure 4.9.  Note the sharp detail in the area

of the switching transients.  This is valuable information to design engineers as it

details the voltage stresses that a switching transistor will see during operation.
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Fig. 4.1. IL1 versus time.

Fig. 4.2. VcL versus time.
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Figure 4.10 shows the results obtained using NI Multisim.  Satisfactory results

could only be obtained with a simplified version of the boost converter.  These

results clearly lack the detail of the full order system simulations performed with

MATLAB.

Fig. 4.3. Vc1 versus time.

Fig. 4.4. ILc versus time.
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The high fidelity simulations attempted using NI Multisim quickly encountered

convergence issues which the built-in utilities failed to resolve.  But the simplified

version of the boost converter quickly ran to completion.

Fig. 4.5. ILsw versus time.

Fig. 4.6. Vcsw versus time.
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Fig. 4.7. ILd versus time.

Fig. 4.8. Vcd versus time.
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Fig. 4.9. Voltage across the switching transistor versus time.

Fig. 4.10. Vout and voltage across the switching transistor versus time.

4.3 Derivatives 

In  control  applications  the  use  of  derivatives  is  generally  considered
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undesirable.   This  is  because  the  small  amounts  of  random  noise  that  are

inherent in real world systems tends to be superimposed over the sensor signals.

As this noise tends to have a wide frequency range localized areas with very high

slopes are commonplace.  Derivatives can become very large locally.  This can

lead  to  erratic  behavior  within  the  system.   Unfortunately,  there  are  some

situations when taking a derivative is desirable for analysis so an approximate

method is typically employed which limits the localized slope to a reasonable

value. 

While attempting to duplicate Dr. Davoudi's analysis of the boost converter, as

detailed in his paper [3], some difficulties were encountered.  The boost converter

incorporates a diode which is self switched based on the voltage across it and

the current through it at any given point in time.  Obtaining these parameters

involves the use of a derivative as the voltage across an inductor is related to the

time rate of change of the current through it and the current through a capacitor

is related to the time rate of change of the voltage across it.  

In  order  to  implement  this  derivative  the  following  recommended

approximation was employed:

du
dt

≈
s

δ⋅s+1
(4.1)

where δ is a very small number.  In operation, this approximation approaches a

true derivative when the time rate of change is minimal, however, based on the

value of  δ, the magnitude of this approximation quickly becomes limited when

rapid rates of change are encountered.
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It  was relatively easy to  implement  this  approximate  derivative  in  Simulink

using the built-in generic function block.  However, at times erratic behavior was

encountered  so  further  investigation  was  necessary.   In  order  to  efficiently

troubleshoot  this  unexpected  behavior  the  approximate  derivative  block  was

placed into a small standalone program Figure 4.11

Fig. 4.11. Test for simulation of approximate derivative.

The Simulink software also provides a dedicated derivative block which, based

on the software documentation, uses the same approximation to implement a

numerical derivative. So this block was included in parallel to the built-in function

block for comparison.

Both derivative blocks were driven with a simple square wave oscillator which

provides a very rapid change in  the region where  the  square wave changes
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states.  Thus a large positive and negative slope are provided and the sequence

continuously repeats. 

 It was discovered that when implementing the approximate derivative using

the defined function block with δ =(10)
−6  erratic results could occur depending

on the sampling rate.   When the sampling rate is many orders of magnitude

higher than the oscillator frequency both the limited derivative implemented as a

defined function and the built-in derivative block have very similar performance,

however,  even  if  the  sampling  rate  is  significantly  higher  than  the  oscillator

frequency, but not orders of magnitude higher, very erratic operation occurs as

seen in Figure 4.12.

Fig. 4.12. Results of built-in derivative and user defined approximate

derivative.
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So it appears that simulation using the MATLAB built-in derivative function is

generally the better choice.  Although it appears to use the same basic formula

for the approximate derivative to perform calculations it seems that some internal

mechanism is included in order to compensate for the sampling rate.

4.4 Class E Converter Results

A simple Class E power converter with an operating frequency of 100 kHz is

designed and simulated using a commercial circuit  simulator in order to verify

basic circuit operation.  Once the state-space equations for the converter were

derived the system was again simulated using MATLAB based on the full order

model of the simple system.  After balancing and decomposition of the system

into two independent slow and fast subsystems a third simulation is performed

using MATLAB in order to investigate the performance of the this technique. 

 

4.4.1 Design Details 

An idealized Class E power  converter  was initially designed which  did  not

include parasitic elements or a switching diode.  This simplified version of the

power converter was designed using the design equations detailed in [16].  As

these design equations are known to be based on idealized assumptions [42]

some circuit tuning (component value changes based on simulation results) was

both expected and required to achieve near ideal circuit operation.  The design
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process starts with the Sokal design equations

L2=
QLR

2π f
, (4.2)

C1=
1

2π f R( π
2

4
+1)( π

2
)

, (4.3)

C2=( 1

(2π f )2L2)(1+
1.42

QL−2.08) , (4.4)

R=
(V CC −V CE (sat))

2

P (
2

π
2

4
+1) , (4.5)

and X L1
≥30 XC2

. (4.6)

The design parameters were chosen for simplicity and are listed in Table 4.1.

Note  that  the  values  of  the  switch  on  and  off  resistances  are  based  on  a

commercially available IRF150 MOSFET switching transistor.

Parameter Symbol Value

Frequency F 100 kHz

Duty Cycle D 0.5

Supply Voltage VCC 12 V

Power P 25 W

Loaded Quality Factor QL 3

Switch On Resistance RON 0.1 Ohms

Switch Off Resistance ROFF 3 Meg Ohms
Table 4.1. Basic design parameters.

This yields the following component values both before and after the tuning

process
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Component Value Before Tuning Value After Tuning

R 3.21 Ohms 3.21 Ohms

L1 835 µH 835 µH

L2 15.33 µH 15.33 µH

C1 91 nF 110 nF

C2 420 nF 420 nF
Table 4.2. Component Values.

4.4.2 Basic Circuit Operation

The Class E power converter is shown in Figure 2.3.  The function of inductor

L1 is to provide a relatively constant current from the power supply.  The value of

L1 is not critical.  This inductor simply must be large enough so that its inductive

reactance will effectively limit current flow.  A resistance could also be used to

perform the same function but a resistance would dissipate power and thus lower

circuit efficiency.  The inductor also isolates RF energy from the power supply.

In the ideal case, if the switch were used alone with just a decoupling capacitor

C2 and a load resistance RL, current would flow into the switch when it is closed

and there would be a voltage across the switch when it is open.  There would be

minimal overlap between the two during operation.  This would be advantageous

because the switch would have minimal power dissipation with this kind of action.

The  first  disadvantage  with  this  simple  topology  is  that  many  odd  harmonic

frequencies are present due to the square voltage and current waves which can

lead to Radio Frequency Interference (RFI).  The second disadvantage comes

from the brief periods of current and voltage overlap during the switching events

that reduce circuit efficiency.
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Adding a properly tuned series resonant circuit between the switch and the

load will allow current to pass at the fundamental frequency but prevent current

from flowing at the harmonic frequencies.  This will  greatly help with any RFI

issues.

Adding capacitor C1 across the switching element is necessary to provide a

path for AC current to flow into the series resonant circuit when the switching

element is open.

Having a sinusoidal AC current flowing through the system can further help to

reduce the circuit losses by picking an ideal point in time to close the switching

element.  This is when the voltage across the switch reaches zero.  A further

improvement in minimizing losses can be achieved by also requiring that the

slope of the voltage be zero when the switch closes.  These are the standard

boundary conditions for Class E operation.

4.4.3 Elimination of the Switching Diode

The exact slow/fast decomposition of the state space form of the converter

will,  in  theory,  significantly  reduce  the  number  of  computations  required  to

simulate this system.  In practice, however, some unexpected difficulties were

encountered during the simulation process.

Once a system has been separated into two independent subsystems it  is

neither necessary nor desirable to run each subsystem at the same sampling

rate.   In  order  to  reduce  the  computational  burden  the  slow  subsystem  is
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sampled at a slower rate than the fast subsystem.  The separation between the

slow and fast sampling rates could be multiple orders of magnitude and is related

to the separation of the Hankel Singular Values (HSV) that are obtained for the

system.

Between switching events each subsystem can be simulated independently

with a sampling rate that is appropriate for the speed of the subsystem.  The

difficulty arises from having a diode in the system which is self switching based

on the current through and the voltage across the device at every point in time.

This not only requires that the state-space variables be transformed back to their

original  coordinates  or  the  equations  modified  to  operate  in  the  transformed

coordinates at each step in the simulation but it also requires that both the slow

and fast  subsystem variables be available  at  that  time.   One approach is  to

employ  a  fixed  step  Ordinary  Differential  Equation  (ODE)  solver  for  each

subsystem with  the  fast  subsystem being  sampled  at  a  multiple  of  the  slow

subsystem sampling rate which is determined by the HSV for the system.  As the

states  of  the  fast  subsystem  change  more  quickly  than  those  of  the  slow

subsystem the slow subsystem states can be assumed to be constant until the

next slow subsystem sample is processed.

While this approach works in theory it has the disadvantage of requiring that

the minimum sampling time be used during the entire simulation.  Because of the

constant fine sampling detail this technique has a greater computational burden

when compared to a variable step ODE solver.
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The Simulink programming environment allows a choice of both variable and

fixed step ODE solvers to be employed during a simulation so a comparison

between the two techniques can be made.   A Simulink model  of  the original

system  was  constructed  prior  to  balancing  and  separation  into  subsystems.

When  the  ODE45  variable  step  solver  was  employed  the  simulation  ran  to

completion in several seconds.  The same system was rerun using a fixed step

ODE solver.  The time required increased dramatically from several seconds to

over  a  week.   In  fact,  the  simulation  results  were  difficult  to  observe  as  the

computer ran out of memory during the simulation.  A Core 7 desktop computer

with 16 gigabytes of RAM was employed for these simulations. 

The  required  computations  are  greatly  reduced  and  the  requirements  for

checking the diode switching state at  every instant  in  time are eliminated by

removing the switching diode that would normally be placed across the switching

element.  This approximation is expected to be reasonable when the converter is

operating under near ideal conditions.  In a real world Class E power converter a

Bipolar Junction Transistor (BJT) would likely be damaged if the voltage across

switching transistor falls below zero which is possible if the system has too little

damping [16].  If a power MOSFET is used as a switching element this is less of

an issue.

4.4.4 Circuit Simulation – Commercial Circuit Simulation Software

Both to verify the design and tune component values the simplified Class E
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power  converter  has  been  simulated  using  commercial  SPICE  based  circuit

simulation software.  Figure 4.13 is a schematic of the circuit and Figure 4.14

details the output voltage and the voltage across the switching device during

operation.  This simulation was performed using the CircuitLab online simulator.

Fig. 4.13. Schematic of the Class E Power Converter.

Fig. 4.14. Class E output voltage and switch voltage versus time. 
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Note that, once the start up transients have died out, the voltage across the

switching element falls to zero at the end of each switching cycle and the output

voltage is  approximately sinusoidal.   This  is what  is expected under Class E

operation.

For completeness NI Multisim was also used to simulate this circuit.  Figure

4.24 is the Multisim circuit  model and Figure 4.15 is the steady state voltage

across the switching transistor and the output voltage.  A more detailed plot of all

the state variables can be seen in Figure 4.16.

A Simulink model was also constructed for this system.  The details can be

seen in Figure 4.17.  The output for this model is shown in Figure 4.18.

Fig. 4.15. Output voltage and voltage across the switching transistor.
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Fig. 4.16. State-space variables versus time NI Multisim. 

Fig. 4.17. Simulink Class E converter model.
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Fig. 4.18. Simple Class E converter Simulink model results.

4.4.5 Balancing The System

Another question that has been answered by this research is whether or not to

balance a system prior to performing an exact slow fast decomposition.  While it

is not a necessity to balance the system prior to the decomposition it is often

advantageous. Real-world systems can have many state variables.  Even this

relatively simple class E power converter,  which neglects a number of  circuit

elements, is represented by four state variables.  The number of state variables

within a system is equal to the number of energy storage elements within that

system.  A modern-day system, whether electrical, electronic, or mechanical can
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have hundreds of state variables.  Furthermore, the speed at which each of these

state  variables  operate  is  seldom  known  to  an  engineer  a  priori.   The

mathematics  involved in  the  decomposition process assumes that  the slower

state variables come first and the faster state variables are below them in the

state-space representation of the system.  It would indeed be a very tedious task

to redefine all of the state variables in a large real-world system once the process

of  analysis  has  begun.   Pre-balancing  a  system  has  the  advantage  of

automatically arranging the new transformed state  variables  into  the  order  of

maximum to minimum energy so the state variables are automatically in the ideal

order needed for the exact slow fast decomposition process.

4.4.6 The Chang Transformation

The Chang transformation allows the slow and fast system dynamics to be

exactly separated.  The general procedure is described in Chapter 3.  In order to

use  this  transformation  the  L and  M matrices  need  to  be  determined.   The

process begins with finding the L matrix.  The L matrix can be calculated using

different  methods.   The  eigenvector  approach  is  best  employed  when  the

singular perturbation parameter is relatively large [7].  Due to the wide separation

of  HSV  for  both  balanced  subsystems  of  this  power  converter  the  singular

perturbation parameter for both are relatively small.  For this reason Newton's

method was employed to get the L matrix.

Once the  L matrix is known the  M matrix can be determined by solving the



   58

linear Sylvester equation which has the form A L+L B+C=0.   This operation

was accomplished using the MATLAB lyap function.

4.4.7 The Simulation Process

During the simulation process the class E power converter switches between

two distinct subsystems.  The first of these occurs when the switching device is in

the “ON” state and the second occurs when the switching device is in the “OFF”

state.  Each subsystem has its own system matrix and is analyzed independently

except at the point where one subsystem is terminated and the other subsystem

begins.   Elimination  of  the  switching  diode  changes  the  requirement  of

transforming  the  state  variables  back  to  their  original  coordinates  at  each

simulation  step,  in  order  to  determine  the  diode  switching  state,  to  only

performing this transformation when the transistor switches state.

The  state  variables  are  related  to  the  energy storage  elements  within  the

system and thus these physical elements can be thought of as having “memory”.

Under normal circumstances the value of state variables cannot change during

the switchover from one subsystem to another.  A continuity of state variables

must be maintained during these transition times.  Although the state variables

do not change during the switch from one subsystem to another the values of the

transformed state  variables  (which  may no  longer  directly  represent  physical

circuit parameters) can change during this transition.  The Simulink environment

does not handle a change in state variable values well.  It does have a built-in
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state space block which can be used for many applications; however, it does not

appear  to  have  provisions  for  reinitialization  during  program execution.   The

simplest  way  to  get  around  this  limitation  was  to  create  a  customized  state

variable block consisting of a number of integrators which simply process signals

parallel  to each other.   This  method was employed to simulate the full  order

version of the system but the MATLAB programming environment was selected

to  simulate  the  decomposed  system  due  to  its  greater  versatility  and  faster

execution speed.

Only variable step ODE solvers are included with MATLAB package due to the

inherently high efficiency of these algorithms.  The fast and slow subsystems

output two independent data streams with different time steps which need to be

combined  in  order  to  get  the  overall  system response.   Each  of  these  data

streams occur at  both different  and constantly varying time intervals over the

period of each switching event due to the operation of the variable step ODE

solver.

In order to combine these two data streams the data must be interpolated to a

common time vector.  While it is not a requirement that time values within this

time vector be equally spaced it is a convenient choice and this is the method

that  was employed.   The interpolation  was accomplished using  the  MATLAB

deval function.  The total system response is simply the sum of the two, time

synchronized, data streams.



   60

4.4.8 Exact Slow/Fast Simulation Results

In  theory,  the  exact  slow fast  decomposition  process  will  provide  identical

results  to  that  of  the  original  system.   In  practice,  as  can  can  be  seen  by

comparing Figure 4.19 (the original system output) and Figure 4.20 (the output of

the decomposed system after reassembly), there is no visible difference between

the outputs for the two systems.

Fig. 4.19. State variable values for the original system.
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Fig. 4.20. State variable values for the exact slow-fast system

decomposition.

4.4.9 Simple Class E design power and efficiency calculations

The simple Class E power converter was designed based on Raab's original

1977 paper  [42]  as well  as Sokal's  approximate equations [16].   Figure 4.15

clearly indicates class E operation, but there are other operational parameters

that are important in any power converter design.  Two of the most vital of these

are power and efficiency.  In order to determine the efficiency both the input and

output  power  needs to  be determined.   On the input  side the power  can be

determined from the RMS current passing through L1 and the supply voltage Vdd.

On the output side the power can be determined based on the load resistance RL
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and the RMS current output.

The input power, output power, and efficiency were first determined using a

MATLAB  simulation  based  on  the  state-space  form  of  the  equations  that

represent  the  system.   A variable  step  ODE  solver  was  employed  for  this

simulation.  As the determination of RMS current involves a numerical integration

using a variable step solver becomes a complication because the time interval

between current samples is  not fixed.   The first  step was to isolate the time

period for one cycle, after all of the start up transients had visibly settled out, by

examining the current vector for L2 in the MATLAB environment for points in time

when it passed through zero.  The index points for the beginning and end of this

cycle were recorded.  Of course, these indices also represent the beginning and

end of one cycle for the current passing through L1 as well.  Table 4.3 provides

the details.

Index Iout

(amps)
Iin

(amps)

5833 (cycle begins) -0.0272 1.1740

5889 (cycle ends) -0.0273 1.1740
Table 4.3. Indices that represent one cycle.

The value of the RMS current was determined using equation (4.7) [43].  As

the time step between current points is not fixed MATLAB's trapz function could

not be employed for numerical integration.  A more basic but functional method

for numerical integration, which is based on summing the area of a series of

small  rectangles,  was  successfully  used.   Figure  4.21  details  this  numerical
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method.

IRMS = √ 1
T2−T1

∫
T1

T2

|I (t)|2dt (4.7)

Fig. 4.21. Approximate integration method.

Figures 4.22 and 4.23 are plots of the output current versus time.  The steady

state results of the two SPICE based simulations were very similar to those of the

MATLAB simulation detailed above, however, the state space variables did differ

at start up.  The input current, output current, input power, output power, and

efficiency were determined for the system using NI Multisim's built-in tools, see

Figure 4.24.

I(t)

Sample Times

Area used in 
approximate integration
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Input Current
(RMS)

Output Current
(RMS)

Input Power Output Power % Efficiency

1.162 A 2.030 A 13.940 W 13.222 W 94.843
Table 4.4. Efficiency and related parameters MATLAB simulation.

Input Current
(RMS)

Output Current
(RMS)

Input Power Output Power % Efficiency

1.11 A 2.00 A 13.323 W 12.861 W 96.53
Table 4.5. Efficiency and related parameters SPICE simulation.

 Tables 4.4 and 4.5  list  the  RMS input  current,  RMS output  current,  input

power, output power, and efficiency for the power converter using both simulation

methods.

Fig. 4.22. Output current versus time state-space model results.
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Fig. 4.23. Output current versus time SPICE model results.

It is important to note that the system was originally designed to provide 25 W

of power.  Based on the simulation results the power output is only approximately

1/2  of  the  design  value.   This  discrepancy  is  a  result  of  the  various

approximations incorporated in  the  design  equations detailed  in  Raab's  1977

paper [42].  For example, Figures 22 and 23 clearly show the current passing

through L2 is not quite sinusoidal in nature.  In fact, spectral analysis shows that

this  current  has a high second harmonic.   The design equations are derived

based  on  the  assumption  that  this  current  is  sinusoidal.   While  the  modest

distortion in the current wave shape is not critical for power converter due to the

fact that the output is often rectified into DC before it is utilized this would be a

significant issue in a Class E RF power amplifier.  So accurate design methods

are important in practice.  Of course, other techniques for the design of Class E
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systems exist [44].  Many of these are based on tables and graphs that were

determined both numerically and empirically.  The power conversion efficiency

was  calculated  as  approximately  96.5%  (based  on  the  MATLAB simulation),

which is an impressive value for a power converter.  Of course, if a more detailed

system model had been utilized, the efficiency would be slightly lower due to the

parasitic resistances in coils L1 and L2.  Also, note that the MOSFET gate drive

power was not taken into account in these calculations.

There is surprisingly good agreement using the two methods which gives a

strong degree of confidence that the output power for the system is well below

what it was originally designed to be.  If this power converter had been designed

for a physical application a redesign would be required at this point.   As this

dissertation  is  primarily  concerned  with  the  feasibility  and  accuracy  of

mathematical system modeling the current design will suffice.



   67

Fig. 4.24. Efficiency measurement using NI Multisim model.

 

4.5 Construction and Testing of a Rudimentary Class E Power Converter

While mathematics is a powerful tool that is used to quantify the world around

us, predict behavior, and design and optimize systems it is ultimately an artificial

framework  that  is  constructed  around  the  physical  world.   Ultimately,

mathematical  models can never perfectly represent  the physical  world due to

assumptions,  estimations,  and  the  uncertainty  inherent  in  physical

measurements.   In  order  to  be  sure  of  the  validity  of  a  system model  or  to

validate a particular analysis technique the best test is to construct a physical



   68

system and take a series of physical measurements.

For  this  reason,  a  rudimentary  Class  E  power  converter  was  constructed

based on the simple Class E version that has been previously analyzed.  While

component  values could  not  be  matched perfectly multiple  components  were

measured in order to select those components were closest to the design values.

Most of the components were available off the shelf, however, the two inductors

were hand wound in order to accurately match the required design values and

provide linear performance.  Two Magnetics powder cores were used to wind

these inductors.  The measured component values are detailed in Table 4.6.

The bare cores used for the two inductors can be seen in Figure 4.25 and the

wound  coils  in  Figure  4.26.   The  basic  design  of  these  inductors  minimized

magnetic flux density in order to maintain linear characteristics.  Furthermore, the

geometry of  the cores was selected in order to avoid multiple winding layers

which tends to greatly increase the parasitic capacitance of an inductor.  All of the

design data was obtained from the published catalog [45]. 

Component Design Value Measured Value

L1 835 µH 841.9 µH

L2 15.34 µH 16.3 µH

C1 110 nF 105 nF

C2 420 nF 419 nF

RL 3.21 ohms 3.27 ohms
Table 4.6. Design and measured component values.
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Fig. 4.25. Unwound powder cores

Table 4.7 is a list of instruments that were used to operate and measure the

system. 

No. Description

1 Hantek DSO 5072P 70 MHz Oscilloscope

2 Velleman Instruments HPG1 Signal Generator

3 HA Power PS1503SBU 0-15 VDC DC Power Supply

4 Extech 380193 LCR Meter

5 Radio Shack 22-168A Digital Multimeter

6 Sears 82418 DMM
Table 4.7. Test instruments.
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Fig. 4.26. Hand wound inductors L1 and L2.

Figure 4.27 is an FFT based spectral  plot of the converters output voltage.

Note  the  high  harmonic  content,  particularly  at  the  second  harmonic  of  the

converters  100  kHz  operating  frequency.   A  high  second  harmonic  is

characteristic of the Class E configuration when it is operated with a low Q value.

This can be a major problem in constructing an RF power amplifier but it is of

minimal concern when constructing a power converter.
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Fig. 4.27. Output voltage spectrum.

Figure 20 represents the simulated state-space variables and Figures 4.28-

4.31 represent those measured within the circuit.  Note that the current through

inductor L2 is simply the output voltage divided by the load resistance.  As an

oscilloscope will  only measure voltage directly the current through inductor L1

was measured by inserting a 0.47 ohm resistor in series with the power supply

input.  By measuring the voltage across this resistor the current through inductor

L1 can be calculated simply by dividing by the sense resistance.   Note  from

Figure 4.28 that's this signal was somewhat noisy.  Based on a comparison of the

simulated values versus these test results,  it  can be concluded that the state

space models accurately represented the physical system.
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Fig. 4.28. Voltage across 0.47 ohm sense resistor.  IL1 is this voltage divided
by the sense resistance.

Fig. 4.29. Output voltage versus time.  IL2 is this voltage divided by the load
resistance.
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Fig. 4.30. Vc1 versus time.

Fig. 4.31. Vc2 versus time.
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Fig. 4.32. The Class E converter being tested.

Figure 4.32 is a photo of the power converter being tested.  The four white

rectangular objects on the right hand side of the solderless breadboard are the

load resistors.  Four 3.3 ohm 5 watt resistors were wired in series-parallel  to

increase the power rating of the load to a maximum of 20 watts.  Also note that

there is no heatsink on the MOSFET transistor (an NTE2943 enhancement mode

MOSFET was  used do to  availability)  due to  the  low heat  dissipation  of  the

switching device.
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Chapter 5

An Alternate Approach – Working With The General Solution To

The State-Space Equations

5.1 General

In modern control theory systems are represented using the state-space form

which is a set of ordinary differential equations that represent the system in terms

of inputs, outputs, and state-space variables.  For simulation purposes the state-

space equations are solved using an ODE solver.  Programming languages such

as GNU Octave and MATLAB have multiple ODE solver routines available. 

While  working  with  the  ordinary  differential  equations  is  a  well  known

technique for system simulation there are number of issues that arise when using

this technique with switched mode systems.  The ODE solver operates over the

time interval of one switching event. Typically, transient behavior is observed at

the transition times between old and new switch states.  At the very beginning of

each switching cycle a very fine solver resolution (time step) is required in order

to capture this transient behavior, however, if this high resolution is maintained

for  the  entire  period  that  the  system  is  in  that  switch  state  the  simulation

becomes very computationally intensive.  For this reason, many modern ODE

solvers are designed to operate with a variable time step.  This greatly improves

computational efficiency by utilizing a very fine time resolution when it is needed

to capture high-frequency modes and then greatly increasing the time step size

when  a  slower  more  steady-state  response  is  observed.   The  difference  in
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execution time between a fixed step ODE solver and a variable step ODE solver

can be quite dramatic.   An improvement of multiple orders of magnitude was

observed when switching to a variable time step solver during the simulations

performed for the Class E power converter.

Despite the improvement in simulation time the use of a variable time step

solver makes it almost impossible to gain any benefit from the exact slow fast

decomposition method of system order reduction.  Once the system has been

separated into its slow and fast state variables each subsystem is then simulated

separately.  In fact, part of the improvement in simulation time, when employing

slow/fast decomposition, stems from the fact that the slower state variables can

be simulated using a significantly larger time step.  As the slower state variables

are changing at a reduced rate, as compared to the faster state variables, a high

temporal resolution is not required.

The  separate  processing  of  the  two  subsystems  creates  an  issue  that  is

unique  to  switched  mode  systems.   Switching  events  are  either  determined

externally, which usually involves some fixed time interval, or internally as is the

case with self switching components such as diodes (a common component in

power converters).  A switching event may also be triggered by a state variable

exceeding  some threshold.   This  can  be  the  case  with  nonlinear  (iron  core)

inductors.   Due to  saturation of  the  iron core the inductance value for  these

components  is  dependent  on  the  current  passing  through  them.   Nonlinear

inductors  can be simulated as  a  set  of  linear  inductors  whose inductance is
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current (a state variable) dependent.  So a change in inductor current can trigger

a  switching  event.   What  this  all  amounts  to  is  switching  events  are  often

determined by the value of one or more state variables at any given point in time

during  the  simulation  process.   When  each  subsystem  is  processed

independently using a variable time step ODE solver the sampling times for the

two subsystems are also independent and are not known a priori, so there is no

simple way for the program to determine the state variable values at each given

point in time.

One way to  address this  issue involves processing the entire  time interval

between switching events.  The time period between switching events must be

completely based upon externally switched components such as transistors.  As

there is no way to know the value of the state-space variables, for the complete

system,  in  the  original  coordinates  prior  to  the  two  independent  subsystems

being completely  processed it  is  possible  that  one or  more  switching  events

could  have  taken  place  during  this  time  interval.   Once  the  processing  is

complete  the  results  from  the  two  subsystems  can  then  be  combined  and

transformed back into the original coordinates.  At this point, it can be determined

if  additional  switching  events  should  have  occurred  based  on  the  state  of

internally switched components.

It is then possible to rewind the simulation to a time when the first internally

triggered switching event should have occurred and to repeat simulation from

that  point  in  time  on.   Clearly,  this  is  an  inefficient  processing  technique,
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particularly for systems that have multiple internally switched components, which

is often the case in real-world power converters.

The inability to use the technique of exact slow fast decomposition for model

order reduction is a significant handicap owing to the fact that this technique

does  not  lose  any  information  while  reducing  the  system  order.   The  other

techniques investigated in this dissertation provide reduced order models that

only approximate the response of the original system.  

An alternative  approach investigated in  [46]  and applied  to  class  E power

amplifiers  works  with  the  general  solution  to  the  state-space  equations  that

define the system.

This technique works by obtaining the solution to the system of differential

equations  prior  to  any  numerical  processing  taking  place.   The  state-space

equations for any continuous time system can be represented by formula 3.1

which is repeated below

ẋ(t )= Ax(t)+Bu(t )

y (t )= Cx( t)+Du( t)

where A∈ℝ
nxn , B∈ℝ

nxm , C∈ℝ
pxn , and D∈ℝ

pxm .

The general solution to these equations is well know to be [47]

q (t) = e At q0+∫
0

t

eA(t−τ)Bud τ (5.1)

where  A  is the system matrix,  B  represents the input matrix,  u  is the

input vector which is assumed to be constant for the switching interval, and q0
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represents  a  vector  of  initial  conditions  for  all  of  the  system  states.   After

performing the integration this becomes

q (t) = e At q0+A
−1

(eAt−I )Bu . (5.2)

The advantage in working with the general solution to the differential equations

rather than the differential equation directly is that the solution at any point in time

between switching events can be determined directly.  This allows any fixed time

step to be utilized without a large penalty in processing time.  The time step can

simply be determined based upon the desired simulation resolution.

Due  to  the  nature  of  switched  mode  systems  each  possible  switching

configuration will  have its own solution and associated initial conditions.  This

amounts to two solutions for the simplified class E amplifier or power converter.

While these solutions are represented by a relatively simple equation practical

calculations  can  be  difficult.   The  system  matrix  A  is  typically  poorly

conditioned for these systems.  The matrix exponential is highly sensitive to poor

matrix  conditioning  [48]  and  can  lead  to  numerical  computational  difficulties

during the simulation process.  The value of the matrix exponential  may also

exceed the maximum value that the programming language allows for variables.

This can happen for practical component values as well as typical operational

time frames and can lead to an error that causes the solution to appear to simply

“blow up” after a certain number of time steps have passed during the simulation.

Surprisingly,  the exact  slow fast  system decomposition technique,  which  is

problematic when working with the system as defined by a series of ordinary



   80

differential equations, can actually help to improve a poorly conditioned system

matrix [49] and can be an advantage when working with the general solution to

the  system.   Once  the  system  has  been  balanced  and  then  separated  into

independent subsystems via the Chang transformation the two separate system

matrices are likely to be far better conditioned than the original system matrix.

Calculations can then be performed in the transformed space, perhaps with the

advantage of  processing  the  slower  state  variables  with  a  significantly  larger

sampling interval, and the solutions can then be combined and transformed back

to the original basis for plotting and analysis.

5.2 The Process

The simplified version of the Class E power converter was selected for system

simulations that provide proof of principle when working with the general solution

to  the  state-space  form.   This  version  of  the  system  has  four  state-space

variables  and  two  possible  switching  states  which  are  selected  via  external

control of the switching transistor.  The two inductors are considered to be linear

components and the on-state and off-state resistances of the switching transistor

are based on an IRF150 MOSFET.  This converter was designed with a modest

switching  speed of  100 kHz and DC input  of  12  V.   Despite  this  converters

simplicity, it  provides a number of challenges for accurate simulation and is a

good candidate for a comparison between a simulation based on the ordinary

differential  equations that define the system and a simulation based upon the
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general solution to these ordinary differential equations.

As this power converter has two possible switching states two sets of ordinary

differential equations are required to completely represent the system.  Figure

5.1 details the timing and definitions that are associated with the Class E power

converter.

Fig. 5.1. Timing diagram for the simple Class E converter.

With the system timing defined the derivation proceeds as follows

Define  δ =
t 2−t 1

T
,  t 0 = (n−1)T ,  t1 =(n−δ)T ,  and  t2 = nT  where

n = 1,2,3… .

Starting with the general solution for the ODE which is similar to 5.1 with the
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exception of the time interval used for the integration

q (t) = e At q0+∫
t a

tb

e A(t−τ)Bud τ . (5.3)

With application to the Class E configuration this becomes

q (t) = e A(t−t start)q(t start)+∫
t start

t

e A(t−τ)Bud τ (5.4)

and after rearranging terms

q (t) = e At(e−A tstart q (t start)+∫
t start

t

e−A τBud τ) . (5.5)

The solution to the integration is

∫
tstart

t

e−A τ d τ =−A−1
(e−A t−e−A tstart)= A−1

(e−A tstart−e−A t). (5.6)

Substituting 5.6 into 5.5 yields

q (t) = e At(e−A tstart q (t start)+A
−1

(e−A tstart − e−At)Bu). (5.7)

After rearranging terms

q (t) = e Ate−At start q(t start) + (e At e−At start−eAt e−At)A−1Bu =

(5.8)
q (t) = e A(t−t start)q(t start)+(eA (t−tstart ) − I )A−1Bu.

Combining terms then yields

q (t) = e A(t−t start)(q (t start) + A−1 Bu)− A−1Bu . (5.9)

Equation  (5.9)  is  applied  to  both  the  switch  on  and  switch  off  cases  by

substituting the beginning time illustrated in Figure 5.1 for t start and the specific

A on  and Aoff  matrices for the  A matrix.  As t 0 = (n−1)T  this gives
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q1(t)= eAoff t e−(n−1)T Aoff(q01 + Aoff
−1 Bu)−Aoff

−1 Bu (5.10)

for the off portion of the switching cycle.  And q01  represents the state variable

values at the beginning of the time period which are also known as the initial

conditions.

For the on portion of the switching cycle the starting time is  t1 =(n−δ)T .

Applying this to equation 5.9 yields

q2(t)= eAon t e−(n−δ)T Aon(q02 + Aon
−1 Bu)−Aon

−1Bu (5.11)

where q02  represents the initial conditions for the switch on time period.

Once the general solution, that provides the state-space variable values, has

been derived the next step was to code a simulation program using the MATLAB

programming language (see the appendix for the working MATLAB code).

The first  step in  the simulation process is  simply to  define the component

values and operating conditions.  Once this has been achieved equations (5.10)

and (5.11) are placed within a loop that advances time over an interval of 25

cycles in steps of one percent of the period for one cycle.

This program was relatively short and simple to code.  It also executed quickly,

on the order  of  a  couple of  seconds.   Unfortunately,  the results  of  the initial

simulation were quite disappointing.  The state variable values appeared to blow

up massively during the first switching cycle.  This was observed during the on

portion of the switching cycle only.  Figure 5.2 is a plot of the state-space variable

values versus time.  As can be clearly seen from the plot the simulation results

are unacceptable.  
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Fig. 5.2. State-Space variables versus time simulation results.

As no coding errors were found in the simulation program a more detailed

analysis of the simulation failure was necessary.  The first step was to examine

the system matrices in greater detail.  A quick examination of the matrix condition

numbers revealed that the system matrices for both switch states are very poorly

conditioned.  Table 5.1 lists the condition numbers for both matrices.

Switch ON Switch OFF

4.1893x(10)5 8.2900x(10)3

Table 5.1. Matrix condition numbers for the simple Class E converter.

After some experimentation it was determined that altering the design values

over  a  modest  range  did  little  to  significantly  improve  the  matrix  condition

numbers.   It  is  therefore likely that  poorly conditioned system matrices are a
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characteristic  of  this  system.   Furthermore,  from  a  practical  point  of  view,

simulations  need  to  be  performed  on  a  given  system  without  the  luxury  of

changing its design.

Poorly conditioned matrices are known to lead to numerical processing issues

when  the  matrix  exponential  is  employed  [48].   This  numerical  sensitivity  is

manifested  as  a  large  change  in eAt which  results  from  a  relatively  small

change in  the  system matrix  which  can result  from component  tolerances or

accumulated numerical round-off errors.  While this can potentially be an issue

when simulating this system it  was not the cause of the sudden catastrophic

failure of the simulation during the first switching cycle.

Further investigation revealed that the primary cause of the simulation failure

was  simply that  the  range allowed  for  numeric  variables  within  the  MATLAB

programming environment had been exceeded.  This was fixed by rearranging

terms in the formula.

5.3 Matrix Conditioning

As stated earlier, the matrix exponential function is quite sensitive to changes

in the system matrix.  While this was not the cause of the catastrophic simulation

failure experienced during the first simulation attempt this inherent sensitivity is

still potentially problematic.  In order to illustrate this point two Class E system

designs were tested using MATLAB's expm function.  The first of these systems

is the simple Class E power converter design that has been investigated in this
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chapter.  The second Class E system was taken from a paper on Class E power

amplifiers written by N. Sokal and D. Sokal in 1975 [16].  These two designs

differ greatly in both operating frequency and power output.

The test algorithm is simple.  The first step was to calculate the system matrix

based on the component values that were employed in the system.  The second

step was to introduce an additional change or perturbation in the system matrix

by adding an additional 10% of the matrix elements to the original matrix.  A 10%

tolerance is common to many electronic components,  although to be fair,  the

component tolerances would have random values and direction in practice.  In

order  to  evaluate  the  magnitude  of  the  changes  the  1-norm  of  the  matrix

exponential of both the original system matrix and the original system matrix with

a 10% delta added was calculated.  The system matrix was multiplied by an

elapsed time equivalent to five simulation cycles.  This is a point in time that

would likely be evaluated in a practical simulation.  Finally, the percent difference

between the two 1-norms was calculated for easy comparison.

Table 5.2 summarizes the results for the two systems that were tested using

this algorithm.  As can be seen from the table the results  were dramatic.   A

relatively small 10% shift in the values of the system matrix elements resulted in

a change in the 1-norm of the matrix exponential of up to 385.5%.  Clearly, the

sensitivity  of  the  matrix  exponential  has  the  potential  to  spawn  numerical

processing issues.
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Condition
Number

Condition
Number

Matrix 
Exponential 
Change for a 
10% Change 
in the System 
Matrix

Matrix 
Exponential 
Change for a 
10% Change 
in the System 
Matrix

Switch State OFF ON OFF ON

Design #1 8.29(10)3 4.19(10)5 385.5% 0.1%

Design #2 2.12(10)5 8.36(10)6 20.4% 98.2%
Table 5.2. Change in the 1-norm of the matrix exponential for a 10%

change in the system matrix.

One  possible  solution  to  this  dilemma  is  to  employ  the  exact  slow/fast

decomposition process.  

In order to demonstrate the effectiveness of this technique the exact slow/last

decomposition was applied to the simple Class E power converter running at 100

kHz.  Once the system was decomposed the condition numbers of the resulting

matrices were calculated as well  as the percent change in the 1-norm of the

matrix exponential for a 10% change in the original system matrix.  Table 5.3

details the results.   For the switch off  case the condition number drops from

8.29(10)3, for the original system matrix, to a worst case value of 1.26 after the

slow/fast decomposition process.  For the switch on case the condition number

drops from 4.19(10)5, for the original matrix, to a worst case value of 1.96(10)3

after  the  decomposition  process.   This  is  an  improvement  of  two  orders  of

magnitude for the switch on case and better than three orders of magnitude for

the switch off case.  The drop in sensitivity of the matrix exponential is equally

dramatic.  The original system exhibits a 385.5% change in the 1-norm of the
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matrix exponential for a 10% change in the system matrix in the switch off case.

After the slow/fast decomposition process this is reduced to a worst case 24.5%

change or an improvement of an order of magnitude.

Condition
Number

Condition
Number

Matrix
Exponential
Change  for  a
10%  Change
in  the  System
Matrix

Matrix
Exponential
Change  for  a
10%  Change
in  the  System
Matrix

Switch State OFF ON OFF ON

Slow
Subsystem

1.07 1.96(10)3 24.5% 0.1%

Fast
Subsystem

1.26 1 2.3% 0.9%

Table 5.3. Change in the 1-norm of the matrix exponential for a 10% change
in the system matrix after slow/fast decomposition.

For the switch on case the same original system only exhibited a 0.1% change

in the 1-norm of the matrix exponential for a 10% change in the system matrix.

But, even after the decomposition process, this value stays below one percent.

Based  on  these  results  it  appears  that  the  exact  slow/fast  decomposition

process is a practical technique that can be applied to systems that are poorly

conditioned in order to improve the numerical  stability when working with the

general solution to the state-space form.  On larger systems, with a significant

separation between the slow and fast modes, it can also reduce the time required

for simulation due to the far greater sampling period that can be employed for the

slow modes.
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Fig. 5.3. A simulation started from zero initial conditions.

In  [46]  it  is  recommended to  start  the simulation with  predetermined initial

conditions  that  are  determined  numerically.   But  this  limits  the  simulation  to

steady-state conditions only.

A simple next step in the investigation was to modify the code in such a way as

to start the simulation with zero initial conditions.  Figure 5.3 details the results of

this experimental simulation.  It was observed that the state variable values have

the correct shape both at start-up and once the simulation reaches a steady-state

condition.  Figures 4.18, 4.19, and 5.3 show comparable results.  These results

provide  a  high  degree of  confidence that  a  simulation  based on the  general

solution will provide a complete solution just as employing an ODE solver does.
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Up until this point, all of the initial conditions for the Class E circuit topology

have been determined via  numerical  computation.   A knowledge of the initial

conditions for this system is a valuable design tool and it  also allows for fast

steady-state  analysis.   For  these reasons an analytical  solution  for  the initial

conditions was derived.

The process begins with the timing diagram of Figure 5.1 and the start and

end  times  of  each  switch  state.   They  are  defined  as t 0 = (n−1)T ,

t1 =(n−δ)T , and  t2 = nT .  The initial state of the switch off condition q01

may be obtained by setting the time in equation (5.11) equal to t2.  This yields

q01 = q2( t2)= e AON nT e−(n−δ)T AON (q02 + AON
−1 Bu)−AON

−1 Bu (5.12)

and after rearranging terms this reduces to 

q01 = eδT AON (q02 +AON
−1 Bu)−AON

−1 Bu . (5.13)

Similarly, in order to find the initial state for the switch on condition q02, the time

in equation (5.10) is set to t1.  This yields

q02 = q1(t 1) = e AOFF(n−δ)T e−(n−1)T AOFF(q01 +AOFF
−1 Bu)−AOFF

−1 Bu (5.14)

and after rearranging terms this reduces to

q02 = e(1 −δ)T AOFF(q01+AOFF
−1 Bu)−AOFF

−1 Bu . (5.15)

It is important to note that neither equation (5.13) nor (5.15) have an elapsed

time dependency as these equations provide the steady-state initial conditions.

Based on the derivations above it  is  possible to  derive the initial  condition

values analytically.  Staring with equation (5.15) and multiplying terms yields
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q02 = e(1 −δ)T AOFFq01 +e(1−δ)T AOFF AOFF
−1 Bu−AOFF

−1 Bu . (5.16)

Substituting (5.13) into (5.16) yields

q02 = e(1 −δ)T AOFF(eδT AON(q02 +AON
−1 Bu)−AON

−1 Bu)

+e(1−δ)T AOFFAOFF
−1 Bu−AOFF

−1 Bu .
(5.17)

Multiplying out terms yields

q02 = e(1 −δ)T AOFFeδT AON q02 +e(1 −δ)T AOFFeδT AON AON
−1 Bu −

e(1 −δ)T AOFF AON
−1 Bu +e(1 −δ)T AOFF AOFF

−1 Bu−AOFF
−1 Bu

(5.18)

and moving terms with q02 to the left of the equal sign yields

(I −e(1 −δ)T AOFF eδT AON)q02 = e(1 −δ)T AOFF eδT AON AON
−1 Bu−

e(1 −δ)T AOFF AON
−1 Bu + e(1−δ)T AOFFAOFF

−1 Bu − AOFF
−1 Bu .

(5.19)

After collecting terms this becomes

(I −e(1 −δ)T AOFF eδT AON)q02 =

(e(1 −δ)T AOFFeδT AON − e(1−δ)T AOFF)AON
−1 Bu+(e(1 −δ)T AOFF − I) AOFF

−1 Bu .
(5.20)

Finally, solving for q02 provides the desired solution

q02 =( I −e(1−δ)T AOFFeδT AON)
−1
⋅

((e(1 −δ)T AOFF eδT AON − e(1 −δ)T AOFF)AON
−1 Bu+(e(1 −δ)T AOFF − I )AOFF

−1 Bu).
(5.21)

Once the  value  of  q02 has  been determined q01 can easily  be  calculated  via

formula (5.13).

In  order  to  compare  the  initial  conditions  determined  numerically  to  those

determined  analytically  Table  5.4  has  been  compiled  for  the  simple  Class  E

converter design.  In addition to the initial conditions that were an end result of

calculations  based  on  the  general  solution  Table  5.4  also  includes  the  initial

conditions that  were determined numerically when working with the derivative
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form of  the  state-space equations  as  well  as  those  measured on  the  power

converter that was constructed for model validation.

As shown in Table 5.4 the initial conditions obtained via the four methods are

in general agreement.  The actual measured initial conditions do agree to within

a  reasonable  tolerance  to  those  obtained  by  using  the  ODE as  well  as  the

general solution to the differential equations.  It should be noted, however, that

these  measured  values  vary  somewhat  from those  obtained  using  the  other

methods.  There are two reasons for this.  First, while an effort was made to

match the component values to the desired design values, the component values

could not be matched exactly.  Furthermore, all of the components, as well as the

solderless breadboard that the components were mounted on introduce parasitic

elements.   This  change  in  component  values  alters  the  tuning  of  the  power

converter,  to some degree, from that of the ideal design and it  was the ideal

design values that were used in the simulations.

The second reason for the variance of the measured initial conditions is the

inherent  uncertainty in  the  physical  measurements  themselves.   This  can be

most clearly seen in the voltage across capacitor C1.  The voltage across this

capacitor peaks at nearly 40 volts during operation and thus even a small shift in

the timing of the switching events will lead to a significant deviation from the true

value of this voltage.  While the actual converter that was constructed is not an

exact  match  to  that  of  the  design  it  is  adequate  to  verify  the  simulation

techniques that were employed.
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Parameter Analytical –
Based on the

General
Solution

Numeric –
Based on the

General
Solution

Numeric –
Based on the

Derivative
Form

Measured - 
Values

Obtained
During

Converter
Testing

IL1 - q01 1.2036 1.1658 1.193 1.09

IL2 - q01 -2.4975 -2.4023 -2.498 -1.90

VC1 - q01 0.3703 0.3570 0.369 2.00

VC2 - q01  5.8877 5.6698 5.969 7.00

IL1 - q02 1.1332 1.0953 1.122 0.99

IL2 - q02 1.8242 1.7563 1.832 1.84

VC1 - q02 -0.0479 0.0555 -0.017 4.00

VC2 - q02 19.8031 19.0425 19.74 18.4
Table 5.4. Initial conditions for the simple Class E power converter design.

In other words, these modeling techniques do a good job of approximating

physical switched mode systems and working with the general solution appears

to  provide  comparable  results  to  those  obtained  via  the  other  methods.

Furthermore, this method solves a number of simulation issues, particularly when

employing the exact slow/fast decomposition time scale separation technique,

which makes it the preferred computational method.



   94

Chapter 6

Conclusions

6.1 General

Full order models based on the state-space form provide excellent simulation

results  for  the  investigated  switched  mode  systems  and  should  do  so  for

switched mode systems of far greater complexity.  These models were evaluated

using the classic method of employing a variable step ODE solver and provided

good results in terms of both transient and steady-state behavior and reduced

order versions of these models can help to improve simulation time.  Working

with the general solution to the state-space form provided good results as well

and solves a number of  practical  simulation issues.   Finally,  the steady-state

initial conditions for the Class E circuit topology were successfully derived which

are potentially an aid to both design and the steady-state analysis of this system.

6.2 Investigation of Model Order Reduction as a Technique for Circuit 

Simplification with Application to Switch Mode Systems

There are multiple simplification methods that are routinely applied to digital

electronic systems.  The ability to minimize these systems has been a key factor

in their rapid development and wide application.  Karnaugh mapping is perhaps

the most well-known of these digital minimization techniques.  Analog electronic

circuits can also become quite complicated in some applications.  One useful

property of the methods of model order reduction is that they can be applied to



   95

analog electronic  circuit  simplification.   For  this  reason the concept  of  model

order  reduction  as  a  tool  for  switched  mode  circuit  simplification  was

investigated.

6.2.1 Theory

Once the order of a system has been reduced, using a number of possible

techniques, it can be represented as a series of interconnected amplifiers and

integrators.  This is reminiscent of the analog computer system simulations that

were popular until digital computers became affordable in the late 1970s.  In fact,

it is also possible to construct a reduced order system from passive components

in many applications.  While the internal configuration of the reduced order model

is completely different than that of the original system the input-output behavior is

similar to (or identical to in the case of the exact slow/fast decomposition) that of

the original system.

In the general case, there can be consequences associated with the practical

application  of  this  process.   The  power  handling  capability  of  components,

limitations  associated  with  practical  component  values  and  tolerances,  and

parasitic  component  elements  are  all  issues  that  have  to  be  taken  into

consideration when using this technique.  When considering non-switched mode

signal  processing  systems,  such  as  analog  filters,  that  operate  at  modest

frequencies these circuit simplification techniques can be practically applied in

many cases.  Switch mode systems, on the other hand, introduce a complication
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that  is  difficult,  if  not  impossible,  to  solve.   Note  that,  while  this  dissertation

primarily focuses on power electronic systems, switch mode signal processing

systems certainly exist.  As examples of this, consider switched capacitor filters

as well as switched capacitor amplifiers [50].

All  of  the model order reduction techniques investigated in this dissertation

involved one or more similarity transforms.  During the transformation process

the original system coordinates are rotated into a new basis for each switched

subsystem.   While  the transformation  process itself  does not  affect  the  input

output relationship of each subsystem the continuity of state variables, that must

be  maintained  between  the  various  switched  mode  states,  does  become  an

issue.  In the general case, each subsystem, which is represented by a particular

switch configuration, is transformed into its own basis.  The bases that represent

the various subsystems are, in general, unique to that particular subsystem.  At

the point in time when the switch configuration changes state variable continuity

is maintained by taking the values at the end of the current subsystems operation

and transferring these state variable values to the next subsystem in the form of

a set of initial conditions.  The complication arises from the fact that subsystems

transformed into different bases will have different state variable values.  This is

the case even though these different values represent the same total  energy.

The energy is simply distributed differently.  Furthermore, after the model order

reduction  process,  the  subsystems  that  represent  the  various  switch

configurations will, in the general case, have a different order.  This physically
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means that any circuit synthesized to perform the function of these subsystems

will  have a different number of energy storage elements.  So not only will  the

state variable values, that represent inductor currents and capacitor voltages,

have different values when they move from one circuit to another but it is also

likely that there will be a different number of components in each circuit.

6.2.2 Application

When simulating a system on a digital computer this issue can easily be dealt

with by applying an inverse similarity transform (which is based on the transform

used to change the basis for the current subsystem), which will bring the state

variables  back  to  the  original  coordinates,  and  then  applying  the  similarity

transform used to change the basis for the next subsystem.  This process will

transform the state variable values of the current subsystem into the coordinates

of the new subsystem.  When this process is performed entirely in software it is

easy to accomplish.

In order to apply continuity of state variables to physical circuits, which have

been synthesized from the reduced order models of the various switch mode

subsystems, external circuitry would be required to both move and adjust the

energy from one  circuit  to  another.   This  process  would  have  to  occur  very

quickly, perhaps multiple orders of magnitude faster than the fastest switching

frequency the system would experience during operation.  In order to accomplish

this impulsive voltages and currents would be necessary as this is the only way
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to instantaneously change the value of inductor currents and capacitor voltages.

Impulsive currents have a very wide frequency spectrum, which could potentially

lead to RF noise emissions.  It is also likely that significant energy would be lost

in the process, reducing the power converters efficiency.

Another issue, with regard to practical circuit implementation, is that switching

events are often triggered by the value of one or more state space variables.

These values must be monitored continuously in order to accomplish this.  As the

criteria for switching events to occur are almost always defined in the coordinates

of the original system circuit voltages and currents would have to be transformed

back  the  original  coordinates  (possibly  using  a  digital  system  like  a

microcontroller)  in  order  to  control  switching  events.   While  this  could  be

accomplished  in  theory  it  is  totally  impractical  for  real  world  circuit

implementation.  The support circuitry required to monitor, move, and transform

capacitor  voltages  and  inductor  currents  would  almost  certainly  be  far  more

complicated than the actual circuit itself.

While the techniques used for model order reduction are powerful  tools for

simulating switch mode systems, it is impractical to apply these techniques for

switch  mode  circuit  simplification.   For  non-switched  mode signal  processing

systems that operate at low to medium frequencies these techniques can often

readily be employed to simplify analog circuitry.
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6.3 Suggested Future Work

The  exact  slow/fast  decomposition  technique  is  perhaps  the  versatile  and

potentially valuable analysis technique investigated in this dissertation.  Unlike

the other system simplification techniques it can both reduce the time required for

computation  and  provide  an  exact  solution.   So  any  work  associated  with

improving its application to switched mode systems is well worth the investment.

Custom,  variable  time  step,  ODE solver  routines  could  be  developed  that

would allow both the slow and fast subsystems to be solved simultaneously.  This

would allow internally triggered switching events to be determined without the

need for wasteful backtracking although working directly with the general solution

is still preferable. 

As the Chang transformation requires determining both the L and M matrices

this  would  be  a  good  area  for  future  research.   The  current  techniques  for

determining the L matrix can be computationally intensive, particularly when the

singular perturbation parameter µ is close to unity.  It would be desirable to have

a universally applicable technique that  requires minimal  computation and any

progress towards this goal would be valuable.

The two switched mode systems investigated in this dissertation were both

common and basic  but  there  is  a  vast  diversity  of  switched mode electronic

systems in  use  today.   Further  application  of  these modeling  and simulation

techniques to other switched circuit  topologies would be of great value to the

engineering community.
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Finally,  the  Class  E circuit  topology has  great  potential  but  this  system is

inherently  difficult  to  design.   By starting  with  the  analytical  formulas  for  the

steady-state initial conditions for this system it may be possible to derive a more

workable and accurate set of design tools for this system. 
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Appendix

Program #1

%******************************************
% Pgm1_FindLandM.m 
% Get the L & M matricies needed for
% order reduction via the method of 
% singular perturbations. 
%******************************************

clear
clc

% Define the system transfer function

num=[.00001 .011 1];
den=[1 0.222 22.1242 3.5445 122.4433 11.3231 11.11];

% Convert to state space form

[A, B, C, D]=tf2ss(num, den);
sys1 = ss(A,B,C,D);

% Balance it

[sysb, g]=balreal(sys1);

% separate the matrix components

r=4;
[Ab,Bb,Cb,Db] = ssdata(sysb);
s=size(Ab);
n=s(1);
A11=Ab(1:r,1:r);
A12=Ab(1:r,r+1:n);
A21=Ab(r+1:n,1:r);
A22=Ab(r+1:n,r+1:n);
B11=Bb(1:r);
B22=Bb(r+1:n);
C11=Cb(1:r);
C22=Cb(r+1:n);



   102

% calculate A1, A2, A3, A4, B1, B2 C1, & C2

mu1=g(5)/g(4)
A1=A11;
A2=A12;
A3=mu1*A21;
A4=mu1*A22;
B1=B11;
B2=mu1*B22;
C1=C11;
C2=C22;

% Eigenvector approach for L matrix

R=[-mu1*A1, mu1*A2; A3, -A4]
[EVR, EVL]=eig(R)
M111=real(EVR(1:4,1));
M112=imag(EVR(1:4,1));
M113=real(EVR(1:4,3));
M114=imag(EVR(1:4,3));
M11=horzcat(M111,M112,M113,M114);
M121=real(EVR(5:6,1));
M122=imag(EVR(5:6,1));
M123=real(EVR(5:6,3));
M124=imag(EVR(5:6,3));
M12=horzcat(M121,M122,M123,M124);

disp('------------------------------------------------------------------')
disp('L via the eigenvector method is:')
LEV=M12*inv(M11)

% Use L from EV method to get M

disp('------------------------------------------------------------------')
disp('Find M')

% Solve for M as a linear Sylvester equation.  Use the form

%  M*A4-A2+mu1*(M*LEV*A2-(A1-A2*LEV)*M)=0

Z1=-mu1*(A1-A2*LEV);
Z2=A4+mu1*LEV*A2;
Z3=-A2;



   103

disp('The M matrix is:')

M=lyap(Z1,Z2,Z3)

Program #2

%*********************************************
% Pgm2_Exact_SF_Decomp.m
% Exact S/F decomposition of the simple
% Class E power converter.
%*********************************************

clear
clc

global m Vdd;
global mu1 mu2 r1 r2 n1 n2;
global La Lb Ma Mb;
global A1 A2 B C D;
global Aas Aaf Bas Baf Cas Caf;
global Abs Abf Bbs Bbf Cbs Cbf;
global yas yaf ybs ybf;

% define component parameters

L1=835e-6;
L2=15.33e-6;
Ron=0.1;
Roff=3e6;
R2=0;
R3=0;
RL=3.21;
C1=110e-9;
C2=420e-9;

% define the rest of the parameters

Vdd=12;
T=10e-6;
d=.5;

% Enter the matricies

A1= [-R3/L1, 0 -1/L1, 0; ...
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    0, -(R2+RL)/L2, +1/L2 -1/L2; ...
    1/C1, -1/C1 -1/(Ron*C1) 0; ...
    0, 1/C2, 0, 0];

A2= [-R3/L1, 0 -1/L1, 0; ...
    0, -(R2+RL)/L2, +1/L2 -1/L2; ...
    1/C1, -1/C1 -1/(Roff*C1) 0; ...
    0, 1/C2, 0, 0];

B=[1/L1; 0; 0; 0];
C=eye(4);
D=[0; 0; 0; 0];

% condition #'s of original matricies

disp('condition numbers original matricies')
disp('************************************')

cond(A1)
cond(A2)

%*** In this section we run the ORIGINAL "untransformed" system ***
% set initial conditions = zero

x0=[0 0 0 0];

% arrays to store all of the simulation data

tt=zeros(1);
tx=zeros(1,4);

hold on

% main loop run for 20 cycles

for k=0:2:40
    m=0;
    [t,x]=ode45(@form,[k*d*T, (k+1)*d*T], x0);
    tx=vertcat(tx,x);
    tt=vertcat(tt,t);
    x0=x(end,:);
    q01=x0;
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    m=1;
    [t,x]=ode45(@form,[(k+1)*d*T, (k+2)*d*T], x0);
    tx=vertcat(tx,x);
    tt=vertcat(tt,t);
    x0=x(end,:);
    q02=x0;  
end

plot(tt,tx)
title('Original Full System')
xlabel('time in seconds')
ylabel('voltage in volts')

% take a look at the matricies

A1
cond(A1)
A2
cond(A2)

% balance and find HSV's

sys1=ss(A1,B,C,D);
sys2=ss(A2,B,C,D);
[sysb1, g1, Tb1, Tbi1]=balreal(sys1);
[sysb2, g2, Tb2, Tbi2]=balreal(sys2);
disp('HSV for Wc=Wo')
disp('Switch on')
g1
disp('Switch off')
g2
disp('Eigenvalues for A1 and A2')
disp('Switch on')
eig(A1)
disp('Switch off')
eig(A2)

% Convert balanced systems back to separate matricies

[Ab1, Bb1, Cb1, Db1] = ssdata(sysb1)
[Ab2, Bb2, Cb2, Db2] = ssdata(sysb2)

% condition #'s of Balanced matricies
disp('condition numbers Balanced matricies')
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disp('************************************')
cond(Ab1)
cond(Ab2)

% Find the 'L' matrix
% separate the matrix components

r1=1;
r2=2;
s1=size(Ab1);
s2=size(Ab2);
n1=s1(1);
n2=s2(2);
A111=Ab1(1:r1,1:r1);
A112=Ab1(1:r1,r1+1:n1);
A121=Ab1(r1+1:n1,1:r1);
A122=Ab1(r1+1:n1,r1+1:n1);
B111=Bb1(1:r1,:);
B122=Bb1(r1+1:n1,:);
C111=Cb1(:,1:r1);
C122=Cb1(:,r1+1:n1);
A211=Ab2(1:r2,1:r2);
A212=Ab2(1:r2,r2+1:n2);
A221=Ab2(r2+1:n2,1:r2);
A222=Ab2(r2+1:n2,r2+1:n2);
B211=Bb2(1:r2,:);
B222=Bb2(r2+1:n2,:);
C211=Cb2(:,1:r2);
C222=Cb2(:,r2+1:n2);

% calculate A1, A2, A3, A4, B1, B2 C1, & C2

disp('mu1')
mu1=g1(2)/g1(1)
disp('mu2')
mu2=g2(3)/g2(2)
Aa1=A111;
Aa2=A112;
Aa3=mu1*A121;
Aa4=mu1*A122;
Ba1=B111;
Ba2=mu1*B122;
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Ca1=C111;
Ca2=C122;
Ab1=A211;
Ab2=A212;
Ab3=mu2*A221;
Ab4=mu2*A222;
Bbb1=B211;
Bbb2=mu2*B222;
Cbb1=C211;
Cbb2=C222;

% Find L via Newton's method
% *** switch on case for both the L and M matricies ***
% Get L0 1st guess

 La0=inv(Aa4)*Aa3;
 La=zeros(3,1,8);
 La(:,:,1)=La0;
 
 % iterate 7X and see what you get for L
 
for k=1:7
    Da1=Aa4+mu1*La(:,:,k)*Aa2;
    Da2=-mu1*(Aa1-Aa2*La(:,:,k));
    Qa=Aa3+mu1*La(:,:,k)*Aa2*La(:,:,k);
    La(:,:,k+1)=lyap(Da1, Da2, -Qa);
    norm(La(:,:,k+1))
end

disp('L -switch on- 1st guess:')
La0
disp('The L for switch on matrix is:')
La(:,:,8)

% Use L to get M
disp('------------------------------------------------------------------')
disp('Find M')

% Solve for M as a linear Sylvester equation.  Use the form
%  M*A4-A2+mu1*(M*L*A2-(A1-A2*L)*M)=0

Za1=-mu1*(Aa1-Aa2*La(:,:,8));
Za2=Aa4+mu1*La(:,:,8)*Aa2;
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Za3=-Aa2;
Ma=lyap(Za1,Za2,Za3);
disp('The M matrix for the switch on condition is:')
Ma
  
% *** switch off case for both the L and M matricies ***
% Get L0 1st guess

 Lb0=inv(Ab4)*Ab3;
 Lb=zeros(2,2,8);
 Lb(:,:,1)=Lb0;
 
 % iterate 7X and see what you get for L
 
for k=1:7
    Db1=Ab4+mu2*Lb(:,:,k)*Ab2;
    Db2=-mu2*(Ab1-Ab2*Lb(:,:,k));
    Qb=Ab3+mu2*Lb(:,:,k)*Ab2*Lb(:,:,k);
    Lb(:,:,k+1)=lyap(Db1, Db2, -Qb);
    norm(Lb(:,:,k+1))
end

disp('L -switch off- 1st guess:')
Lb0
disp('The L for switch off matrix is:')
Lb(:,:,8)

% Use L to get M

disp('------------------------------------------------------------------')
disp('Find M')

% Solve for M as a linear Sylvester equation.  Use the form
%  M*A4-A2+mu2*(M*L*A2-(A1-A2*L)*M)=0

Zb1=-mu2*(Ab1-Ab2*Lb(:,:,8));
Zb2=Ab4+mu2*Lb(:,:,8)*Ab2;
Zb3=-Ab2;
Mb=lyap(Zb1,Zb2,Zb3);
disp('The M matrix for the switch off condition is:')
Mb

% Test L and M -> Switch on condition
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disp('Switch on -> equals 0?')
Aa4*La(:,:,8)-Aa3-mu1*La(:,:,8)*(Aa1-Aa2*La(:,:,8))

% Test L and M -> Switch off condition

disp('Switch off -> equals 0?')
Ab4*Lb(:,:,8)-Ab3-mu2*Lb(:,:,8)*(Ab1-Ab2*Lb(:,:,8))

% Ok - now form the slow & fast subsystems
% switch on case

Aas=Aa1-Aa2*La(:,:,8);
Aaf=Aa4+mu1*La(:,:,8)*Aa2;
Bas=Ba1-Ma*Ba2-mu1*Ma*La(:,:,8)*Ba1;
Baf=Ba2+mu1*La(:,:,8)*Ba1;
Cas=Ca1-Ca2*La(:,:,8);
Caf=Ca2-mu1*Ca2*La(:,:,8)*Ma+mu1*Ca1*Ma;

disp('condition numbers Balanced S/F matricies - ON case')
disp('**************************************************')
disp('slow')
cond(Aas)
disp('fast')
cond(Aaf)

% switch off case

Abs=Ab1-Ab2*Lb(:,:,8);
Abf=Ab4+mu2*Lb(:,:,8)*Ab2;
Bbs=Bbb1-Mb*Bbb2-mu2*Mb*Lb(:,:,8)*Bbb1;
Bbf=Bbb2+mu2*Lb(:,:,8)*Bbb1;
Cbs=Cbb1-Cbb2*Lb(:,:,8);
Cbf=Cbb2-mu2*Cbb2*Lb(:,:,8)*Mb+mu2*Cbb1*Mb;
disp('condition numbers Balanced S/F matricies - OFF case')
disp('**************************************************')
disp('slow')
cond(Abs)
disp('fast')
cond(Abf)

% OK - now it's time to run the decomposed system

hold off
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% Since the transformation rotates them two set of state variables are

% needed.  One for the switch on condition and one for the switch off

% condition.

za0=[0 0 0 0];
zb0=[0 0 0 0];

% arrays to store all of the simulation data

tt=zeros(1);    
tys=zeros(1,n1);
tyf=zeros(1,n2);
ty=zeros(1,4);

% main loop run for 20 cycles

for k=0:2:40
    m=0;  % switch on
    ta_int=[k*d*T:0.002*d*T:(k+1)*d*T]; %setup desired time interval
    tt=vertcat(tt,ta_int');
    options = odeset('MaxStep', 1e-8);
    sol_as=ode45(@form_as,[k*d*T, (k+1)*d*T], za0(1:r1),options);
    zas = deval(sol_as,ta_int);
    yas=Cas*zas;
    tys=vertcat(tys,yas');
    options = odeset('MaxStep', 1e-8);
    sol_af=ode45(@form_af,[k*d*T, (k+1)*d*T], za0(r1+1:n1),options);
    zaf = deval(sol_af,ta_int);
    yaf=Caf*zaf;
    tyf=vertcat(tyf,yaf');
    ty=vertcat(ty,yas'+yaf');
    zslast=zas(:,end);
    zflast=zaf(:,end);
    zcomba=[zslast;zflast];
    xon0=Tbi1*Z2X_on(zcomba);
    zb0=X2Z_off(Tb2*xon0);
    m=1;  % switch off
    tb_int=[(k+1)*d*T:0.002*d*T:(k+2)*d*T]; %setup desired time interval
    tt=vertcat(tt,tb_int');
    options = odeset('MaxStep', 1e-8);
    sol_bs=ode45(@form_bs,[(k+1)*d*T, (k+2)*d*T], zb0(1:r2)',options);
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    zbs = deval(sol_bs,tb_int);
    ybs=Cbs*zbs;
    tys=vertcat(tys,ybs');
    options = odeset('MaxStep', 1e-8);
    sol_bf=ode45(@form_bf,[(k+1)*d*T, (k+2)*d*T], zb0(r2+1:n2)',options);
    zbf = deval(sol_bf,tb_int);
    ybf=Cbf*zbf;
    tyf=vertcat(tyf,ybf');
    ty=vertcat(ty,ybs'+ybf');
    zslast=zbs(:,end);
    zflast=zbf(:,end);
    zcombb=[zslast;zflast];
    xoff0=Tbi2*Z2X_off(zcombb);
    za0=X2Z_on(Tb1*xoff0);
end

figure
plot(tt,ty)
title('Re-assembled System Based on Exact Slow-Fast De-composition')
xlabel('time in seconds')
ylabel('voltage in volts')

Program #3

%***********************************
% Pgm3 BoostConverter.m    
% Simulate the HiFi boost
% converter system with
% High resolution and a linear
% inductor.
%***********************************

clear all
clc

global l m n
global vg L rL CL Lsw Csw rsw Ld rLd vd rd Cd rcd C Lc rc rload dxx T D
global Af1 Bf1 Af2 Bf2 Af3 Bf3 Af4 Bf4

% *** Operating conditions for all cases ***

l=1;
m=1;
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n=1;

%*** parameters ***

vg=5;

% Use this value for the linear inductor

L(1)=1.316E-3;
L(2)=1.316E-3;
L(3)=1.316E-3;

% Use this value for the linear inductor

rL=0.14;
CL=1e-12;
Lsw=20e-9;
Csw=200e-12;
rsw(2)=0.2;  % on

% Use this value for the linear inductor

rsw(1)=2.3e6;  % off
Ld=5e-9;

% Use this value for the linear inductor

rLd=1e-3;
vd(2)=0.61;  % on
vd(1)=0;     % off
rd(2)=50e-3; % on
rd(1)=40e6;  % off
Cd(2)=15e-12;  % on
Cd(1)=100e-12; % off
rcd=5e-3;
C=42e-6;
Lc=100e-12;

% Use this value for the linear inductor

rc=0.38;

% Use this value for the linear inductor
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rload=10.5;

%*** Operating frequency, period, and duty cycle ***

% Use this value for the linear inductor

f=10e3;
D=0.5;
T=1/f;

%*** Calculate The Matricies ***

m=1; % diode off
n=1; % sw off
Af1=[-rL/L(l), 1/L(l), 0,0,0,0,0,0; …
-1/CL, 0, 0, 0, 1/CL, 0, 1/CL,0; …
0, 0, 0, 1/C, 0, 0, 0, 0; …
0, 0, -1/Lc, -(rc+rload)/Lc, 0, 0, rload/Lc, 0; …
0, -1/Lsw, 0, 0, 0, -1/Lsw, 0, 0; …
0, 0, 0, 0, 1/Csw, -1/(rsw(n)*Csw), 0, 0; …
0, -1/Ld, 0, rload/Ld, 0, 0, -((rLd+rload)/Ld+(rcd*rd(m))./(Ld*(rcd+rd(m)))),
-(1/Ld-rcd/((rcd+rd(m))*Ld)); …
0, 0, 0, 0, 0, 0, rd(m)./(Cd(m).*(rcd+rd(m))), -1/(Cd(m).*(rcd+rd(m)))];
Bf1=[0, 0; 0, 0; 0, 0; 0, 0; …
1/Lsw, 0; 0, 0; 1/Ld, -rcd/(Ld*(rcd+rd(m))); 0, 1/(Cd(m).*(rcd+rd(m)))];

%--------------------------------

m=2; % diode on
n=1; % sw off
Af2=[-rL/L(l), 1/L(l), 0,0,0,0,0,0; …
-1/CL, 0, 0, 0, 1/CL, 0, 1/CL,0; …
0, 0, 0, 1/C, 0, 0, 0, 0; …
0, 0, -1/Lc, -(rc+rload)/Lc, 0, 0, rload/Lc, 0; …
0, -1/Lsw, 0, 0, 0, -1/Lsw, 0, 0; …
0, 0, 0, 0, 1/Csw, -1/(rsw(n)*Csw), 0, 0; …
0, -1/Ld, 0, rload/Ld, 0, 0, -((rLd+rload)/Ld+(rcd*rd(m))./(Ld*(rcd+rd(m)))), 
-(1/Ld-rcd/((rcd+rd(m))*Ld)); …
0, 0, 0, 0, 0, 0, rd(m)./(Cd(m).*(rcd+rd(m))), -1/(Cd(m).*(rcd+rd(m)))];
Bf2=[0, 0; 0, 0; 0, 0; 0, 0; …
1/Lsw, 0; 0, 0; 1/Ld, -rcd/(Ld*(rcd+rd(m))); 0, 1/(Cd(m).*(rcd+rd(m)))];

%---------------------------------
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m=1; % diode off
n=2; % sw on

Af3=[-rL/L(l), 1/L(l), 0,0,0,0,0,0; …
-1/CL, 0, 0, 0, 1/CL, 0, 1/CL,0; …
0, 0, 0, 1/C, 0, 0, 0, 0; …
0, 0, -1/Lc, -(rc+rload)/Lc, 0, 0, rload/Lc, 0; …
0, -1/Lsw, 0, 0, 0, -1/Lsw, 0, 0; …
0, 0, 0, 0, 1/Csw, -1/(rsw(n)*Csw), 0, 0; …
0, -1/Ld, 0, rload/Ld, 0, 0, -((rLd+rload)/Ld+(rcd*rd(m))./(Ld*(rcd+rd(m)))),
-(1/Ld-rcd/((rcd+rd(m))*Ld)); …
0, 0, 0, 0, 0, 0, rd(m)./(Cd(m).*(rcd+rd(m))), -1/(Cd(m).*(rcd+rd(m)))];

Bf3=[0, 0; 0, 0; 0, 0; 0, 0; …

1/Lsw, 0; 0, 0; 1/Ld, -rcd/(Ld*(rcd+rd(m))); 0, 1/(Cd(m).*(rcd+rd(m)))];

%----------------------------------

m=2; % diode on
n=2; % sw on

Af4=[-rL/L(l), 1/L(l), 0,0,0,0,0,0; …
-1/CL, 0, 0, 0, 1/CL, 0, 1/CL,0; …
0, 0, 0, 1/C, 0, 0, 0, 0; …
0, 0, -1/Lc, -(rc+rload)/Lc, 0, 0, rload/Lc, 0; …
0, -1/Lsw, 0, 0, 0, -1/Lsw, 0, 0; …
0, 0, 0, 0, 1/Csw, -1/(rsw(n)*Csw), 0, 0; …
0, -1/Ld, 0, rload/Ld, 0, 0, -((rLd+rload)/Ld+(rcd*rd(m))./(Ld*(rcd+rd(m)))), 
-(1/Ld-rcd/((rcd+rd(m))*Ld)); …
0, 0, 0, 0, 0, 0, rd(m)./(Cd(m).*(rcd+rd(m))), -1/(Cd(m).*(rcd+rd(m)))];

Bf4=[0, 0; 0, 0; 0, 0; 0, 0; …

1/Lsw, 0; 0, 0; 1/Ld, -rcd/(Ld*(rcd+rd(m))); 0, 1/(Cd(m).*(rcd+rd(m)))];

%*** Main loop setup ***

tt=zeros(1);             % arrays to store all of the simulation data
tx=zeros(1,8);
tyme=0;
indx = 1;          %# of 1/2 cycle chunks
tspan = [0, D*T];  %Perform simulation in 1/2 cycle chunks
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%*** Start with a zero state ***

x0=[0, 0, 0, 0, 0, 0, 0, 0];
hold on
while tyme <  10e-3    %1e-3  % main loop - do for 1ms
  %*** Solve ODE ***
  options=odeset('Events',@DswitchBoostHiFi13,'MaxStep',1e-6);
  [t,x]=ode23tb(@FormBoostHiFi13, tspan, x0, options);
  tx=vertcat(tx,x);
  tt=vertcat(tt,t);
  tyme=max(t)

  %*** Set the next chunk of simulation time ***

  if tyme>= indx*D*T      % 1/2 cycle completed
    indx=indx+1;  
    tspan = [tyme,indx*D*T];
  else                      % 1/2 cycle not complete
    tspan = [tyme,indx*D*T];
  end

  %*** Determine switch state ***

  cycle=rem(tyme,T);
 if cycle>=0.999*D*T || (cycle==0 && n==1)
   n=2;
 else
   n=1;
 end
 
 %*** set the initial conditions for the new matrix to the final state of

 %the old matrix ***
  x0=x(end,:);
end
plot(tt,tx)

Function for program #3

function [value, isterminal, direction] = DswitchBoostHiFi13(t, x)

%******************************************************
% DswitchBoostHiFi13.m - Function to determine
% the state of the diode in Pgm3.
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%******************************************************

global l m n
global vg L rL CL Lsw Csw rsw Ld rLd vd rd Cd rcd C Lc rc rload dxx Af Bf T D

vd(2)=0.61;  % on
vd(1)=0;     % off
vg=5;

% Limit dx(7)/dt

if dxx(7) >= 1e6
  dxx(7)=1e6;
end
if dxx(7) <= -1e6
  dxx(7)=-1e6;
end

% Limit dx(8)/dt

if dxx(8) >= 1e6
  dxx(8)=1e6;
end
if dxx(8) <= -1e6
  dxx(8)=-1e6;
end
idiode=x(7)-Cd*dxx(8); 
rxx=(rcd+rd(m))/rcd;
vdiode=-rxx*x(2)+rxx*(rload/rcd)*x(4)-rxx*(rLd+rload+1/rxx*rd(m))*x(7)-…
    rxx*(1-1/rxx)*x(8)+rxx*vg-Ld*rxx*dxx(7);
mold=m;
if m==1 & vdiode>vd(2) | m==2 & idiode>0
    m=2;
else
    m=1;
end
mnew=m;

% If the diode's state has changed then stop and change the matricies

if mnew==mold
    value=1;   %If the diode's state is the same keep going
else
    value=0;   %If the diode's state has changed exit
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end

isterminal=1;
direction=0;
end

Function for program #3

function dx = FormBoostHiFi13(t,x)

%***********************************
% FormBoostHiFi13.m
% Formulas used in Pgm3.
%***********************************
%*** Define the boost converter system ***

% *** Operating conditions for all cases ***

global l m n
global vg L rL CL Lsw Csw rsw Ld rLd vd rd Cd rcd C Lc rc rload dxx T D
global Af1 Bf1 Af2 Bf2 Af3 Bf3 Af4 Bf4

if m==1 && n==1
  dx=Af1*x+Bf1*[vg;vd(m)];
end 
if m==2 && n==1
  dx=Af2*x+Bf2*[vg;vd(m)];
end 
if m==1 && n==2
  dx=Af3*x+Bf3*[vg;vd(m)];
end 
if m==2 && n==2
  dx=Af4*x+Bf4*[vg;vd(m)];
end 
dxx=dx;
end

Program #4

%*********************************************************
% Pgm4_ClssEGenSol.m
%
% This program simulates the Class E using
% the general solution to the state-space
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% equations.
%*********************************************************

clear
clc

% define component parameters

L1=835e-6;
L2=15.33e-6;
Ron=0.1;
Roff=3e6;
R2=0;
R3=0;
RL=3.21;
C1=110e-9;
C2=420e-9;

% define the rest of the parameters

Vdd=12;
T=10e-6;
d=.5;

% Enter the matricies

A1= [-R3/L1, 0 -1/L1, 0; ...
    0, -(R2+RL)/L2, +1/L2 -1/L2; ...
    1/C1, -1/C1 -1/(Roff*C1) 0; ...
    0, 1/C2, 0, 0];

A2= [-R3/L1, 0 -1/L1, 0; ...
    0, -(R2+RL)/L2, +1/L2 -1/L2; ...
    1/C1, -1/C1 -1/(Ron*C1) 0; ...
    0, 1/C2, 0, 0];

B=[1/L1; 0; 0; 0];

% start with zero initial conditions

 q01=[0;0;0;0];       % ON to OFF
 q02=[0;0;0;0];       % OFF to ON

% arrays to store the elapsed time and state variables
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tt=zeros(1);            
tx=zeros(4,1);

% main loop

% This loop structure has been changed in order to fix 
% the way ICs are exchanged between switch states.

for n=1:25
 
    t0=(n-1)*T;     
    t1=(n-d)*T;
    t2=n*T;

  % switch OFF case

  for t=t0:T/100:t1
    q1=expm(A1*(t-(n-1)*T))*(q01+inv(A1)*B*Vdd)-inv(A1)*B*Vdd;
    tx=horzcat(tx,q1);
    tt=horzcat(tt,t);
  end
  
  q02=q1

  % switch ON case

  for t=t1:T/100:t2
    q2=expm(A2*(t-(n-d)*T))*(q02+inv(A2)*B*Vdd)-inv(A2)*B*Vdd;
    tx=horzcat(tx,q2);
    tt=horzcat(tt,t);
  end
  
  q01=q2

end

% now plot out the state variables

figure
plot(tt,tx)
xlabel('time in seconds')
ylabel('voltage in volts and current in amps')
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Program #5

%**************************************************************************
% Pgm5_MtrxSens.m
%  This program checks the sensitivity of the expm (X 5T) function
%  to a 10% changein the system matrix. 
%**************************************************************************
 
clear
clc
 
% define component parameters
 
L1=460e-6;
L2=15.33e-6;
Ron=0.1;
Roff=3e6;
R2=0;
R3=0;
RL=3.21;
C1=112e-9;
C2=420e-9;
 
% define the rest of the parameters
 
Vdd=12;
T=10e-6;
d=.5;
 
% this system is now taken to be SISO
 
% Enter the matricies
 
A1= [-R3/L1, 0 -1/L1, 0; …
    0, -(R2+RL)/L2, +1/L2 -1/L2; …
    1/C1, -1/C1 -1/(Roff*C1) 0; …
    0, 1/C2, 0, 0];
 
A2= [-R3/L1, 0 -1/L1, 0; …
    0, -(R2+RL)/L2, +1/L2 -1/L2; …
    1/C1, -1/C1 -1/(Ron*C1) 0; …
    0, 1/C2, 0, 0];
 
B=[1/L1; 0; 0; 0];
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C=[0,RL,0,0];
D=[0];
 
% condition #'s of original matricies
 
disp('condition numbers original matricies')
disp('************************************')
disp('OFF')
disp('***')
cond(A1)
disp('ON')
disp('**')
cond(A2)
disp('1-norm of the original matricies')
disp('************************************')
 
% look at change in the norms of the original matricies
 
disp('1-norm of A1 & A2')
disp('*****************')
disp('OFF')
disp('***')
norm(5*T*A1,1)
disp('ON')
disp('**')
norm(5*T*A2,1)
disp('1-norms due to a 10% delta')
disp('**************************')
norm(5*T*A1+0.1*5*T*A1,1)
norm(5*T*A2+0.1*5*T*A2,1)
disp('% Relative change of norms due to a 10% delta')
disp('*********************************************')
(norm(5*T*A1+0.1*5*T*A1,1)-norm(5*T*A1,1))/norm(5*T*A1,1)*100
(norm(5*T*A2+0.1*5*T*A2,1)-norm(5*T*A2,1))/norm(5*T*A2,1)*100
disp('1-norms of expm(5*T*A1) & expm(5*T*A2)')
disp('****************************************')
norm(expm(5*T*A1),1)
norm(expm(5*T*A2),1)
disp('1-norms of expm (5*T*A1&A2) matricies with a 10% delta')
disp('*******************************************************')
norm(expm(5*T*A1+0.1*5*T*A1),1)
norm(expm(5*T*A2+0.1*5*T*A2),1)
disp('% change of norms of expm(5*T*A1) & expm(5*T*A2) matricies with a 10% 
delta')
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disp('*****************************************************************************')
(norm(expm(5*T*A1+0.1*5*T*A1),1)-
norm(expm(5*T*A1),1))/norm(expm(5*T*A1),1)*100
(norm(expm(5*T*A2+0.1*5*T*A2),1)-
norm(expm(5*T*A2),1))/norm(expm(5*T*A2),1)*100
 
% balance and find HSV's
 
sys1=ss(A1,B,C,D);
sys2=ss(A2,B,C,D);
[sysb1, g1, Tb1, Tbi1]=balreal(sys1);
[sysb2, g2, Tb2, Tbi2]=balreal(sys2);
 
% Convert balanced systems back to separate matricies
 
[Ab1, Bb1, Cb1, Db1] = ssdata(sysb1);
[Ab2, Bb2, Cb2, Db2] = ssdata(sysb2);
 
% Find the 'L' matrix
% separate the matrix components
 
r1=2;
r2=3;
s1=size(Ab1);
s2=size(Ab2);
n1=s1(1);
n2=s2(2);
A111=Ab1(1:r1,1:r1);
A112=Ab1(1:r1,r1+1:n1);
A121=Ab1(r1+1:n1,1:r1);
A122=Ab1(r1+1:n1,r1+1:n1);
B111=Bb1(1:r1,:);
B122=Bb1(r1+1:n1,:);
C111=Cb1(:,1:r1);
C122=Cb1(:,r1+1:n1);
A211=Ab2(1:r2,1:r2);
A212=Ab2(1:r2,r2+1:n2);
A221=Ab2(r2+1:n2,1:r2);
A222=Ab2(r2+1:n2,r2+1:n2);
B211=Bb2(1:r2,:);
B222=Bb2(r2+1:n2,:);
C211=Cb2(:,1:r2);
C222=Cb2(:,r2+1:n2);
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% calculate A1, A2, A3, A4, B1, B2 C1, & C2
% disp('mu1')

mu1=g1(r1+1)/g1(r1);

% disp('mu2')

mu2=g2(r2+1)/g2(r2);
Aa1=A111;
Aa2=A112;
Aa3=mu1*A121;
Aa4=mu1*A122;
Ba1=B111;
Ba2=mu1*B122;
Ca1=C111;
Ca2=C122;
Ab1=A211;
Ab2=A212;
Ab3=mu2*A221;
Ab4=mu2*A222;
Bbb1=B211;
Bbb2=mu2*B222;
Cbb1=C211;
Cbb2=C222;
 
% Find L via Newton's method
 
% *** switch off case for both the L and M matricies ***
% Get L0 1st guess
 
 La0=inv(Aa4)*Aa3;
 La=zeros(2,2,8);
 La(:,:,1)=La0;
 
 % iterate 7X and see what you get for L
 
for k=1:7
    Da1=Aa4+mu1*La(:,:,k)*Aa2;
    Da2=-mu1*(Aa1-Aa2*La(:,:,k));
    Qa=Aa3+mu1*La(:,:,k)*Aa2*La(:,:,k);
    La(:,:,k+1)=lyap(Da1, Da2, -Qa);
    norm(La(:,:,k+1));
end
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% disp('L -switch off- 1st guess:')
% La0
% disp('The L for switch off matrix is:')
% La(:,:,8)
% Use L to get M

% disp('------------------------------------------------------------------')
% disp('Find M')

% Solve for M as a linear Sylvester equation.  Use the form
%  M*A4-A2+mu1*(M*L*A2-(A1-A2*L)*M)=0
 
Za1=-mu1*(Aa1-Aa2*La(:,:,8));
Za2=Aa4+mu1*La(:,:,8)*Aa2;
Za3=-Aa2;
Ma=lyap(Za1,Za2,Za3);
 
% disp('The M matrix for the switch off condition is:')

Ma
  
% *** switch on case for both the L and M matricies ***
 
% Get L0 1st guess
 
 Lb0=inv(Ab4)*Ab3;
 Lb=zeros(1,3,8);
 Lb(:,:,1)=Lb0;
 
 % iterate 7X and see what you get for L
 
for k=1:7
    Db1=Ab4+mu2*Lb(:,:,k)*Ab2;
    Db2=-mu2*(Ab1-Ab2*Lb(:,:,k));
    Qb=Ab3+mu2*Lb(:,:,k)*Ab2*Lb(:,:,k);
    Lb(:,:,k+1)=lyap(Db1, Db2, -Qb);
    norm(Lb(:,:,k+1));
end
 
disp('L -switch on- 1st guess:')
Lb0
disp('The L for switch on matrix is:')
Lb(:,:,8)
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Use L to get M
disp('------------------------------------------------------------------')
disp('Find M')
 
% Solve for M as a linear Sylvester equation.  Use the form
% M*A4-A2+mu2*(M*L*A2-(A1-A2*L)*M)=0
 
Zb1=-mu2*(Ab1-Ab2*Lb(:,:,8));
Zb2=Ab4+mu2*Lb(:,:,8)*Ab2;
Zb3=-Ab2;
Mb=lyap(Zb1,Zb2,Zb3);
disp('The M matrix for the switch on condition is:')
Mb
 
% Test L and M -> Switch off condition
 
disp('Switch off -> equals 0?')
Aa4*La(:,:,8)-Aa3-mu1*La(:,:,8)*(Aa1-Aa2*La(:,:,8))
 
% Test L and M -> Switch on condition
 
disp('Switch on -> equals 0?')
Ab4*Lb(:,:,8)-Ab3-mu2*Lb(:,:,8)*(Ab1-Ab2*Lb(:,:,8))
 
% Ok - now form the slow & fast subsystems
 
% switch off case
 
Aas=Aa1-Aa2*La(:,:,8);
Aaf=Aa4+mu1*La(:,:,8)*Aa2;
Bas=Ba1-Ma*Ba2-mu1*Ma*La(:,:,8)*Ba1;
Baf=Ba2+mu1*La(:,:,8)*Ba1;
Cas=Ca1-Ca2*La(:,:,8);
Caf=Ca2-mu1*Ca2*La(:,:,8)*Ma+mu1*Ca1*Ma;

disp('condition numbers Balanced S/F matricies - OFF case')
disp('**************************************************')
disp('slow')
cond(Aas)
disp('fast')
cond(Aaf)
disp('1-norm of the Balanced S/F matricies (X 5T) - OFF case matricies')
disp('****************************************************************')
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disp('slow')
norm(5*T*Aas,1)
disp('fast')
norm(5*T*Aaf,1)
disp('1-norm of Balanced S/F matricies (X 5T) with a 10% change - OFF case')
disp('********************************************************************')
disp('slow')
norm(5*T*(Aas+0.1*Aas),1)
disp('fast')
norm(5*T*(Aaf+0.1*Aaf),1)
disp('% Relative change of 1-norm of the Balanced S/F matricies (X 5T) with 10%
 change - OFF case matricies')
disp('**************************************************************************************
***************')
disp('slow')
(norm(5*T*(Aas+0.1*Aas),1)-norm(5*T*Aas,1))/norm(5*T*Aas,1)*100
disp('fast')
(norm(5*T*(Aaf+0.1*Aaf),1)-norm(5*T*Aaf,1))/norm(5*T*Aaf,1)*100
disp('1-norm expm of the Balanced S/F matricies (X 5T) - OFF case matricies')
disp('*********************************************************************')
disp('slow')
norm(expm(5*T*Aas),1)
disp('fast')
norm(expm(5*T*Aaf),1)
disp('1-norm expm of the Balanced S/F matricies (X 5T) with a 10% change -
 OFF case')
disp('*****************************************************************************')
disp('slow')
norm(expm(5*T*(Aas+0.1*Aas)),1)
disp('fast')
norm(expm(5*T*(Aaf+0.1*Aaf)),1)
disp('% Relative change of 1-norm expm of the Balanced S/F matricies (X 5T)
 with 10% change - OFF case matricies')
disp('**************************************************************************************
********************')
disp('slow')
(norm(expm(5*T*(Aas+0.1*Aas)),1)-
norm(expm(5*T*Aas),1))/norm(expm(5*T*Aas),1)*100
disp('fast')
(norm(expm(5*T*(Aaf+0.1*Aaf)),1)-
norm(expm(5*T*Aaf),1))/norm(expm(5*T*Aaf),1)*100
 
% switch on case
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Abs=Ab1-Ab2*Lb(:,:,8);
Abf=Ab4+mu2*Lb(:,:,8)*Ab2;
Bbs=Bbb1-Mb*Bbb2-mu2*Mb*Lb(:,:,8)*Bbb1;
Bbf=Bbb2+mu2*Lb(:,:,8)*Bbb1;
Cbs=Cbb1-Cbb2*Lb(:,:,8);
Cbf=Cbb2-mu2*Cbb2*Lb(:,:,8)*Mb+mu2*Cbb1*Mb;
disp('condition numbers Balanced S/F matricies - ON case')
disp('**************************************************')
disp('slow')
cond(5*T*Abs)
disp('fast')
cond(5*T*Abf)
disp('1-norm of the Balanced S/F matricies - ON case matricies')
disp('********************************************************')
disp('slow')
norm(5*T*Abs,1)
disp('fast')
norm(5*T*Abf,1)
disp('1-norm of Balanced S/F matricies (X 5T)with a 10% change  - ON case')
disp('*******************************************************************')
disp('slow')
norm(5*T*(Abs+0.1*Abs),1)
disp('fast')
norm(5*T*(Abf+0.1*Abf),1)
disp('% Relative change of 1-norm of the Balanced S/F matricies (X 5T) with a
 10% change - ON case matricies')
disp('**************************************************************************************
****************')
disp('slow')
(norm(5*T*(Abs+0.1*Abs),1)-norm(5*T*Abs,1))/norm(5*T*Abs,1)*100
disp('fast')
(norm(5*T*(Abf+0.1*Abf),1)-norm(5*T*Abf,1))/norm(5*T*Abf,1)*100

% -----------------------------------------------------

disp('1-norm expm of the Balanced S/F matricies - ON case matricies')
disp('********************************************************')
disp('slow')
norm(expm(5*T*Abs),1)
disp('fast')
norm(expm(5*T*Abf),1)
disp('1-norm expm of the Balanced S/F matricies (X 5T)with a 10% change  - ON
 case')
disp('*******************************************************************')
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disp('slow')
norm(expm(5*T*(Abs+0.1*Abs)),1)
disp('fast')
norm(expm(5*T*(Abf+0.1*Abf)),1)
disp('% Relative change of 1-norm expm of the Balanced S/F matricies (X 5T)
 with a 10% change - ON case matricies')
disp('**************************************************************************************
****************')
disp('slow')
(norm(expm(5*T*(Abs+0.1*Abs)),1)-
norm(expm(5*T*Abs),1))/norm(expm(5*T*Abs),1)*100
disp('fast')
(norm(expm(5*T*(Abf+0.1*Abf)),1)-
norm(expm(5*T*Abf),1))/norm(expm(5*T*Abf),1)*100
 
% -----------------------------------------------------
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