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ABSTRACT OF DISSERTATION 

 

Quantitative Microbial Risk Assessment For Fresh Oranges Sprayed With Surface Water 

From In Central Florida 

 

By  

Gabriel Mootian 

Advisor: Dr. Donald Schaffner 

 

 

Surface waters are an important source of agricultural water. About 58% of total 

surface water withdrawals are used for agricultural purposes in the US, thus the microbial 

quality of surface water is important for the safe production of fresh fruits and vegetables. 

Studies have demonstrated that surface waters are prone to contamination and may 

contain viral, bacterial and protozoal water and food borne pathogens. The efficacy of 

biological and physicochemical indicators for Salmonella in surface waters in central 

Florida was evaluated in chapter 2 of this dissertation. E. coli and solar radiation (SR) 

levels were found to significantly correlate well with Salmonella levels but the R
2 

were 

low (< 0.1). The influence of key weather variables on the survival of E. coli (surrogate 

for Salmonella) on the surface of oranges in grove following application of contaminated 

spray water was evaluated in the 3
rd

 chapter. Weather variables relative humidity (RH), 

solar radiation (SR) and temperature and time were found to be significantly correlated to 

the log change in E. coli levels/h on the surface on an orange; in addition time was also 

found to correlate well with log change in E. coli levels/h. However the R
2 

values were 



 iii 

found to be low (< 0.4). Logistic regression analysis showed that there was a high 

probability of a decline in E. coli levels at high SR and low RH levels, and a low 

probability of an increase in E. coli levels even at the lowest SR and the highest RH 

levels. Chapter 4 studies the predicted levels of E. coli on the surface of an orange under 

the influence of the four significant variables RH, SR, temperature and time. An 

empirical model based on upper and lower boundary limits for RH, SR, temperature and 

time variable was developed. IF logic statements, probability distributions and Monte 

Carlo simulations were used to describe the variability and uncertainty in log E. coli 

change rate for the most constricting variable. The mean predicted E. coli concentrations 

at day 1 after spraying were very close to the actual field trial data but the model under 

predicted the risk for 3, 7 and 14 days post spraying. The FDA produce rule on microbial 

die off rate (0.5 log/day of generic E. coli for a maximum of 4 days) was also evaluated. 

The rule was found to over predict actual data at day 1 and 3, but under predicted at day 7 

and 14. The FDA rule for a pre harvest interval of less than 4 days is fail safe and has the 

potential to reduce the risk of exposure to pathogens on surfaces of pre harvest crops by 

restricting the use of contaminated sources of agricultural water.  
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Chapter 1: Literature review  

I.1 Surface waters  

Surface waters are defined as waters that are found on the surface of the earth. 

Examples of surface waters include lakes, rivers, streams, ponds and marshes. Ground 

water is defined as water below the earth’s surface. Such water is found in an aquifer and 

soil pore spaces. Surfaces waters are different than ground waters in terms of both 

chemical and biological contaminant risks as well as the speed of flow. Since surfaces are 

open to pollution, they may contain higher concentrations of contaminants than ground 

water. This is the reason why ground water is commonly used as a source of drinking 

water by people without access to treated municipal water. Ground water is filtered 

through layers of rock and soil and as a result has lower concentrations of biological 

contaminants. Ground and surface water are interconnected by the hydrologic cycle and 

may exchange contaminants under the right conditions. In 2005, about 80% of all the 

water (public supply, hydroelectric power generation, irrigation, mining and industrial 

purposes) used in the USA came from surface water sources with the remaining 20% 

coming from ground water sources (85). Popular uses of surface waters include 

generation of hydroelectric power, industrial and mining purposes, irrigation, recreation 

and also public drinking water supply. Since all of the water used for hydroelectric power 

(53%) is most often returned back to the source, ignoring hydroelectric power 

withdrawals, irrigation accounts for most of surface water withdrawals (58%) followed 

by public supply and industrial uses (85). 
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I.2 Sources and types of biological contamination  

Natural and anthropogenic contaminants of surfaces waters sources are 

categorized into two primary groups 1) Point sources and 2) Non point sources.  Point 

sources are defined as discrete sources whose inputs into aquatic systems can be 

described in spatially explicit manner through measurement of chemical residues and or 

epidemiological data such as mortality and morbidity data (70). Common point sources 

of contamination include municipal waste water treatment plants (WWTPs), industrial 

effluent (food processing plants), sewage storm water overflows (discharge from 

overloaded WWTPs) and land disposal sites (leachates or discharge from land fills, septic 

tanks and industrial impoundments). In contrast non point sources cannot be explicitly 

distinguished spatially because of their diffuse nature and also the broad and geographical 

extent in which they occur. Examples of non point sources include agricultural runoffs 

(from crop production, animal feed lots, pastures) storm water and urban runoff (from 

impervious surfaces including streets and other paved areas) (70).  

Besides nutrients, the most significant form of pollution from sewage and 

agricultural runoffs to surface waters are pathogens. Numerous studies on the microbial 

quality of surface water conducted in different geographical regions have demonstrated 

that surface waters are vulnerable to pollution and can contain varying levels and 

prevalence rates of enteric pathogens (viruses, bacteria and protozoa). Levantesi et al. 

(2012) conducted a review of literature (over 10 years) on the prevalence, diversity and 

survival of Salmonella in surface and drinking water. Salmonella detection frequency 

ranged between 3% to 100% while the some of the highest Salmonella levels recorded in 

India were between 10
4 

to 10
6 

CFU/ml and were enumerated from river water. 
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Campylobacter species have been isolated from surface waters in various countries (1, 

12, 17, 42, 77). Protozoan pathogens such as Cyclospora, Giardia and Cryptosporidium 

cysts and oocysts have been reported in numerous studies of surface waters from Europe, 

South America and North America (17, 42, 73, 77, 79). Human enteric viruses such 

norovirus and rotavirus have been detected from surface water studies conducted in 

Finland, Amsterdam, Netherlands and USA (30, 42, 50, 70). Other enteric pathogenic 

bacteria isolated from surface waters include pathogenic E. coli, Vibrio spp and Shigella 

(1, 17, 70, 77). 

I.3 Persistence of pathogens in surface water  

The occurrence and elevated survival of enteric pathogens in non-host 

environments presents a serious public health challenge with respect to safe drinking and 

recreational water and the safety of minimally processed fresh fruits and vegetables. In 

the majority of surface water studies mentioned above, sampling and microbial analysis 

conducted over months or years indicate that pathogens may remain viable in aquatic 

environments for long periods. For example, high levels of Salmonella (1 to 4 log 

CFU/100 ml) have been reported in river water impacted by raw sewage in Italy over a 

sampling period of 2 years (49). Thus the influence and proximity to point and non point 

sources may be a cause of the persistence of pathogens in surface waters through 

continuous pollution. Survival and persistence of enteric pathogens in surface waters has 

also been associated with seasons and weather conditions. Lower levels, lower 

frequencies of detection and serotype diversity in Campylobacter, Salmonella, E. coli 

O157:H7, Giardia and Cryptosporidium have been correlated to lower temperatures 
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during autumn and winter seasons (32, 36, 42, 64, 81). Enteric viruses appear to be more 

prevalent during colder temperatures in winter compared to bacterial and protozoal 

pathogens (42, 50). Some studies have reported a lack of seasonal influence in the 

persistence of some pathogens in surface waters. Some authors have indicated that there 

may be other factors besides seasonality driving the prevalence and persistence of 

pathogens in surface waters. In a study conducted in Finland, birds were found to be the 

cause of the rather high numbers of Campylobacter and not the high temperatures (>18 

°C) recorded during the study (42, 88). An increased persistence during a particular 

season may also coincide with an increased shedding of the pathogen by humans or 

animals (42).  

I.4 Food and waterborne gastroenteritis associated with surface waters  

Epidemiological investigations, experimental studies and surface water microbial 

surveys have provided evidence that surface waters can be sources of water and 

foodborne illness. Laboratory studies have shown that foodborne pathogens can be 

transmitted to edible portions of a plant during application of contaminated agricultural 

water. Solomon et al. (2002) and Mootian et al. (2009) have demonstrated that E. coli 

O157:H7 can be transmitted to lettuce plants through contaminated irrigation water 

without the plant necessarily coming into contact with contaminated soil. Islam et al. 

(2004), and Lapidot et al. (2009) have shown that Salmonella can be transmitted from 

contaminated irrigation water to carrots, lettuce, radish and parsley. These studies are 

important in demonstrating the role of contaminated irrigation water in the transmission 

of pathogens to fruits and vegetables at pre-harvest stages.  
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 Outbreaks associated with consumption of fruits and vegetables have been traced 

back to either contaminated irrigation water or process water.  In a review of Salmonella 

prevalence in surface waters, Levantesi et al. (2012) described multistate outbreaks 

associated with Serrano and jalapeno peppers, tomatoes, basil, lettuce, cantaloupe and 

mangoes where epidemiological investigations traced back outbreak strains of 

Salmonella to on farm irrigation and processing waters. The largest outbreak reported by 

CDC occurred in 2008 where multiple raw produce items contaminated with Salmonella 

Saint Paul infected over 1400 individuals in the US and Canada. E. coli O157:H7 isolated 

from irrigation water has also been reported to cause outbreaks from consumption of 

lettuce (40, 77). Protozoan pathogens may also pose a risk. Cyclospora was implicated in 

an outbreak involving raspberries imported from Guatemala to the US and Canada, and 

was traced back to the use of contaminated water for the preparation of fungicides and 

insecticides (79). Reports of outbreaks traced back to enteric viruses isolated from 

surface waters are more rare, but still do occur. Heaton et al. (2008) and Beuchat (1996) 

reported outbreaks associated with Hepatitis A virus in lettuce and spring onions and 

norovirus in celery respectively. These viral outbreaks were linked to the use of irrigation 

water contaminated with untreated sewage.  

Although there are numerous review articles on outbreaks associated with 

minimally processed fresh fruits and vegetables, not many implicate the use of 

contaminated surface waters.  Other sources of enteric pathogens such as contaminated 

biological amendments, poor hygiene by food handlers, contaminated soil, feces from 

birds and animals appear to have contributed more to a higher incidence of food borne 

illnesses compared to agricultural water. This may be due to less use of sprinkler or 
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overhead irrigation and more use of subsurface type of irrigation, which has been shown 

to reduce the risk of contaminating pre harvest crops (22). There are also studies that 

have quantified the reduction of risk of illness associated with holding pre harvest crops 

for a certain period of time after the last episode of irrigation to allow for the natural 

death of pathogens transferred during irrigation (37).  However there is also evidence of 

the persistence and survival of pathogens in traditional non host environments including 

surface waters which means use of such sources of agricultural water may pose a risk to 

the health of consumers of fresh fruits and vegetables (49).  

I.5 Salmonella  

Salmonella is a facultative anaerobic gram-negative rod shaped bacteria 

belonging to the family Enterobacteriaceae. The bacterium grows optimally at 37 °C and 

can break down glucose to produce gas and acid. Salmonella are also oxidase negative 

and catalase positive, grow on citrate as the sole carbon source, produce hydrogen 

sulphide, decarbolyze lysine and ornithine and do not hydrolyze urea (18).  

A number of taxonomic schemes have been proposed for the nomenclature of 

genus Salmonella. The most widely divides the genus into 2 species Salmonella enterica 

and Salmonella bongori. Salmonella enterica is divided into 6 six sub species I. S. 

enterica subspecies enterica, II, S. enterica subspecies salamae; IIIa, S. enterica 

subspecies arizonae; IIIb,S.enterica subspecies diarizonae; IV, S.enterica subspecies 

houtenae; and VI, S. enterica subspecies indica.  Biochemical identification is generally 

coupled with serological confirmation involving agglutination of bacterial surface 

antigens with salmonella specific antibodies. These include somatic (O) 



7 
 

 

lipopolysaccharides (LPS) on the external surface of the bacterial outer membrane, 

flagellin (H) antigens for peritrichous flagella and the capsular antigens (Vi) antigen, 

which occurs only in serovars Typhi, Paratyphi C, and Dublin. Currently, there are over 

2400 serotypes of Salmonella, but only 50 are associated with infections in humans and 

warm-blooded animals, all within the subspecies enterica (49). Based on clinical 

syndrome, Salmonella serotypes can be classified into 2 distinct groups typhoidal and 

non-typhoidal. Typhoidal serotypes namely S. Typhi and Paratyphi are associated with 

enteric fevers typhoid and paratyphoid, which are the severe form of Salmonella 

infections. Typhi and Paratyphi serotypes only infect humans and are common in 

developing countries where the lack of clean drinking water is a major problem. In 

contrast non-typhoidal Salmonella serotypes are commonly associated with food borne 

gastroenteritis than water borne illnesses and are found in both humans and animals (49). 

These zoonotic serotypes of Salmonella cause acute but usually self-limiting 

gastroenteritis.  

I.6 Salmonellosis  

Salmonella is reported to cause 1 million illnesses, 19,000 hospitalizations and 

380 deaths every year in the United States (13).  The CDC in its 2011 estimates reported 

Salmonella as the leading pathogen in the number of deaths and hospitalizations. 

Historically Salmonella has been associated with meat, poultry, dairy and egg products 

(18). In recent years outbreaks of human salmonellosis have been linked to consumption 

of fresh tomatoes, raw almonds, melons, mangoes, peppers, orange juice, cucumbers, 
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lettuce, alfalfa sprouts, mixed salads and low moisture foods such a spices and peanut 

butter (13).  

I.7 Quantitative microbial risk assessment (QMRA) 

Quantitative microbial risk assessment (QMRA) is a scientifically based process 

that is used to estimate the likelihood (probability) of illness to humans as a result of 

exposure to food or water contaminated with pathogenic microorganisms or toxins (24, 

83). QMRA involves the following steps: i) Hazard identification; ii) Hazard 

characterization; iii) Exposure assessment and iv) Risk characterization.  

I.7.a Hazard identification 

The hazard identification component of a microbial risk assessment identifies the 

pathogenic microorganism that may be present in a food, water or a group of foods, that 

is capable of causing adverse public health effects (24). The hazard identification 

component may also identify specific population or subpopulation of individuals 

impacted by consumption of the target microorganism. 

I.7.b Hazard characterization  

Hazard characterization describes the relationship between the level of exposure 

of a pathogen (dose) and the likelihood of an adverse health effect (response). This 

relation is in a form of a mathematical model referred to as a dose response model and is 

derived from epidemiological surveillance data (outbreak data), human clinical feeding 

trials or animal feeding studies (25). Dose response model development can occur as a 

“stand alone” process or as part of a quantitative risk assessment. Dose responses for a 
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particular pathogen may be used between risk assessments (of different foods) for the 

same pathogen (25). 

I.7.c Exposure assessment 

The exposure assessment component of a microbial risk assessment is an 

evaluation of the likelihood of ingesting pathogenic microorganism through food or water 

and the likely level of exposure. Levels of a microbial hazard may be obtained through 

microbiological analysis of raw material or a finished food product. Since the level of a 

hazard at the time of consumption may be different from that when the food is being 

produced an exposure assessment considers all the production processes (from farm to 

fork) and their effect on levels of the hazard, to estimate the likely levels at the time of 

consumption. Where data is unavailable, quantitative exposure assessment models may 

be built taking into consideration various factors (for e.g. temperature, relative humidity, 

pH, salt conc. water activity) and their interactions to estimate the distribution and levels 

of the hazard in a food at consumption. Predictive growth, inactivation and cross 

contamination models are have also been used in the development of exposure 

assessment models (15, 16, 63, 72). Data from predictive modeling and microbiological 

analysis is combined with food consumption patterns to assess exposure to the hazard 

over a period of time (23).  

I.7.d Risk characterization  

Risk characterization is the final step in a QMRA. This step integrates 

information from the other three steps hazard identification, hazard characterization and 

exposure assessment. The result of risk characterization is a risk estimate (26). Risk 

estimates can be reported in form of risk per serving of a particular food, risk per 

individual or population risk. The risk per serving requires a defined quantity that 
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constitutes a serving (e.g. number of oysters, grams of lettuce, ml of orange juice). Risk 

per individual can refer to an individual risk in specified population or an individual risk 

among a population that consumes a specific product i.e. this risk applies to individuals in 

specific category of a population or individuals who consume a particular product. 

Population risk considers the risk distributed over a population (26). Population risk is 

often reported as the total number of food borne illness expected in a population within a 

year.  

I.7.e Deterministic versus stochastic  

Microbial risk assessments can take deterministic or a stochastic (probabilistic) 

approach. Deterministic or single point approach involves using a single “best guess” 

estimate of all the variables within a model (87). The outcome of a deterministic model 

approach is a single risk estimate. Point estimates do not take into account the variability 

or uncertainty of variable. In contrast, in a stochastic approach a probability distribution 

is used to account for every possible value that each variable can take and it’s probability 

of occurrence. The output of a stochastic model is a probability distribution of all the 

possible outcomes. Most QMRA adopt the stochastic approach because probability 

distributions allow for characterization of variability and uncertainty. QMRAs can use 

Monte Carlo simulation technique where random sampling of each probability 

distribution within a model is done hundreds or thousands of time to produce hundreds or 

thousands of scenarios (iterations or trials) (87).  
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II.1 Abstract  

Coliforms, Escherichia coli, and various physicochemical water characteristics 

have been suggested as indicators of microbial water quality or index organisms for 

pathogen populations. The relationship between the presence and/or concentration of 

Salmonella and biological, physical, or chemical indicators in Central Florida surface 

water samples over 12 consecutive months was explored. Samples were taken monthly 

for 12 months from 18 locations throughout Central Florida (n=202). Air and water 

temperature, pH, oxidation-reduction potential (ORP), turbidity, and conductivity were 

measured. Weather data were obtained from nearby weather stations. Aerobic plate 

counts and most probable numbers (MPN) for Salmonella, E. coli, and coliforms were 

performed. Weak linear relationships existed between biological indicators (E. 

coli/coliforms) and Salmonella levels (R
2
 <0.1) and between physicochemical indicators 

and Salmonella levels (R
2 

<0.1). The average rainfall (previous day, week, and month) 

before sampling did not correlate well with bacterial levels. Logistic regression analysis 

showed that E. coli concentration can predict the probability of enumerating selected 

Salmonella levels. The lack of good correlations between biological indicators and 

Salmonella levels and between physicochemical indicators and Salmonella levels shows 

that the relationship between pathogens and indicators is complex. However, Escherichia 

coli provides a reasonable way to predict Salmonella levels in Central Florida surface 

water through logistic regression. 
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II.2 Introduction 

Water quality can be characterized by three types of analysis, index 

microorganisms, indicator microorganisms, and various physicochemical water 

characteristics. Indicator microorganisms are used to suggest, or “indicate,” the possible 

presence of fecal contamination (75). Index organisms represent the presence and 

behavior of a pathogen in a given environment (57), and one organism can be both an 

indicator and an index organism. Physicochemical water characteristics include turbidity, 

temperature, pH, and oxidation-reduction potential (ORP) (2). 

Physicochemical measurements have the advantage of being considerably more 

rapid than microbial-based measurements, but such measurements may not correlate 

with microbiological quality. The United States produce industry currently relies on testing 

100 ml of water for indicator organisms, specifically, generic Escherichia coli, as a means to 

monitor microbial water quality used for edible horticultural crop production (11, 27, 82) 

There are a wide variety of bacterial genera, groups, and species, viruses, and bacteriophages 

that have been used or proposed for use as indicator microorganisms (2, 3, 21, 33). 

Coliforms, either total or fecal, are a common choice of indicator organism. Total coliforms are 

aerobic and facultatively anaerobic, gram-negative, non-spore-forming, rod-shaped bacteria 

that pro- duce gas and acid upon lactose fermentation within 48 h at 35 °C; fecal coliforms are 

a subset of coliforms that also ferment lactose at 44 °C. Generic E. coli has been proposed as 

both an indicator and an index microorganism for enterohemorrhagic E. coli, Salmonella 

spp., and Shigella spp. (48). When contaminated agricultural water comes into contact 

with the edible portion of a plant, for example, during irrigation, pesticide and fertilizer 

application, and/or frost protection, the safety of fresh produce items has been affected 
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(20, 43, 55). In 2005, a large-scale outbreak of Salmonella enterica subsp. enterica serovar 

Newport from tomato consumption occurred, and the trace-back investigation revealed 

that the same serovar was in the irrigation pond of the farm from which the suspect 

tomatoes were harvested (34). Another large outbreak in 2009 was epidemiologically linked 

to Serrano peppers, which came from a farm where a matching Salmonella enterica 

subsp. enterica serovar Saintpaul strain was isolated from the irrigation pond (46). Both 

outbreaks demonstrate that the quality of water applied to fresh produce is of at most 

importance in ensuring food safety. Contradictory results have been reported as to the 

efficacy of index or indicator organisms in predicting the presence and/or prevalence of 

human pathogens, such as Salmonella, in surface waters (10, 14, 69). While any specific 

pathogen may not be present in the sample being tested, the presence of index 

microorganisms is meant to suggest that pathogens have a reasonable likelihood of being 

present (75). The tests for index microorganisms are less cumbersome and time- consuming, 

as well as typically less expensive, than screening for the presence of individual pathogens. 

This makes the detection of index microorganisms a much more economical and practical 

choice than screening for individual pathogens. 

Physicochemical water characteristics, such as turbidity, temperature, pH, and 

ORP, have all been used to monitor water quality in rivers and lakes (2), but the presence 

or absence of correlations between physicochemical measurements and microbial 

measurements of water is not discussed by the American Public Health Association 

(APHA) in their methods manual. Physical measurements like temperature and rainfall 

(R
2 

= 0.317) have been correlated with Salmonella isolation frequency in seawater (84). 

The main advantage of monitoring a physicochemical characteristic is that nearly 
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instantaneous results can be obtained and used to predict water quality so that a risk 

management decision can be made in a timely manner. The relationship between 

Salmonella concentration and biological index organisms or physicochemical indicators 

in Central Florida surface waters over 12 consecutive months was explored. 

II.2 Materials And Methods 

II.2.a Water sampling  

Eighteen surface water sites across Central Florida were sampled monthly for 12 

consecutive months beginning in August 2010. Sites in rural agricultural areas, away 

from animal agriculture, including ponds, creeks, rivers, and canals, were selected. 

Sampling locations included two lakes, one pond, six creeks, two streams, one river, 

and six canals. The land use and catchment watershed for each site are detailed in Table 

II.a. Water was collected in 10-liter sterile carboys (Nalgene, Rochester, NY) fitted with 4 

kg of lead weights attached to a rope. The rope was used to lower the mouth of the carboy to 

a depth of 20 cm into the water source. Samples from all but one location were collected 

away from the shore, using a bridge or other outcropping. Samples were collected on three 

separate days each month (six samples per day). All samples were taken before solar noon (the 

moment when the sun reaches its highest elevation on a given day at a given place) from a 

shaded area of the water source. Chemical and physical water characteristics were measured 

immediately after sampling as described below. Samples were transported to the laboratory 

and stored at 4 °C for up to 24 h before microbial testing as described below. Samples were 

transported at ambient temperature, protected from the sun. No more than 4 h elapsed 

between sample collection and 4 °C storage. 
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Table II.a: Sampling site water source type and catchment area usage 

 

 

II.2.b Chemical and physical water characteristics 

Turbidity, temperature (air and water), pH, and ORP were measured. Each 

measurement was repeated in triplicate. Turbidity was measured in formazin 

attenuation units  (FAU) using a portable colorimeter (DR/850;Hach Company, 

Loveland, CO) according to the manufacturer’s instructions. Water and air temperatures 

were measured with a portable temperature probe (SH66A; Cooper Instrument 

Corporation, Middlefield, CT). The pH value and ORP were measured with a portable 

pH/ORP meter (pH 6  Acorn series; Oakton, Vernon Hills, IL). 

II.2.c Total aerobic plate count 

Surface water samples were spread plated in duplicate onto tryptic soy agar (TSA; 

Difco, Becton, Dickinson, Sparks, MD) following serial dilutions in 0.1% peptone water 

(Difco, Becton, Dickinson, Sparks, MD) to determine total aerobic counts. Plates were 

incubated for 24 ± 2 h at 35 ± 2 °C, and all bacterial colonies were enumerated by hand. 
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II.2.d Coliform and E. coli MPN  

Colisure Presence Absence Snap Packs (IDEXX Laboratories, Inc., Westbrook, 

Maine, USA) were used to determine coliform and Escherichia coli Most Probable 

Numbers (MPN) in a five by three MPN configuration (10, 1, 0.1 ml dilutions).  Tubes 

were incubated 24 h at 35 ± 0.5 °C.  A yellow color indicated coliforms and E. coli was 

determined by observing fluorescence using a 6-watt UV lamp.  The MPN/100 ml was 

determined from the table in Standard Methods for the Examination of Water and 

Wastewater, 18
th

 ed. (2). 

II.2.e Salmonella detection 

Salmonella was determined in each water sample as previously described by 

McEgan et al. (2013). Briefly, each water sample was concentrated using tangential flow 

filtration (TFF) to a final retentate volume of ca. 250 ml. A KrosFlo Research II Pump 

(vendor, location) was used in combination with Masterflex easy-load pump head 

(Spectrum Labs, Rancho Dominguez, CA, USA). The inlet flow rate was 1000 ml/min. A 

Mini Kros Plus Tangential Flow Filter Module (Spectrum Labs) made of 

polyethersulfone with a pore rating of 0.2 µm and a surface area of 1050 cm
2
 was used as 

a tangential flow filter. The TFF was run at a transmembrane pressure of 67 Pa. Double 

strength lactose broth (250 ml; Difco, Becton Dickinson) was added to the retentate, 

which was then stored for 1 h at room temperature and incubated 24 ± 2 h at 35 ± 2 °C, to 

pre-enrich the sample. 

Pre-enrichment was followed by an immuno-capture of Salmonella using the 

Pathatrix system (Matrix MicroScience, Golden, CO, USA). The method was modified 

such that the entire pre-enrichment was placed in a sterile stomacher bag (17.8 x 30.5 cm; 

Fisher Scientific, New Jersey, USA; instead of the typical 100 ml conical tube). Pathatrix 
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Salmonella capture beads (50 µl) were added to the system and used according to the 

manufactures’ instructions in a pre-set 30 min cycle.  

The beads (40 μl) were used in a DNA extraction using the MoBio UltraClean 

DNA kit (MoBio, Carlsbad, CA, USA).  The extracted DNA was used in real time PCR, 

using Applied Biosystems’ MicroSEQ Salmonella spp. Detection Kit (Applied 

Biosystems, Carlsbad, CA, USA).  The real time PCR kit was used according to 

manufacturers’ instructions in a BioRad CFX96 RealTime thermocycler. 

II.2.f Modified MPN for Salmonella positive water samples 

A 50 ml retain sample of each water sample was removed prior to processing.  A 

modified Salmonella MPN method was used to determine Salmonella concentration (84) 

for each retained sample. A three-by-three tube MPN was set up and dilutions were as 

follows: 10 ml in 10 ml double strength lactose broth, 1 ml in 9 ml single strength lactose 

broth, and 0.1 ml in 9 ml single strength lactose broth.  These were incubated for 24 ± 2 h 

at 35 ± 2 °C.  Selective enrichment was done by transferring a one ml aliquot to 

tetrathionate broth (TT broth; Difco, Becton Dickinson) and 0.1 ml to Rappaport 

Vassiliadis broth (RV broth; Difco, Becton Dickinson); selective enrichment broths were 

incubated 24 ± 2 h at 35 ± 2 °C and 48 ± 2 h at 41 ± 2 °C, respectively.  Ten microliters 

were streaked onto XLT4 and Chromagar Salmonella Plus and incubated for 24 ± 2 h at 

35 ± 2 °C following enrichment. Colonies displaying typical Salmonella phenotypes were 

confirmed biochemically on lysine iron agar slants (LIA; Difco, Becton Dickinson) and 

triple sugar iron agar slants (TSI; Difco, Becton Dickinson). 

One representative biochemically confirmed Salmonella colony from each plate 

was transferred to TSA and incubated for 24 ± 2 h at 35 ± 2 °C.  One colony was 

transferred to tryptic soy broth and incubated 24 ± 2 h at 35 ± 2 °C and DNA extraction 
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using the MoBio UltraClean DNA kit.  Salmonella was genetically confirmed by PCR of 

the invA and oriC genes. The invA primers were 

GTGAAATTATCGCCACGTTCGGGCAA and TCATCGCACCGTCAAAGGAACC, 

giving a PCR product of 284 bp; the oriC primers were 

TTATTAGGATCGCGCCAGGA and AAAGAATAACCGTTGTTCAC, giving a PCR 

product of 163 bp. Both primer sets were as described by Malorny et al. (2003). All 

reagents were obtained from the Fisher exACTGene Complete PCR kit (Fisher Scientific, 

New Jersey, USA) and primers were used at a concentration of 20 μM. The PCR reaction 

mix was as follows: 34.75 μl water; 5 μl 10X PCR buffer; 1 μl of each primer; 0.25 μl 

Taq DNA polymerase; 5 μl template DNA. The optimized PCR conditions were: 3 min at 

94 °C melting, followed by 30 cycles of 30 s at 94 °C, 30 s at 58 °C, 1 min at 72 °C; a 

final elongation of 5 min at 72 °C. Gel electrophoresis was done using a 1.8% agarose gel 

with 0.5X TBE buffer. Gels were run at 70 V for 90 min. 

II.2.g Weather data collection 

Rainfall and solar radiation data were collected from the Florida Automated 

Weather Network (http://fawn.ifas.ufl.edu/). The closest weather recording station to 

each individual sampling site was determined and the data applied accordingly. 

II.2.h Statistical analysis 

Correlations were determined using JMP Pro 9. Multiple linear regression 

analysis of Salmonella vs. all parameters was done using SAS 9.3 (SAS Institute Inc., 

North Carolina, USA) software. A p value of < 0.05 was set as the condition for entry of 

any parameter into a model. 

 To determine the probability of enumerating Salmonella, binomial logistic 

regression analysis using SAS 9.3 was done with all the other parameters as independent 

http://fawn.ifas.ufl.edu/
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variables.  Binomial logistic regression assumes a response variable with two possible 

outcomes (e.g. Salmonella is present or Salmonella is not present). Since all water 

samples tested had Salmonella counts above detection limit, the simple absence or 

presence of Salmonella could not be used as a criterion. To overcome this limitation, we 

modeled the probability of enumerating a concentration of Salmonella exceeding a 

particular value. Six levels of Salmonella were selected for modeling: 3, 5, 10, 15, 20, 

and 60 MPN/100 ml.  Using the lowest concentration as an example, Salmonella 

observations were converted to a value of 1 if an observation was ≥ 3 MPN/100 ml and a 

value 0 if an observation was < 3 MPN/100 ml. The same procedure was repeated for 5, 

10, 15, 20 and 60 MPN/100 ml. This binomial logistic regression analysis was done with 

the coded Salmonella data as the dependent variable and all the other variables (turbidity, 

conductivity, air temperature, water temperature, pH, ORP, coliforms and E. coli) as 

independent variables. 

II.3 Results 

Two hundred and two samples were collected and analyzed over the twelve-

month sampling period. Fourteen samples were missed due to laboratory error or 

inaccessibility of the water source due to unrelated factors (e.g. nearby herbicide 

application precluded access due to investigator safety). The correlation coefficients for 

each characteristic vs. Salmonella log MPN/100 ml are displayed in Table II.b. When 

each R
2
 value is calculated for individual sampling sites 152 of the 162 of the R

2
 values 

fall below 0.4 indicating a lack of correlation. Each characteristic will be discussed 

further in the appropriate section below. 
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II.3.a Salmonella MPN 

All 202 water samples were positive for Salmonella using the described TFF-

immuno-capture Real Time PCR method. The detection level for the described 

methodology has a detection limit of ca. 1 CFU/l in 10 l. All 10 l surface water samples 

collected had greater than 1 CFU/l Salmonella spp. in each 10 l sample volume collected 

and processed. 

Salmonella concentrations for each site by sampling date can be seen in Figure 

2.1. The median Salmonella concentration was 0.79 log MPN/100 ml for all samples 

taken; the upper quartile was 1.2, the lower quartile was 0.48 log MPN/100 ml; and 139 

of 202 samples had Salmonella concentrations below 1 log MPN/ 100 ml. The highest 

concentration of Salmonella, 3.0 log MPN/100 ml, was identified in July (Fig 2.1); 

however, the month of sampling was not strongly correlated with the concentration of 

Salmonella (R
2 

= 0.20). 

II.3.b Coliform and E. coli MPN  

Values for coliform and E. coli log MPN/100 ml can also be seen in Figure 2.1.  

Many of the coliform (128/202), and some of the E. coli (17/202), MPNs were at or over 

the upper limit of detection (≥ 3.2 log MPN/100 ml) for the MPN method used. The 

median coliform concentration was ≥ 3.2 log MPN/100 ml, with the lower quartile at ≥ 

2.7 log MPN/100 ml. E. coli had a median concentration of 1.7 log MPN/100 ml, an 

upper quartile of 2.4 and lower quartile of 0.60 log MPN/100 ml. Neither coliform log 

MPN/100 ml (R
2 

= 0.004; Table II.b), nor E. coli log MPN/100 ml (R
2 

= 0.078; Table 

II.b) values were strongly correlated with the Salmonella MPN values. However, at sites 

11 and 18, E. coli log MPN/100 ml resulted in higher correlations, R
2 

= 0.606 and R
2 

= 
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0.678, respectively.  Interestingly, coliform and E. coli log MPN/100 ml were not 

strongly correlated (R
2 

= 0.364; Table II.c) with each other. 

 

Figure 2.1: Populations of Salmonella, E. coli and coliforms (left axis), and aerobic plate 

for 18 Central Florida sites sampled monthly for a continuous 12-month period (right 

axis). Salmonella (circle), E. coli (diamond) and coliforms (+), reported in log MPN/100 
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ml, and aerobic plate counts (x), reported in log CFU/100 ml, for 18 Central Florida sites 

sampled monthly for a continuous 12 month period. 

Table II.b: Coefficients of determination for log MPN Salmonella/100 ml versus each of 

the physical, chemical, and biological water characteristics recorded from each sampling 

by sampling site 

 

II.3.c Aerobic plate count 

The values for each aerobic plate count for each site can be seen in Figure 2.1.  

The median aerobic plate count was 3.7 log CFU/100 ml; the upper quartile was 4.0 log 

CFU/100 ml, and the lower quartile was 3.2 log CFU/100 ml. The two highest aerobic 

plate counts, 5.5 and 5.2 log CFU/100 ml (Figures 2.1-4 and 2.1-8), both occurred 

during the month of July. The aerobic plate count, in log CFU/100 ml, did not correlate 

with the Salmonella log MPN/100 ml (R
2 

= 0.004; Table II.b). 

II.3.d Air and water temperature 

Air and water temperatures are displayed in Figure 2.2. Not surprisingly, 

recorded air and water temperatures showed the strongest correlation of any two variables 

(R
2 

= 0.680; Table II.c). Neither the air nor water temperature correlated with the 
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Salmonella log MPN/100 ml (R
2 

= 0.000 and R
2 

= 0.006, respectively; Table II.b).  

However, when calculated on an individual site bases, site 14 (R
2 

= 0.405; Table II.b) 

and site 15 (R
2 

= 0.403; Table II.b) Salmonella concentrations showed relatively higher 

correlation with water and air temperatures, respectively. 



25 
 

 

 

Figure 2.2: Air (open circle) and water (dark circle) temperatures, reported in °C, 

measured using a temperature probe at the time of sampling for 18 central Florida sites 

sampled monthly for a continuous 12-month period. 
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Figure 2.3: pH (open circle; left axis) and ORP (dark circle; right axis), measured at the 

time of sampling for 18 central Florida sites sampled monthly for a continuous 12-month 

period. 
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Figure 2.4: Turbidity (dark circle; left axis) and conductivity (open circle; right axis), 

measured at the time of sampling for 18 central Florida sites sampled monthly for a 

continuous 12-month period. 
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II.3.e pH, ORP, turbidity, and conductivity 

pH and ORP values by sampling site over time are displayed in Figure 2.3; and 

similarly turbidity and conductivity by sampling site over time are displayed in Figure 

2.4.  None of these physical water characteristics correlated with Salmonella log 

MPN/100 ml; as show by the R
2
 values in Table II.b. However, when calculated by site, 

ORP had a relatively high correlation with Salmonella concentration at site 9 (R
2 

= 0.424) 

and site 10 (R
2 

= 0.555); while turbidity had a relatively high correlation with Salmonella 

concentration at site 4 (R
2 

= 0.691) and site 11 (R
2 
= 0.584); and conductivity had a 

relatively high correlation with Salmonella concentration at site 4 (R
2 

= 0.405) and site 17 

(R
2 

= 0.450). pH correlations were below 0.4 at all sites. 

II.3.f Rainfall and solar radiation 

The average rainfall (in the previous day, week or month) before sampling did not 

correlate with Salmonella, coliform, E. coli, or aerobic plate count levels (data not 

shown). In addition solar radiation was also poorly correlated with Salmonella, coliforms, 

E. coli or aerobic plate counts levels (data not shown). 

II.3.g Multiple linear and logistic regression analysis 

A multiple linear regression analysis with pH, ORP, conductivity, turbidity, water 

temperature, air temperature, coliforms, and aerobic plate count as independent variables 

and Salmonella as the dependent variable, showed that E. coli and solar radiation were 

the only variables that were significantly correlated with Salmonella concentration (p < 

0.05), however the resulting R
2 

was very low (< 0.1). Table II.c shows Pearson product 

moment correlation coefficients and p values for all the parameters. Correlation 

coefficients closer to 1 or -1 indicated a strong linear relationship between variables, 

similar to the relationship indicated by R
2
. Positive correlation coefficients indicated that 
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the two variables are positively correlated, while a negative correlation coefficient 

indicates the opposite. Table II.c shows that E. coli and solar radiation levels were 

positively correlated (p < 0.05) with Salmonella concentrations but with low correlation 

coefficients.  

 

Table II.c: Pearson product moment correlation coefficients (r) and p values, determined 

between each of the physical, chemical, and biological water characteristics for all 

sampling sites and months combined 

 
 Aerobic plate count was in log CFU/100 ml, Salmonella, E. coli and coliforms were (log MPN/100 ml). 

 

Given the absence of a strong linear relationship between Salmonella 

concentrations and any variable investigated, multiple logistic regression analysis was 

used to predict the probability of Salmonella concentration exceeding a given 

concentration as a function of any of the variables investigated. E. coli concentration was 

the only variable that was significantly correlated with the probability of Salmonella 

concentration exceeding a certain value (p < 0.05). A model relating the probability of 

Water temp Air temp pH ORP Turbidity Conductivity Coliforms E. coli Aerobicplate Solar Rad. Salmonella

(°C)  (°C) (mV) (FAU) (µS/m) count (W/m2 )

Water temp (°C) r 0.825 a 0.208 a -0.0117 0.144 a 0.1300 -0.0165 −0.144a -0.0125 -0.0330 0.1210

p 0.0000 0.0031 0.8800 0.0418 0.0707 0.8170 0.0432 0.8620 0.6410 0.0946

Air temp (°C) r 0.0127 0.0254 0.1410 0.225 a 0.0307 -0.0744 0.0297 -0.0696 0.0538

p 0.8580 0.7450 0.0473 0.0017 0.6680 0.2990 0.6790 0.3250 0.4590

pH r -0.1330 -0.0686 0.423 a -0.0479 -0.0141 0.0398 -0.0101 0.0506

p 0.0867 0.3370 0.0000 0.5040 0.8450 0.5790 0.8860 0.4880

ORP(mv) r -0.0209 -0.0566 0.0799 -0.0499 -0.0151 0.1010 -0.0578

p 0.7880 0.4720 0.3020 0.5200 0.8450 0.1870 0.4640

Turbidity(FAU) r -0.0878 −0.172a -0.0297 -0.0336 -0.0819 0.0824

p 0.2210 0.0151 0.6780 0.6390 0.2460 0.2570

Conductivity(µS/m) r -0.0592 −0.317a -0.0568 −0.273a -0.1210

p 0.4130 0.0000 0.4320 0.0001 0.0994

Coliforms r 0.364 a 0.212 a -0.0670 0.0032

p 0.0000 0.0029 0.3450 0.9650

E. coli r 0.0386 0.151 a 0.248 a

p 0.5920 0.0330 0.0005

Aerobic plate count r -0.0132 0.0314

p 0.8520 0.6680

Solar Rad.(W/m2 ) r 0.165 a

p 0.0216

Parameter
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Salmonella occurring at levels ≥ 3, 5, 10, 15, 20, or 60 MPN/100ml was developed. The 

model has the form:  

Logit P = C + K * E. coli (Log MPN/100 ml)…………………………………….. (1) 

Where logit P is defined as the natural log (ln) of (P/1-P), C is a constant and K is the 

model coefficient. Individual plots for each criteria used to predict the probability of 

occurrence of Salmonella given any level of E. coli in surface water are shown in Figure 

2.5. With higher E. coli concentrations in surface water the probability of enumerating 

Salmonella at any of the six concentrations (3, 5, 10, 15, 20 and 60 MPN/100 ml) rises in 

a roughly proportionate manner from the lowest level of E. coli observed (-1 log 

MPN/100 ml) to the highest (3.2 log MPN/100 ml). The probability of Salmonella 

exceeding a particular value was also arrayed in an essentially logical manner.  For 

example when the E. coli concentration is 1 log MPN/100 ml, the model predicts an 80% 

chance of enumerating ≥ 3MPN/100 ml, a 43% chance of enumerating ≥ 5MPN/100 ml 

Salmonella, 24% chance for enumerating Salmonella ≥ 10MPN/100ml, 20% chance of 

enumerating Salmonella ≥ 15 MPN/100 ml, 17% chance of enumerating ≥ 20 MPN and a 

1% chance of enumerating Salmonella ≥ 60 MPN.  All of the models are statistically 

significant at p<0.05, with the exception of the Salmonella ≥ 3MPN/100 ml model (p = 

0.815). 
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Figure 2.5: Logistic regression model for predicting the probability of enumerating 

Salmonella ≥ 3 MPN/100 ml (solid line, p=0.815), 5 MPN/100 ml (long dashes, 

p=0.035), 10 MPN/100 ml (short dashes, p=0.014), 15 MPN/100 ml (dash two dots, 

p=0.010), 20 MPN/100 ml (dash one dot, p=0.009) and 60 MPN/100 ml (dotted, 

p=0.020) MPN/100 ml. 

II.4 Discussion  

Salmonella is present in central Florida surface waters throughout the year. Surveys 

of surface waters for Salmonella in the Southeastern United States have reported similar 

findings; in North Carolina, surface water had a Salmonella prevalence of 54.7% (94/172) 

in 25 ml water samples (62), and in a southern Georgia watershed, 79.2% of water samples 
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were Salmonella positive using a five replicate, three dilution (100, 10, and 1 ml) MPN 

method (36). A survey of the Suwannee River in northern Florida reported that 96% 

(106/110) of water samples were Salmonella positive using a three replicate, five dilution 

(500, 100, 50, 10, and 1 ml) MPN method (66) These findings are similar to those found 

by other researchers performing surface water samplings over extended periods of time at 

the same set of sites in more geographically diverse locations. Two rivers and one creek, all 

in one Southern Ontario, Canada, water shed, had 78.4% (91/116) Salmonella positive 

samples where locations were sampled twice monthly for 2.5 years. Other studies have 

reported lower Salmonella prevalence in surface waters. Surface waters in the Salinas 

Valley of California, surveyed using either Moore swabs or a 100-ml sample, report 

7.1% (18/252) Salmonella-positive samples (32). The prevalence of Salmonella in the 

coastal waters of southern Morocco during 4-year monthly sampling of six sites was 4.1% 

(10/243) (74). Similarly, Salmonella was present in 11% (16/145) of 100 ml samples of 

surface waters collected from fruit and vegetable farms in New York state (80). The 

presence of Salmonella throughout the year in Central Florida surface waters is similar to 

that in surface water surveys done throughout the Southeastern United States, especially 

when considering the increased sample volume and low limit of detection used in the 

current study. 

No regulatory limit currently exists for Salmonella in agricultural waters, and as 

larger volumes of waters are screened for Salmonella, the limit of detection decreases 

accordingly (53). Protocols for Salmonella detection are expensive and time-consuming 

compared to standard water testing of 100 ml for generic E. coli. Mitigation strategies 

suited for treating typical volumes of water used in agricultural production when 
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Salmonella might be detected are very limited. Therefore, the ability of index organisms, 

such as E. coli, to predict the probability of enumerating Salmonella levels in surface 

waters intended for agricultural use is desirable. 

None of the index microorganisms measured strongly linearly correlated with the 

prevalence of Salmonella in the same Central Florida surface water sample. Many of the 

coliform log MPN/100 ml counts were at or above the upper limit of detection; this may 

be responsible for the lack of correlation between Salmonella and coliform populations. In 

the cases in which coliform populations were at or above the upper limit of detection, the 

population could have been higher and would not be appropriately reflected by the data 

point. All water samples in this study with coliform counts above 3.2 log MPN/100 ml, 

the upper limit of detection, were recorded as 3.2 log MPN/100 ml, adding error into the 

calculations of the correlation coefficients. 

 The presence of weak correlations between index microorganisms and pathogens 

in surface water (12, 17, 19, 33, 42, 64) Moderate correlations were obtained when E. 

coli or coliform data from the current study were analyzed for correlations with 

Salmonella populations for individual sites (Table II.b) however, when the data were 

aggregated for all site correlations between E. coli or coliforms and Salmonella, both had 

R
2
 values of 0.1, indicating that other factors beyond those studied here influence the 

relationships between pathogens and index microorganisms. Studies that report similar 

results conclude that high correlations between pathogens and index microorganisms may 

be temporal, random, site specific, or time specific (64). High correlations between 

pathogens and index microorganisms often occur at point sources, such as surface waters 

impacted by improperly treated sewage or runoffs from livestock farms, where the levels 



34 
 

 

of index microorganisms and pathogens are consistently high for a longer period of time 

(64). Our study was conducted in rural agricultural Florida, where the influence of raw 

sewage effluent is not expected and was not observed. The occurrence of Salmonella in 

the environment may be at a much higher frequency than previously assumed; under 

some conditions, such as those in Central Florida, Salmonella may not be transient in 

nature within surface waters as was previously reported (9). 

In tropical and subtropical watersheds, E. coli may be autochthonous rather than an 

indication of fecal contamination (21, 44). Results reported here, along with those of 

other studies carried out in geographically similar locations (36, 62, 66), suggest that the 

presence of Salmonella in the environment may not result solely from a recent fecal 

contamination. Correlations between E. coli and Salmonella populations in Central 

Florida surface waters may not be explicit evidence of fecal contamination but rather of 

conditions favorable to the survival of both organisms. 

Not only did our analysis find no strong correlations between E. coli or coliform 

populations and Salmonella, possibly due to no influence of improperly treated sewage or 

runoff from livestock, Salmonella levels were not correlated with rainfall or seasons as has 

previously been reported (33). In our analysis, average rainfall, whether aggregated for 

24 h, 1 week, or 1 month (prior to sampling), did not correlate with Salmonella, E. coli, or 

coliform levels. Conflicting results have been reported in several other studies that also 

attempted to determine a correlation between rainfall and pathogen prevalence. A 

southern Ontario, Canada, surface water study found that the lowest occurrence of 

Salmonella did coincide with the month (February) with the lowest recorded precipitation, 

air temperature, and water temperature (81). A positive correlation between Salmonella 
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prevalence and rainfall (mm/day) was reported, without actual R
2 

values being present, 

during a study in southern Morocco (74). The Morocco study analyzed 100 ml of 

seawater collected monthly at six sites for a 4 year duration. In New York state, 

Salmonella had a higher prevalence in surface waters when measurable precipitation 

within 3 days prior to sampling; however, this was observed only in areas of poorly 

drained soils (80). The differing results may suggest that rainfall does have some effect on 

Salmonella prevalence in surface waters, not as a direct correlation, but perhaps in a 

multifactorial way, including more characteristics than those noted in the current study. 

A study in Puerto Rico attempted to correlate rainfall from 24 h, 48 h, and 1 week 

prior to water sampling for fecal coliforms and found no correlation between fecal 

coliforms and precipitation in any of the 10 sampling sites (71). Santiago-Rodriguez et al. 

(2012) suggested that rainfall may cause correlations to increase due to resuspension of 

fecal coliforms from sediments but that rainfall may have a possible dilution effect on 

fecal coliform concentrations, which may lower correlations.  Some studies have indicated 

that turbulence caused by rainfall may resuspend pathogens or indicator microorganisms 

from sediments, raising their levels in the waters by 100 or 1,000-fold and that the depth 

and size of the water body dampen any rainfall dilution effect on the indicator/pathogen 

levels (33).  Our study did not find a correlation between rainfall and Salmonella or E. coli 

and coliform populations. At no point during the water sampling procedure was the 

sediment disturbed; all sampling sites had great enough depth, and care was taken not to 

disturb the sediment during sampling. The depth of water varied at and between each of 

the sampling locations. The consistently low turbidity (Figure 2.4) evidences the lack of 

sediment disturbance. Higher sample turbidity did not correlate with larger Salmonella 
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populations. This may indicate that overt sediment disturbance is not a major 

contributing factor to the presence of Salmonella in Central Florida surface waters. 

Correlations were not influenced by season, possibly due to the relatively small 

temperature changes in Central Florida’s subtropical climate. However, in southern 

Ontario and New York State, areas with much larger seasonal temperature variations, 

Salmonella positive samples were not significantly different between seasons (80, 81). 

The rise and fall in the levels of biological characteristics was random and did not 

coincide with increasing temperatures in the summer and reduced temperatures in the 

winter. This is contrary to the finding of Gorski et al. (2011), who noted a noticeable 

seasonal trend in the prevalence of Salmonella in surface water samples from the 

Salinas Valley of California. Further work is required to acquire a better understanding 

of whether, and over what range, water temperature would have an effect on 

Salmonella prevalence and whether geographic location or other climacteric factors 

also have an effect. 

Physicochemical water characteristics have been used to monitor the chemical and 

microbiological qualities of drinking and recreational water. Data from some sites 

(Table II.b) showed that turbidity, ORP, and conductivity can predict the levels of 

Salmonella in surface water, but when aggregated across all sites, none of these parameters 

produced acceptable correlations. Although R
2 

values were low, indicating the possible 

impact of additional un measured factors, such as dissolved oxygen, total assimilable 

carbon, or biological oxygen demand. Table II.c describes interesting and significant (P 

< 0.05) relationships between the measured parameters and the microbial concentration. 

For instance, when E. coli or solar radiation levels increase, these increases are correlated 
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with increases in Salmonella levels. The positive correlation of solar radiation with 

Salmonella may be partially explained by Salmonella being more resistant to solar 

radiation than are other bacterial pathogens, such as E. coli, Shigella flexneri, and Vibrio 

cholerae (4). As solar radiation increases, less resistant bacteria are inactivated, leaving 

fewer bacteria to compete for nutrients; Salmonella would have access to a greater 

amount of nutrients as solar radiation increase. When conductivity levels increase, there is 

a highly statistically significant (P < 0.0001) inverse correlation with the E. coli 

concentration. Conductivity of surface water is an indirect measure of salinity and total 

dissolved solids and may be affected by storm water and runoff (31). An inverse 

correlation between indicator bacteria (E. coli, enterococci, and Bacteroides) and 

conductivity or salinity was reported for estuary waters in eastern North Carolina (31). 

The inverse correlation noted in the current study may be due to storm water and runoff 

effects in which the addition of the storm water or runoff in carrying salinity or other total 

dissolved solids from the surrounding area also dilutes the E. coli concentration. The 

sampling sites used in the current study were not influenced by seawater. Though these 

relationships are statistically significant, low coefficient of correlation (1 or -1) values 

indicate that other as yet unknown factors are also involved. 

The complex nature of the index or indicator and pathogen relationship makes 

predicting the levels of pathogens through index/indicator microorganisms challenging; 

simple, linear relationships cannot be relied upon for predicting pathogen levels from 

indicator populations. Logistic regression analysis can be used where a linear 

relationship between variables is weak. Logistic regressions provide a measure of 

predictability and have been used to predict the efficiency of a water treatment process in 
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which the pathogen of interest is poorly correlated to its index/indicator microorganisms 

( 6 4 ) . E. coli concentration  has a fair ability to predict the Salmonella concentration 

(Figure 2.5) in surface water in Central Florida. The model is limited to predictions with 

the range of E. coli concentrations used to develop the model, ranging from the limit of 

detection (1 log MPN/100 ml) to the maximum possible enumeration level for E. coli 

(3.2 log MPN/100 ml). Predictive models (linear) for E. coli have been reported for 

individual sites for inland recreational lakes in Ohio; explanatory variables included 

rainfall, turbidity, wind, and water temperature (28). Some site models were validated by 

data collected from an independent year, while others were not able to be validated due 

to climatic changes (28). In the same study, no predictive models were generated for 

Salmonella, but the authors did note that water samples that were PCR positive for 

Salmonella had higher median concentrations of E. coli (28). The performance of our 

Salmonella predictive model was able to be evaluated by data collected during an 

independent year or from independent locations. 

As part of the implementation of the Food Safety Modernization Act (FSMA), 

the U.S. FDA has proposed produce safety rules for safe growing, harvesting, 

packing, and holding of fruits and vegetables grown for human consumption. The pro- 

posed produce safety rule recommends collecting 5 samples. Those samples should 

have a mean E. coli concentration of 126 MPN/100 ml, and no single sample should 

exceed 235 MPN generic E. coli/100 ml (82). Based on the model for surface water in 

Central Florida, 126 MPN/100 ml and 235 CFU/100 ml criteria translate to 

probabilities of containing 5 MPN Salmonella /100 ml of 54.4% and 56.2%, 

respectively. In addition, the levels of generic E. coli in our surface water samples 
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exceeded the recommended criteria ca. 30% of the time, suggesting that, according to 

proposed standards, some sites tested may be unsuitable for agricultural use. 

The absence of strong correlations (low R
2
) between index/indicator 

microorganisms or chemical or physical indicators and Salmonella levels limits their 

ability to predict the prevalence of Salmonella. However, significant positive relationships 

occur between E. coli and Salmonella levels and between solar radiation and Salmonella 

levels. These may offer a fast but qualitative indication of the degree of Salmonella risk. 

Logistic regression analysis appears to provide the best alternative to a weak quantitative 

linear model. Thus, pending the discovery of new, more reliable index/indicator 

microorganisms, E. coli levels can be used to predict the probability of enumerating a 

standard Salmonella level in Central Florida surface water and provide a preliminary 

measure of risk. 

Given the dynamic, heterogonous, and complex nature of surface water 

ecosystems, the challenge remains to find an indicator parameter that is easy, rapid, and 

inexpensive to test for and that has a more intimate relationship, beyond causal 

association, with the pathogen and is therefore less sensitive to extraneous factors. 
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III.1 Abstract 

The influence of weather on microbes deposited onto pre-harvest crops is poorly 

characterized. This study quantifies the effect of key weather attributes on the fate of E. 

coli introduced onto the surface of oranges in a grove through foliar spraying. Three 

orange trees were sprayed with low microbial quality water (ca.10
6
 CFU E. coli/ ml) and 

three trees (control) were sprayed with well water in 27 monthly field trials. Three 

replicates of 10 oranges each were harvested from each of the 3 trees at 0, 2, 6 and 24 h 

intervals and then 1,2 or 3 day intervals until E. coli could not be detected by enrichment. 

This procedure was repeated with 0.1% copper hydroxide (pesticide) added to 

contaminated spray water in 8 monthly trials. E. coli populations were enumerated by 

plate count and most probable number techniques. Solar radiation (SR), temperature, 

relative humidity (RH) and rainfall data were also obtained from the Florida Automated 

Weather Network (FAWN) and plotted against log change in E. coli concentration 

between sampling points for each month. Change in RH, SR, rainfall, temperature and 

time interval between sampling points did not show strong linear correlations with log 

change in E. coli between sampling points (R
2 

< 0.4). However solar radiation, relative 

humidity, temperature and time were significantly (p < 0.001) correlated with log change 

in E. coli/h. Logistic regression analysis showed that log reductions in E. coli 

concentration were higher and more likely to occur due to dry weather (high SR and low 

RH) compared to log increase due to wet weather (low SR and high RH). E. coli 

populations on the surface of oranges were reduced by 2.6 logs when sprayed with water 

containing 0.1% copper hydroxide at time 0. 

Key words: Modeling, E. coli, correlation coefficient, likelihood, solar radiation,  



42 
 

 

III.2 Introduction 

Agricultural water is considered one of the common sources of bacterial, viral and 

protozoal pathogen contamination of fruits and vegetables (20, 32, 39, 40, 49, 77). There 

have been reports of foodborne illness associated with fruits and vegetables traced back 

to the application of contaminated agricultural water (6, 39, 77). Direct application of low 

microbial quality water to pre harvest crops has implications on the microbial safety of 

fruits and vegetables. Examples of direct application of agricultural water include dilution 

of agrochemicals for foliar spray applications, frost protection, hydrocooling and post 

harvest wash. In 1996 and 1997, an outbreak of Cyclosporiasis associated with 

Guatemalan raspberries was reported in North America. Investigations revealed that the 

raspberries had been contaminated through insecticides and fungicides diluted with 

contaminated water (41). Salmonella outbreaks associated with tomatoes and Serrano 

peppers in 2005 and 2009 respectively, were traced to water from irrigation ponds (34, 

46). 

The persistence of food borne pathogens on pre-harvest crops surfaces is 

dependent on intrinsic characteristics of the pathogen, surface characteristics of the plant, 

extrinsic ecological conditions and production practices for the crop (8, 38). Attachment 

structures such as fimbriae, curli and flagella, type III secretion system, biofilm 

formation, bacterial hydrophobicity, virulence genes, cross protection against 

environmental stresses, horizontal gene transfer, are some intrinsic factors that have been 

used to explain the establishment and fitness of bacterial pathogens on pre harvest crops 

(8, 68). Plant surface structures such as lenticals, trichomes and stomata, tissue injury, 

wax, presence of microsites with nutrients and moisture, competition from resident 
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epiphytic bacteria may affect colonization of plant surfaces by enteric pathogens (8, 78). 

Enteric pathogens may also encounter extrinsic conditions on the surfaces of plants that 

may affect their survival. Rapid and wide fluctuations in relative humidity (RH), 

temperature, solar radiation (SR), and rainfall have been reported to cause rapid death of 

cell populations on leaf and fruit surfaces (5, 8, 78). 

Laboratory based model systems (growth chambers, controlled green houses) 

have been used to study the influence of weather factors on the survival of enteric 

pathogens on pre harvest crops. Stine et al. (2005) evaluated the effects of two relative 

humidity levels on the survival of 8 viral and bacterial pathogens on live lettuce, green 

peppers and cantaloupes in a controlled environment chamber. The study found that 

inactivation rates of microorganisms under different relative humidity conditions were 

variable. Whereas with lab based model systems it is possible to select and control the 

variables of study, it is difficult to simulate weather factors such as wind, rainfall, 

fluctuating relative humidity, solar radiation and temperature, soil chemistry variation, 

predation of enteric pathogens by other microorganisms and production practices that 

characterize the natural agricultural environment (38). Although field based studies are 

conducted under most natural conditions and using the appropriate agricultural practices, 

it is difficult to study the effects of any variable on the survival of pathogens. The 

environment is highly heterogeneous with many potentially correlated and confounding 

variables at play. One additional source of complexity is that use of pathogens associated 

with outbreaks presents significant biocontainment and decontamination challenges (38). 

As a result, field studies are rare and most of the available literature on the survival of 

pathogens on pre harvest crops comes from experiments with lab based model systems. 
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Our study evaluates and quantifies the effects of key weather parameters (RH, SR, 

rainfall and temperature) on the survival of surrogate bacteria (generic E. coli) on the 

surface of oranges under natural conditions in a grove. This study also evaluates the 

effectiveness of copper hydroxide based pesticides (used for prevention of citrus canker) 

as a risk mitigating step against low microbial quality water sources used in the 

preparation of foliar sprays. 

III.3 Materials And Methods  

III.3.a Inoculation of spray water with cow manure 

Well water wasg mixed with fresh cow manure (from a free range cattle ranch) to 

simulate contamination of oranges through application of low microbial quality spray 

water. A 10 g of representative sample was mixed with 90 ml of 0.1% peptone (Difco, 

Becton Dickinson & Co., Sparks, MD) water to determine how much manure to add to 

well water to produce a low (2 log CFU E. coli/ml) and a high inoculum level (4 log CFU 

E. coli/ml). Serial dilutions were made as needed with 0.1% peptone water and 100 μl 

were plated on tryptic soy agar (TSA; Difco, Becton Dickinson & Co., Sparks, MD) and 

Chromagar
TM

 ECC (Microbiology, Paris, France). Plates were incubated at 37 °C for 24 

h. Pink (coliforms) and green (E. coli) colonies were counted. The results were used to 

calculate the amount of manure needed, which was mixed with 38 liters of well water in a 

13 gallon bin (Newell Rubbermaid Inc., Atlanta, GA). The manure/water mixture was 

filtered using a fiberglass screen (New York wire, Grand Island, NY) to remove grass and 

other debris prior to use. The slurry was further filtered through a cheese cloth (Thermo 

Fisher Scientific Inc., Waltham, MA) to prevent clogging into 15 gallon sprayer 
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equipment (Model:15SW102HLB1G0N 36 X 16. 25 inch 1.0 GPM, SMV industries, 

Council Bluffs, IA). 

III.3.b Enumeration of E. coli and coliforms in spray water 

Samples of low and high concentration inoculated spray water were collected and 

tested for E. coli, coliforms and total plate count by making appropriate dilutions in 0.1% 

peptone water and plating 100 μl on Chromagar
TM

 ECC and tryptose soy agar. Plates 

were incubated at 37 °C for 24 h. Generic E. coli and coliform counts were determined by 

counting blue and pink colonies on Chromagar
TM

 ECC respectively. 

III.3.c Spraying orange trees in a grove 

Orange trees used for this research were located in a grove at the Citrus Research 

and Education Center (CREC) in Lake Alfred, Florida. Three trees were selected for 

spraying and appropriately marked, while 3 other trees were marked as controls. A buffer 

zone of one row of orange trees was used to separate the test trees from the control trees 

to prevent contamination of the control group during spraying. The test trees were 

sprayed (ca. 200-250 l/acre) with manure inoculated well water until “drip off” (i.e. 

leaves and oranges were saturated with water). Control trees were sprayed with 

inoculated well water until drip off. Spraying was done during the harvest seasons for the 

Hamlin (September-February) or Valencia (March-June) orange varieties. This procedure 

was repeated for the spray water that was inoculated with low levels of E. coli. Twenty 

seven monthly field trials were conducted between 2012 and 2015. Personnel changes 

that occurred during the 2015 season necessitated the use of only a single inoculum level, 

as well as raising of the detection limit for some of the monthly trials. 
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III.3.d Application of copper hydroxide in spray water 

Copper hydroxide (Kocide 3000, Wilmington, DE) was added to high and low 

inoculum water prior to spray application. Eight monthly field trials were conducted with 

copper hydroxide treated water between October 2014 to May 2015. The rate of 0.1% 

copper hydroxide used was equivalent to a typical field spray concentration for citrus 

prepared by adding 2.26 lb. of Kocide in 125 gallons of well water. 

III.3.e Harvesting and enumeration of E. coli from oranges  

Three replicates of 10 fruits each (a total of 30 fruit) were harvested from each 

tree, using sterile gloves between each replicate and placed in separate sterile plastic bags 

(Fisher scientific, Pittsburgh, PA 15275). The fruit was taken to the laboratory for 

processing. Each orange (from each replicate) was placed in a sterile whirl pack bag 

(Nasco, Fort Atkinson, WI, USA) with 100 ml of sterile 0.1% peptone water and 

massaged by hand for 1 min until all 10 oranges were processed. The stock solutions 

were diluted with 0.1% peptone water, plated onto TSA and ECC Chromagar. Plates 

were incubated at 37 °C for 24 h. Sampling was done at time 0, 2, 6, 24 h and at 

subsequent 24 h intervals. Coliforms and E. coli levels were determined by plate count 

method, but when counts below detection limit were attained, an MPN count was done 

using Colilert and QuantiTray®/2000 (IDEXX Laboratories Inc., Westbrook, Maine). 

Sampling was continued until when the detection limit (-1 log MPN/orange and 1 log 

CFU/orange in year 2015) was attained in 2 sequential samplings. 

III.3.f Weather data 

Solar radiation, rainfall, temperature and relative humidity were obtained from the 

Florida Automated Weather Network (FAWN) website (http://fawn.ifas.ufl.edu/).  
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III.3.g Statistical analysis  

Non-linear curve fitting for E. coli survival curves was also done using the 

Microsoft
® 

Excel (Microsoft, Redmond, CA) add-in GInaFit (29). The biphasic model 

consisting of two log linear phases (equation 2) and Weibull model (equation 3) were 

fitted to E. coli survival curves.  

                       …………….………………………….………….(2) 

Where delta (Δ) is a scale parameter and can be denoted as the time for the first decimal 

reduction, p is a shape parameter, final cell density (Log10 (N)) at time t, and initial cell 

density (Log10 (N0)). 

                          
                       )…..…..……......(3) 

Where f is the fraction of the initial population (major subpopulation), (1-f) is the fraction 

of the initial population (minor subpopulation which is more heat resistant than the major 

population), and kmax1 and kmax2 (1/time unit) are the specific inactivation rates of the 

two populations, respectively. Linear regression analysis between the average monthly 

trial weather data and model parameters was done. 

Linear regression, correlation coefficient and logistic regression analysis were done using 

Sigma
®
 plot statistical software (Systat software, San Jose, CA) and Microsoft Excel 

(Redmond, WA). Classical log linear inactivation model was fitted on log change in E. 

coli populations/h and average change in rainfall, temperature, relative humidity, time 

and solar radiation data between sampling points. Log change in E. coli populations/h 

was determined by dividing the log change in E. coli populations by the time interval 

between sampling points. Logistic regression models are probabilistic and semi 

quantitative compared to linear regression models but serve as suitable alternatives in the 

absence of strong linear regression models. They show the most likely outcome through 
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probability of occurrence and significance (p values). Log E. coli change/h data were 

converted into binary data (0 or 1). For log reduction, a criterion of between 0.01 and 1.0 

log E. coli change/h was set where observations above the criteria were coded 1 and 

observations below the criteria were coded 0. For log increase the criterion was set at 

0.001 to 0.01 log E. coli/h. Logistic regression analysis was conducted with the binary 

data as the dependent variable and weather factor as the independent variable. The 

equation for the model was: - 

Logit P = C + K * (Weather variable data)….……………………………………….... (4) 

Where logit P is defined as the natural log (ln) of (P/1-P), C is a constant, K is the model 

coefficient and weather variables were SR and RH. 

III.4 Results 

Data on all the field trials are available as supplemental material, and presented in 

appendices VI.1 (field trial 2012), VI.2 (field trial 2013), VI.3 (field trial 2014) and VI.4 

(field trial 2015) of this dissertation. 

Field trial 2012 (see Appendix VI.1: Figures 5.1 to 5.4): In April and May, E. 

coli populations declined to detection limit at day 22 and day 15 respectively. There were 

no significant (> log 0.5) increases between sampling points. In June, there were 

significant increases in E. coli populations on days 2 (1 log) and 3 (0.8 log) respectively, 

but thereafter, populations declined to detection limit at day 23. In October, E. coli 

populations increased significantly on day 2 (0.7 log) and remained detectable up to day 

22 for high inoculation levels; for low inoculation levels E. coli levels declined to 

detection limit on day 6; however there was an increase (log 0.8) on day 3. In November 
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and December, populations of E. coli became undetectable on days 12 and 3 respectively 

for high inoculation levels; at low inoculation levels, E. coli was undetectable at day 2 

and 6 hours in November and December respectively. Overall (see Appendix VI.1: 

Figures 5.1 to 5.4) there were no visual correlations between hourly RH, rainfall, SR and 

temperature patterns with E. coli survival patterns except for the month of June and 

October (Appendix VI.1: Figure 5.4C and 5.4D). Increase in E. coli levels correlated 

(visually) well with increase in rainfall levels (< 10 days). Similarly increase in E coli 

levels was also correlated visually with low fluctuations in RH whereas high fluctuations 

in RH correlated well with decline in E. coli levels (Appendix VI.1:Figure 5.2C and 

5.2D). 

Field trial 2013 (see Appendix VI.2: Figure 6.1 to 6.4): In January, E. coli 

populations declined and were undetectable at day 7 and day 15 for both low and high 

inoculation levels respectively. In February, E. coli populations declined to detection 

limit at day 7 and day 10 for low and high E. coli populations respectively. In March, at 

low inoculum level, E. coli populations declined rapidly and were undetectable after 2 

hours, whereas at high inoculation, E. coli was undetectable at day 1. In April, E. coli 

populations declined to detection limit at day 16 and day 10 for high and low inoculation 

levels respectively; there was a significant increase at day 13 for high inoculation level.  

In June, E. coli populations declined to detection limit at day 9 for high inoculation level 

whereas at low inoculation level sampling was discontinued at day 3; there were 

significant increases at day 3 (log 0.6) and day 1(1.4 log) for high and low inoculation 

levels respectively. In October, E. coli populations declined to detection limit at days 8 

and 1 for high and low inoculation levels respectively. In November, E. coli populations 
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declined to detection limit on day 2; there was however an increase at 6 h by 1.7 log. For 

low inoculation levels, E. coli populations were at undetectable levels even at 2, 6, and 24 

h. In December, E. coli populations declined to detection limit at day 14 for high 

inoculation level; there was an increase at day 3 by 1 log. For low inoculation levels, E. 

coli populations declined gradually to detection limit at day 7. Overall there were no 

visual correlations between E. coli survival patterns with hourly weather data except for 

April, June and November (see Appendix VI.2: Figures 6.4 D, 6.4E and 6.4G), where 

rainfall correlated well with increase in E. coli levels. Low fluctuations in RH also 

correlated visually well with increase in E. coli levels (Appendix VI.2: Figure 6.2E and 

6.2G) whereas high fluctuations correlated (visually) well with rapid decline in E. coli 

levels (Appendix VI.2: Figure 6.2A, 6.2C).  

Field trial 2014 (See Appendix VI.3: Figure 7.1 to 7.4): In January E. coli 

populations declined to detection limit at day 1 and day 8 for low and high inoculation 

levels respectively; at day 3 there was a significant (0.9 log) increase in E. coli 

populations for high inoculation level. In February, E. coli populations declined rapidly 

to detection limit at 6 h for both low and high inoculation. There was a slight but 

insignificant increase in E. coli populations at day 1 and 2 for high inoculation but the 

levels declined back to detection limit at day 3;populations remained undetectable even at 

day 3 for low inoculation. In March, E. coli populations declined post spraying but there 

were significant increases at day 2 by 3.4 logs and at day 14 for high inoculation; there 

was significant increase (0.9 logs) for low inoculation at day 2. E. coli populations 

declined to detection limit at day 3 and day 17 for low and high inoculation levels 

respectively. In April, E. coli populations declined rapidly to detection limit after 2 h for 
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low inoculation and day 3 for high inoculation. In May, E. coli populations declined 

rapidly to detection limit after 2 h and at day 3 for low and high inoculations respectively. 

Overall, survival patterns for E. coli didn’t correlate visually well with hourly RH, 

rainfall, SR and temperature patterns except for the months of January (and then only 

slightly) and March, October, and December where increase in rainfall correlated visually 

well with rise in E. coli levels (Appendix VI.3; Figures 7.4A, 7.4C, 7.4F and 7.4H). As a 

result of an increase in rainfall, low relative humidity fluctuations correlated visually well 

with increase in E. coli populations in January, March, October and December (Appendix 

VI.3: Figures 7.2A, 7.2C, 7.2F and 7.2H). High fluctuations in RH correlated visually 

well with decline in E. coli populations particularly in the later stages of sampling for 

January, October and December (Appendix VI.3: Figures 7.2 A, 7.2F and 7.2H). 

Field trial 2015 (see Appendix VI.4: Figure 8.1 to 8.4): In January, E. coli 

populations declined to detection limit (-1 log MPN/orange) at low inoculation level but 

after 20 h, there were increases at both high and low inoculation levels. Subsequently E. 

coli at both high and low levels then declined to the detection limit at 72 and 48 h 

respectively. In February, March and April, E. coli at high inoculation level declined to a 

revised detection limit (1 log CFU/orange) after 48 h; low inoculation levels for E. coli 

was not used. There was no significant increase in E. coli populations at below 48 h. In 

May, E. coli populations at high inoculation levels declined to 1 log CFU/orange after 24 

h. In summary, rainfall (Appendix VI.4: Figure 8.4A) and RH (Appendix VI.4: Figure 

8.2A) patterns for January correlated well with increase in E. coli populations; SR and 

temperature patterns didn’t correlate visually well with E. coli survival patterns.  
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Figure 3.1 shows representative survival curves for indicator bacteria and hourly 

weather data patterns for 4 field trials.  

 

Figure 3.1: Representative plots for the influence of weather factors on E. coli population 

changes. High E. coli inoculation level (dark circle) and low E. coli inoculation (open 

circle), against rainfall (upper left), relative humidity (lower left), solar radiation (upper 

right) and temperature (lower right), where all weather factors are represented by grey 

lines 

III.4.a Modeling the effect of weather on the survival of E. coli on oranges 

The R
2 

values for the Weibull (equation 2) and biphasic (equation 3) models fitted 

to the monthly trial data were between 0.5 and 0.99 indicating a high goodness of fit for 

the models (Table III.a). Figure 3.2 shows an example of Weibull model fitting of April 

2012 monthly trial data. When the Δ (time for first decimal reduction) and p (shape 

parameter) for the Weibull model and kmax1 (inactivation rate in initial phase), kmax2 
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(inactivation rate in final phase) and f (fraction of microbial population) parameters for 

the biphasic model were plotted against the monthly weather averages (SR, RH, rainfall 

and temperature) the R
2 

values
 
were low (< 0.3, data not shown). This demonstrated that 

the weather variables couldn’t be used to predict parameters for both models and 

therefore both models could not be used quantify the effects of the weather  

 Figure 3.3 shows scatter plots of the SR, temperature, rainfall, RH and time 

(between sampling points) against log E. coli change/h at low and high E. coli inoculation 

levels. Linear regression analysis showed that weather and time (between sampling point) 

variables had weak linear relationships with log change in E. coli populations/h (R
2
 < 

0.3). A multiple linear regression analysis with the weather and time variables as the 

independent variables and log change in E. coli populations/h as the dependent variable 

also showed that a linear combination of the 5 variables couldn’t be used to predict log 

change in E. coli populations/h (R
2
 < 0.2); of the 5 variables, only solar radiation (SR) 

was significant (p < 0.05). Table III. b shows correlation coefficients and p values 

between SR, RH, rainfall, temperature, time (between sampling points) and log change in 

E. coli populations/h for combined low and high E. coli inoculation data. SR and 

temperature were significantly negatively correlated with log E. coli. However based on 

their p and r values SR (p = 7.39E-22, r = -0.55) was more significant (had a higher 

influence on log reduction) compared to temperature (p = 5.44E-07, r = -0.31). RH and 

time were significantly positively correlated with log change in E. coli/h. However based 

on p and r values, RH (p = 8.92E-09, r = 0.35) was more significant (had a higher 

influence on log increase) compared to time (p = 2.58E-02, r = 0.26).  

The first time the level of E. coli fell below the limit of detection (-1log 
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MPN/orange or 1log MPN/orange) the log change between that time and the prior time 

was included in the analysis. The log change between the first and second occurrence of 

an E. coli level below the detection limit was not included in the analysis, since an 

accurate determination of the log change was not possible. 

Logistic regression analysis was done using the two most influential variables on 

log change in E. coli/h. SR and RH were significant (p < 0.05) in predicting the 

likelihood of a log reduction in E. coli per hour (Figure 3.4 and 3.5). SR and RH were 

significant (p > 0.05) in predicting the likelihood of a log increase of ≥ 0.001 to 0.1 log E. 

coli per hour. Overall the likelihood of a log reduction in E. coli at low RH and high SR 

was higher compared to the likelihood of a log increase at low SR and high RH.  

 

  

Figure 3.2: Biphasic and Weibull model fitting of December 2013 E. coli survival data  
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Table III.a: R
2
values for Weibull and Biphasic model fitting of E. coli survival monthly 

trial data for high inoculation level  

Month  R
2 

(Weibull Model)  R
2 

(Biphasic model)  

Apr-12 0.93 0.33 

May-12 0.98 0.66 

Jun-12 0.75 0.74 

Oct-12 0.94 0.94 

Nov-12 0.86 0.97 

Dec-12 0.84 0.99 

Jan-13 0.96 0.92 

Feb-13 0.92 0.78 

Mar-13 0.79 0.97 

Apr-13 0.74 0.97 

Jun-13 0.46 0.96 

Oct-13 0.90 0.93 

Nov-13 0.63 0.78 

Dec-13 0.84 0.90 

Jan-14 0.58 No fit  

Feb-14 0.51 0.99 

Mar-14 0.58 No fit 

Apr-14 0.45 No fit  

May-14 0.45 0.99 

Oct-14 0.92 No fit  

Nov-14 0.86 0.99 

Dec-14 0.77 0.87 

Jan-15 0.71 0.82 

Feb-15 0.86 0.98 

Mar-15 0.86 0.98 

Apr-15 0.60 No fit  

May-15 0.76 No fit  
No fit-Data points less than the minimum required for curve fitting  
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Figure 3.3: Linear regression analyses between log E. coli change/h at both high and low 

E. coli inoculation levels against solar radiation (D), temperature (B), relative humidity 

(A), rainfall (C) and sampling time (E). The slopes were close to zero. 
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Table III.b: Correlation coefficients (r) and p values (p) for log E. coli change/h against 

solar radiation (SR), temperature, relative humidity (RH), rainfall and sampling time for 

all E. coli inoculation levels.

N = 256 observations, p values in bold were significant (p < 0.05)  

 

Temp (°F) RH (%) Rain (inches) SR (W/m2) E.coli change h-1

Time (h) r -0.15 0.137 -0.0585 -0.254 0.255

p 8.88E-03 0.017 0.308 6.78E-06 6.42E-06

Temp (°F) r -0.236 0.0115 0.52 -0.31

p 3.14E-05 0.842 1.64E-22 3.16E-08

RH (%) r 0.154 -0.737 0.355

p 7.02E-03 1.75E-53 1.63E-10

Rain (inches) r -0.0882 -0.0668

p 0.124 0.245

SR (W/m2) r -0.562

p 8.84E-27
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Figure 3.4: Logistic regression analysis between solar radiation (SR) and log change in E. 

coli populations/h. A shows the probabilities of log reduction/h ≥ 1.0 (black line), 0.5 

(dotted line), 0.1 (short dashes), 0.05 (dash dot dot), 0.02 (bold long dash short dash), 

0.01 (long dashes) at high SR levels. B shows the probability of log increase/h ≥ 0.001 

(black line), 0.005 (dotted line), 0.01 (short dashes), 0.05 (dash dot dot) and 0.1 (long 

dashes) in E. coli at low SR levels. Log reductions were significant more likely (p < 

0.001) to occur compared to log increase 
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Figure 3.5: Logistic regression analysis between relative humidity (RH) and change in 

log E. coli populations/h.  A shows the probability of log reduction/h ≥ 1.0 (dark line), 

0.5 (dotted line), 0.1 (short dashes), 0.05 (dash dot dot), 0.02 (bold long dash short dash) 

and 0.01(log dashes) at low RH levels. B shows the probability of log increase/h ≥ 0.001 

(dark line), 0.005 (dotted line), 0.01 (small dashes), 0.05 (dash dot dot) and 0.1(long 

dashes) in E. coli at high RH levels. Log reductions were significant (p < 0.001) and 

more likely to occur compared to log increase 
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III.4.b Quantifying the effect of copper hydroxide on E. coli concentration in spray 

water 

To quantify the effect of the addition of 0.1% copper hydroxide in inoculated 

spray water, the average of the difference between concentrations of E. coli from 

inoculum sprays (with and without CuOH2) at time zero for both high and low E. coli 

levels was calculated. The mean difference was found to be 2.6 ± 0.9 SD. This means that 

adding 0.1% CuHO2 to spray water reduces the concentrations of indicator 

microorganisms and that of associated bacterial pathogens by ca. 2.6 log reductions. 

III.5 Discussion 

A visual inspection of the monthly trial data showed a few instances where rapid 

decline in E. coli populations appeared to occur co-incident with fluctuations in RH and 

absence of rainfall, which were characteristic of dry weather. We speculate that the high 

fluctuations in RH during dry weather may have stressed the bacteria resulting in rapid 

decline in E. coli levels, as has been reported in the literature (5, 8, 78). Conversely, 

increases in E. coli populations were sometimes seen to occur coincident with minimal 

fluctuations in RH and in times of rainfall characteristic of wet weather, which is also 

consistent with the published literature (78). Unfortunately these phenomena were not 

consistently observed in across all dry or wet months. In some occasions, E. coli 

populations declined even in the presence of high rainfall and high RH. Fluctuations in 

temperature and solar radiation patterns didn’t also correlate with survival curves of E. 

coli. 

Although the Weibull and biphasic models provided the best fit (compared to 

classical log linear model) for E. coli survival curves, the average monthly weather data 
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couldn’t be used to predict the models parameters (delta, p, kmax1 and kmax2) owing to 

the low R
2 

values. Consequently the models couldn’t be used to predict the effects of 

weather on E. coli populations. Mckellar et al. (2014) evaluated the survival of E. coli 

O157:H7 on contaminated field lettuce using several data sets collected from field based 

experiments. The authors found that the pathogen decay pattern in most cases fitted the 

biphasic model although the Weibull model also showed a good fit. We found that the 

Weibull model fitted our data better than the biphasic model. Classical linear regression 

analysis between SR, temperature, rainfall, RH and sampling time and log E. coli 

change/h produced low R
2 

(< 0.4) indicating weather variables couldn’t adequately 

predict log E. coli change/h. Mckellar et al. (2014) similarly observed a lack of a good fit 

in the linear regression analysis of E. coli O157:H7 survival data on field lettuce. 

Correlation coefficients (Table III.b) were useful in showing the direction and 

the significance of the relationship between independent and the dependent variables. The 

pairs of variables with positive correlation coefficient (r) and p values below 0.05 tend to 

increase together. For the pairs with negative correlation coefficients and p values below 

0.05, one variable tends to decrease while the other increases. For pairs with p values 

greater than 0.05, there is no significant relationship between the two variables. 

Correlation coefficients close to 1 or -1 were indicative of strong linear relationships 

between variables. Our study has demonstrated that relative humidity (RH), solar 

radiation (SR), temperature and time had an influence on the survival of E. coli on the 

surface of oranges (Table III.b) consistent with the literature (5, 8, 78). SR and 

temperature were significantly negatively correlated to reduction in E. coli populations 

but since SR had a comparatively lower p value and a higher correlation coefficient (p = 
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7.39E-22, r = -0.6), we considered SR to be a more influential variable on log reduction. 

RH, rainfall and time were correlated with increase in E. coli populations, however only 

RH and time were significant. Based on p value and correlation coefficient (p = 8.92E-

09, r = 0.35) we considered RH to have had the strongest effect on log increase in E. coli 

populations. Contrary to expectation, time was positively correlated to log increase in E. 

coli populations (Table III.b). This may have been occasioned by the rapid decline in E. 

coli populations after spraying as bacteria were acclimatizing to the new environment. 

Other interesting significant correlations were observed between temperature and relative 

humidity, temperature and solar radiation, temperature and rainfall, solar radiation and 

relative humidity and solar radiation and rainfall (Table III.b). The significance of these 

correlations was suggestive of a confounding effect between the variables. This is 

particularly important for lab based studies as it demonstrates the challenge of 

maintaining a variable constant e.g. increasing light intensity levels will raise temperature 

levels as well (38). Thus a considerable investment in equipment may be necessary to 

achieve constancy in the confounded variable.  

Similar to our recent study (53) where linear models between biological and 

physicochemical parameters against microbial levels were found to have low R
2
 values, 

logistic regression analysis was used in this study as an alternative to linear predictive 

modeling. Figures 3.4 and 3.5 show probabilities of the specified log reductions and log 

increase in E. coli/h at high and low SR and at high and low RH levels. For instance 

during dry and sunny weather, characterized by high SR levels (ca.800 W/m
2
) and low 

RH (ca. 30%) the models predicted an 80% and 85% chance of a ≥ 0.01 log reduction in 

E. coli/h respectively. During wet cloudy weather characterized by low SR levels (ca. 200 
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w/m
2
) and high RH level (100%) the models predict a 20% and 25% chance for ≥ 0.001 

log increase in E. coli/h respectively. Overall the likelihood and magnitude of log 

reductions were higher compared to log increase. 

Stine et al. (2005) evaluated the influence of high (mean 85.7 to 90.3%) and low 

humidity (mean, 45.1 to 48.4%) on the survival of 8 viral and bacterial microorganisms 

on the surface of lettuce, cantaloupe and bell peppers in a controlled environment 

chamber. The authors found the survival of microorganisms to be dependent on 

differences in the surface of the crop and the microorganism’s susceptibility to 

environmental stress. In cantaloupe, Salmonella and E. coli O157:H7 had lower 

inactivation rates under humid conditions while PRDI coliphage and FVC (feline 

calicivirus) survived longer under dry conditions. Similarly, our results showed that high 

RH had the potential to support microbial survival including microbial growth on the 

surface of oranges in a grove (Table III.b and Figure 3.5). Stine (2005) also evaluated 

the effect of light intensity (ca. 300 w/m
2
) on microbial survival at 3 light conditions, full 

light exposure, shaded exposure and no direct exposure, on the survival of E. coli 

inoculated on petri plates. On full exposure 99.9% reduction occurred in less than 1 day 

while for shaded exposure and no exposure, 99.9% reduction occurred in 3 days. These 

results confirm our observations of a highly significant relationship between SR and log 

reduction in E. coli populations/h on the surface of oranges in the grove (Table III.b and 

Figure 3.4). Other laboratory studies have evaluated the effects of UV radiation 

(responsible for the germicidal effect of SR), temperature and RH on microbial survival 

on fruits and vegetables (60, 67). Their results are in agreement with our correlation 

models. 
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For agricultural water that doesn’t meet proposed microbial quality requirements 

(Statistical threshold value (STV) of 410 or geometric mean of 126 CFU/100 ml of 

generic E. coli), the FDA proposes a microbial die off rate of 0.5 log CFU/day on pre 

harvest crops as an alternative for achieving similar public health safety as the microbial 

water standards (82). Our logistic regression models have demonstrated that log reduction 

or log increase rates are not constant. The probability of either log reduction or a log 

increase is dependent on increasing or decreasing SR or RH levels. Our data does not 

agree with the FDA’s published rule (0.5/day = 0.02/h) which assumes the probability of  

0.02 log reduction/h rate occurs 100% independent of changes in SR or RH levels. 

Narciso et al. (2012) demonstrated the effect of copper hydroxide spray used for 

citrus control on the survival of E. coli in broth and on grape fruit leaves. E. coli exposed 

to 0.1% copper hydroxide in vitro were eradicated from the broth within 6 to 8 h. No E. 

coli survived (detection limit of 1 CFU/ml) on leaf surfaces for both controls and leaves 

sprayed with copper beyond 48 h. In our study a 2.6 log reduction on surface of oranges 

in a grove was shown to occur at time 0 after application of 0.1% copper hydroxide spray 

(well water manure mixture). The 2.6 log reduction in E. coli that occurs as result of 

copper used in foliar sprays, coupled with predicted die off rates due to dry weather 

conditions, may allow large scale citrus growers to use surface water sources that do not 

meet the proposed produce water standards. 

III.6 Conclusion 

Many studies have documented the variety of pathways through which pre harvest 

fruits and vegetables can be contaminated with pathogens. They include contact with 
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contaminated manure, irrigation water, application of agrochemicals (prepared from 

contaminated water), feces from wild animals, reptiles and birds, dust, insect vectors, raw 

sewage, precipitation, surface runoffs, and climate (6, 39, 40). Our main objective for this 

study was to evaluate the change in microbiological risk posed by weather conditions on 

oranges in a grove contaminated through application of water of low microbial quality.  

Initial concentration of microorganisms on the surface of oranges in a grove after foliar 

spray application will be dependent on microorganism concentration in surface water. 

Thus high levels of enteric pathogens in surface water would result in high pathogen 

levels transferred to the surface of citrus fruits during foliar spray applications. This could 

pose a serious public health risk to consumers of fresh oranges and unpasteurized orange 

juice. Our study has shown that weather plays a significant role in the microbiological 

safety of fresh oranges. The role of dry weather (high SR and low RH) may be the reason 

behind the rare incidence of illness associated with the consumption of fresh oranges 

from central Florida. 
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IV.1 Abstract 

Enteric pathogens may be transferred to surfaces of fresh fruits and vegetables 

before harvest through the application of contaminated foliar sprays or irrigation water. 

This research estimates the likely levels of generic E. coli (as a Salmonella surrogate) on 

oranges by modeling the effects of weather and time on the survival of E. coli. Data from 

27 monthly field trials (2012 to 2015) was used to create linear regression models for 

upper and lower boundary limits of log E. coli rate/h for solar radiation, relative 

humidity, temperature and time. An empirical model based on IF logic statements, Monte 

Carlo simulations and probability distributions were used to estimate log change in E. 

coli/h between the minimum and maximum boundary limits of the most restricting 

variable. The sum of predicted log reduction rates were applied to the initial 

concentration of E. coli to determine the concentration at subsequent sampling points. 

The model was compared to the experimental data, and FDA fresh produce rule 

assumption of a microbial decline rate of 0.5 log/day (for a maximum of 4 days) in E. 

coli on pre harvest crops. The predicted mean, 5
th

 and 95
th

 percentile of E. coli 

concentrations at days 1, 3, 7 and 14 sampling points showed the variable predictive 

quality of the model. The mean predicted values were close to the actual data for day 1 

but under predicted for day 3, 7 and 14 for most of the monthly trials. The FDA rule over 

predicted actual data for day 1 and day 3 but under predicted actual data for day 7 and 14 

for most of the monthly field trials. For a pre harvest hold time of not more than 4 days, 

the FDA model is a fail safe model compared to our model.  
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IV.2 Introduction 

Risk factors associated with contamination of fresh fruits and vegetables have 

been well studied. Research has shown that pathways of contamination of fresh fruits and 

vegetables include contaminated agricultural water, soil, biological soil amendments and 

poor post harvest handling (6, 61). The use of low microbiological quality water for 

agricultural purposes may transfer pathogens onto the surface of pre harvest crops. 

Pesticides reconstituted with contaminated water and sprayed on to pre harvest fruits and 

vegetables have been linked to food borne outbreaks. (35, 51, 59, 79, 86). Animal and 

bird feces have also been reported as potential sources of contamination of pre harvest 

crops with enteric pathogens (6, 45). The survival and persistence of pathogens on the 

surface of pre harvest crops is dependent on the intrinsic characteristics of the pathogen, 

the type of crop itself and extrinsic ecological factors surrounding the crop (8). 

 Ottoson et al. (2011) conducted a quantitative microbial risk (QMRA) with E. coli 

O157:H7 on lettuce in a controlled climate chamber. The authors found E. coli O157:H7 

sensitive to light intensity and temperature. The effect of irrigation water standards, hold 

times after last irrigation event and a 15 s rinse in cold water on the risk of infection were 

also evaluated. Holding harvest after last irrigation for 1, 2, 4 and 7 days reduced risk by 

3, 8, 8 and 18 times respectively while a 15 s rinse reduced the risk six fold. A QMRA 

study by Hamilton et al. (2006) found that to achieve a risk of one illness or less in 

10,000 exposures per year, vegetables irrigated with non disinfected secondary effluent 

containing enteric viruses had to be held for at least 14 days after the last irrigation event. 

Stine et al. (2011) conducted a microbial risk assessment for Hepatitis A virus (HAV) 

and Salmonella transferred to the surface of cantaloupe, iceberg lettuce and bell peppers 
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through spraying with diluted pesticide solutions. These authors found that where 

harvesting is done on the same day as pesticide application, concentrations of 1.59 x 10
-3

 

CFU/ 100 ml Salmonella or 2.79 x 10
-7

 MPN/100 ml HAV in the water used for spray 

application, would result in 1:10,000 annual risk of infection to consumers of fresh 

produce. 

 Quantitative microbial risk assessment (QMRA) is a scientific process that 

involves i) hazard identification ii) hazard characterization iii) exposure assessment and 

iv) risk characterization (26). Quantitative risk assessment studies take a stochastic or 

probabilistic rather than a deterministic approach where variables are assigned 

distributions instead of single values. There are a very limited number of QMRA studies 

assessing the risk posed by weather factors on the safety of pre-harvest fruits and 

vegetables. Although the effects of ambient temperature, relative humidity and solar 

radiation on the survival of viral and bacterial pathogens on the surface of pre-harvest 

crops have been quantified, no relationship between risk of illness and these factors has 

been determined.  

 The aim of this manuscript is to model the survival of E. coli on fresh oranges 

contaminated through foliar sprays using a Monte Carlo simulation based approach. The 

probabilistic survival model uses weather variables (relative humidity (RH), solar 

radiation (SR) and temperature and time to predict E. coli survival. The eventual overall 

objective is to be able to predict the risk of salmonellosis from exposure to contaminated 

fresh oranges at given weather conditions and also predict the number of days before 

harvest that would be optimal to minimize the risk of salmonellosis.  
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IV.3 Methods 

IV.3.a Overview of the model 

The model outlined here incorporated the effect of the four significant (p < 0.001) 

variables (solar radiation (SR), relative humidity (RH), temperature and time) on E. coli 

survival. The model brings together the effects of the 4 variables using logic statements 

rather than the more conventional multivariate linear regression analysis. Note that a 

linear combination of the four variables (SR, RH, temperature and time) was not found to 

be statically significant (p < 0.05).  

 Our approach was an empirical model that defined the maximum and minimum 

boundary limits for log increase and log reduction rates for each variable as described 

below. We then selected the most constricting variable for log increase (minimum of the 

maximum from the 4 variables) and most constricting variable for log reduction 

(maximum of the minimum from the 4 variables). A uniform distribution was used to 

simulate between the selected maximum and minimum boundary limits (for the most 

restricting variable) for log change in E. coli rate/h using the @risk add-in (Palisade 

Software, Ithaca, NY) for Microsoft Excel (Redmond, WA). 

IV.3.b Maximum and minimum boundaries for log E. coli change/h 

Maximum log increase and minimum log reduction boundary limits for SR, RH, 

temperature and time were determined by sorting the data for each variable together with 

their corresponding log change in E. coli/h rates from smallest to the highest values. Each 

sorted data set was divided into portions of equal number of observations (Either n = 8, 

16, 32, 64). Minimum and maximum log increase, minimum and maximum log reduction 

rates and averages weather variable values were determined for each portion of the data 
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set. The upper boundary limit (for each variable) was constructed by plotting a regression 

line using maximum log reduction rate values against the average weather variable values 

from each portion. The lower boundary limit was constructed by plotting regression lines 

using the minimum log reduction rate values and average weather variable value from 

each portion. The maximum and minimum boundaries for the time variable were 

determined using slightly different criteria from the other 3 variables. Most monthly field 

trial data showed that E. coli declined rapidly after spraying during the first 24 hours and 

thereafter declined at lower rates at later sampling intervals (Appendices VI.1 to V1.4). 

We split the log change/h in E. coli data into four different time intervals (0 to 15 h, 15 to 

60 h, 60 to 108 h and 108 to 504 h) to accommodate this pattern. Maximum and 

minimum log increase and log reduction boundary limits for the time intervals were then 

determined in a similar manner as the other 3 variables. 

IV.3.c Predicting log E. coli change/h from RH, SR, temp. and time variables 

Regression lines that defined the highest maximum and minimum boundary limits 

for the 4 variables were used to predict maximum and minimum values for log change in 

E. coli/h. Six regression equations were plotted for the environmental variables (i.e. SR, 

RH and temperature for both greatest increase and greatest decline). Similarly, an 

additional eight regression equations were plotted to model the effect of time (0-15 h, 15-

60 h, 60-108 h and 108-504 h for both greatest increase and greatest decline in log E. 

coli/h rate) (Figures 4.1 to 4.4). The actual weather data for each monthly trial was input 

into a spreadsheet template, and model predictions were generated for each hourly 

interval. The limits for both greatest increase and greatest decline for use in simulation 

modeling were selected using MIN, MAX functions and IF logic statements in Microsoft 

Excel. The @risk RiskUniform function was used to select the simulation result for that 
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hour from 10,000 Monte Carlo iterations. Predicted hourly log change in E. coli rates 

were summed over those time intervals where experimental observations were collected 

to determine the final concentration of E. coli. Final E. coli concentrations could also be 

determined for time intervals where no experimental observations were collected (Table 

IV.a). 

 
Table IV.a: Overview of model, parameters and simulations 

Cell Variable  

 

Value  Units  Source  

D3 Solar radiation (SR) a− W/m2 User Input  

D4 Relative humidity (RH)  a− % User Input  

D5 Temperature  a− °F User Input  

D6 Time  a− h User Input  

D7 

Concentration of E. coli on 

orange at spray time (t=0) b− 

Log CFU or  

MPN/orange  This study 

D8 
Modeling for upper boundary 

limit (log increase)  

   

D9 SR maximum =6E-05*D3 + 0.0988 Log change/h This study  

D10 RH maximum  =0.0003*D4 + 0.0983 Log change/h This study  

D11 Temperature maximum =-0.0028*D5 + 0.3232 Log change/h This study  

D12 Time maximum  

   

D13 0 to 15 h =-0.0345*D6 + 0.603 Log change/h This study  

D14 15 to 60 h =-0.0004*D6 + 0.1196 Log change/h This study  
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D15 60 to 108 h  =-0.0019*D6+ 0.1955 Log change/h This study  

D16 108 to 504 h  =-5E-06*D6+ 0.0017 Log change/h This study  

D17 > 504 h  0 Log change/h User input 

D18 
Modeling the lower boundary 

limits (Log reduction)  

   

D19 SR minimum  =-0.0025*D3- 0.3097 Log change/h This study  

D20 RH minimum  =0.0333*D4 - 3.6005 Log change/h This study  

D21 Temperature minimum  -0.0494*D5+ 2.5852 Log change/h This study  

D22 Time minimum  

   

D23 0 to 15 h =0.1119*D6 - 1.7122 Log change/h This study  

D24 15 to 60 h -0.0002*D6 - 0.1256 Log change/h This study  

D25 60 to 108 h  =0.0027*D6 - 0.3108 Log change/h This study  

D26 108 to 504h  =3E-05*D6 - 0.0199 Log change/h This study  

D27 > 504 h  0 Log change/h User input 

D28 Time (max)  

=IF (D6<15,D13, IF (D6<60,D14, IF 

(D6<108,D15,IF(D6<504,D16,D17)))) Log change/h Calculated  

D29 Time (min)  

=IF (D6<15,D23, IF  

(D6<60,D24, IF   (D6<108,D25, IF 

(D6<504,D26, D27)))) Log change/h Calculated  

D30 

Selected minimum of the 

maximums  =Min (D9, D10, D11, D28) Log change/h Calculated  

D31 

Selected maximum of the 

minimums  =Max (D19, D20, D21, D29)  Log change/h Calculated  

D32 

Predicted log change in E. 

coli/h  =RiskUnifom (D30, D31) Log change/h Calculated  

D33 Sampling interval (t) c− h  User input 
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D34 

Predicted final concentration 

log change at time interval t Sum of log change rates/h for t hours  log Calculated 

D35 

Predicted final concentration on 

orange surface =RiskOutput (D7-D34) 

Log CFU or 

MPN/orange Calculated  

a- Data obtained from weather stations or forecasts 

b- Concentrations obtained from irrigation water (assuming 100% transfer) or microbial analysis of fruit 

surface after spray application.  

c- Sampling interval or pre harvest time interval. 
 

IV.3.d Validation of model using field trial data 

The predicted E. coli population at each sampling point was compared to actual 

data for each monthly trial to validate the model. The Monte Carlo simulated predicted 

5
th

 percentile, mean and 95
th

 percentile of log E. coli populations levels from 10,000 

iterations at each sampling point were plotted together with actual field trial data. The 

assumption used in FDA’s fresh produce rule (0.5 log CFU reduction/day in E. coli levels 

for a maximum of 4 days) (82) for crops irrigated with low microbial quality water was 

also compared with field trial data and model simulation results. Since actual field trial 

data for day 4 after spraying were not available (no sampling was done on that day) day 3 

results were used instead. Thus actual field data for day 1, 3, 7 and 14 were compared to 

predicted E. coli concentration data.  

IV.4 Results  

IV.4.a Upper and lower boundary limits for SR, RH, temperature and time models  

Figures 4.1, 4.2, 4.3, 4.4 and 4.5 show the regression lines for the upper boundary 

limit (describing the most likely maximum log increase rate in E. coli populations) and 

the lower boundary limit (most likely maximum log reduction rate in E. coli populations) 

for the four variables. The results for the three environmental variables, SR, RH, and 

temperature (Figure 4.1, 4.2 and 4.3) show similar patterns. As solar radiation increased 
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(Figure 4.1), the potential for a greater log reductions increased, and for the greatest solar 

radiation value observed (ca. 900 W/m
2
) the greatest log reduction was observed (ca. 2 

log CFU/h), although at that same solar radiation value lower reductions were also 

observed. Solar radiation appeared to have had little effect on E. coli increases, although 

one very high increase occurred at an intermediate SR value (450 W/m
2
). 

 

Figure 4.1: Upper (red squares) and lower (green triangles) boundaries for log change in 

E. coli rates for solar radiation data (blue diamonds) 

 

Figure 4.2: Upper (red squares) and lower (green triangles) boundaries for log change in 

E. coli rates for relative humidity data (blue diamonds) 

y = -0.0009x + 0.1068 

R² = 0.30521 

y = 6E-05x + 0.0988 

R² = 0.00164 

y = -0.0025x - 0.3097 

R² = 0.96382 

-3.5 

-2.5 

-1.5 

-0.5 

0.5 

1.5 

2.5 

3.5 

0 200 400 600 800 1000 

L
o

g
 E

.c
o
li

 c
h

a
n

g
e/

h
  

SR (W/m2) 

Solar radiation  

SR 

SR(max) 

SR(min) 

y = 0.0003x + 0.0983 

R² = 0.00015 

y = 0.0088x - 0.8023 

R² = 0.12228 

y = 0.0333x - 3.6005 

R² = 0.8981 

-3.5 

-2.5 

-1.5 

-0.5 

0.5 

1.5 

2.5 

3.5 

0 20 40 60 80 100 

L
o
g

 E
.c

o
li

 c
h

a
n

g
e 

/h
  

RH (%) 

Relative humidity  

RH(max) 

RH 

RH(min) 



76 
 

 

The plot of relative humidity (RH) versus log E. coli change/h (Figure 4.2) shows 

a similar pattern, except that greater E. coli reductions were seen at lower RH values. The 

lowest RH values observed (ca. 20% RH) were not associated with the greatest log 

reductions, perhaps because either these low RH levels rarely occurred (thus there were 

limited observations). It could also be that the expected log reductions would be so great 

that the E. coli populations would be below the detection limit such that a reduction 

would not be observed. Under those most common RH conditions (40-100% RH) the 

relationship between a decreased RH and great possibility of a decline in E. coli/h was 

evident and vice versa. 

 

 

Figure 4.3: Upper (red squares) and lower (green triangles) boundaries for log change in 

E. coli rates for temperature data (blue diamonds) 

The association between temperature and log E. coli change/h is shown in Figure 

4.3. This figure shows increasing log reductions in E. coli as temperature increased from 

60 °F to 90 °F. The highest log reductions (> log 1.5) occurred at temperature range 90 

°F and above. There were lower reductions recorded at higher temperatures and this may 

y = -0.0028x + 0.3232 

R² = 0.00471 

y = -0.0135x + 0.8243 

R² = 0.09427 

y = -0.0494x + 2.5852 

R² = 0.45949 

-3.5 

-2.5 

-1.5 

-0.5 

0.5 

1.5 

2.5 

3.5 

0 20 40 60 80 100 

L
o
g

 E
. 

c
o

li
 c

h
a

n
g

e/
h

 

Temperature (°F) 

Temperature 

Temp(max) 

Temp 

Temp(min) 



77 
 

 

have resulted from reduced initial E. coli concentrations (at later stages of sampling) 

being exposed to rising temperatures. The model also showed log reduction at 50 °F. The 

lower temperatures (i.e. winter months) appear to have induced a bacteriostatic state 

(minimal growth or death). The moderate to optimal temperatures (60 °F to 80 °F) did 

not result in a consistent increase in E. coli concentrations, with most increases limited to 

≤ 0.5 log; although one increase of ca. 2 log was observed at ca.70 °F. Since there were 

no data observed at temperatures ≤ 50 °F range, model predictions ≤ 50 °F were assumed 

to be no change (i.e. 0 log CFU/h E. coli change). 

 

 

Figure 4.4: Log change in E. coli concentration vs. Log time (h) represented by green 

medium dash, divided into 4 time ranges (0 to 15 h, 15 to 60 h, 60 to 108 h and 108 to 

504 h). Maximum boundaries for 0 to 15 h (blue diamond), 15 to 60 h (green triangle), 60 
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to 108h (blue star), 108 to 504 h (+) and minimum boundaries 0 to 15 h (red square), 15 

to 60h (x), 60 to 108 h (orange circle), 108 to 504 h (pink small dash)  

 

 Figure 4.4 shows the relationship between log change in E. coli/ h with log time. 

It is quite clear from this figure that time since the application of the foliar spray had a 

profound effect on the potential increase or decrease in E. coli concentration. The greatest 

changes occurred in the first 24 h, much smaller changes occur in the next 2 days, and 

almost no changes occurred after 4 days. 

IV.4.b Predicted 5
th 

percentile, mean and 95
th

 percentile vs. actual field trial data 

and FDA proposed microbial die off rate  

The predicted 5
th

 percentile, mean and 95
th

 percentile, the actual monthly trial 

data and the predicted E. coli concentrations based on the proposed FDA rule of 0.5 log 

microbial die off rate/day (for a maximum of 4 days) were plotted for day 1 (Figure 4.5) 

and day 3 sampling times (Figure 4.6). Additional day 7 (See Appendix VI.5, Figure 

9.1) and day 14 (See Appendix VI.5, Figure 9.2) were plotted to evaluate the 

performance of model and the FDA’s rule past the recommended maximum 4 days of pre 

harvest holding. Since sampling times were different from one monthly trial to another 

the day 7 figure includes results from days 6-9 and day 14 figure includes results from 

days 12-16.  
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Figure 4.5: Predicted 5% (red line), mean (green line) and 95% (purple line) vs. actual 

(blue line) and FDA 0.5 log/day (orange line) for day 1 (24 h) post foliar spray 

 

  Day 1 results are shown in Figure 4.5, and it is immediately apparent our model 

under predicted actual data in almost every case whereas the FDA assumption rule over 

predicted the actual results. The model generally under predicted for the 2012 field trial 

data except in Dec. 2012. In 2013, the mean predicted E. coli concentrations for January 

and March 2013 were very close to the actual data but the model under predicted for the 

rest of that year. In 2014, the model over and under predicted the actual data except for 

November and December 2014 where the mean predicted data was close to the actual 

data. In 2015, the mean predicted value for February was close to the actual value. The 

predicted 95
th

 percentile values were close to actual data for FT 2012, late 2014 and 

2015. The FDA rule over predicted actual data except April, November and December 
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2013. April to May 2015 field trials were not evaluated as the detection limit was attained 

at either the 2 h or 6 h sampling times.  

 
Figure 4.6: Predicted 5% (red line), mean (green line) and 95% (purple line) vs. actual 

(blue line) and FDA 0.5 log/day (orange line) for day 3 post foliar spray 

Figure 4.6 shows FDA assumption, model predictions, and actual field trial data 

for E. coli populations for day 3 post foliar spray application. The model tended to under 

predict throughout 2012 except for November, where the mean predicted value were 

close to the actual monthly trial data. The FDA proposed rule predictions were much 

higher than actual values compared to our model. For field trial in 2013, 2014 and 2015, 

the model tended to over and under predict in most of the monthly trials except for Jan 

2013, March 2013 and April 2014 where the mean predicted values were close to the 

actual data. The predicted 95
th

 percentile was close to actual values for most of field trials 

between 2012 and 2015 i.e. less than 5% of the time the model predicted close to actual 

values. The FDA rule over predicted actual data from 2012 to 2015 but remained close to 
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the actual values (< log 0.5 difference) for June 2012, March 2013 and December 2014.  

Figure 9.1 (See Appendix VI.5, Figure 9.1) shows FDA assumption, model 

predictions, and actual data for E. coli populations for day 7 ± 2 post foliar spray 

application. The model tended to under predict throughout 2012 except for November, 

where the mean predicted value was close to the actual monthly trial data. For the 

monthly trials before November 2012, only the predicted 95
th

 percentile came close to the 

actual values i.e.ca. less than 5% of the time the model predicted close to actual values. 

The FDA proposed rule predictions were much closer to the actual values compared to 

our model and were very close in October and November 2012. For trials in 2013, 2014 

and 2015, the model tended to under predict in most of the monthly trials except for Jan 

2013 and October 2014, where the mean predicted values were close to the actual data. 

The FDA rule over predicted in April 2013 but remained close to the actual values for the 

rest of the field trials in 2014 and 2015.  

Figure 9.2 (See Appendix VI.5, Figure 9.2) shows FDA assumption, model 

predictions, and actual data for E. coli populations for day 14 ± 2 post foliar spray. The 

model under predicts for all field trial data except January 2013; the predicted 95
th

 

percentile values were close to actual values for all field trials data. The FDA assumption  

under predicted actual data for all the field trials except for January and February 2013 

where an over prediction occurred.  

IV.5 Discussion  

 Our model combines 4 different variables (three for weather: relative humidity, 

solar radiation, and temperature) and one for time. Each of the four variables was found 
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to have a statistically significant effect on the survival of E. coli sprayed onto the surfaces 

of grove oranges. The challenges of modeling the combined effect of these variables can 

be partly attributed to the strong and significant correlations between them. For instance 

SR was significantly negatively correlated to RH with a high coefficient of correlation (r) 

and an extremely low p value (Table III.a). Studies that have looked at the survival of 

pathogens on surfaces of pre harvest crops have reported inactivation rates based on first 

order kinetics. Stine et al. (2011) estimated the inactivation rates of hepatitis A virus 

(HAV) and Salmonella on the surfaces of cantaloupe, lettuce, and bell peppers to be 0.01, 

0.12, and 0.11 day
-1

. Another publication from the same lab reported that the effects of 

high and low RH on the survival of 8 microorganisms on cantaloupe, lettuce, and bell 

pepper were variable (78). Petterson et al. (2001) reported estimated viral decay rates (k) 

to be 0.45 and 0.69 day
-1

. These bacterial and viral decay estimates have been used in 

QMRAs for estimation of microbial standards for irrigation water and pre harvest hold 

times to achieve 1 illness in 10,000 exposures (37, 79). In all of these studies the 

influence of environmental factors (temperature, light intensity and relative humidity) 

though reported to be significant were not quantified or modeled. 

 As demonstrated in chapter III of this dissertation, the Biphasic and Weibull non-

linear regression modeling of E. coli survival data produced the best fits compared to 

linear regression modeling. Our survival curve fitting results were consistent with those 

of Mckellar et al. (2014) though we observed a better fit by Weibull than Biphasic 

models. Unfortunately as we noted, model parameters (kmax, delta and p) did not 

correlate well with monthly averages of rainfall, RH, SR and temperature data. 

To address these challenges, we designed an empirical model, which incorporated 
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the log change in E. coli/h data associated with the 4 variables (RH, time, SR and 

temperature). The major assumption for this model was that at every hour, one of the 4 

variables would be the most constricting variable in influencing log change in E. coli 

populations. The model predicts the data well 24 h after spraying but under predicts at 

day 3. The model also under predicts actual data at longer time intervals post spray (7 or 

14 days). The FDA assumption from the fresh produce rule (0.5 log reduction/day for a 

maximum of 4 days) on pre harvest crops, over predicts the actual data on day 1 and day 

3, predicts close to the actual data at day 7 and under predicts at day 14 (See Appendix 

V1.5). In summary, neither FDA produce rule assumption nor our model (which 

incorporates weather factors) may accurately predict the final concentrations of 

pathogens on the surface of pre harvest at different pre harvest times. However since it 

was observed that our model under predicted risk compared to the FDA assumption rule 

(which over predicted risk for most of the field trial data), the rule may result in stricter 

microbial standards for agricultural water. Our analysis also supports the FDA’s 

recommendation of a pre harvest hold of not more than 4 days because the rule begins to 

under predict risk from day 7 and beyond, while our empirical model is effective for pre 

harvest hold times of 1 day and below.  

IV.6 Conclusions  

The development of an exposure assessment model for predicting the likely 

pathogen exposure levels at given weather conditions is highly complex. Microorganisms 

on the surface of pre harvest crops are subject to many interacting factors including 

fluctuating weather conditions, nutrient availability and type, predation or competition 



84 
 

 

from resident epiphytic microorganisms, biofilm formation, DNA degradation, osmotic, 

oxidative and desiccation stress (8). To model the individual effect or the effects of a 

combination these factors on the survival of pathogens on pre harvest crop surfaces is 

complex, as interactions may be antagonistic or synergistic. Our study supports the 

existence of strong interactions between weather factors. This compounds the design and 

cost of experiments required to model the effect of each variable while holding the rest 

constant. The change in concentration of microorganisms on the surface of crops may 

also be linear or non-linear depending on the environmental factors that are at play. The 

inadequacy and inconsistencies in our model and also that proposed by the FDA on 

microbial die off rates attest to the reality of insufficient knowledge on the science of 

survival of pathogens under field conditions. However from our study, we can conclude 

that a fail safe model based on a 0.5 log reduction in generic E. coli/day for a maximum 

of 4 days will reduce the risk of exposure to pathogens by limiting the usage of 

contaminated sources of agricultural water.  
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VI. Appendices  

Appendix VI.1: Figures of solar radiation (SR), relative humidity (RH), 

temperature and rainfall for field trial 2012  

 
Figure 5.1: High coliforms (box) and high E. coli (triangle) innoculation levels plotted 

against hourly SR data for FT 2012 
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Figure 5.2: High coliforms (box) and high E. coli (triangle), innoculation levels plotted 

against hourly RH data for FT 2012 
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Figure 5.3: High coliforms (box) and high E. coli (triangle) innoculation levels plotted 

against hourly temperature data for FT 2012 
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Figure 5.4: High coliforms (box) and high E. coli (triangle), innoculation levels plotted 

against hourly rainfall data for FT 2012 
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Appendix VI.2: Figures of solar radiation (SR), relative humidity (RH), 

temperature and rainfall for field trial 2013  

 

Figure 6.1: High coliforms (box), low coliform (diamond), high E. coli (triangle), low E. 

coli (circle) innoculation levels plotted against hourly SR data for FT 2013 
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Figure 6.2: High coliforms (box), low coliform (diamond), high E. coli (triangle), low E. 

coli (circle) innoculation levels plotted against hourly RH data for FT 2013 
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Figure 6.3: High coliforms (box), low coliform (diamond), high E. coli (triangle), low E. 

coli (circle) innoculation levels plotted against hourly temperature data for FT 2013 
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Figure 6.4: High coliforms (box), low coliform (diamond), high E. coli (triangle), low E. 

coli (circle) innoculation levels plotted against hourly rainfall data FT 2013 
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Appendix VI.3: Figures of solar radiation (SR), relative humidity (RH), 

temperature and rainfall for field trial 2014 

 

Figure 7.1: High coliforms (box), low coliform (diamond), high E. coli (triangle), low E. 

coli (circle) innoculation levels plotted against hourly SR data FT 2014 
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Figure 7.2: High coliforms (box), low coliform (diamond), high E. coli (triangle), low E. 

coli (circle) innoculation levels plotted against hourly RH data FT 2014  
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Figure 7.3: High coliforms (box), low coliform (diamond), high E. coli (triangle), low E. 

coli (circle) innoculation levels plotted against hourly temperature data FT 2014 
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Figure 7.4: High coliforms (box), low coliform (diamond), high E. coli (triangle), low E. 

coli (circle) innoculation levels plotted against hourly rainfall data for FT 2014 
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Appendix VI.4: Figures of solar radiation (SR), relative humidity (RH), 

temperature and rainfall for field trial 2015 

 

 

Figure 8.1: High coliforms (box) and high E. coli (triangle) innoculation levels plotted 

against hourly solar radiation data for FT 2015  
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Figure 8.2: High coliforms (box) and high E. coli (triangle) innoculation levels plotted 

against hourly RH data for FT 2015  
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Figure 8.3: High coliforms (box) and high E. coli (triangle) innoculation levels plotted 

against hourly temperature data for FT 2015.  
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Figure 8.4: High coliforms (box) and high E. coli (triangle) innoculation levels, plotted 

against hourly rainfall data for FT 2015. 
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Appendix VI.5: Figures of predicted 5th percentile, mean and 95th percentile vs. 

actual field trial data and FDA rule (0.5 log/day for max. of 4 days)  

 

 
Figure 9.1: Predicted 5% (red line), mean (green line) and 95% (purple line) vs. actual 

(blue line) and FDA 0.5 log/day (orange line) for day 7 ± 2 day post foliar spray. 
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Figure 9.2: Predicted 5% (red line), mean (green line) and 95% (purple line) vs. actual 

(blue line) and FDA 0.5 log/day (orange line) for day 14 ± 2 day post foliar spray 
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