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ABSTRACT OF THE DISSERTATION

Numerical Methods for Probabilistic Constrained

Optimization Problem where Random Variables have

Degenerate Continuous Distribution.

by Olga Myndyuk

Dissertation Director: Dr. András Prékopa

Several probabilistic constrained problems (single commodity stochastic network design

problem and water reservoir problem) are formulated and solved by use of different numeri-

cal methods. The distribution considered are degenerate normal and uniform distributions.

The network design problem is to find optimal node and arc capacities under some de-

terministic and probabilistic constraints that ensure the satisfiability of all demands on a

given probability level. The large number of feasibility inequalities is reduced to a much

smaller number of them and an equivalent reformulation takes us to a specially structured

semi-infinite LP. This, in turn, is solved by a combination of inner and outer algorithms

providing us with both lower and upper bounds for the optimum at each iteration. The

flood control and serially linked reservoir network design with consecutive k-out-of-n type

reliability problems are formulated, simplified and solved. Alternative, derivative-free meth-

ods, are proposed and implemented. Various numerical examples are presented and solution

methods software library is developed.
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4.3. Prékopa-Vizvári-Badics (PVB) Algorithm . . . . . . . . . . . . . . . . . . . 19

4.4. Hybrid algorithm: combination of the supporting hyperplane and PVB algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5. Probability Distributions Commonly Arising in the Considered Problems . 21

4.5.1. Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5.2. Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5. Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



5.1. 8-node Network Design Problem . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2. Comparison to a discrete distribution . . . . . . . . . . . . . . . . . . . . . . 31

5.3. 15-node Network Design Problem . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4. Summary of computational complexity of the power distribution problems . 33

5.5. Flood Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6. Derivative-free algorithm approach . . . . . . . . . . . . . . . . . . . . . . . 38

6.1. Direct search methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1. The Nedler-Mead method . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.2. Multidirectional search . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2. Inner polygonal approximation algorithm . . . . . . . . . . . . . . . . . . . 41

6.3. Construction of unconstrained optimization problem . . . . . . . . . . . . . 45

6.4. Numerical experiments: Power distribution problem . . . . . . . . . . . . . 45

6.5. Serially Linked Reservoir Network Design Problem with consecutive k-out-

of-n type Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.5.1. Simplification of the problem . . . . . . . . . . . . . . . . . . . . . . 49

6.5.2. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix A. Inequalities left-hand sides after elimination by topology (161

out of 255) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Appendix B. Covariance Matrices Between Days for Demand and Inflow

variables for Reservoir 1 and Reservoir 2 . . . . . . . . . . . . . . . . . . . . . 60

Appendix C. Distribution of Demand and Inflow Values for Reservoir 1 and

Reservoir 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Appendix D. Derivation of problem (6.9) in the form of (2.1) . . . . . . . . 67

v



Appendix E. Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

E.1. prekopa.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

E.2. hybrid orig.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

E.3. Torczon’s derivative-free algorithm: torczon implicit.m . . . . . . . . . . . . 81

vi



1

Chapter 1

Introduction

In this work probabilistic constrained optimization problems with degenerate distributed

random variables are in the center of interest. Examples of such problems include single-

commodity, some other multi-commodity networks, as well as flood control and irrigation.

The optimal operation of water reservoir networks is often modeled in connection with

dynamic stochastic programming problems. Gal [14] (1979), Yakowitz [72] (1982), Archibadl

et al. [1] (1997) are just a few of the many publications where the solution to optimal water

reservoir system is given by the techniques from the dynamic programming. Reliability is

always an important issue in engineering design. The irrigation problem we solved in this

work was briefly presented in Prékopa, Rapcsák, Szuffa [39] (2010), where the probabilistic

constraint prescribes lower bound for a consecutive k -out of-n probability rather than a

single joint probability. We found optimal reservoir capacities such that at least k consec-

utive periods, the demands are met with a probability which is at least as prescribed. The

objective function we minimized is the sum of total building costs of each reservoir per its

capacity, therefore is also finding the optimal water reservoir capacity. We assumed that

the inflow and demand values are normally distributed.

Most of the network problems have random elements and are supposed to satisfy some

reliability requirement. In our networks the demands at the nodes and the capacity defi-

ciencies at the nodes and arcs are random and reliability means that all demands can be

satisfied at a prescribed probability level that is near 1, in practice. Stochastic program-

ming models can be subdivided into static and dynamic models. The static models can also

be subdivided into three further categories: probabilistic constrained, penalty or recourse

and hybrid models. The dynamic type models are the two-stage and multi-stage models.

In all of the models constructions we have underlying deterministic models that would be
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the models in the absence of random variables. Also, in all the models there is decision-

observation scheme or sequence, alternating decisions on some of the decision variables and

observations of some of the random variables. In the static case this scheme is simply the

following: decision on x, observation of the random variable ξ.

Even though our stochastic network design model construction is relatively simple, be-

cause it is single-commodity and static, still it is widely applicable and very involved from

the point of view of the methodology handling the probabilistic constraint.

Programming under probabilistic constraint was first formulated by [5] Charnes, Cooper,

Symonds (1958), where, however, probability levels were prescribed individually on each

stochastic constraint, neglecting the stochastic dependence among the random variables.

Miller and Wagner formulated a problem with joint probabilistic constraint with indepen-

dent random variables and Prékopa [34] (1970, 1973) formulated the theoretically correct

model, and explored its mathematical properties. For further results in this respect see

[46] Prékopa (1995). In the stochastic network design problem we studied here, it is very

important to use joint probabilistic constraint in connection with the stochastic inequalities

involved, because the feasibility inequalities jointly provide us with necessary and suffi-

cient condition for the existence of a feasible flow, individually they do not have reasonable

practical interpretation. Even though many papers have been published on stochastic net-

work design problem formulation and solution, only a relatively small number of them are

in some sense antecedents of this one. In Prékopa [38] (1980) a two stage programming

under uncertainty was formulated, and, for the first time in the literature, the feasibility

region in cooperating power systems was characterized by a system of linear inequalities. A

probabilistic constraint was formulated for the solvability of the second stage problem but

methodology available at that time made it possible to solve very small problems. In order

to efficiently solve probabilistic constrained stochastic programming problems Prékopa [44]

(1990) introduced the concept of p-level efficient point, for the case of a discrete random

variable. Algorithm, developed later on, based on this concept, made it possible to efficiently

solve stochastic networks design problems with discrete random variables, [52] by Pékopa

and Unuvar (2015). Efficient pre-processing methods, to identify essential feasibility in-

equalities have been presented in [45] Prékopa, Boros (1991) and [70] Wallace, Wets (1993).
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We also mention the recent papers of [64] Thapalia, Crainic, Kant, Wallace (2010), where

the reader can find useful ideas in connection with single commodity stochastic network

design, even though their main interest is other from ours.

The organization of the thesis is the following. The next chapter defines the stochastic

optimization problem with joint probabilistic constraints, and discusses the conditions un-

der which such problem is convex, as well as discusses the mathematical properties of the

probabilistic constraint. Chapter 3 introduces a constraint elimination procedure which can

be applied in this case, Chapter 4 considers the particular case of such problem, namely a

supply-demand network design and describes the numerical algorithms for stochastic net-

work design problems. Chapter 5 presents numerical examples and compares the numerical

algorithms against each other. Chapter 6 considers several derivative-free algorithms, with

respective numerical examples. Chapter 7 concludes the thesis.
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Chapter 2

The Stochastic Optimization Problem with Probabilistic

Constraints

The stochastic optimization problem with (joint) probabilistic constraints has the form

min cTx

s.t. Ax ≤ b

P{Tx ≥ η} ≥ p

(2.1)

where c, b are given vectors, A, T are given matrices, 0 < p < 1 is the probability level,

typically close to 1, and η is a random vector with a given distribution. This thesis is

particularly concerned with the case when the distribution of η is degenerate, that is its

support is an affine subspace of Rm. The importance of this case is best illustrated with an

example: the network design problem discussed in the following section.

2.1 Network Design Problem

We assume that at the nodes there are demands which are random variables and capacities

which are decision variables. There are also capacities on the arcs which are decision

variables. At each node, the random demand can be less than or equal to the local node

(generating) capacity or can surpass it, making the node of demand or supply (negative

demand) type. This implies that we cannot apriori classify the nodes (demand or supply).

Fortunately, we can avoid it if we use the definitions in [15] Gale (1957) and [12] Ford,

Fulkerson (1962). These are presented below.

Definition 2.1 A network [N, y] is a pair of a finite set of nodes N and a capacity function

defined on arcs y(i, j), (i, j) ∈ N ×N , assumed to have non-negative values or ∞. The arcs

are directed and y(i, j) is not necessary equal to y(j, i).
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In our networks every node i has a capacity xi and also a random demand ξi. Having

in mind application to interconnected power systems, xi will be called generating capacity

and ξi local demand. Out of those two we form the network demand d(i), defined as:

d(i) = ξi − xi, i ∈ N. (2.2)

If for realization of ξi we have d(i) > 0, then at node i the local generating capacity is

not enough to satisfy the demand. If, however, d(i) < 0 then there is surplus capacity at a

node i that may be called supply node in that case.

Definition 2.2 A flow or feasible flow in a network is a real valued function f(i, j), (i, j) ∈

N ×N such that

f(i, j) + f(j, i) = 0

f(i, j) ≤ y(i, j), (i, j) ∈ N ×N.
(2.3)

This definition is compatible with the definition of power flow in electrical engineering,

where the flow from j to i is taken as negative of the flow from i to j. In that case

y(i, j) = y(j, i)),∀(i, j) ∈ N ×N .

In what follows we will use the notations:

f(A,B) =
∑

i∈A,j∈B
f(i, j)

y(A,B) =
∑

i∈A,j∈B
y(i, j), for A,B ⊂ N,A ∩B = ∅

d(A) =
∑
i∈A

d(i), A ⊂ N.

(2.4)

Definition 2.3 A demand d(i), i ∈ N is said to be feasible if there exists a flow f such that

f(N, i) ≥ d(i), i ∈ N. (2.5)

Relationships (2.1) and (2.3) define a convex polyhedral cone in the variables

f(i, j), y(i, j), d(i).

The question arises: what is the necessary and sufficient condition on the capacity and

demand functions that a flow exists satisfying (2.1) and (2.3)?
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In other words, how can we characterize the projection of the convex polyhedral cone

determined by the linear equalities/inequalities (2.1) and (2.3), onto the space of the d(i), i ∈

N, y(i, j), (i, j) ∈ N ×N variables?

The problem was solved by [15] Gale (1957) and [17] Hoffman (1960) and the answer is:

Theorem 2.1 The demand is feasible if and only if we have the following inequalities:

d(A) ≤ y(Ā, A), A ⊂ N,

where Ā = N \A.
(2.6)

In what follows we will refer to the inequalities (2.6) as Gale-Hoffman or feasibility inequal-

ities.

The network design problem is to minimize the total cost of generation and providing

link capacities while satisfying the network demand with the required probability.

min{
∑
i∈N

ci(xi) +
∑

(i,j)∈N×N

cij(yij)}

subject to

P


ξi ≤ xi +

∑
j∈N\{i}

yji, i ∈ N

∑
i∈I

ξi ≤
∑
i∈I

xi +
∑

i∈I,j∈N\I

yji, ∀I ⊆ N, I 6= ∅

 ≥ p
Ax+Dy ≥ b

(2.7)

where Ax+Dy ≥ b may simply be a collection of lower and upper bounds for the decision

variables xi, yij . Problem (2.7) is clearly a particular case of (2.1), where the random vector

η is a (2n − 1)-component linear combination of random demands ξi.

2.2 Properties of the Network Design Problem

The network design problem is a particular case of the probabilistically constrained stochas-

tic optimization problem. It has several important properties.

Property 2.1 The random vector η has highly degenerate distribution. The number of

coordinates of η may be much larger than the dimensionality of the affine span of the support

of η.
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Property 2.2 (Monotonicity) In problem (2.1):

1. c > 0

2. T ≥ 0

3. A ≤ 0

These properties are characteristic to several other examples of probabilistically con-

strained optimization problems, in particular the flood control system design problem dis-

cussed in Section 5.5 and the irrigation system design problem in Section 6.5.

2.3 The Probabilistic Constraint and its Mathematical Properties

The most important part of our stochastic network design problem is probabilistic constraint

P (η ≤ Tx) ≥ p (2.8)

where p, (0 ≤ p ≤ 1) is a fixed probability, chosen by ourselves and in practice near 1. The

chosen value of p depends on the type of the problem. It is reasonable to choose p as a large

probability, e.g. 0.99, in case of a power system, whereas it may be a smaller number in

problems where the damage caused by inequalities is smaller. In practice, however, usually

we solve the problems with more than one p values in order to learn more about the network

and collect more information for our decision making.

The questions that come up in connection with the probabilistic constraint (2.8) are the

following:

1. How can we characterize the set of feasible solutions, i.e. the set of vectors x satisfying

(2.8)?

2. Under what conditions is it a convex set?

3. How can we easily obtain the function and gradient values of the constraining function

in the inequality (2.8)?
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To answer these questions, we first define the multivariate p-quantile of a random vector

ξ as the set:

MV aRp(ξ) = {z|P (ξ ≤ z) = p} (2.9)

where the notation of MV aRp(ξ) (short for Multivariate Value at Risk ξ) is taken from

Prékopa (2010). The following theorem holds true:

Theorem 2.2 If ξ is continuously distributed and has positive and continuously differen-

tiable p.d.f. in Rn, then MV aRp(ξ) is a continuously differentiable surface in Rn such that

given an i, 1 ≤ i ≤ n, and any values of the variables z1, ..., zi−1, zi, zi+1, ..., zn ∈MV aRp(ξ)

uniquely determines the value of zi. Moreover, zi is a decreasing function of each variable.

The proof needs standard mathematical reasoning, therefore it is omitted. Our most im-

portant example for the probability distribution, satisfying the conditions of Theorem 2.2,

is the multivariate non-degenerate normal distribution. When we apply Theorem 2.2 in

probabilistically constrained programming problems, it is enough to assume the positivity

of the p.d.f. of ξ in an open set that contains the set of feasible solutions. Before starting

the next theorem, we recall the notations of logconcave function and probability measure.

A function f(z) ≥ 0, z ∈ Rn is said to be logconcave if for any x, y ∈ Rn and 0 < λ < 1

we have the inequality

f(λx+ (1− λ)y) ≥ [f(x)λ[f(y)]1−λ. (2.10)

Note that if (2.10) holds for (x, y) ∈ D, where D ⊂ Rn is a convex set, then f can be

extended to the entire space Rn, if we define f(x) = 0 for x /∈ D.

A probability measure P , defined on the Borel sets of Rn is said to be logconcave, if for

any convex sets A,B ⊂ Rn and 0 < λ < 1, we have the inequality

P (λA+ (1− λ)B) ≥ [P (A)]λ[P (B)]1−λ, (2.11)

where λA+ (1− λ)B = {λx+ (1− λ)y |x ∈ A, y ∈ B} is the Minkowski combination of the

sets A and B.

The next theorem is the fundamental theorem of logconcave measures. For the original

proof see Prékopa (1971) and Prékopa (1995).
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Theorem 2.3 If ξ ∈ Rn has a continuous distribution with logconcave p.d.f., then the

probability measure generated by ξ, i.e., P (C) = P (ξ ∈ C), C ⊂ R is a Borel set, is

logconcave.

Not all logconcave measures have probability density functions. For example, if probability

distribution in Rn is concentrated on a hyperplane, where it has density and is logconcave,

then the inequality (2.11) holds true for any pair of convex sets in Rn, but the probability

measure obviously does not have density in Rn. The following theorem tells us more about

log-concavity.

Theorem 2.4 (Prékopa, 1971) Let gi(x, y), i = 1, . . . , r be concave functions in Rm+n

where x is an n-component and y is an m-component vector. Let ξ be an m-component

random vector having a logarithmic concave probability distribution. Then the function of

the variable x:

P (gi(x, ξ) ≥ 0, i = 1, . . . , r) (2.12)

is logarithmic concave in the space Rn.

Corollary 2.5 Let A be an l × n matrix and suppose that the random vector ξ ∈ Rn has

a continuous distribution with logconcave density. Then the random vector η = Aξ has a

logconcave distribution.

If η has degenerate distribution such that its support is an affine subset of Rl, then it

can be represented in the form

η = Bξ + d, (2.13)

where d is an arbitrary point of the affine support of η and ξ is a lower-dimensional random

vector. It follows from Corollary 2.5 that if ξ has a logconcave distribution, then η also

has a logconcave distribution. We further assume that B ≥ 0 element-wise. There is a

practical way to approximate the MV aRp(η) surface, using the functional representation

of the surface MV aRp(ξ). Let us choose z1, ..., zn−1 as the independent variables and zn

the dependent variable in that function and write zn = zn(z1, ..., zn−1). The next theorem

expresses the mentioned representation of MV aRp(η).
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Theorem 2.6 Suppose that ξ has continuous distribution and logconcave p.d.f. that is

positive in the entire space Rn, η is the random variable defined by (2.13) and 0 < p < 1.

Then we have the relation

MV aRp(η) ⊇ {Bz + d, z ∈MV aRp(ξ)} (2.14)

Example 2.1 Let

η =



ξ1

ξ2

ξ3

ξ1 + ξ2

ξ1 + ξ3


(2.15)

and z3(z1, z2) is the function representing the boundary of the surface of the set {z|P (ξ ≤

z) ≥ p}, then the boundary surface of the set {u|P (η ≤ u) ≥ p} contains the set of vectors:

z1

z2

z3(z1, z2)

z1 + z2

z1 + z3(z1, z2)


(2.16)

Proof of Theorem 2.6

Since we have the equation P (ξ ≤ z) = p, it follows that

P (Bξ + d ≤ Bz + d) = p (2.17)

We have to prove that for any u ≤ Bz + d, u 6= Bz + d, the probability P (Bξ + d ≤ u)

decreases below p. For such u, the set {ξ : Bξ + d ≤ u} does not include the point Bz + d

together with an open neighborhood of the point; therefore P{Bξ + d ≤ u} < P{Bξ + d ≤

Bz + d} = p.

2.4 Upper bound and the restricted version of the problem

In the setting of the Theorem 2.6,

Tx ≥ Bz + d, z ∈MV aRp(ξ) (2.18)
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is a sufficient condition for the original probabilistic constraint.

This leads us to a restricted version of the problem:

min cTx

s.t.

Tx ≥ Bz − y

Fξ(z) ≥ p

(2.19)

If ξ has a log-concave distribution (such as, for example, normal), then this problem is a

convex optimization problem, and can be solved with standard techniques or the optimiza-

tion algorithms discussed in Sections 4.2–4.4. Notice, that the dimension of random vector

ξ is much less than the dimension of η, which may significantly improve the computation

time.

2.5 Discussion

When the distribution of the random vector η is logconcave, problem (2.1) is convex, which

means that algorithms for its solution are readily available; however, with the distribution

of η being degenerate, the problem presents additional opportunities and challenges. Both

opportunities and challenges stem from the fact that the number of coordinates of η may be

much larger than the dimensionality of the affine span of the support of η. This difference

is especially important, because computation of multi-dimensional probability distributions

is computationally challenging.

On the “opportunities” side, we have developed upper and lower bounds, which reduce to

the lower-dimensional problem. On the “challenges” side, we have compared, numerically,

several algorithms, and identified the major bottleneck: the derivative computation for the

probabilistic constraint. The work-arounds include:

1. Use numerical approximation of the derivative (inexact)

2. Use algorithms which do not require derivatives (not many exist)

In particular, we suggested our own derivative-free algorithm, though without proof.
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Chapter 3

Topological Elimination of Gale-Hoffman Constraints for the

Network Design Problem

If |N | = n, then the number of feasibility inequalities is 2n − 1, the case of S = ∅ being

trivial, since we have zeros on both sides. This number is very large even if n is relatively

small. However, the Gale-Hoffman theorem inexactly enumerates the feasibility inequalities

because there may be many of them which [45] (1991) and later by [70] Wallace and Wets

(1993) tells us exactly which are the redundant ones. Let (S) designate the Gale-Hoffman

inequality corresponding to S ⊂ N and G(S) the graph with node set S. The mentioned

theorem is:

Theorem 3.1 The inequality d(S) ≤ y(S̄, S) is redundant among the Gale-Hoffman in-

equalities (2.6) if and only if at least one of the graphs G(S), G(S̄) are not connected. In

that case the inequality d(S) ≤ y(S̄, S) is the sum of other Gale-Hoffman inequalities.

More precisely, if S = S1
⋃
S2 and there are no arcs between S1 and S2, then (S) =

(S1) + (S2). [45] Prékopa and Boros (1991) stated the ”if” part of the theorem, and in a

slightly different form, but their proof contains also the proof of the ”only if part”. Based

on Theorem 2.2 we can eliminate the redundant ones from the Gale-Hoffman inequalities.

We subsequently enumerate the sets S ⊂ N , according to their cardinalities, and look

for S, S̄ such that the condition in Theorem 2.2 is satisfied. This is called elimination by

graph structure or graph topology, In [45] Prékopa, Boros (1991) other eliminations are also

mentioned. These are based on lower and upper bounds on the local demands ξi, i ∈ N . In

those papers, however, the supports of the ξi were supposed to be finite sets and therefore

lower and upper bounds for the local demands came up in a natural way. This may happen

in case of continuously distributed local demands, too, for example the ξi random variables

have uniform distribution in known finite intervals.
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In one of our examples the demands have normal distributions for which there are no

lower and upper bounds, thus only elimination by graph structure comes into account. In

another example, however, we have uniform distributions, thus all eliminations should be

applied to remove the redundant inequalities.

In our networks every node i has a capacity xi and also a random demand ξi. Having

in mind application to interconnected power systems, xi will be called generating capacity

and ξi local demand. Out of those two we form the network demand d(i), defined as:

d(i) = ξi − xi, i ∈ N. (3.1)

If for realization of ξi we have d(i) > 0, then at node i the local generating capacity is not

enough to satisfy the demand. If, however, d(i) < 0 then there is surplus capacity at a

node i that may be called supply node in that case. Simple examples for the Gale-Hoffman

inequalities are presented in the next section. Once the elimination by graph structure has

been carried out, we write up the remaining inequalities in such a way that we separate

those in which S has only one element of N , from the others, where partial sums of them

appear. This is the following:

ξi ≤ xi +
∑

j∈N\{i}

yji, i ∈ N

∑
i∈Ik

ξi ≤
∑
i∈Ik

xi +
∑

i∈Ik,j∈N\Ik

yji, k = 1, ..., l,

(3.2)

where I1, ..., Il are subsets of N such that |Ik| ≥ 2, k = 1, ..., l. The random variables in

(2.6) form a n+ l-component random vector that we designate by η, while ξ designates the

random vector the components of which are ξ1, ..., ξn.

We start the elimination procedure by listing all the non-empty subsets of the vertices

of the graph. We then iterate over this list of subsets, and for each subset S check if the

subgraph generated by S is connected. If it is not, then the corresponding inequality is

redundant and can be eliminated. The algorithm to check if a subgraph is connected is

well-known and is as follows:

Algorithm 1 1. Choose an arbitrary vertex in S and mark it as ”connected”.
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2. For each edge (i, j) of the graph, if i ∈ S and j ∈ S and either i or j are marked as

”connected” then mark the other as ”connected”.

3. If any marking was changed at the previous step, then go to Step 2.

4. If at least one element of S is not marked as ”connected” then return false otherwise

return true.

For example, for the network suggested by [11] Fanelli, Prékopa (2013), see Figure 3.1,

the initial list of all possible subsets would be:

{1} {2} {1,2} {3}

{1,3} {2,3} {1,2,3} {4}

{1,4} {2,4} {1,2,4} {3,4}

{1,3,4} {2,3,4} {1,2,3,4} {5}

{1,5} {2,5} {1,2,5} {3,5}

{1,3,5} {2,3,5} {1,2,3,5} {4,5}

{1,4,5} {2,4,5} {1,2,4,5} {3,4,5}

{1,3,4,5} {2,3,4,5} {1,2,3,4,5}

Figure 3.1: An example of a resource distribution network

We then iterate over this list to determine which subsets generate a connected subgraph:
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{1} connected {2} connected

{1,2} connected {3} connected

{1,3} not connected {2,3} connected

{1,2,3} connected {4} connected

{1,4} not connected {2,4} connected

{1,2,4} connected {3,4} not connected

{1,3,4} not connected {2,3,4} connected

{1,2,3,4} connected {5} connected

{1,5} not connected {2,5} not connected

{1,2,5} not connected {3,5} connected

{1,3,5} not connected {2,3,5} connected

{1,2,3,5} connected {4,5} connected

{1,4,5} not connected {2,4,5} connected

{1,2,4,5} connected {3,4,5} connected

{1,3,4,5} not connected {2,3,4,5} connected

{1,2,3,4,5} connected

To illustrate how a subset is determined to generate a connected subgraph, consider

the subset S = {1, 2, 5}. We start by marking vertex 1 as ”connected”, see Algorithm 1.

We then iterate over all edges of the graph, and when encounter the edge (1, 2), mark the

vertex 2 as ”connected”. Since marking of the vertex 2 has changed, we iterate over all

edges again, but this time we do not encounter any edge which would connect vertices of

S such that one of them is marked as ”connected” and the other is not. At this point we

check if all vertices of S are marked ”connected”: we see that vertices 1 and 2 are, but the

vertex 5 is not. Therefore the subset S = {1, 2, 5} generates a non-connected subgraph.
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There are 10 inequalities which are eliminated. The remaining 21 inequalities are:

x1 − ξ1 + y12 ≥ 0

x2 − ξ2 + y12 + y23 + y24 ≥ 0

x1 − ξ1 + x2 − ξ2 + y23 + y24 ≥ 0

x3 − ξ3 + y23 + y35 ≥ 0

x2 − ξ2 + x3 − ξ3 + y12 + y24 + y35 ≥ 0

x1 − ξ1 + x2 − ξ2 + x3 − ξ3 + y24 + y35 ≥ 0

x4 − ξ4 + y24 + y45 ≥ 0

x2 − ξ2 + x4 − ξ4 + y12 + y23 + y45 ≥ 0

x1 − ξ1 + x2 − ξ2 + x4 − ξ4 + y23 + y45 ≥ 0

x2 − ξ2 + x3 − ξ3 + x4 − ξ4 + y12 + y35 + y45 ≥ 0

x1 − ξ1 + x2 − ξ2 + x3 − ξ3 + x4 − ξ4 + y35 + y45 ≥ 0

x5 − ξ5 + y35 + y45 ≥ 0

x3 − ξ3 + x5 − ξ5 + y23 + y45 ≥ 0

x2 − ξ2 + x3 − ξ3 + x5 − ξ5 + y12 + y24 + y45 ≥ 0

x1 − ξ1 + x2 − ξ2 + x3 − ξ3 + x5 − ξ5 + y24 + y45 ≥ 0

x4 − ξ4 + x5 − ξ5 + y24 + y35 ≥ 0

x2 − ξ2 + x4 − ξ4 + x5 − ξ5 + y12 + y23 + y35 ≥ 0

x1 − ξ1 + x2 − ξ2 + x4 − ξ4 + x5 − ξ5 + y23 + y35 ≥ 0

x3 − ξ3 + x4 − ξ4 + x5 − ξ5 + y23 + y24 ≥ 0

x2 − ξ2 + x3 − ξ3 + x4 − ξ4 + x5 − ξ5 + y12 ≥ 0

x1 − ξ1 + x2 − ξ2 + x3 − ξ3 + x4 − ξ4 + x5 − ξ5 ≥ 0

(3.3)
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Chapter 4

Stochastic Network Design Problem using Probabilistic

Constraint.

We are looking for optimal capacities xi, yij that we call generating and transmission ca-

pacities. Our network design problem, however, is applicable not only for interconnected

power systems but a variety of practical problems, with suitable interpretation.

Our problem differs from that of [52] Prékopa, Unuvar (2015) only in that here we are

working with continuously distributed, rather than discrete random variables, hence the

problems mentioned in the Prékopa, Unuvar paper are good examples also here, if the prac-

tical situation can better be described by continuously distributed random variables. Our

problem is the following:

min{
∑
i∈N

ci(xi) +
∑

(i,j)∈N×N

cij(yij)}

subject to

P


ξi ≤ xi +

∑
j∈N\{i}

yji, i ∈ N

∑
i∈Ik

ξi ≤
∑
i∈Ik

xi +
∑

i∈Ik,j∈N\Ik

yji, k = 1, ..., l,

 ≥ p
Ax+Dy ≥ b

(4.1)
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where Ax+Dy ≥ b may simply be a collection of lower and upper bounds for the decision

variables xi, yij . Problem (4.1) can equivalently be stated in the following way:

min{
∑
i∈N

ci(xi) +
∑

(i,j)∈N×N

cij(yij)}

subject to

xi +
∑

j∈N\{n}

yij ≥ zi, i = 1, ..., n

∑
i∈Ik

xi +
∑

i∈Ik,j∈N\Ik

yij ≥
∑
i∈Ik

zi, k = 1, ..., l

Ax+Dy ≥ b,

where zn = zn(z1, ..., zn−1)

(4.2)

. Problem (4.2) is a disjunctive, semi-infinite problem, but it is convex because the equiva-

lent problem (4.1) is convex, by the theorem in Chapter 3, provided that the condition in

connection with the probability distribution of ξ are satisfied. That condition prescribed the

positivity of the p.d.f. of ξ in the entire space. The condition can be relaxed by requiring

the positivity of the p.d.f. to hold in an open set that contains the set of those x, y vectors

which are feasible with respect to the deterministic constraints.

4.1 Algorithmic Solution of the Network Design Problem

For brevity, we introduce the notation

h(x) = P{Tx ≥ ξ} − p (4.3)

and suppose that Slater’s condition is satisfied:

∃x0 ∈ K0 such that h(x0) > 0, (4.4)

4.2 Supporting hyperplane

The supporting hyperplane method, originally developed by [69] Veinott (1967) was adapted

by [40] Prékopa and Szantai (1978) and [63] Szantai (1988) to solve probabilistic constrained

optimization problems with continuously distributed random vector and logconcave p.d.f.

The supporting hyperplane algorithm can be summerized as follows:
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Algorithm 2 (Supporting hyperplane)

Step 0. Find x0 satisfying Ax0 ≥ b, x0 ≥ 0, h(x0) ≥ 0. Go to Step 1.

Step 1. Solve the LP:

min cTx

subject to

Ax ≥ b

∇h(xi)(x− x0) ≥ 0, i = 1, ..., k

x ≥ 0.

(4.5)

Let x∗k be an optimal solution. Go to Step 2.

Step 2. Check for the sign of h(x∗k). If h(x∗k) ≥ 0, Stop, optimal solution to the problen

has been found. Otherwise go to Step 3.

Step 3: Find λk such that 0 ≤ λk ≤ 1 and h(x0 + λk(x∗k − x0)) = 0.

Define xk+1 = x0 + λk(x∗k − x0) and go to Step 4.

Step 4. Introduce the cut: ∇h(xk+1)(x− x0) ≥ 0. Set k ← k + 1 and go to Step 1.

4.3 Prékopa-Vizvári-Badics (PVB) Algorithm

The Prékopa-Vizvári-Badics algorithm was introduced to solve probabilistically constrained

problems, where the random right-hand side vector ξ has a discrete distribution. It is based

on the concept of a p-efficient point by use of which the problem can be reformulated as a

disjunctive problem. First we outline the original use of it.

Let ξ = (ξ1, ..., ξn)T be a random vector, where the support of ξi in zi = {zi0, zi1, ..., ziki}, i =

1, ..., n and let z = zi × ...× zn.

Definition 4.1 A value z ∈ Z of ξ is a p-efficient point of the probability distribution

or its distribution function if F (z) ≥ p and there is no possible value w ∈ Z such that

w ≤ z, w 6= z, F (w) ≥ p.

Let z1, ..., zN be the set of all p-efficient points of the distribution of ξ.

Algorithm 3 (Prékopa-Vizvári-Badics) Step 0. Enumerate all p-efficient points z1, ...zN .

Let z̄ =
∑N

i=1 zi/N . Inicialize k ← 0 and go to Step 1.
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Step 1. Determine the vectors w1, ..., wh such that they form a basis in the space orthog-

onal to the affine space spanned by z1 − z̄, . . . , zN − z̄.

Step 2. Solve the LP:

min cTx

s.t.

Ax ≥ b

wTl (Tx− u− x̄) = 0, l = 1, ..., h

vTi (Tx− u− z̄) ≥ 0, i = 1, ..., k

x ≥ 0, u ≥ 0.

(4.6)

If k = 0, then ignore the constraint for i = 1, ..., k. Let (xk, uk) be an optimal solution. Go

to step 3.

Step 3. For t = Txk − uk − z̄ solve the auxiliary problem

min eTµ = α

N∑
i=1

(zi − z̄)µi = Txk − uk − z̄

µ ≥ 0

(4.7)

where e = (1, 1, ..., 1)T , (xk, uk) is the current optimal solution, and µ = (µ1, ..., µN ) is the

decision vector.

4.4 Hybrid algorithm: combination of the supporting hyperplane and

PVB algorithms

It was first introduced in [49] Prékopa (2007). An improved version is due to [53] Prékopa,

Myndyuk (2016). Here, however, we assume that ξ has continuous distribution. The role of

p-efficient points is taken by points on the boundary of the set of feasible solutions, obtained

in the subsequent iterations. The combined application of PVB and supporting hyperplane

algorithms provides solution method for problem (2.1), where r.v. has continuous distribu-

tion. At each iteration both lower and upper bounds for the optimum are available, and if

they are sufficiently close we may stop.
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Algorithm 4 (Hybrid algorithm)

• Step 0. Find x0 satisfying Ax0 ≥ b, x0 ≥ 0, h(x0) > 0. Let k = 0, K0 = ∅. Go to Step

1.

• Step 1. Solve the LP:

min cTx

subject to

Ax ≥ b

5h(xi)(x− xi) ≥ 0, i = 1, . . . , k

x ≥ 0.

Let x∗k be an optimal solution. Go to Step 2.

• Step 2. Check for the sign of h(x∗k). If h(x∗k) ≥ 0, Stop, optimal solution to problem

(3) has been found. Otherwise go to Step 3.

• Step 3. Find λk such that 0 < λk < 1 and h(x0 + λk(x∗k − x0)) = 0. Define

xk+1 = x0 + λk(x∗k − x0) and go to step 4.

• Step 4. Let Kk+1 = Kk ∪ {Txk+1}. Run PVB algorithm using Kk+1 as the set of

p-efficient points. Let x̃∗k+1 be the result of the PVB algorithm. Then cTx∗k+1 is

a lower bound of the optimal objective value and cT x̃∗k+1 is an upper bound of the

optimal objective value. Go to Step 5.

• Step 5. Introduce the cut: 5h(xk+1)(x− xk+1) ≥ 0, set k ← k + 1 and go to Step 1.

4.5 Probability Distributions Commonly Arising in the Considered Prob-

lems

The effectiveness of the algorithms described in this section rests on our ability to compute

the function h(x), that is the CDF of the respective distribution, and its gradient efficiently.

The distributions most commonly used to describe a wide range of physical phenomena are

the normal distribution and the uniform distribution [?].
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Figure 4.1: Lower and upper bounds of the objective function graphical representation up
to convergence to the optimal result

4.5.1 Normal Distribution

The normal distribution is famously logconcave [46] and leads to the stochastic optimization

problem being convex. Numerical methods for evaluating the CDF of a multivariate normal

distribution have been extensively studied by Dunnett and Sobel (1955), Steck and Owen

(1962), Schervish (1984,1985), Nelson (1991), Dunnett (1989,1993), Drezner (1992), Genz

(1992), Hajivassiliou, McFadden and Rudd (1996). In particular, a recent algorithm by

Genz [16] is applicable to singular multivariate normal distributions, which is crucial for

our purposes. The source code of his algorithms has also been made available at http:

//www.math.wsu.edu/faculty/genz/software/software.html

The gradient-based algorithms described in previous sections require the computation

of derivatives of the CDF. The derivatives of the mulitvariate normal distribution can be

expressed through CDF’s of lower dimenstional normal distribution.

Lemma 4.1 For the CDF F (z;µ,Σ) of a multivariate normal distribution with mean µ

http://www.math.wsu.edu/faculty/genz/software/software.html
http://www.math.wsu.edu/faculty/genz/software/software.html
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and variance-covariance matrix Σ, the partial derivative

∂

∂zi
F (z;µ,Σ) = F (z−i; µ̃

(i)(zi), Σ̃
(i))f(zi;µi,Σi,i) (4.8)

where z−i = (z1, . . . , zi−1, zi+1, . . . , zn)T ,

µ̃(i)(zi) = µ−i +
1

Σi,i
Σ−i,i · (zi − µi) Σ̃(i) = Σ−i,−i −

1

Σi,i
ΣT
i,−iΣi,−i (4.9)

4.5.2 Uniform Distribution

• Convexity of the constraint set: the distribution is logconcave

• Complexity of the computation of the CDF:

– The problem is computationally hard

For the case of uniform distribution, computation of the probability P{Tx ≥ ξ}

in the left-hand side of the probabilistic constraint reduces to the computation

of the volume of a multi-dimensional polytope given as a set of inequality con-

straints. This problem is known to be #P-hard [10] (For a treatment of “#P-

hardness” see [68])

– The exact algorithm:

The most straightforward approach to volume computation is:

1. choose a vertex of the polytope

2. enumerate facets of the polytope which do not containt the chosen vertex

3. for each facet, compute the volume of the pyramid with this facet as the

base and the chose vertex as the apex

4. sum the volumes of the pyramids

Under the hood this reduces to vertex enumeration. See [2] for an efficient

algorithm.

A more efficient algorithm for volume computation has been suggested by Lawrence

[27]

– An even more efficient, but probabilistic method for volume computation is

Markov chain Monte Carlo [9].
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The uniform distribution typically arises when the random variables to be modelled are

known to satisfy certain (often linear) constraints, but nothing else is known about their

distribution.

The multivariate uniform distribution over a convex polytope is logconcave. Compu-

tation of the probability P{Tx ≥ η} in the left-hand side of the probabilistic constraint

reduces to the computation of the volume of a multi-dimensional polytope given as a set

of inequality constraints. This problem is known to be #P-hard [10] (For a treatment of

“#P-hardness” see [68]) A number of algorithms has been proposed in [27] and also ”An

Analytical Expression and an Algorithm for the Volume of a Convex Polyhedron in Rn” by

Lasserre) We have used the result by Lawrence [27]

Theorem 4.1 (Lawrence) Suppose a polyhedron P = {x ∈ Rn : ri(x) = bi − aTi x ≥

0 for i = 1, . . . ,m}. Suppose further that P is bounded and that for each vertex v of P the

number of indices i such that ri(v) = 0 is n. In particular, P is a simple polytope. Suppose

c ∈ Rn and d ∈ R are such that the function f(x) = cTx + d is nonconstant on each edge

of P . Given a vertex v of P , let

Nv =
f(v)n

n!δvγ1 · · · γn
(4.10)

where, if the indices of the constraints which are binding at v are i1, . . . , in, then γ1, . . . , γn

are such that

c = γ1ai1 + · · ·+ γnain (4.11)

and δv is the absolute value of the determinant of the n × n matrix whose columns are

ai1 , . . . , ain. Then the volume of P is

vol(P ) =
∑
v

Nv. (4.12)

The enumeration of vertices present in the sum (4.12) has been implemented based on Avis

and Fukuda [2]

An alternative to the exact methods is the Monte-Carlo approach which could be im-

plemented as follows

1. For a given polytope Ax ≤ b find a box l ≤ x ≤ u which contains the polytope.
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2. Generate a random sample x(1), . . . , x(N) uniformly distributed in the box.

3. Count the number M of those x(i) for which Ax(i) ≤ b

4. The volume of the polytope is approximately M
N

∏
j(uj − lj)

Notice, that the CDF of the uniform distribution is non-smooth: its gradient does not

exist at the points z where the boundary of the quadrant ζ ≤ z contains a vertex of the

support polytope of the distribution. However, the algorithms described in this Chapter

are still applicable, we should just use a subgradient of the CDF whenever the gradient is

undefined.
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Chapter 5

Numerical Examples

We considered three numerical examples. Two for interconnected power systems: an 8-area

and 15-area system, and a water reservoir system, to illustrate our design methodology.

The first two networks are taken from [43] Prékopa, Boros (1989). The 8-node network

is also used in [52] Prékopa, Unuvar (2015), for illustration, but here we use continuously

distributed ξ. The third example is new.

5.1 8-node Network Design Problem

In this example we consider an 8-node network, where all the nodes have random demands

following normal distribution. Figure 5.1 shows the power distribution network with 8 areas,

and table 5.1 shows the parameters of the distribution of the random demand. We have in

mind large scale interconnected power systems, where the power flow can realistically be

described by flows presented in Chapter 3. Small scale power systems need more physical

parameters in their description, see, e.g., Prékopa (2014). The problem to be solved is:

min
x

∑
i

xi

subject to

P


∑
i∈S

xi +
∑
i∈S
j 6∈S

yij ≥
∑
i∈S

ηi ∀S ⊆ N , S - non-eliminated

 ≥ p
xi ≥ 0,

(5.1)

where N is the collection of the nodes with random demands. The xi’s are decision variables

representing production capabilities at the i, ηi’s are random demands at the nodes, and

the yij are arc capacities between nodes i and j. The paramaters of the distribution of ηi
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are shown in Table 5.1 and the arc capacities are represented as arc labels in Figure 5.1.

Figure 5.1: Power distribution network with 8 areas

area expectation standard deviation

1 8850 1209.4
2 8200 1500
3 9650 1246
4 7900 1469.7
5 9700 1122.50
6 10150 1415.1
7 9550 1171.5
8 9000 1500

Table 5.1: Parameters of the probability distribution of the random demands

We will use normal joint distribution for the components of ξ which implies that there are

no finite lower and upper bounds for the demands. Thus, only the topological elimination

can be applied for the Gale-Hoffman inequalities. If we execute the elimination, then only

161 out of the initial 255 inequalities remain. Those are presented, together with the upper

triangle values of 161× 161 covariance matrix in the appendices.

The solution steps are as follows

• Step 0. Formulate the Gale-Hoffman inequalities for our problem and eliminate the
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redundant ones using the topological constraint elimination technique described in

Chapter 3. The remaining ones determine the probabilistic constraint of the problem:

P (Tx ≥ η) ≥ p (5.2)

where the matrix T is presented in Appendix A. The random vector η is given by

η = Tξ − Y (5.3)

where

Yj =
∑
i∈S
j 6∈S

yij (5.4)

and S is the subset of nodes of the graph which determine the constraint j. In the

numerical example we chose p = 0.9.

Let

h(x) = P


∑
i∈S

xi +
∑
i∈S
j 6∈S

yij ≥
∑
i∈S

ηi ∀S ⊆ N , S - non-eliminated

− p. (5.5)

• Step 1. Find x0 satisfying the probabilistic constraint strictly, and also satisfying the

deterministic constraints. Let k = 0, K0 = ∅.

• Step 2. Solve the LP:

min
∑

i xi

subject to

x ≥ 0.

Let x∗1 = (0, 0, 0, 0, 0, 0, 0, 0) be the optimal solution.

• Step 3. Check that the probabilistic constraint is not satisfied and continue the

iteration.

• Step 4. Find λ0 such that 0 < λ0 < 1 and h(x0 + λ0(x∗0 − x0)) = 0. Define

x1 = x0 + λ0(x∗0 − x0).



29

• Step 5. Let K1 = K0 ∪ {Tx1}. Run PVB algorithm using K1 as the set of p-efficient

points. Let x̃∗1 be the result of the PVB algorithm. Then
∑

i x
∗1
i is a lower bound

of the optimal objective value and
∑

i x̃
∗1
i is an upper bound of the optimal objective

value.

• Step 6. Find 5h(x1) and introduce the cut: 5h(x1)(x− x1) ≥ 0. Set k ← k + 1 = 1

and start the next iteration.

• Step 7. Solve the LP:

min
∑

i xi

subject to

5h(x1)(x− x1) ≥ 0

x ≥ 0.

Let x∗1 be an optimal solution.

• Step 8. Check that x∗1 does not satisfy the probabilistic constraint and continue with

the iteration.

• Step 9. Find λ1 such that 0 < λ1 < 1 and h(x0 + λ1(x∗1 − x0)) = 0. Define

x2 = x0 + λ1(x∗1 − x0).

• Step 10. Let K2 = K1 ∪{Tx2}. Run PVB algorithm using K2 as the set of p-efficient

points. Let x̃∗2 be the result of the PVB algorithm. Then
∑

i x
∗2
i is a lower bound

of the optimal objective value and
∑

i x̃
∗2
i is an upper bound of the optimal objective

value.

• Step 11. Find 5h(x2) and introduce the cut: 5h(x2)(x− x2) ≥ 0. Set k ← k+ 1 = 2

and proceed to the next iteration.

Here we present the corresponding numerical values found by the algorithm in the first

two iterations.

Iteration 1
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x0 = (18022, 18022, 18022, 18022, 18022, 18022, 18022, 18022)T (5.6)

x∗1 = (10104, 10769, 9546.8, 7583.5, 9707.5, 10364, 10251, 9522.3)T (5.7)

λ1 = 0.126143 (5.8)

x1 = (11103, 11684, 10616, 8900.3, 10756, 11330, 11232, 10595)T (5.9)

x̃∗1 = (11103, 11684, 10616, 8900.3, 10756, 11330, 11232, 10595)T (5.10)

lower bound (from supporting hyperplane) = 77847.9 (5.11)

upper bound (from PVB algorithm) = 86215.1 (5.12)

5h(x1) = (9.0007 · 10−6, 3.3065 · 10−7, 3.0922 · 10−5, 2.5632 · 10−5,

1.8862 · 10−6, 4.1845 · 10−5, 3.5063 · 10−5, 3.5313 · 10−5)T
(5.13)

Iteration 2

x∗2 = (9399.8, 6922.3, 11673, 9350.6, 8678.7, 11963, 10251, 10155)T (5.14)

λ2 = 0.0999722 (5.15)

x2 = (10262, 8032, 12308, 10218, 9612.8, 12569, 11028, 10942)T (5.16)

lower bound (from supporting hyperplane) = 78393.4 (5.17)



31

upper bound (from PVB algorithm) = 84970.2 (5.18)

5h(x2) = (4.5986 · 10−5, 4.5103 · 10−5, 3.634 · 10−6, 8.171 · 10−6,

1.6741 · 10−5, 6.1076 · 10−6, 4.8979 · 10−5, 2.5266 · 10−5)T
(5.19)

5.2 Comparison to a discrete distribution

Prékopa, Unuvar (2015) consider a very similar problem where the demands have a discrete

(binomial) distribution. In this section we consider a corresponding problem with normally

distributed demands.

We consider a corresponding problem where the demands have normal distribution with

the same means and variances as in [52] Prékopa, Unuvar (2015) and the rest of the param-

eters are the same. The comparison of the obtained solutions is shown in Table 5.2.

Binomial distribution Normal distribution Normal distribution,
(Prékopa, Unuvar (2015)) restricted version

x1 69 63.444 79.771
x2 60 44.430 61.966
x3 40 39.198 38.301
x4 67 58.928 71.748
x5 81.0192 61.520 91.699
x6 61.9808 35.218 53.083
x7 42 39.023 39.486
x8 46 44.513 43.549

objective 1233 1083 1238

Table 5.2: Comparison of the optimal values for the 8-node problem, with binomial versus
normal demand distributions.

The solution obtained for the case of the binomially distributed demands provides us

with an upper bound for the optimal value based on Theorem 2.6. The respective bound

for problem with normal distribution is also shown in Table 5.2.
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Figure 5.2: Power distribution network with 15 cities
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area expectation standard deviation

1 1.0000e+03 1.3416e+03
2 1.0000e+03 1.3416e+03
3 1.0600e+03 1.5863e+03
4 8.0000e+02 9.7980e+02
5 1.3000e+03 1.8193e+03
6 0.0000e+00 0.0000e+00
7 1.0000e+03 1.3416e+03
8 6.0000e+02 9.1652e+02
9 8.0000e+02 9.7980e+02

10 1.2000e+03 1.3266e+03
11 9.0000e+02 1.3379e+03
12 1.1000e+03 1.3379e+03
13 9.4000e+02 1.3403e+03
14 1.2200e+03 1.5721e+03
15 1.5000e+03 1.7748e+03

Table 5.3: Parameters of the probability distribution of the random demands

5.3 15-node Network Design Problem

5.4 Summary of computational complexity of the power distribution prob-

lems

In this section we summarize the computational effort required to solve problem (5.1) for

the 8-node (Chapter 5.1) and 15-node (Chapter 5.3) power network.

5.5 Flood Control Problem

The problem is to design a reservoir system for flood control. Assume now that we can

build reservoirs in some parts of the river system, represented by some edges in a directed

tree, see Figure 5.3, and the only purpose of the reservoirs will be to retain the flood. This

we assume to be random, exist, periodically and independently, once a year. The water

comes from terminal points. We assume that the total water quantities can be separated in

such a way that we can quantitatively give that amounts which can be lead between river

banks and also that amounts which have to be retained by the reservoir system. When

retaining the flood, we accept the following policy: first we start to fill up those upstream
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Figure 5.3: Reservoir system for flood control
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problem algorithm iter. prob. computations computation obj. val. prob. val
time (sec)

8 areas supporting hyperplane 57 374 + 17 * 161 3998 82966 0.89837
8 areas hybrid 57 374 + 17 * 161 3998 82966 0.89837
8 areas restricted version with

supporting hyperplane
132 2882 270 96617 0.99979

15 areas supporting hyperplane 121 2640 + 120 * 2094 4708210 24142.74 0.89852
15 areas hybrid 121 2640 + 120 * 2094 4708210 24142.74 0.89852
15 areas supporting hyperplane

with approx. derivative
43 924 + 42 * 30 73515 25930.29 0.91968

15 areas hybrid with approx.
derivative

43 924 + 42 * 30 73515 25930.29 0.91968

15 areas restricted version with
supporting hyperplane

519 11396 3078 60481 0.989

Table 5.4: 8-node and 15-node problems solutions with different algorithms: iterations,
probability computations, objective values and probability values.

reservoirs which are located on terminal edges. Then, if the flood cannot be retained by

these reservoirs, start to fill up the reservoirs on the next edges by the overflown quantities

and those input quantities which arrive on terminal edges without reservoir, etc.

Here we are dealing with a special interpretation of the flow and the demand. As we

see in Figure 5, the arrows indicating the flow directions are upstream, not downstream.

In fact, we are dealing with an upstream flow of freeboard which is initially equal to x9 at

the last reservoir (node 10 can be eliminated, it just designates the area to be protected)

and equal to 0 in all the sources. As regards the demand function, first we remark that,

together with the reservoir building sites (the triangles) there are all together 14 of them.

At each node, however, there may be a source, ξ = 0 at reservoir site and x = 0, ξ = 0

at a node having one of them, then ξ − x is the demand function as in our general model

formulation.

To every terminal vertex there corresponds a random input water quantity. These will

be denoted by ξ1, ..., ξ5. The reservoir capacities to be determined will be denoted by the

symbols xi and the capacities of the river segments will be denoted

y11, y12, y21, y22, y31, y32, y4, y5, y6, y7, y81, y82. It is convenient to choose the subscript i in

such a way that it coincide with the subscript of that vertex from which the edge, having

the reservoir with capacity xi, starts.
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The random inflows ξi are assumed to have jointly normal distribution described by the

correlation matrix

R1 =



1.0 0.0 0.6 0.4 0.0

0.0 1.0 0.5 0.3 0.3

0.6 0.5 1.0 0.7 0.6

0.4 0.3 0.7 1.0 0.4

0.0 0.3 0.6 0.4 1.0


(5.20)

and expectations, standard deviations given in Table 5.5 The objective function is assumed

to be linear (for simplicity) and to be minimized. It is given by:

0.4x1 + 0.5x2 + 0.6x3 + 1.2x8 + 1.8x9 + y11 + 0.25y12 + y21+

0.25y22 + y31 + 0.25y32 + y4 + y5 + 0.25y6 + 0.25y7 + 0.25y81 + 0.25y82

(5.21)

Expectations Standard deviations

x1 0.8 0.2
x2 1.5 0.3
x3 1.2 0.6
x4 0.5 0.4
x5 0.7 0.3

Table 5.5: Parameters of the distribution of the random inflows

The application of the hybrid method gave the optimal solutions shown in Table 5.6
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p=0.9 p=0.95
full restricted full restricted

x1 1.2912 1.26705 1.27494 1.24726
x2 2.13652 2.12588 2.12031 2.18267
x3 2.19962 3.5202 2.18969 2.17277
x8 0.86924 1.1618 0.85266 1.18706
x9 1.31607 1.23201 1.3353 1.30713
y11 1.2845 1.26705 1.27605 1.24726
y12 0 0 0 0
y21 2.14575 2.12588 2.12488 2.18267
y22 0.00747 0 0.01125 0
y31 2.23178 3.5202 2.21704 2.17277
y32 0.01334 0 0.01312 0
y4 1.22224 1.1618 1.24018 1.18706
y5 1.31536 1.23201 1.33126 1.30713
y6 0 0 0.00583 0
y7 0.01615 0 0.01225 0
y81 1.22731 1.1618 1.24698 1.18706
y82 1.05317 1.1618 1.14589 1.18706

objective 15.1 17.18 15.11 15.36

Table 5.6: Optimal reservoir and river capacities found by the hybrid algorithm for the
Flood Control Problem
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Chapter 6

Derivative-free algorithm approach

The obvious reasons to try derivative-free optimization algorithms are the following:

1. Derivative computation takes the majority of the computation time,

2. Especially so for problems with degenerate distribution of the random variable (this

is because analytic computation of the derivative involves the chain rule):

• with y = Tx, differentiate P{y ≥ ξ} in y

• the derivative in x is T T (derivative in y)

• the dimensionality of y may be much greater than the dimensionality of x

3. Especially so for the problems where the probabilistic constraints are generated algo-

rithmically based on a certain rule, and an explicit formula for T is not even available.

As an example, see the irrigation problem in Section 6.5 below.

6.1 Direct search methods

Various direct search methods, most notably the Nelder-Mead “simplex” method, were

proposed in the early 1960s, and have been enormously popular with practitioners ever

since [71].

6.1.1 The Nedler-Mead method

In Nedler-Mead algorithm [33], at each iteration we consider a current simplex defined by

n+ 1 vertices, at each point in Rn and their corresponding values of f . At iteration k, we

order and label the current set of vertices as x
(k)
1 , ..., x

(k)
(n+1)) such that

f
(k)
1 ≤ f (k)2 ≤ ... ≤ f (k)n+1 (6.1)
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where f
(k)
i is f(x

(k)
i ).

Let us say that x
(k)
1 is the best point, and x

(k)
n+1 is the worst point, since we are looking to

minimize f .

There are two possible scenarios of Nedler-Mead iteration: the accepted point (a single new

vertex) replaces xn+1 in the set of vertices for the new iteration; or a set of n new points

including x1 forms the simplex at the next iteration if a shrink is performed. The search

direction is defined by xn+1 and x̄, the geometric center of all vertices except xn+1.

Iteration k of the Nedler-Mead algorithm.

1. Order.

Order the n + 1 vertices so that f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1), using consistent

tie-breaking rule.

2. Reflect

Find the reflection point xr from xr = x̄+ ρ(x̄− xn+1),

where x̄ is the centroid of the n best vertices (except for xn+1), meaning that x̄ =

6.1.2 Multidirectional search

The interest in direct-search methods reemerged in 1989 with Ph.D. thesis of Torczon and

her papers written together with Dennis [66, 8]. They came up with the multidirectional

search method. The reason for developing the multidirectional search method was mostly

to make parallel computing environment effective. It was also one of the first direct search

algorithms that have been proved to converge to a solution when applied to a convex

function.

The multidirectional search method is simplex-based. At every iteration we consider a

simplex whose best vertex (corresponding to the lowest function value) is so labeled.

Iteration k of the multidirectional search algorithm with the expansion and

contraction coefficients being equal to correspondingly standard values χ = 2 and γ = 1/2.

Algorithm 5 (Torczon) For each iteration repeat the following steps
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1. Order.

The best vertex is labeled as x1, so that f(x) = argminif(xi).

2. Reflect.

Define the reflected vertices, x
(i)
r = 2x1 − xi for i = 2, ..., n + 1, and evaluate f

(i)
r =

f(xir). If mini{f (i)r } < f1, go to step 3, otherwise go to step 4.

3. Expand.

Compute the expanded vertices, x
(i)
e = x1 + χ(x1 − xi), for i = 2, ..., n + 1, and

evaluate f
(i)
e = f(x

(i)
e ). If mini{f (i)e } < mini{f (i)r }, then accept the expanded simplex,

otherwise accept the reflected simplex.

4. Contract

Calculate the contracted vertices, x
(i)
c = x1 + γ(xi − x1) for i = 2, ..., n + 1, and

evaluate f
(i)
c = f(xic). For i = 2, ..., n+ 1, replace xi by x

(i)
c . Terminate the iteration

if mini{f (i)c } < fi, otherwise return to step 2.

The number of function evaluations needed for the multidirectional search is an integer

multiple of 2n. If one of the initial reflection, expansion or contraction steps produces a

strict improvement over f1, the iteration terminates after 2n function evaluations. If not,

the sequence of reflection, expansion and/or contraction is repeated with a contracted sim-

plex until an improved best function value is found, where each cycle costs a further 2n

function evaluations. Therefore, a multidirectional search method may require significantly

more function evaluations than the Nedler-Mead method. Nonetheless, if the multidirec-

tional search is implemented on a parallel computer with the sufficiently large number of

processors, the n function evaluations needed for reflection, expansion or contraction can be

performed in parallel. Also, we must underline the great advantage of the multidirectional

search method: it’s strong convergence properties, which were refined and extended by Tor-

czon. The key of the convergence proofs are uniform linear independence of the simplex

edges at every iteration, the scaled lattice structure of generated points and the step control

strategy.
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6.2 Inner polygonal approximation algorithm

This is a modification of Prékopa-Vizvári-Badics algorithm, suited for problems

with continuously-distributed random variables. Denote

X = {x|P{Tx ≥ η} ≥ p} (6.2)

Algorithm 6 (Inner polygonal approximation) The algorithm is as follows:

1. (Initialization)

(a) Find x̄1 ∈ int(X)

(b) In the direction opposite to each of the orths ei find a boundary point of the set

X:

ti = max{t : x̄1 − eit ∈ X}

x(i) = x̄1 − eiti
(6.3)

(c) Let E0 = {x(i)} be the initial value for the set of efficient points. Also, let

F0 = {x(i)} = E be the set of “frontier” efficient points.

(d) Set the iteration number k = 1.

2. (Inner problem) At the k-th iteration run Prékopa-Vizvári-Badics algorithm using

Ek−1 as the set of efficient points. The Prékopa-Vizvári-Badics algorithm will solve

the problem:

min cTx

s.t.

Ax ≤ b

x ≥ y

y ∈ conv(Ek−1)

(6.4)

Note: The set {x : x ≥ y,y ∈ conv(Ek−1)} ⊆ X and thus problem (6.4) yields an

upper bound of the true solution of (2.1).

3. Check the stopping criterion:
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(a) Let x0k denote the solution to (6.4). For a chosen tolerance ε, let Ck = {x ∈

Ek−1 : ‖x− x0‖ ≤ ε,x 6= x0k}

(b) Let Lk be the hyperplane orthogonal to the direction x0k − x̄1. Construct the

projection of Ck onto Lk and denote it Ĉk; find the projection of x0k onto Lk

and denote it x̂0k.

(c) If x̂0k ∈ conv(Ĉk) then STOP, x0k is the solution. Otherwise, continue.

4. (Updating the set of efficient points)

(a) From the solution of (6.4) note which of the constraints defining conv(Ek−1) are

active. The active constraints have the form: sjkx ≤ rjk.

(b) For each active constraint determine the vertices of the constraining facet: Fjk =

{x(i,j)} = {x ∈ Ek−1 : sjkx = rjk}

(c) Find the center of the facet x
(j)
0k = 1

K

∑K
i=1 x(i,j) where K is the cardinality of

Fjk.

(d) Find a new efficient point:

t = max{t : x
(j)
0 + tsj ∈ X}x(j) = x

(j)
0 + tsj

Let E0
k = Ek−1 ∪ {x(j)}

5. (Extending frontier) If for each Fjk: Fjk ∩ Fk−1 = ∅ then set Ek = E0
k, Fk = Fk−1,

x̄k+1 = x̄k and go to step 2. Otherwise, let x̄k+1 = x̄k + 1; construct new efficient

points x(i) as in (6.3); let Fk = {x(i)}i and let Ek = E0
k ∪ Fk. Go to step 2.

The Figure 6.1 illustrates the operation of one iteration of the algorithm above, as applied

to the problem discussed in Section 6.5 below. The Figure 6.2 shows 5 first iterations,

namely the efficient points Ek−1, the optimal point x0k and the central point x̄k for each

iteration. We can observe that the efficient points generated by the algorithm accumulate

in the vicinity of the optimal solution.
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Every iteration starts with some already
found efficient points and a central point
x̄.

As the first step, the efficient point which
minimizes the objective function is found.
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The set of efficient points is refined by
adding one extra point for each facet ad-
jacent to the current-optimal point. We
start at the center of the facet and move
away from the central point until we cross
the efficient frontier.

If necessary, the central point is moved
further away, so that we can approximate
a larger part of the efficient frontier.

Figure 6.1: Operation of a typical iteration of the optimization algorithm
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Iteration 5 Combined plot of 5 iterations

Figure 6.2: Illustration of the first 5 iterations for a two-reservoir optimization problem
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6.3 Construction of unconstrained optimization problem

While the considered derivative-free algorithms solve unconstrained minimization problem,

problem (2.1) has nontrivial constraints. It can be reduced to an unconstrained minimiza-

tion problem under the monotonicity Condition 2.2.

Let B be a matrix whose columns form an orthonormal basis in the linear subspace

orthogonal to vector c. Define

g(z) = min{y : P{T (Bz + cy) ≥ η} ≥ p and A(Bz + cy) ≤ b} (6.5)

Then (2.1) is equivalent to

min
z
g(z) (6.6)

Notice that g(z) is (almost) an implicitly-defined function whose values could be com-

puted with the bisection method. However, this might be unnecessary: algorithm 5 is

based on the comparisons of the form g(z1) > g(z2) but does not require the exact values

of the function. This lets us adapt the algorithm to our needs even further, by associating

with each symplex {x1, . . . , xn+1} values {y(1)l , . . . , y
(n+1)
l } and {y(1)u , . . . , y

(n+1)
u } such that

g(xi) ∈ [y
(i)
l , y

(i)
u ]. The bounds y

(i)
l , y

(i)
u , y

(j)
l , y

(j)
u can be refined as needed whenever a

comparison g(xi) > g(xj) is of interest.

6.4 Numerical experiments: Power distribution problem

We have solved the problems described in 5.1 and 5.3 using the Torzcon algorithm. The

results are shown below:

problem distribution iterations obj. val. prob. val

8 cities normal 43 45.55 0.8997

15 cities normal 127 24218 0.8992

8 cities uniform 20 20.37 0.895

15 cities uniform 17 26146 0.897
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6.5 Serially Linked Reservoir Network Design Problem with consecutive

k-out-of-n type Reliability

The topology of the main river, the side rivers and the possible reservoir sites that are

serially linked is illustrated in Figure 6.3.

Time is subdivided into periods and we consider a finite number of them. Periods can

be weeks, decades, etc., in practice.

We assume that at the beginning of each period, certain water inputs occur in accor-

dance with the topology of the rivers and reservoirs. If a reservoir becomes full, then the

water spills and fills downstream reservoirs. When this is the case, no more water is released

from upstream reservoirs to downstream reservoirs. If a reservoir becomes full, then addi-

tional water overflows to downstream reservoirs. No more water is released from upstream

reservoirs to downstream reservoirs at these times.

At the end of every period, demands occur which can be assigned to separate reservoirs.

If possible, every demand is primarily satisfied from the reservoir that they are assigned.

If not, then our assumed operating policy is as follows. First, demands are satisfied to

the extent that water amounts are in the corresponding reservoirs. Then starting from

the reservoir furthest downstream, stop at the first reservoir where there is unsatisfied

demand. From here we aggregate the unsatisfied demands of all consecutive reservoirs up

to the first non-empty reservoir, and try to meet this aggregated demand. If this is not

possible, then we proceed similarly in the upstream direction. If the whole system can

meet the demand, then this procedure stops at a certain point and we can then satisfy the

downstream demands. This procedure is repeated for the remaining upstream subsystem

and so forth. In our model, all demands will be met by a prescribed high probability. Note

that the above operating policy is also uniquely determined in the case in which part of the

demand remains unsatisfied.

We further assume that if the system is unable to satisfy the demands in a certain

period, then a penalty occurs which belongs to the whole system and its function of the

unsatisfied part of the total demand. For simplicity, however, we disregard penalties in our

model construction.
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Figure 6.3: Topology of main river, the side rivers, and the possible reservoir sites

Let us introduce the following notation:

r number of sites;

k number of consecutive periods that demand will be satisfied

n number of periods;

K(j) unknown capacity of reservoir j;

ζ
(j)
i water content in reservoir j at end of ith period;

ξ
(j)
i direct random inflow into reservoir j in the ith period;

η
(j)
i direct random demand against reservoir j in the ith period;

x
(j)
i 1 if jth reservoir satisfies the demand in the ith period, 0 otherwise
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We also introduce auxiliary random variables as follows:

g
(0)
j (x) = 0

g
(i)
j (x) = ζ

(i)
j−1(x) + g

(i−1)
j (x) + ξ

(i)
j −min{ζ(i)j−1(x) + g

(i−1)
j (x) + ξ

(i)
j ,K(i)}

h
(i)
j (x) = min{ζ(i−1)j (x) + g

(i−1)
j (x) + ξ

(i)
j ,K(i)}

d
(i)
j (x) = h

(i)
j (x)− η(i)j

i = 1, . . . , r, j = 1, . . . , n

(6.7)

Quantity g
(i)
j is the amount of water that overflowed at reservoir i, and h

(i)
j is the amount

of water remaining in reservoir i at the beginning of period j when the input water fills up

the reservoirs and demand does not yet occur. Using these we write

ζ
(1)
j (x) = min{d(1)j (x), d

(1)
j (x) + d

(2)
j (x), . . . , d

(1)
j (x) + d

(2)
j (x) + . . .+ d

(r)
j (x)}

ζ
(i)
j (x) = max{0,min{d(i)j (x), d

(i)
j (x) + d

(i+1)
j (x), . . . , d

(i)
j (x) + d

(i+1)
j (x) + . . .+ d

(r)
j (x)}}

(6.8)

Our problem, to find optimal reservoir capacities, is the following:

min c1(K
(1)) + c2(K

(2)) + . . .+ cr(K
(r))

subject to P{∀j∀x ∈ X : ζ
(1)
j (x) ≥ 0} ≥ p

X =



(x1, . . . , xn) s.t.

x1 + · · ·+ xk ≤ k − 1

x2 + · · ·+ xk+1 ≤ k − 1

...

xn−k+1 + · · ·+ xn ≤ k − 1



(6.9)

where p is a prescribed probability, near 1 in practice.

Theorem 6.1 For any fixed x
(j)
i , i = 1, . . . , n, j = 1, . . . , r, the probability, standing on the

left hand side in the probabilistic constraint (1), is a logconcave function of (K(1), . . . ,K(r)).

Proof Inside the paranthesis of the probability in (1) we have inequalities that we imagine

reformulated in such a way that as 0 remains on the right hand sides of the inequalities.

Then, we have n inequalities which contain functions of the variables (K(1), . . . ,K(r)) and

(ξ
(j)
1 , . . . , ξ

(j)
n ,γ

(j)
1 , . . . , γ

(j)
n ), and these functions are concave. The application of Theorem

1 for this case proves Theorem 2.
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6.5.1 Simplification of the problem

The set X in (6.9) represents a list of possible scenarios for the sequence of dry and rainy

days. This set can be very large, which means that even verifying if the probabilistic

constraint is satisfied for a particular realization of the random variables could be com-

putationally intensive. In this section we reduce the set X to a smaller set of worst-case

scenarios.

Lemma 6.1 Let X̃ ⊆ X be such that

∀x ∈ X : ∃x̃ ∈ X̃ : x̃ ≥ x (6.10)

where the inequality is component-wise. Then

(
∀x ∈ X : ∀j : ζ

(1)
j (x) ≥ 0

)
⇔
(
∀x ∈ X̃ : ∀j : ζ

(1)
j (x) ≥ 0

)
(6.11)

Proof Use induction to show that ζ
(1)
j (x) is monotonously increasing with x.

Lemma 6.1 shows that the set X in (6.9) can be substituted by the set of its maximal

points, that is the points such that every point in X is less-than-or-equal-to a maximal

point, but there is no other point in X which is greater-than-or-equal-to a maximal point.

The set of maximal points (it is characterized in Lemma 6.2 below) is best characterized

in terms of the lengths of periods of consecutive dry days which we call droughts. For a

given x ∈ X we denote l1, l2, . . . , ls the lengths of droughts in scenario x. More formally,

x1 = x2 = . . . = xl1 = 1

xl1+1 = 0

xl1+2 = xl1+3 = . . . = xl1+l2+1 = 1

xl1+l2+2 = 0

· · ·

(6.12)

In the case when two consecutive days are rainy (xi = 0, xi+1 = 0) the respective lj = 0.

Denote l(x) the representation of scenario x through the drought lengths (l1, . . . , ls).

Then the set X can be represented as X = {x : l(x) ∈ L} where L = {(l1, . . . , ls) : li ≤

k − 1,
∑

i li + s = n}
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Lemma 6.2 Let Xmax be the set of maximal points of X. Then

Xmax = {x : l(x) ∈ Lmax} (6.13)

where

Lmax = {(l1, . . . , ls) : li ≤ k − 1, li + li+1 ≥ k − 1,
∑
i

li + s = n} (6.14)

Proof A vector x is not maximal if for one of its coordinates we have x
(j)
r = 0 and the vector

x′ = (x
(j)
1 , . . . , x

(j)
r−1, 1, x

(j)
r+1, . . . , x

(j)
n ) also satisfies the constraints defining the set X in (6.9).

This only happens if ∀r0 such that r− k+ 1 ≤ r0 ≤ r we have x
(j)
r0 + . . .+ x

(j)
r0+k−1 < k− 1.

In other words, for each sequence of coordinates x
(j)
r0 , . . . , x

(j)
r0+k−1 there is at least one zero

coordinate besides x
(j)
r . A vector x(j) is maximal if there is no such coordinate x

(j)
r , that is

∀r ∈ 1, n : x(j)r = 0⇒ ∃r0, r − k + 1 ≤ r0 ≤ r : x(j)r0 + . . .+ x
(j)
r0+k−1 = k − 1 (6.15)

We can restate the condition (6.15): vector x is maximal if ∀i : li + li+1 ≥ k − 1. Notice,

that x ∈ X if and only if ∀i : li ≤ k − 1. Thus, all maximal vectors x can be enumerated

by listing all sequences of nonnegative integers l1, . . . , ls satisfying:

li ≤ k − 1, i = 1, . . . , s

li + li+1 ≥ k − 1, i = 1, . . . , s− 1∑s

i=1
li + s = n

(6.16)

The sequences {li} in (6.16) can be enumerated directly with, for example, depth-first

search algorithm.

6.5.2 Numerical Results

Here we present 2-reservoir network problem which are serially linked to each other. The

total number of periods that is taken into account is 24 days and thus we would like to

satisfy the demand for 8 consecutive days out of 24 days for both reservoirs. The cost

function for the reservoirs is convex with coefficients of 1.5 for C(1) and 1 for C(2).

We assumed the inflow values and the demand are random coming from normal distri-

bution. We further assumed that demand for different days are dependent to each other
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Table 6.1: Results

DFIPA algorithm Supporting hyperplane

K1 Capacity (1000 m3) 15.0474 15.06498
K2 Capacity (1000 m3) 5.7323 5.7687
Optimal Cost 28.3034 28.3662
Number of Iterations 56 8
Computation time 12572 1373

with the covariance matrices for both reservoirs that are available in Appendix A. Inflow

variables are also dependent within days and covariance matrices for both reservoirs are also

available in Appe The data for the distribution of inflow and demand for each reservoirs

that is used for this problem can be reached in Appendix B.

Since there are 24 days, we have 17 0-1 constraints to be satisfied for the first reservoir

and 17 0-1 constraints to be satisfied for the second reservoir in addition to demand- inflow

feasibility constraints. If we consider all the possible x
(j)
i pairs that satisfies the 34 × 8

system of inequalities, there is going to be 234 total feasible vectors that need to be used to

be able to achieve the optimal solution. With the simlpe elimination technique described in

Section 6.5.1, we were able to reduce the set of feasible vectors to 254. After that, we used

derivative-free inner polygone approximation method that is coded in Matlab to obtain the

optimum solution while satisfying the probabilistic constraints.

The results and comparison of the two methods can be found in the table 6.1 above.

The results are slightly different because of the difference in the precision of the methods

that we use to generate the multi-variate distributions.
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Chapter 7

Conclusion

We proposed different solution methodologies for several important classes of probabilis-

tic constrained problems. In particular, we concentrated on the probabilistic constrained

problems with degenerate distribution.

As a result of conducted research, not only were we able to perform a qualitative and

quantitative analysis and comparison of the classical methods, but also came up with sev-

eral new efficient algorithms. These include the hybrid algorithm inspired by supporting

hyperplane and PVB algorithms, as well as totally different in nature class of derivative-free

algorithms inspired by direct search methods.

As another important result of this analysis, a large functional library of Matlab codes

was created and tested (all source code is provided in the Appendices and will be uploaded

online as an open source for the scholars interested in further developing this topic).

Our solution techniques are novel in the sense that they respond to different objectives

such as precision, complexity or simulation. One can refer to supporting hyperplane method

with approximate derivative to obtain the best precision and fast results. Not only we offer a

better precision and a faster way to solve the considered problems, we also take into account

the real life restrictions and applications for each. Our approaches can also be applied to

any type of reliability theory applications such as finance, energy, communication, traffic

system reliability problems.
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Appendix A

Inequalities left-hand sides after elimination by topology

(161 out of 255)

The Gale-Hoffman inequalities for the 8-node power distribution problem have the form

ξi ≤ xi +
∑

j∈N\{i}

yji, i ∈ N

∑
i∈Ik

ξi ≤
∑
i∈Ik

xi +
∑

i∈Ik,j∈N\Ik

yji, k = 1, ..., l,

(A.1)

where the sets Ik, after elimination by topology, are as follows:

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, {2, 4}, {1, 2, 4},

{2, 3, 4}, {1, 2, 3, 4}, {2, 5}, {1, 2, 5}, {3, 5}, {1, 3, 5}, {2, 3, 5}, {1, 2, 3, 5}, {4, 5}, {2, 4, 5},

{1, 2, 4, 5}, {3, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}, {4, 6}, {2, 4, 6}, {1, 2, 4, 6}, {2, 3, 4, 6},

{1, 2, 3, 4, 6}, {5, 6}, {2, 5, 6}, {1, 2, 5, 6}, {3, 5, 6}, {1, 3, 5, 6}, {2, 3, 5, 6}, {1, 2, 3, 5, 6}, {4, 5, 6},

{2, 4, 5, 6}, {1, 2, 4, 5, 6}, {3, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}, {5, 7}, {2, 5, 7},

{1, 2, 5, 7}, {3, 5, 7}, {1, 3, 5, 7}, {2, 3, 5, 7}, {1, 2, 3, 5, 7}, {4, 5, 7}, {2, 4, 5, 7}, {1, 2, 4, 5, 7},

{3, 4, 5, 7}, {1, 3, 4, 5, 7}, {2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 7}, {6, 7}, {4, 6, 7}, {2, 4, 6, 7}, {1, 2, 4, 6, 7},

{2, 3, 4, 6, 7}, {1, 2, 3, 4, 6, 7}, {5, 6, 7}, {2, 5, 6, 7}, {1, 2, 5, 6, 7}, {3, 5, 6, 7}, {1, 3, 5, 6, 7},

{2, 3, 5, 6, 7}, {1, 2, 3, 5, 6, 7}, {4, 5, 6, 7}, {2, 4, 5, 6, 7}, {1, 2, 4, 5, 6, 7}, {3, 4, 5, 6, 7},

{1, 3, 4, 5, 6, 7}, {2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}, {2, 8}, {1, 2, 8}, {2, 3, 8}, {1, 2, 3, 8}, {4, 8},

{2, 4, 8}, {1, 2, 4, 8}, {2, 3, 4, 8}, {1, 2, 3, 4, 8}, {2, 5, 8}, {1, 2, 5, 8}, {2, 3, 5, 8}, {1, 2, 3, 5, 8},

{4, 5, 8}, {2, 4, 5, 8}, {1, 2, 4, 5, 8}, {3, 4, 5, 8}, {1, 3, 4, 5, 8}, {2, 3, 4, 5, 8}, {1, 2, 3, 4, 5, 8}, {6, 8},

{2, 6, 8}, {1, 2, 6, 8}, {2, 3, 6, 8}, {1, 2, 3, 6, 8}, {4, 6, 8}, {2, 4, 6, 8}, {1, 2, 4, 6, 8}, {2, 3, 4, 6, 8},

{1, 2, 3, 4, 6, 8}, {5, 6, 8}, {2, 5, 6, 8}, {1, 2, 5, 6, 8}, {3, 5, 6, 8}, {1, 3, 5, 6, 8}, {2, 3, 5, 6, 8},

{1, 2, 3, 5, 6, 8}, {4, 5, 6, 8}, {2, 4, 5, 6, 8}, {1, 2, 4, 5, 6, 8}, {3, 4, 5, 6, 8}, {1, 3, 4, 5, 6, 8},

{2, 3, 4, 5, 6, 8}, {1, 2, 3, 4, 5, 6, 8}, {2, 5, 7, 8}, {1, 2, 5, 7, 8}, {2, 3, 5, 7, 8}, {1, 2, 3, 5, 7, 8},

{4, 5, 7, 8}, {2, 4, 5, 7, 8}, {1, 2, 4, 5, 7, 8}, {3, 4, 5, 7, 8}, {1, 3, 4, 5, 7, 8}, {2, 3, 4, 5, 7, 8},
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{1, 2, 3, 4, 5, 7, 8}, {6, 7, 8}, {2, 6, 7, 8}, {1, 2, 6, 7, 8}, {2, 3, 6, 7, 8}, {1, 2, 3, 6, 7, 8}, {4, 6, 7, 8},

{2, 4, 6, 7, 8}, {1, 2, 4, 6, 7, 8}, {2, 3, 4, 6, 7, 8}, {1, 2, 3, 4, 6, 7, 8}, {5, 6, 7, 8}, {2, 5, 6, 7, 8},

{1, 2, 5, 6, 7, 8}, {3, 5, 6, 7, 8}, {1, 3, 5, 6, 7, 8}, {2, 3, 5, 6, 7, 8}, {1, 2, 3, 5, 6, 7, 8}, {4, 5, 6, 7, 8},

{2, 4, 5, 6, 7, 8}, {1, 2, 4, 5, 6, 7, 8}, {3, 4, 5, 6, 7, 8}, {1, 3, 4, 5, 6, 7, 8},

{2, 3, 4, 5, 6, 7, 8}, {1, 2, 3, 4, 5, 6, 7, 8}
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Appendix B

Covariance Matrices Between Days for Demand and Inflow

variables for Reservoir 1 and Reservoir 2

R
(j)
Demand Covariance matrix for demand of reservoir j

R
(j)
Inflow Covariance matrix for inflow of reservoir j

where j = 1, 2
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Appendix C

Distribution of Demand and Inflow Values for Reservoir 1

and Reservoir 2

Table C.1: Demand η Distributions
RESERVOIR 1 RESERVOIR 2

Demand (η
(1)
i ) Distribution Demand (η

(2)
i ) Distribution

Mean Standard Deviation Mean Standard Deviation
Day (i) 1000 m3 1000 m3 1000 m3 1000 m3

1 2.544 0.2544 1.564 0.1564
2 4.778 0.4778 3.895 0.3895
3 6.4 0.64 5.89 0.589
4 6.481 0.6481 4.763 0.4763
5 7.607 0.7607 5.92 0.592
6 5.933 0.5933 4.327 0.4327
7 4.993 0.4993 3.123 0.3123
8 7.117 0.7117 5.983 0.5983
9 4.67 0.467 3.012 0.3012
10 7.554 0.7554 2.074 0.2074
11 11.167 1.1167 6.93 0.693
12 5.87 0.587 3.21 0.321
13 4.012 0.4012 3.923 0.3923
14 4.014 0.4014 3.217 0.3217
15 4.205 0.4205 3.214 0.3214
16 5.985 0.5985 3.97 0.397
17 6.345 0.6345 5.936 0.5936
18 12.54 1.254 5.32 0.532
19 3.987 0.3987 1.784 0.1784
20 4.231 0.4231 3.984 0.3984
21 4.094 0.4094 3.758 0.3758
22 4.875 0.4875 4.345 0.4345
23 5.73 0.573 2.937 0.2937
24 2.98 0.298 1.984 0.1984
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Table C.2: Inflow η Distributions
RESERVOIR 1 RESERVOIR 2

Inflow (η
(1)
i ) Distribution Inflow (η

(2)
i ) Distribution

Mean Standard Deviation Mean Standard Deviation
Day (i) 1000 m3 1000 m3 1000 m3 1000 m3

1 6.023 0.6023 3.785 0.3785
2 9.855 0.9855 5.463 0.5463
3 6.778 0.6778 4.739 0.4739
4 9.342 0.9342 5.263 0.5263
5 10.583 1.0583 5.307 0.5307
6 8.521 0.8521 4.851 0.4851
7 6.721 0.6721 3.987 0.3987
8 6.844 0.6844 4.632 0.4632
9 8.9 0.89 5.933 0.5933
10 6.869 0.6869 3.914 0.3914
11 10.229 1.0229 5.743 0.5743
12 5.498 0.5498 3.894 0.3894
13 6.03 0.603 4.62 0.462
14 8.091 0.8091 5.938 0.5938
15 5.53 0.553 4.422 0.4422
16 6.482 0.6482 4.695 0.4695
17 6.437 0.6437 4.909 0.4909
18 13.22 1.322 5.095 0.5095
19 4.4 0.44 3.695 0.3695
20 5.34 0.534 4.56 0.456
21 5.78 0.578 4.234 0.4234
22 6.321 0.6321 5.442 0.5442
23 4.98 0.498 3.986 0.3986
24 5.01 0.501 3.724 0.3724
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Appendix D

Derivation of problem (6.9) in the form of (2.1)

To reduce problem (6.9) to the form (2.1) we show that

Lemma D.1 The set

{(K, ξ, η)|∀j∀x ∈ X : ζ
(1)
j (x) ≥ 0} (D.1)

where

K = (K(1), . . . ,K(r)), ξ = (ξ
(1)
1 , . . . , ξ

(r)
1 , . . . , ξ(1)n , . . . , ξ(r)n ), (D.2)

η = (η
(1)
1 , . . . , η

(r)
1 , . . . , η(1)n , . . . , η(r)n ) (D.3)

can be represented as

∀x∃g̃(i)j , f̃
(i)
j :

g̃
(0)
j = 0

g̃
(i)
j ≥ 0

h̃
(i)
j = ζ̃

(i)
j−1 + g̃

(i−1)
j + ξ

(i)
j − g̃

(i)
j

h̃
(i)
j ≤ K

(i)

h̃
(i)
j ≥ 0

f̃
(0)
j = 0

f̃
(i)
j ≥ 0

ζ̃
(i)
j = h̃

(i)
j + f̃

(i−1)
j − f̃ (i)j − xjη

(i)
j

ζ̃
(i)
0 = 0

ζ̃
(i)
j ≤ K

(i)

ζ̃
(i)
j ≥ 0

i = 1, . . . , r, j = 1, . . . , n

(D.4)
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Proof The following equality will help in future derivations:

i∑
k=1

ζ
(k)
j (x) = min{d(1)j + . . .+ d

(i)
j , d

(1)
j + . . .+ d

(i+1)
j , . . . , d

(1)
j + . . .+ d

(r)
j } (D.5)

This can be shown by induction. The base of induction (i = 1) follows from the definition.

Now assume that the induction hypothesis holds for i− 1 and notice that

i∑
k=1

ζ
(k)
j (x) = min{d(1)j + . . .+ d

(i−1)
j , d

(1)
j + . . .+ d

(i)
j , . . . , d

(1)
j + . . .+ d

(r)
j }

+ max{0,min{d(i)j , d
(i)
j + d

(i+1)
j , . . . , d

(i)
j + . . .+ d

(r)
j }}

= d
(1)
j + . . .+ d

(i−1)
j

+ min{0, d(i)j , d
(i)
j + d

(i+1)
j , . . . , d

(i)
j + . . .+ d

(r)
j }

+ max{0,min{d(i)j , d
(i)
j + d

(i+1)
j , . . . , d

(i)
j + . . .+ d

(r)
j }}

= d
(1)
j + . . .+ d

(i−1)
j

+ min{0,min{d(i)j , d
(i)
j + d

(i+1)
j , . . . , d

(i)
j + . . .+ d

(r)
j }}

+ max{0,min{d(i)j , d
(i)
j + d

(i+1)
j , . . . , d

(i)
j + . . .+ d

(r)
j }}

= d
(1)
j + . . .+ d

(i−1)
j

+ min{d(i)j , d
(i)
j + d

(i+1)
j , . . . , d

(i)
j + . . .+ d

(r)
j }

= min{d(1)j + . . .+ d
(i)
j , d

(1)
j + . . .+ d

(i+1)
j , . . . , d

(1)
j + . . .+ d

(r)
j }

(D.6)

1. Let (K, ξ, η) as in (D.1). Let ζ̃
(i)
j = ζ

(i)
j (x) and h̃

(i)
j = h

(i)
j (x). Then

g̃
(i)
j =

i∑
k=1

(ζ
(k)
j−1(x) + ξ

(k)
j − h

(i)
j (x))

f̃
(i)
j =

i∑
k=1

(h
(k)
j (x)− ζ(k)j (x)− xjη(k)j )

(D.7)

Conditions

ζ̃
(i)
j ≥ 0, ζ̃

(i)
j ≤ K

(i), h̃
(i)
j ≥ 0, h̃

(i)
j ≤ K

(i), (D.8)

are easy to verify from the definition. Also,

g̃
(i)
j =

i∑
k=1

(ζ
(k)
j−1(x) + ξ

(k)
j − h

(i)
j (x))

=
i∑

k=1

(g
(i)
j (x)− g(i−1)j (x))

= g
(i)
j (x) ≥ 0

(D.9)
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and

f̃
(i)
j =

i∑
k=1

(h
(k)
j (x)− ζ(k)j (x)− xjη(k)j ) =

i∑
k=1

(d
(k)
j (x)− ζ(k)j (x)) ≥ 0 (D.10)

where the last inequality follows from (D.5)

2. Let (K, ξ, η) as in (D.4). We will show that

i∑
k=1

ζ
(k)
j (x) ≥

i∑
k=1

ζ̃
(k)
j (D.11)

by induction in j. The base of induction j = 0 follows from the definitions of ζ
(i)
j (x)

and ζ̃
(i)
j . To prove the step of the induction we assume that (D.11) holds for j − 1

and show that
i∑

k=1

h
(k)
j (x) ≥

i∑
k=1

h̃
(k)
j (D.12)

Will show (D.12) by induction in i. Induction base at i = 0 is obvious. If we notice

that

g
(i)
j (x) + h

(i)
j (x) = ζ

(i)
j−1(x) + g

(i−1)
j (x) + ξ

(i)
j (D.13)
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we can write

i∑
k=1

h
(k)
j (x) =

i−1∑
k=1

h
(k)
j (x) + min{ζ(i)j−1(x) + g

(i−1)
j (x) + ξ

(i)
j ,K

(i)
j }

= min{
i−1∑
k=1

h
(k)
j (x) + ζ

(i)
j−1(x) + g

(i−1)
j (x) + ξ

(i)
j ,

i−1∑
k=1

h
(k)
j (x) +K

(i)
j }

= min{
i−1∑
k=1

(ζ
(k)
j−1(x) + ξ

(k)
j + g

(k−1)
j (x)− g(k)j (x))

+ ζ
(i)
j−1(x) + g

(i−1)
j (x) + ξ

(i)
j ,

i−1∑
k=1

h
(k)
j (x) +K

(i)
j }

= min{
i−1∑
k=1

ζ
(k)
j−1(x) +

i−1∑
k=1

ξ
(k)
j − g

(i−1)
j (x)

+ ζ
(i)
j−1(x) + g

(i−1)
j (x) + ξ

(i)
j ,

i−1∑
k=1

h
(k)
j (x) +K

(i)
j }

= min{
i∑

k=1

ζ
(k)
j−1(x) +

i∑
k=1

ξ
(k)
j ,

i−1∑
k=1

h
(k)
j (x) +K

(i)
j }

(D.14)

On the other hand

i∑
k=1

h̃
(k)
j =

i∑
k=1

(ζ̃
(k)
j−1 + ξ

(k)
j + g̃

(k−1)
j − g̃(k)j )

=

i∑
k=1

ζ̃
(k)
j−1 +

i∑
k=1

ξ
(k)
j − g̃

(i)
j

≤
i∑

k=1

ζ̃
(k)
j−1 +

i∑
k=1

ξ
(k)
j

(D.15)

and
i∑

k=1

h̃
(k)
j =

i−1∑
k=1

h̃
(k)
j + h̃

(i)
j ≤

i−1∑
k=1

h̃
(k)
j +K

(i)
j (D.16)

which together with (D.14) and the induction assumptions (D.11), (D.12) proves

(D.12).
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Now, from (D.5),

i∑
k=1

ζ
(k)
j (x) =

i∑
k=1

d
(k)
j (x) + min{0,

r∑
k=i+1

d
(k)
j (x)}

= min
q=i,...,r

{
q∑

k=1

d
(k)
j (x)}

= min
q=i,...,r

{
q∑

k=1

(h
(k)
j (x)− xjη(k)j )}

≥ min
q=i,...,r

{
q∑

k=1

(h̃
(k)
j − xjη

(k)
j )}

= min
q=i,...,r

{
q∑

k=1

(ζ̃
(k)
j + f̃

(k)
j − f̃ (k−1)j )}

= min
q=i,...,r

{
q∑

k=1

ζ̃
(k)
j + f̃

(q)
j } ≥

i∑
k=1

ζ̃
(k)
j

(D.17)

where the last inequality holds because all terms are non-negative. This completes

the proof of (D.11). Now, (D.11) implies

ζ
(1)
j (x) ≥ ζ̃(1)j ≥ 0 ∀j (D.18)

which means that (K, ξ, η) as in (D.1).

The constraints in (D.4) define a convex polytope. Since set (D.1) is a projection of the set

defined by the constraints in (D.4), it is also a convex polytope and can be represented in

the form

Tx ≥ Bξ + Cη + d (D.19)

for some matrices T , B, C and a vector d.
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Appendix E

Source Code

This appendix provides the MatLab/Octave source code used for the numerical experiments.

The most important program files are

1. prekopa.m in Section E.1 implements Prekopa-Vizvari algorithm.

2. hybrid_orig.m in Section E.2 implements both the supporting hyperplane and the

hybrid alorithms.

3. torczon_imlicit.m in Section E.3 implements Torczon algorithm.

E.1 prekopa.m

% Prekopa-Vizvari-Badics algorithm implementation

% c - the costs vector

% A - the matrix of the linear constraints

% b - the right-hand side of the linear constraints

% T - the transformation matrix in the probabilistic constraints

% Z - the set of all p-efficient points, stored as columns in a matrix

% Rows of W0 form a basis in the subspace orthogonal to the affine hull

% of Z

function [x cutinfo]=prekopa(c,A,b,T,Z,W0)

global debugActiveList;

debugActiveList=zeros(0,size(Z,2));

feasibilityTol = 1e-6;

% Check validity of input arguments

% c must be a vector-column

if size(c,2) ~= 1

c = c’;
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end

% the dimension of the solution vector x

nx=length(c);

% the dimension of the random vector

nu=size(T,1);

if size(Z,1)~=nu

error ’Expected size(Z,1)=size(T,1) = dimension of the random vector’;

end

if isempty(A)

A=zeros(0,nx);

end

%W=zeros(0,nu);

zbar=mean(Z,2);

if nargin<6

W0=orthosubspace(Z-zbar*ones(1,size(Z,2)))’;

end

% A basis in the space parallel to the affine hull of Z

W0orth=orthosubspace(W0’)’;

% Additional linear constraints to ensure that the first iterations of the

% algorithm don’t lead to unbounded linear optimization problems. These

% constraints will not influence the optimal solution

Alb = [ -T eye(nu) ];

blb = -min(Z,[],2)+ones(nu,1);

% ones(nu,1) are here to make the lower bound strictly less than any final

% solution: omitting them sometimes leads to linearly dependent constraints

% and numerical problems.

% matrix W and vector Wrhs will define the supporting hyperplanes

% as: W*(T*x - u) >= Wrhs

W=zeros(0,nu);

Wrhs=zeros(size(W,1),1);

Wpts=zeros(nu,0);

effdim=nu-size(W0,1);

iterationNumber = 0;

goon=1;
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while goon

iterationNumber = iterationNumber + 1;

fprintf(1, ’Prekopa-Vizvari, iteration %d\n’, iterationNumber);

if iterationNumber > 1000

error(’Maximal number of iterations exceeded’);

end

% Solving the linear optimization problem in step 2 of the algorithm

% The equality constraints force the solution to be in the same affine

% space as the p-efficient points

myAeq = [ W0*T -W0 ];

mybeq = zeros(size(W0,1),1);

% Inequality constraints are of three types:

% (i) the original inequality constraints A*x <= b

% (ii) the auxiliary constraints needed to prevent unbounded optimization

% problems

% (iii) the constraints from the supporting hyperplanes

myA = [A zeros(size(A,1),nu) ; Alb ; -W*T W];

myb = [b ; blb+zbar ; -Wrhs];

[xu fooval fooexitflag foooutput cutlambda]=...

linprog([c;zeros(nu,1)],myA,myb,myAeq,mybeq,[-inf(nx,1) ; zbar],[]);

if fooexitflag < 0

%error(’Could not solve linear programming problem reliably’);

fprintf(1,’Could not solve linear programming problem reliably, ’);

fprintf(1,’exitflag=%g’, exitflag);

x=[];

cutinfo=[];

return;

end

% if any( [-W * T W] * xu > -W * zbar - Wrhs + feasibilityTol )

if any( [-W * T W] * xu > -Wrhs + feasibilityTol )

% This may happen because of round-off errors

save(’/tmp/octaveError.mat’);

error(’"Internal error": found solution not feasible’);

end
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% Solving the linear optimization problem in the step 3 of the algorithm

x=xu(1:nx);

u=xu((nx+1):(nx+nu)) - zbar;

[mu foo fooexitflag foooutput lambda]=linprog(ones(size(Z,2),1),[],[],...

W0orth*(Z-zbar*ones(1,size(Z,2))),W0orth*(T*x-u),zeros(size(Z,2),1));

if fooexitflag < 0

%error(’Could not solve linear programming problem reliably’);

x=[];

cutinfo=[];

return;

end

% Check stopping criterion

if foo<=1+10^-5

goon=0;

else

% Creating the cut

% Determine active constraints

if isfield(lambda, ’lower’)

active=( mu>10^(-6) & lambda.lower<1e-5 ); % Matlab case

else

active=( mu > 1e-6 ); % Octave case

end

debugActiveList=cat(1,debugActiveList,active’) ;

firstactive=find(active,1,’first’);

restactive=active;

restactive(firstactive)=0;

restactiveinds=(1:size(Z,2));

restactiveinds=restactiveinds(restactive);

if length(restactiveinds)<effdim-1

disp(’corner case’);

lambda

end

% The vector orthogonal to the affine space of all active constraints

foow=orthosubspace(cat(2,Z(:,restactiveinds)-Z(:,firstactive)*...
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ones(1,length(restactiveinds)),W0’));

if size(foow,2) > 1

fprintf(1,’Warning: size(foow,2) = %d > 1 ’, size(foow,2));

fprintf(1,’in prekopa\n’);

end

foow=foow(:,1)’;

% Make sure foow points inside the feasible set

if foow*([T -eye(nu)]*xu) > 0

foow=-foow;

end

% Add the new supporting hyperplane

W=[W ; foow];

Wrhs=[Wrhs ; foow*([T -eye(nu)]*xu)/foo];

% If the constraint is satisfied within tolerance, assume we have

% found a solution

if [-W(size(W,1),:) * T W(size(W,1),:)] * xu <= ...

- Wrhs(length(Wrhs)) + feasibilityTol

goon = 0;

end

Wpts=[Wpts , [T -eye(nu)]*xu/foo + zbar ];

end

end

x=xu(1:nx);

if nargout >= 2

cutinfo.A = -W;

cutinfo.b = diag( -W*Wpts );

if isempty( cutinfo.b )

cutinfo.b = zeros(0,1);

end

cutinfo.lambda = cutlambda.ineqlin( (size(A,1)+1):(size(A,1)+size(W,1)) );

cutinfo.pts = Wpts’;

end

end
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E.2 hybrid orig.m

% Solves the probabilistic optimization problem

% min c’*x

% s.t.

% A*x<=b

% P(T*x>=Z) >= p

% where

% Z is has c.d.f. F

% dF is the gradient of F

% If the distribution of Z is singular, rows of W0 define an orthonormal

% basis in the normal subspace to the domain of Z.

%

% Note: The probabilistic constraint is actually: F(T*x) >= p

% The routine should work for any non-decreasing F with convex level

% sets.

% This function is using supporting hyperplane algorithm.

% c - the costs vector

% A - the matrix of the linear constraints

% b - the right-hand side of the linear constraints

% T - the transformation matrix in the probabilistic constraints

% F - the CDF of the random vector (a function handle)

% dF - the gradient of F (a function handle)

% p - the probability level in the probabilistic constraint

% xbar - a point in the interior of the feasible set

% W0 - a matrix whose columns form a basis in the space orthogonal to the

% affine space containing the p-efficient points

% supphyp_only - if true, use supporting hyperplane algorithm, otherwise

% use hybrid algorithm.

function x = hybrid_orig(c,A,b,T,F,dF,p,xbar,W0,supphyp_only)

% number of function invocations

global optstats_num_function_invocations

% number of gradient invocations

global optstats_num_gradient_invocations
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eps=1e-6;

funtol=1e-5;

contol=funtol;

maxstep=1e5;

if nargin < 10

supphyp_only = false;

end

n = length(c);

m = size(T,1);

optstats_num_function_invocations = 0;

% wrappedF is same as F but also counts the number of invocations

wrappedF = @(x)functionWrapper(F,x);

optstats_num_gradient_invocations = 0;

% Similarly, wrappedDF is same as dF but also counts the number of its

% invocations

wrappedDF = @(x)gradientWrapper(dF,x);

% curA and curb describe a set of linear constraints which will grow as

% supporting hyperplanes are added to it

curA = A;

curb = b;

% The set of all encountered p-efficient points

peffpts = zeros(m,0);

if supphyp_only

% If we are not interested in the hybrid algorithm, set all its statistics

% to zero

hybrid_goon = 0;

hybrid_num_function_invocations = 0;

hybrid_num_gradient_invocations = 0;
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hybrid_num_iterations = 0;

else

% Set the flag saying that the stopping criterion has not been met

hybrid_goon = 1;

end

% Set the flag saying that the stopping criterion has not been met

supphyp_goon = 1;

numiter = 0;

while hybrid_goon || supphyp_goon

numiter = numiter + 1;

fprintf(1,’Iteration %d\n’,numiter);

% Solve the linear programming problem with the current set of constraints

% to find the lower bound and a candidate solution x

[x LB] = linprog(c,curA,curb);

fprintf(1,’Done linprog\n’);

if F(T*x) >= p

% If x is feasible, we have found the solution, terminate the

% algorithms

hybrid_goon = 0;

hybrid_num_function_invocations = optstats_num_function_invocations;

hybrid_num_gradient_invocations = optstats_num_gradient_invocations;

hybrid_num_iterations = numiter;

supphyp_goon = 0;

supphyp_num_function_invocations = optstats_num_function_invocations;

supphyp_num_gradient_invocations = optstats_num_gradient_invocations;

supphyp_num_iterations = numiter;

else

% Create a supporting hyperplane

lambda = bisection(...

@(lambda)(wrappedF(T*(lambda*xbar+(1-lambda)*x))-p), 0, 1, eps );

fprintf(1,’lambda = %g\n’,lambda);

xi = lambda*xbar+(1-lambda)*x;

dh = -T’*wrappedDF(T*xi);

curA = [ curA ; dh’ ];
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curb = [ curb ; dh’*xi ];

% Add the new point to the set of known p-efficient points

peffpts = [ peffpts T*xi ];

peffptsdiffs = peffpts( : , 2:size(peffpts,2) ) - peffpts(:,1) * ...

ones(1,size(peffpts,2)-1);

W0pv = orthosubspace( peffptsdiffs )’ ;

% Now use Prekopa-Vizvari-Badics

if ~ supphyp_only

x = prekopa(c,A,b,T,peffpts,W0pv);

hybridUB = c*x;

% Check the stopping condition for the hybrid algorithm

if hybridUB - LB <= funtol

hybrid_goon = 0;

hybrid_num_function_invocations = ...

optstats_num_function_invocations;

hybrid_num_gradient_invocations = ...

optstats_num_gradient_invocations;

hybrid_num_iterations = numiter;

end

end

% Check the stopping condition for the supporting hyperplane algorithm

supphypUB = c*xi;

if supphypUB - LB <= funtol

supphyp_goon = 0;

supphyp_num_function_invocations = ...

optstats_num_function_invocations;

supphyp_num_gradient_invocations = ...

optstats_num_gradient_invocations;

supphyp_num_iterations = numiter;

end

save(’sequential_pure_state.mat’);

end

end

fprintf(1,’Number of iterations: %d\n’,numiter);
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fprintf(1,’Hybrid: number of iterations: %d\n’, hybrid_num_iterations);

fprintf(1,’Hybrid: number of function invocations: %d\n’,...

hybrid_num_function_invocations)’

fprintf(1,’Hybrid: number of gradient invocations: %d\n’,...

hybrid_num_gradient_invocations)’

fprintf(1,’Supporting hyperplane: number of iterations: %d\n’,...

supphyp_num_iterations);

fprintf(1,’Supporting hyperplane: number of function invocations: %d\n’,...

supphyp_num_function_invocations)’

fprintf(1,’Supporting hyperplane: number of gradient invocations: %d\n’,...

supphyp_num_gradient_invocations)’

% x is the solution

end

function res = functionWrapper(F,x)

global optstats_num_function_invocations

optstats_num_function_invocations = optstats_num_function_invocations + 1;

res = F(x);

end

function res = gradientWrapper(F,x)

global optstats_num_gradient_invocations

optstats_num_gradient_invocations = optstats_num_gradient_invocations + 1;

res = F(x);

end

E.3 Torczon’s derivative-free algorithm: torczon implicit.m

% torczon’s derivative-free optimization algorithm

% Minimize the function y(x) given implicitly as f(x,y) = 0

% Here x is a vector, y is scalar.

% f - the implicit function definition, must be increasing in y

% x0 - initial value of x

% y0 - initial value of y (f(x0,y0) = 0 is not required)



82

function [x y] = torczon_implicit(f,x0,y0)

% Parameters

% Expansion coefficient

expcoef = 2;

% Contraction coefficient

contrcoef = 1 / expcoef;

% Accuracy in x and y

xeps = 1e-4;

yeps = 1e-4;

if size(x0,2) ~= 1

error(’x0 must be a column-vector’);

end

n = size(x0,1);

% The initial value of the simplex

xsimplex = x0 * ones(1,n+1);

xsimplex(1:n,1:n) = xsimplex(1:n,1:n) + eye(n);

printf("torczon_implicit: initializing\n");

% The bounds for the function value at the points of the simplex

% We will always have:

% f(xsimplex(:,i), fvals(1,i)) <= 0

% f(xsimplex(:,i), fvals(2,i)) >= 0

fvalsx = [zeros(1,n+1) ; ones(1,n+1)];

[fvalsx bestxind] = find_smallest(f, xsimplex, fvalsx, false(1,n+1));

% bestxind is the index of the point in the simplex where the function value

% is the smallest

% The main loop

goon = true;

iteration_count = 1;

while goon

printf("torczon_implicit: iteration %d\n", iteration_count);

% Perform a step of the algorithm
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[fvalsx xsimplex bestxind finishx] = ...

torczon_step(fvalsx,xsimplex,bestxind,f);

bestxind

xsimplex

fvalsx

% Check stopping condition

if finishx

goon = false;

else

iteration_count = iteration_count + 1;

end

end

x = xsimplex(:,bestxind);

y = (fvals(1,bestxind) + fvals(2,bestxind)) / 2;

end

% Given the implicitly-defined function y(x) given as f(x,y) = 0 and a set

% of points, find the point where the function has the smallest value.

% f - defines the implicit function, f(x,y) must be increasing in y

% x - a set of points, given as columns of a matrix

% fvals - the known bounds for the implicit function value at points x, when

% available.

% initflag - a boolean vector, indicating which entries of favls are

% initialized.

% That is, if initflag(j) == true then f(x(:,j), fvals(1,j)) <= 0 and

% f(x(:,j), fvals(2,j)) >= 0

% If initflag(j) == false, no such assumption is made, and fvals(1,j) and

% fvals(2,j) are used as an initial guess to find proper bounds.

function [fvals bestx] = find_smallest(f, x, fvals, initflag)

% Dimension of the space

n = size(x,1);
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% Number of points

m = size(x,2);

% Initialize all fvals

printf("torczon_implicit.find_smallest: initializing fvals\n");

for j=1:m

if ~initflag(j)

if f(x(:,j), fvals(1,j)) > 0

step = fvals(2,j) - fvals(1,j);

goon = true;

while goon

fvals(2,j) = fvals(1,j);

fvals(1,j) = fvals(2,j) - step;

step = 2 * step;

if f(x(:,j), fvals(1,j)) <= 0

goon = false;

end

end

elseif f(x(:,j), fvals(2,j)) < 0

step = fvals(2,j) - fvals(1,j);

goon = true;

while goon

fvals(1,j) = fvals(2,j);

fvals(2,j) = fvals(1,j) + step;

step = 2 * step;

if f(x(:,j), fvals(2,j)) >= 0

goon = false;

end

end

end

end

end

% Break ties

printf("torczon_implicit.find_smallest: breaking ties\n");

goon = true;
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while goon

[lb bestx] = min(fvals(1,:));

goon = false;

for j = 1:m

if (j ~= bestx) && (fvals(1,j) < fvals(2,bestx))

testy = (fvals(1,j) + fvals(2,j)) / 2;

if f(x(:,j), testy) <= 0

fvals(1,j) = testy;

else

fvals(2,j) = testy;

end

goon = true;

end

end

if goon

testy = (fvals(1,bestx) + fvals(2,bestx)) / 2;

if f(x(:,bestx), testy) >= 0

fvals(2,bestx) = testy;

else

fvals(1,bestx) = testy;

end

end

end

% The output variables already have the correct values

end

% One iteration of the Torczon algorithm

% fvals - the bounds for the function values at the simplex coordinates

% simplex - the coordinates of the current simplex points, stored as columns

% of a matrix

% bestind - the index of the simplex point with the smallest function value

% f - defines the implicit function

% Outputs:

% fvals - the bounds for the function values at the new simplex coordinates
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% simplex - the new simplex

% bestind - the index of the point in the new simplex with the smallest

% function value

% finish - true if the stopping criterion has been met

function [fvals simplex bestind finish] = ...

torczon_step(fvals, simplex, bestind, f)

% Parameters

% Expansion coefficient

expand_coef = 2;

% Contraction coefficient

contract_coef = 1 / expand_coef;

% Accuracy

eps = 1e-4;

n = size(simplex,1);

% Reflected simplex and corresponding bounds for the function values

simplex_refl = zeros(n,n+1);

fvals_refl = zeros(2,n);

% The current simplex and corresponding bounds for the function values

simplex_cur = zeros(n,n+1);

fvals_cur = zeros(2,n);

goon = true;

finish = false;

while goon

% "Reflect" step

% Find the reflected simplex

for i = 1:n+1

if i == bestind

simplex_refl(:,i) = simplex(:,i);

fvals_refl(:,i) = fvals(:,i);

else

simplex_refl(:,i) = 2 * simplex(:,bestind) - simplex(:,i);

fvals_refl(:,i) = fvals(:,bestind);
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end

end

% Determine which point of the reflected simplex has the smallest

% function value

initflag = false(1,n+1);

initflag(bestind) = true;

[fvals_refl bestind_refl] = ...

find_smallest(f, simplex_refl, fvals_refl, initflag);

if bestind_refl ~= bestind

% Reflection yielded an improvement, now do the "expand" step

% Compute the expanded simplex

for i = 1:n+1

if i == bestind

simplex_cur(:,i) = simplex_refl(:,i);

fvals_cur(:,i) = fvals_refl(:,i);

else

simplex_cur(:,i) = expand_coef * simplex_refl(:,i) +...

(1 - expand_coef) * simplex_refl(:,bestind);

fvals_cur(:,i) = fvals_refl(:,i);

end

end

% Find the point with the smallest function value among the reflected

% and the expanded simplices

subindex = true(1,n+1);

subindex(bestind_refl) = false;

simplex_ex = [simplex_refl simplex_cur(:,subindex)];

fvals_ex = [fvals_refl fvals_cur(:,subindex)];

initflag = false(1,2*n+1);

initflag(1:(n+1)) = true(1,n+1);

[fvals_ex bestind_ex] = ...

find_smallest(f, simplex_ex, fvals_ex, initflag);

if bestind_ex > n+1

% The expanded simplex leads to a smaller function value; that

% will be the outcome of the iteration
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simplex = simplex_cur;

fvals(:,subindex) = fvals_ex(:,(n+2):(2*n+1));

fvals(:,bestind_refl) = fvals_ex(:,bestind_refl);

else

% The expanded simplex does not lead to a smaller function value;

% the reflected simplex will be the outcome of the iteration

simplex = simplex_refl;

fvals = fvals_ex(:,1:(n+1));

end

goon = false;

else

% "Contract" step

% Compute the contracted simplex

for i = 1:n+1

if i == bestind

simplex_cur(:,i) = simplex(:,i);

fvals_cur(:,i) = fvals(:,i);

else

simplex_cur(:,i) = contract_coef * simplex(:,i) +...

(1 - contract_coef) * simplex(:,bestind);

fvals_cur(:,i) = fvals(:,i);

end

end

% Find the point with the smallest function value

initflag = false(1,n+1);

initflag(bestind) = true;

[fvals_cur bestind_cur] = ...

find_smallest(f, simplex_cur, fvals_cur, initflag);

if bestind_cur ~= bestind

% Contraction yielded an improvement; the contracted simplex

% is the outcome of the iteration

goon = false;

bestind = bestind_cur;

end
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% If there was no improvement, we will try the same steps starting

% from the contracted simplex

simplex = simplex_cur;

fvals = fvals_cur;

% check stopping condition

finish = true;

for i = 1:n+1

if norm(simplex(:,i) - simplex(:,bestind)) > eps

finish = false;

end

end

if finish

goon = false;

end

end

end

end
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