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ABSTRACT OF THE DISSERTATION

Moduli of Bridgeland stable objects on an Enriques

surface

By HOWARD J. NUER

Dissertation Director:

Lev Borisov

We construct projective moduli spaces of semistable objects on an Enriques surface

for generic Bridgeland stability condition. On the way, we prove the non-emptiness of

M s
H,Y (v), the moduli space of Gieseker stable sheaves on an Enriques surface Y with

Mukai vector v of positive rank with respect to a generic polarization H. In the case of

a primitive Mukai vector on an unnodal Enriques surface, i.e. one containing no smooth

rational curves, we prove irreducibility of MH,Y (v) as well. Using Bayer and Macr̀ı’s

construction of a natural nef divisor associated to a stability condition, we explore the

relation between wall-crossing in the stability manifold and the minimal model program

for Bridgeland moduli spaces. We give three applications of our machinery to obtain

new information about the classical moduli spaces of Gieseker-stable sheaves:

1) We obtain a region in the ample cone of the moduli space of Gieseker-stable

sheaves over Enriques surfaces.

2) We determine the nef cone of the Hilbert scheme of n points on an unnodal

Enriques surface in terms of its half-pencils and the Cossec-Dolgachev φ-function.

3) We recover some classical results on linear systems on unnodal Enriques surfaces

and obtain some new ones about n-very ample line bundles.
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Chapter 1

Notation and Conventions

Throughout, we work over C, and X will denote a smooth projective variety over C

unless otherwise specified.

For a (locally-noetherian) scheme (or algebraic space) S, Db(S) denotes the bounded

derived category of coherent sheaves, Dqc(S) the unbounded derived category of quasi-

coherent sheaves, and DS-perf(S×X) the category of S-perfect complexes. (An S-perfect

complex is a complex of OS×X -modules which locally, over S, is quasi-isomorphic to a

bounded complex of coherent shaves which are flat over S.)

We will abuse notation and denote all derived functors as if they were underived.

We denote by pS and pX the two projections from S × X to S and X, respectively.

Given E ∈ Dqc(S ×X), we denote the Fourier-Mukai functor associated to E by

ΦE( ) := (pX)∗ (E ⊗ p∗S( )) .

We define the numerical Grothendieck group of a triangulated category T byKnum(T ) :=

K(T )/Ker(χ), where K(T ) is the Grothendieck K-group and we denote by χ(−,−)

the Euler characteristic: for E,F ∈ T ,

χ(E,F ) =
∑
p

(−1)p extp(E,F ).

In case T = Db(X), we abuse notation and just write Knum(X) := Knum(Db(X)).

We denote by NS(X) the Néron-Severi group of X, and write N1(X) := NS(X)⊗R.

The ample cone of X and its closure in N1(X), called the nef cone, are denoted Amp(X)

and Nef(X), respectively.

We denote the Mukai lattice of X by H∗alg(X,Z) := v(Knum(X)) ⊂ H∗(X,Q). Here

v denotes the Mukai vector v(E) := ch(E).
√

td(X). For v =
∑
vi ∈ H∗alg(X,Z), with
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vi ∈ H2i(X,Q), define v∨ :=
∑

(−1)ivi, and for v, w ∈ H∗alg(X,Z), define (v, w) :=

−
∫
X v
∨.w so that χ(E,F ) = −(v(E), v(F )) [28, Definition and Corollary 6.1.5].

Given a complex E ∈ Db(X), we denote its cohomology sheaves by H∗(E). The

skyscraper sheaf at a point x ∈ X is denoted by k(x). For a complex number z ∈ C,

we denote its real and imaginary part by <z and =z, respectively.
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Chapter 2

Introduction

2.1 Overview

Over the last few decades there has been a great deal of interest in the study of moduli

spaces of coherent sheaves on smooth projective varieties, often inspired by mathemat-

ical physics and gauge theory. In order to construct such a moduli space, in particular

to obtain boundedness, one often restricts one’s attention to coherent sheaves satisfying

some sense of stability with fixed topological invariants, encoded in the Mukai vector v.

The two most ubiquitous definitions of stability are µH -stability, or slope stability, and

Gieseker-stability, both of which are defined by choosing an ample polarization H on

the base variety X. Among the many fascinating aspects of these moduli spaces, other

than their uses in physics, is the intimate connection they have with the underlying

projective variety.

A particularly tight connection with X is via the choice of an ample polarization

H. As the moduli spaces MH,X(v) of Gieseker-semistable sheaves on X with Mukai

vector v is constructed as a GIT (Geometric Invariant Theory) quotient with respect

to H, varying the polarization H induces a VGIT (Variation of GIT) birational trans-

formation (as defined and studied in [19] and [60]). The corresponding connection with

the birational geometry of Gieseker moduli spaces has been studied in [47]. Most im-

portant here is that the other birational models obtained from varying the polarization

are moduli spaces as well, albeit with a slightly different moduli functor. The so-called

Mumford-Thaddeus principle studied in [47] can be seen as an extension of the Hassett-

Keel program for Mg,n, where the minimal models of Mg,n obtained by running the

minimal model program are hoped to be modular themselves. For dimensional reasons,

however, the natural VGIT approach cannot give all of the birational geometry of these
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moduli spaces.

A revolutionary approach to this problem came from Bridgeland’s definition of the

notion of a stability condition on a triangulated category [14], an attempt at a mathe-

matical definition of Douglas’s Π-stability [20] for D-branes in string theory. Bridgeland

proved that, when nonempty, the set of (full numerical) Bridgeland stability conditions

on a triangulated category T forms a complex manifold of dimension rkKnum(T ).

Possibly the most studied case of these Gieseker moduli spaces is when X is a smooth

projective surface, and here a second important connection between the geometry of

MH,X(v) and that of X emerges. For example, when X is a projective K3 surface and

v is primitive, the moduli spaces MH,X(v) of Gieseker-stable sheaves on X of Mukai

vector v are projective hyperkähler (i.e. irreducible holomorphic symplectic) manifolds

[49]. These are incredibly rare varieties with a beautiful and rigid geometry, and they

are quite important as one of the building blocks of varieties with numerically trivial

first Chern class c1 [12]. Along with the related case when v is two times a primitive

Mukai vector, these Gieseker moduli spaces (or their smooth resolutions in this non-

primitive case) form all but two of the known deformation equivalence classes of such

varieties. The other two come instead from constructions involving Gieseker moduli

spaces on Abelian surfaces. Similarly, the Gieseker moduli spaces on rational surfaces

of various types have been studied and interesting connections with the underlying

surface have been unveiled.

Likewise, Bridgeland stability has been most developed for T = Db(X), the bounded

derived category of coherent sheaves, when the underlying variety is a smooth projective

surface X. Again, the most studied examples have been on P2 and projective K3 and

Abelian surfaces. In each case, the space Stab(X) of Bridgeland stability conditions

has been shown to be nonempty and to admit a wall and chamber decomposition in the

following sense: the set of σ-semistable objects with some fixed numerical invariants

is constant in each chamber of the decomposition, while crossing a wall necessarily

changes the stability of some object in this set.

For the numerical invariants of a Gieseker semistable sheaf, Bridgeland identified

in [15] a certain chamber of the corresponding wall and chamber decomposition, the
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so-called Gieseker chamber, where the set of σ-semistable objects can be identified with

the Gieseker semistable sheaves with respect to a generic polarization. He conjectured

there that each chamber of Stab(X) should admit a coarse moduli space of σ-semistable

objects and that crossing a wall should induce a birational transformation between the

moduli spaces corresponding to adjacent chambers. In this way, Bridgeland forged a

new tool for the investigation of the birational geometry of moduli spaces of Gieseker-

stable sheaves, expanding the Mumford-Thaddeus principle so that minimal models of

a given moduli space are no longer just expected to be Gieseker moduli spaces for a

different polarization but are also allowed to parametrize genuine complexes of coherent

sheaves, stable with respect to some Bridgeland stability condition.

The picture envisioned by Bridgeland has been partially verified. Bertram and Mar-

tinez have shown in [13] that on a smooth projective surface birational models obtained

by VGIT can be recovered via Bridgeland wall-crossing. More extensive progress has

been obtained in examples, first to a certain extent by Arcara and Bertram in [2], but

most notably by Arcara, Bertram, Coskun, and Huizenga in [3], for the Hilbert scheme

of points on P2, and then by Bayer and Macr̀ı in [11, 10] for all numerical invariants

on K3 surfaces. Following these ground-breaking developments, there has been an ex-

plosion of activity surrounding the use of Bridgeland stability conditions to study the

minimal model program for moduli spaces of Gieseker-stable sheaves on P2, Del Pezzo

surfaces, K3 surfaces, and Abelian surfaces.

While moduli of both Gieseker stable sheaves and Bridgeland stable objects on K3

and Abelian surfaces have arguably received the most attention, the corresponding

moduli spaces on Enriques surfaces have been much less studied. Recall that an En-

riques surface is a smooth projective surface Y with h1(OY ) = 0 and canonical bundle

ωY = OY (KY ) a non-trivial 2-torsion element of Pic(Y ). In this dissertation, represent-

ing the results of [51, 52], we study moduli spaces of both Gieseker stable sheaves and

Bridgeland stable objects on Enriques surfaces and obtain results analogous to those

for other classes of projective surfaces.
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2.2 Previous results

The investigation of Gieseker moduli spaces on Enriques surfaces was started by Kim

in [34], where he proved some general structure results about the locus parametrizing

stable locally free sheaves, but in general, the picture is much less complete. Kim himself

continued the investigation in [35] with existence results for µ-stable locally free sheaves

of rank 2 and a description of some of the geometry of these moduli spaces on an unnodal

Enriques surface.1 Yoshioka successfully computed the Hodge polynomial of MH,Y (v)

in [64] for primitive v of positive odd rank and generic polarization H on an unnodal Y ,

showing that it is equal to the Hodge polynomial of the Hilbert scheme of v2+1
2 points

on Y . It follows that these moduli spaces are non-empty, consisting of two isomorphic

irreducible components parametrizing sheaves whose determinant line bundles differ

by KY . Hauzer [26] refined the techniques of Yoshioka to conclude that the Hodge

polynomials in even rank are the same as those of a moduli space of sheaves with rank

2 or 4. Moreover, Yamada [62] proved that under certain minor assumptions MH,Y (v)

has torsion canonical divisor, like Enriques surfaces themselves. Finally, G. Saccà [57]

obtained some beautiful results about the geometry of Gieseker moduli spaces in rank

0. Nevertheless, even non-emptiness and irreducibility for moduli of sheaves of even

rank is unknown in general.

Bridgeland stability conditions on Enriques surfaces have been constructed in [45],

using a technique called induction of stability. For an Enriques surface Y , which is the

quotient of a K3 surface Ỹ by a fixed-point free involution ι, it is shown in [45] that

Stab(Y ) can be identified with the non-empty closed submanifold of Stab(Ỹ ) consisting

of stability conditions invariant under the induced action of ι∗. Despite the construction

of stability conditions on Enriques surfaces, moduli spaces of objects semistable with

respect to a given Bridgeland stability condition have been heretofore unexplored.

1An Enriques surface is called nodal if it contains a smooth rational curve, necessarily of self-
intersection -2, and unnodal otherwise.
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2.3 An Outline and Summary of Main Results

We briefly describe now the contents of this dissertation, emphasizing the original con-

tributions of this thesis to the study of moduli spaces of Gieseker stable sheaves and

Bridgeland semistable objects.

We begin by reviewing the necessary background material about Enriques surfaces,

moduli spaces of slope and Gieseker stability, and Bridgeland stability in Chapters 3,4,

and 5, respectively. See these chapters for definitions and basic properties alluded to

here.

Afterward, we discuss in Chapters 6 and 8 the question of constructing moduli

spaces of objects in a derived category semistable with respect to a Bridgeland stability

condition. Our work grew out of an attempt to understand the techniques of [11, 10]

and to generalize them to Enriques surfaces in the hope of obtaining similar results,

while at the same time investigating the subtle differences between the geometry of

Enriques and K3 surfaces. Our first result is, as one would hope, a direct generalization

of [11, Theorem 1.3(a)] about the existence and projectivity of Bridgeland semistable

moduli spaces:

Theorem 2.3.1 (Chapter 8). Let Y be an Enriques surface, v ∈ H∗alg(Y,Z) a Mukai

vector, and σ ∈ Stab†(Y ) a stability condition generic with respect to v (i.e. it does

not lie on any wall). Then a coarse moduli space Mσ,Y (v) of σ-semistable objects with

Mukai vector v exists and when non-empty is a normal projective variety with torsion

canonical divisor.

To investigate the question of non-emptiness of Mσ,Y (v), we use the work of Toda

[61] to show that a motivic invariant2 of Mσ,Y (v) is the same as that of a moduli space

of Gieseker semistable sheaves of some (possibly different) Mukai vector u. While non-

emptiness is thus established if u is in one of the cases studied previously by Kim or

Yoshioka, non-emptiness for arbitrary v (and thus u) does not follow from previous work.

We take an aside in Chapter 7 to rectify this problem by proving the non-emptiness

2In practice, we use the virtual Hodge polynomial as our motivic invariant, though in theory one
may use any other.



8

and irreducibility of the moduli space MH,Y (v, L) parametrizing Gieseker-semistable

sheaves of primitive Mukai vector v of positive rank and determinant L with respect to

a generic parametrization H:

Theorem 2.3.2 (Chapter 7). Let Y be an Enriques surface and v be a primitive Mukai

vector of positive rank with v2 ≥ −1. For polarization H generic with respect to v,

MH,Y (v, L) is non-empty unless v2 = 0, 2|c1(L), and 2 - L + r
2KY . If Y is unnodal,

then MH,Y (v, L) is irreducible whenever non-empty.

We provide various proofs of parts of this theorem to illustrate the strengths and

weaknesses of the various techniques available, both classical and modern. In particular,

we provide a quick proof of this theorem in Chapter 7 by using our techniques from 6

to reduce all open cases to those already solved. These techniques allow us to avoid

some of the technicalities in the use of Fourier-Mukai transforms in [26, 64]. A feature

of this method is that we show that the motivic invariant of MH,Y (v, L) is equal to the

motivic invariant of a moduli space of Gieseker stable sheaves with a different Mukai

vector.

A motivating conjecture behind this investigation suggests that the equality of mo-

tivic invariants is actually a byproduct of the two moduli spaces being birational. In the

appendix to this dissertation, Chapter 11 we confirm this suspicion by using the geome-

try of elliptic fibrations to reprove non-emptiness and irreducibility when gcd(2, c1) = 1,

as well as in the special case 2|c1 and c2
1 = 0. This technique was originally developed by

Friedman [23] for rank two sheaves on regular elliptic surfaces and generalized to higher

rank sheaves on elliptic K3 surfaces in an influential paper of O’Grady [53]. The idea is

to use a special kind of generic polarization for which µ-stability is equivalent to being

stable on the generic elliptic fiber. This allows us to directly construct a birational map

MH,Y (v, L) 99KMH,Y (v − 2v(OY ), L+KY ),

which geometrically explains the equality of motivic invariants.

We conclude Chapter 7 with the following description of MH,Y (v) for non-primitive

v in Section 7.3. In particular, we show that the locus of stable sheaves is always

non-empty.
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Theorem 2.3.3 (Theorem 8.2.5). Let v = mv0 be a Mukai vector with v0 primitive

and m > 0 with H generic with respect to v.

(a) The moduli space of Gieseker-semistable sheaves MH,Y (v) is nonempty if and only

if v2
0 ≥ −1.

(b) Either dimMH,Y (v) = v2 + 1 and M s
H,Y (v) 6= ∅, m = 1, v2

0 = 0, dimMH,Y (v) =

dimM s
H,Y (v) = 2, or m > 1 and v2

0 ≤ 0.

(c) If MH,Y (v) 6= M s
H,Y (v) and M s

H,Y (v) 6= ∅, the codimension of the semistable locus

is at least 2 if and only if v2
0 > 1 or m > 2. Moreover, in this case and the case

MH,Y (v) = M s
H,Y (v), MH,Y (v) is normal with torsion canonical divisor.

We return to the realm of Bridgeland stability proper in Chapter 9, where we inves-

tigate the relationship between Bridgeland wall-crossing and the birational geometry

of Mσ,Y (v). Suppose for the moment that X is a smooth projective variety admit-

ting coarse moduli spaces of σ-stable objects. To investigate the relationship between

wall-crossing on Stab(X) and the birational geometry of Bridgeland moduli spaces,

we make use of the natural nef divisor `σ on Mσ,X(v) associated to a stability con-

dition σ in a chamber C for v [11]. From this construction we get a continuous map

` : C → Nef(Mσ,X(v)), about which two natural questions arise. The first is whether

or not the image of ` is contained in the ample cone Amp(Mσ,X(v)). The closedness of

semistability implies that ` extends to the closure C, and the second question is what

happens at the boundary walls of C.

We answer these questions with our next result in the case X is an Enriques surface

Y , generalizing [11, Theorem 1.3(b),Theorem 1.4]. To place the result in context, let

W be a wall of the chamber decomposition for v, σ0 a generic point of W (so that it

does not lie on any other walls), and σ± two nearby stability conditions in adjacent

chambers C± meeting along W with corresponding moduli spaces M± := Mσ±,Y (v).

Then consider the image of σ0 under the map `± : C± → Nef(M±), which we denote by

`0,±. Our next main result is this:

Theorem 2.3.4 (Theorems 9.1.3 and 9.2.3). Let Y be an Enriques surface and v ∈

H∗alg(Y,Z) a Mukai vector.
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(a) Suppose σ ∈ Stab†(Y ) is generic with respect to v. Then `σ is ample.

Now suppose that v is primitive, then:

(b) The divisor classes `0,± are semi-ample (and remain so when restricted to each

component of M±), and they induce contraction morphisms

π± : M± → Z±,

where Z± are normal projective varieties.

(c) Suppose that M s
σ0,Y

(v) 6= ∅ (so that in particular `0,± is big as well).

• If either `0,± is ample, then the other is ample, and the birational map

fσ0 : M+ 99KM−

obtained by crossing the wall in σ0 extends to an isomorphism.

• If `0,± are not ample and the complement of M s
σ0,Y

(v) has codimension at

least 2, then fσ0 : M+ 99K M− is the flop induced by `0,+. More precisely,

we have a commutative diagram of birational maps

Mσ+,Y (v)
fσ0 //

π+ &&

Mσ−,Y (v)

π−xx
Z+ = Z−

,

and f∗σ0`0,− = `0,+.

We believe that at the wall, `σ0,± is always big and π± always birational, as is the

case for K3 surfaces [11], but the powerful hyperkähler methods used in [11] no longer

work for Enriques surfaces. Nevertheless, we have ad-hoc arguments in many cases.

We end this thesis with Chapter 10, which consists of three sections on applications.

In the first section on the classical moduli spaces of Gieseker stable sheaves, we obtain

explicit, effective bounds on the Gieseker chamber and thus, via the Bayer-Macr̀ı map,

on the ample cone of these moduli spaces.

In the second section, we use the Bridgeland stability techniques developed in Chap-

ter 9 to describe explicitly Nef(Y [n]), the nef cone of the Hilbert scheme of n points on
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an Enriques surface Y , in terms of the beautiful geometry of Enriques surfaces and their

elliptic pencils. More specifically, denote by 2B the divisor parametrizing the locus of

non-reduced 0-dimensional subschemes of length n on Y , and for every H ∈ Amp(Y ),

denote by H̃ the locus of 0-dimensional subschemes of length n on Y meeting a member

of the linear system |H|. Then B and 〈H̃|H ∈ Amp(Y )〉 generate Pic(Y [n]). We recall

the φ-function defined in [17, Section 2.7] by

φ(D) = inf{|D.F | : F ∈ Pic(Y ), F 2 = 0},

for D2 > 0. The significance of primitive F ∈ Pic(Y ) with F 2 = 0 is that either

F or −F is effective, say F , and 2F defines an elliptic pencil on Y with exactly two

multiple fibres F and F +KY , respectively. As suggested by the definition of φ, these

“half-pencils” govern much of the geometry of Y . We obtain the following result which

confirms this overarching theme in the study of Enriques surfaces:

Theorem 2.3.5 (Theorem 10.2.3). Let Y be an unnodal Enriques surface and n ≥ 2.

Then D̃ − aB ∈ Nef(Y [n]) if and only if D ∈ Nef(Y ) and 0 ≤ na ≤ D.F for every

0 < F ∈ Pic(Y ) with F 2 = 0, or in other words 0 ≤ a ≤ φ(D)
n . Moreover, the face

given by a = 0 induces the Hilbert-Chow morphism, and for every ample H ∈ Pic(Y ),

H̃ − φ(H)
n B induces a flop.

Recall that the Hilbert-Chow morphism h : Y [n] → Y (n) sends a 0-dimensional

subscheme of length n to its underlying 0-cycle and is a divisorial contraction with

exceptional locus 2B. Moreover, we can describe explicitly the flop induced by H̃ −
φ(H)
n B as follows: for every half-pencil F such that H.F = φ(H), we get a pair of

disjoint codimension n components of the exceptional locus isomorphic to F [n] and

(F + KY )[n], respectively, where these precisely parametrize the sublocus of n-points

on Y contained in F and F + KY , respectively. On the component corresponding to

F , say, the contracted fibers (i.e. the curves of S-equivalent objects) are exactly the

fibers of the natural Abel-Jacobi morphism F [n] → Jacn(F ) ∼= F (g(F ) = 1) associating

to Z the line bundle OF (Z), where the objects of F [n] fit into the destabilizing exact

sequence
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0→ O(−F )→ IZ → OF (−Z)→ 0.

Upon crossing the wall, we perform a flop, replacing the Pn−1-bundle F [n] over the base

F with another one parametrizing objects sitting in an exact sequence of the form

0→ OF (−Z)→ E → O(−F )→ 0,

where E ∈ P(Ext1(O(−F ),OF (−Z))).

Theorem 2.3.5 can be seen as giving an alternative definition of the φ-function, and

we believe that the properties of φ can be recovered from the convexity of Nef(Y [n])

and pairing divisors with test curves.

In the final section, we apply Theorem 2.3.5 to recover a weak form of a classical

result about linear systems on unnodal Enriques surfaces (see [17, Theorems 4.4.1 and

4.6.1]):

Corollary 2.3.6. Let Y be an unnodal Enriques surface and H ∈ Pic(Y ) ample with

H2 = 2d. Then

(a) The linear system |H| is base-point free if and only if φ(H) ≥ 2,

(b) If |H| is very ample, then φ(H) ≥ 3. Conversely, if φ(H) ≥ 4 or φ(H) = 3 and

d = 5, then |H| is very ample.

(c) The linear system |2H| is base-point free and |4H| is very ample.

Remark 2.3.7. The stronger form of the above result says that for d ≥ 5, |H| is very

ample if and only if φ(H) ≥ 3. It follows that for any ample H, even |3H| is very

ample. We believe the Bridgeland stability methods we use to prove our weakened

version above can be pushed further to prove the full result (see Remark 10.3.3).

We also obtain some new results about n-very ample line bundles on unnodal En-

riques surfaces. Recall that a line bundle OX(H) on a smooth projective surface X is

called n-very ample if the restriction map

OX(H)→ OZ(H)
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is surjective for every 0-dimensional subscheme Z of length n + 1. Then we prove the

following result:

Corollary 2.3.8. Let Y be an unnodal Enriques surface and H ∈ Pic(Y ) ample with

H2 = 2d. Then OY (H) is n-very ample provided that

0 ≤ n ≤ d · φ(H)

2d− φ(H)
− 1.

Both of these results follow from the following vanishing theorem which is a direct

consequence of the Bridgeland stability techniques of Theorem 2.3.5:

Proposition 2.3.9 (Proposition 10.3.1). Let Y be an unnodal Enriques surface and

H ∈ Pic(Y ) ample with H2 = 2d. Then for any Z ∈ Y [n],

H i(Y, IZ(H +KY )) = 0, for i > 0,

provided that

1 ≤ n < d · φ(d)

2d− φ(d)
.

2.4 Open questions

Some open question about moduli of semistable sheaves on Enriques surfaces persist

after the work presented here. Our irreducibility results work for unnodal Enriques sur-

faces, but irreducibility remains unknown for primitive Mukai vectors on nodal Enriques

surfaces. Likewise, irreducibility in the non-primitive case remains open in both cases.

Finally, we have focused here on moduli spaces of Gieseker semistable sheaves, but the

geometry of moduli spaces of slope-semistable sheaves remains largely unexplored, at

least in the non-primitive case (where the moduli spaces can differ significantly). Some

work in this direction is contained a forthcoming paper of Yoshioka [66].

A further fundamental question in the connection developed here between wall-

crossing and birational geometry is whether or not the divisor `σ0,± is big in the case

of a totally semistable wall, that is M s
σ0,Y

(v) = ∅, which is unknown at the moment.

The failure of bigness would give the existence of interesting fibration structures on

M± provided by the morphisms π±. Another open question is whether or not one can
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classify entirely and in total generality the walls in Stab†(Y ) in terms of the geometry

of the morphism π± for any given primitive Mukai vector v. Even if this is achieved, we

wonder if a full Hassett-Keel-type result holds true for Enriques surfaces as shown to be

the case for K3 surfaces in [10]. That is, does every minimal model of Mσ,Y (v) appear

after deformation of the stability condition, i.e. as another moduli space of Bridgeland

stable objects? We hope to take up both of these questions in the future.

It is natural to wonder what kind of varieties the moduli spaces Mσ,Y (v) are. For

primitive v, these are normal projective varieties with torsion canonical divisors. We

suspect, based on examples, that these are always of Calabi-Yau-type, being genuine

Calabi-Yau manifolds for v of even rank while only admitting genuine Calabi-Yau étale

covers in the case of odd rank.
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Chapter 3

Review: Enriques surfaces

We collect here some of the basic definitions and results on Enriques surfaces that we

use.

3.1 First properties

Definition 3.1.1. An Enriques surface is a smooth complex projective surface Y with

h1(OY ) = h2(OY ) = 0 and 2KY ∼ 0.

It is well-known (see [7, Lemma VIII.15.1]) that Enriques surfaces have fundamental

group Z/2Z and universal cover a K3 surface Ỹ . We denote the covering map by

π : Ỹ → Y and the covering involution by ι : Ỹ → Ỹ . By Noether’s formula, the

topological Euler characteristic satisfies χ(Y ) = 12. As such, we get

h1,0(Y ) = h0,1(Y ) = h2,0(Y ) = h0,2(Y ) = 0, h1,1(Y ) = 10.

Furthermore, it is known that the cohomology of the tangent bundle TY is h0(TY ) =

h2(TY ) = 0 and h1(TY ) = 10 [7, Lemma VIII.15.3], so the moduli space of Enriques

surfaces is smooth of dimension 10. It is in fact irreducible [25].

Definition 3.1.2. An Enriques surface is called nodal if contains a smooth rational

curve and unnodal otherwise.

Nodal Enriques surfaces form a nine-dimensional irreducible divisor in the moduli

space of Enriques surfaces, so the condition of being unnodal is open and describes the

generic Enriques surface.
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3.2 Divisors on Enriques surfaces

Let us recall some facts about divisors on an Enriques surface Y .

To begin with, for any Enriques surface Y , we can write the long exact sequence on

cohomology for the exponential exact sequence,

0 = H1(Y,OY )→ Pic(Y )→ H2(Y,Z)→ H2(Y,OY ) = 0,

to see that Pic(Y ) ∼= NS(Y ) ∼= H2(Y,Z). As the intersection pairing on the torsion-free

component Num(Y ) = H2(Y,Z)f is unimodular of signature (1,9), it follows that

Pic(Y ) ∼= U ⊕−E8 ⊕ 〈KY 〉,

where U ∼=

0 1

1 0

 is the hyperbolic lattice and −E8 is the even negative-definite

lattice obtained by negating the usual even positive-define lattice with Dynkin diagram

E8.

For convenience, we record that for a sheaf E of rank r, Riemann-Roch says that

h0(E)− h1(E) + h2(E) = χ(E) = r +
1

2
c1(E)2 − c2(E).

In particular, for a divisor D we get χ(D) = 1
2D

2 + 1.

The following two simple propositions will be especially useful:

Proposition 3.2.1 ([17]). Let D be a divisor with D2 ≥ 0 and D 6= 0,KY . Then D is

effective or −D is effective. If D is effective, then D +KY is also effective.

Proof. As the proof is simple, we include it here. By Riemann-Roch,

h0(D)− h1(D) + h2(D) =
1

2
D2 + 1 ≥ 1,

so by Serre duality

h0(D) + h0(−D +KY ) = h0(D) + h2(D) ≥ 1.

Thus either D is effective or −D +KY is effective, but not both since then KY would

be effective. Repeating the same argument for D +KY gives

h0(D +KY ) + h0(−D) ≥ 1.
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Since D 6= 0, D and −D cannot be simultaneously effective. Without loss of generality,

we may suppose D is effective, so h0(−D) = 0 and effectivity of D + KY follows from

this last equation.

Definition 3.2.2. For any divisor D with D2 > 0, we define

φ(D) = inf{|D · F ||F ∈ Pic(Y ), F 2 = 0}.

The most important property of φ for us is the following [17, Section 2.7]:

Theorem 3.2.3. 0 < φ(D)2 ≤ D2.

The importance of effective divisors of square zero in the geometry of Enriques

surfaces lies partially in the fact that they correspond to elliptic pencils. Indeed, for

an effective divisor F with F 2 = 0 and primitive class in the lattice Num(Y ), 2F is

one of the two non-reduced members of the pencil |2F |, whose generic member is a

smooth elliptic curve. A pencil whose generic member is a smooth elliptic curve is

called an elliptic pencil, and all complete elliptic pencils on an Enriques surface Y arise

in this way. Such an F is called an elliptic half-pencil. We will denote by FA and

FB = FA + KY the two elliptic half-pencils supporting the two double fibers of the

elliptic fibration induced by |2FA| = |2FB|. The following final fact will also be of use

to us:

Proposition 3.2.4 ([17]). For every elliptic pencil |2E| on an Enriques surface Y ,

there exists an elliptic pencil |2F | such that E.F = 1.

Proof. As Num(Y ) is unimodular, we can find F ′ ∈ Pic(Y ) such that E.F ′ = 1. Then

since Num(Y ) is even, F := F ′ − F ′2

2 E ∈ Pic(Y ) satisfies F 2 = 0 and F.E = 1, so |2F |

is the required elliptic pencil.

If Y is an unnodal Enriques surface, then every elliptic half-pencil is irreducible.

3.3 The algebraic Mukai lattice

Let Y be an Enriques surface with universal cover a projective K3 surface Ỹ and

fixed-point free covering involution ι such that Y = Ỹ /〈ι〉. We recall here a helpful
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bookkeeping invariant that we will use to describe the topological invariants of sheaves

and complexes on Enriques surfaces.

Recall from Chapter 1 that we define the Mukai lattice of Y by

H∗alg(Y,Z) := v(Knum(Y )) ⊂ H∗(Y,Q),

where v(E) = ch(E).
√

td(Y ) is the Mukai vector. If we denote by ρY the fundamental

class, then

H∗alg(Y,Z) = H0(Y,Z)⊕Num(Y )⊕ 1

2
ZρY . (3.1)

Written according to the decomposition (3.1), we may write the Mukai vector as

v(E) = (r(E), c1(E),
r(E)

2
+ ch2(E)).

We denote the Mukai pairing H∗alg(Y,Z)×H∗alg(Y,Z)→ Z by ( , ); it can be defined

by (v(E), v(F )) := −χ(E,F ), where

χ(E,F ) =
∑
p

(−1)p extp(E,F )

denotes the Euler pairing on K(Y ). This becomes non-degenerate when modding out

by its kernel to get Knum(Y ). According to the decomposition (3.1), we have

(
(r, c, s), (r′, c′, s′)

)
= c.c′ − rs′ − r′s,

for (r, c, s), (r′, c′, s′) ∈ H∗alg(Y,Z).

As usual in lattice theory, we call a Mukai vector v primitive if it is not divisible

in H∗alg(Y,Z). Note that the covering space map π : Ỹ → Y with covering involution ι

induces an embedding

π∗ : H∗alg(Y,Z) ↪→ H∗alg(Ỹ ,Z) := H0(Ỹ ,Z)⊕NS(Ỹ )⊕H4(Ỹ ,Z)

such that (π∗v, π∗w) = 2(v, w), and it identifies H∗alg(Y,Z) with an index 2 sublattice

of the ι∗-invariant component of H∗alg(Ỹ ,Z). However, the embedding of lattices π∗ :

Num(Y ) ↪→ NS(Ỹ ) is primitive, i.e. has torsion-free cokernel, and identifies Num(Y )

with the ι∗-invariant part of NS(Ỹ ). It follows that for a primitive Mukai vector v ∈

H∗alg(Y,Z), π∗v is divisible by at most 2. All of this is encapsulated nicely in the

following lemma:
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Lemma 3.3.1. A Mukai vector v = (r, c1, s) ∈ H∗alg(Y,Z) is primitive if and only if

gcd(r, c1,
r + 2s

2
) = 1.

If v is primitive, then gcd(r, c1, 2s) = 1 or 2, and moreover:

• if gcd(r, c1, 2s) = 1, then either r or c1 is not divisible by 2 (i.e. π∗v is primitive);

• if gcd(r, c1, 2s) = 2, then c2 must be odd and r + 2s ≡ 2(mod 4) (i.e. π∗v is

divisible by 2).

Proof. The conclusion following from v being primitive is precisely the statement of [26,

Lemma 2.5], except for the formulation about the primitivity of π∗v. Let us demonstrate

the validity of this reformulation. Suppose that v is primitive but that π∗v is divisible

by m. Then

π∗v = (r, π∗c1, 2s) = m(r′, c′1, r
′ +

1

2
(c′1)2 − c′2) = (mr′,mc′,mr′ +

m

2
(c′1)2 −mc′2),

from which it follows that

r = mr′, π∗c1 = mc′, 2s = mr′ +
m

2
(c′)2 −mc′2.

It follows that m| gcd(r, c1, 2s). If gcd(r, c1, 2s) = 1, then we get m = 1, so π∗v is

primitive. Now let us show that if gcd(r, c1, 2s) = 2, then π∗v is divisible by 2. So

let r = 2r′, c1 = 2c′1, and note that s is an integer in this case. As (c′1)2 is an even

integer, it follows that 2|(2r′+(c′1)2−2s), and thus we can solve for c′2. So π∗v is indeed

divisible by 2 in this case.

Finally, let us show that v is primitive if and only if gcd(r, c1,
r+2s

2 ) = 1. If v is

divisible by m, then as above, m|r and m|c1, so we get r = mr′ and c1 = mc′1. Then

from

r

2
+

1

2
c2

1 − c2 = m(r′ +
1

2
(c′1)2 − c′2),

we see that m|c2. As r+2s
2 = r+ 1

2c
2
1− c2, it follows that m| r+2s

2 . So gcd(r, c1,
r+2s

2 ) = 1

implies v is primitive. Conversely, if m| gcd(r, c1,
r+2s

2 ), then m|c2, and

v = m

(
r

m
,
c1

m
,
r/m

2
+

1

2
(c1/m)2 −

(
(c2/m)− 1−m

2
(c1/m)2

))
.
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In particular, for odd rank Mukai vectors or Mukai vectors with c1 primitive, π∗v is

still primitive, while primitive Mukai vectors with gcd(r, c1) = 2 (and thus necessarily

gcd(r, c1, 2s) = 2) must satisfy v2 ≡ 0(mod 8), as can be easily seen.
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Chapter 4

Review: Moduli spaces of semistable sheaves

In this chapter, we remind the reader of fundamental definitions and facts about the

classical definitions of stability for sheaves. We also recall explicitly the known results

about stable sheaves on Enriques surfaces.

4.1 Slope stability

Let H ∈ Amp(X) on a smooth projective surface X. We define the slope function µH

on CohX by

µH(E) =


H.c1(E)
r(E) if r(E) > 0,

+∞ if r(E) = 0.

(4.1)

This gives a notion of slope stability for sheaves, for which Harder-Narasimhan fil-

trations exist (see [28, Section 1.6]). Recall that a torsion free coherent sheaf E is

called slope semistable (resp. stable) with respect to H if for every F ⊂ E with

0 < r(F ) < r(E) we have µH(F ) ≤ µH(E) (resp. µH(F ) < µH(E)). We will sometimes

use the notation µ-stability, or µH -stability if we want to make the dependence on H

clear. Also recall that every torsion free coherent sheaf E admits a unique Harder-

Narasimhan filtration

0 = HN0(E) ⊂ HN1(E) ⊂ ... ⊂ HNn(E) = E,

with µ-semistable factors Ei = HNi(E)/HNi−1(E) satisfying

µH(E1) > ... > µH(En).

We can filter a µ-semistable sheaf even further to obtain a Jordan-Hölder filtration

0 = JH0(E) ⊂ JH1(E) ⊂ ... ⊂ JHn(E) = E,
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with µ-stable factors Ei = JHi(E)/ JHi−1(E) of slope equal to µH(E). Unfortu-

nately, Jordan-Hölder filtrations are not unique, and even the associated graded object

grJH
µ (E) := ⊕iEi is only uniquely defined in codimension one. On the other hand,

the reflexive hull (or double-dual) E∗∗ := grJH
µ (E)∨∨ is uniquely defined [28, Corollary

1.6.10].

4.2 Gieseker stability

Let H ∈ Amp(X) on a smooth projective surface X. Recall that the Hilbert polynomial

is defined by

P (E,m) := χ(E(mH)),

for E ∈ Coh(X). This polynomial can be uniquely written in the form

dim(E)∑
i=0

ai(E)
mi

i!
,

and we define the reduced Hilbert polynomial by

p(E,M) :=
P (E,m)

adim(E)(E)
.

Here the dimension of a coherent sheaf E is the dimension of its support. This gives

rise to the notion of H-Gieseker stability for sheaves. We refer to [28, Chapter 1]

for basic properties of Gieseker stability, but we just mention that like above, a pure

dimensional sheaf E is called Gieseker semistable (resp. Gieseker stable) if for every

proper subsheaf 0 6= F ⊂ E, p(F,m) ≤ p(E,m) (resp. p(F,m) < p(E,m)) for all

m� 0.1 Harder-Narasimhan and Jordan-Hölder filtrations are defined analogously as

above with p replacing µH , except that the associated graded sheaf grHN (E) is now

unique, despite non-uniqueness of the filtration itself.

It is worth pointing out that

E is µ−stable⇒ E is Gieseker-stable ⇒ E is Gieseker-semistable ⇒ E is µ−semistable.

(4.2)

1A sheaf E is pure dimensional if it contains no nonzero sheaves of smaller dimension.
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4.3 Moduli spaces of semistable sheaves

Let H ∈ Amp(X) on a smooth projective surface X. We fix a Mukai vector v ∈

H∗alg(X,Z) (or in other words, we fix the topological invariants r, c1, c2).

4.3.1 Moduli spaces for Gieseker semistability

We denote by MH,X(v) the moduli stack of flat families of H-Gieseker semistable

sheaves with Mukai vector v. By [28, Chapter 4] there exists a projective variety

MH,X(v) which is a coarse moduli space parameterizing S-equivalence classes of semistable

sheaves. Recall that two Gieseker semistable sheaves are called S-equivalent if they have

the same graded object associated to their respective Jordan-Hölder filtrations.

Upon considering iterated extensions of stable sheaves, it becomes clear that consid-

ering S-equivalence is necessary in order to obtain a coarse moduli space. Indeed, sup-

pose that {Et} is a family of semistable sheaves over A1 representing tv ∈ Ext1(E2, E1),

where the Ei are stable sheaves with the same reduced Hilbert polynomial and 0 6= v ∈

Ext1(E2, E1). Then in a coarse moduli space A1 − {0} must be mapped to a single

point, as for t 6= 0 the Et are all isomorphic, so we must map E0 = E1⊕E2 to the same

point. That is, a coarse moduli space can only distinguish S-equivalence classes.

The open substack Ms
H,X(v) ⊆ MH,X(v) parameterizing stable sheaves is a Gm-

gerbe over the similarly defined open subset M s
H,X(v) ⊆MH,X(v) of the coarse moduli

space. In the sequel, we will suppress the reference to X when X is understood from

context.

4.3.2 Moduli spaces for µ-semistability

We denote by Mµss
H,X(v) the moduli stack of flat families of µH -semistable sheaves

with Mukai vector v. By [28, Section 8.2] there exists a projective variety Mµss
H,X(v)

which gives an algebraic structure to the gauge-theoretic Donaldson-Uhlenbeck com-

pactification of the moduli space of µ-stable locally free sheaves. The open substack

Mµs
H,X(v) ⊆Mµss

H,X(v) parameterizing µ-stable sheaves is a Gm-gerbe over the similarly

defined open subset Mµs
H,X(v) ⊆ Mµss

H,X(v). As one would expect, the last implication
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in (4.2) gives rise to a stack morphism MH,X(v) → Mµss
H,X(v) inducing a morphism

γ : MH,X(v) → Mµss
H,X(v). While MH,X(v) could be described as parametrizing S-

equivalence classes of semistable sheaves, the description of Mµss
H,X(v) as a moduli space

is more subtle. A fundamental fact is the following:

Theorem 4.3.1 (Theorem 8.2.11,[28]). Two µ-semistable sheaves of Mukai vector v

define the same point in Mµss
H,X(v) if and only if F ∗∗1

∼= F ∗∗2 and F ∗∗i /grJH
µ (Fi) define

the same 0-cycle in the symmetric product Sl(X).

A consequence of the proof of Theorem 4.3.1 is that Mµss
H,X(v) admits a stratification

Mµss
H,X(v) =

⊔
l≥0

Mµ−poly
H,X (v)× Sl(X),

where Mµ−poly
H,X (v) ⊂MH,X(v) denotes the subset of locally free sheaves of Mukai vector

v which are the direct sum of µ-stable locally free sheaves of equal slope.

4.4 Wall-and-chamber structure on Amp(X)

We must also recall the definition of a polarization that is generic with respect to a

given Mukai vector v satisfying v2 > −r(v)2 (the Bogomolov inequality) and r(v) ≥ 2

(see [?, Section 4.C]). Consider ξ ∈ Num(X) with − r(v)2

4 (v2 + r(v)2) ≤ ξ2 < 0. The

wall for v corresponding to ξ is the real codimension 1 subcone ξ⊥∩Nef(X) ⊂ Nef(X).

These walls are locally finite. A polarization H ∈ Amp(X) is generic with respect to v

if it does not lie on any of these walls. An important consequence of this is that for a

destabilizing subobject F of E, with v(E) satisfying the two inequalities above and H

generic with respect to v(E), we must have v(F ) ∈ R>0v(E). So if v is primitive, any

H-Gieseker semistable sheaf E with v(E) = v is Gieseker-stable as well. If, in addition,

c1 is primitive in Num(X), then any µH -semistable sheaf is even µH -stable.

4.4.1 Suitable polarizations

For use in Section 11.1, we recall the definition of a v-suitable polarization. We say

that a polarization H is suitable with respect to v and an elliptic half-fibre FA of

class f , if for any ξ ∈ Num(X) with − r(v)2

4 (v2 + r(v)2) ≤ ξ2 < 0 either ξ.f = 0
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or ξ.f and ξ.H have the same sign. For any polarization H, H + nf is suitable for

n ≥ r(v)2(H.f)
8 (v2 + r(v)2). This definition is equivalent to H being in (the closure of)

the chamber surrounding f . We say that H is a generic suitable polarization if H is in

fact in the interior of this chamber. An important consequence of being v-suitable is

that if E is µH -semistable, then the restriction E|F is semistable for a generic elliptic

fiber F ∈ |2FA|, and conversely if E|F is stable, then E is µH -stable.

4.5 (Quasi-)universal families

We review one last facet of the general theory of moduli spaces of sheaves. While a

coarse moduli space exists, it is not always a fine moduli space, i.e. there does not

always exist a universal family of semistable sheaves. To remedy the possible lack of

a universal family, Mukai [50] came up with the following substitute, which is usually

good enough for most purposes:

Definition 4.5.1. Let T be an algebraic space of finite-type over C and X a smooth

projective variety.

(a) A family E on T ×X is called a quasi-family of objects in MH,X(v) if for all closed

points t ∈ T , there exists E ∈ MH,X(v)(C) such that Et ∼= E⊕ρ, where ρ > 0 is

an integer which is called the similitude and is locally constant on T .

(b) Two quasi-families E and E ′ on T , of similitudes ρ and ρ′, respectively, are called

equivalent if there are locally free sheaves N and N ′ on T such that E ⊗ p∗TN ∼=

E ′ ⊗ p∗TN ′. It follows that the similitudes are related by rkN · ρ = rkN ′ · ρ′.

(c) A quasi-family E is called quasi-universal if for every scheme T ′ and quasi-family

E ′ on T ′, there exists a unique morphism f : T ′ → T such that f∗E is equivalent

to E ′.

The usual techniques (see for example [50, Theorem A.5] or [28, Section 4.6]) show

that a quasi-universal family exists on M s
H,X(v) and is unique up to equivalence.



26

4.6 Moduli of sheaves on Enriques surfaces: What is known?

We close this chapter with a summary of the known results in the Enriques case. From

standard results in the deformation theory of sheaves [28, Section 2.A and 4.5], we have

for a simple sheaf E, i.e. hom(E,E) = 1,

v2+1 ≤ dimEMH,Y (v) ≤ dimTEMH,Y (v) = v2+1+ext2(E,E) = v2+1+hom(E,E(KY )).

Kim’s main structure result from [34] is the following:

Theorem 4.6.1. Let Y be an Enriques surface with K3 cover Ỹ .

(a) M s
H,Y (v) is singular at E if and only if E ∼= E(KY ) except if E belongs to a 0-

dimensional component (E is a spherical sheaf and v2 = −2) or a 2-dimensional

component (v2 = 0), along which all sheaves are fixed by −⊗OY (KY ).

(b) The singular locus of M s
H,Y is a union of the images under π∗ of finitely many

open subsets M s,◦
H,Ỹ

(w) for different w ∈ H∗alg(Ỹ ) such that π∗(w) = v, where

M s,◦
H,Ỹ

(w) := {F ∈M s
H,Ỹ

(w)|F � ι∗F}.

The singular locus has even dimension at most 1
2(v2 + 4). In particular, M s

H,Y (v)

is generically smooth and everywhere smooth if r(v) is odd.

(c) The pull-back map π∗ : M s
H,Y (v) → MH,Ỹ (π∗v) is a double cover onto a La-

grangian subvariety of MH,Ỹ (π∗v), the fixed locus of ι∗, and is branched precisely

along the locus where E ∼= E(KY ).

We recall from Chapter 3 that an Enriques surface Y is unnodal if it contains no

smooth rational curves. One useful consequence of being unnodal is that the ample

cone is entirely round, i.e. an effective D ∈ Pic(Y ) is ample if and only if D2 > 0.

Moreover, ι∗ acts trivially on Pic(Ỹ ) in this case, so π∗ Pic(Y ) = Pic(Ỹ ). An important

consequence of this is that for any E ∈M s
H,Y (v) with E ∼= E(KY ), π∗v must be divisible

by 2 in H∗alg(Ỹ ,Z), as follows from the proof of Theorem 4.6.1.

For primitive v, M s
H,Y (v) is thus smooth of dimension v2 + 1, unless π∗v is divisible

by 2, in which case either v2 = 0 and M s
H,Y (v) contains a smooth exceptional component



27

of dimension 2 (we will see later that this is the entire moduli space) or M s
H,Y (v) is still

of dimension v2 + 1 with singular locus of codimension at least 2.

Now recall that for a variety X over C, the cohomology with compact support

H∗c (X,Q) has a natural mixed Hodge structure. Let ep,q(X) :=
∑

k(−1)khp,q(Hk
c (X))

and e(X) :=
∑

p,q e
p,q(X)xpyq be the virtual Hodge number and Hodge polynomial,

respectively. For an Enriques surface Y we recall that the kernel of NS(Y )→ Num(Y )

is given by 〈KY 〉, and thus

MH,Y (v) = MH,Y (v, L1)
∐

MH,Y (v, L2),

where MH,Y (v, Li) denotes those E ∈ MH,Y (v) with det(E) = Li and L2 = L1(KY ) ∈

Pic(Y ) so c1 = c1(L1) = c2(L2) ∈ Num(Y ).

The following result is proved in [64]:

Theorem 4.6.2. Let v = (r, c1, s) ∈ H∗alg(Y,Z) be a primitive Mukai vector with r odd

and Y unnodal. Then

e(MH,Y (v, L)) = e(Y [ v
2+1
2

]),

for a generic H, where L ∈ Pic(Y ) satisfies c1(L) = c1. In particular,

• MH,Y (v) 6= ∅ for a generic H if and only if v2 ≥ −1.

• MH,Y (v, L) is irreducible for generic H.

For even rank Mukai vectors, Hauzer proved the following in [26]:

Theorem 4.6.3. Let Y be an unnodal Enriques surface and v = (r, c1, s) ∈ H∗alg(Y,Z)

a primitive Mukai vector with r even. Then for generic polarization H we have

e(MH,Y (v, L)) = e(MH,Y ((r′, c′1, s
′), L′)),

where r′ is 2 or 4.

Non-emptiness of MH,Y (v) with v2 ≥ 1 was essentially proved in [35] for the case

r(v) = 2. He proved irreducibility in half of those cases.

It is worth noting that there are no spherical sheaves (i.e. a stable sheaf E with E ∼=

E(KY ) and ext1(E,E) = 0) on an unnodal Enriques surface Y . Indeed, E ∼= E(KY )
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implies that π∗E ∼= F ⊕ ι∗F for spherical F on Ỹ . But then since ι∗ now acts trivially

on H∗alg(Ỹ ,Z),

−8 = (2v(F ))2 = (v(F ) + v(ι∗F ))2 = v(π∗E)2 = −4,

a contradiction. So we need only consider stable sheaves with v2 ≥ −1 on an unnodal

Enriques surface, regardless of the parity of the rank.

On nodal Enriques surfaces, however, we must consider the additional case when

v2 = −2 occupied by spherical sheaves. In fact, being nodal is equivalent to carrying

a rank two stable spherical bundle [32]. While little work has been done on semistable

sheaves on nodal Enriques surfaces in general, there are precise criteria for the existence

of spherical bundles:

Theorem 4.6.4 (Theorem 1, [33]). Let v = (r, c1(D), s) be a positive Mukai vector

such that v2 = −2 and ω a generic polarization. Then Mω(v, L) 6= ∅ if and only if

D = N + 2L + r
2KY , where L is some divisor and N is a nodal cycle (i.e. a positive

1-cycle such that h1(ON ) = 0). In particular, Y must be nodal.

We would be remiss if we did not at least mention the complete picture that has

emerged for stable sheaves on K3 surfaces. The main result in its final form is proved

by Yoshioka in [63, Theorems 0.1 & 8.1]. We start by recalling the notion of positive

vector, following [63, Definition 0.1].

Definition 4.6.5. Let v0 = (r, c, s) ∈ H∗alg(Ỹ ,Z) be a primitive class. We say that v0

is positive if v2
0 ≥ −2 and

• either r > 0,

• or r = 0, c is effective, and s 6= 0,

• or r = c = 0 and s > 0.

Theorem 4.6.6 (Yoshioka). Let v ∈ H∗alg(Ỹ ,Z). Assume that v = mv0, with m ∈ Z>0

and v0 a primitive positive vector. Then MH,Ỹ (v) is non-empty for all H.
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Remark 4.6.7. We keep the assumptions of Theorem 4.6.6. We further assume that H

is generic with respect to v so that stable factors of a semistable sheaf E with v(E) = v

must have Mukai vector m′v0 for m′ < m.

(a) By [31], MH,Ỹ (v) is then a normal irreducible projective variety with Q-factorial

singularities.

(b) If m = 1, then by [63] M s
H,Ỹ

(v) = MH,Ỹ (v) is a smooth projective irreducible

symplectic manifold of dimension v2 + 2, deformation equivalent to the Hilbert

scheme of points on a K3 surface.
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Chapter 5

Review: Bridgeland stability

In this chapter, we give a brief review of stability conditions on derived categories in

general, as introduced in [14], as well the results we will need for K3 and Enriques

surfaces.

5.1 Bridgeland stability conditions

Let X be a smooth projective variety, and denote by Db(X) its bounded derived cat-

egory of coherent sheaves. A full numerical stability condition σ on Db(X) consists of

a pair (Z,A), where Z : Knum(X) → C is a group homomorphism (called the central

charge) and A ⊂ Db(X) is the heart of a bounded t-structure, satisfying the following

three properties:

(a) For any 0 6= E ∈ A the central charge Z(E) lies in the following semi-closed upper

half-plane:

Z(E) ∈ H := H ∪ R<0 = R>0 · e(0,1]·iπ (5.1)

One can think of this condition as two separate positivity conditions: =Z defines a

rank function on the abelian category A, i.e., a non-negative function rk: A → R≥0

that is additive on short exact sequences. Similarly, −<Z defines a degree function

deg : A → R, which has the property that rk(E) = 0⇒ deg(E) > 0. We can use them

to define a notion of slope-stability with respect to Z on the abelian category A via

the slope µ(E) = deg(E)
rk(E) : an object E is called semistable (resp. stable) if every proper

subobject 0 6= F ⊂ E satisfies µ(F ) ≤ µ(E) (resp. µ(F ) < µ(E)).

(b) With this notion of slope-stability, every object E ∈ A has a Harder-Narasimhan

filtration 0 = E0 ↪→ E1 ↪→ . . . ↪→ En = E such that each Ei/Ei−1 is Z-semistable,
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with µ(E1/E0) > µ(E2/E1) > · · · > µ(En/En−1).

(c) There is a constant C > 0 such that, for any Z-semistable object E ∈ A, we have

‖E‖ ≤ C|Z(E)|,

where ‖∗‖ is a fixed norm on Knum(X)⊗ R.

This last condition is often called the support property and is equivalent to Bridgeland’s

notion of a full stability condition.

Definition 5.1.1. A stability condition is called algebraic if its central charge takes

values in Q⊕Q
√
−1.

As Knum(X) is finitely generated, for an algebraic stability condition the image of

Z is a discrete lattice in C.

Given (Z,A) as above, one can extend the notion of stability to Db(X) as follows:

for φ ∈ (0, 1], we let P(φ) ⊂ A be the full subcategory of Z-semistable objects with

Z(E) ∈ R>0e
iφπ; for general φ, it is defined by the compatibility P(φ + n) = P(φ)[n].

Each subcategory P(φ) is extension-closed and abelian. Its nonzero objects are called

σ-semistable of phase φ, and its simple objects are called σ-stable. Then each object

E ∈ Db(X) has a Harder-Narasimhan filtration, where the inclusions Ei−1 ⊂ Ei are

replaced by exact triangles Ei−1 → Ei → Ai, and where the Ai’s are σ-semistable of

decreasing phases φi. The category P(φ) necessarily has finite length. Hence every

object in P(φ) has a finite Jordan-Hölder filtration, whose filtration quotients are σ-

stable objects of the phase φ. Two objects A,B ∈ P(φ) are called S-equivalent if their

Jordan-Hölder factors are the same (up to reordering). We define the mass of an object

E for a given σ by mσ(E) =
∑

i |Zσ(Ai)|, where Ai are the σ-semistable factors of E.

Of course, it follows that |Z(E)| ≤ mσ(E). We sometimes abuse notation and write

(Z,P) in place of (Z,A).

The set of stability conditions will be denoted by Stab(X). It has a natural metric

topology (see [14, Prop. 8.1] for the explicit form of the metric). Bridgeland’s main

theorem is the following:
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Theorem 5.1.2 (Bridgeland). The map

Z : Stab(X)→ Hom(Knum(X),C), (Z,A) 7→ Z,

is a local homeomorphism. In particular, Stab(X) is a complex manifold of finite di-

mension equal to the rank of Knum(X).

In other words, a stability condition (Z,A) can be deformed uniquely given a small

deformation of its central charge Z.

Remark 5.1.3. There are two group actions on Stab(X), see [14, Lemma 8.2]: the

group of autoequivalences Aut(Db(X)) acts on the left via Π(Z,A) = (Z ◦Π−1
∗ ,Π(A)),

where Π ∈ Aut(Db(X)) and Π∗ is the automorphism induced by Π at the level of

numerical Grothendieck groups. We will often abuse notation and denote Π∗ by Π,

when no confusion arises. The universal cover G̃L
+

2 (R) of the group GL+
2 (R) of ma-

trices with positive determinant acts on the right as a lift of the action of GL+
2 (R)

on Hom(Knum(X),C) ∼= Hom(Knum(X),R2). We typically only use the action of the

subgroup C ⊂ G̃L
+

2 (R) given as the universal cover of C∗ ⊂ GL+
2 (R): given z ∈ C, it

acts on (Z,A) by Z 7→ e2πiz · Z, and by modifying A accordingly.

5.2 Stability conditions on K3 and Enriques surfaces

In this section we give a brief review of Bridgeland’s results on stability conditions

for K3 surfaces in [15], and of results by Toda, Yoshioka and others related to moduli

spaces of Bridgeland-stable objects.

5.2.1 Space of stability conditions for a K3 surface

Let Ỹ be a smooth projective K3 surface. Fix ω, β ∈ NS(Ỹ )Q with ω ample. Borrowing

from the notation of β-twisted slope-semistability, we define the β-twisted ω-slope to

be

µω,β(E) =


ω.(c1(E)−r(E)β)

r(E) = µω(E)− ω.β if r(E) > 0,

+∞ if r(E) = 0.

(5.2)
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One can define a notion of µω,β-stability, but for our purposes, it is easiest to note

that this is the same thing as µω-stability with all slopes shifted down by ω.β as sug-

gested by (5.2).

Let T (ω, β) ⊂ Coh Ỹ be the subcategory of torsion sheaves and torsion-free sheaves

whose HN-filtrations factors (with respect to slope-stability) have µω,β > 0, and F(ω, β)

the subcategory of torsion-free sheaves with HN-filtration factors satisfying µω,β ≤ 0.

Next, consider the abelian category

A(ω, β) :=

E ∈ Db(Ỹ ) :

• Hp(E) = 0 for p 6∈ {−1, 0},

• H−1(E) ∈ F(ω, β),

• H0(E) ∈ T (ω, β)


and the C-linear map

Zω,β : Knum(Ỹ )→ C, E 7→ (exp (β +
√
−1ω), v(E)). (5.3)

If Zω,β(F ) /∈ R≤0 for any spherical sheaf F ∈ Coh(Ỹ ) (e.g., this holds when ω2 > 2),

then by [15, Lemma 6.2, Prop. 7.1], the pair σω,β = (Zω,β,A(ω, β)) defines a stability

condition. For objects E ∈ A(ω, β), we will denote their phase with respect to σω,β

by φω,β(E) = φ(Z(E)) ∈ (0, 1]. By using the support property, as proved in [15,

Proposition 10.3], we can extend the above and define stability conditions σω,β, for

ω, β ∈ NS(Ỹ )R. Bridgeland shows further that the σω,β, along with their translates

under the action of G̃L
+

2 (R), fill out a connected component Stab†(Ỹ ) of Stab(Ỹ ).

5.2.2 Space of stability conditions for an Enriques surface via induc-

tion

Let π : Ỹ → Y denote the covering map of an Enriques surface Y by its covering K3

Ỹ . Via the fixed-point free covering involution ι, Coh(Y ) is naturally isomorphic to the

category of coherent G-sheaves on Ỹ , CohG(Ỹ ), where G = 〈ι∗〉, thus giving a natural

equivalence of Db(Y ) with Db
G(Ỹ ). We make this identification implicitly below.

In [45] the authors construct two faithful adjoint functors

ForgG : Db
G(Ỹ )→ Db(Ỹ ),
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which forgets the G-sheaf structure, and

InfG : Db(Ỹ )→ Db
G(Ỹ ), InfG(E) := ⊕g∈Gg∗E.

Under the above identifications we have ForgG = π∗ and InfG = π∗. Since G acts on

Stab(Ỹ ) via the natural action of Aut(Db(Ỹ )) on Stab(Ỹ ), we can define

ΓỸ := {σ ∈ Stab(Ỹ ) : g∗σ = σ, for all g ∈ G}.

These functors induce two continuous maps. The first (π∗)−1 : ΓỸ → Stab(Db(Y ))

is given by Z(π∗)−1(σ) = Zσ ◦π∗ and P(π∗)−1(σ)(φ) = {E ∈ Db(Y ) : π∗E ∈ Pσ(φ)}, where

we use π∗ also for the morphism between K-groups. The second (π∗)
−1 : (π∗)−1(ΓỸ )→

Stab(Ỹ ) is defined similarly with π∗ replaced by π∗.

We consider the connected component Stab†(Ỹ ) ⊂ Stab(Ỹ ) described in the section

above. The following result is relevant to us:

Theorem 5.2.1 (Proposition 3.1, [45]). The non-empty subset Σ(Y ) := (π∗)−1(ΓỸ ∩

Stab†(Ỹ )) is open and closed in Stab(Y ), and it is embedded into Stab†(Ỹ ) as a closed

submanifold via the functor (π∗)
−1. Moreover, the diagram

ΓỸ ∩ Stab†(Ỹ )
(π∗)−1

−−−−→ Σ(Y )
(π∗)−1

−−−−→ ΓỸ ∩ Stab†(Ỹ )y yZ y
(Knum(Ỹ )C)∨G

(π∗)∨−−−−→ Knum(Y )∨C
π∨∗−−−−→ (Knum(Ỹ )C)∨G

commutes.

5.3 The Wall-and-Chamber structure

A key ingredient in the connection between the stability manifold and the birational

geometry of Bridgeland moduli spaces is the existence of a wall-and-chamber structure

on Stab(X). For a fixed σ ∈ Stab(X), we say a subset S ⊂ Db(X) has bounded mass if

there exists m > 0 such that mσ(E) ≤ m for all E ∈ S. It follows from the definition

of the metric topology on Stab(X) that being of bounded mass is independent of the

specific initial stability condition σ and depends only on the connected component it

lies on. We have the following general result:
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Proposition 5.3.1 (Proposition 2.8, [61]). Let X be a smooth projective variety. As-

sume that for any bounded mass subset S ⊂ Db(X) the set of numerical classes

{[E] ∈ Knum(X)|E ∈ S}

is finite. Then for any compact subset B ⊂ Stab∗(X) (an arbitrary connected component

of Stab(X)), there exists a finite number of real codimension one submanifolds {Wγ |γ ∈

Γ} on Stab∗(X) such that if Γ′ is a subset of Γ and

C ⊂
⋂
γ∈Γ′

(B ∩Wγ)\
⋃
γ /∈Γ′

Wγ

is one of the connected components, then if E ∈ S is semistable for some σ ∈ C, then

it is semistable for all σ ∈ C.

We now verify the assumption of the proposition whenX = Y is an Enriques surface:

Lemma 5.3.2. Suppose the subset S ⊂ Db(Y ) has bounded mass in Stab†(Y ). Then

the set of numerical classes {[E]|E ∈ S} is finite.

Proof. Since the conclusion is true for bounded mass subsets S ′ ⊂ Db(Ỹ ) for the cov-

ering K3 surface Ỹ above, we first show that π∗(S) has bounded mass. Indeed, let

σ′ ∈ Stab†(Ỹ ) induce σ ∈ Stab†(Y ). Then by our assumption on S, there exists m > 0

such that mσ(E) ≤ m for any E ∈ S, and the proof of [45, Lemma 2.8] shows that

the HN-filtration of π∗E with respect to σ′ is the image via π∗ of the HN-filtration

of E with respect to σ. Then mσ(E) = mσ′(π
∗E) from this and the definition of the

induction of stability conditions. This shows that S ′ = π∗(S) is of bounded mass.

It follows that {[F ] ∈ Knum(Ỹ )|F ∈ S ′} is a finite set. But if F = π∗E, then [F ] =

π∗[E], and π∗ is an isomorphism onto Knum(Ỹ )G, so the set {[E] ∈ Knum(Y )|E ∈ S} is

finite.

For the remainder of this section, we let X denote any smooth projective variety

satisfying the assumption of Proposition 5.3.1, though for our purposes X = Y or Ỹ . It

is worthwhile to point out the following fact which is crucial in considering the stability

of objects as σ varies:



36

Lemma 5.3.3 (Proposition 9.3,[15]). Given a subset of S ⊂ Db(X) of bounded mass

and a compact subset B, then

{v(E)|E ∈ S or is a (semi)stable factor of some E′ ∈ S for some σ ∈ B}

is a finite set.

The most important consequence of the construction of Wγ in Proposition 5.3.1 is

that when σ ∈ C, the only numerical classes with the same phase as some E ∈ S must

lie on the ray R>0[E]. Following [44], we call the codimension one submanifolds from

Proposition 5.3.1 pseudo-walls for the bounded mass subset S.

Let us now fix a class v ∈ Knum(X), and consider the set S of σ-semistable ob-

jects E ∈ Db(X) of class v as σ varies. This is by definition bounded. Consider the

corresponding finite set from Lemma 5.3.3 and the resulting wall-and-chamber decom-

position. By throwing out those pseudo-walls which do not actually correspond to

subobjects of some E ∈ S, we arrive at the following useful wall-and-chamber decom-

position:

Proposition 5.3.4. There exists a locally finite set of walls (pseudo-walls correspond-

ing to genuine subobjects of semistable objects with Mukai vector v) in Stab(X), de-

pending only on v, with the following properties:

(a) When σ varies within a chamber, the sets of σ-semistable and σ-stable objects of

class v do not change.

(b) When σ lies on a single wall W ⊂ Stab(X), then there is a σ-semistable object that

is unstable in one of the adjacent chambers, and semistable in the other adjacent

chamber.

(c) When we restrict to an intersection of finitely many walls W1, . . . ,Wk, we obtain

a wall-and-chamber decomposition on W1 ∩ · · · ∩ Wk with the same properties,

where the walls are given by the intersections W ∩W1 ∩ · · · ∩Wk for any of the

walls W ⊂ Stab(X) with respect to v.
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If v is primitive, then from the proof of [15, Proposition 9.4] σ lies on a wall if and

only if there exists a strictly σ-semistable object of class v. From the above construc-

tions, the Jordan-Hölder filtrations of σ-semistable objects do not change when σ varies

within a chamber.

Definition 5.3.5. Let v ∈ Knum(X). A stability condition is called generic with

respect to v if it does not lie on a wall in the sense of Proposition 5.3.4.
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Chapter 6

Moduli stacks of semistable objects

We begin in this chapter to present our own original research contributions. We prove

here that Enriques surfaces admit moduli Artin stacks of objects in the derived category

that are semistable with respect to a Bridgeland stability condition.

6.1 Basic properties of semistable objects

We first collect here some fundamental facts about Bridgeland semistable objects on

Enriques surfaces. The central technique is comparison with Bridgeland stability on

the covering K3 surface. The first step in that direction is the following general result:

Lemma 6.1.1 (Proposition 2.5,[16]). Let Y be an Enriques surface and Ỹ its K3

universal cover.

(a) Let F ∈ Db(Ỹ ). Then there is an object E ∈ Db(Y ) such that π∗E ∼= F if and

only if ι∗F ∼= F .

(b) Let E ∈ Db(Y ). Then there is an object F ∈ Db(Ỹ ) such that π∗F ∼= E if and

only if E ⊗ ωY ∼= E.

Focusing now on Bridgeland stability, we set some notation for the rest of the section.

Fix a Mukai vector v, and for any σ ∈ Stab†(Y ), we will denote by σ′ ∈ ΓỸ ∩ Stab†(Ỹ )

a stability condition such that (π∗)−1(σ′) = σ. To compare stable objects on Y and Ỹ

we first make the following observation:

Lemma 6.1.2. If E,F ∈ Mσ,Y (v) are σ-stable and π∗E ∼= π∗F , then E ∼= F or

E ∼= F ⊗ ωY .
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Proof. Indeed, pushing forward implies that

E ⊕ (E ⊗ ωY ) ∼= π∗π
∗E ∼= π∗π

∗F ∼= F ⊕ (F ⊗ ωY ).

Taking Hom’s gives that either

Hom(E,F ) 6= 0 or Hom(E,F ⊗ ωY ) 6= 0.

But since E and F (F ⊗ ωY respectively) are both σ-stable of the same phase, any

non-zero homomorphism must be an isomorphism.

We will often need to exclude one of these possibilities:

Lemma 6.1.3. If E is σ-stable of phase φ, then π∗E is σ′-stable of the same phase,

unless E ∼= E ⊗ ωY , in which case π∗E ∼= F ⊕ ι∗F , with F � ι∗F σ′-stable objects of

phase φ, and thus not stable. Moreover, in this case E ∼= π∗(F ) ∼= π∗(ι
∗F ).

Proof. By definition π∗E is σ′-semistable, so suppose that it is strictly semistable. Let

F ⊂ π∗E be a proper nontrivial σ′-stable subobject of the same phase φ. If F ∼= ι∗F ,

then there is a proper nontrivial σ-stable object E′ ⊂ E of phase φ, contradicting

stability of E.

Otherwise, F � ι∗F and ι∗F ⊂ π∗E is also σ′-stable of phase φ. Consider the short

exact sequence

0→ F ∩ ι∗F → F ⊕ ι∗F → F + ι∗F → 0,

which gives

2Z(F ) = Z(F ⊕ ι∗F ) = Z(F ∩ ι∗F ) + Z(F + ι∗F ),

where we write Z(−) = Zσ′(−), φ(−) = φσ′(−) to be concise. By the see-saw principle

and semistability of F ⊕ ι∗F , we must have either

φ(F ∩ ι∗F ) < φ < φ(F + ι∗F ), or φ(F ∩ ι∗F ) = φ = φ(F + ι∗F ).

Since F + ι∗F ⊂ π∗E, semistability implies that we must have equality everywhere.

But then F ∩ ι∗F ⊂ F of the same phase, so either

F ∩ ι∗F = 0 or F,
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by the stability of F . We assumed F � ι∗F , so we must be in the first case. Thus

F⊕ι∗F ∼= F+ι∗F is an ι∗-invariant nontrivial subobject of π∗E of phase φ. It must thus

come from a nontrivial subobject F ′ ⊂ E of phase φ. If F ′ is proper, equivalently F⊕ι∗F

is proper, then this contradicts the stability of E. Thus we must have F ⊕ ι∗F ∼= π∗E.

Pushing forward gives that

E ⊕ E ⊗ ωY ∼= π∗(F )⊕ π∗(ι∗F ) ∼= π∗(F )⊕2.

From this and adjunction we deduce that

Hom(E,E)⊕Hom(E,E ⊗ ωY ) = Hom(E, π∗(F ))⊕2 = Hom(π∗E,F )⊕2

= Hom(F, F )⊕2 ⊕Hom(F, ι∗F )⊕2.

Since F and ι∗F are non-isomorphic σ′-stable objects of the same phase, Hom(F, ι∗F ) =

0, while Hom(E,E) = Hom(F, F ) = C. Thus Hom(E,E ⊗ ωY ) = C which implies

E ∼= E ⊗ ωY by stability. Similar considerations show that E ∼= π∗(F ).

For the converse, we have by adjunction that

Hom(π∗E, π∗E) ∼= Hom(E, π∗π
∗E)

∼= Hom(E,E ⊕ (E ⊗ ωY )) ∼= Hom(E,E)⊕2.

Thus C⊕2 = Hom(π∗E, π∗E) implies π∗E cannot be stable.

We finish this section with a necessary condition on a Mukai vector for the existence

of Bridgeland stable objects:

Lemma 6.1.4. If E is σ-stable, then v(E)2 ≥ −1, unless v(E)2 = −2 which occurs

precisely when E is spherical.

Proof. From Serre duality and the definition of the Mukai pairing

v(E)2 = ext1(E,E)−hom(E,E)−ext2(E,E) = ext1(E,E)−hom(E,E)−hom(E,E⊗ωY ).

By stability hom(E,E) = 1 and hom(E,E ⊗ ωY ) = 0 or 1. In the first case,

v(E)2 + 1 = ext1(E,E) ≥ 0.
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In the latter case,

v(E)2 + 2 = ext1(E,E) ≥ 0,

and v(E)2 < −1 implies v(E)2 = −2, so E is spherical as ext2(E,E) = 1 implies

E ∼= E ⊗ ωY .

6.2 Moduli stacks of Bridgeland semistable objects

We would like to use the results of [61] to construct for each stability condition σ ∈

Stab†(Y ) a moduli stack of σ-semistable objects which is an Artin stack of finite type

over C.

Fix a smooth projective surface X (to be either Y or Ỹ as above). Let MX be the

2-functor

MX : (Sch/C)→ (groupoids),

which sends a C-scheme S to the groupoid MX(S) whose objects consist of E ∈

DS-perf(S ×X) satisfying

Exti(Es, Es) = 0, for all i < 0 and s ∈ S.

Lieblich proved the following theorem:

Theorem 6.2.1 ([43]). The 2-functor MX is an Artin stack of locally finite type over

C.

Fix σ = (Z,P) ∈ Stab(X), φ ∈ R, and v ∈ H∗alg(X,Z). Then any object E ∈ P(φ)

satisfies

Exti(E,E) = 0, for all i < 0.

Indeed Exti(E,E) = Hom(E,E[i]), and E ∈ P(φ) implies E[i] ∈ P(φ + i). Since

i < 0, φ + i < φ, and from the definition of a stability condition, we must then have

Hom(E,E[i]) = 0.

Definition 6.2.2. Define Mσ,X(v, φ) to be the set of σ-semistable objects of phase φ

and Mukai vector v, and

Mσ,X(v, φ) ⊂MX ,
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to be the substack parametrizing families of objects in Mσ,X(v, φ). As φ is determined

mod Z by v and σ, we will drop it from the notation and assume henceforth that it is

in (0, 1].

Remark 6.2.3. By [61, Lemma 2.9] and Remark 5.1.3 above, we may in fact assume

that φ = 1, Z(v) = −1, and σ is algebraic. We will make explicit when we are assuming

this.

Toda proved the following helpful result:

Lemma 6.2.4 ([61]). Assume Mσ,X(v) is bounded and Mσ,X(v) ⊂ MX is an open

substack. Then Mσ,X(v) is an Artin stack of finite type over C.

This is the essential ingredient we need to prove the main theorem of this section:

Theorem 6.2.5. Let Y be an Enriques surface. For any v ∈ H∗alg(Y,Z) and σ ∈

Stab†(Y ), Mσ,Y (v) is an Artin stack of finite type over C.

We can easily prove the openness of σ-stability on Y :

Proposition 6.2.6. For any v ∈ H∗alg(Y,Z) and σ ∈ Stab†(Y ), Mσ,Y (v) is an open

substack of MY .

Proof. By [61, Lemma 3.6] this reduces to proving that for any smooth quasi-projective

variety S and E ∈MY (S) such that the locus

S◦ = {s ∈ S|Es ∈Mσ,Y (v)},

is not empty, there is an open subset U of S contained in S◦. Of course, (1 × π)∗E ∈

MỸ (S), and by definition of induced stability conditions, the corresponding set S◦ for

(1× π)∗E and Mσ′,Ỹ (π∗v) remains the same. By [61, Section 4] there is an open set U

of S contained in S◦ so the result follows.

By Lemma 6.2.4, all that remains is to prove the boundedness of Mσ,Y (v). We begin

with boundedness of stable objects:

Proposition 6.2.7. Denote by M s
σ,Y (v) ⊂Mσ,Y (v) the subset of σ-stable objects. Then

M s
σ,Y (v) is bounded.
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Proof. From Lemma 6.1.3 we know that for any E ∈ M s
σ,Y (v), π∗E is σ′-stable unless

E ∼= E ⊗ ωY in which case π∗E ∼= F ⊕ ι∗F for σ′-stable objects F � ι∗F of the same

phase.

Let us the consider the first case. Then by boundedness of Mσ′,Ỹ (π∗v, φ) [61, The-

orem 14.2], there exists a scheme Q of finite type over C and F ∈ Db(Q × Ỹ ) such

that every F ∈Mσ′,Ỹ (π∗v, φ) is equal to Fq for some closed point q ∈ Q. Consider the

locally closed subscheme

T := {q ∈ Q|ι∗Fq ∼= Fq,Fq ∈M s
σ′,Ỹ

(π∗v)},

which is still of finite type over C, and the restriction FT . Then from [16, Proposition

2.5] it follows that there exists E ∈ Db(T × Y ) such that (1 × π)∗(E) ∼= FT . Consider

the disjoint union of two copies of T , which is still of finite type over C, with E on the

first copy of T and E ⊗ p∗Y ωY on the second. Then by Lemma 6.1.2 and the definition

of induced stability conditions, it follows that M s
σ,Y (v) is bounded.

In the second case, consider u ∈ H∗alg(Ỹ ,Z) such that π∗(u) = v. Note that by

Lemma 5.3.3 only finitely many of these Mukai vectors appear as v(F ) for decompo-

sitions E ∼= F ⊕ ι∗F . Then by boundedness of M(π∗)−1(σ),Ỹ (u), we have a scheme W

of finite type over C and G ∈ Db(W × Ỹ ) representing every element M(π∗)−1(σ),Ỹ (u).

Now consider the open set

V := {w ∈W |ι∗Gw � Gw,Gw is stable}

and (1× π)∗(G|V ) ∈ Db(V × Y ). Then V is still of finite type. Taking the finite union

over the relevant u’s represents every member of M s
σ,Y (v).

Together these prove the claim.

To prove boundedness in general, let us recall the following simple result:

Lemma 6.2.8 ([61, Lemma 3.16]). Let X be a smooth projective variety and subsets

Si ⊂ Db(X), 1 ≤ i ≤ 3, with Si bounded for i = 1, 2. Suppose that any E3 ∈ S3 sits in

a distinguished triangle,

E1 → E3 → E2,

with Ei ∈ Si for i = 1, 2. Then S3 is also bounded.
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Proposition 6.2.9. Mσ,Y (v) is bounded for any σ and v.

Proof. By Lemma 5.3.3, the number of Mukai vectors of possible stable factors for

E ∈ Mσ,Y (v) is finite. By induction on the number of stable factors, we see that the

claim follows from Proposition 6.2.7 and Lemma 6.2.8 above.

As above we denote by Ms
σ,Y (v) ⊂Mσ,Y (v) the open substack parametrizing stable

objects (and analogously for the corresponding sets of objects). Inaba proved in [29]

that Ms
σ,Y (v) is a Gm-gerbe over a separated algebraic space that we denote by M s

σ,Y (v).

We have the following further result:

Lemma 6.2.10. Fix v ∈ H∗alg(Y,Z).

(a) The moduli stack Mσ,Y (v) satisfies the valuative criterion of closedness.

(b) Assume that Mσ,Y (v) = Ms
σ,Y (v). Then the course moduli space Mσ,Y (v) is a

proper algebraic space.

Proof. By Remark 6.2.3, we may assume that Z(v) = −1 and that σ is algebraic so

that P(1) is Noetherian. But then [1, Theorem 4.1.1] implies the lemma.

We finish this section by proving that certain coarse invariants of these moduli

spaces are the same as those of appropriate moduli spaces of sheaves. To do this we

use derived auto-equivalences. While only nodal Enriques surfaces admit spherical

objects [45, Lemma 3.17] and their corresponding spherical (Seidel-Thomas) twists,

all Enriques surfaces have closely related derived auto-equivalences corresponding to

exceptional objects. These are objects E ∈ Db(Y ) with exti(E,E) = 0 for i 6= 0

and hom(E,E) = 1, so that in particular E � E ⊗ ωY and v(E)2 = −1. It follows

immediately that π∗E is a spherical object on Ỹ . We have the following result about

the associated spherical twist STπ∗E(−):

Proposition 6.2.11. Let E ∈ Db(Y ) be an exceptional object and STπ∗E(−) the spher-

ical twist associated to π∗E, i.e. the derived auto-equivalence defined by the exact tri-

angle

Hom•(π∗E,F )⊗ π∗E → F → STπ∗E(F )
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for every F ∈ Db(Y ). Then STπ∗E preserves Db(Ỹ )G ∼= Db(Y ) and thus descends to

an auto-equivalence on Db(Y ). The effect on cohomology is the map

v(F ) 7→ v + 2(v(F ), v(E))v(E).

Proof. The important observation here is that both π∗E and F ∈ Db(Ỹ )G, so Hom•(π∗E,F )

is G-invariant and thus the first morphism is in Db(Ỹ )G. Completing it to an exact

triangle stays inside Db(Ỹ )G, and thus we see that STπ∗E(F ) is G-invariant as well. It

follows that STπ∗E descends to an auto-equivalence on Db(Y ).

The statement about the action on cohomology follows from the above description

and [27, Lemma 8.12].

These auto-equivalences were referred to as Fourier-Mukai transforms associated

to (−1)-reflection in [64] and modular reflections in [67], but the above interpretation

strengthens and elucidates the connection with the covering spherical twist on the K3

surface Ỹ . For brevity we call these weakly-spherical twists. Now we are ready for our

theorem.

Theorem 6.2.12. The motivic invariant of Mσ,Y (v) for all σ ∈ Stab†(Y ) is the same

as that of MH,Y (w) for a generic polarization with respect to a positive Mukai vector w

in the same orbit as v under the action of Aut(Db(Y )). In particular, if MH,Y (w) is

nonempty, then Mσ,Y (v)(C) 6= ∅.

Proof. The construction of the Joyce invariant J(v) of [61, Section 5] is quite general,

and Lemma 5.12 there applies. Likewise the analogous algebra A(Aφ,Λ, χ) is still

commutative since ωY is numerically trivial and thus the Mukai pairing is commutative.

This and the results above show that [61, Theorem 5.24 and Corollary 5.26] still apply.

In particular, J(v) is the motivic invariant of the proper coarse moduli space Mσ,Y (v),

should it be known to exist, and is invariant under autoequivalences and changes in σ.

We can thus assume that v is positive. Indeed, if r 6= 0, then we can shift by 1,

i.e. E 7→ E[1], to make r > 0 if necessary. If r = 0 but s 6= 0, then we can apply the

weakly-spherical twist through OY and a shift, if necessary, to make v positive. Finally,

we are reduced to the case v = (0, C, 0). We can tensor with O(D) for any D ∈ Pic(Y )
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such that D.C 6= 0, and then apply the weakly-spherical twist through OY and a shift

to make v positive.

Choose a polarization H ∈ Amp(Y ) that is generic with respect to v and β ∈

NS(Y )Q such that µH,β(v) > 0. Setting ω = tH and σt := (π∗)−1(σπ∗ω,π∗β), [15,

Proposition 14.2] shows that for t � 0, Mσt,Y (v) = Mβ
H,Y (v), i.e. we may choose σ

such that the moduli stack Mσ,Y (v) is the same as the moduli stack MH,Y (v) of (H,β)-

twised Gieseker semistable sheaves on Y with Mukai vector v for a generic polarization

H. This stack therefore admits a projective coarse moduli space and J(v) is the motivic

invariant of MH,Y (v).

In Chapter 7 we will use this result to deduce the nonemptiness of Mσ,Y (v)(C) as

well as to obtain new results about classical moduli of sheaves.

6.3 The Geometry of the Morphism π∗

We begin here our investigation of the relationship between the geometry of the moduli

spaces Mσ,Y (v) and Mσ′,Ỹ (π∗v), where again σ = (π∗)−1(σ′) for an invariant stability

condition σ′. Notice that π∗ induces a morphism of stacks

π∗ : Mσ,Y (v, φ)→Mσ′,Ỹ (π∗v, φ).

Since ι induces an autoequivalence of Db(Ỹ ), and we’ve chosen σ′ ∈ ΓỸ , ι induces an

involution ι∗ on Mσ′,Ỹ (π∗v). It follows that π∗ factors through the fixed point substack

Fix(ι), a closed substack, to give a morphism

π∗ : Mσ,Y (v)→ Fix(ι),

which we still denote by π∗1.

1To avoid too many stack-theoretic complications, we will define the fixed point stack as Fix(ι) :=
Mσ′,Ỹ (π∗v)G ×M

σ′,Ỹ (π∗v) Mσ′,Ỹ (π∗v), where Mσ′,Ỹ (π∗v)G ⊂Mσ′,Ỹ (π∗v) is the fixed-point subscheme

of the coarse moduli space. This ensures that the fixed point substack is in fact a closed substack,
smooth if the ambient stack is. It also ensures that the morphism to the fixed point substack descends
through Inaba’s rigidification by Gm. For a more general and thorough discussion of these issues, see
[56]
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As usual, we start by considering the stable locus and generalize the results and

arguments of [34],[57] to the case of Bridgeland moduli spaces. First we note the

following fact:

Lemma 6.3.1. Fix(ι)∩M s
σ′,Ỹ

(π∗v) is a union of isotropic algebraic subspaces of M s
σ′,Ỹ

(π∗v).

Proof. In [30, Theorem 3.3] Inaba generalized the by-now classical result from [49]

that the moduli space of stable sheaves on a K3 surface Ỹ carries a non-degenerate

symplectic form. Recall that for F ∈ Mσ′,Ỹ (π∗v) Inaba defined the sympletic form ω

on the smooth algebraic space M s
σ′,Ỹ

(π∗v) by considering the composition

Ext1(F, F )× Ext1(F, F )→ Ext2(F, F )→ H2(Ỹ ,OỸ ) = H2(Ỹ , ωỸ ) ∼= C

(e, f) 7−→ e ∪ f 7−→ tr(e ∪ f),

where the identification of H2(Ỹ , ωỸ ) with C is dual to the isomorphism between

H0(Ỹ , ωỸ ) and C, where the former is generated by the unique holomorphic 2-form

α up to scaling. Since ι∗ sends α to −α, it follows that ω is anti-sympletic, i.e.

ω(ι∗e, ι∗f) = −ω(e, f).

Moreover, as M s
σ′,Ỹ

(π∗v) is a smooth algebraic space, Fix(ι)∩M s
σ′,Ỹ

(π∗v) is the

union of smooth subspaces. The fact that it is isotropic follows from the fact that ι∗ is

anti-symplectic.

Proposition 6.3.2. The morphism of stacks

π∗ : Mσ,Y (v)→ Fix(ι) ⊂Mσ′,Ỹ (π∗v)

is onto. The induced morphism

π∗,s : Ms
σ,Y (v)→ Fix(ι)

is a 2-to-1 cover onto its image, étale away from those points with E ∼= E ⊗ ωY .

Proof. First we show that π∗ is surjective onto Fix(ι). Indeed, suppose F ∈Mσ′,Ỹ (π∗v)

is invariant under ι∗. From [16, Proposition 2.5], there exists an object E ∈ Db(Y )

such that π∗E ∼= F . From the definition of induced stability conditions, it follows that

E ∈Mσ,Y (v). Moreover, it clearly follows that if F is stable, then so is E.
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Now we prove that π∗,s is unramified. Lieblich and Inaba (in [43] and [29], respec-

tively) generalized the well-known results about the deformation theory of coherent

sheaves to complexes of such. In particular, for E ∈ M s
σ,Y (v) and F = π∗E, the

tangent spaces are

TEMσ,Y (v) ∼= Ext1(E,E), and TFMσ′,Ỹ (π∗v) ∼= Ext1(F, F ),

and the differential is just the natural map

dπ∗ : Ext1(E,E)→ Ext1(F, F ).

Note that it follows from Riemann-Roch that if E and F = π∗E are both stable,

Mσ,Y (v) is smooth at E (since the obstruction space vanishes because Ext2(E,E) = 0)

of dimension dimTE = v2+1 while Mσ′,Ỹ (π∗v) is smooth at F of dimension (π∗v)2+2 =

2 dimMσ,Y (v).

We claim that the differential must be injective for E � E ⊗ ωY . Indeed, suppose

E′ ∈ Ext1(E,E), i.e. E′ is an extension

0→ E → E′ → E → 0,

in Pσ(φ). Notice from applying Hom(−, E ⊗ ωY ) and noting that E and E ⊗ ωY are

nonisomorphic and stable of the same phase so that Hom(E,E ⊗ ωY ) = 0, we must

have Hom(E′, E ⊗ ωY ) = 0. Suppose that π∗E′ = 0 ∈ Ext1(F, F ), i.e. the short exact

sequence

0→ F → π∗E′ → F → 0

in Pσ′(φ) splits. But then so does the short exact sequence

0→ π∗(F )→ π∗(π
∗E′)→ π∗(F )→ 0.

But this is precisely the sequence

0→ E ⊕ (E ⊗ ωY )→ E′ ⊕ (E′ ⊗ ωY )→ E ⊕ (E ⊗ ωY )→ 0.

Since Hom(E′, E ⊗ ωY ) = Hom(E′ ⊗ ωY , E) = 0, it follows that any morphism

E′ ⊕ (E′ ⊗ ωY )→ E ⊕ (E ⊗ ωY )
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must be component wise, and thus any splitting of this short exact sequence induces a

splitting of the original exact sequence

0→ E → E′ → E → 0,

proving injectivity.

Finally, note that dπ∗ factors through TF Fix(ι). Since Fix(ι)∩Ms
σ′,Ỹ

(π∗v) is smooth

and isotropic by Lemma 6.3.1, it follows that dπ∗ is isomorphic onto TF Fix(ι), so π∗ is

étale at E. That it is 2-to-1 follows from Lemma 6.1.2.

Remark 6.3.3. If Fix(ι)∩Ms
σ′,Ỹ

(π∗v) is nonempty, then it follows that every compo-

nent is a Lagrangian substack from the above proposition.

6.4 Singularities of Bridgeland moduli spaces and their canonoical

divisor

We describe here the structure of the singularities of the algebraic space parametrizing

Bridgeland stable objects:

Theorem 6.4.1. Let Y be an Enriques surface, v ∈ H∗alg(Y,Z), and σ ∈ Stab†(Y )

(not necessarily generic). Then the algebraic space M s
σ,Y (v) is singular at E if and

only if E ∼= E ⊗ ωY and E lies on a component of dimension v2 + 1. The singular

locus of M s
σ,Y (v) is the union of the images under π∗ of finitely many components of

the algebraic spaces

M s
σ′,Ỹ

(w)◦ = {F ∈M s
σ′,Ỹ

(w)|F � ι∗F},

as w ∈ H∗alg(Ỹ ,Z) ranges over classes such that π∗(w) = v. Consequently,

dim Sing(M s
σ,Y (v)) ≤ 1

2
(dimM s

σ,Y (v) + 3)

so that M s
σ,Y (v) is generically smooth. It is possible that M s

σ,Y (v) has irreducible com-

ponents of dimension 0 and 2, which are necessarily smooth, if E ∼= E ⊗ ωY and

dimEM
s
σ,Y (v) = v2 + 2,

i.e. v2 = −2 or 0.
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Proof. The proof of the main theorem in [34] generalizes without change.

While Theorem 6.4.1 gives a global description of the singular locus, we now address

the local nature of these singularities and the canonical bundle of Bridgeland moduli

spaces:

Theorem 6.4.2. Suppose that Y is an Enriques surface, v ∈ H∗alg(Y,Z), and σ ∈

Stab†(Y ). Suppose that the fixed locus of − ⊗ ωY has codimension at least 2. Then

M s
σ,Y (v) is normal and Gorenstein with only canonical l.c.i. singularities. Furthermore,

ωMs
σ,Y (v) is torsion in Pic(M s

σ,Y (v)).

Proof. The first statement follows directly as in [62], while the statement about the

canonical divisor is shown precisely as in [28, Proposition 8.3.1].

Remark 6.4.3. If v2 is odd, then the rank of v is odd and by Theorem 6.4.1 the fixed

locus of −⊗ ωY is empty, so the hypothesis of the theorem above is certainly satisfied.

Furthermore, the codimension of this fixed locus is at least 2 if v2 ≥ 5 by Theorem

6.4.1 since it must be of even dimension at most 1
2(dimM s

σ,Y (v) + 3). Moreover, we

have equality in this dimension estimate only if c1(F ) = ι∗c1(F ), in which case 2 | π∗v.

From Section 3.3 we know that if π∗v is divisible by 2 for primitive v then v2 ≡ 0(

mod 8). So if v2 = 4, then the fixed locus has codimension at least 2 if v is primitive,

but if v2 = 2, it is possible that the fixed locus is a divisor. If Y is unnodal, however, we

automatically have c1(F ) = ι∗c1(F ) so this is impossible since π∗v is primitive in this

case. Finally, let us note that on exceptional components of dimension 2, i.e. v2 = 0

and E ∼= E ⊗ ωY , Ext2p(E , E) ∼= OMs
σ,Y (v), so the conclusion of the theorem continues to

hold.
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Chapter 7

Interlude: New results on moduli of stable sheaves on

Enriques surfaces

We have now established the fundamental theory of moduli stacks of Bridgeland semistable

objects, and we use it to settle the foundational issue of non-emptiness and irreducibil-

ity of Gieseker moduli spaces on Enriques surfaces. We begin with proving Theorem

2.3.2 in the case of a primitive Mukai vector on an unnodal Enriques surface. Recall

from Chapter 4 that Yoshioka has shown that in odd rank, MH,Y (v, L) is irreducible

of dimension v2 + 1, while Hauzer’s result Theorem 4.6.3 reduces the even rank case to

ranks two and four. We consider first the case of rank four.

7.1 Classification of chern classes

To make our investigation easier, in this section we use the lattice theoretic techniques

employed by Hauzer in [26] to reduce the study of rank 4 sheaves R to the case χ(R) = 1

and R has degree 2 or 4 on the generic fibre of some elliptic fibration of Y , depending on

the divisibility of c1(R). In particular, we prove the following helpful reduction result:

Theorem 7.1.1. Let v = (4, c1, s) be a primitive Mukai vector on an Enriques surface

Y . Then we can find divisor D such that for any coherent sheaf R with v(R) = v,

χ(R(D)) = 1 and c1(R(D)).f = ±1 if 2 - c1 or c1(R(D)).f = 2 if 2 | c1, where FA is

an elliptic half-pencil with c1(FA) = f .

Proof. To begin with, denote by σ, f the canonical basis of U so that

Num(Y ) = Pic(Y )/〈KY 〉 = U ⊕−E8,

where we can assume that σ and f represent effective elliptic half-pencils GA and FA,

respectively.
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Write c1 = d1σ + d2f + ξ with ξ ∈ −E8. Then for any R with v(R) = v, we have

v(R⊗OY (D)) = v ch(OY (D)) = (4, c1 + 4D, 2D2 + c1.D + s),

so choosing D = kGA + jFA appropriately we can assume −2 < di ≤ 2. Letting

l = gcd(4, ξ), we can choose ξ1 ∈ −E8 such that (ξ+ 4ξ1)/l is primitive by [26, Lemma

2.1]. Then by replacing v by v ch(ξ1) we can assume that ξ/l is primitive. Suppose

d1 = 0, d2 = 2b for b = 0, 1 with the case d1 = 2b, d2 = 0 being dealt with by switching σ

and f . First suppose that b = 1. Then clearly, l = 1, 2, 4. If l 6= 1, then by Lemma 3.3.1,

χ(R) = r+2s
2 is odd. So χ(R⊗OY ((1−χ(R)

2 )GA)) = χ(R) + 21−χ(R)
2 = 1. Furthermore,

note that c1(R ⊗ OY ((1−χ(R)
2 )GA)).σ = 2. If l = 1, then ξ is primitive so we may

choose η ∈ −E8 such that ξ.η = 1. Then σ and f ′ := −η2

2 σ + f + η span a hyperbolic

plane, and the coordinates of c1 in this new basis are c1.f
′ = 1− η2, which is odd, and

c1.σ = 2, respectively. Then by tensoring with an appropriate multiple of OY (GA) we

can assume we are in the case where one of the di = ±1, to be dealt with momentarily.

Finally, suppose that b = 0, i.e. c1 ∈ −E8. Then l = 1 or 2, and since ξ/l is

primitive, we choose η ∈ −E8 such that ξ
l .η = 1 and let σ′ = σ − η2

2 f + η. Again σ′

and f span a hyperbolic plane and the coordinates of the hyperbolic part of c1 in this

new basis are c1.f = 0 and c1.σ
′ = ξ.η = l. So we are reduced to cases (d1, d2) = (0, 1)

or (0, 2). The latter we dealt with above, so let us treat the remaining cases.

We are left with the two cases where either (d1, d2) = (2, 2) or one of di = ±1. In

the first case, l = gcd(4, ξ) = 1, 2, 4 and ξ/l is assumed to be primitive. If l = 4, let

f ′ = σ + f + η for η ∈ −E8 satisfying η2 = −2. Then σ and f ′ span a hyperbolic

plane, and the hyperbolic coordinates of c1 in this new basis are c1.f
′ = 4 + ξ.η, which

is divisible by 4, and c1.σ = 2. By tensoring by OY ( c1.f
′

4 GA) we reduce to the case

(d1, d2) = (0, 2) considered above. Note that this also works if ξ = 0. If l = 2, then

choose η ∈ −E8 such that (ξ/2 − η)2 ≡ (ξ/2)2 + 2(mod 4). To see that such an η

exists, choose any η′ such that ξ
2 .η
′ = 1. If η′2 ≡ 0(mod 4), then there is nothing to

be shown as we let η = η′. Now suppose η′2 ≡ 2(mod 4). If ( ξ2)2 ≡ 2(mod 4), then let

η = ξ
2 + 2η′, while if ( ξ2)2 ≡ 0(mod 4), then let η = ξ

2 + η′. Then in either case we that

σ′ := σ − η2

2 f + η and f span a hyperbolic plane in which the coordinates of c1 are
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c1.f = 2 and c1.σ
′ = 2(1 − η2

2 ) + 2 ξ
′

2 .η ≡ 0(mod 4). Thus we reduce to the previously

considered case of (d1, d2) = (2, 0). If l = 1, then for η ∈ −E8, σ′ := σ− η2

2 f + η and f

span a hyperbolic plane. Since ξ is primitive, we choose η′ ∈ −E8 such that ξ.η′ = 1. If

η′2 ≡ 0(mod 4), then let η = −η′, and if η′2 ≡ 2(mod 4), then let η = η′. In either case,

we find that the coordinates of c1 in these new hyperbolic coordinates are c1.f = 2 and

c1.σ
′ = 2(1 − η2

2 ) + ξ.η ≡ 1(mod 4), so we reduce to the case where one of the di = 1,

which we consider now.

If, say d1 = ±1, then χ(R ⊗ OY ((1 − χ(R))|d1|))FA) = 1 and c1(R ⊗ OY ((1 −

χ(R))|d1|FA)).f = di = ±1. This gives the result.

Now we conclude this section by using the same techniques as in the lemma above

to prove irreducibility in the case left unresolved by Kim in [35], namely when c2 = 1
2c

2
1.

We do this by simply showing that this case may be reduced to Kim’s first case, i.e.

when c2 = 1
2c

2
1 + 1, where he was able to prove irreducibility.

Theorem 7.1.2. All moduli spaces MH((2, c1, s), L) such that u := (2, c1, s) is primitive

and u2 = c2
1 − 4s ≥ 0 are non-empty and irreducible for general H unless u2 = 0 and

2 | c1 in which case the result is true if and only if 2 - L.

Proof. As above, we can write c1 = d1σ + d2f + ξ with ξ ∈ −E8. Let us first suppose

that 2 | c1. Note that either L or L+KY is divisible by 2. So we may twist any P with

v(P ) = u by L
2 or L+KY

2 , allowing us to assume that det(P ) = OY or OY (KY ). Taking

GA such that c1(GA) = σ and twisting by OY (GA), we can assume that c1(P ) = 2σ.

As all of these operations thus far are isometries, we must have that s(P ) ≤ 0 and is

an even integer. Then c1(P (− s(P )
2 FA)) = 2σ − s(P )f and χ(P (− s(P )

2 FA)) = 1. This

is equivalent to s(P (− s(P )
2 FA)) = 0, i.e. c2(P (− s(P )

2 FA)) = 1
2c1(P (− s(P )

2 FA))2 + 1. If

u2 > 0, then s(P ) 6= 0, so c1(P (− s(P )
2 FA)) is ample in this case and the result follows

from [35, Theorem I].

So we may assume for the moment that 2 - c1 and that furthermore di = 0, 1 after

twisting by OY (kGA+jFA) if necessary. If d1 = 1, say, then twisting by OY (−s(P )FA)

allows us to assume that s(P ) = 0 and c1.f = 1, and analogously, if d2 = 1. If

d1 = d2 = 0, then we may reduce to the case when one of the di = 1. Indeed, as we are
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assuming 2 - c1, then it follows from [26, Lemma 2.1] that we may find ξ1 ∈ −E8 such

that ξ + 2ξ1 is primitive. Twisting by OY (D) such that c1(D) = ξ1, we may assume

that c1(P ) = ξ is primitive with ξ ∈ −E8. Then as −E8 is unimodular, we may find η

such that ξ.η = 1. Replacing σ by σ′ := σ − η2

2 f + η, we get σ′, f span a hyperbolic

plane with σ′.c1 = ξ.η = 1 and f.c1 = 0 so that the coordinate of f in c1 in these new

coordinates is 1, so we are in the previous case. As we can assume s(P ) = 0, we get

that u2 ≥ 0 implies c2
1 ≥ 0. After dualizing if necessary, we may assume that c1 is the

class of an effective divisor. Then again the theorem follows from [35] if u2 > 0 and [26]

if u2 = 0.

Finally, let us assume 2 | c1 and u2 = 0. Then as above we may assume that

det(P ) = OY orOY (KY ) and that s(P ) = 0. It was shown in [64] thatMH((2, 0, 0),KY ) ∼=

Y , while it will follow from Remark 7.2.3 that MH((2, 0, 0),OY ) = ∅.

7.2 A quick proof of non-emptiness and irreducibility using Bridge-

land stability and derived category techniques

In this section we provide a quick-and-dirty proof of Theorem 2.3.2 using the techniques

we developed in the previous chapter, namely moduli spaces of Bridgeland stable objects

and wall-crossing.

Let us summarize what we have so far. We have shown that in studying rank four

moduli spaces we need only consider MH((4, c1,−1), L), where c2
1 ≥ −8 and there exists

an elliptic half-pencil FA with c1(FA) = f such that c1.f = ±1, 2. With these notations

set, we prove the following theorem:

Theorem 7.2.1. Let v = (4, c1,−1) be a primitive Mukai vector, L ∈ Pic(Y ) such

that c1(L) = c1, and H a generic polarization with respect to v. Then e(MH(v, L)) =

e(MH(v − 2v(OY ), L+KY )). In particular,

• MH(v, L) is non-empty and irreducible if gcd(2, c1) = 1 and v2 ≥ 0;

• MH(v, L) is non-empty and irreducible if gcd(2, c1) = 2 and v2 > 0;

• MH(v, L) is non-empty and irreducible if gcd(2, c1) = 2, v2 = 0, and 2 | L;
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• MH(v, L) = ∅ if gcd(2, c1) = 2, v2 = 0, and 2 - L.

Proof. Let σ ∈ Stab†(Y ) be a generic stability condition in the Gieseker chamber for

H, i.e. the moduli space of σ-stable objects Mσ(v) ∼= MH(v). Applying a special

Fourier-Mukai transformH, called the (−1)-reflection throughOY , we get thatMσ(v) ∼=

MH∗(σ)(H∗(v)), where H∗(σ) is the stability condition obtained by applying H. The

action of H on the Mukai lattice, H∗, takes a Mukai vector v to v+ 2 (v, v(OY )) v(OY )

and changes the determinant line bundle by L 7→ L + χ(v)KY . In our case, this

means that H∗(v) = v − 2v(OY ), as (v, v(OY )) = −1, and L becomes L + KY . Thus

Mσ(v, L) ∼= MH∗(σ)(v − 2v(OY ), L + KY ). By Theorem 6.2.12, the Hodge polynomial

does not change as we change the stability condition. Moving the stability condition

σ′ := H∗(σ) to the Gieseker chamber for u := v− 2v(OY ) gives the claimed equality of

Hodge polynomials.

As χ(u) = −1, we see that for any P with v(P ) = u, χ(P (κFA)) = 1 for κ = 2,−2,

or 1 if c1.f is 1,-1, or 2, respectively. Then c1(P (κFA)) = c1 + 2κf and c1(P (κFA))2 =

c2
1 + 4κc1.f = c2

1 + 8 = v2 = u2 in all cases. Then for v2 > 0, non-emptiness and

irreducibility follow from [35, Theorem 1], as up to dualizing c1(P (κFA)) may be taken

to be ample. The case of v2 = 0, gcd(2, c1) = 1 follows from [26]. The case when

v2 = 0, gcd(2, c1) = 2 follows from the end of the proof of Theorem 7.1.2 above.

We can also use derived category techniques to prove directly that given a primitive

Mukai vector v = (r, c1, s) with gcd(2, c1) = 2 and v2 = 0, then stable sheaves with

Mukai vector v form an irreducible family and can only have one of the two possible

determinants. In fact, we show a bit more:

Theorem 7.2.2. Let v be a primitive Mukai vector on an Enriques surface Y with

v2 = 0 and π∗v divisible by 2, i.e. gcd(2, c1) = 2. Let H be a polarization that is

generic with respect to v. Then MH(v) is a smooth irreducible surface, isomorphic to

Y itself.

Proof. Since v is primitive and H generic, M := MH(v) is projective and parametrizes

only stable sheaves. Let w = 1
2 π
∗v ∈ H∗alg(Ỹ ,Z). Then from [63], Mπ∗H,Ỹ (w) is a
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smooth K3 surface which parametrizes only stable sheaves. From the proof of Theorem

4.6.1 in [34], π∗ : Mπ∗H,Ỹ (w)→M is an étale double cover onto its image. Thus M has

a smooth two dimensional component M1 := π∗(Mπ∗H,Ỹ (w)) which is fixed pointwise

by tensoring with OY (KY ). Moreover, as the quotient of a K3 surface by a fixed-point

free involution, M1 is an Enriques surface.

Let us fix a quasi-universal family E on M1 of similitude ρ. Then for [F ] /∈ M1,

Exti(F, Et) = 0 for all i and t ∈ M1 as v2 = 0 and any G with [G] ∈ M1 satisfies

G ∼= G(KY ). Thus Extip(q∗F, E) = 0 for all i.

If [F ] ∈ M1, then the situation is more delicate. By [6] there exists a complex

P• of locally free sheaves P i of finite rank such that the i-th cohomology Hi(P•) ∼=

Extip(q∗F, E) and Hi(P•t ) ∼= Exti(F, Et). Moreover, this complex is bounded from above

and we may assume P i = 0 for i < 0. Of course, Ext0p(q∗F, E) is a skyscraper sheaf

concentrated at t0 = [F ]. Since it’s a subsheaf of the locally free sheaf P0, it must be

0. Furthermore, we note that ker(di) is always locally free as the kernel of a surjection

from the locally free P i to the torsion-free sheaf im(di) on the smooth surface M1. As

P• is exact at P i for i > 2, since Exti(F, Et) = 0 for i > 0, and P i = 0 for large i, we

can work backwards using exactness and replace P2 by ker(d2) to get

0→ im(d1)→ P2 → H2(P•)→ 0.

It follows that

H2(P•)(t) = P2(t)/ im(d1)(t) ∼= H2(P•(t)) ∼= Ext2(F, Et)

for any closed point t. Thus Ext2p(q∗F, E) is a torsion sheaf concentrated at t0 = [F ]

with length ρ. Finally, we notice that since ker(d1) is locally free and contains the

locally free P0 with quotient supported in dimension zero, it follows that the quotient,

Ext1p(q∗F, E), is 0.

By the Grothendieck-Riemann-Roch formula,

a := ch([Ext0p(q∗F, E)]− [Ext1p(q∗F, E)] + [Ext2p(q∗F, E)])

depends only on ch(F ) and ch(E). Since ch(F ) is constant for all [F ] ∈ M , so is a.

But for F /∈ M1, a = 0, while for F ∈ M1 a = −ρ ch(C(t0)). But 0 6= −ρχ(C(t0)) =
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〈a · td(M), [M1]〉, which is a contradiction unless M is irreducible and equal to M1.

Thus M = M1 is an Enriques surface.

To prove that M is in fact isomorphic to Y itself we consider the Fourier-Mukai

transform ΦE : Db(M) → Db(Y ) induced by the universal sheaf E .1 Then ΦE is fully

faithful by [27, Corollary 7.5], since Hom(Ex, Ex) = C, while Exti(Ex, Ey) = 0 for all i

and x 6= y. For all x ∈M we have

ΦE(C(x))⊗OY (KY ) = Ex(KY ) ∼= Ex = ΦE(C(x)),

so ΦE is moreover an equivalence by a result of Bridgeland [27, Proposition 7.11]. Thus

we have two Enriques surfaces, M and Y , which are derived equivalent. They must in

fact be isomorphic by a result of Bridgeland and Maciocia [27, Proposition 12.20].

Remark 7.2.3. Note that the above proof shows that if MH(v, L) 6= ∅ with v as above,

then MH(v, L+KY ) = ∅. By keeping track of the determinant in the proof of Theorem

4.6.3, one sees that in fact MH((r, c1, s), L) 6= ∅ if and only if 2 | L + (s + r
2)KY if

gcd(2, c1) = 2 and v2 = 0.

7.3 The existence of stable sheaves in the non-primitive case

After dealing exclusively with primitive Mukai vectors above, we conclude the chapter

with a result about stable sheaves in the non-primitive case. Let v = mv0 with v0 a

primitive Mukai vector such that v2
0 ≥ −1, and H generic with respect to v. Then for

m > 1, any destabilizing subsheaf of a sheaf in MH(v) must have Mukai vector m′v0

for m′ < m. We generalize standard arguments to show the following result:

Theorem 7.3.1. Let v = mv0 be a Mukai vector with v0 primitive and m > 0 with H

generic with respect to v on an unnodal Enriques surface Y .

(a) The moduli space of Gieseker-semistable sheaves MH(v) 6= ∅ if and only if v2
0 ≥

−1.

1We can drop the prefix quasi by applying [28, Theorem 4.6.5] with B in their notation running
through the sheaves OY ,C([pt]) and OY (D) for D such that D.c1(v) is minimal. Indeed, using the fact
that gcd(r, c1, 2s) = 2 and r+ 2s ≡ 2(mod 4), one sees that gcd((v, v(B))) = 1 as B runs through these
sheaves.



58

(b) Either dimMH(v) = v2 + 1 and M s
H(v) 6= ∅, m = 1, v2

0 = 0,dimMH(v) =

dimM s
H(v) = 2, or m > 1 and v2

0 ≤ 0.

(c) If MH(v) 6= M s
H(v) and M s

H(v) 6= ∅, the codimension of the semistable locus is

at least 2 if and only if v2
0 > 1 or m > 2. Moreover, in this case and the case

MH(v) = M s
H(v), MH(v) is normal with torsion canonical divisor.

Proof. If v2
0 ≥ −1, then part (a) follows from Theorem 2.3.2 above. For the converse,

note that any stable factor of an element of MH(v) 6= ∅ would have to have Mukai

vector m′v0 for m′ < m by genericity of H. But then m′2v2
0 = (m′v0)2 ≥ −1, so

v2
0 ≥ −1.

For (b), again notice that the genericity of H means that any stable factor of an

object of MH(v) must have Mukai vector m′v0 for m′ < m, which implies that the

strictly semistable locus is the image of the natural map

SSL :
∐

m1+m2=m,mi>0

MH(m1v0)×MH(m2v0)→MH(v).

Assume v2
0 > 0. Then for m = 1, MH(v) = M s

H(v), and we have noted already that

dimMH(v) = v2 +1. If m > 1, then by induction, we deduce that the image of the map

SSL has dimension equal to the maximum of (m2
1 +m2

2)v2
0 +2 for m1 +m2 = m,mi > 0.

This is strictly less than v2 + 1.

Furthermore, we can construct a semistable sheaf E′ with Mukai vector v which is

also Schur, i.e. Hom(E′, E′) = C. By the inductive assumption, we can consider E ∈

M s
H((m−1)v0), and let F ∈MH(v0). Now χ(F,E) = −(v(F ), v(E)) = −(m−1)v2

0 < 0,

so Ext1(F,E) 6= 0. Take E′ to be a nontrivial extension

0→ E → E′ → F → 0.

Then any endomorphism of E′ gives rise to a homomorphism E → F , of which there

are none since these are both stable of the same phase and have different Mukai vectors

(or can be chosen to be non-isomorphic if m = 2). Thus any endomorphism of E′

induces an endomorphism of E, and the kernel of this induced map Hom(E′, E′) →

Hom(E,E) = C is precisely Hom(F,E′), which vanishes since the extension is non-

trivial. Thus Hom(E′, E′) = C.
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We can deduce non-emptiness of M s
H(v) from a dimension estimate as follows. Since

E′ is Schur, we get

v2 + 1 ≤ dimE′MH(v) ≤ dimTE′MH(v) = v2 + 1 + hom(E′, E′ ⊗OY (KY )).

As we mentioned above, the strictly semistable locus must have dimension smaller

than v2 + 1. So even though E′ is not stable, it lies on a component which must

contain stable objects. From Theorem 4.6.1, (smooth) components of the stable locus

of dimension greater than v2 + 1 can occur only if v2
0 = 0, so v2

0 > 0 implies that the

locus of points fixed by − ⊗ OY (KY ) has positive codimension. Then we may choose

E ∈M s
H((m−1)v0) so that E � E⊗OY (KY ). Stability of E and F and a diagram chase

then show that Hom(E′, E′ ⊗ OY (KY )) = 0, so MH(v) is smooth at E′ of dimension

v2 + 1 as claimed.

Furthermore, observe that the strictly semistable locus has codimension

v2 + 1− (m2
1v

2
0 +m2

2v
2
0 + 2) = (m1 +m2)2v2

0 + 1− (m2
1v

2
0 +m2

2v
2
0 + 2) = 2m1m2v

2
0 − 1,

for some choice of m = m1+m2,mi > 0. This is at least 2, if v2
0 > 1 or m > 2, but equal

to 1 when m = 2 and v2
0 = 1, hence the first part of (c). For the second part of (c),

notice that the singularities of M s
H(v), i.e. where ext2(E,E) = 1, are all hypersurface

singularities, so normality follows from the dimension estimates in Theorem 4.6.1 and

the large codimension of the strictly semistable locus. K-triviality follows from these

considerations and the proof of [28, Proposition 8.3.1].

If v2
0 ≤ 0, then it is easily seen that stable sheaves occur only if m = 1 or 2, with

this second case possible only if v2
0 = 0 and π∗v0 primitive (see Lemmas 8.2.2 and 8.2.3

below). Finally, by considering the map SSL it follows that

dimMH(v) =


0 if v2

0 = −1

m if v2
0 = 0, π∗v0 primitive

2m if v2
0 = 0, π∗v0 divisible by 2

 6= v2 + 1,

if m > 1.
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7.4 Extending to nodal Enriques surfaces via deformation theory

We have dealt with semistable sheaves exclusively on unnodal Enriques surfaces up to

this point, but we may extend the above existence result to nodal Enriques surfaces

via a deformation argument. This argument appears in a paper of Yoshioka [65] which

came out shortly after the preprint appearance of [51] and provides an alternative proof

to the proofs of Theorem 2.3.2 that we have reproduced here from [51].

Theorem 7.4.1. Suppose that v is a positive rank primitive Mukai vector such that

v2 ≥ −2 on a nodal Enriques surface Y . If v2 = 0 and gcd(r, c1) = 2, suppose in

addtion that L ≡ r
2KY mod 2, and if v2 = −2, suppose that L ≡ N + r

2KY mod 2. Then

for generic polarization H, MH,Y (v, L) 6= ∅, and conversely.

Proof. It is clear that v2 ≥ −2 is necessary for the existence of a stable sheaf.

Suppose first that v2 ≥ −1. We saw in Chapter 3 that H1(Y, TY ) = C10 and

H2(Y, TY ) = H2(Y,OY ) = 0, so the deformations of a polarized Enriques surface (Y,H)

are unobstructed [59, Section 3.3.3]. In particular, given a nodal polarized Enriques

surface (Y,H) := (Y0, H0), we may choose a generic deformation of the pair so that

for the resulting one-parameter family of Enriques surfaces ψ : Y → B and family of

polarizations H, the generic fiber Yt is unnodal and Ht is generic with respect to v.

By [28, Theorem 4.3.7], we may take the relative moduli space of semistable sheaves

ψM : MH,Y/B(v, L) → B with ψM proper. Now, the generic fiber of ψM is non-empty

by the unnodal case of Theorem 2.3.2, so the image of ψM is dense in B. Thus ψM

is surjective by the properness of ψM . Thus the fiber over 0 ∈ B, MH0,Y0(v, L), is

non-empty.

It follows from Theorem 7.2.2 that MH,Y (v, L) = ∅ in case v2 = 0, gcd(r, c1) = 2,

and 2 - L+ r
2KY .

The case v2 = −2 follows from Theorem 4.6.4.
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Chapter 8

Projectivity of Coarse Moduli Spaces

Having taken a detour to use our results on Bridgeland moduli to provide precise criteria

for non-emptiness of moduli spaces of Gieseker semistable sheaves (and irreducibility in

the case of unnodal Enriques surfaces), we return in this chapter to develop the theory

of Bridgeland moduli further. We begin with proving nonemptiness of Bridgeland

moduli and then show that these moduli stacks admit projective coarse moduli spaces

for generic stability condition.

8.1 Non-emptiness

We may apply Theorem 6.2.12 and the results of the last chapter to obtain the following

result:

Theorem 8.1.1. Let v = mv0,m > 0, where v0 = (r, c1(L), s) is a primitive Mukai

vector with v2
0 ≥ −2. If v2

0 = −2, then we also assume that Y is nodal and c1(L) ≡

N mod 2 for a nodal cycle N . Then for any σ ∈ Stab†(Y ), Mσ,Y (v)(C) 6= ∅.

Proof. Since we are interested at the moment in semistable objects, it suffices to consider

the case when m = 1, i.e. v = v0 is primitive. Indeed, if E0 ∈ Mσ,Y (v0)(C), then

E = E⊕m0 ∈Mσ,Y (v)(C). By the remarks preceeding [14, Lemma 8.2], semistability is

a closed condition, so it also suffices to suppose that σ is generic with respect to v so

that every σ-semistable object of class v is stable.

By Theorem 6.2.12, non-emptiness of Mσ,Y (v)(C) follows from the non-emptiness of

MH,Y (w) for a positive w in the orbit of v under Aut(Db(Y )). Thus the result follows

immediately from Theorem 2.3.2 if v2 ≥ −1. So suppose that Y is nodal, v2 = −2,

and c1(L) ≡ N mod 2 for a nodal cycle N . The result follows from Theorem 7.4.1
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once we observe that in the steps we used to reach a positive Mukai vector in the

proof of Theorem 6.2.12 we at most change c1(L) to −c1(L), if at all, and c1(L) ≡

−c1(L) mod 2.

8.2 The unnodal case

Now we address the existence of a projective coarse moduli space for these stacks. Let

us first consider the case of unnodal Enriques surfaces, where we can provide a complete

picture. As a fundamental first step, we consider the case of a primitive Mukai vector

v. By Lemma 6.1.4, for Y unnodal we must assume v2 ≥ −1.

Corollary 8.2.1. Suppose that Y is unnodal, v ∈ H∗alg(Y,Z) is primitive with v2 ≥

−1, and σ ∈ Stab†(Y ) generic with respect to v. Then there is a projective coarse

moduli space Mσ,Y (v) parametrizing only stable objects. Mσ,Y (v) is a normal Gorenstein

projective variety (smooth if 2 - π∗v) with torsion canonical divisor and two irreducible

components of dimension v2 + 1, unless v2 = 0 and 2 | π∗v, in which case Mσ,Y (v) ∼= Y

has dimension 2 = v2 + 2.

Proof. Since v is primitive and σ generic, M s
σ,Y (v) = Mσ,Y (v) is a proper algebraic

space, nonempty by Theorem 6.2.12. As Y is unnodal, it follows that Stab†(Y ) =

Stab†(Ỹ ) [45, Lemma 3.10, Proposition 3.12, and Lemma 3.14] so that we may take σ

to be generic for both v and π∗v. Proposition 6.3.2 shows that Mσ,Y (v) is a finite cover

of Fix(ι), a (smooth) closed subvariety of the projective coarse moduli space Mσ′,Ỹ (π∗v)

(which exists and is projective by [11, Theorem 1.3]). Thus Mσ,Y (v) is projective as

well.

The statements about the dimension, singularities, and canonical divisor follow from

Theorems 6.4.1, 6.4.2. That Mσ,Y (v) ∼= Y when v2 = 0 and 2 | π∗v follows precisely as

in [51, Theorem 5.2]. Finally, from the proof of Theorem 6.2.12, we see that the motivic

invariant of Mσ,Y (v) is the same as that of a related moduli space of stable sheaves with

respect to a generic polarization. But then Theorem 2.3.2 shows that Mσ,Y (v) consists

of two irreducible components Mσ,Y (v, L1) and Mσ,Y (L2) parametrizing E ∈ Mσ,Y (v)

with det(E) = L1 (resp. det(E) = L2), where L1 − L2 = KY .



63

Now consider the general case, v = mv0 where m ∈ Z>0 and v0 ∈ H∗alg(Y,Z) is

primitive with v2
0 ≥ −1. As a warm-up, we begin with the cases v2

0 = −1, 0.

Lemma 8.2.2. Assume v2
0 = −1. Then for all σ ∈ Stab†(Y ) generic with respect to v,

Mσ,Y (v) admits a projective coarse moduli space Mσ,Y (v) consisting of m+ 1 points.

Proof. The proof of [11, Lemma 7.1] shows that for m = 1 the stack Mσ′,Ỹ (π∗v) is a

Gm-gerbe over a point representing a single object F0, which must be spherical and

fixed by ι∗. Thus it descends to an object E0 in M s
σ,Y (v) = Mσ,Y (v). By Lemma 6.1.3

we must have Hom(E0, E0⊗ωY )∨ = Ext2(E0, E0) = 0 since F0 is stable. Thus Mσ,Y (v)

is smooth at E0. It follows that Mσ,Y (v) consists of two reduced points E0 and E0⊗ωY .

If m > 1, then the argument in [11, Lemma 7.1] shows that every σ′-semistable

object with Mukai vector π∗v must be of the form F⊕m0 . We notice that

ext1(E0, E0) = ext1(E0 ⊗ ωY , E0 ⊗ ωY ) = ext1(E0, E0 ⊗ ωY ) = ext1(E0 ⊗ ωY , E0) = 0.

Indeed

−1 = v2
0 = (v(E0), v(E0 ⊗ ωY ))

= ext1(E0, E0 ⊗ ωY )− hom(E0, E0 ⊗ ωY )− hom(E0, E0)

= ext1(E0, E0 ⊗ ωY )− 1.

By genericity of σ, all stable factors of an element of Mσ,Y (v) must have Mukai vector

m′v0 for m′ < m, so by induction we conclude that the only σ-semistable objects with

Mukai vector v are precisely E⊕m0 , E⊕m−1
0 ⊕ (E0 ⊗ ωY ), ..., E0 ⊕ (E0 ⊗ ωY )⊕m−1, (E0 ⊗

ωY )⊕m.

Lemma 8.2.3. Assume that v2
0 = 0. Let σ be generic with respect to v. Then:

(a) for m = 1,

• if π∗v is primitive, then Mσ,Y (v) is the disjoint union of two smooth irre-

ducible elliptic curves.

• if π∗v is divisible by 2, Mσ,Y (v) is isomorphic to Y itself.
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(b) for m > 1,

• if π∗v is primitive, then a projective coarse moduli space Mσ,Y (v) exists and

Mσ,Y (v) ∼=
∐

2m1+m2=m

Symm1(M s
σ,Y (2v0))× Symm2(Mσ,Y (v0)).

• if π∗v is divisible by 2, then a projective coarse moduli space Mσ,Y (v) exists

and

Mσ,Y (v) ∼= Symm(Mσ,Y (v0)).

Proof. Part (a) follows from Corollary 8.2.1. We only need to observe that if the

canonical divisor of curve is torsion, then it must be trivial so that both components of

Mσ,Y (v) are elliptic curves.

For the proof of (b), recall that Mσ′,Ỹ (π∗v) ∼= Symm(Mσ′,Ỹ (π∗v0)) [11, Lemma

7.2(b)]. It follows that the stable locus M s
σ′,Ỹ

(π∗v) = ∅ since on the one hand it would

be a dense open subset of Mσ′,Ỹ (π∗v) which has dimension 2m, and on the other hand

it would also have to be smooth of dimension (π∗mv0)2 + 2 = 2, which is impossible

for m > 1. Thus any E ∈M s
σ,Y (v) would have to be in the exceptional case of Lemma

6.1.3, i.e. E ∼= E ⊗ ωY and π∗E ∼= F ⊕ ι∗F where F is stable of Mukai vector m
2 π
∗v0

and F � ι∗F . As noted above, for stable objects to exist on Ỹ we must have m/2 = 1,

i.e. m = 2. As for the semistable locus, it follows from the genericity of σ that any

stable factor of a semistable object E ∈ Mσ,Y (v) must have Mukai vector m′v0 for

m′ < m. Repeating the above argument inductively, we find that if π∗v is primitive, a

canonical representative of the S-equivalence class of an object E ∈Mσ,Y (v) is a direct

sum of objects in M s
σ,Y (2v0) and objects in Mσ,Y (v0). Thus the coarse moduli space

parametrizing S-equivalence classes is∐
2m1+m2=m

Symm1(M s
σ,Y (2v0))× Symm2(Mσ,Y (v0)).

Since the morphism π∗ from Mσ,Y (v) to Mσ′,Ỹ (π∗v) is quasi-finite (as follows from

the above decomposition) and proper (as the two Artin stacks themselves were proper),

we find that the morphism of coarse moduli spaces is finite. Thus Mσ,Y (v) is projective.

Now consider the second case in (b). As usual, from the genericity of σ it follows

that any stable factors of an object in Mσ,Y (v) must be of the form m′v0 for m′ < m.
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By the arguments above, M s
σ,Y (v) = ∅ for m > 1, so it follows that the S-equivalence

classes of the objects in Mσ,Y (v) are represented by Symm(Mσ,Y (v0)).

We can now generalize the above argument to show projectivity in general:

Theorem 8.2.4. Let v = mv0, m > 0, be a Mukai vector with v0 primitive and v2
0 > 0.

Then for generic σ ∈ Stab†(Y ), a projective coarse moduli space Mσ,Y (v) exists.

Proof. As usual we notice that the genericity of σ means that any stable factor of an

object of Mσ,Y (v) must have Mukai vector m′v0 for m′ < m, which implies that the

strictly semistable locus is the image of the natural map

SSL :
∐

m1+m2=m,mi>0

Mσ,Y (m1v0)×Mσ,Y (m2v0)→Mσ,Y (v).

Now if for two strictly semistable objects E and E′, π∗E and π∗E′ are S-equivalent,

then the stable factors coincide and appear with the same multiplicities in the graded

object. But a stable factor of E (or E′) remains stable after pull-back unless it is

fixed under − ⊗ ωY . For such a stable factor S we have stable Q ∈ Db(Ỹ ) such that

S ∼= π∗(Q), or equivalently π∗S = Q ⊕ ι∗Q with Q � ι∗Q. All of this implies that

E and E′ have the same stable factors that are fixed under − ⊗ ωY , with the same

multiplicites, and their stable factors that are not invariant under − ⊗ ωY can only

differ by tensoring with ωY . Thus again the proper morphism

π∗ : Mσ,Y (v)→Mσ′,Ỹ (π∗v)

between coarse moduli spaces is quasi-finite and thus finite. Since the latter is projective

by [11, Theorem 1.3], Mσ,Y (v) must be projective as well.
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v2
0 π∗v0 m M s

σ,Y (v) dimMσ,Y (v) codimM ss
σ,Y (v)

-1 − 1 6= ∅ 0 = v2 + 1 ∞

-1 − > 1 ∅ 0 6= v2 + 1 0

0 primitive 1 6= ∅ 1 = v2 + 1 ∞

0 primitive 2 6= ∅ 2 6= v2 + 1 0

0 primitive > 2 ∅ m 6= v2 + 1 0

0 non-primitive 1 6= ∅ 2 6= v2 + 1 ∞

0 non-primitive > 1 ∅ 2m 6= v2 + 1 0

1 − 1, > 2 6= ∅ v2 + 1 ∞, > 1

1 − 2 6= ∅ v2 + 1 1

> 1 − m ≥ 1 6= ∅ v2 + 1 > 1

Inspired by [10, Theorem 2.15], we can use the above technique to determine the

dimension of Mσ,Y (v) and of its semistable locus, as well as to ensure the existence of

stable objects.

Theorem 8.2.5. Suppose that Y is unnodal, and let v = mv0 be a Mukai vector with

v0 primitive, and m ∈ Z>0. For σ ∈ Stab†(Y ) generic with respect to v,

(a) The coarse moduli space Mσ,Y (v) 6= ∅ if and only if v2
0 ≥ −1.

(b) The dimension and codimension of Mσ,Y (v) and M ss
σ,Y (v), respectively, follow the

above table.

Proof. If v2
0 ≥ −1, then part (a) follows from Theorem 6.2.12 above. For the converse,

note that any stable factor of an element of Mσ,Y (v) 6= ∅ would have to have Mukai

vector m′v0 for m′ < m by genericity of σ. But then m′2v2
0 = (m′v0)2 ≥ −1, so v2

0 ≥ −1.

For (b), again notice that the genericity of σ means that any stable factor of an

object of Mσ,Y (v) must have Mukai vector m′v0 for m′ < m, which implies that the

strictly semistable locus is the image of the natural map

SSL :
∐

m1+m2=m,mi>0

Mσ,Y (m1v0)×Mσ,Y (m2v0)→Mσ,Y (v).
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Assume v2
0 > 0. Then for m = 1, Mσ,Y (v) = M s

σ,Y (v), and we have seen already

that dimMσ,Y (v) = v2 + 1. If m > 1, then by the induction, we deduce that the

image of the map SSL has dimension equal to the maximum of (m2
1 + m2

2)v2
0 + 2 for

m1 +m2 = m,mi > 0.

We can construct a semistable object E′ with Mukai vector v which is also Schur,

i.e. Hom(E′, E′) = C. By the inductive assumption, we can consider E ∈ M s
Y,σ((m −

1)v0), and let F ∈ MY,σ(v0). Now χ(F,E) = −(v(F ), v(E)) = −(m − 1)v2
0 < 0, so

Ext1(F,E) 6= 0. Take E′ to be a nontrivial extension

0→ E → E′ → F → 0.

Then any endomorphism of E′ gives rise to a homomorphism E → F , of which there

are none since these are both stable of the same phase and have different Mukai vectors

(or can be chosen to be non-isomorphic if m = 2). Thus any endomorphism of E′

induces an endomorphism of E, and the kernel of this induced map Hom(E′, E′) →

Hom(E,E) = C is precisely Hom(F,E′), which vanishes since the extension is non-

trivial. Thus Hom(E′, E′) = C.

We can deduce non-emptiness of M s
σ,Y (v) from a dimension estimate as follows.

Since E′ is Schur, we get

v2 + 1 ≤ dimE′Mσ,Y (v) ≤ dimTE′Mσ,Y (v) = v2 + 1 + hom(E′, E′ ⊗ ωY ).

Notice that the strictly semistable locus must have dimension smaller than v2 + 1. So

even though E′ is not stable, it lies on a component which must contain stable objects.

Moreover, as we will see in the next section, (smooth) components of the stable locus

of dimension greater than v2 + 1 can occur only if v2
0 = 0, so in the current situation

the locus of points fixed by − ⊗ ωY has positive codimension. Then we may choose

E ∈ M s
Y,σ((m − 1)v0) such that E � E ⊗ ωY and F such that F � F ⊗ ωY (and such

that F � E ⊗ ωY if m = 2). Stability of E and F and a diagram chase then show that

Hom(E′, E′ ⊗ ωY ) = 0, so Mσ,Y (v) is smooth at E′ of dimension v2 + 1 as claimed.

Furthermore, observe that the strictly semistable locus has codimension

v2 +1−(m2
1v

2
0 +m2

2v
2
0 +2) = (m1 +m2)2v2

0 +1−(m2
1v

2
0 +m2

2v
2
0 +2) = 2m1m2v

2
0−1 ≥ 2,
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if v2
0 > 1 or m > 2, hence part (c).

The cases with v2
0 ≤ 0 have already been covered in Lemmas 8.2.2 and 8.2.3.

Let us conclude this section by summarizing the consequences of the above theorem

in the unnodal case.

Corollary 8.2.6. Let Y be an unnodal Enriques surface, v = mv0 ∈ H∗alg(Y,Z) with

m ∈ Z>0, v2
0 > 0 and v0 primitive. Furthermore, let σ ∈ Stab†(Y ) be generic with

respect to v. The projective variety Mσ,Y (v) is normal of dimension v2 + 1 with torsion

KMσ,Y (v) with possible exception when v2
0 = 1 and m = 2.

Proof. Except for the case v2
0 = 1 and m = 2, the semistable locus has high codimension

by Theorem 8.2.5, and by Theorem 6.4.1 and Remark 6.4.3, so does the fixed locus of

− ⊗ ωY on M s
σ,Y (v). Thus the class of KMσ,Y (v) is determined by its restriction to

M s
σ,Y (v), so the result follows from Theorem 6.4.2.

8.3 The nodal case

When Y is a nodal Enriques surface, Stab†(Y ) ∼= ΓỸ ∩Stab†(Ỹ ) is a proper submanifold

of Stab†(Ỹ ), and it is possible that an entire chamber for v is contained in a wall for π∗v

and the results of [11] no longer produce a projective coarse moduli space Mσ′,Ỹ (π∗v).

Nevertheless, we can still move forward in the majority of cases of a primitive Mukai

vector:

Theorem 8.3.1. Suppose that Y is a nodal Enriques surface, and let v ∈ H∗alg(Y,Z)

be a primitive Mukai vector such that v2 ≥ −2 and σ ∈ Stab†(Y ) generic with respect

to v. If π∗v is primitive (i.e. gcd(r, c1) = 1), then a projective coarse moduli space

Mσ,Y (v) exists.

Proof. By Theorem 6.2.12 Mσ,Y (v) is nonempty. If σ′ is in a chamber for π∗v, then the

result follows as in Corollary 8.2.1. So we may assume that σ′ is on a wall. In Theorem

6.4.1, we saw that Mσ,Y (v) = M s
σ,Y (v) is a proper algebraic space with singularities

along the fixed locus of −⊗ ωY , which is precisely the locus of σ-stable objects which

pull back to strictly σ′-semistable objects. If we deform σ′ to a sufficiently nearby
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stability condition σ′+ in an adjacent chamber for π∗v, then for every E ∈ Mσ,Y (v) −

Sing(Mσ,Y (v)), π∗E is σ′+-stable by openness of stability.

On the other hand, each irreducible component of Sing(Mσ,Y (v)) is π∗(M
s
σ′,Ỹ

(w)◦)

for some w ∈ H∗alg(Ỹ ,Z) such that π∗(w) = v and parametrizes E such that π∗E =

F ⊕ ι∗F for F ∈ M s
σ′,Ỹ

(w). As π∗v is primitive, so is w, and w cannot be invariant

under ι∗ so there are no objects in M s
σ′,Ỹ

(w) invariant under ι∗ (i.e. M s
σ′,Ỹ

(w)◦ =

M s
σ′,Ỹ

(w)). By openness of stability, it follows that both F and ι∗F remain σ′+-stable,

with say φσ′+(F ) < φσ′+(ι∗F ). Then by [58, Lemma 3.10],[9, Lemma 5.9], all non-trivial

extensions

0→ F → E → ι∗F → 0

are σ′+-stable with Mukai vector π∗v.

As π∗v is primitive, it follows from [11, Proposition 8.1] that some irreducible com-

ponents of Mσ,Y (v) admit normal projective coarse moduli spaces, even though σ′ is

not general, and one of these coarse moduli spaces is obtained by contracting all curves

in Mσ′+,Ỹ
(π∗v) of objects that become S-equivalent with respect to σ′. The argument

above shows that π∗ : Mσ,Y (v)→Mσ′,Ỹ (π∗v) lands in this component. Then the usual

argument from Corollary 8.2.1 shows that Mσ,Y (v) is a projective variety.

There are two non-primitive cases we can also deal with easily. The first follows

directly from the preceeding result since coarse moduli spaces on Ỹ exist for π∗v and

non-generic σ′ in this case (known as O’Grady’s example, see [48]):

Corollary 8.3.2. Let v = 2v0, where v0 is a primitive Mukai vector on Y with v2
0 = 1

and σ ∈ Stab†(Y ) generic with respect to v. Then a projective coarse moduli space

Mσ,Y (v) exists.

The second case concerns direct sums of spherical objects:

Proposition 8.3.3. Let Y be a nodal Enriques surface and v0 primitive with v2
0 = −2

satisfying the condition of Theorem 4.6.4. Then for m ∈ Z>0, v = mv0, and σ a

generic stability condition with respect to v, Mσ,Y (v) admits a coarse moduli space

Mσ,Y (v) consisting of a single point.



70

Proof. Theorem 6.2.12 shows that Mσ,Y (v0) = Ms
σ,Y (v0) 6= ∅ is a Gm-gerbe over

a point. Indeed, we know there is some object E0, and if there were another E, then

χ(E0, E) = −v2
0 = 2, so we’d have to have hom(E0, E) ≥ 1 or hom(E,E0) ≥ 1. But this

forces E ∼= E0 by stability. Then E0 is spherical and has no self-extensions. Moreover,

if m > 1 then v2
0 < −2, so there can be no stable objects. Thus Mσ,Y (v) = {E⊕m0 }.
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Chapter 9

Bridgeland wall-crossing and birational geometry

Now that we have established the existence of the projective coarse moduli spaces

Mσ,Y (v) for stability conditions σ ∈ C ⊂ Stab†(Y ), a chamber with respect to v, we

explore in this chapter what happens when we let σ approach a wall of C and the

relationship between Bridgeland wall-crossing and the birational geometry of Mσ,Y (v).

We introduce our main tool, the Bayer-Macr̀ı map, in the first section and show that

crossing certain walls induces a flop.

9.1 A Natural Nef Divisor

To investigate the connection between wall-crossing in Stab†(Y ) and the birational

geometry of Mσ,Y (v), we will make use of a construction due to Bayer and Macr̀ı [11].

By Remark 6.2.3, we may assume that σ is algebraic and Z(v) = −1. Then given

a quasi-universal family on Mσ,Y (v) (see [50, 28, 11] for definitions and details), the

natural numerical divisor `σ,E is defined by

`σ.C := =Z(pY,∗(E ⊗ p∗Mσ,Y (v)OC))

for every projective curve C ⊂ Mσ,Y (v). By [11, Proposition and Definition 3.2] this

association gives a well-defined nef divisor class. As quasi-universal families are unique

up to a certain notion of equivalence, for a quasi-universal family E of similitude ρ

(i.e. for any closed point s = [E] ∈ Mσ,Y (v), Es ∼= Eρ) we define `σ := 1
ρ`σ,E , which

removes the dependence on the specific quasi-universal family [28, Lemma 8.1.2]. The

usual techniques (see for example [50, Theorem A.5] or [28, Section 4.6]) show that a

quasi-universal family always exists on M s
σ,X(v) and is unique up to equivalence. In

particular, if σ is generic and v primitive, then we get a well-defined nef divisor class
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on Mσ,X(v). The most important property of `σ is the following positivity result:

Lemma 9.1.1 (Theorem 4.1, [11]). `σ,E .C > 0 if and only if for two general closed

points c, c′ ∈ C, the corresponding objects Ec, Ec′ ∈ Db(X) are not S-equivalent.

To go further in the case of Enriques surfaces, we must note the following general

result relating this divisor class to the pull-back of the corresponding divisor class on

the inducing variety:

Proposition 9.1.2. Suppose G acts fixed-point-freely on a smooth projective variety

X with Y = X/G and projection π. Set σ = (π∗)−1(σ′) with corresponding pull-back

morphism of stacks

π∗ : Mσ,Y (v)→Mσ′,X(π∗v).

Then

(π∗)∗`σ′ = `σ.

Proof. From the definition, it suffices to check that

(π∗)∗`σ′ .C = `σ.C

for every projective curve C with a morphism C → Mσ,Y (v). For such a curve C

we get a universal object E ∈ Db(C × Y ), and the universal object corresponding to

the composition with π∗ is F = (1 × π)∗(E) ∈ Db(C × X). Consider the following

commutative diagram

C
pC←−−−− C ×X pX−−−−→ Xy1

y1×π
yπ

C
pC←−−−− C × Y pY−−−−→ Y

of schemes.
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Then we have

(π∗)∗`σ′ .C = `σ′ .(π
∗)∗(C) = =Zσ′(Φ(1×π)∗E(OC)) = =Zσ′((pX)∗(F ⊗ (pC)∗(OC)))

= =Zσ′((pX)∗(F ⊗ (1× π)∗(pC)∗(OC))))

= =Zσ′((pX)∗((1× π)∗(E ⊗ (pC)∗(OC))))

= =Zσ′(π∗((pY )∗(E ⊗ (pC)∗OC))))

= =Zσ(ΦE(OC)) = `σ.C,

as required.

Finally, we use this proposition to deduce the ampleness of `σ for σ in the interior

of a chamber:

Theorem 9.1.3. Let v = mv0 ∈ H∗alg(Y,Z), and σ ∈ Stab†(Y ) generic with respect to

v, where v0 is primitive, v2
0 > 0. If Y is unnodal and m ∈ Z>0 or Y is nodal and either

m = 1, 2 - π∗v or m = 2, v2
0 = 1, then `σ is ample on the projective variety Mσ,Y (v).

Proof. In case Y is unnodal, then we may assume σ′ is generic as well, so by [11,

Corollary 7.5] and the discussion after it, `σ′ is ample on Mσ′,Ỹ (π∗v). In the cases

considered for Y nodal, the same is true for `σ′ on Mσ′,Ỹ (π∗v) by [11, Proposition 8.1]

and the discussion preceding it. By Theorem 8.2.4 the morphism π∗ of Proposition

9.1.2 is a finite morphism, and thus `σ = (π∗)∗`σ′ is ample.

9.2 Flops via Wall-Crossing

For the rest of the section, assume that v is a primitive Mukai vector v with v2 ≥ 1

(with the assumption 2 - π∗v in case Y is nodal). With the above preparations, we

can now investigate the birational operation induced by crossing a wall W in Stab†(Y )

associated to v.

Let σ0 = (W0,A0) ∈ W be a generic point on the wall. Let σ+ = (Z+,A+), σ− =

(Z−,A−) be two algebraic stability conditions in the two adjacent chambers on each

side of W . From Section 6.4, the two moduli spaces M± := Mσ±,Y (v) are non-empty

numerically K-trivial normal projective varieties, smooth outside of codimension two,
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and parametrize only stable objects. Choosing (quasi-)universal families E± on M± of

σ±-stable objects, we obtain (quasi-)families of σ0-semistable objects from the closed-

ness of semistability. By [11, Theorem 4.1], these two families give two nef divisor

classes `0,± := `σ0,E± on M±.

Following [11], we enumerate four different possible phenomena at the wall W de-

pending on the codimension of the locus of strictly σ0-semistable objects and the ex-

istence of curves C ⊂ M± with `0,±.C = 0, i.e. curves parametrizing S-equivalent

objects. We call the wall W

(a) a fake wall if there are no curves in M± of objects that are S-equivalent to each

other with respect to σ0,

(b) a totally semistable wall, if M s
σ0(v) = ∅,

(c) a flopping wall, if W is not a fake wall and M s
σ0(v) ⊂ M± has complement of

codimension at least two,

(d) a bouncing wall, if there is an isomorphism M+
∼= M− that maps `0,+ to `0,−,

and there are divisors D± ⊂ M± that are covered by curves of objects that are

S-equivalent to each other with respect to σ0.

We may assume that σ0 is algebraic, W0(v) = −1, and φ = 1. Then `0,± is the

pull-back by the finite-morphism π∗ of a semi-ample divisor [11, Section 8]. Thus `0,±

is itself semi-ample (as are its restrictions to each irreducible component of M±).

We thus get induced contraction morphisms [42, Theorem 2.1.27]

πσ± : M± → Z±,

where Z± are normal projective varieties. We denote the induced ample divisor class

on Z± by `0, i.e., the ample divisor pulling back to `0,±. If M s
σ0,Y

(v) 6= ∅, then by

the openness of stability for primitive Mukai vectors [15, Proposition 9.4] these objects

remain σ±-stable, and we denote by fσ0 : M+ 99KM− the induced birational map.

As observed in [11], πσ± is an isomorphism if and only if the wall W is a fake wall,

a divisorial contraction if W is a bouncing wall, and a flopping contraction if W is a

flopping wall.
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The proof of [11, Proposition 8.1] carries through unchanged to yield the following

result which shows that Z± is a union of components of a coarse moduli space of σ0-

semistable objects up to a finite cover:

Proposition 9.2.1. The space Z± has the following universal property: For any proper

irreducible scheme S ∈ SchC, and for any family E ∈ Mσ0,Y (v)(S) such that there

exists a closed point s ∈ S such that Es ∈Mσ±,Y (v)(C), there exists a finite morphism

q : T → S and a natural morphism fq∗E : T → Z±.

Now, as KM± is torsion, the existence of a σ0-stable object of class v inducing the

birational map fσ0 can be extended to an isomorphism away from a locus of codimension

at least 2 (see for example [40, Proposition 3.52(2)]). The proof of [11, Lemma 10.10]

then carries through unchanged to give the following identification of `0,+ with `0,−:

Lemma 9.2.2. Assume that there exists a σ0-stable object of class v and identify the

Néron-Severi groups of M±(v) by extending the common open subset M s
σ0,Y

(v) to an

isomorphism outside of codimension two. Under this identification, `0,+ = `0,−.

Finally, we have enough preparation to prove our main result about the relationship

between wall-crossing and birational geometry:

Theorem 9.2.3. (a) The divisor classes `0,± are semiample (and remain so when

restricted to each component of M±), and they induce contraction morphisms

π± : M± → Z±,

where Z± are normal projective varieties.

(b) Suppose that M s
σ0,Y

(v) 6= ∅.

• If either `0,± is ample, then the other is ample, and the birational map

fσ0 : M+ 99KM−

obtained by crossing the wall in σ0 extends to an isomorphism.
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• If `0,± are not ample and the complement of M s
σ0,Y

(v) has codimension at

least 2, then fσ0 : M+ 99K M− is the flop induced by `0,+. More precisely,

we have a commutative diagram of birational maps

Mσ+,Y (v)
fσ0 //

π+ &&

Mσ−,Y (v)

π−xx
Z+ = Z−

,

and f∗σ0`0,− = `0,+.

Proof. It only remains to prove part (b). The first case of (b) follows from Lemma 9.2.2

and the theorem of Matsusaka and Mumford [41, Exercise 5.6].

For the second case, note that by the discussion preceeding Lemma 9.2.2, we need

not specify in which moduli space we assume the complement of the σ0-stable locus to

have codimension 2. From this codimension condition and projectivity of these moduli

spaces, it follows that numerical divisor classes are determined by their intersection

numbers with curves contained in M s
σ0,Y

(v). By Lemma 9.2.2 we have f∗σ0`0,− = `0,+.

Since `0,+ is not ample, fσ0 does not extend to an isomorphism. The identification

of `0,± and the codimension condition force Z+ = Z− from their construction in [42,

Proposition 2.1.27]. This gives the claimed commutativity of the diagram and thus the

description of the birational map as a flop.

Remark 9.2.4. We believe the semiample divisors `0,± are big as well. If they weren’t,

then every irreducible component of M± would fiber over a component of Z± with

positive dimensional fibers, i.e. dimZ± < dimM±. From the description of semistable

objects as extensions of their stable factors, we suspect that it would follow that M± are

then covered by a family of rational curves contracted by π±. By [18, Remark 4.2 (4)],

Mσ± would then be uniruled, which is impossible it has vanishing Kodaira dimension

[18, Corollary 4.12]. This applies to each component, so the same argument shows that

the restriction to each component is big as well.
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Chapter 10

Applications

We demonstrate in this chapter some of the applications of the machinery we have

developed to other areas of algebraic geometry not directly related to derived categories.

We begin with describing an explicit region of the ample cone of moduli of stable

sheaves, and then move on to explicitly and completely describe the nef cone of the

Hilbert scheme of points on an unnodal Enriques surface. We apply these results in the

last section to prove a vanishing theorem useful for studying linear sustems on Enriques

surfaces.

10.1 Moduli of stable sheaves

We now use the above work to set up the investigation of the birational geometry of

the classical moduli spaces of sheaves on an Enriques surface. We define the Mukai

homomorphism θv : v⊥ → N1(Mσ,Y (v)) by

θv(w).C :=
1

ρ
(w,ΦE(OC)), for every projective integral curve C ⊂Mσ,Y (v),

where E is a quasi-universal family of similitude ρ and ΦE is the associated Fourier-

Mukai transform. We relate θv and `σ explicitly in the following result, whose proof is

identical to [11, Lemma 9.2]:

Lemma 10.1.1. Let Y be an Enriques surface, v = (r, c, s) a primitive Mukai vector

with v2 ≥ −1, and let σ = σω,β ∈ Stab†(Y ) be a generic stability condition with respect

to v. Then the divisor class `σ ∈ N1(Mσ,Y (v)) is a positive multiple of θv(wσω,β ), where

wσω,β = (Rω,β, Cω,β, Sω,β) is given by

Rω,β = c.ω − rβ.ω,
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Cω,β = (s− β.c+ r
β2 − ω2

2
)ω + (c.ω − rβ.ω)β, and

Sω,β = c.ω
β2 − ω2

2
+ sβ.ω − (c.β)(β.ω).

We give a bound now for the walls of the “Gieseker chamber” for any (primitive)

Mukai vector v, i.e. the chamber for which Bridgeland stability of objects of class v is

equivalent to β-twisted Gieseker stability. Fix a class β ∈ NS(Y )Q, and let ω vary on

a ray in the ample cone. Given v with positive rank and slope, we saw above that for

ω � 0 stable objects of class v are exactly the β-twisted Gieseker stable sheaves. Below

we give explicit bounds for the Gieseker chamber that depend only on ω2, β, and v.

Definition 10.1.2. Given divisor classes β and ω = tH with H ∈ Pic(Y ) ample,

and given a class v = (r, c, s) with v2 ≥ −1, we write (r, cβ, sβ) = e−β(r, c, s) so that

cβ = c − rβ, sβ = r β
2

2 − c.β + s. Define the β-twised slope and discrepancy of v with

respect to ω by

µω,β(v) =
ω.cβ
r
, and δω,β(v) = −

sβ
r

+ 1 +
1

2

µω,β(v)2

ω2
,

respectively.

Note that scaling ω rescales µω,β by the same factor while leaving δω,β invariant.

Recall that a torsion-free coherent sheaf F is called β-twisted Gieseker stable with

respect to ω if for every proper subsheaf 0 6= G ⊂ F we have

µω,β(G) ≤ µω,β(F ) and δω,β(G) > δω,β(F ), if µω,β(G) = µω,β(F ).

This is an unravelling of the usual definition via reduced β-twisted Hilbert polynomials.

It follows that the definition of twisted Gieseker stability only depends on H and not

t. Also, notice that the Hodge Index theorem implies that ω2(cβ)2 ≤ (ω.cβ)2, so

δω,β(v) ≥ −
sβ
r

+ 1 +
c2
β

2r2
=

v2

2r2
+ 1 ≥ 1− 1

2r2
≥ 1

2
> 0, (10.1)

where the second to last inequality follows from the assumption that v2 ≥ −1. Using

this notation, we can write the central charge Zω,β(v) in terms of the slope and the

discrepancy as in [11]:
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1

r
Zω,β(v) = iµω,β(v) +

ω2

2
− 1−

µω,β(v)2

2ω2
+ δω,β(v). (10.2)

For now, we fix a Mukai vector v = (r, c, s) with r > 0 and µω,β(v) > 0. We have the

following lemma whose proof is the same as in [11, Lemma 9.10] and essentially follows

from Figure 10.1 and equation (10.2):

Lemma 10.1.3. Assume ω2 > 1 so that σω,β is gauranteed to be a stability condition.

Then any Mukai vector w ∈ H∗alg(Y ) with r(w) > 0 and 0 < µω,β(w) < µω,β(v)

such that the phase of Zω,β(w) is bigger than or equal to the phase of Zω,β(v) satisfies

δω,β(w) < δω,β(v), as long as σω,β is a stability condition.

1
rZ(v)

δ = const

µω,β(v)
µω,β(w)
1
rZ(w)

We define an analogue of the set defined in [11, Definition 9.11]. Let Dv be the

subset of the lattice H∗alg(Y,Z) defined by

{w : 0 < r(w) ≤ r(v), w2 ≥ −1, 0 < µω,β(w) < µω,β(v), δω,β(w) < δω,β(v)}.

The discussion there extends to show that Dv is finite and depends on H but not t.

Furthermore, they define

µmax(v) := max({µω,β(w) : w ∈ Dv} ∪ {
r(v)

r(v) + 1
µω,β(v)}).

We can use this definition obtain an effective lower bound for the Gieseker chamber:

Lemma 10.1.4. Let E be a β-twisted Gieseker-stable sheaf with v(E) = v. If

ω2 > 1 +
µmax(v)

µω,β − µmax(v)
δω,β(v) +

√(
1 +

µmax(v)

µω,β − µmax(v)
δω,β(v)

)2

− µmax(v)µω,β(v)

then E is Zω,β-stable.
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Proof. Although the proof only differs slightly from that of [11, Lemma 9.13], we explain

it in full.

Consider a destabilizing short exact sequenceA ↪→ E � B inA(ω, β) with φω,β(A) ≥

φω,β(E). From the long exact sequence on cohomology, it follows that A is a sheaf. Con-

sider the HN-filtration of A with respect to µω,β-slope stability in CohX,

0 = HN0(A) ⊂ HN1(A) ⊂ ... ⊂ HNn(A) = A,

and let Ai = HNi /HNi−1 be its HN-filtration factors. From the definition of A(ω, β)

it follows that µω,β(Ai) > 0 for all i. Since the kernel of A → E, H−1(B), lies in

F(ω, β), we see that µω,β(Ai) ≤ µω,β(A1) ≤ µω,β(v). Indeed, if i is minimal such that

HNi(A) has nonzero image in E, then Ai admits a nontrivial morphism to E and thus

µω,β(Ai) ≤ µω,β(E). Suppose i > 1, then HN1(A) = A1 maps to zero in E and thus

is contained in H−1(B). If j is minimal such that A1 ⊂ HNj(H−1(B)), then it has

nonzero image in the j-th HN-filtration factor of H−1(B), a contradiction since this has

µω,β ≤ 0 from the definition of F(ω, β).

Since φω,β(A) ≥ φω,β(E), we can choose some i such that φω,β(Ai) ≥ φω,β(E) by the

see-saw property. We show that µω,β(Ai) < µω,β(E). If not, then µω,β(Ai) = µω,β(E),

so i = 1. Consider the composition A1 ↪→ A → E with kernel K. Then if K 6= 0,

µω,β(K) = µω,β(E). But K ⊂ H−1(B), so as above we get a contradiction to the

fact that H−1(B) ∈ F(ω, β), and thus K = 0. But then µω,β(A1) = µω,β(E) and

φω,β(A1) ≥ φω,β(E) imply that <Z(A1) ≤ <Z(E), so from equation (10.2) we see that

δω,β(A1) ≤ δω,β(E), contradicting the β-twisted Gieseker stability of E.

Let w be the primitive generator of the positive ray spanned by v(Ai). Then

µω,β(w) = µω,β(Ai), and from Lemma 10.1.3 and the definition of Dv it follows that if

r(w) ≤ r(v) we have µω,β(w) ≤ µmax(v). If r(w) ≥ r(v) + 1, notice that

ω.cβ(w) ≤ ω.cβ(Ai) = =Z(Ai) ≤ =Z(A) ≤ =Z(E) = ω.cβ(v),

so µω,β(w) ≤ r(v)
r(v)+1µω,β(v) ≤ µmax(v) in this case as well.

Consider the complex number

z := iµmax(v) +
ω2

2
− 1− µmax(v)2

2ω2
.
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Then it follows that φω,β(w) ≤ φ(z) from Lemma 10.1.3 with Z(v) replaced with z.

Now = µω,β(v)
µmax(v)z = = 1

r(v)Z(v), and it is easy to see that < µω,β(v)
µmax(v)z > <

1
r(v)Z(v) for ω

with ω2 as in the hypothesis. Thus φ(z) < φω,β(v). This gives the contradiction

φω,β(E) ≤ φω,β(Ai) ≤ φ(z) < φω,β(E).

Remark 10.1.5. As observed right before equation 10.2, δω,β(w) ≥ 1
2 , so we can in

fact replace the complex number z in the proof above by

z := iµmax(v) +
ω2

2
− 1− µmax(v)2

2ω2
+

1

2

to obtain a sharper bound. We leave the necessary modifications to the reader as the

bound above is usually an over estimate and in individual applications one can do

better.

Nevertheless, the significance of this result is that it gives a lower bound on the t

required to ensure that MσtH,β ,Y (v) ∼= Mβ
H(v), the moduli space of (β-twisted) Gieseker

stable sheaves. Since we have an ample divisor on this moduli space, given by `σtH,β ,

we get an explicit line segment of the ample cone. This argument gives us the

Corollary 10.1.6. Let v ∈ H∗alg(Y,Z) be primitive of positive rank with v2 ≥ −1. Let

ω, β ∈ NS(Y )Q be generic with respect to v such that ω.cβ(v) > 0. If

ω2 > 1 +
µmax(v)

µω,β − µmax(v)
δω,β(v) +

√(
1 +

µmax(v)

µω,β − µmax(v)
δω,β(v)

)2

− µmax(v)µω,β(v),

then

θv(wω,β) ⊂ Amp(Mβ
H(v)).

Since all Enriques surfaces have the same lattice, this gives a universal bound for

all Enriques surfaces.

10.2 Hilbert Schemes of points on an Enriques Surface

In this section we apply the techniques developed above to determine the nef cone of

Y [n] for unnodal Y . Let v = (1, 0, 1
2 − n). Then as above we consider an ample divisor
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H ∈ Pic(Y ) on an unnodal Enriques surface Y with K3 cover Ỹ , and let ω = tH and

β ∈ NS(Y )Q with t > 0. We remark that since Y is unnodal, so is Ỹ , and thus the

ample cone of Y is the connected component of the round cone D2 > 0 containing an

ample divisor. It follows that the nef cone (and consequently the effective cone since

Y is unnodal) is the closure of this cone, given by D2 ≥ 0. For t � 0 and β.H < 0,

Mt,β(v) := Mσω,β ,Y (v) = Y [n], the Hilbert scheme of n points on Y . It is well known

that Y [n] is a smooth irreducible projective variety of dimension 2n, and the Hilbert-

Chow morphism h : Y [n] → Y (n) to the n-th symmetric product of Y is a crepant

resolution of singularities [21], and since Y is a regular surface, i.e. H1(Y,OY ) = 0,

Pic(Y [n]) ∼= Pic(Y )×Z [22, Corollary 6.3]. This identification can be described explicitly

as follows: let L(n) = ψ∗(⊗ni=1pr
∗
i (L))Sn , where ψ : Y n → Y (n) is the quotient map and

pri : Y n → Y is the i-th projection. Then Pic(Y (n)) ∼= Pic(Y ) via this identification,

and thus Pic(Y [n]) is generated by h∗ Pic(Y (n)) and the divisor class B where 2B is

the exceptional divisor parametrizing non-reduced 0-dimensional subschemes of length

n in Y . For an ample divisor H ∈ Pic(Y ) denote by H̃ the corresponding divisor on

Y [n], which is nef and big but not ample, as the pull-back of an ample divisor under the

projective birational morphism h. Thus Ñef(Y ) forms an entire face of the nef cone of

Y [n].

We’d like to apply the results and techniques of the preceeding sections to study the

birational geometry of Y [n]. We first have the following easy result (see [11, Example

9.1] for the corresponding discussion for K3 surfaces):

Proposition 10.2.1. The (closure of the) wall consisting of stability conditions σtH,β,

as H ranges in Amp(Y ) and β ∈ H⊥ for each fixed H, is one wall of the Gieseker

chamber CG. Moreover, it is a bouncing wall sent by ` : CG → Nef(Y [n]) to the wall

Ñef(Y ) above.

Proof. Indeed, we have

ZtH,β(IZ) = (eβ+itH , 1 + (
1

2
− n)[pt]) = (n− 1

2
) + t2

H2

2
− β2 ∈ R>0,

for any 0-dimensional subscheme Z of length n since β.H = 0 implies β2 ≤ 0 by the

Hodge Index Theorem, so IZ /∈ A(ω, β) but IZ [1] is. We have the following short exact
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sequence in P(1),

0→ OZ → IZ [1]→ OY [1]→ 0

which makes IY strictly semistable. Notice that by filtering OZ by structure sheaves of

closed points, we see that IZ is S-equivalent to OY [1]⊕
⊕r

i=1(k(pi))
⊕mi , where pi are

the closed points appearing in the support of Z with multiplicities mi. It follows that

IZ and IZ′ are S-equivalent if and only if Z,Z ′ get mapped to the same point by h.

Thus `tH,β contracts precisely the fibers of h : Y [n] → Y (n). It follows that `tH,β = h∗A

for some ample divisor A on Y (n). That `tH,β is in fact H̃ (or at least ∼R+ H̃) follows

from [28, Examples 8.2.1 and 8.2.9] and Lemma 10.1.1.

Crossing this wall, i.e. taking β such 1 � β.H > 0, does not change the moduli

space, i.e. Mt,β(v) ∼= Y [n], but it does change the universal family by replacing IZ with

its derived dual RHom(IZ ,OY )[1] (see [46, Theorem 3.1, Lemma 3.2]). Following a

path from a point such that β.H < 0 to one with β.H > 0 causes the nef divisor `tH,β

to hit the wall Ñef(Y ) and bounce back into the interior of the ample cone.

The above behavior is common for a wall inducing a divisorial contraction, hence

the name “bouncing wall.” Before we describe further wall-crossing behavior, let us first

point out a simple fact that is very helpful:

Lemma 10.2.2. Let 0 → E → IZ → Q → 0 be a non-trivial short exact sequence

in At,b. Then E is a forsion free sheaf, H0(Q) is a quotient of IZ of rank 0, and the

kernel of IZ → H0(Q) is an ideal sheaf IZ′(−D) for some effective curve D and some

zero-dimensional scheme Z ′.

Proof. As above, we consider the long exact sequence in cohomology to see that E must

be a sheaf fitting into the exact sequence

0→ H−1(Q)→ E → IZ → H0(Q)→ 0.

If H0(Q) had rank one, then it would have to be equal to IZ , as it’s torsion-free,

and then we’d get that H−1(Q) = E, which is only possible if they are both 0, since

H−1(Q) ∈ F(ω, β) while E ∈ T (ω, β), contrary to the assumption of non-triviality.

Thus H0(Q) is a quotient of IZ of rank 0, so its kernel must be of the form claimed in
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the lemma. Since IZ′(−D) and H−1(Q) are both torsion-free, E must also be torsion-

free.

Above we fixed t and H and varied β across the hyperplane H⊥ in N1(Y ). Now

fix H with H2 = 2d and k ∈ Z>0 such that k2 ≤ 2d. To simplify matters we consider

stability conditions σt,b := σtH,bH in the real 2-dimensional slice of Stab†(Y ) represented

by the upper half-plane {(b, t)|b ∈ R, t ∈ R>0}. It is well-known (see [44, Section 2])

that pseudo-walls corresponding to possibly destabilizing subobjects intersect this plane

in nested semi-circles with centers along the b-axis. Recall that on an Enriques surface

Y one defines for any D ∈ Pic(Y ) with D2 > 0,

φ(D) = inf{|D.F | : F ∈ Pic(Y ), F 2 = 0, F 6= 0},

as in [17, Section 2.7], where it is shown that φ(D) ≤
√
D2. Now we are ready to prove

our main theorem about Nef(Y [n]):

Theorem 10.2.3. Let Y be an unnodal Enriques surface and n ≥ 2. Then D̃ − aB ∈

Nef(Y [n]) if and only if D ∈ Nef(Y ) and 0 ≤ na ≤ D.F for every 0 < F ∈ Pic(Y ) with

F 2 = 0, or in other words 0 ≤ a ≤ φ(D)
n . Moreover, the face given by a = 0 induces the

Hilbert-Chow morphism, and for every ample H ∈ Pic(Y ), H̃ − φ(H)
n B induces a flop.

Proof. Consider 0 < F ∈ Pic(Y ) with F 2 = 0 and H.F = k, so in particular k ≥ φ(H).

Set b = −k+ε
2d for 0 < ε � 1 and irrational so that there exists no exceptional or

spherical object S such that =Zt,b(S) = 0. It follows that σt,b is a stability condition

for all t > 0. By considering the equation of the pseudo-wall corresponding to O(−F ),

we see that IZ and O(−F ) have the same phase for Zt0,b where t0 := 1
2d

√
2d− k2+O(ε).

Moreover, φt,b(O(−F )) < φt,b(IZ) for t > t0.

We claim that any IZ is stable for t > t0. As usual, consider a destabilizing subobject

E as in Lemma 10.2.2, and as in the proof of Lemma 10.1.4, we consider the semistable

factors appearing in its HN-filtration with respect to µt,b-slope stability. Take one of

them, say Ai, with v(Ai) = (r, C, s) and r > 0. Then

0 < t(H.C + r(k + ε)) = =Zt,b(Ai) < =Zt,b(IZ) = t(k + ε),
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from which it follows that

−rk < H.C < −rk + k,

and thus

0 < H.C + rk < k.

The stable factors of Ai have v2 ≥ −1 and rank at least one. Thus δt,b(Ai) ≥ 1
2 from

(10.1). From (10.2) we see that

<Zt,b(Ai) ≥ rdt2 −
r

2
− k2

4dr
+O(ε),

so that

φt,b(Ai) <
t(k + rε)

rdt2 − r
2 −

k2

4dr +O(ε)
=: φ0(t).

One can easily check that φ0(t) < φt,b(IZ) for t > t0.

Thus we are reduced to considering the objects O(−F ) for effective F ∈ Pic(Y )

with F 2 = 0 and H.F = k and k ≥ φ(H). The largest such value of t0 occurs for k

minimal, i.e. k = φ(H), so we assume this to be the case. For those Z admitting a

morphism O(−F )→ IZ , we see that the exact sequence

0→ O(−F )→ IZ → OF (−Z)→ 0,

destabilizes IZ at t0. The locus of such Z is isomorphic to F [n] of dimension n and can be

described as the Brill-Noether locus consisting of those Z such that h0(IZ(F )) > 0 (and

thus necessarily equal to 1). We get another (disconnected) component of the strictly

semistable locus by considering the adjoint half-pencil F + KY (i.e. the other double

fiber of the elliptic fibration induced by |2F |) and those Z with h0(IZ(F + KY )) 6= 0

which get destabilized by the corresponding exact sequence

0→ O(−F −KY )→ IZ → OF+KY (−Z)→ 0.

Similarly, for any of the other finitely many half-pencils F ′ such that H.F ′ = k we

get two additional components of the strictly semistable locus which must necessarily

intersect the above components. Indeed, for two half-pencils F and F ′ with H.F =

H.F ′ = k, we see that −2F.F ′ = (F − F ′)2 ≤ 0, and we get strict inequality unless
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F ′ = F or F + KY . Choosing the n points to lie on this non-empty intersection

F ∩ F ′ (with multiplicities if necessary), we see that the corresponding Brill-Noether

loci intersect.

To see what the contracted curves are, we first observe that v(OF (−Z)) = (0, F,−n)

is primitive since F is, and one can show thatOF (−Z) is stable. Line bundles are always

stable on an unnodal surface by [4, Theorem 5.4 and Proposition 6.3], so O(−F ) is also

stable in our case. Then it follows that for Z,Z ′ ∈ F [n], IZ and IZ′ are S-equivalent

if and only if OF (−Z) ∼= OF (−Z ′), i.e. Z and Z ′ are linearly equivalent divisors on

F . Thus π+ in Theorem 9.2.3 contracts precisely the fibers of the classical Abel-Jacobi

morphism F [n] → Jacn(F ) ∼= F (since F is a smooth elliptic curve) which associates to

an effective divisor of degree n on F its associated line bundle. Crossing the wall then

induces a flop with exceptional locus of codimension n. As O(−F ) and OF (−Z) are

stable of the same phase along this wall, we see that

Ext1(O(−F ),OF (−Z)) = ((1,−F, 1

2
), (0, F,−n)) = n,

so by [46, Section 4] it follows that the objects IZ with Z ∈ F [n] are replaced by

non-trivial extensions

0→ OF (−Z)→ E → O(−F )→ 0

after crossing the wall.

Now we can plug ω = t0H,β = −k+ε
2d , r = 1, c = 0, s = 1

2 − n into the formulas

from Lemma 10.1.1, and letting ε → 0 we see that wt0·H,−1/2d ∼R+ (1,−nH, n − 1
2).

As θv(1, 0, n− 1
2) = −B and θv(0,−H, 0) = H̃, we get θv(wt0·H,−1/2d) ∼R+ H̃ − φ(H)

n B

and θv(w∞·H,−1/2d) ∼R+ H̃. From the above discussion we see that both of these are

extremal in the nef cone, with the first ray corresponding to a flop and the second ray

to the Hilbert-Chow morphism.

The statement of the theorem follows from the above discussion and the density of

rational rays in N1(Y [n]).

Remark 10.2.4. One direction of the above theorem is more elementary and can be

obtained directly as follows. For any effective curve F , fix p1, ..., pn−1 distinct points
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not on F and consider the curve

CF (n) = {Z ∈ Y [n]|Z = {p1, ..., pn−1, p}} ⊂ Y [n],

where the point p varies along F . Then D̃.CF (n) = D.F and B.CF (n) = 0, so D̃−aB ∈

Nef(Y [n]) implies D is nef by pairing with CF (n) for all effective F . Denote by C(n)

the generic fiber of the Hilbert-Chow morphism. Then D̃.C(n) = 0 and B.C(n) = −1,

so we see that D̃ − aB ∈ Nef(Y [n]) implies a ≥ 0. Finally, for any half-pencil F ,

consider a pencil of degree n effective divisors on F and the corresponding g1
n : F → P1.

g1
n
∗OP1(−x) for x ∈ P1 gives a curve RF (n) on Y [n] consisting of those objects sitting

in short exact sequences

0→ O(−F )→ IZ → g1
n
∗
(−x)→ 0.

Riemann-Hurwitz gives that the ramification divisor of g1
n has degree 2n. This is

precisely 2B.RF (n), and D̃.RF (n) = D.F . Then D̃ − aB ∈ Nef(Y [n]) implies that

na ≤ D.F .

The reverse direction is the more surprising one. Indeed, the fact that the nef cone

is not strictly smaller than the above upper bounds is a beautiful manifestation of the

fact that the half-pencils control the geometry of Enriques surfaces.

10.3 Applications to linear systems

Following an idea from [2], we can apply the above theorem to study linear systems on

Y itself. The first result in this direction is the following:

Proposition 10.3.1. Let Y be an unnodal surface and H ∈ Pic(Y ) ample with H2 =

2d. Then for any Z ∈ Y [n],

H i(Y, IZ(H +KY )) = 0, for i > 0,

provided that

1 ≤ n < d · φ(d)

2d− φ(d)
.
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Proof. First notice that

H i(Y, IZ(H +KY )) ∼= Exti(OY , IZ(H +KY ))

∼= Exti+1
Db(Y )

(OY [1], IZ(H +KY )) ∼= Ext1−i
A(ω,β)(IZ(H),OY [1])∨,

as long as both IZ(H) and OY [1] are both in A(ω, β). Consider again the upper

half (b, t)-plane representing stability conditions with ω = tH, β = bH. Then for

0 ≤ b < 1 and t > 0, IZ(H) and OY [1] are both in At,b so we automatically get

H2(Y, IZ(H + KY )) = 0. Furthermore, we get H1(Y, IZ(H + KY ))∨ is identified with

HomAt,b(IZ(H),OY [1]), and this vanishes if we can choose b ∈ [0, 1) and t > 0 such that

both IZ(H) and OY [1] are σt,b-stable and φt,b(IZ(H)) ≥ φt,b(OY [1]). Of course, OY [1]

is always stable for b, t > 0 by [4, Proposition 6.3]. From the proof of Theorem 2.3.5,

we know that IZ is stable above the wall corresponding to the destabilizing subobject

O(−F ), for a half-pencil F with H.F = φ(H). From the formulas given for pseudo-walls

on arbitrary surfaces in [44, Section 2], this wall is given by(
b+

n

φ(H)

)2

+ t2 − 1− 2n

2d
− n2

φ(H)2
= 0, t > 0

in the (b, t)-plane. By [4, Section 3], this means that IZ(H) is stable above the wall

given by (
b− 1 +

n

φ(H)

)2

+ t2 − 1− 2n

2d
− n2

φ(H)2
= 0, t > 0.

Now consider the pseudo-wall corresponding to when φt,b(IZ(H)) = φt,b(OY [1]),

given by the equation

1− 2b2d+ 2b(d− n)− 2dt2 = 0, t > 0.

One can easily see that these semi-circles are either nested, coincide, or disjoint, and

they intersect the line b = 1
2 for

t0 =

√
2dn+ φ(H)− dφ(H)

2 − 2nφ(H)
√

2
√
d
√
φ(H)

, t1 =

√
1 + d

2 − n√
2
√
d

,

respectively. Then t1 ≥ t0 ≥ 0 or t1 > 0 and t0 /∈ R guarantee that both IZ(H)

and OY [1] are σt1,1/2-stable and φt1,1/2(IZ(H)) = φt1,1/2(OY [1]), as required. These
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conditions combined are equivalent to

1 ≤ n < d · φ(H)

2d− φ(H)
,

as required.

This immediately allows us to recover some classical results about linear systems on

unnodal Enriques surfaces (see [17, Theorems 4.4.1 and 4.6.1]):

Corollary 10.3.2. Let Y be an unnodal Enriques surface and H ∈ Pic(Y ) ample with

H2 = 2d. Then

(a) The linear system |H| is base-point free if and only if φ(H) ≥ 2,

(b) If |H| is very ample, then φ(H) ≥ 3. Conversely, if φ(H) ≥ 4 or φ(H) = 3 and

H2 = 10, then |H| is very ample.

(c) The linear system |2H| is base-point free and |4H| is very ample.

Proof. Base-point freeness and very ampleness are equivalent to the surjectivity of the

restriction map

H0(Y,OY (H))→ H0(Z,OZ(H))

as Z ranges over all 0-dimensional subschemes of length 1 and 2, respectively. Since H

ample implies the vanishing of H1(Y,OY (H)) by [17, Theorem 1.3.1], this is equivalent

to the vanishing of H1(Y, IZ(H)) in each case. Although the easy directions of both

(a) and (b) are classical and elementary (see [17, Theorem 4.4.1(i) and Lemma 4.6.1]),

we include their proofs here for completeness.

For (a), suppose φ(H) = 1, and let F be a half-pencil such that H.F = 1 and Z be

the reduced point of intersection H ∩ F . Then |H| restricted to F is a degree 1 linear

system on the elliptic curve F , so h0(H|F ) = 1. Thus Z is a base-point of |H|, showing

the easy direction of (a). The converse follows from Proposition 10.3.1 as

d · φ(d)

2d− φ(d)
> 1

if φ(d) ≥ 2.
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The easy direction above also shows that |H| cannot be very ample if φ(H) = 1.

To finish the easy direction of (b), suppose that φ(H) = 2. If H2 = 4, then h0(H) = 3,

so |H| induces a morphism of degree 4 onto P2, which is clearly not an embedding.

If H2 ≥ 6, then we may choose a half-pencil F with H.F = 2 so that (H − F )2 =

H2 − 4 > 0. Since (H − F ).F = 2 > 0, it follows that H − F is also ample and thus

that H1(Y,OY (H − F )) = 0. From the exact sequence

0→ OY (H − F )→ OY (H)→ OF (H)→ 0,

we see that

h0(OY (H − F )) = h0(OY (H))− h0(OF (H)) = h0(OY (H))− 2,

since |H|F | is a degree 2 linear system on the elliptic curve F . It follows that |H|

induces a degree 2 map of F onto a line, so |H| is not very ample. The converse again

follows directly from Proposition 10.3.1

Part (c) follows immediately from parts (a) and (b).

Remark 10.3.3. It is important to note that Corollary 10.3.2 is a weakening of the

classical theory of linear systems on unnodal Enriques surfaces. Indeed, [17, Theorem

4.4.1] states that |H| is very ample for all H with φ(H) ≥ 3 without the degree restric-

tion we impose above. It thus follows that even |3H| is very ample. We believe the

Bridgeland stability techniques employed above can be used to recover the remaining

cases. All that is required is a more careful analysis of what occurs at and beyond the

first wall of the nef cone of Y [n]. At the wall, Theorem 10.2.3 describes what destabilizes

IZ , so it is possible in theory to determine precisely for what strictly semistable IZ , if

any, HomAt,b(IZ(H),OY [1]) fails to vanish.

We can also obtain some new results about n-very ample line bundles. Recall that

a line bundle OY (H) is called n-very ample if the restriction map

OY (H)→ OZ(H)

is surjective for every 0-dimensional subscheme Z of length n + 1. Proposition 10.3.1

immediately gives the following result:
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Corollary 10.3.4. Let Y be an unnodal Enriques surface and H ∈ Pic(Y ) ample with

H2 = 2d. Then OY (H) is n-very ample provided that

0 ≤ n ≤ d · φ(H)

2d− φ(H)
− 1.

While this result is not as strong as the complete characterization of n-very ample-

ness given by Knutsen [36, 37, 38, 39], we believe that a more careful application of the

above techniques can prove the same result.
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Chapter 11

Appendix: Some neo-classical proofs of non-emptiness

and irreducibility for moduli of sheaves

In this final chapter, which has a different flavor and thrust than the main body of this

dissertation, we provide another proof of Theorem 7.2.1 without the use of Bridgeland

stability. The proof is longer and more involved, but it does provide a bit more. Namely,

this second proof establishes a birational map MH,Y (v, L) 99K MH,Y (v − 2v(OY ), L +

KY ) which explains the equality of Hodge-polynomials in Theorem 7.2.1 by a result of

Batyrev [8].

Recall from Section 7.2 that we had reduced showing the non-emptiness and irre-

ducibility of Giesker stable moduli to proving the same for MH((4, c1,−1), L), where

c2
1 ≥ −8 and there exists an elliptic half-pencil FA with c1(FA) = f such that c1.f =

±1, 2.

11.1 Non-emptiness and irreducibility of moduli spaces in rank 4

when c1.f = ±1.

In this section, we make use of the notion of suitable polarizations H for an elliptic

fibration p : Y → P1. Recall from Section 4.4.1 that for a suitable polarization H and

primitive c1, µH -stability of a torsion-free sheaf R is equivalent to the stability of its

restriction R|F to a generic elliptic fibre. As stable vector bundles on elliptic curves are

well understood from the work of Atiyah [5], we are armed with a powerful tool to study

stable sheaves on Y . The general strategy will be to use the fact that h0(R) ≥ χ(R) = 1

to write R ∈MH(v, L) as an extension

0→ OY → R→ Q→ 0,
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with Q µ-stable. This will give us a rational map MH(v, L) 99K MH(w,L), where

w := v−v(OY ). As w2 = v2 +1, we cannot hope to get too much information from this

map itself, but as the above exact sequence forces h0(Q(KY )) = h0(R(KY )) > 0, which

is larger than expected since χ(Q) = 0, we can iterate the process and try to write

0→ OY → Q(KY )→ P → 0,

with P ∈ MH(u, L + KY ) where u := v − 2v(OY ). It will indeed turn out that this

process induces a birational map

MH(v, L) 99KMH(u, L+KY ),

allowing us to deduce non-emptiness and irreducibility from Theorem 7.1.2. This con-

struction in fact produces µ-stable vector bundles and explains the equality of Hodge

polynomials in Theorem 7.2.1.

Now let us proceed to the details. We begin with the special case when gcd(2, c1) = 2

and c2
1 = 0. As noted above, we may assume that v = (4, c1,−1) with c1 pairing to 2

with some elliptic half-pencil, and thus from c2
1 = 0, it follows that c1 represents the

numerical class of an effective divisor. In fact, for any coherent sheaf R with v(R) = v,

det(R) = 2FA or 2FA + KY = FA + FB, for an elliptic half-pencil FA with conjugate

half-pencil FB and c1(FA) = f . Take H = FA +GA +nFA where GA is another elliptic

half-pencil such that GA.FA = 1 and n ≥ 47. Let us write c1(GA) = σ. Then H is

ample and v-suitable for the elliptic fibration |2FA| [28, Remark 5.3.6]. With these

preparations, we prove the following result.

Theorem 11.1.1. Let v = (4, c1,−1) with c1 = 2f and H ′ a generic v-suitable po-

larization. Then MH′(v, 2FA) is a non-empty, irreducible 9-fold, singular along a 6-

dimensional generalized Enriques manifold. Similarly, MH′(v, 2FA + KY ) is a non-

empty, smooth irreducible 9-fold. In either case, MH′(v,det(R)) generically parametrizes

µ-stable vector bundles and is birational to MH′(v − 2v(OY ),det(R) +KY ).

Proof. The statement about singularities follows from Theorem 4.6.1 above. Indeed, a

singular point represents a Gieseker stable sheaf R ∼= π∗(E) for a rank 2 π∗H ′-stable

sheaf on Ỹ . Since Y is unnodal, v(E) = v(ι∗E), so v(E) = 1
2π
∗v. As H ′ is generic
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(and thus so is π∗H ′) and v(E) is primitive, Mπ∗H′(v(E)) is a non-empty, irreducible

smooth projective hyperkähler manifold. Since v itself is primitive, we see that the

action of ι∗ on this moduli space can have no fixed points as these would correspond to

stable sheaves on Y with Mukai vector 1
2v. Thus the singular locus consists of one 6-

dimensional component which is the quotient of the hyperkähler manifold Mπ∗H′(v(E)),

so it is a generalized Enriques manifold in the sense of Oguiso and Schröer [54]. Note

also that det(R) = det(π∗(E)) is divisible by 2 in Pic(Y ), so the singular locus must

lie solely in MH′(v, 2FA), and moreover this already shows that a component of this

moduli space contains µ-stable locally free sheaves, but we will not make use of this

observation.

For the remaining statements of the theorem, let us first consider stability with

respect to H. As s(v) = −1, for any µ-stable R ∈ MH(v) we have h0(R) + h2(R) ≥

χ(R) = s + r
2 = 1. Moreover, as h2(R) = h0(R∨(KY )), we see that h2(R) = 0 since

R∨(KY ) is a locally free µ-stable sheaf with µ = − c1.H
4 = −1

2 < 0. So h0(R) ≥ 1, and

taking the saturation of a section gives

0→ IZ(D)→ R→ Q→ 0

with Z 0-dimensional, D effective, and Q torsion-free. By µ-stability of R, we get

0 ≤ D.H < c1.H
4 = 1

2 . Thus D.H = 0 so that D = 0 from the ampleness of H. As

OY → R then factors through IZ , we see that Z = ∅. So we may write

0→ OY → R→ Q→ 0,

with Q torsion-free with w = v(Q) = (3, c1,−3
2). Let us show that Q is µ-stable.

Suppose to the contrary that Q had a destabilizing quotient G of rank r′ = 1, 2.

Then as G is also a quotient of R, we see that µ(R) < µ(G) < µ(Q). As H is w-suitable

as well, we see that

0 =
c1.f

4
≤ c1(G).f

r′
≤ c1.f

3
= 0,

so c1(G).f = 0. From the definition of H, we get that the strict inequalities of µ become

1

2
=
c1.H

4
<
c1(G).g

r′
<
c1.H

3
=

2

3
,
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which gives an immediate contradiction. Thus Q is µH -semistable. Of course, we

cannot have µ(G) = µ(Q) either as then c1(G).H = 2
3 or 4

3 , which is absurd. Thus

indeed Q is µH -stable.

Tensoring by KY , we find that h0(Q(KY )) = h0(R(KY )) ≥ 1 (for the same reason as

above). Moreover, the set of R fitting into an exact sequence as above are parametrized

by PExt1(Q,OY ), which by Serre duality has dimension h1(Q(KY ))−1 = h0(Q(KY ))−1

as χ(Q(KY )) = 0. Proceeding similarly with Q(KY ), we get that a section of Q(KY )

factors through IZ(D) as above to give

0→ IZ(D)→ Q(KY )→ P → 0,

with P torsion-free. As above, µ-stability ofQ(KY ) implies that 0 ≤ D.H < µH(Q(KY )) =

2
3 . Thus again D = 0 and Z = ∅. So we may write

0→ OY → Q(KY )→ P → 0,

with P torsion-free, v(P ) = (2, c1,−2), and N := det(P ) = det(R) +KY . Let us again

show that P is µ-stable.

Suppose to the contrary that P had a destabilizing quotient IW (L), with W a

0-dimensional subscheme. Then as IW (L) is also a quotient of Q(KY ), we get

2

3
= µ(Q) < µ(IW (L)) = L.H ≤ µ(P ) = 1.

The only possibility is that L.H = 1, i.e. µ(IW (L)) = µ(P ). So P is certainly µ-

semistable. If H does not lie on a wall for u := v − 2v(OY ), then we may take H ′ = H

which is already generic. Otherwise, H lies on a wall for u for all n ≥ 0. Choose

a very near polarization H ′ in one of the adjacent chambers with respect to both u

and v. Then the strict inequalities above will remain valid, as will the stability of

R and Q. As there are only finitely many such L, we can choose H ′ such that now

µ(IW (L)) = L.H > µ(P ). We may assume then that P is µ-stable in either case, unless

c1(L) is proportional to c1 = 2f , i.e. c1(L) = f so that L = FA or FB, in which case

µ(IW (L)) = µ(P ) for any choice of H ′.

Without loss of generality, we may write P in this case as an extension

0→ IW0(FA)→ P → IW1(FA + εKY )→ 0,
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where the Wi are 0-dimensional subschemes such that 3 = c2(P ) = l(W0) + l(W1) and

ε = 0, 1. Then either one of the Wi = ∅ while the other has length 3 or one has length

2 while the other has length 1. Let us separate into two cases.

First suppose that det(R) = 2FA. Then N = 2FA +KY so that ε = 1, and we have

0→ IW0(FA)→ P → IW1(FB)→ 0.

If l(W0) = 1, l(W1) = 2, then it is not difficult to see that ext1(IW1(FB), IW0(FA)) = 2,

so the space of such P ’s is at most 7. The same holds true if l(W0) = 2, l(W1) = 1.

If W0 = ∅, l(W1) = 3, then ext1(IW1(FB),OY (FA)) = h1(IW1) = 2 while if l(W0) =

3, l(W1) = 0, then ext1(OY (FB), IW0(FA)) = 3. Thus we see that the space of such P ’s

is at most 7 or 8. The second case of det(R) = 2FA + KY is similar with the space of

such P ’s at most 8.

Now let us point out that the choice of R and a point in PH0(R) determines Q

and a point in PExt1(Q,OY ) ∼= PH0(Q(KY )) which determines P and a point in

PExt1(P,OY ) ∼= PH1(P (KY )), and vice-versa. Moreover, fixing R and varying the sec-

tion varies Q and similarly for Q(KY ) and P . Finally, we see that h0(R) = h1(P (KY )).

All together, this argument shows that the dimension of the locus of those R’s which

give strictly semistable P ’s is the same as the dimension of those P ’s, which is at most

8. As all elements of MH′(v,N +KY ) are Gieseker stable, every irreducible component

of MH′(v,N +KY ) has dimension v2 + 1 = 9 > 8.

Moreover, the sublocus of MH′(v,N + KY ) parametrizing non-locally free sheaves

has dimension at most 6. Indeed, v(R∨∨) = (4, N + KY , l − 1) for l = l(R∨∨/R) ≥ 0,

and R∨∨ is a Gieseker stable locally free sheaf. Then from 0 ≤ v(R∨∨)2 = 8−8l, we see

that l ≤ 1. Thus every non-locally free R determines a (non-uniquely determined) point

in Quot(R∨∨, 1) which is irreducible of dimension 5 [28, Theorem 6.A.1]. As the R∨∨

vary in the 1-dimensional moduli space MH′((4, 2f, 0), N +KY ), we see that indeed the

dimension of this sublocus is at most 6.

So every irreducible component of MH′(v,N +KY ) generically parametrizes locally

free sheaves. Let us finally show that the sublocus of MH′(v,N + KY ) parametrizing

strictly µ-semistable sheaves is proper. From the above paragraph, we may assume R
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is locally free. Then R fits into an extension,

0→ E → R→ E′ → 0,

with E,E′ µ-stable, c1(E) = c1(E′) = f , and E locally free since R is. As R is Gieseker

stable we must have χ(E)
2 < χ(R)

4 = 1
4 , so

2− c2(E) = s(E) +
r(E)

2
= χ(E) ≤ 0,

so that c2(E) ≥ 2. From 0 ≤ v(E′)2 = −4(1 − c2(E′)), we get c2(E′) ≥ 1. As

their sum must be c2(R) = 3, we see that c2(E) = 2, c2(E′) = 1. Now p(E′) >

p(E) so hom(E′, E) = 0. Furthermore, it is easily seen that E′ is locally free since

v(E′)2 = 0, the minimum value. Thus ext2(E′, E) = hom(E,E′(KY )) = 0 since E and

E′(KY ) are µ-stable locally free sheaves of the same slope. It follows that ext1(E′, E) =

〈v(E′), v(E)〉 = 2. As the E’s move in a 5 dimensional family and the E′’s move along

a curve, we see that the sublocus of strictly µ-semistable sheaves has dimension at most

7.

It follows from the above discussion that the generic element of any component of

MH′(v,N + KY ) is locally free, µ-stable, and gives P as above which is also µ-stable.

Moreover, we have shown that if V i
j := {R|h(R) = i, h0(R(KY ) = j} ⊂ MH′(v,N +

KY )µ−st,l.f., then dimV i
j ≤ dimU j−1

i−1 , where U j−1
i−1 := {P |h0(P ) = i − 1, h0(P (KY )) =

j−1} ⊂MH′(u,N). We also note that P (GA) satisfies c2(P (GA)) = 1
2c1(P (GA))2+1, so

by [35, Theorem 1]MH′(u,N) ∼= MH′(v(P (GA)), N+2GA) is irreducible and generically

parametrizes µ-stable, locally free sheaves such that h0(P (GA)) = h0(P (GA+KY )) = 1

with isolated section. It follows that we may write

0→ OY → P (GA)→ IZ(N + 2GA)→ 0,

for generic P ∈ MH′(u,N), where l(Z) = 5. It follows that h0(IZ(N + 2GA)) =

0, h0(IZ(N + 2GA +KY )) = 1, and twisting by OY (−GA), we get that

h0(P ) = h0(IZ(N +GA)), h0(P (KY )) = h0(IZ(N +GA +KY ))

since h1(−GA) = h1(−GB) = h1(−GA +KY ) = 0. Now h0(IZ(N +GA)) ≤ h0(IZ(N +

2GA)) = 0, and if h0(IZ(N +GA +KY )) > 0, then we’d get

0→ OY (−N −GA +KY )→ IZ → OC(−Z)→ 0,
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for some C ∈ |N +GA +KY |. Then twisting by OY (N + 2GA) we’d have

0→ OY (GA +KY )→ IZ(N + 2GA)→ OC(N |C + (2GA)|C − Z)→ 0,

which is absurd as h0(IZ(N + 2GA)) = 0. Thus the generic element of MH′(u,N) is

a µ-stable locally free sheaf in U0
0 , which is an open irreducible subset of dimension

u2 + 1 = 9. It follows that the generic element of MH′(v,N + KY ) is in V 1
1 . In that

case we get that no choices were involved in determining Q and P , and vice-versa.

Thus MH′(v,N +KY ), if non-empty, is irreducible and birational to MH′(u,N). It just

remains to prove non-emptiness.

By a result of Qin [55, Theorem 2], MH′(u,N) and MH(u,N) are birational. So let

us take a µ-stable locally free sheaf in U0
0 which is also µH -stable. Then ext1(P,OY ) =

h1(P (KY )) = 1, so there is a unique non-split extension

0→ OY → Q(KY )→ P → 0,

which is locally free. We claim that Q(KY ) is µH -stable. If not, then let G be a

saturated µH -stable destabilizing subsheaf of rank r′ = 1 or 2, necessarily locally free.

Then as µH(G) > µH(Q(KY )) > 0, G cannot be contained in OY so that we get a

non-trivial homomorphism G→ P . It follows that µH(G) ≤ µH(P ) = 1. If µH(G) = 1,

then G ∼= P as they are both µ-stable vector bundles of the same slope, splitting the

extension. Thus

2

3
= µH(Q(KY )) < µ(G) < µ(P ) = 1,

which is impossible for a sheaf of rank 1 or 2. ThusQ(KY ) is µH -semistable, and because

gcd(3, c1) = 1, it must be µH -stable as well. Furthermore, we have h1(Q(KY )) =

h0(Q(KY )) = 1, h0(Q) = 0. So consider the unique non-split extension in Ext1(Q,OY ),

0→ OY → R→ Q→ 0,

which is again locally free. We claim that R is in fact µH -stable and thus µH′-stable

by openness of stability. Suppose on the contrary that R had a saturated µH -stable

destabilizing subsheaf G of rank 0 < r′ < 4, necessarily locally free. Then arguing as

before we get

1

2
= µH(R) < µH(G) < µH(Q) =

2

3
.
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This is clearly impossible from the numerics, so we get that R is µH -semistable. If H

lies on a wall for v, then as before we see that R remains µH′-semistable, and is only

strictly semistable if it has µ-stable subobjects E of rank 2 and c1(E) = f . It is not

difficult to see that E maps injectively into Q and that further E(KY ) injects into P .

Thus h0(E(KY )) = 0, so that χ(E) = χ(E(KY )) ≤ 0 since h2(E) = h2(E(KY )) = 0 by

stability. Thus R is Gieseker stable, and it follows that MH′(v,N + KY )l.f. 6= ∅, and

since MH′(v,N +KY ) is irreducible and consists generically of µ-stable vector bundles,

we can deform R to obtain a locally free µ-stable sheaf. Alternatively, we have seen

explicitly above what these strictly µ-semistable sheaves look like and that the space of

such R, equivalently the space of the corresponding P ’s, is a proper subset, so choosing

P outside of this sublocus gives a µ-stable R.

The theorem is thus proved for H ′ generic but very close to H. The result follows for

H ′ in an arbitrary chamber by using the invariance of motivic invariants from Theorem

6.2.12.

The proof above contains the essential idea behind our approach in the case gcd(2, c1) =

1, except that the divisibility of c1 by 2 above forced us to deal with the more com-

plicated issue of µ-semistable sheaves. We will not encounter such issues when c1 is

primitive, and the technique will be to use the fact that h0(R) > 0 to compare MH(v, L)

to moduli spaces of stable sheaves of lower rank, where we ensure the stability of quo-

tients by using the suitability of H. Recall that we may assume that v = (4, c1,−1)

with the class of a half-pencil f such that c1.f = ±1. Denote by FA, FB = FA + KY

the actual effective divisors with c1(FA) = f , as above. Then our main result is the

following:

Theorem 11.1.2. Let H be a generic polarization that is suitable for the Mukai vectors

v, w := v− v(OY ), and u := v− 2v(OY ) with respect to the elliptic fibration p : Y → P1

induced by |2FA|, where v is a Mukai vector as above such that c2
1 + 8 = v2 ≥ 0. Then

MH(v, L) is a nonempty, smooth, irreducible projective manifold of dimension v2 + 1

parametrizing µ-stable sheaves, birational to MH(u, L+KY ).

Proof. As noted above, the fact that gcd(2, c1) = 1 will preclude the existence of any
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properly µ-semistable sheaves. If R ∈ MH(v, L) is not locally-free, then R∨∨ is a µ-

stable locally free sheaf with v(R∨∨) = (4, c1, l − 1) for l = l(R∨∨/R) ≤ v2

8 . Then for

each choice of l, R determines a (non-unique) point in Quot(R∨∨, l) so the locus of R

such that l(R∨∨/R) = l has dimension at most

dimMH(v(R∨∨), L)+dim Quot(R∨∨, l) = v(R∨∨)2+1+5l = v2+1−3l = dimMH(v, L)−3l.

Thus every component of MH(v, L) consists generically of locally free sheaves.

For any R ∈MH(v, L), h0(R) + h2(R) = χ(R) + h1(F ) ≥ 1, so either h0(R) > 0 or

h0(R∨(KY )) = h2(R) > 0, and by stability only one of these can happen. Since each

irreducible component of MH(v, L) contains locally free sheaves, we see that dualizing

and twisting by OY (KY ) induces a bijection between the set of irreducible components

of MH((4, c1,−1), L) and the set of irreducible components of MH((4,−c1,−1),−L +

KY ). Thus if the theorem is true for those c1 such that MH(v, L) parametrizes sheaves

that have sections, then the theorem is true in general. So we may assume that R is

locally free with h0(R) > 0, from which it follows that c1.f = 1.

Then we may write

0→ OY (DR)→ R→ Q→ 0,

with Q torsion-free and DR effective. From the v-suitability of H it follows that

c1(DR).f ≤ c1.f
4 = 1

4 , and thus we see that DR is supported in the fibers of p. Thus

DR = nRFA + εRKY , where εR = 0, 1 and nR ≥ 0. Let

V i
DR,j

:=
{
R| R(−DR) has an regular section, h0(R(−DR)) = i, h0(R(−DR +KY )) = j

}
.

Then R and the choice of a section of R(−DR) determine Q, and for fixed Q, such R

are parametrized by PExt1(Q(−DR),OY ) which has dimension h1(Q(−DR+KY ))−1.

As χ(Q(−DR)) = −nR, it follows that

dimV i
DR,j

≤ dimW i−1
DR,j

+ j − i+ nR,

where W i−1
DR,j

:=
{
Q|h0(Q(−DR)) = i− 1, h0(Q(−DR +KY )) = j

}
. Here we would like

to show that W i−1
DR,j

⊂ MH(v − v(OY (DR)), L −DR), i.e. that Q is µ-stable. Suppose
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not, and take a destabilizing quotient G of rank r′ = 1, 2. Then as G is also a quotient

of R, we see that

µH(R) < µH(G) < µH(Q),

and from v-suitability of H we get that

1

4
=
c1.f

4
≤ c1(G).f

r′
≤ c1.f

3
=

1

3
,

a contradiction. Thus Q is µ-semistable and thus µ-stable since gcd(3, c1) = 1.

If j = 0, then as dimMH(v−v(OY (DR)), L−DR) = c2
1+10−2nR = dimMH(v, L)+

1− 2nR and i ≥ 1, we see that

dimV i
DR,j

≤ dimMH(v, L) + 1− i− nR < dimMH(v, L),

if i > 1 or nR > 0.

So suppose that j > 0. Then we can write

0→ IW (DQ)→ Q(−DR +KY )→ P → 0,

with P torsion-free and DQ effective. By the suitability of H, we see again that DQ is

supported in fibers so that DQ = nQFA + εQKY , with nQ ≥ 0 and εQ = 0, 1.

By taking reflexive duals one obtains the following commutative diagram in which

the rows and columns are exact:

0 0 0y y y
0 −−−−→ IW (DQ) −−−−→ Q(−DR +KY ) −−−−→ P −−−−→ 0y y y
0 −−−−→ O(DQ) −−−−→ Q∨∨(−DR +KY ) −−−−→ P̃ −−−−→ 0y y y
0 −−−−→ OW −−−−→ T −−−−→ H −−−−→ 0y y y

0 0 0

,

whereOY (DQ) is saturated inQ∨∨(−DR+KY ) with quotient P̃ . The locus inMH(v(Q))

of those Q with the same reflexive-dual Q∨∨ and value of l = l(Q∨∨/Q) is isomorphic
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to the Hilbert scheme of l-points Y [l].1 We are only concerned with those T = Q∨∨/Q

whose support contains a 0-dimensional scheme W such that h0(IW (DQ)) > 0. The

locus of such W has dimension at most

l(W ) + dim |DQ| = l(W ) +

⌊
nQ − εQ

2

⌋
,

by Lemma 11.2.1. The remaining points of the support of T are unrestricted, so for

fixed locally free Q∨∨, the dimension of the locus in MH(v(Q)) that we are interested

in is at most

l(W ) +

⌊
nQ − εQ

2

⌋
+ 2l(H) = l(T ) + l(H) +

⌊
nQ − εQ

2

⌋
. (11.1)

Also for any torsion-free sheaf F ,

h0(F ) ≤ h0(F∨∨) ≤ h0(F ) + l(F∨∨/F ). (11.2)

With these observations, we continue along our way to describing the generic sheaf

on each component of MH(v, L). As above, we see that Q∨∨ and the choice of a

section of Q∨∨(−DR−DQ+KY ) determine P̃ (−DQ) (up to scaling), and for a fixed P̃

such Q∨∨(−DR −DQ +KY )’s are parametrized by PExt1(P̃ (−DQ),OY ) of dimension

h1(P̃ (−DQ +KY ))− 1. So let

W i−1,a
DR,DQ,j,b

:=

Q ∈W
i−1
DR,j

:

• Q∨∨(−DR −DQ +KY ) has a regular section,

• h0(Q∨∨(−DR −DQ)) = a

• h0(Q∨∨(−DR −DQ +KY )) = b

 ,

where b ≥ 1. Moreover, define
˜

W i−1,a
DR,DQ,j,b

:=
{
Q∨∨|Q ∈W i−1,a

DR,DQ,j,b

}
. Then as above

we see that

dim
˜

W i−1,a
DR,DQ,j,b

≤ dimU b−1
DR,DQ,a

− b+ 1 + a+ nR + nQ − l(T ),

since χ(P̃ (−DQ +KY )) = −1− nR − nQ + l(T ). Moreover, from (11.1) we get that

dimW i−1,a
DR,DQ,j,b

≤ dimU b−1
DR,DQ,a

− b+ 1 + a+ nR + nQ +

⌊
nQ − εQ

2

⌋
+ l(H).

1Since µ-stability and µ-semistability are equivalent in our case, the fibers of the morphism M →
Mµss, in the notation of [28, Chapter 8], are precisely the fibers of the Hilbert-Chow morphism Y [l] →
Y (l) Thus the usual stratification of the Donaldson-Uhlenbeck compactification applies to M with the
symmetric product replaced by the Hilbert scheme of points. See [28] for a more detailed discussion of
what sheaves are identified in Mµss.
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Here, of course,

U b−1
DR,DQ,a

:=
{
P̃ |h0(P̃ (−DQ)) = b− 1, h0(P̃ (−DQ +KY )) = a

}
,

and we would like to show that

U b−1
DR,DQ,a

⊂MH((2, c1 − 4DR −DQ,−2− nR), L− 4DR −DQ +KY ),

i.e. that P̃ is µ-stable. So suppose that P̃ had a destabilizing quotient IW ′(E). Then as

IW ′(E) is also a quotient of Q(−DR+KY ), we get that µH(Q(−DR+KY )) < µH(E) <

µH(P̃ ), and thus

1

3
=

(c1 − 4nRf).f

3
≤ c1(E).f ≤

(c1 − 4nRf − nQf).f

2
=

1

2
,

which is absurd. Therefore P̃ is µ-semistable and thus µ-stable since c1 is primitive.

Suppose a > 0, then as h0(P̃ (−DQ)) = b− 1, h0(P̃ (−DQ +KY )) = a, we can write

0→ IZ′(DP )→ P̃ (−DQ +KY )→ IZ(L− 4DR − 3DQ −DP +KY )→ 0,

for effective DP and 0-schemes Z,Z ′. We see as above that DP = nPFA + εPKY , nP ≥

0, εP = 0, 1. As above we obtain a commutative diagram with exact rows and columns:

0 0 0y y y
0 −−−−→ IZ′(DP ) −−−−→ P̃ (−DQ +KY ) −−−−→ IZ(B) −−−−→ 0y y y
0 −−−−→ O(DP ) −−−−→ P∨∨(−DP +KY ) −−−−→ IZ̃(B) −−−−→ 0y y y
0 −−−−→ OZ′ −−−−→ T ′ −−−−→ H ′ −−−−→ 0y y y

0 0 0

,

where B := L − 4DR − 3DQ −DP + KY , and we note that P̃∨∨ = P∨∨ and OY (DP )

is saturated in P∨∨(−DR −DQ +KY ) with quotient IZ̃(B). Furthermore, note that

h0(P̃ ) ≤ h0(P∨∨) ≤ h0(P̃ ) + l(T ′), l(T ′) + l(H) = l(P∨∨/P ), (11.3)
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and h0(IZ̃(B − DP ) = h0(P∨∨(−DQ − DP + KY )) − 1 and h0(IZ̃(B − DP + KY )) =

h0(P∨∨(−DQ −DP )). So let

U b−1,m
DR,DQ,DP ,a,n

:=

P̃ ∈ U
b−1
DR,DQ,a

:

• P∨∨(−DQ −DP +KY ) has a regular section,

• h0(P∨∨(−DQ −DP )) = m

• h0(P∨∨(−DQ −DP +KY )) = n

 ,

˜
U b−1,m
DR,DQ,DP ,a,n

:=
{
P∨∨|P̃ ∈ U b−1,m

DR,DQ,DP ,a,n

}
,

and define

Smn−1 :=
{
Z̃|h0(IZ̃(B −DP +KY )) = m,h0(IZ̃(B −DP )) = n− 1

}
.

Here Smn−1 ⊂ Y (l(Z̃)) with l(Z̃) = 1
2c

2
1 +3−3nR−2nQ−nP −l(T )−l(T ′). Then following

the usual explanation, we see that

dim
˜

U b−1,m
DR,DQ,DP ,a,n

≤ dimSmn−1 − n+m+ 2 + nR + nQ + nP − l(T )− l(T ′).

From the explanation leading to (11.1) we get that

dimU b−1,m
DR,DQ,DP ,a,n

≤ dimSmn−1−n+m+ 2 +nR+nQ+nP +

⌊
nP − εP

2

⌋
+ l(H ′)− l(T ).

Tracing through the dimension estimates so far, we see that the dimension d of the

corresponding locus in MH(v, L) satisfies

d ≤ dimSmn−1 + j + a+m+ 3− i− b− n− l(T ) (11.4)

+ 3nR + 2nQ + nP +

⌊
nP − εP

2

⌋
+

⌊
nQ − εQ

2

⌋
+ l(H ′) + l(H). (11.5)

Ultimately, we would like to show that d < dimMH(v, L) when nR > 0 or (i −

1)(j − 1) > 0. To do so, we must relate a, b to i, j. We consider 3 cases. First suppose

that 2 | nQ and εQ = 0. Then we may assume that DQ is a union of
nQ
2 disjoint generic

elliptic fibers. Tensoring the exact sequence

0→ OY (−DQ)→ OY →
⊕
OFi → 0

with Q∨∨(−DR +KY ), we obtain

0→ Q∨∨(−DR −DQ +KY )→ Q∨∨(−DR +KY )→
⊕

Q∨∨(−DR +KY )|Fi → 0,
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as Q∨∨ is locally free. As Q∨∨(−DR +KY )|Fi is a stable vector bundle of degree 2 on

the smooth elliptic curve Fi, h
0(Q∨∨(−DR + KY ) = 2 from [5]. It follows from the

exact sequence above that

j = h0(Q(−DR+KY )) ≤ h0(Q∨∨(−DR+KY )) ≤ h0(Q∨∨(−DR−DQ+KY ))+nQ = b+nQ.

(11.6)

From (11.2) we get

a = h0(Q∨∨(−DR−DQ)) ≤ h0(Q∨∨(−DR)) ≤ h0(Q(−DR)) + l(Q∨∨/Q) = i−1 + l(T ).

(11.7)

Plugging these estimates into (11.4), we get

d ≤ Smn−1 + 2 +m+ 3nR +
7

2
nQ + nP +

⌊
nP − εP

2

⌋
+ l(H) + l(H ′)− n.

When 2 | nQ and εQ = 1, then DQ+KY can be assumed to be a union of
nQ
2 generic

elliptic fibers Fi, so we tensor

0→ OY (−DQ +KY )→ OY →
⊕
OFi → 0

with Q∨∨(−DR +KY ), to get that

j = h0(Q(−DR +KY )) ≤ h0(Q∨∨(−DR +KY )) ≤ h0(Q∨∨(−DR −DQ)) + nQ,

as above. We also see that h0(Q∨∨(−DR)) ≤ b + nQ upon twisting by KY . Tensoring

the exact sequence

0→ OY (−DQ)→ OY → ODQ → 0

by Q∨∨(−DR) shows that

h0(Q∨∨(−DR −DQ) ≤ h0(Q∨∨(−DR)),

so that putting it all together we get that

j ≤ b+ 2nQ, a ≤ h0(Q∨∨(−DR)) ≤ i− 1 + l(Q∨∨/Q). (11.8)

Plugging these estimates into (11.4) gives

d ≤ dimSmn−1 + 1 +m+ 3nR +
9

2
nQ + nP +

⌊
nP − εP

2

⌋
+ l(H) + l(H ′)− n.
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When 2 - nQ, we may twist by FA or FA + KY to put ourselves in either of the

situations above (albeit with
nQ+1

2 smooth elliptic fibers). In particular, let

F := Q(−DR +KY )⊗OY (FA), F ′ := F (KY ) = Q(−DR +KY )⊗OY (FA +KY ),

where F (resp. F ′) contains OY (DQ + FA) (resp. OY (DQ + FA +KY )) as a saturated

subsheaf. Then without loss of generality suppose that F is in the first situation above,

i.e. εQ = 0 so that DQ + FA is divisible by 2. Then

h0(F ) ≤ h0(F∨∨) ≤ h0(F∨∨(−DQ − FA)) + nQ + 1,

while F ′ is in the second situation so

h0(F ′) ≤ h0(F ′∨∨) ≤ h0(F ′∨∨(−DQ − FA)) + nQ + 1.

But h0(Q∨∨(−DR +KY ) ≤ h0(F∨∨) and h0(Q∨∨(−DR +KY )) ≤ h0(F ′∨∨), as FA and

FA +KY are both effective. Furthermore,

F∨∨(−DQ − FA) = Q∨∨(−DR + FA +KY −DQ − FA) = Q∨∨(−DR −DQ +KY ), and

F ′∨∨(−DQ − FA) = Q∨∨(−DR −DQ).

Thus we get

j ≤ min {b+ nQ + 1, a+ nQ + 1} , a ≤ i− 1 + l(T ). (11.9)

Plugging the first estimate for j and the estimate for a into (11.4), we find that

d ≤ dimSmn−1 + 3 +m+ 3nR +
7

2
nQ + nP +

⌊
nP − εP

2

⌋
− n− 1

2
+ l(H) + l(H ′).

We will use the second estimate for j in the case 2 - nQ later.

To summarize, we see that

d ≤ dimSmn−1+m+3nR+nP+

⌊
nP − εP

2

⌋
−n+l(H)+l(H ′)+


5
2 + 7

2nQ, if 2 - nQ

2 + 7
2nQ, if 2 | DQ

1 + 9
2nQ, if 2 | DQ +KY

 .

(11.10)
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Suppose first that m > 0. Then by Lemma 11.2.1

dimSmn−1 ≤
1

2
(c1 − (4nR + 3nQ + 2nP )f)2 + 1+

1

2
c2

1 + 3− 3nR − 2nQ − nP − l(T )− l(T ′)−m

= c2
1 + 4− 7nR − 5nQ − 3nP − l(T )− l(T ′)−m.

Plugging this into (11.10) we get

d ≤
c2

1 + 13
2 − 4nR − 3

2nQ − 2nP +
⌊
nP−εP

2

⌋
− n, if 2 - nQ

c2
1 + 6− 4nR − 3

2nQ − 2nP +
⌊
nP−εP

2

⌋
− n, if 2|DQ

c2
1 + 5− 4nR − 1

2nQ − 2nP +
⌊
nP−εP

2

⌋
− n, if 2|DQ +KY


− (l(T )− l(H))− (l(T ′)− l(H ′)).

As l(H) ≤ l(T ) and l(H ′) ≤ l(T ′), we find in each case that d < c2
1 +9 = dimMH(v, L).

Thus we may assume that m = 0. If n− 1 > 0, then from Lemma 11.2.1 we see that

dimS0
n−1 ≤

1

2
(c1 − (4nR + 3nQ + 2nP )f)2 + l(Z̃)− (n− 2)

= c2
1 + 5− 7nR − 5nQ − 3nP − l(T )− l(T ′)− n.

Plugging this into (11.10), we see that

d ≤
c2

1 + 15
2 − 4nR − 3

2nQ − 2nP +
⌊
nP−εP

2

⌋
− 2n, if 2 - nQ

c2
1 + 7− 4nR − 3

2nQ − 2nP +
⌊
nP−εP

2

⌋
− 2n, if 2 | DQ

c2
1 + 6− 4nR − 1

2nQ − 2nP +
⌊
nP−εP

2

⌋
− 2n, if 2 | DQ +KY


− (l(T )− l(H))− (l(T ′)− l(H ′)).

In all three cases, we again see that d < MH(v, L). Finally, we must deal with the

case m = 0, n − 1 = 0, i.e. S0
0 . This is an open dense subset of Y [l(Z̃)], so plugging

dimY [l(Z̃)] = 2l(Z̃) = 2(1
2c

2
1 + 3 − 3nR − 2nQ − nP − l(T ) − l(T ′)) into (11.10) again

gives a sublocus of dimMH(v, L) of strictly smaller dimension in all cases.

Let us summarize the above considerations. Having assumed that a = h0(P̃ (−DQ+

KY )) > 0, we found that the corresponding locus in MH(v, L) had strictly smaller
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dimension. It follows that the generic element of MH(v, L) must lie in the preimage of

the U b−1
DR,DQ,0

as DR, DQ, b are allowed to vary. Again letting d denote the dimension

of this preimage for any such choice, we find that

d ≤ dimW i−1,0
DR,DQ,j,b

+j−i+nR ≤ dimU b−1
DR,DQ,0

+2nR+nQ+

⌊
nQ − εQ

2

⌋
+j+1−i−b+l(H).

(11.11)

Generically, we would expect

h0(P̃ (−DQ)) = b− 1 = 0

for P̃ ∈MH(v(P̃ )) as χ(P̃ (−DQ)) < 0. So suppose that b > 1, and thus we can write

0→ IZ′(DP )→ P̃ (−DQ)→ IZ(L− 4DR − 3DQ −DP +KY )→ 0,

for effective DP and 0-cycles Z,Z ′ as before. Similarly, let

U b−1,m
DR,DQ,DP ,0,n

:=

P̃ ∈ U
b−1
DR,DQ,0

:

• P∨∨(−DQ −DP ) has a regular section,

• h0(P∨∨(−DQ −DP )) = m

• h0(P∨∨(−DQ −DP +KY )) = n

 ,

˜
U b−1,m
DR,DQ,DP ,0,n

:=
{
P∨∨|P̃ ∈ U b−1,m

DR,DQ,DP ,0,n

}
,

and define

Sm−1
n :=

{
Z̃|h0(IZ̃(B −DP +KY )) = m− 1, h0(IZ̃(B −DP )) = n

}
.

Here again we have Sm−1
n ⊂ Y [l(Z̃)] with l(Z̃) = 1

2c
2
1 +3−3nR−2nQ−nP − l(T )− l(T ′),

and likewise we see that

dim
˜

U b−1,m
DR,DQ,DP ,0,n

≤ dimSm−1
n −m+ n+ 2 + nR + nQ + nP − l(T )− l(T ′).

From the argument leading up to (11.1) we get that

dimU b−1,m
DR,DQ,DP ,0,n

≤ dimSm−1
n −m+n+2+nR+nQ+nP +

⌊
nP − εP

2

⌋
+ l(H ′)− l(T ).

Plugging this into (11.11) we find that

d ≤ dimSm−1
n + 3 + 3nR + 2nQ + nP +

⌊
nP − εP

2

⌋
+

⌊
nQ − εQ

2

⌋
+ n−m− l(T ) + l(H ′) + l(H) + j − i− b.
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Recall the estimates from (11.6,11.7,11.9),

j ≤


nQ + 1 + b, if nQ is odd

nQ + b, if nQ is even, and εQ = 0

a+ nQ, if nQ is even, and εQ = 1

 , (11.12)

where the final case was shown on the way to proving (11.8). As we are currently

assuming a = 0, it follows that

d ≤ dimSm−1
n + 3nR + 3nQ + nP +

⌊
nP − εP

2

⌋
+

⌊
nQ − εQ

2

⌋
(11.13)

+ n−m− (l(T )− l(H)) + l(H ′)− i+


4, if 2 - nQ

3, if 2 | DQ

3− b, if 2 | DQ +KY

 (11.14)

≤ dimSm−1
n + 3nR + 3nQ + nP + n−m+ l(H ′)− i+ (11.15)

⌊
nP − εP

2

⌋
+

⌊
nQ − εQ

2

⌋
+


4, if 2 - nQ

3, if 2 | DQ

3− b, if 2 | DQ +KY

 , (11.16)

since l(H) ≤ l(T ).

From Lemma 11.2.1, it follows that if n > 0 then

dimSm−1
n ≤ 1

2
(c1 − (4nR + 3nQ + 2nP )f)2 + 1+

1

2
c2

1 + 3− 3nR − 2nQ − nP − l(T )− l(T ′)− n

= c2
1 + 4− 7nR − 5nQ − 3nP − l(T )− l(T ′)− n.

Combining these two inequalities we obtain

d ≤ c2
1 − 4nR − 2nQ − 2nP +

⌊
nP − εP

2

⌋
+

⌊
nQ − εQ

2

⌋
−m− l(T )− (l(T ′)− l(H ′))− i

+


8, if 2 - nQ

7, if 2 | DQ

7− b, if 2 | DQ +KY

 < dimMH(v, L)

in all cases since again l(H ′) ≤ l(T ′). Thus we may assume n = 0.
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If m− 1 > 0, then

dimSm−1
0 ≤ 1

2
(c1 − (4nR + 3nQ + 2nP )f)2 + 1+

1

2
c2

1 + 3− 3nR − 2nQ − nP − l(T )− l(T ′)− (m− 1)

= c2
1 + 5− 7nR − 5nQ − 3nP − l(T )− l(T ′)−m,

and similar to above we get

d ≤ c2
1 − 4nR − 2nQ − 2nP +

⌊
nP − εP

2

⌋
+

⌊
nQ − εQ

2

⌋
− 2m− l(T )− (l(T ′)− l(H ′))− i

+


9, if 2 - nQ

8, if 2 | DQ

8− b, if 2 | DQ +KY

 < dimMH(v, L)

in all cases since l(H ′) ≤ l(T ′),m > 1, i ≥ 1.

We are left with the case m = 1, n = 0, i.e. S0
0 , which is a dense open subset of

Y [l(Z̃)] of dimension

2l(Z̃) = 2(
1

2
c2

1 + 3− 3nR − 2nQ − nP − l(T )− l(T ′))

= c2
1 + 6− 6nR − 4nQ − 2nP − 2l(T )− 2l(T ′).

Plugging this into (11.13), we obtain that

d ≤ c2
1 − 3nR − nQ − nP − 2l(T )− l(T ′)− (l(T ′)− l(H ′))− i+

⌊
nP − εP

2

⌋
+

⌊
nQ − εQ

2

⌋
+


9, if 2 - nQ

8, if 2 | DQ

8− b, if 2 | DQ +KY

 < dimMH(v, L).

It follows that the generic element of any component of MH(v, L) must lie in the

preimage of U0
DR,DQ,0

, i.e. b = 1, which we have shown to be an open dense subset

of MH(v(P̃ )), which is of dimension v(P̃ )2 + 1 = c2
1 + 9 − 4nR − 2nQ − 4l(T ). Then

plugging a = 0, b = 1 and this dimension into (11.11), we get

d ≤ dimU0
DR,DQ,0

+ 2nR + nQ +

⌊
nQ − εQ

2

⌋
+ j − i+ l(H) (11.17)

= c2
1 + 9− 2nR − nQ − 4l(T ) +

⌊
nQ − εQ

2

⌋
+ j − i+ l(H) (11.18)

≤ c2
1 + 9− 2nR − nQ − 3l(T ) +

⌊
nQ − εQ

2

⌋
+ j − i. (11.19)
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Now we note that from the exact sequence

0→ OY (DQ +KY )→ Q∨∨(−DR)→ P̃ (KY )→ 0,

it follows that h0(Q∨∨(−DR) ≥ h0(OY (DQ +KY )) =
⌈
nQ+εQ

2

⌉
, and from

0→ Q(−DR)→ Q∨∨(−DR)→ T → 0,

we get that h0(Q∨∨(−DR) ≤ h0(Q(−DR)) + l(T ), i.e.⌈
nQ + εQ

2

⌉
≤ i− 1 + l(T ).

Plugging this into (11.17) we get

d ≤ c2
1 + 8− 2nR − nQ − 2l(T )− εQ + j,

and using (11.12)2 and the fact that a = 0, b = 1, we get that d < dimMH(v, L) unless

l(Q∨∨/Q) = nR = εQ = 0. Assuming this to be the case, we see that DR = 0 and

Q = Q∨∨, so

d ≤ dimU0
0,DQ,0

+ nQ + j − i = c2
1 + 9− nQ + j − i.

As εQ = 0, we get from (11.12) (and the estimate j ≤ nQ + 1 + a if nQ is odd), that in

fact

d ≤ c2
1 + 10− i.

Note that if DQ 6= 0, then DQ +KY is still effective, so we get

0→ OY (DQ +KY )→ Q→ P (KY )→ 0,

and thus i− 1 = h0(Q) > 0, which implies that d < dimMH(v, L). Thus we must have

DQ = 0. It follows that h0(Q) = a = 0, h0(Q(KY )) = b = 1.

Finally, we can conclude from all of the above that the generic R on every component

of MH(v, L) lies in V 1
0,1 and as such determines uniquely and is uniquely determined

by Q ∈ W 0
0,0,1 ⊂MH(v − v(OY ), L). Likewise, Q determines Q(KY ) which determines

uniquely and is uniquely determined by P ∈ U0
0,0,0 ⊂ MH(v − 2v(OY ), L + KY ). In

2When nQ is odd we instead use the estimate j ≤ nQ + 1 + a as shown above in (11.9).
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the course of the work above, we’ve shown that U0
0,0,0 is open in MH(u, L + KY ). By

Theorem 7.1.2, MH(u, L+KY ) is non-empty and irreducible. From the uniqueness of

everything in this construction, we see that MH(v, L) is irreducible and birational to

MH(v − 2v(OY ), L + KY ), with an isomorphism between V 1
0,1 and U0

0,0,0, as long as

MH(v, L) is non-empty.

To show this non-emptiness, take a locally free P ∈ U0
0,0,0. Then as χ(P ) = −1, we

get that there is a unique non-trivial extension

0→ OY → Q(KY )→ P → 0.

We show that Q(KY ) is µ-stable. Suppose that Q(KY ) had a stable destabilizing satu-

rated subsheaf G of rank r′ = 1, 2. Then G is locally free with µH(G) > µH(Q(KY )) > 0

so that there is a non-zero morphism G → P and thus µH(G) ≤ µH(P ). If µH(G) =

µH(P ) then G→ P would be an isomorphism as a non-zero morphism between stable

locally free sheaves of the same slope [24, Proposition 4.7], which would contradict the

non-triviality of the extension. Thus µH(Q(KY )) < µH(G) < µH(P ) which implies

that

1

3
=
c1(Q(KY )).f

3
≤ c1(G).f

r′
≤ c1.f

2
=

1

2
.

The only possibility is that r′ = 2 and c1(G).f = 1.

Now let F ∈ |2FA| be a generic smooth elliptic fibre. Upon restricting to F , we

get a non-zero morphism ψ|F between G|F and P |F , which are both semistable rank 2

vector bundles on F of the same degree, namely 2. Note that semistability follows from

the suitability of H. It follows that ψF is an isomorphism, splitting the restriction of

the extension, and thus that the natural restriction map

ρ : Ext1
Y (P,OY )→ Ext1(P |F ,OF )

is zero. We will show that this is not the case. The map ρ is dual to the natural

coboundary map

ρ∨ : H0(F, P |F )→ H1(Y, P (KY ))

coming from the long exact sequence on cohomology of the short exact sequence

0→ P (KY )→ P (F +KY )→ P |F → 0.
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If ρ∨ = 0, then we have a short exact sequence

0→ H0(P (KY ))→ H0(P (F +KY ))→ H0(P |F )→ 0,

and since P |F is semistable of degree 2 on the elliptic curve F , it follows that h0(F, P |F ) =

2 [5]. Thus h0(P (F + KY )) = h0(P (KY )) + 2 = 2 for P ∈ U0
0,0,0, a contradiction. So

Q(KY ) is µ-semistable. As c1 is primitive, Q(KY ) is µ-stable as well. Furthermore, it

is clear that h0(Q(KY )) = 1 and h0(Q) = 0. As χ(Q) = χ(Q(KY )) = 0, we also get

h1(Q(KY )) = 1.

We consider the unique non-split extension R in Ext1(Q,OY ) ∼= H1(Q(KY ))∨, fit-

ting into the exact sequence

0→ OY → R→ Q→ 0.

We would like to show that R is µ-stable. If R were unstable, then there would be a

saturated stable destabilizing sheaf of rank r = 1, 2, 3, which we may presume to be

locally free as R is. Then µ(G) > µ(R) > 0, and as a consequence we get a nonzero

morphism ψ : G → Q so that µ(G) ≤ µ(Q). If µ(G) = µ(Q), then as above, ψ would

have to be an isomorphism contradicting non-splitness of the extension. Thus

µ(R) < µ(G) < µ(Q),

which implies that

1

4
=
c1.f

4
≤ c1(G).f

r
≤ c1.f

3
=

1

3
,

from the suitability of H. We are left with the possibility that r = 3 and c1(M).f = 1.

Then restricting to a generic smooth elliptic fibre F ∈ |2FA|, we get ψ|F : G|F → Q|F

is a non-zero morphism between stable vector bundles of the same slope, which is thus

an isomorphism. As this splits the restricted extension, we see that the restriction map

ρ : Ext1(Q,OY )→ Ext1(Q|F ,OF )

is zero. We will again see that this is impossible. Consider the dual map

ρ∨ : H0(F,Q|F )→ H1(Y,Q(KY )),
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which again comes from the long exact sequence of cohomology for the short exact

sequence

0→ Q(KY )→ Q(F +KY )→ Q|F → 0.

As Q|F is a stable vector bundle of degree 2 on the elliptic curve F , h0(Q|F ) = 2, so if

ρ∨ = 0, then h0(Q(F +KY )) = h0(Q(KY )) + h0(Q|F ) = 1 + 2 = 3. We show that this

cannot be the case.

Pushing forward the exact sequence defining Q(KY ),

0→ OY → Q(KY )→ P → 0,

we get the exact sequence

0→ OP1 → p∗Q(KY )→ p∗P → OP1(−1)→ R1p∗Q(KY )→ R1p∗P, (11.20)

where R1p∗OY ∼= OP1(−1) follows from [17, Proposition 5.1.3 and Corollary 5.1.1].

We first note that as Q(KY ) and P are torsion free, so are p∗Q(KY ) and p∗P . It

follows that they are locally free of rank 2 since their restrictions to the generic fibre

have two dimensional spaces of sections. Thus p∗Q(KY ) ∼= OP1(d1) ⊕ OP1(d2), p∗P ∼=

OP1(a) ⊕ OP1(b). Since h0(Q(KY )) = 1, we must have d2 = 0, d1 < 0, say. Similarly,

since h0(P ) = 0 but h0(P (F )) = 1, we have a < b = −1. On the reduced fibers F ,

which are smooth elliptic curves, h1(P |F ) = h1(Q(KY )|F ) = 0 by [5]. So R1p∗(P ) =

R1p∗Q(KY ) = 0 away from the two points under the double fibers. From the Leray

spectral sequence, we get

0→ H1(p∗G)→ H1(G)→ H0(R1p∗G)→ 0,

for any coherent sheaf G on Y . Applying this to P , we get that since

h1(p∗P ) = h1(OP1(a)) = h0(OP1(−a− 2)) ≥ 1,

as −a ≥ 2, so h1(P ) = 1 implies that R1p∗P = 0 and a = −2. Similarly, we see that

h1(p∗Q(KY )) = h1(OP1(d1)) = h0(−d1 − 2), and this quantity is at most 1 from the

Leray spectral sequence and the fact that h1(Q(KY )) = 1. Thus d1 = −1 or −2.
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Let F ′ ∈ |2FA| be any fibre, possibly a double fiber. Then as Q(KY )|F ′ ∼= Q|F ′ , we

may take cohomology of the exact sequence

0→ Q(−F ′)→ Q→ Q|F ′ → 0,

to calculate the cohomology of Q(KY )|F ′ using the fact that hi(Q) = 0 for all i. For

generic fibre F , we get h1(Q(−F )) = 2 and h0(Q(−F )) = h2(Q(−F )) = 0 since the

restriction of Q to F is stable of degree 2 and thus has h0(Q|F ) = 2, h1(Q|F ) = 0. For

any other fibre F ′, Q(−F ′) ∼= Q(−F ), so we see that h0(Q|F ′) = 2, h1(Q|F ′) = 0. Thus

R1p∗Q(KY ) = 0 since the restriction to any fibre has h1 = 0. Taking degrees in (11.20),

we see that d1 = −2. Thus p∗Q(KY ) ∼= OP1(−2) ⊕ OP1 , from which it follows by the

projection formula that

p∗Q(F +KY ) ∼= p∗Q(KY )⊗OP1(1) ∼= OP1(−1)⊕OP1(1).

Thus h0(Q(F +KY )) = 2, a contradiction. Thus R is µ-semistable. As c1 is primitive,

genericity of H implies that R is µ-stable as well.

11.2 Appendix: Dimension estimates for Brill-Noether loci on Hilbert

schemes of points

We prove in this appendix the dimension estimate we used in the body of the paper. The

result concerns bounding the dimension of the locus of 0-cycles with given cohomology

with respect to a linear system.

Lemma 11.2.1. Let L be an effective divisor and Si := {Z|h0(IZ(L)) = i} ⊂ Y (l).

Then for i > 0,

dimSi ≤ dim |L|+ l(Z)− (i− 1).

In particular, if L is ample, then dim |L| = 1
2L

2, so

dimSi ≤ 1

2
L2 + 1 + l(Z)− i.

Proof. Denote by S := {(Z,Cv)|Cv ∈ |IZ(L)|} ⊂ Y (l)×|L|. Then the second projection

p2 : S → |L|,
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is surjective with fibers of dimension l(Z). Indeed, for any C ∈ |L| the fiber over C is

C(l). Thus dimS = dim |L|+ l(Z). The image of S under the first projection is

p1(S) =
⋃
i>0

Si,

where the fiber over Z ∈ Y (l) is |IZ(L)|. Thus p−1
1 (Si) is a Pi−1 bundle over Si, from

which it follows that

dimSi ≤ dim |L|+ l(Z)− (i− 1).
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