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After 50 years of near-stagnation, pharmaceutical manufacturing is experiencing 

unprecedented scientific and technological innovation. There is a paradigm shift from 

testing product quality using lengthy off-line (and after-the-fact) assays to quality being 

tested during the process using online/ at-line measurements. This ability to evaluate and 

ensure quality of final product based on process data, geared towards making batch 

release decisions, is known as real time release testing (RTRt). Application of RTRt 

allows increased assurance of quality, greater manufacturing flexibility, reduced 

inventory, lesser end product testing, and lower laboratory and manufacturing costs. 

In this work, RTR strategies were developed for different critical quality attributes 

(CQAs) such as Blend and Content uniformity (B.U. and C.U.), and tablet dissolution in 
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real- time. The utility of different sampling methodologies was investigated with the 

intention of extracting maximum information and reducing redundancy in data collection. 

The first aim of this dissertation investigated the use of Near IR Spectroscopy (NIRS) for 

online monitoring of B.U. The second specific aim involved developing a RTR strategy 

to assess C.U. of tablets. NIRS was found to be an effective tool for expedited C.U. 

predictions enabling interrogation of a greater number of tablet samples. These extensive 

tablet C.U. studies provided a rigorous basis for assessing and verifying the various thief 

sampling and PAT methods and determining their relative accuracy and reliability.  

A key component of a meaningful RTR strategy for most products is the ability to predict 

dissolution utilizing the available on/at-line sensing infrastructure. Specific aim 3 focused 

on using NIRS to develop a RTR strategy for dissolution prediction of tablets made from 

blends exposed to different levels of mechanical strain in batch processing. This effect of 

strain was also investigated using traditional approaches such as tensile strength and 

porosity measurements. 

The fourth and final aim focused on using soft sensing combined with at-line Near IR 

measurements to predict dissolution of tablets manufactured in a continuous direct 

compaction (CDC) line. Individual dissolution profiles were predicted using this 

approach with a high correlation between the predicted and the observed dissolution 

profiles. This concluded the RTRt strategy for solid dosage manufacturing. 
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Chapter 1. Introduction 

1.1. Background 

The pharmaceutical industry is among the most heavily regulated industries in the world. 

Because this industry makes products that may entail significant risk to human health, 

regulations related to drug efficacy and safety are of prime importance. For each product 

on the market, the relevant regulatory health authorities, e.g. Food and Drug 

Administration (FDA) in the USA, or European Medicines Agency (EMA) in Europe, 

define a set of quality criteria (critical quality attributes, CQAs) and their specific limits. 

Failure to adhere to these limits can lead to product and process failures. For example, in 

the case of solid dosage forms, tablets must exhibit adequate pharmacological efficacy, 

which is closely connected to the drug substance content in each tablet [1], to the 

disintegration properties [2] of the tablet into smaller particles after intake, and to the rate 

of release of the drug substance from the tablet or particles [3]. Thus, drug content is 

deemed a critical factor, and blend uniformity, content uniformity, and dissolution 

constitute some of the CQAs for most tablets. 

In the last five years, the field of pharmaceutical process design has advanced rapidly, 

with an ever-increasing emphasis on materials science and process engineering 

principles. Continuous manufacturing (CM) has been introduced and embraced by 

industry, academia and regulatory bodies [4][5]. Distributed closed loop controls, once a 

distant aspiration, are beginning to be implemented in many solid dosage-manufacturing 

processes (Figure 1-1), primarily for control of product composition and mechanical 
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properties of the product such as weight and hardness [6]. However, to achieve full 

implementation of close-loop process control for all relevant quality parameters, the 

industry needs to complete the move from off-line product testing to on-line and in-line 

sensing. For solid dosage forms, the advances in process analyzers (e.g.: different 

spectroscopy tools) make real time control and quality assurance feasible.  

 

Figure 1-1: Comparison between traditional ‘fixed process’ pharmaceutical production (upper part of figure) 

and the PAT- based approach leading to adjustable process (lower part of figure). 

(M=measurement; C= controller; FB=feedback; FF= feedforward) [7]. 

 

Once real-time quality control is achieved in a robust and reliable manner, the same 

online measurements can be used to make product release decisions. This ability to 

evaluate and ensure quality of final product based on process data, geared towards 

making batch release decisions, is known as real time release testing (RTRt, also called 

RTR or RTRT) [8]. RTRt aims to predict the CQAs during the process, using “a valid 

combination of assessed material attributes and process control”, without requiring 

lengthy off-line (and after-the-fact) assays. This is supported and encouraged by the 

Process Analytical Technology (PAT) guidance [9] published by the US Food and Drug 
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Administration, and the ICH Q8 guideline [8]. Application of RTRt allows greater 

manufacturing flexibility, reduced inventory, lesser end product testing, lower laboratory 

costs and better quality. A better quality product can result into higher yields, lower 

rework and lower rejection rates [10].Generally, an extensive amount of on-line/in-line 

data is gathered during RTR testing, and its analysis leads to higher assurance in product 

quality, as opposed to traditional release testing conducted on a limited number of 

samples [11]. 

Multivariate Data Analysis supports the real time release testing initiative [12]. For RTRt, 

product and process information is obtained by measuring different attributes of the 

intermediates and the final product. This data needs to be gathered from the system at the 

start of the process, at regular intervals, while it is running and at the end. This approach 

generates large amounts of data as a function of controlled variables (formulation and 

process parameters) and uncontrolled parameters (environmental). An example of data 

collection for a continuous solid dosage system is shown in  

Figure 1-2. Multivariate data analysis can be of use in such situations where the 

simultaneous and combined effects of more than two variables can be determined 

statistically. 



4 

 

 

 

 

Figure 1-2: Real time release testing control strategy for continuous solid dose manufacturing.  
Courtesy of Dr. C. Moore (FDA), AAPS Annual meeting, Washington DC 2011 

 

RTRt for different CQAs can be attained by a variety of measurements; online/in-line 

measurements (e.g.: for B.U.), fast at-line measurements (e.g.: for C.U.), and/or using 

mechanistic models (e.g.: for dissolution) as surrogate measurements for in-process or end 

product property (Figure 1-3). While applying the RTRt approach, a scientifically sound 

sampling strategy should be developed and implemented. Comparing different strategies 

can help determine the relationship between different sampling methodologies, extracting 

maximum information and reducing redundancy in data collection. 
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Figure 1-3:Unified approach used for RTRT in this work. Approaches for RTR for Blend Uniformity, Content 

Uniformity, Dissolution testing were developed for a Direct Compaction system.  

Courtesy of Dr. C. Moore (FDA), AAPS Annual meeting, Washington DC 2011 

 

As mentioned, some of the CQAs for direct compaction process includes BU, CU, 

hardness, and dissolution testing. Powder blending, a crucial unit operation in the 

manufacture of solid drugs, is instrumental in determining final dose drug content 

uniformity. Traditionally, the homogeneity of blends has been determined by drawing 

samples from the blend using various methods such as thief and scoop sampling [13]. Such 

intrusive sampling leads to errors introduced due to sample thief design, motion of the thief 

through the blend during sampling, sampling angle, thief orientation in the bed, depth of 

the powder bed, etc. [14]. In the last decade, the potential of Near IR spectroscopy has been 

explored for online blend uniformity monitoring [15]. This technique is fast, non- invasive 

and can provide useful physical and chemical information about the blend in real time. 

While blend uniformity is an important consideration, the pharmacological action in the 

body is determined by the attributes of the final dosage form. In fact, it is possible for 
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blends to de-mix (i.e., segregate) during subsequent processing [16], resulting in finished 

product of poor quality [17]. Traditional approaches for content uniformity testing 

employ wet chemistry techniques like High Pressure Liquid Chromatography (HPLC) 

[18][19], which are time consuming, require solvent and sample preparation, and cannot 

be used for real time quality control. Tools enabling in-process/at-line C.U. measurement 

or prediction can help save time, allow fast and extensive quality monitoring, ensure 

increased quality assurance, and help make batch release decision real time. 

The ultimate aim of a tablet manufacturing process is to compress powder into a tablet of 

desired strength and drug release profile. Pharmaceutical companies are expected to 

perform in vitro dissolution testing to determine the drug release profiles [3]. Different 

studies have investigated the effect of compression speed [20][21], lubricant concentration 

[22][23][24][25][26] and nature of excipients [27] and pure drugs [28] on in vitro tablet 

dissolution. The dissolution test is intrinsically slow, time-consuming, expensive, and 

requires sample and media preparation. As such, this test cannot be used either as part of a 

Real Time Release strategy or for closed loop process control. Due to the above 

shortcomings, there has been growing interest in the use of non-destructive prediction of 

tablet dissolution that would remove one of the remaining obstacles to the widespread 

implementation of RTR testing[29], [30]. Two different approaches for dissolution 

prediction were investigated in this work; the first one used information gathered from NIR 

spectroscopy of tablets to predict dissolution, and the second utilized information gleaned 

from tablet NIR in combination with drug release mechanistic models to predict 

dissolution. 
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1.2. Organization of the dissertation 

In this dissertation, approaches were developed for real time release testing of tablets by 

using knowledge of material attributes, process measurements and information gleaned 

from PAT sensors to predict the CQAs in real time. Thus, the overall aim of the work was 

to determine online measurements and sampling techniques that could be used to assure 

blend and content uniformity for both batch and continuous processes, to use these online 

techniques to capture the effects of process parameters, including blend shear history, 

compaction pressure, scale of operation and formulation parameters on the properties of 

the final dosage form, and ultimately to predict drug release from the tablet. A scientific 

evaluation of the relative performance of various traditional and modern real-time process 

monitoring approaches was performed. This will aid in the migration from traditional end 

product testing approaches to real-time release strategy. 

After introducing materials and methods used in this work (Chapter 2), the issues described 

above were addressed by a research plan comprised of the following specific aims: 

Specific Aim 1: Real Time blend uniformity prediction in batch manufacturing (Chapter 

3) 

Specific Aim 2: RTRt for assessing content uniformity and comparison of different 

sampling strategies (Chapter 4 and 5) 

 Specific Aim 3: Towards dissolution prediction of tablets exposed to different levels of 

over lubrication in batch process (Chapters 6 and 7) 

Specific Aim IV: Mechanistic models combined with Near IR spectroscopy for tablet 

dissolution prediction in Continuous Manufacturing (Chapters 8) 
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This work represents a first attempt to integrate all of these techniques into a unified 

strategy to enable RTRt for Direct Compaction formulations (DC). The work described 

here can be expanded in many directions, including other techniques for RTRt, a broader 

strategy to consider other dissolution mechanism governing different formulations, 

expansion of RTRt tools to WG and DG manufacturing processes, etc. These directions 

are briefly described in Chapter 9, which focuses on conclusions and recommendations for 

future work (by other students). 
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Chapter 2. Experimental Platform designs and methodology for 

enabling Real Time Release testing (Materials and methods) 

 

2.1. Introduction 

Achieving real time release goals requires well-designed manufacturing platforms that 

assure product quality, appropriate fixtures to facilitate PAT testing, and data collection 

technologies that enable accurate, efficient, relevant, and timely data acquisition. 

Traditionally, the pharmaceutical industry has developed and manufactured products 

using batch operations. The reluctance of the pharmaceutical industry to make changes in 

manufacturing has led to process rigidity, outdated production lines with old equipment 

designs, resulting into compromised product quality, greater rejection rates, and drug 

shortages [31]. In an attempt to modernize drug manufacturing, under the FDA’s 

Pharmaceutical Quality for 21st Century Initiative, the industry is slowly shifting gears 

towards maximally efficient, agile, flexible platforms equipped with modern equipment 

and effective monitoring technologies [32]. The introduction of continuous 

manufacturing has shown the potential to achieve higher yields, lower operating, 

inventory and capital costs, reduced variability, and achieve a more consistent quality 

[33]. However, shifting to continuous manufacturing requires a complete infrastructure 

overhaul involving a shift from the extensive existing batch asset- base [34]. Extensive 

skilled work force training, developing new generations of equipment, installation of 

sensors and automation to support continuous manufacturing are some of the other key 

challenges [35]. Keeping this transition in mind, two different platforms were used in this 

study; a flexible, modular experimental station capable of blending and compressing a 
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representative range of formulations under multiple conditions, and a direct compression 

continuous manufacturing platform that is representative of the designs that have been 

implemented in many industries. 

2.2. Materials and Equipment 

2.2.1. Materials 

The work in this thesis was performed using two APIs; Phenytoin Sodium and 

Acetaminophen (APAP). The active pharmaceutical ingredients (API) were selected for 

their representativeness. The first API was Phenytoin Sodium (RIA International, mean 

particle size 20 microns), an anti- epileptic drug with a narrow therapeutic index and 

reported history of C.U. issues. This drug was chosen to maximize the public health 

impact of our studies. Semi fine Acetaminophen (Mallinckrodt Inc. Raleigh, NC, mean 

particle size 42 µm) was chosen for the later part of the work. It is a representative 

model drug, and its compaction and flow properties compare well to a majority of the 

APIs in the industry, allowing extension of the observations across the range of drugs. An 

abundantly available drug, APAP has poor compressibility and extensive elastic 

deformation, leading to different structural problems like capping, chipping, etc. Hence, 

there is a need to study the material in the case of direct compression systems and provide 

some immediate guidelines on RTR to industry. 

2.2.2. PAT Platform 

A flexible, modular blending platform (Figure 2.1) was constructed for the first part of 

the study. It consisted of a 2 cu. feet v- blender (Patterson Kelley) connected to a 36- 

station tablet press (Kikusui Libra) with the help of an in- house fabricated chute.  

Brimrose Luminar 5030 handheld NIR spectrometers (Brimrose Corp., USA) were 
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mounted on each of the arms of the V-blender. At the end of each blending cycle, 

samples of the blend were taken from the v- blender with the help of a Globe Pharma 

thief sampler (GlobePharma, New Brunswick, New Jersey). The powder was discharged 

to the tablet press hopper through the chute. The speed of the tablet press was kept 

constant at 25 rpm. A JDSU 1700 Micro NIR spectrometer was mounted on the chute to 

monitor the blend flowing through the chute. The tablets obtained from the tablet press 

were analyzed using NIR transmission mode as well as content uniformity using 

traditional HPLC method. 

                                                 

Figure 2.1: Blending platform- Blend uniformity is monitored with two Near IR spectrometers mounted on the 

blender (RSD2). The thief samples withdrawn from the blend give RSD 1. Content uniformity measured from 

tablets coming out of the tablet press (RSD 3) 

This scale of operation represented an optimum compromise between competing needs – 

the system needed to be large enough that results were meaningful to the manufacturing 

scale, but not so large as to make experimentation prohibitively expensive. 

RSD 2

RSD 1

RSD 3

RSD 2
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A step-by-step approach was taken to develop tools to predict blend uniformity and 

content uniformity. The calibration and validation approaches for blending and tablet 

analysis are highlighted in Figure 2.2. A calibration model was constructed from the 

analysis of small-scale blends of known concentration. The same blends were then 

compacted into tablets that were analyzed to build a calibration model for content 

uniformity. The usefulness of a tablet calibration model was that once in place and 

validated, it was used to scan tablets created from blends of the target formulation and 

provide information about the distribution of concentration for a large number of tablets. 

The calibration set was updated using the samples from the pilot scale runs to encompass 

the effect of the change in scale and process in the final calibration model thus produced.  

                          

Figure 2.2: Flowchart representing steps taken to generate calibration models, validation approach, and the use 

of these models to predict BU and CU. 
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All of the characterization methods (thief sampling, PAT, CU) were used simultaneously 

in order to minimize experimental error and statistical uncertainty and maximize 

comparability of the different methods. 

2.2.3. Lab Scale Shearing and Tableting Platform 

The third aim in this dissertation involved implementing an RTR strategy for tablets made 

from over-lubricated blends in a lab scale batch process. The first step was to over-lubricate 

blends by exposing them to a controlled shearing environment, followed by compacting 

the blends on a tablet press simulator using a Presster (PressterTM, MCC, East Hanover, 

NJ). The use of the tablet press emulator allowed measuring and recording compaction 

profiles of individual tablets.  

Over-lubrication was achieved by exposing the blend to a uniform and controlled shear 

environment for a pre-determined amount of time. This was achieved in a modified Couette 

cell (Figure 2.3), which consisted of two concentric cylinders that rotated relative to each 

other creating a shearing action. The equidistant baffles were uniformly spaced and the 

entire setup creates a uniform shear environment on the powder. Mehrotra et al. [36] 

observed that the cell promoted micro mixing of the ingredients by a dispersion 

mechanism, increasing the blend homogeneity. The amount of energy that was put into the 

blend was measured by measuring the resistance offered (in the form of torque) by the 

powder to the motion of the cylinders. 
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Figure 2.3: Shearing device used to impart uniform shear on blends. Inside cylinder of the Couette shear cell 

assembly with the baffles (right) The blend is poured in the annular region and the cylinders move relative to 

each other imparting the shear 

 

Tableting 

Blend samples were compressed into tablets using Presster (Figure 2.4), a tablet press 

emulator (PressterTM, MCC, East Hanover, NJ), which was set to emulate Kikusui Libra2 

tablet press. The compaction force, ejection force and dwell time for each tablet was 

displayed at the end of each tablet compaction. The simulated press was a Kikusui Libra2 

with both pre-compression and compression rolls of 200 mm diameter. The speed was 

kept constant at 20 rpm. Flat-faced punches and round dies were used to obtain round 

tablets of 10 mm diameter. The dosing position was adjusted and fixed to give tablets of a 

certain weight. Tablets were made at an average targeted force by changing the 

compaction gap. 
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Figure 2.4: Lab Scale blends were compressed using Presster, a rotary press emulator. 

2.2.4. Continuous Direct Compaction Platform 

The last part of the studies in this work, aimed towards the development of RTR methods 

for dissolution prediction, were conducted in a continuous direct compaction line at 

Rutgers University (Figure 2.5). The aim was to predict the dissolution performance of 

tablets exposed to different processing and formulation conditions in the continuous direct 

compaction line. The manufacturing line consisted of two feeders from Coperion-KTron 

(Sewell, NJ), a KT20 and a KT35 used for feeding APAP and Lactose, respectively. 

Magnesium stearate was fed through a MT12 feeder (K-Tron). The production rate was 

kept constant at around 20kg/hr. The feed rate in the feeders was adjusted to obtain the 

desired concentrations of individual raw materials. The APAP and the Lactose were fed 

into a Quadro S197 Comil, which was used to delump the active and the excipient. 

Magnesium Stearate was fed directly into the blender near its inlet to avoid over-lubrication 

in the mill. 
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These ingredients were then fed into a Glatt GCG 70 mixer with 24 blades arranged in the 

“1/3 forward + 1/3 alternate + 1/3 forward” blade configuration. In this blade configuration, 

only the middle 1/3rd (or blades 9-16) are alternated forward 45° and backward 45°.  This 

blade pattern was chosen based on a previous study, which concluded that, the “1/3 

forward” configuration yielded improved mixing performance without sacrificing 

throughput [37][38]. 

After passing the blend through the mixer, the blend passed through a chute into a tablet 

press. A 36-station Kikusui Libra2 tablet press was used in a single layer configuration. 

The press was fitted with a type B flat tooling to make tablets of 10 mm diameter. The fill 

depth was adjusted to obtain 350 mg tablets. The press was operated at a variable feed-

frame speed but a constant turret speed of 20 rpm for the 20kg/hr flow rates. After each 

step change, the system was allowed to reach steady state. The time required to attain 

steady state depended on the targeted mass flow rate in the line and the residence time of 

the blend in each unit operation. The experiments corresponding to the three different API 

concentrations were run on three separate days. After switching the processing conditions 

to a new design, tablets were collected after a time interval of 15 minutes. Point. 10 tablets 

were collected each condition.  
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Figure 2.5: Continuous direct compaction manufacturing line 

2.3. Methodology 

Information obtained from a process is often contained in different types of data, 

including spectral output from different types of spectroscopic analyzers; point 

measurements (i.e., thermocouples), and instantaneous values of process parameters 

(impeller speeds, compression forces). Interpreting this complex data is difficult, unless 

multivariate methodologies are employed to reduce dimensionality, eliminate 

redundancies, and extract critical process knowledge. Multi Linear Regression (MLR), 

Principal Component Analysis (PCA), and Partial Least Square Regression (PLS) are the 

most commonly used tools for extracting usable information from process data. 

2.3.1. Multi Linear Regression 
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Multi linear regression attempts to model the relationship between more than one 

regressor variables (X) and response variable (Y) by fitting a linear equation to the 

observed data. 

𝒀 = 𝜷𝟎 + ∑ 𝜷𝒊𝒙𝒊
𝒏
𝒊=𝟏 + 𝜺                     Equation 2-1 

where β is the regression coefficient and ε is the error term. MLR has several advantages. 

MLR methods are relatively simple to construct, easy to understand and communicate, 

since each x variable in the model can often be related to certain physical or chemical 

property of the sample [39]. The disadvantage of MLR is that the regressor variables may 

be collinear and over fitting can result into poor predictive power of the model. In this 

work, care has been taken to ensure that the regressor variables are orthogonal to each 

other and that no collinearity exits between them. 

2.3.2. Principal Component Analysis 

Principal Component Analysis is a data compression algorithm that reduces a data set (X) 

collected on M variables over N samples to a simpler lower dimensional set of 

compressed variables (K<<M) designated as principal components (PCs) [40]. The 

mathematical model for the data set X can be written in terms of a set of scores (T) and 

loading (P) of K principal components, and the remaining variability is expressed as the 

residual noise (E). 

𝑿 = 𝑻𝑷𝒕 + 𝑬                            Equation 2-2 

The scores represent the intensities of each of the K new variables for the N samples; 

loadings P can be thought of as the weight of the new K variables in terms of the M 

original variables. The first extracted principal component captures the highest amount of 

variability in the data set, followed by subtraction of that component’s contribution from 
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the data set for the calculation of the next PC. The principal components thus extracted 

are orthogonal to each other. The number of PCs are chosen such that the key information 

from dominating sources of variability is captured. The NIR data obtained for a sample 

carries information about the processing and formulation history that the sample has been 

exposed to. In this work, PCA has been used as an exploratory tool to look for features/ 

patterns / clusters in the data set obtained from Near IR Spectroscopy and to extract 

information about the sample history. 

2.3.3. Partial Least Squares regression 

PLS is the most commonly used multivariate regression method used for quantitative 

determination of the attribute of interest (Y) from the observations (X), and has been 

found to be a very robust technique [41]. In this work, PLS is applied to the spectroscopy 

data to obtain measurements that enable real time release testing [12]. Like PCA, PLS 

method follows exact same mathematical models for describing the X data. The only 

difference is that the data compression in X and Y data set is attained such that maximum 

variance in both X and Y is explained. The Principal Components are selected as those 

directions that explain the largest amount of variance in X that is directly related to the 

variance in Y, and are often called as Latent Variables (LV). PLS is susceptible to data 

over fitting and as such, the number of latent variables are carefully chosen based on 

testing the capability of the model to predict independent data sets. PLS, however, has a 

limited advantage for qualitative interpretation, since the information conveyed by the 

latent variables is abstract and rarely expresses pure physical or chemical phenomena. 

The beauty of PLS lies in the fact that the LVs are more relevant to prediction of the 

response Y than the previous discussed methods. 



20 

 

 

 

2.4. Conclusions 

Three different platforms used for carrying out the experiments aimed towards real time 

release testing were described. These platforms ranged from lab scale batch setup to pilot 

scale batch tablet production to direct compaction of tablets using continuous 

manufacturing line. The lab-scale shearing and tableting setup was used for carrying out 

over lubrication experiments for developing the RTR strategy for batch samples. The lab 

scale platform allowed optimal utilization of the limited quantity of the available APIs. 

The pilot-scale PAT platform was used for developing RTR strategy for B.U. and C.U. 

The lab-scale blending- compaction platform combined with the pilot scale PAT platform 

was used to obtain calibration samples used for building the B.U. and C.U. calibration 

models. This included a step-by-step approach for model building and validation, starting 

from the samples obtained from the small scale setup moving to the pilot scale samples. 

The inclusion of samples made at different scales helped to capture the variability arising 

due to differences in scale of operation during model building (Figure 2.2).  

Different data analysis algorithms used to process the vast amount of data generated 

during the different studies were explained. Tools to extract qualitative (PCA) and 

quantitative (MLR and PLS) information from the spectroscopic data can help reduce the 

dimensionality of the problem, reduce noise and predict the responses of interest. The 

choice of the data analysis method depends entirely on the expected outcome. The 

methods in this work were carefully chosen keeping in mind the problem statement and 

the target goal.  
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Chapter 3. Real Time Blend Process Monitoring and Blending End 

point detection using Near-Infrared Spectroscopy 

 

3.1. Introduction 

Phenytoin is a narrow therapeutic index (NTI) active pharmaceutical ingredient (API), 

widely prescribed for the treatment of epileptic seizures. Intuitively, achieving target and 

acceptable content uniformity of such NTI drug products is a public health priority. In 

case of severe or debilitating diseases (epilepsy), any change in efficacy or safety may 

result into serious or fatal complications. Studies around Phenytoin have focused on 

enhancing the drug solubility with salt formation [42], developing sustained release 

formulations [43], and studying and improving its bioavailability [44] [45] [46]. 

Phenytoin Sodium, a Phenytoin salt with enhanced drug solubility, is the active 

ingredient in commercially available oral extended release formulations. Problems have 

been reported about blend and content uniformity (CU), and about bio equivalence 

studies for the generic manufactured Phenytoin Sodium formulations [47] [48] [49]. This 

makes the study of Phenytoin sodium blends and tablets extremely important.  

Powder blending, a crucial unit operation in the manufacture of solid drugs, is 

instrumental in determining final dose uniformity. The ultimate goal of a blending 

operation is to yield a homogenous blend. Achieving blending and content uniformity is 

highly important for formulations containing Narrow Therapeutic Index (NTI) drugs. 

Thief sampling is generally used for the analysis of blend uniformity [13]. Different 

groups like Harwood and Ripley [14], and Muzzio et al. [50] found that the analysis was 
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affected not only by the thief geometry like thief probe tip, but also by the powder 

properties. It has been observed that the selection of one sample affects the selection of 

other samples from the lot. This can be the main source of variability, and can also 

introduce systematic deviations (i.e., non-existent but nonetheless detected sub- or super-

potency) usually termed as bias. Bias could arise from disturbances of the powder bed by 

the insertion of a sampling probe, also leading to localized segregation. Carstensen and 

Rhodes [51] verified this fact. Berman et al. [13] compared performance of two designs 

of thieves and demonstrated that the insertion of the thieves caused bed disturbances 

leading to size segregation. Muzzio et al. [50]  used glass beads of different sizes to 

compare three different sampling thieves. Garcia et al. [52] suggested that the choice of 

the thief should depend on the type of the formulation. The thief samples are usually 

analyzed chromatographically or spectroscopically, which often are slow, labor-intensive 

techniques and require the use of solvents and reagents. 

In the last decade, the use of Near IR spectroscopy has been explored for online blend 

uniformity monitoring [15]. This technique is fast, non- invasive and provides useful 

physical and chemical information about the blend in real time. This is in accordance 

with the FDA PAT guidelines, which encourage analyzing blend samples at-line, on-line 

or in-line [53] [54]. Some of the earlier efforts have focused on predicting the 

concentration of the active in a binary and multi- component system [55] [56]. Wu et al. 

used NIR to quantify different ingredients of the blend using a laboratory scale Turbula 

mixer [57].   Different algorithms have been employed to test the blending end point. 

Qualitative methods estimate the difference between two spectra recorded during a 

process; blend end- point is reached when no further evolution is observed between the 
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spectra over time [58], [59]. Quantitative approaches rely on developing multivariate 

regression models to predict concentration of constituents in the blends [60] [61]. The 

advantage of the quantitative approach is that the changes in homogeneity over time, and 

the deviation of the predicted values from the target concentration, can be quantified. 

While developing quantitative models, the choice of reference samples and values 

becomes important. HPLC/ UV values for samples withdrawn from powder beds using 

thief samples have been used as reference values [62]. However, with the problems 

associated with thief sampling, assigning these reference values to NIR blend scans can 

be misleading. Berntsson et al. demonstrated that recording the multiple spectra for 

calibration blends and averaging them was representative of the actual chemical content 

in the blend [25]. 

In this work, a PAT method was developed to monitor the blending operation and 

achieve dynamic control (e.g., operational endpoint determination) of blends containing 

Phenytoin Sodium, a NTI drug. This is a first reported attempt to characterize blend 

uniformity for Phenytoin Sodium using PAT methods. A DoE approach was undertaken 

to encompass the effects of excipient concentration variability on NIR spectra. The 

effects of scale changes were given due attention during model building. The data 

generated from monitoring the operational control was fundamental in 1) evaluating the 

progress of blending, and 2) predicting manufacturing performance.  

3.2. Materials and methods 

3.2.1. Materials 
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A drug with a narrow therapeutic index, Phenytoin sodium, was chosen to maximize the 

public health impact of this study. Different blends were made with Phenytoin sodium 

(RIA International) as the active pharmaceutical ingredient (API), microcrystalline 

cellulose (Vivapur PH 102, JRS Pharma, Germany), and lactose monohydrate fast-flo NF 

(Foremost) as the excipients and Magnesium Stearate NF (Mallinckrodt) as the lubricant. 

The target formulation consisted of 15% API, 40.5% MCC and lactose, and 4% MgSt 

3.2.2. Experimental design 

 An experimental design for the lab scale blending was built around the target 

formulation- 15% API, 40.5% of Lactose, 40.5% MCC and 4 % MgSt (blend O). The 

target formulation was blended for 60 min. The 3-factor inscribed central composite 

experimental design contained 17 calibration blends (Table 3-1). The variables selected 

were concentration of the API (12% to 18%), lactose and MCC (28.35 to 52.65%), and 

MgSt (2 to 6%). Three repeats of the center point were included. 

Table 3-1: DOE for calibration blends. 3 factor inscribed central composite design with API ranging from 12% 

to 18% and three replicates of center point. 

Run ID Trial ID Phenytoin MCC 102 Lactose Monohydrate MgSt 

15 A 13.22 33.28 50.69 2.81 

5 B 13.22 33.28 48.31 5.19 

17 C 13.22 47.72 36.25 2.81 

13 D 13.22 47.72 33.87 5.19 

16 E 16.78 33.28 47.13 2.81 

11 F 16.78 33.28 44.75 5.19 

12 G 16.78 47.72 32.69 2.81 

4 H 16.78 47.72 30.31 5.19 

8 I 12 40.5 43.5 4 

14 J 18 40.5 37.5 4 

10 K 15 28.35 52.65 4 

9 L 15 52.65 28.35 4 
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Six formulations, I, J, N, M, O1 and O2 from table 1 were run on the pilot-scale. Blends 

O1 and O2 contained the same ingredient concentration but differed with respect to 

mixing time, where O1 was blended for 30 min and O2 was blended for 60 minutes. The 

first five batches were a part of the calibration set, whereas blend O2 was the test set. 

3.2.3. Blending  

Lab Scale Blending: Small-scale calibration blends (150g) were made for each design 

point in plastic containers (fig 1a).  The blending was carried out for 30 min at 15 rpm 

using a small-scale V-blender. The containers were placed along the mixing axis of the 

blender (Figure 1) to simulate the V-blender mixing dynamics.  This setup ensured 

appropriate use of the limited quantities of available API. This was followed by acoustic 

mixing (30 g’s, 30% intensity, 20 seconds) using a Resonant Acoustic Mixer (Resodyn 

Acoustic Mixers, Butte, Montana, USA) to break down any agglomerates in the powder 

mixture. Osorio et al. characterized the blender and determined its efficiency for micro-

mixing of cohesive ingredients [64]. The mixing time was determined from a PCA 

analysis of previously collected NIR data, where after mixing for 30 minutes, minimal 

difference in the spectral data was observed (based on PCA score analysis). 

2 M 15 40.5 42.5 2 

6 N 15 40.5 38.5 6 

1 O 15 40.5 40.5 4 

7 P 15 40.5 40.5 4 

3 Q 15 40.5 40.5 4 



26 

 

 

 

  

Figure 3-1: a) Small scale calibration blends (left figure). Each container represented a unique blending design 

point. b) Pilot-scale blending operation with NIR mounted on the blender lids. 

 

Pilot plant scale blending: 

The pilot-scale blending operation involved a 50 % fill volume of a 56- liter V-bender 

(Figure 1 b). The powder bulk density was 0.62 g/ml and a batch size of 18 kilos was 

used.  The blender had a fixed rotational speed of 25 RPM.  The amount for individual 

components was calculated based on the design concentrations and the batch size. The 

powders for the formulations were loaded from the lower opening of the blender in a 

bottom to top fashion and blended for 30 minutes. The target formulation, O2, was 

blended for 60 minutes.  

3.2.4. Near IR Spectroscopy data collection 

Post-blending, the seventeen lab-scale calibration blends were scanned offline using two 

Brimrose 5030 spectrometers. The calibration blend was poured on the window of the 

first spectrometer and a total of ten NIR spectra were acquired over a wavelength range 
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of 1100 nm to 2200 nm, with a 1 nm step. The spectra were collected using two different 

data collection configurations (dynamic and static). In the dynamic configuration, 2 scans 

were averaged to get a spectrum, whereas, in static configuration, 64 scans were averaged 

to get one spectrum. The powder was then scooped out and poured back onto the same 

window, to collect a second set of ten spectra each configuration, for the same blend. 

Thus, a total of twenty spectra per blend per spectrometer, per design point, per data 

collection configuration were obtained. Later, this strategy was used to collect data at the 

second spectrometer, and followed for all the remaining design points. This gave rise to a 

total of 340 (17 design points X 20 spectra) dynamic configuration spectra and 340 static 

configuration spectra per spectrometer. During data collection, enough powder was 

poured on the window to achieve an optically infinite medium, in order to avoid light 

leakage for reflectance spectroscopy.  For the purpose of calibration, gravimetric values 

(from DOE) were used as the reference values. 

In the pilot-scale process, Near IR spectrometers mounted on the blender lids collected 

real-time data for the blends I, J, N, M, O1 and O2. Based on the data collection and the 

blender rotation speed a trigger period of 200 milliseconds was used.  Each spectrum was 

averaged over 2 scans (similar to the dynamic configuration). 

3.3. Results and Discussions: 

The samples used for calibration development were unique samples from the small scale 

blending effort. A global calibration approach was utilized, where the data collected from 

the two spectrometers was combined to yield a global calibration matrix. Figure 3-2 

represents the raw spectra collected for each blend; unique baselines are apparent for the 
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two spectrometers (red and blue). A greater scan averaging (64 co-adds) led to a decrease 

in the unstructured noise in the spectra obtained using static configuration. A superior 

signal- to- noise ratio was observed for the 680 static spectra (right figure) and were used 

for calibration modeling. 

 

Figure 3-2: Raw Calibration data is depicted (left-dynamic configuration, right-static configuration).  The static 

configuration spectra were observed to be less noisy. The two colors represent the NIR data corresponding to 

the two spectra collected using different spectrometers.   

The NIR spectra was pretreated using the Savitzky-Golay (SG) Smoothing and 

Derivative (15-point window, 2nd order polynomial, 1st derivative) and mean centering 

algorithm to minimize the slope and baseline differences. Figure 3-3 represents the data 

after the pretreatments were applied. 



29 

 

 

 

 

Figure 3-3: Pretreated Calibration Data; SG first derivative and mean centering.  Baseline and slope differences 

were minimized. 

 

Principal Component Analysis 

To better understand the sources of variation, the NIR data was subjected to a Principal 

Component Analysis (chapter 2, section 2.3.2). The other objective of using the PCA was 

to compare the spectral spaces of the two data collection configurations, static and 

dynamic. For this, the static configuration spectra were used as the calibration set and the 

dynamic configuration spectra was used as the test set.  

The PCA was observed to capture 96.48% of the total variability in the calibration data 

set. PC1 captured 51% of the total variance, which was attributed to the differences in the 

spectrometers (Figure 3-4 (a)). This residual variability associated with the differences in 

the spectrometers was observed in the form of peak shifts at 1150 nm and 2150 nm 

(Figure 3-4 (b)). 
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Figure 3-4: a) Scores (PCA) - PC 1 majorly sensitive to differences in spectrometers. PC 2 was majorly sensitive 

to Lactose. b) Peak shifts between two spectrometers at 1,150 and 2,150 nm.  

The second PC was observed to be sensitive towards changes in lactose concentration. 

The loadings plot for PC2 (Figure 3-5) showed higher intensity in the 1400 nm and 1920 

nm wavelength range specific to the lactose -OH band vibrations. 
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Figure 3-5: PC 2 shows specificity to Lactose, 1,400 nm and 1,920 nm – OH band vibrations 

The third PC was observed to capture the effects of changes in Phenytoin Sodium 

concentration (Figure 3-6 (a)). This was confirmed by the spectral similarity between 

PC3 and the pure Phenytoin Sodium spectrum (Figure 3-6 (b)). The peaks in the range of 

1150 nm and 1170 nm are the characteristic peaks for Phenytoin Sodium. Thus the PCA 

was able to capture and distinguish the variabilities arising from spectrometer, and the 

concentration of lactose and Phenytoin Sodium. 
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Figure 3-6: PC 3 is majorly sensitive to Phenytoin. Spectral similarity between PC 3 and pure spectra of 

Phenytoin 

The other intention of using PCA was to compare the variance space of the two data 

collection strategies (static and dynamic).  

 

Figure 3-7: Calibration (Static Configuration) and Test (Dynamic Configuration) Data – PCA Scores 

The data obtained from the dynamic configuration was projected onto the PCA obtained 

using the static configuration spectra (Figure 3-7). The scores from the dynamic spectra 

analysis were observed to overlap the scores obtained from the static configuration data. 

The preprocessing steps of smoothing and derivative were observed to help the data 

convergence by minimizing the baseline differences. This allowed the justification of the 

model building strategy, where a PLS model was created using lab-scale static data and 

updated by pilot-scale dynamic data.  

Lab scale model building for API 

Post-pretreatment, a global Partial Least Squares model (refer to chapter 2, section 2.3.3) 

was developed on the combined static configuration spectra from the two spectrometers. 
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Gravimetric (nominal) API concentration levels were used as the reference values. The 

PLS model was built using 6 latent variables, which explained 87.95 % of the total Y- 

variability. The sources of variability were observed to be the concentration of Phenytoin, 

Lactose, MCC, differences in spectrometer, and two sets of static configuration data sets 

(10 spectra each), justifying the use of 6 latent variables. 

Table 3-2: Calibration Model Statistics 

Model Statistics  

Latent Variables 6 

RMSEC ( % w/w) 0.55 

RMSECV (% w/w) 0.58 

Calibration RSD 9 % 

R2 0.87 

X-Variance (%) 97.40 

Y-Variance (%) 87.95 

 

The predicted vs reference plot for API concentration (Figure 3-8) obtained from the PLS 

model building obtained using the static configuration showed an R2 value of 87%, with a 

RMSEC of 0.55% (w/w) and RMSECV of 0.58% (w/w). 

 

 
Figure 3-8: Prediction plot is depicted.  There exists specificity to the API 
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Blend Model Update from Pilot-Scale batches: To encompass the effect of scale 

changes, the lab scale calibration model was updated by adding NIR data from the pilot 

scale batches O1 (center point of DOE) and I, N, M, J (extreme points of DOE).  The five 

batches were used for model update, and the test batch O2 (calibration centre) was used 

for testing blend end-point algorithms. The choice of the pilot scale blend data (spectra) 

to be included in the calibration model development depended on the extent of 

homogeneity achieved towards the end of the blending process. The following strategy 

was used for sampling the appropriate data from the real-time blends spectra: The 

original calibration was used to predict the concentration of API at different time points 

in the pilot scale blends. The prediction residuals were calculated and the original 

calibration was updated by the last 10 spectra in the real-time blending data that yielded a 

residual lower than ±1% w/w. This strategy was applied to data collected from both 

spectrometers. Thus a total of 100 spectra were selected (10 spectra x 5 design points x 2 

spectrometers).  The new calibration thus set contained 780 spectra (680 static 

configuration spectra+ 100 pilot scale dynamic configuration spectra).  

PLS modeling was carried out using the same pretreatments as mentioned earlier. Table 

3-3 summarizes the statistics of the updated calibration model. 6 latent variables were 

used for model building, which explained 86.21% of the total variability in the data set. 

The prediction vs reference plot (Figure 3-9) showed a specificity for API, with an R2 of 

0.86 and a RMSEC and RMSECV of 0.61 and 0.64% (w/w) respectively. 

 
Table 3-3: Calibration Model Statistics for the updated model 

Model Statistics  



35 

 

 

 

Latent Variables 6 

RMSEC ( % w/w) 0.61 

RMSECV (% w/w) 0.64 

Calibration RSD 10 % 

R
2
 0.86 

X-Variance (%) 90.09 

Y-Variance (%) 86.21 

 

 

Figure 3-9: Prediction plot for the updated model with an R-square of 0.92 

Blending End-Point: The updated calibration model was used to predict the API 

concentration real-time in blend O2 (targeted API-15%). From the predictions, moving 

window mean concentration and standard deviation were obtained. Sekulic et al. 

demonstrated the use of moving block standard deviation as a blend end-point criterion, 

where the variance converges to a low value, indicating the end-point  [65]. The moving 

block window involved one minute of mixing. The spectrometer collected one spectrum 

every two rotations (empirical observation); therefore, a moving block of 15 was used. 

Figure 3-10 (a) and (b) displays the moving mean and standard deviation, respectively. A 
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blending time of 30 minutes (360 revolutions) appeared to provide blend uniformity in 

terms of standard deviation, the mean API content, was within 10% of the target dose, the 

standard deviation was around 0.4- 0.6 (%w/w). Closeness of the mean to the target 

value, and the stability of the standard deviation signified homogeneity at the target 

concentration. 

  

Figure 3-10: (a) Moving window mean shows that the blend approaches the targeted concentration of 15% with 

blending. (b) Moving window standard deviation is depicted. 

 

A slight bias was observed in the mean API content across the two arms of the blender, 

however the average was close to the target (15% w/w). A cyclic pattern depicted in both 

plots was could be because of multiple reasons.  A possible reason could be the 

segregation and desegregation tendency of the blend. Presence of agglomerates in the 

blend can move throughout the blend in a cyclic pattern presenting themselves to the 

sampling window at regular intervals. This is investigated in subsequent work. 

3.4. Conclusion: 
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In summary, the development of an analytical platform for on-line blend monitoring and 

control provided an opportunity to investigate the challenges associated with 

implementing PAT methods for BU. Determination of the end-point of a pharmaceutical 

blending operation using online monitoring is an important step towards assuring quality 

of the final product in real time. A DoE approach helped capture the effects of changes in 

API and excipient concentrations on the blend NIR spectra. Efforts were taken to 

minimize the baseline effects owing to differences in spectrometers by different 

pretreatments. The effect of differences in scale was accommodated in the calibration 

model by updating the lab-scale calibration model with pilot scale data. The mean 

concentration after 30 minutes of blending was within 10% of the target dose (15%). This 

approach can help circumvent the issues arising because of thief sampling and is a step 

towards real time release testing. The blends obtained from this work were used for 

content uniformity analysis in the subsequent chapter. A considerable amount of work 

has been accomplished in this area by different researchers, however, the work in this 

chapter is a first attempt to develop a methodology for on-line blend uniformity for 

Phenytoin Sodium. A successful implementation of this strategy will help address the 

reported blend uniformity issues associate with this NTI drug.  
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Chapter 4. Near-Infrared (NIR) Spectroscopy-based Content 

Uniformity (C.U.) Method Development for Phenytoin Sodium 

Formulation 

 

4.1. Introduction 

The Food and Drug Administration (FDA) and European Medical Agency (EMA) 

emphasizes the role of strict guidelines around tablet Content Uniformity to ensure safety 

and efficacy of the final product. Stringent regulations around the ‘Good Manufacturing 

Practice’ guidelines require interrogation of greater number of samples to assure batch 

quality. Problems like blend segregation, API agglomeration, API sticking to the walls of 

the blending or storage containers can worsen the finished product quality. In such cases, 

there is a need for analyzing greater number of tablets to increase the confidence in the 

assessment of batch quality post compaction. The need for such extensive and effective 

sample testing is amplified further when the drug under investigation is a NTI drug. 

Traditional approaches for content uniformity testing employ wet chemistry techniques 

like High Pressure Liquid Chromatography (HPLC) [18] [19], which are time consuming, 

require solvent and sample preparation, and cannot be used for real time quality control.  

Near IR Spectroscopy has been found to be a reliable technique for fast and non-destructive 

C.U. determination. Merckle et al.[66] used both reflectance and transmittance NIR on 

tablets containing acetylsalicylic acid (ASA), ascorbic acid, and paracetamol to determine 

the C.U. for ASA. The differences arising because of scale of operation must be considered 

while building calibration models using NIR spectroscopy. Otsuka et al. [67] studied and 

incorporated the effect of scale on tablet hardness and coefficient of variation during NIR 
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spectra model building. Blanco et al. [68] expand the calibration range for the production 

scale C.U. model by incorporating lab scale samples. Variations between scale can arise 

from differences in blend shear. The NIR spectroscopy has been successfully employed to 

capture the effect of shear when the powder is exposed to different levels of strain in the 

presence of magnesium stearate [69][70]. Thus, including all these potential sources of 

variability that could arise during actual production runs has been observed to be a good 

model building practice.  

A calibration model is as accurate as the reference method used [71]. Florey et al. 

highlighted different HPLC columns and mobile phases used by different researchers to 

detect Phenytoin concentrations [72]. Atwell et al. used a mixture of chloroform dioxane-

isopropanol- acetic acid as mobile phase for simultaneous determination of phenobarbital 

and diphenylhydantoin from blood plasma [73]. The United States Pharmacopeia, USP 35, 

stated the guidelines for the assay of Phenytoin Sodium, which uses monobasic ammonium 

phosphate buffer (pH 2.5)-acetonitrile- methanol solution as the mobile phase. The prime 

requirement for using HPLC assay is that the entire amount of the drug should be released 

in the mobile phase. However, the solubility of the drug in the HPLC solvent can be 

affected for different reasons. Over blending and shearing in the presence of Magnesium 

stearate in powder blends has been observed to affect the rate of drug release from tablets 

and granules [24]. Magnesium Stearate is a hydrophobic, shear sensitive lubricant with a 

tendency to form nano- layers on API and excipient surfaces, affecting the drug release 

from the dosage form [23]. In such cases, the selection of the mobile phase used for 

dissolving the samples becomes critical before proceeding to the NIR model building. 
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Using the technique for blend monitoring developed in the previous chapter, NIR 

spectroscopy was employed to perform extensive content uniformity studies of tablets 

obtained from the “experimental station” described in chapter 2. The existing USP HPLC 

methodology was tweaked by changing the mobile phase composition.  The blends 

obtained from chapter 3 were further used for compaction and model building for C.U. 

predictions. The experimental design developed previously helped incorporate variability 

attributed to tablet production scale, formulation parameters, and tableting process 

parameters during model building. To the best of my knowledge, this was a first attempt 

reported in the literature to use NIR to predict Phenytoin Sodium C.U. real time, enabling 

faster investigation of C.U. issues, if any. 

4.2. Materials and Methods:  

The materials used in the experiments reported in this chapter were listed in chapter 3, 

section 3.2.1. The experimental design was explained in section 3.2.2. The lab scale and 

pilot scale blending were explained in section 3.2.3. The compaction of the blends into 

tablets is given in the following sections. 

4.2.1. Laboratory scale tablet manufacturing: 

The 17 lab scale blends (Chapter 3, section 3.2.2) were compacted into tablets using a 

Presster, a tablet press emulator (PressterTM, MCC, East Hanover, NJ), set to emulate 

Kikusui Libra2 tablet press (refer chapter 2, section 2.2.2). 500 mg tablets were made at 

five different compaction forces such that the tablet crushing strength varied from ~ 4 kP 

to 10kP, encompassing the variability encountered during compaction of a pilot scale 
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batch. One tablet per compaction force per blend was picked for further analysis resulting 

into a total of 85 tablets. 

4.2.2.  Pilot scale tablet manufacturing: 

The tablet compaction was achieved in the Kikusui tablet press, which was a part of the 

blending platform described in section (chapter 2, section Figure 2.1). After pilot scale 

blending operation, the butterfly valve on the blender was opened to dispense the blend 

through a chute to the tablet press (figure 1-1).  

 

 

Figure 4-1: Pilot- scale compaction setup. Post- blending. the blend was dispensed to the tablet press through a 

chute. 6 tablets were collected every minute for the entire duration of compaction. 

Five pilot scale blends were blended and compressed to different targeted hardness. Blend 

O1 was subjected to higher compaction force yielding tablets of an average crushing 

strength of 18 kP. The average crushing strength for the rest of the four blends I, J, N, and 

O2 was around 8-9 kP. 600 mg tablets were made using 10 mm diameter flat punches. The 
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tablets thus produced were stream sampled every minute for the entire duration of 

compaction.  

4.2.3. NIR data collection:  

A Bruker Optics Multi-Purpose Analyzer (MPA) FT- NIR spectrometer (Billerica, 

Massachusetts) was used to obtain transmission spectra for the tablets obtained from the 

lab scale and pilot scale runs. The spectral range was from 12500 to 550 cm-1 with a 

resolution of 8 cm-1. Each spectrum was averaged over 256 sample scans. A total of 85 lab 

scale tablets were scanned using NIR. In the case of pilot scale operation, 6 tablets were 

analyzed each time point and the total number of tablets analyzed per batch depended on 

the duration of compaction. 

4.2.4. Reference Method, High Performance Liquid Chromatography 

(HPLC) 

The tablets were analyzed for their API content using an in-house validated HPLC method. 

Two different mobile phases were tested. The first mobile phase was a 45:40:15 mixture 

of Ammonium Phosphate buffer (50mM pH 2.5), methanol and acetonitrile. This method 

was adapted from the one described for Phenytoin Sodium in USP 35 [74]. Initial method 

development for tablets highlighted the inadequacy of this method to quantify the API 

content in the tablets. This called for a further modification in the mobile phase, where the 

buffer (and hence the pH) in the new mobile phase was changed from Ammonium 

Phosphate (pH 2.5) to Sodium Borate (pH 9). The new mobile phase consisted of a 

45:40:15 mixture of Sodium Borate buffer (pH 9), methanol, and acetonitrile. Tablets 
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obtained from the lab scale blends were dissolved in the two different mobile phases and 

the average drug released at each design point was compared.  

Mobile phase 2 (containing borate buffer, pH 9) was chosen for further analysis. Each 

tablet was ground and dissolved in 40 ml of mobile phase (pH 9).  The solution was 

sonicated for 30 min at 30ºC and left overnight for dissolution. The API content was 

determined using HPLC (Agilent 1100 series) by injecting a 20µL injection aliquot of the 

dissolved, filtered and diluted tablet solution into a 250 X 4.6 mm 5µm Sonoma C18(2) 

column held at 25 ºC, at a flow rate of 1.5 ml/min. The elution time for the API was 6 min 

and was detected at a wavelength of 220 nm using a diode array detector. The API content 

was reported as weight percent of the total tablet weight for individual tablets. 

4.2.5. Multivariate data analysis 

The calibration set consisted of tablets obtained from 16 lab scale blends (A to P) and 3 

pilot scale blends (O1, I and J). For the lab scale blends, one tablet was selected per force 

setting (total of 5 compression forces) per design point, resulting into a total of 80 tablets 

(16 blends x 1 tab each force x 5 force conditions). A total of 22 tablets from three pilot 

scale tablets were included in the calibration set to account for the variability owing to 

scale differences. Random subsets consisting of 20 segments were used for cross 

validation. An internal test set consisting of two blends, lab scale blend Q (5 tablets) and 

pilot scale blend N (5 tablets), was used to the evaluate model performance for independent 

tablets. The resulting model was used to predict the tablets obtained from blend O2 

(validation set), the center point of the pilot scale runs (Table 4-1). 

Table 4-1: Calibration, test set and validation set used in model building and evaluation.  
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The data analysis was performed using Unscrambler X 10.2 (Camo, Oslo, Norway). The 

NIR data was subjected to different preprocessing combinations, and the treatment that 

offered maximum predictability was chosen. A Partial Least Squares model was developed 

to predict the drug content in each tablet from NIR transmittance spectra (X-variable). The 

tablet calibration model was built by taking the drug concentration obtained from HPLC 

for each tablet as a reference value. The effect of choosing different variable ranges 

(wavelength range) was investigated on the model effectiveness.  

The predictive capability of the model was evaluated from the correlation coefficient, bias, 

and the root mean square errors of calibration (RMSEC), cross validation (RMSECV) and 

prediction (RMSEP). The bias and the root mean square error for calibration and prediction 

were defined as  

𝑏𝑖𝑎𝑠 =
∑ (�̂�𝑖 − 𝑦𝑖)

𝑁
𝑖=1

𝑁
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∑ (�̂�𝑖 − 𝑦𝑖)

𝑁
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𝑅𝑀𝑆𝐸𝑃 = √∑ (�̂�𝑖 − 𝑦𝑖)
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𝑁
 

where �̂�𝑖  is the model- estimated property value for test sample i, 𝑦𝑖  is the measured 

property value of test sample i, N is the number of samples, w is the number of PLS factors. 

For the cross-validation and test sets, the number of degrees of freedom is takes as the total 

number of samples, i.e. N. 

4.3. Results and Discussion 

4.3.1. Modification of reference HPLC method: 

A PLS model is built such that it maximizes the covariance between the dependent 

variables (Y) and the independent variables (X). The variability associated with the 

reference method is propagated to impact the accuracy and robustness of the PLS model. 

The USP recommended method was observed to release less API and bias was observed 

between the amount of drug released and the actual amount of the drug present. The amount 

of the API released was observed to depend on the amount of MgSt in the tablet (Figure 

4-2 a). As the Magnesium Stearate concentration increased from 2% to 6%, the average % 

API released from the tablets decreased. This was true for all concentration levels of the 

API. On the other hand, the amount of MCC present did not affect the drug release. MgSt 

is a hydrophobic, shear sensitive lubricant with a layered structure [75]. With an increase 

in blend shear during prolonged mixing, MgSt is capable of forming films on other 

ingredients in the blend, delaying or reducing contact of the solvent with the API, leading 

to a prolonged drug liberation time [22][76][77]. 
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Figure 4-2: Interaction plots to study the effect of magnesium stearate on the drug released (and detected) from 

the tablets. a) For Phosphate buffer, the levels of MgSt affected the amount of drug released, with increasing 

MgSt decreased the API detected. b) For Borate buffer, the amount of drug released was independent of levels 

of MgSt. 

In an effort to increase the amount of API released from the tablet, the pH of the mobile 

phase was increased. Phenytoin sodium is an acidic salt. Serajuddin et al. [78] reported a 

low solubility for phenytoin and phenytoin sodium salt between pH 1 (solubility= 0.035 

mg/ml) to pH 6 (solubility= 0.04 mg/mL), and the solubility gradually increased as the pKa 

(pKa=8.3) of the compound was approached. With an increase in pH of the mobile phase 

(borate buffer, pH =9), the average drug released increased and was not observed to depend 

on the level of magnesium stearate (Figure 1-3b). Morin et al. studied the mechanism of 

film formation of MgSt around two excipients and found that MgSt first fills the 

irregularities on the surface of excipients before forming a continuous layer [79]. The 

hypothesis is that the increase in the pH, though did not affect the MgSt layer, increased 

the solubility of Phenytoin Sodium, increasing the concentration gradient across the 

permeable MgSt layer. This lead to the release of all of the drug into the solution. The 

reference HPLC values of the API concentration in the remainder of this work were thus 

measured using the mobile phase containing borate buffer at pH 9. 

4.3.2. Tablet Calibration modeling and model evaluation: 
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NIR transmittance spectra were acquired for the tablets obtained from the lab and pilot 

scale batches. The Figure 4-3 (a) highlights the NIR transmittance spectra for the 

calibration set (102 tablets) and the test set (10 tablets). The absorbance values for 

wavenumbers from 8600 cm-1 to 5500 cm-1 were observed to be noisy due to high 

absorbance of low energy radiation, and hence this range was truncated. The resulting 

wavenumber range spanned from 12489 cm-1 to 8609 cm-1 (variable set 1). The other region 

(variable set 2) spanned from 11772 to 11301cm-1 and 9041 to 8647 cm-1, which was 

observed to be the characteristic band for Phenytoin Sodium, as shown in Figure 4-3(b). 

The pretreatment used in Figure 4-3 (b) was a combination of baseline (BL) correction 

followed by Savitzky-Golay (SG) first derivative fitted to a second order polynomial. The 

use of the pretreatments helped enhance the API peak resolution by removing overlapping 

peaks.  

  

Figure 4-3: a) Raw Calibration and test tablet NIR spectra. The absorbance values for wavenumbers from 8600 

cm-1 to 5500 cm-1 were noisy and hence truncated. b) Preprocessed NIR spectra. The data was subjected to a 

baseline correction and Savitzky Golay first derivative to minimize the Baseline and slope differences. 

Calibration models were built for content uniformity of tablets included in the calibration 

set. The NIR data was subjected to a range of different pretreatments including a second 

derivative, and a Standard Normal Variate (SNV) followed by first derivative. The models 
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were evaluated over different wavenumber ranges (Table 4-2). The model that exhibited 

the lowest RMSEP and bias for the test set (blend Q and N) was selected. The pretreatment 

involving baseline correction followed by Savitzky Golay first derivative (fitted to a second 

order polynomial, 11 segments) over a range of 12489 cm-1 to 8609 cm-1, exhibited an R2 

of 0.91, and RMSEP and bias of 0.548 and -0.08 respectively, and was chosen. 

Table 4-2: Calibration Model Statistics. Baseline+ Savitzky Golay (SG 11(1)) first derivative was found to be the 

best pretreatment for 12489 to 8609 cm-1 with lowest bias and RMSEP. RMSEC- root mean square of 

calibration, RMSECV- root mean square of cross validation, RMSEP- root mean square of prediction 

 

The predicted vs. reference plot is depicted in Figure 4-4 for an API concentration of 12-

18%. An R2 of 0.91 and a RMSEC of 0.54% was observed, indicating a good fit. Table 4-3 

summarizes the model evaluation statistics for 1 to 5 factors. No appreciable increase was 

observed in the Y-variance explained by the model with addition of the 5th factor (0.42% 

increase in the explained variance). A RMSECv of 0.66% was observed for model built 

with 4 factors. Hence, 4 factors were chosen to build the final model. 
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Figure 4-4: Prediction plot is depicted. An R-square of 91% and a low root mean square error of calibration of 

0.54 was observed.   

Table 4-3 Calibration Model Statistics. 4 factors were chosen to build the final mode. A total of 91.06% Y-

variance was captured by the PLS model 

 

The latent variables obtained from the PLS regression are a linear combination of the 

original manifest variables. To understand the sources of variation, the contribution of each 

of the latent variables was investigated. The first latent variable (LV) explained 61% of the 

observed variation in the NIR data and grouped with increasing API concentration along 

the LV1 axis (Figure 4-5a). This was confirmed by plotting the loading plot of LV1 and 

the pretreated spectrum of pure Phenytoin Sodium (Figure 4-5 b). The loadings plot 

showed higher intensity in the range of 11772-11301 cm-1 and 9041-8647 cm-1 

corresponding to the API peaks. 
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Figure 4-5a) Scores plot shows increasing API concentration along latent variable (LV) 1. b) Loadings plot-

spectral similarity between LV 1 and Phenytoin Sodium spectrum. Latent variable 1 shows specificity to 

Phenytoin peaks for the range: 11772-11301 cm-1 and 9041-8647 cm-1. 

The second LV explained 12 % variability in the data set (Figure 4-6) and captured the 

effect of tablet hardness (crushing strength). The tablets with highest compaction force and 

hence highest hardness (15 kP for pilot scale tablets O1) exhibited negative scores on LV2. 

 

Figure 4-6 Interpretation of latent variables from scores plot. Effects of decreasing compaction force and hence 

hardness from 15 kP to 5 kP observed along latent variable 2  

The third LV, explaining 13% of the total variability, captured the effect of scale of 

operation (Figure 4-7a). The pilot scale tablets exhibited positive eigenvalues along latent 
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variable 3 (Figure 4-7b) One major difference between the two scales was the weight of 

the compressed tablets. The effect of tablet weight was confounded with the effects arising 

from the scale of operation along the LV3 axis. Including samples from pilot scale was an 

important exercise to build a robust model extending its predictive power to predict 

concentration of pilot scale tablets. 

  

Figure 4-7 Interpretation of latent variables from scores plot. Latent variable 3 captures the differences arising 

from scale with pilot scale blend I, J and O1 showing highest score on PC3 

The model developed in Figure 4-4 was used to predict the API concentration for the pilot 

scale tablets (blend O2) made at the center point of the CCI design, consisting of 15% drug. 

The scans of these tablets were projected on the calibration space. The projected data was 

contained within the 95% confidence interval shown by the hoteling’s ellipse in Figure 4-8.  
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Figure 4-8 Prediction set O2 projected onto the calibration scores plot. The projected data lies within the 95% 

hoteling’s ellipse. 

The control chart for the predicted concentration of these tablets over time is exhibited in 

Figure 4-9.  

 

Figure 4-9: Concentration predictions from tablet NIR for blend O2 (targeted 15% API concentration 

Each solid data point represented API concentration averaged over 6 tablets. The scatter at 

each time point was represented as grey dots. The average for the interrogated samples was 

observed to be around 93.58%. Some under potent tablets were observed at the beginning 
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and the end of the process where the average API concentration was below 90%. 20 

samples were randomly picked from these tablets and subjected to HPLC analysis. A 

RMSEP of 0.7 was obtained, with a bias of 0.4%. With a successful model and method 

development for C.U. of phenytoin sodium tablets, the issues with content uniformity were 

investigated and are reported in the following chapter. 

4.4. Conclusions: 

Near IR spectroscopy was observed to be an effective tool for expedited content uniformity 

predictions for a large number of tablets for Phenytoin Sodium formulation. The effects 

arising because of scale of operation, process parameter variability, and formulation 

differences were incorporated during calibration model building. The HPLC method was 

tailored to overcome the issue of API release in the solvent. Changing the pH of the mobile 

phase allowed for the release of the drug from the tablets, enhancing the reliability of the 

reference method. With a method in place for tablet C.U. analysis, the models built in this 

chapter can be utilized to predict the C.U. of tablets obtained from the pilot-scale runs. 

Implementation of such RTR strategy for C.U. using fast NIR spectroscopy, coupled with 

extensive tablet sampling helped interrogate greater number of pilot-scale tablet samples, 

and has been discussed in the next chapter.  
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Chapter 5. Comparison of sampling methodologies for a blending 

platform- online blend monitoring, thief sampling, and stratified 

tablet sampling 

5.1. Introduction 

Throughout the pharmaceutical industry, process validation programs for the manufacture 

of tablets have been influenced by the Wolin decision of the US vs. Barr Laboratories 

[80] lawsuit. The conclusions of this trial addressed problems related to sampling, 

namely, sample size, outlier testing, and the need to understand and control the 

performance of blending operations. The decision caused The Food and Drug 

Administration (FDA) to reexamine and modify its policies on blend uniformity testing, 

in particular as it pertains to sampling techniques [54]. Eventually, the FDA issued a 

‘Powder blends and finished dosage units- stratified in- process dosage unit sampling and 

assessment’ draft guidance encouraging industry to implement stratified sampling of 

compressed tablets. Ten years later, on August 7, 2013, the FDA withdrew this draft 

guidance, stating it was no longer consistent with current agency thinking [81], and 

presented several examples of companies that had failed to achieve compliance in blend 

uniformity. This highlights the persistent need for better tools to characterize blend and 

tablet homogeneity, which has been addressed in this work. For successful 

implementation of real time release testing, the utility and accuracy of different PAT 

sampling methods should be demonstrated. Comparison of these methods to traditional 

sampling and testing can help justify the move towards real time release testing. 

Traditionally, blend homogeneity is assessed using thief sampling [13]. The objective of 

a sampling methodology is to obtain unbiased, representative blend samples assessing the 
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true content uniformity of the blend. The problems associated with thief sampling have 

been discussed in Chapter 3 [50]. Online blend monitoring using Near IR spectroscopy 

has been established as a fast, non-destructive tool and has been discussed thoroughly in 

Chapter 3. One of the objectives of blend uniformity analysis is to enable prediction of 

tablet content uniformity. A perfect blend does not always ensure a perfect product. 

Introduction of a transfer step during powder handling operation makes a well-blended 

powder susceptible to segregation [82]. Stratified sampling is the process of selecting 

locations deliberately from various locations within a lot or batch or from various phases 

or periods of a process to obtain samples [52]. Garcia et al. showed that the total variance 

for the thief sampling strategy was twice that observed for tablets compressed from the 

blend [83]. Stratified tablet sampling can help reduce the efforts associated with powder 

sampling, reduce operator and environmental exposure to potent drugs.  

Stratified sampled tablets, when analyzed using fast, online tools like NIR spectroscopy 

(discussed in chapter 4), can help interrogate hundreds of samples and hence increase the 

level of scrutiny. It can help detect deficiencies in formulations and manufacturing 

processes that may have gone undetected (or wrongly assigned) under traditional 

sampling. API agglomeration is one such problem, which can be detected using extensive 

blend and tablet sampling. API agglomerates may be created or enhanced during low 

shear blending operation and can lead to an observed under-potency with occasional 

detection of super potent tablets [84]. Llusa et al. demonstrated the utility of extensive 

sampling to detect these occasional super-potent samples [85]. Agglomerates can break 

and reform during different unit operations and the high shear units can be effective in 

breaking the agglomerates [86]. However, high shear units increase the risk of over 
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lubrication [24], and extreme caution must be taken to avoid its side effects like reduced 

tablet strength and slower tablet dissolution. 

Powder segregation is another ubiquitous phenomenon in dry- powder handling 

operations [87]. Achieving blend homogeneity during blending operations can be limited 

if the blend exhibits a tendency to segregate. Introduction of a transfer step during 

powder handling operation makes a well-blended powder susceptible to segregation. 

Such post-blending can be detected by stratified sampling of the resultant tablets [88].  

To address the above concerns, an experimental station (pilot-scale) was used, capable of 

blending and compressing formulations, consisting of a blender, a discharge station, and 

a tablet press. Blending end-point was detected for this system using online blend 

monitoring with Near IR spectroscopy. Simultaneously, thief samples were withdrawn 

and examined to determine their accuracy (or lack thereof). The blends were then used to 

make tablets, which were tested to determine correlation (or lack thereof) between thief 

sampling and finished product CU. Tablet calibration model was built and validated 

using NIR, and was used to scan tablets created from the pilot scale blends and provide 

information about the distribution of concentration over a large number of tablets. 

Extensive Content Uniformity studies using tablets were undertaken to provide a rigorous 

basis for assessing and validating the various thief sampling and PAT methods and 

determine their relative accuracy and reliability. 

5.2. Materials and Equipment 

5.2.1. Materials 

The materials are given in chapter 3, section 3.2.1. 
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5.2.2. PAT Platform 

The design of the PAT platform is given in chapter 2, section 2.2.2. 

5.2.3. Online blend monitoring 

The methodology for online blend monitoring was developed in Chapter 3. The blending 

process was monitored for target blend O2, and the blend end-point was predicted 

(chapter 3, Figure 3-10) using this methodology.  

5.2.4. Thief sampling 

 

Figure 5-1: Thief sampling locations on the two arms of the V- blender (left). The Globe Pharma thief sampler 

(right) used for sampling. Outer shell of the thief is closed during insertion. Once the thief is inserted, the probe 

shell is opened such that the powder flows into the sampling cavities. 

After completion of the blending operation, thief samples were withdrawn at twenty 

different locations for three pilot scale blends- O1, O2 and N. Samples were extracted at 

20 sampling positions per blend- (5 spots* 2 heights *2 arms of blender) (Figure 5-1 (a)) 

using a globe pharma thief sampler (Figure 5-1 (b)). The globe pharma thief sampler is a 

side-sampling probe with an outer sleeve surrounding an inner pipe. The probe was inserted 

into the blend, and the sleeve was turned to align the opening in the sleeve with the cavities 

in the inner pipe to allow powder flow into the cavities [50]. The sleeve was then closed 

and the probe was removed from the blend. These thief samples were analyzed using HPLC 
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to determine the drug content in each sample. The HPLC method was described in Chapter 

4, section 4.2.4. A 45:40:15 mixture of sodium borate buffer (pH 9), methanol, and 

acetonitrile was used as mobile phase. The entire approach was to test the utility of thief 

sampling for blend uniformity characterization. The results were compared to the results 

from blend uniformity monitoring and with tablet C.U. 

5.2.5. Content Uniformity predictions 

The methodology for calibration model development and tablet predictions for pilot-scale 

tablets C.U. using NIR spectroscopy was discussed in Chapter 4. Phenytoin Sodium 

concentration was predicted for six tablets collected every minute over the entire duration 

of compaction. An example for assay of blend O2 tablets was shown in Figure 4-9, 

chapter 4. Similar predictions for tablet C.U. were done for blends O1, N, J and I. 

5.3. Results 

5.3.1. Comparison of thief sampling and stratified sampling 

A test-of –fit for a normal distribution for thief samples and their respective tablets is 

shown in Figure 5-2. The tablet and thief assay values were plotted against the 

standardized Z scores, a straight line fit to the data indicates a normal (Gaussian) 

distribution. The slope of the straight line represents the standard deviation of the 

distribution function, and the ordinate is equal to the average concentration of the 

samples. The tablets exhibited average assay of 99%, 93.58%, and 97% for blends O1, 

O2, and N respectively. The standard deviation for the tablets was observed to be lower 

as compared to the thief samples for blend O1 and N.  
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Figure 5-2: Normality plots for thief samples (triangles) and tablets (circles). The intercept on Y-axis is the 

average assay. The thief samples were observed to be super potent.  

All the thief samples were observed to have assay values higher than the label claim, with 

average assay in the range of 106-108 %. The thief sampler was observed to 

preferentially sample API compared to the API consistently. A similar situation was 

observed by Garcia et al., where the over potency of the thief samples was attributed to 

better flow of API into the thief cavity owing to the larger size of the API particles [89]. 

They also investigated the role of static charges in sampling bias, and observed that 

grounding the blender reduced the thief sampling bias and the assay moved closer to the 

label claim.  



60 

 

 

 

To investigate the reasons for the observed thief sampling bias, material cohesion was 

tested using the shear cell methodology in the FT4 (Freeman Technology, 

Gloucestershire, UK). The material to be tested was filled into a 25x10 ml vessel and the 

cohesion values were measured at an applied normal stress of 9 kPa [90]. The API was 

observed to have a cohesion value of 1.51 (Table 5-1). Wang et al. gave a correlation 

between the cohesion values and the flow function coefficient of the materials [91]. 

Using this criterion, the API was categorized into ‘poor flowing’ as compared to the other 

excipients. Owing to its poor flowability, the chances of the API preferentially flowing 

into the thief cavity were ruled out. 

Table 5-1: Cohesion values obtained from shear cell testing in FT4. The API displayed highest cohesion and 

poorest flow among the four ingredients 

 

To further investigate the sampling bias, the blending and sampling experiment was 

repeated on a smaller scale for the center point O (15% API). The individual ingredients 

were de-agglomerated by sieving, layered from bottom to top in a 1.87 L V-blender, and 

blended for 30 minutes. Three thief samples were withdrawn from the blender at different 

locations. Agglomerates up to 5 mm were evident in the thief samples (Figure 5-3). The 

agglomerates were sieved out using 45 mesh sieve (0.355 mm opening diameter), the 

sifted powder was collected on the lower pan and the sieve fractions were analyzed using 

HPLC. The sifted agglomerates were observed to be 70-80% in API concentration. The 
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agglomerate mass fraction was in the range of 0.04 to 0.06. The cohesive nature of the 

API may have led to agglomerate formation. The preferential flow of the relatively larger 

API agglomerates in the sampling cavity was believed to have caused the observed thief 

sampling bias.  

 

Figure 5-3: Agglomerates observed in thief samples, agglomerate size ranging up to 5 mm.  

 

5.3.1. Stratified sampling can detect agglomeration  

The predicted tablet assay values for API are reported in Figure 5-4. Except for blend O2, 

the average tablet assays for all the sampling points were observed to lie in the 90-110% 

interval. In the case of blend O2, the tablets were observed to be sub-potent, with an 

average tablet assay of 93.58%. Blend O2 was mixed the longest (60 min). Material was 

observed to stick to the walls of the blender after the blend was dispensed out to the tablet 

press. The residual powder was collected and subjected to HPLC analysis. The samples 

revealed high API concentration (60- 65%). This could be a possible reason for the 

observed average sub potency of tablets.  
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Figure 5-4: Control charts for C.U. for different blends. The average assay for the three blends (O2, N and I) 

was found to be sub potent and some API was observed to stick to the walls of the blender.  

Tablets compacted from blend O2 were observed to exhibit lower assay values towards 

the end of the compaction run. As mentioned earlier, thief samples were withdrawn at 

two different heights inside the V-Blender. Analysis of Variance was carried out to 

examine the effect of sampling height on blend assay (blend O2). The effect of sampling 

height on thief sample assay was found to be significant (Table 5-2). The samples 

extracted from the bottom of the blender were observed to exhibit higher assays as 

compared to the samples at the top.  

Table 5-2: Analysis of Variance to examine the effect of height on blend thief assay. The bed height was found to 

have a significant effect on thief assay 

Source  DF  Adj SS  Adj MS  F-Value  P-Value 

height   1   34.28  34.277     9.82    0.006 

Error   18   62.85   3.492 

Total   19   97.13 
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Figure 5-5: Interval plot to examine the effect of sampling height on blend assay. The mean blend assay for the 

two heights were significantly different.  

Because the powder at the top of the blender is discharged onto the tablet press last, the 

lower thief assay values at the top of the blender could have resulted in the observed sub-

potency of the tablets towards the end of the compaction cycle. 

5.3.2. Stratified sampling can detect segregation 

 

The tablets compacted from blend J with highest API concentration (18% API) were 

observed to display two different population distributions with time (Figure 5-6). 

Stratified sampling was able to detect the gradual increase in the tablet concentration with 

time and hence detect blend segregation. Unfortunately, no thief sample data was taken 

for this blend.  
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Figure 5-6: Ability of extensive stratified sampling to detect segregation post blending.  

Thus an extensive sampling protocol can help detect presence of segregation or 

agglomeration in tablets. 

5.3.3. Comparison of Online blend monitoring with thief sampling 

This section involved comparison of the online blend monitoring approach with the 

traditional thief sampling methodology. A sampling procedure must be designed to 

account for the dynamics of the mixing process [50]. As discussed, PAT sampling of the 

blend using online NIR spectrometers has been observed to be an effective method to 

detect the dynamic progress of blend macro- mixing, and to predict the blend end point. 

However, the applicability of online blend monitoring to detect blend micro-mixing 

issues and diagnose the presence of agglomerates has not discussed in the literature.  

In our work, the online PAT method was observed to predict the progress of the blending 

and predict the blend end-point. The presence of API agglomerates in the blend was 

evident from the thief sample analysis in the previous section. The thief sampling was 

prone to sampling bias, and hence the measurement was not necessarily representative of 
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the actual degree of blend uniformity (Figure 5-2). The extensive C.U. sampling of 

tablets was able to detect the presence of super-potent tablets. 

 

Figure 5-7: a) Online blend monitoring PAT method enabled prediction of blend end point. Cyclic patterns were 

observed as blending progressed. 

Cyclic fluctuations with a certain frequency were observed during online blend 

monitoring as the blending progressed. These could be the inherent spectrometer 

fluctuations or could arise from dynamic mixing – demixing phenomenon inside the 

blender. This issue should be investigated in future work. No correlation or pattern was 

observed between the formulation parameters and the observed agglomeration or 

segregation trends.  

5.4. Conclusion: 

A platform approach was adopted to investigate and compare different sampling 

methodologies for a direct compaction blend. Sampling bias was observed for the 

samples taken using the globe pharma thief, where the probe was observed to over 

sample the blend even when the blend was actually sub-potent. This was explained by the 

abundance of the API agglomerates and their preferential flow into the sampling cavity. 
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The online PAT system for blend monitoring was effective in tracking the macro-mixing 

of the blend. Its utility to detect micro-mixing, including the presence of agglomerates, is 

under investigation.  

The utility of extensive stratified sampling to detect the presence of agglomerates and 

segregation was studied. Stratified sampling was observed to detect the presence of super 

potent tablets. An extensive stratified sampling can be of further importance in low- dose 

products, where agglomerates can occur infrequently and have lower probability of 

getting captured by limited number of samples. Choosing the right sampling tools and 

strategies is an important aspect of real time release testing. This work enables 

implementation and comparison of different PAT sampling techniques as well as 

traditional methods using a platform approach to determine their reliability and accuracy 

(or lack thereof).  
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Chapter 6. The effect of mechanical strain on properties of lubricated 

tablets compacted at different pressures 

 

6.1. Introduction 

Manufacturing pharmaceutical tablets by direct powder compression involves 

several processes, including die filling, powder densification, compact formation by 

inter-particle bonding, and tablet ejection and relaxation. These processing steps can 

have a significant effect on tablet properties, such as tablet porosity, tensile strength 

and hardness, and dissolution. The work in this chapter forms the basis for 

understanding the effects of different process parameters on the evolution of tablet 

structure, and ultimately on tablet hardness and dissolution. Understanding these 

effects is essential in order to devise strategy for real time release prediction of tablet 

dissolution using Near IR spectroscopy.  

The presence of lubricants in the blend can have a significant effect on tablet 

properties. It is well known, for example, that tablet tensile strength decreases as 

lubricant concentration increases. One of the most common lubricants present in 

pharmaceutical formulations is magnesium stearate (MgSt), and different studies 

have explained the effect MgSt concentration on tablet properties. Mollan et al. [92] 

observed that the total work put in during compaction decreased with an increase in 

lubricant concentration, which was attributed to decreased particle cohesiveness. 

Wang et al. [26] demonstrated the detrimental effect of MgSt on tablet hardness and 

both Wang et al. [26] and Uzunović et al. [22] found a decrease in dissolution as a 

function of increasing MgSt concentration. The effect that lubricants have on tablet 
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properties also depends on the excipients present in the formulation and their 

behavior during compaction [25]. DeBoer et al. [93] used SEM imaging to show that 

MgSt exhibited maximum effect on excipients which underwent plastic deformation 

without fragmentation and Vromans et al. [94] confirmed the effect of magnesium 

stearate to be dependent on a number of factors, including particle size, flowability 

and the mechanism of consolidation of the excipients.  

In addition, during tablet manufacturing, the powder blend is exposed to different 

intensities of shear and normal stress, moisture, and temperature fluctuations. For 

example, in a typical mixing operation, the particles move relative to the mixer blades 

and vessel walls as well as relative to each other, leading to the dissipation of 

mechanical energy via frictional work. The shear experienced by the powder blend 

can also affect tablet properties and quality, particularly tablet hardness and 

dissolution. In the presence of MgSt lubricant, it is generally accepted that increased 

shear leads to an increase in MgSt coating of other excipients. In fact, Pingali et al. [95] 

studied SEM images of powder particles and showed that MgSt coated other materials 

in the blend as shear increased. Using a modified Couette cell, Mehrotra et al. were 

able to show that the relevant variable to quantify the effect of shear is the induced 

strain, defined as the integral of shear rate with time, which can also be thought as 

the extent of shear, or as the shear degree.  This coating phenomenon also explains 

the decrease in powder wettability with increasing strain, as observed by Pingali et 

al. [24]. As a result, the amount of lubricant and the strain experienced by the blend 
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decreases in-vitro dissolution rate. The detrimental effect of excessive shear is 

generally known as the “over lubrication effect” [96] [97] [24].  

If as hypothesized, MgSt is coated onto other particle surfaces, the tablet 

microstructure should change, depending on formulation and process parameters. 

The tablet hardness depends not only on tablet porosity, but is also affected by the 

bonding between the particles. While there is no direct way to estimate the effect of 

strain on the bonding between the particles, the “work of compaction” approach, 

which involves studying the energy input during different stages of compaction, has 

been shown to take into account these effects on tablet microstructure and is also 

easy to compute.  Antikainen et al. [98] adopted a similar approach to determine the 

deformation, fragmentation and elasticity values of different materials satisfactorily. 

Mollan et al. [92] used the force displacement curves to demonstrate the decrease in 

effects of lubrication on compaction and post compaction properties of 

maltodextrins. Kottala et al. [99] studied material bonding strength between and 

within the layers of bilayer tablets as a function of material properties, lubricant 

concentration, and compaction parameters. 

However, the effect of total strain on tensile strength and porosity, both in-die as well 

as after relaxation, and the effect of strain on inter-particle bonding, has not been 

studied extensively, which is one of the aims of this work. These form the building 

blocks for the real time release prediction of tablet dissolution. 

6.2. Materials and methods 

6.2.1. Materials 
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In all the experiments, the blend formulation consisted of 90% lactose (w/w), 9% 

acetaminophen, and 1% magnesium stearate (MgSt).  We used lactose monohydrate 

NF as excipient material (Foremost farms, Rothschild, Wisconsin), semi-fine 

acetaminophen as an active ingredient (Mallinckrodt Inc. Raleigh, NC) and MgSt NF 

as a lubricant (Mallinckrodt, St. Louis, Missouri, lot: P09247). The mean particle size 

for lactose, acetaminophen and MgSt were 90 µm, 42 µm, and 38 µm, respectively, 

and they were sieved to remove any possible agglomerates. Acetaminophen is a 

model drug widely used in industry. It has poor compressibility, compromising the 

structural integrity of the resulting compacts. Hence there is a need to study direct 

compression systems with formulations containing acetaminophen as the active  

6.2.2. Experimental Design:  

A full factorial design was adopted with 4 levels of shear strain (0,160, 640 and 2560 

revolutions of the Couette device [96], see below) and 5 compaction forces (8, 12, 16, 

24, 30 kN)  

6.2.3. Blending 

First, lactose and acetaminophen were layered from bottom to top, and mixed in a 

1.87 L V-Blender (Patterson Kelley) at 15 rpm for 15 min. Then, magnesium stearate 

was added to this pre-blend and mixed for 25 revolutions. The mixing time for the 

lubricant was kept low and the blender intensifier bar was not operated in order to 

have minimum exposure to uncontrolled shear in the blender prior to exposing it to 

controlled shear in the Shearing Device (Couette Cell). Two 1kg blends were made 

and subsequently divided into 300g samples for the modified Couette shear cell.  
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6.2.4. Shearing- Couette shear cell 

There are different ways to impart shear onto blends; varying the mixing time in a 

blender is one of them. However, this method is scale dependent and powder in 

different areas in the blender experience different shear rates. Mehrotra et al. [100] 

suggested a systematic approach to expose the blend to uniform shear by using the 

Couette shear cell (Chapter 2, Figure 2.3) A similar approach was adopted in this 

study. The design of the shearing device is explained in (Chapter 2, section 2.2.3). The 

300 g samples obtained from the blending procedure were subjected to a controlled 

uniform shear environment in a modified Couette cell [96]. The shear rate was kept 

constant at 80 rpm for all the design points. The first sample was not sheared in the 

cell. Three additional samples were subjected to 160 revolutions (sheared for 2 

minutes), 640 revolutions (8 minutes), and 2560 revolution (32 minutes), 

respectively. These levels have been shown to span the entire range of strain values 

used in direct compression processes [100]. The terms ‘total shear’ and ‘strain’ are 

used interchangeably in the remainder document. 

6.2.5. Tableting 

Sheared powder samples were compressed into tablets using a tablet press emulator 

(PressterTM, MCC) and is described in Chapter 2, section2.2.3. 350 mg tablets were 

made at a nominal force of 8 kN, 12 kN, 16kN, 24 kN, and 30 kN by changing the 

compaction gap between the punches. The tablet thickness varied from 3.4 mm to 3.0 

mm. To reduce tablet variability, the first few tablets were discarded until stable force 

and mass were obtained.  

6.2.6. Tablet porosity measurements:  
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The volume of the tablets was calculated from the thickness and diameter of the 

tablets. The porosity was calculated from true density measurements of the 

individual components obtained from literature (lactose- 1.54 g/cc, Semifine 

acetaminophen- 1.29 g/cc, magnesium stearate- 1.03 g/cc) and their respective 

proportions in a single tablet. The measured true density values from Helium 

Pycnometry (1.55 g/cc, 1.29g/cc and 1.04g/cc for lactose monohydrate, 

acetaminophen and magnesium stearate respectively) agreed with the reported. The 

blends and tablets were processed and stored in temperature and humidity- 

controlled environment where the temperature was maintained at 220C and the 

humidity at 50% RH. None of the materials was known to be hygroscopic and the 

effect of moisture content on tablet density was neglected.  It was assumed that each 

tablet contained the targeted concentration of individual components. Tablet 

porosity was measured both during (in- die) and at the end of compaction process 

(out-of-die). The in-die tablet porosity was calculated from the compaction force-

thickness profile, obtained directly from the Presster. A certain amount of axial 

relaxation was observed when the tablets were taken out of the die. The porosity after 

relaxation was calculated by measuring the tablet thickness after it was removed 

from the tablet die. The tablet diameter remained constant at 10 mm and 

comparatively less relaxation (0.4%) was observed in the radial direction compared 

to the axial relaxation.  

6.2.7. Tensile strength testing 

The tensile strength was calculated using the Brazilian disk test [28], where the tablet 

was subjected to diametrical compression between two parallel plates in the 
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Scheulinger tensile strength tester. The tablets cracked in brittle form under tensile 

stress and the maximum crush force was recorded to give the tensile strength 

as, 𝑠𝑚𝑎𝑥 = (2 ∗ 𝐹) ⁄ (𝜋 ∗ 𝐷 ∗ ℎ), where smax is the tensile strength, F is the breaking 

force, D is the tablet diameter and h is the tablet thickness. As an important detail we 

note that the tablets from the condition 2560 rev compressed at 30 kN chipped during 

the procedure and hence were not used. 

6.2.8. Work of compaction, plastic and elastic energy calculations:  

 

Figure 6-1: Load-displacement curve for compaction. Area under OBC+BCC’ gives the total work input (Win). 

Area under the BCC’- elastic recovered work (WER). Porosity calculated at point O represents the bulk 

porosity during die fill; porosity calculated at point B represents porosity at maximum compression force and at 

point C represents final in-die porosity. 

 

 



74 

 

 

 

Figure 6-2: An example of the compaction curves obtained during tableting for different maximum compaction 

forces. Different colors and symbols correspond to different compaction force. 

 

The work of compaction was calculated for each tablet from the force-displacement 

profile [101]. The total work input (Win) during the compaction process is given by 

area under the curve- OB as shown in Figure 6-1. As discussed before, the maximum 

punch displacement (or minimum tablet thickness) was set to obtain the nominal 

compaction force, but some small variations in compaction force were present. 

During the decompression phase- curve BC in Figure 6-1, the tablet expands and the 

elastic energy recovered during unloading (elastic relaxation- EER), is given by the 

area under the BCC’ curve. The force-displacement profiles for tablets made at 

different compaction forces are displayed in Figure 6-2. The height of the peak 

changed with respect to the intended maximum compaction force. 

6.3. Results and Discussion: 

The results are divided into three sections wherein the effect of the process 

parameters on the porosity and on the tensile strength of the tablets is discussed.   

6.3.1. Effect of compaction force and total strain on tablet porosity 

Figure 6-3 shows the average porosity of the tablets after relaxation as a function of 

compaction force for different strain levels. Porosity was measured immediately after 

ejection. No further relaxation was observed after a week. 
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Figure 6-3: Porosity after relaxation of tablets (out-of-die porosity) compacted at 4 strain and 5 force conditions. 

The tablet porosity decreased with an increase in the compaction force, but blend strain had no discernible 

effect.  

 

Tablet porosity decreased with an increase in compaction force, as expected. 

Surprisingly, however, there was no discernible effect of total strain on final tablet 

porosity. Mehrotra et al. observed that the applied strain had a significant effect on 

blend tapped density [100], which could be expected to affect the porosity of the 

compacted tablets. However, a response surface regression confirmed that only the 

compaction force had a statistically significant effect on tablet porosity (see Table 

6-1). The residuals were normally distributed as shown in Figure 6-4. To validate this 

conclusion, the shear effect size was taken into consideration [102].  The shear effect 

size was equal to 2 times the shear regression coefficient (2*0.003170=0.006340). 

The 95% shear confidence limit was computed using the t-statistic. For a 95% 

confidence interval and error degress of freedom (here =13) , the t-statistic was 

2.160. Thus the confidence limit was t-statistic*2*SE coefficient= 0.0078, which was 
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observed to be larger than shear effect. Hence it was concluded that the shear did not 

have a significant effect for alpha of 0.05. 

  
 

Figure 6-4: (left) Residual plots for porosity. Shear had no significant effect on tablet porosity. The residuals 

show no trend with observation order.  

Table 6-1: (right) Response surface regression to determine the effect of shear and force on porosity after 

relaxation. Force had a significant effect on tablet porosity. The effect of shear was not significant.  

 

In contrast, the in-die porosity exhibited a clear trend as a function of the shear strain. 

Figure 6-5 depicts the evolution of tablet porosity during the compaction process as a 

function of blend shear, for a compression force of 12 kN. Each curve represents an 

individual tablet. Similar plots were obtained for the different compaction forces 

studied here (8, 16, 24, 30 kN). 
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Figure 6-5: Compaction curves in- die for a compaction force of 12kN. The different symbols correspond to 

different shear-strain levels as indicated. The bulk porosity during die- fill decreased with an increase in strain. 

The final porosity at the end of the unloading phase was observed to converge for different strain levels. Each 

curve represents a single tablet.  

  

The compaction curves were also used to calculate the porosity values at different 

stages of the compaction process. The average porosity at different compaction 

stages for a nominal compaction force of 12kN as a function of shear strain is 

presented in Figure 6-6. The bulk porosity during die filling (corresponding to point 

O in figure 2) was observed to decrease with shear strain, from 36% to 27%, 

approximately. This was consistent with previous observations, where the particles 

exposed to higher strain levels packed better during die filling [100]. In addition, the 

total strain had an effect on porosity at maximum compression (point B in Figure 

6-1). The corresponding minimum in-die porosity varied from 6% to 9% (see figure 

6). The final in-die porosity post unloading (point C in Figure 6-1), showed less 

dependence on the shear-strain compared to the die-fill porosity, with porosity 

close to 10%-12% for tablets at all strain levels. Thus, a clear convergence in the 

porosity values was observed as a function of shear strain, from initial bed 

porosities, to the minimum porosities at maximum compression and in-die post 

unloading porosities. Although most of the axial recovery was observed to occur 

during the in-die unloading phase, further relaxation was measured after ejection.  
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Figure 6-6: Effect of blend shear on porosity at different stages during and post compaction. A part of tablet 

deformation was recovered during the in- die unloading stage and the remainder was recovered after the tablet 

was taken out from the die. The recovery was highest for higher strain tablets indicating compromised inter-

particle bonding inside the tablet compact.  

 

To gauge the effects of shear on relaxation in-die during the decompression phase, 

the percentage of apparent axial recovery of each tablet was calculated according the 

equation: 

Apparent axial recovery in-die = (Ɛ-Ɛmin)*100/Ɛmin  Equation 6-1  

 

where Ɛmin is the minimum porosity (at maximum compaction) and  Ɛ is the final 

porosity in- die. The in- die axial recovery during the decompression and ejection 

phases for compacts made at 12 kN force is plotted inFigure 6-7. with an increase in 

the strain level, the tendency of the compacts to relax increased from 28% to 60%. 

For tablets compacted at 8 kN and 16 kN, as strain increased from 0 to 2560 rev the 

axial recovery increase ranged from 16 to 25% and 70 to 147% respectively. Thus, 
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the  tablets compressed under higher compaction forces were observed to relax 

more.  

 

Figure 6-7: Percentage axial recovery in-die as a function of strain for compacts made at 12kN-targeted force. 

Increase in the strain correlated to an increased tendency of tablets to relax. Axial expansion was greatest for 

the compacts that were least bonded, which occurred for higher strain level.  

 

Magnesium Stearate acts as a glidant along with being a lubricant. This reduces the 

particle- particle friction as well as the die wall friction, which leads to efficient 

packing during die-fill. As far as the effect of force at constant strain was concerned, 

during the decompression stage, the compacts with lowest porosity (and hence, 

maximum force) were the ones that showed maximum relaxation. 

6.3.2. Work of compaction: 

During tablet compaction, the total work input is utilized in both reversible (elastic 

deformation) and irreversible processes (plastic deformation, fragmentation, and 

friction) [103]. A fraction of the elastic energy is recovered (EER) during ejection, off-

die relaxation, and/or breakage. The rest remains trapped in the tablet in the form of 

residual stresses, which develop during the loading and unloading process. The 
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ability of the tablet to store residual stresses depends on the formation of bonds 

during the consolidation process and their strength. Therefore, the elastic energy 

recovered is an indication of bond strength.  

 

Figure 6-8: Total input work (Win) during compaction (kJ/kg) as a function of total strain. The work decreases 

with increase in strain.  

 

First of all, let us note here that the total input work (Win, the area under the force- 

displacement curve) was relatively insensitive to the initial porosity before the 

compaction process (i.e. porosity during die-fill). On the other hand, the total work 

input increased with the compaction force, as expected.  For a given nominal 

compaction force, the total work input was observed to decrease with shear strain as 

shown in Figure 6-8. In addition, the elastic energy recovered per unit total input work 

increased with shear strain, as shown in Figure 6-9.  
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Figure 6-9: Elastic energy recovered (kJ/kg) during in-die unloading per unit total work as a function of total 

strain. It showed an increase with increase in strain. Weak compacts resulting from insufficient bonding can 

only store limited amount of elastic energy in the form of residual stresses after ejection, leading to a larger 

fraction of elastic energy recovered during unload.  

The experimental record shows that EER increases with blending strain, which may 

be attributed to weak particle bonding. As strain increases, the evenly distributed 

magnesium stearate hinders particle bonding. Hence, the portion of elastic enery 

recovered shows an increase with increasing strain level as can be seen in Figure 6-9. 

Similarly, during the unloading phase, the axial expansion of the compact was 

maximum for particles that were less bonded, which occured for high values of the 

blending strain. This can be observed from Figure 6-7, where blends that were 

sheared least exhibited a lesser percentage of axial recovery.  

 

6.3.3. The effect of blend strain and compaction force on tensile strength of 

tablets 

The observed correlation between tablet tensile strength and porosity can help 

determine the strength and degree of interaction between particles in the compact.  

In Figure 6-10, the measured tensile strength was presented as a function of porosity. 
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First of all, the tensile strength was observed to decrease as the porosity of the tablets 

increased. More important, the tensile strength showed a clear dependence on the 

shear strain. For a given porosity (or compaction force), the tensile strength of the 

tablets diminished with increasing shear strain. This confirms that the porosity of the 

tablets alone was not sufficient to capture the effect of shear strain on the strength of 

the tablets. In other words, tablets with the same densification showed significantly 

different tensile strengths depending on the shear strain experienced by the blend. 

This can be attributed to the coating of materials with magnesium stearate, reducing 

the interparticle contact required for bonding and to create stronger compacts. This 

is in accordance with Mollan et al. where as the total work input during compaction 

increased, the compacts formed became stronger due to higher amount of energy 

utilized in the formation of bonds, provided that the die wall friction was minimal 

[92]. 

 

Figure 6-10: Tensile strength as a function of tablet porosity. The tensile strength was affected by both 

compaction force and strain. Porosity alone was not sufficient to predict tablet hardness. The extent of 

magnesium stearate coating other ingredients affected bonding between particles, which lead to reduced 

hardness.  
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For all shear strain levels, the tensile strength was observed to decay exponentially 

with porosity (see Figure 6-11 (a)). The tensile strength and porosity profiles were 

fitted to the Ryskewitch Duckworth equation [104]:  

                             𝒔 = 𝒔𝟎exp( − 𝒌𝒔 𝜺),                                   Equation 6-2            

where s is the tablet tensile strength and ε is the tablet porosity. The fitted 

parameters are reported in Table 6-2. Interestingly, the effect of shear strain was 

more significant in the tensile strength at zero-porosity, 𝑠0, with a reduction of 60% 

with increasing shear strain.  

 

Figure 6-11: a) Tensile strength of the tablets (in logarithmic scale) as a function of the porosity (left). The dotted 

lines correspond to the fits obtained for different shear-strain levels. b) Residual Plots for log tensile strength 

(right). The residuals were normally distributed. 

Table 6-2: Ryskewitch Duckworth parameters for 12 kN compacts and 4 strain level. The tensile strength at zero 

porosity decreased with an increase in strain 

shear strain level ln(𝑠0) 𝑠0 

0 1.5996 4.951052 

160 1.0773 2.93674 

640 0.8567 2.355375 

2560 0.6311 1.879677 
 

Finally, a goodness of fit analysis was performed and a response surface was 

determined by regression to estimate the linear, quadratic and interaction effects of 
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shear and force on the natural logarithm of the tensile strength, leading to an R-

square of 97.48% (Table 6-3). The data set involved 80 tablets and the residuals were 

normally distributed (Figure 6-11 (b)), and hence, normality of the data set was not 

an issue. It was observed that both porosity and compaction force had significant 

effect on the tensile strength values. Interestingly, the interaction between force and 

shear appears to be negligible.  

Table 6-3: Goodness of fit analysis for response surface regression. Both strain and force had a significant effect 

on the tensile strength.  

  

 

Zuurman et al. [105] found similar trend between tablets composed by a filler-

binder excipient alone versus same excipient mixed with magnesium stearate. They 

found that the tablets with magnesium stearate showed a decrease in tensile 

strength for same porosity. They attributed the effect to decrease in bonding 

efficiency with magnesium stearate presence. The bonding efficiency between 

particles was affected by shear, reducing the inter- particle bond strength. 

6.4. Conclusions: 

Response Surface Regression: ln tensile str versus Force, Shear  
The analysis was done using coded units. 

Estimated Regression Coefficients for ln tensile str 

 

Term             Coef  SE Coef        T      P 

Constant     -1.46061  0.04653  -31.391  0.000 

Force         0.74229  0.03006   24.694  0.000 

Shear        -0.65009  0.02365  -27.484  0.000 

Force*Force  -0.24481  0.04085   -5.993  0.000 

Shear*Shear   0.97679  0.04980   19.614  0.000 

Force*Shear   0.01134  0.03598    0.315  0.754 

 

 

S = 0.130485   PRESS = 1.36752 

R-Sq = 97.48%  R-Sq(pred) = 97.10%  R-Sq(adj) = 97.29% 
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Designed experiments were utilized to explore the effect of strain on tablet porosity 

and hardness. It was concluded that porosity alone was not sufficient to predict tablet 

tensile strength and that the knowledge of bonding efficiency in tablets was also 

critical. It was observed that this bonding efficiency indirectly manifested itself in 

different tablet properties such as tablet porosity during and post compaction, the 

axial recovery of tablets, the total work of compaction and the elastic work that was 

recovered during the compaction process. These measurements were used to 

highlight the role of shear in determining the tablet’s hardness.  

Strain had, at best, a very small effect on the porosity of the tablets after relaxation. 

While the initial bed porosities were different, and the porosities at peak compression 

were also different, the porosity after relaxation was observed to converge. Most of 

the tablet axial recovery as a fraction of the total recovery happened during the in-die 

unloading phase. Almost all the additional porosity reduction due to strain was 

recovered after ejection.  

Percentage axial recovery calculations highlighted the differences in the tendencies 

of tablets to relax with different strain levels. Materials exposed to different shear 

levels exhibited different tendencies to bond, which ultimately affected the total work 

input and the recovered elastic energy. The portion of elastic energy recovered during 

the in-die tablet relaxation showed an increase with increasing strain level. The 

tensile strength showed an exponential inverse relationship with tablet porosity. 

Different tensile strength- porosity plots were obtained for tablets made at different 

strain conditions. Ryskewitch Duckworth equation provided good fit for the data.  
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The knowledge of the effect of blend strain and compaction force on tablet properties 

will be exploited in devising the strategy for real time release testing of tablet 

dissolution both in continuous and batch processing. 
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Chapter 7. Real Time dissolution prediction of tablets exposed to 

different degrees of over lubrication in batch process1 

1 Work done in collaboration with Eduardo Hernandez 

This work can be obtained in the publication: E. Hernandez, P. Pawar, G. Keyvan, Y. 

Wang, N. Velez, G. Callegari, A. Cuitino, B. Michniak-Kohn, F. J. Muzzio, and R. J. 

Romañach, “Prediction of dissolution profiles by non-destructive near infrared 

spectroscopy in tablets subjected to different levels of strain,” J. Pharm. Biomed. Anal., 

vol. 117, pp. 568–576, Jan. 2016. 

7.1. Introduction 

Performance evaluation of a pharmaceutical product are essential and mandatory to 

assess and confirm the quality of a drug product that will ultimately be delivered to patients. 

In the pharmaceutical industry, dissolution testing is a key analytical tool in both drug 

development and quality control. The data obtained from dissolution tests can be used to 

detect physical changes in an active pharmaceutical ingredient (API) and formulated 

product, to establish in vitro-in vivo correlations of drug products, and justify post-approval 

changes [106] [107].  Furthermore, it is useful in identifying critical manufacturing 

variables, such as mixing time and speed, compaction speed and pressure, and coating 

parameters. However, as discussed earlier, dissolution testing is a slow, labor-intensive 

technique and cannot be used for RTRt. In this chapter, the strategy to use Near IR 

spectroscopy to predict the dissolution profiles of tablets exposed to different levels of 

mechanical strain during blending is presented. The study follows chapter 6, where the 

effects of the shear strain and compaction force on tablet properties was investigated in 

terms of particle bonding, tablet axial recovery, and hardness testing. Near IR reflectance 

spectroscopy was observed to capture this effect of strain, which ultimately affected tablet 
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dissolution. This work is aimed towards real time release testing of tablets in batch 

processing, leading to fast non- destructive prediction of tablet dissolution.   

The standard-setting body, the United States Pharmacopoeia (USP) outlines the use USP 

Apparatus 2 (paddle) for Immediate-release, modified-release, and extended release tablets 

[108]. Despite its simplicity of design and the ease of use the dissolution apparatus lacks 

reproducibility, and this has become a concern to the Food and Drugs Administration 

(FDA) as well as to the pharmaceutical industry. The variability observed in dissolution 

results often stems from uneven mixing within the dissolution vessels.  Studies have shown 

that tablet position in the vessel, USP Apparatus, and operators have also contributed to 

variability in drug release profiles [109] and [110].  Additionally, the most significant 

challenge has been lack of bio-relevance as dissolution methods are often not correlated to 

in vivo performance [111]. Difficulties in having suitable USP calibration tablets, physical-

chemical (temperature, particle size, solubility, and polymorphism) and mechanical 

(position of the aliquot, vibrations, paddle or vessel position) factors can contribute to 

dissolution variability [112]. Drug release concentration in the dissolution medium is 

determined with High Performance Liquid Chromatography (HPLC) or Ultraviolet/Visible 

Spectroscopy (UV/VIS) using solvents with high cost and leading to significant solvent 

wastes generated in the analysis. However, use of Quality by Design (QbD) has been 

introduced in the pharmaceutical industry, and efforts have been underway to control the 

variance observed in the USP Apparatus [113] [114].  

 

Besides formulation parameters, dissolution rate is also affected by process parameters 

such as tablet press speed and compaction force. As discussed in Chapter 6, one such 
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process parameter that is often neglected is the total amount of strain that the powder 

experiences, before it goes into the tablet press. Dissolution performance can be affected 

by the nature of the process stress within the manufacturing steps (batch or continuous). 

Studies have been carried out to predict the sources and nature of shear and strain that are 

related to the process stress in such a continuous process. Vanarase et al.  explained the 

effect of number of blade passes (which depend on the residence time and the blade (rpm) 

and the lubricant feeding point on powder properties for a continuous mixer [115]. Mendez 

et al. investigated the increase in hydrophobicity of tablets and hence dissolution time, 

owing to the strain exposure in feed frame of tablet press [116]. NIR can be used to 

investigate effects of such shear strain and thus help predict dissolution of oral solid dosage 

forms. Near Infrared Spectroscopy (NIRS) gives the opportunity to obtain information on 

the physical and chemical properties, obtaining a high signal to noise ratio spectrum in one 

minute and without destroying the unit dose. 

 

Near infrared (NIR) spectroscopy provides information on the physical properties 

(compaction force, shear, etc.) and chemical composition (content uniformity, water 

content, etc.) of the sample [117]. This information can be filtered out or maintained, 

depending on the quality attribute of interest. This is achieved using multivariate data 

analysis like PCA, PLS, etc. Several researchers have used this kind of approach to evaluate 

the drug release from the final product. Zannikos et al. related the dissolution profiles of 

carbamazepine tablets exposed to different levels of humidity with NIR spectra [118]. 

Donoso et al. related the NIR diffuse reflectance spectra using linear regression, nonlinear 

regression and PLS models to predict drug release on theophylline tablets with different 



90 

 

 

 

compaction forces at different time points of the dissolution [29]. Freitas et al. correlated 

the dissolution profiles with NIR reflectance spectra using PLS calibration model to predict 

drug release behavior at different time intervals and for media with different pH [119]. 

Blanco et al. used a single PLS-2 model to predict the dissolution profiles of tablets made 

at different compaction forces and consisting of different API concentration [120]. PLS-2 

gives the opportunity to predict multiple variables in a single calibration model [121]. 

Otsuka et al. used transmission and diffuse reflectance spectra using multivariate 

regression models to predict dissolution properties in tablets containing indomethacin as 

active pharmaceutical ingredient (API) [122]. Tabasi et al. used PLS to predict dissolution 

profiles at different time points of tablets with different coating grades [123]. Theses 

researchers used several PLS calibration models for the selected time point in the 

dissolution profile. These methods were developed using multiple PLS calibration models 

at any given time point in the dissolution profile.  

 

This study describes a non-destructive NIR method to predict dissolution profiles based on 

how shear affects the drug release of tablets with similar drug concentration and 

compaction force. The importance of characterization of shear in continuous processes, 

detecting such shear by non-destructive testing, and ultimately predicting tablet dissolution 

is discussed in this chapter. The authors understand that this is the first study that takes into 

consideration the shear forces from continuous mixers to develop a non-destructive NIR 

method to predict dissolution profiles. The non-destructive method has an advantage over 

the current dissolution test, where it impossible to further evaluate the unit dose when the 

test fails. With the non-destructive NIR test, the root of cause of the failing unit may be 
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investigated through multivariate data analysis and by other techniques such as Raman 

spectroscopy, NIR-Chemical Imaging, Ultrasound or Terahertz [124], [125], and [22] . 

Following the methodology of this study the authors establish an implementation strategy 

that can be recommended for continuous manufacturing processes in the pharmaceutical 

industry. 

7.2. Materials & Methods 

7.2.1. Materials 

The materials are described in chapter 6, section 6.2.1. 

7.2.2. Blending and shearing, and tableting process 

The blending and shearing procedure was described in Chapter 6, section 6.2.3 and 

section 6.2.4 respectively. The tableting procedure was described in Chapter 6, section 

6.2.5. Tablets compacted at an average force of 24 kN (305 MPa) from the previous study 

were used for further analysis in this chapter. 

7.2.3.  Near Infrared Spectroscopy 

A Bruker Optics Multipurpose Analyzer (MPA) FT-NIR spectrometer (Billerica, 

Massachusetts) was used to obtain tablet diffuse reflectance spectra with a resolution of 32 

cm-1. The integrating sphere unit was used within the spectral range of 12500 to 3500 cm-

1. A total of 256 background and sample scans were averaged. Spectra were obtained from 

both sides of the tablet. 

7.2.4.  In- Vitro Dissolution testing 
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The drug release studies were performed using the USP paddle method, at a rotational 

speed of 50 rpm in a VK 7010 dissolution apparatus (Varian Inc., Santa Clara, CA).  The 

dissolution medium was composed of 900 ml pH 5.8 Phosphate buffer, and the temperature 

was maintained at 37.0±0.5oC.  Six tablets were each placed in chambers in the dissolution 

apparatus and ejected into the dissolution vessels simultaneously.  Aliquots of the 

dissolution medium were pumped at 3-minute time intervals using a peristaltic pump VK 

810 (Varian Inc., Santa Clara, CA). The medium was then filtered through 35 μm full flow 

filters prior to detection using a UV spectrophotometer. A wavelength of 243 nm was used 

to analyze the samples using a Cary 50 UV-Visible spectrophotometer (Varian Inc., Santa 

Clara, CA). Absorbance values for each tablet were converted to the percent of drug 

released at each analysis time and used for the calibration model [26].  

7.2.5.  Multivariate data analysis 

 Multivariate data analysis was performed using The Unscrambler X 10.2 (Camo, 

Oslo, Norway). Certain process parameters like compaction pressure affect the physical 

properties of tablets (example: tablet density). This in turn affects the scattering of 

radiation and thus affects the near infrared spectrum. Baseline correction was performed 

to maintain the scattering effects related to physical properties in the spectra. This 

preprocessing step consisted of setting the first point of the spectra to zero.  

 After baseline correction, principal component analysis (PCA) and partial least 

square-2 (PLS-2) were performed on the spectra. A total of 40 spectra obtained from the 

two sides of 20 tablets were used as calibration set. PCA was used for exploratory data 

analysis to study the spectral differences arising from the differences in shear. 
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 PLS-2 method was used to develop the calibration model for percent drug released 

in tablets with differences in strain applied. A PLS-2 model was created to predict 

dissolution at different time points from 3 to 120 minutes. A total of 40 variables (time 

points) were used as dependent variables to create the PLS-2 model. Cross-validation (CV) 

was used for initial method evaluation and as a tool to help in method development. CV 

groups were established by shear conditions to perform a ‘leave one class out’ challenge, 

where one group was left out to be predicted by the model. Table 7-1 summarizes the CV 

groups. The preliminary model developed with CV, was further challenged with a 

validation set consisting of 24 spectra from twelve tablets (Table 7-1) that were prepared 

separately from the calibration tablets. The validation set included tablets spanning over 

the different strain levels (0, 160, 640, 2560 revolutions). The dissolution profile 

predictions of the validation set obtained using NIR were compared with the dissolution 

profiles obtained using the destructive method (USP 2 Apparatus). 

Table 7-1 – Calibration and Validation set description for the model. 

Set 

Description 

Shear Level 

(Revolutions) 

Number of 

Tablets 

Number of 

Spectra 

Cross Validation 

Group 

Calibration 

0 5 10 1 

160 5 10 2 

640 5 10 3 

2560 5 10 4 

Validation 

0 3 6 

N/A 
160 3 6 

640 3 6 

2560 3 6 

7.3. Results 

7.3.1.  In-Vitro Dissolution Testing and Effect of Strain 
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Figure 7-1 shows the effect of strain on the average dissolution profiles each strain 

condition. As the strain was increased, the amount and the rate of drug release decreased. 

This could be an example of over-lubrication due to formation of a magnesium stearate 

hydrophobic film covering the active ingredient in the formulation [10, 27].  

 

Figure 7-1– Dissolution profiles obtained from USP apparatus 2 

7.3.2.  Evaluation of NIR spectra, relationship between spectra and 

dissolution 

NIR diffuse reflectance spectra were acquired for tablets. Baseline correction was used to 

maintain all scattering effects associated with physical properties of tablets before 

performing any multivariate data analysis. This was done because physical properties of 

the tablet can affect the dissolution as demonstrated in previous studies, where an increase 

in the compaction force resulted in an increase in the intensity of NIR diffuse reflectance 

spectra and dissolution was a function of compaction force [122]. Several studies have 

shown that light scattering is a function of the physical properties of particles [124], [126], 
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and [127]. These differences in scattering result in the multiplicative and additive effects 

observed in the NIR spectra which are usually removed by normalization and 

derivatives [128]. But baseline correction does not remove multiplicative and additive 

effects in the spectra, and thus the scattering effects from differences in the physical 

properties of particles are included in the mode. All spectra obtained in this study showed 

small but significant variations in the spectral slope from 7000 to 5500 cm-1. Figure 7-2 

shows that as strain increased, the spectral slope decreased separating the spectra according 

to the strain applied. The differences observed in the NIR spectra as the strain was varied 

indicated the feasibility of developing a calibration model to predict dissolution. 

 

Figure 7-2– NIR spectra for tablets subjected to different levels of strain. Zoom of the spectral region of 7000-

5500 cm-1 were slope changes are observed. 

 

PCA was used to further investigate the spectral differences observed. The PCA method 

shows that the first source of variation associated with the samples was the strain applied 
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since four different groups are observed in Figure 7-3. Four groups were separated along 

the PC1 with 99% of the variation explained. PC1 loading plot as displayed in Figure 7-4 

shows that the spectra varied through the entire spectral region. PCA computes latent 

variables that are a linear combination of the original manifest variables [129]. The loading 

plot describes how the principal component is related to the original variables.  

 

Figure 7-3– PCA score plot of NIR spectra from tablets with different levels of strain. 

 

Figure 7-4– Loading plot of PC1 

 

7.3.3.  PLS model method evaluation 
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A PLS-2 calibration model for predicting the drug release was developed relating the 

spectral differences to the percent drug release values from the dissolution test. The spectra 

(independent variables) used for the calibration model consisted of tablets compressed at 

305 MPa and four different shear levels investigated over the entire spectral range- 11328 

to 3614 cm-1. The dependent variables consisted of percent drug release values obtained 

with the dissolution test every three minutes for the entire 120 minutes dissolution profile. 

All spectra were mean centered and baseline corrected. Table 7-2 summarized the model 

evaluation statistics results for 1 to 4 PLS factors for both spectral ranges. The PLS 

calibration model was developed with two PLS factors. The bias for the leave one class out 

cross validation results was only 0.59 % for two PLS factors, and only -0.53 % drug release 

for the validation set tablets in the entire spectral region. The bias is considered low and 

indicative of excellent accuracy since percent dissolution increases to almost 100%. The 

results were also evaluated through relative standard error of cross validation or prediction 

(RSE) as shown below: 

𝑹𝑺𝑬(%) = 𝟏𝟎𝟎 𝒙√
∑ (𝒚𝒑𝒓𝒆𝒅−𝒚𝒐𝒃𝒔)𝟐𝒏

𝒊=𝟏

∑ (𝒚𝒐𝒃𝒔)𝟐𝒏
𝒊=𝟏

       Equation 7-1 

where ypred is the value predicted and yobs is the value for each analysis time in the 

dissolution profile. Relative Standard Error of cross validation (RSEcv = 8.3%) are based 

on a leave-one class-out cross validation and Relative Standard Error of Prediction (RSEP 

= 6.3%) are based on the validation set for the entire spectral range.  

Table 7-2– Calibration model evaluation statistic summary for 1 to 4 PLS factors. 

PLS Factor RMSEE RSEC (%) BIAS cv RMSEcv RSEcv (%) 

1 5.26 7.25 -0.568 6.14 8.78 

2 4.74 6.23 -0.592 5.97 8.31 

3 4.97 6.36 -0.455 6.26 8.66 

4 4.48 5.67 -0.491 6.25 8.62 
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7.3.4.  PLS model validation 

The validation set included 24 spectra (12 Tablets) of 305 MPa compaction force with four 

levels of strain applied (Table 7-1). These are completely independent tablets none of 

which were included in the calibration set. The PCA model was used to project validation 

set spectra into the score plot space. Figure 7-5 shows the multivariate 95% confidence 

interval as marked by the ellipse (Hotelling's T2 test) and the results obtained. All the 

spectra were within the 95% confidence interval, except for one spectrum from the tablet 

subjected to 640 revolutions.  

 

Figure 7-5– Projection of validation set on the PCA scores plot of NIR spectra. Black symbols represent 

calibration set and white symbols represent validation set. 

 

The PLS-2 calibration model predicted drug release for validation set tablets. Figure 7-6 

presents the predictions correlation comparing both dissolution profiles and NIR 

predictions for the entire spectral range. Predicted dissolution profiles show a high 

correlation when compared with the reference method achieving a 0.9992 correlation 
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coefficient for 0 and 160 revolutions, 0.9983 for 640 revolutions and 0.9977 for 2560 

revolutions. The accuracy of the prediction of dissolution was evaluated through the use of 

the RSEP. RSEP for the validation set using the entire spectral region was 6.3%. Table 7-3 

summarized the validation set evaluation of the model for both spectral ranges. Minor 

changes in compaction force and concentration are likely contributing to the variation 

observed.  

 

Figure 7-6– Comparison between USP apparatus 2 dissolution profile (observed) and NIR dissolution profiles 

predicted with 2 PLS factors.  

Table 7-3– Validation set results for 2 PLS factors (shear level results and global results). RSEP (%)= relative 

standard error of prediction, f2= similarity factor, F= F calculated from ANOVA, R2= correlation coefficient 

PLS 

Factor 

Shear Level 

(Revolutions) 

BIAS 

TS RMSEP RSEP (%) f2 

 

F R2 

2 
0 -3.08 4.13 4.68 67 0.622 0.9992 

160 1.53 4.34 5.06 93 0.036 0.9992 
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640 5.81 7.29 9.51 75 0.1484 0.9982 

2560 -2.15 3.52 6.06 69 0.3157 0.9977 

Global Results 0.531 4.82 6.33 

   

7.3.5. Evaluation of dissolution profiles 

PCA was also used to compare the dissolution profiles predicted by the NIR method. The 

independent variables  matrix consisted of dissolution values [130], [27]. The PCA scores 

plot shows four separate groups related to shear level for USP Apparatus 2 values and NIR 

predictions are shown in Figure 7-7. PC1 explained 94.5% of the variation for this model 

that corresponded to the variation in strain level. Samples with 0 revolutions and 160 

revolutions are close together as expected due to the short time that the sample was exposed 

to the shear cell.  The profiles predicted by NIR also align with the corresponding shear 

level. Figure 7-7 shows PCA score plot and the projections of the validation set onto the 

model. The PCA evaluation shows that dissolution profiles predicted by NIR are similar to 

the dissolution values obtained with the USP Apparatus 2 within the 95% confidence 

interval. 
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Figure 7-7- Projection of predicted dissolution profiles from results obtained of NIR the PCA scores plot of 

USP apparatus 2 dissolution profiles. Black symbols USP apparatus 2 dissolution profiles and white symbols 

represent NIR prediction with 2 PLS factors. (figure taken from:  Hernandez et al. J. Pharm. Biomed. Anal., 

vol. 117, pp. 568–576, Jan. 2016) 

 

The similarity factor calculation (f2) was used to evaluate the similarity between dissolution 

profiles obtained from the USP Apparatus 2 profiles and NIR prediction profiles. Table 7-3 

shows the results of f2 using the averaged dissolution profiles of the destructive and 

nondestructive method. If the value of f2 is greater than or equal to 50, the profiles are 

considered similar [132] [133]. Results showed that the dissolution profiles obtained from 

both methods could be considered similar. An analysis of variance (ANOVA) was 

performed to evaluate whether the two methods are statistically different. The null 

hypothesis is that the two methods are similar for both spectral ranges. Result shows 

that F calculated is less than the Fcrit ( Fcrit= 3.96) for all shear condition using the entire 

spectral range (Table 7-3). Since the F calculated is less than Fcrit the null hypothesis is 
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retained. These results are indicative that both methods are statistically similar at 95% of 

confidence level. 

7.4. Conclusions 

This study shows that exposing powders to mechanical strain during blending affected the 

dissolution behavior of tablets. This effect of blend strain on tablet structure could be 

picked up using NIR diffuse reflectance spectroscopy. Based on these results NIRS was 

used in combination with multivariate data analysis to predict dissolution behavior with 

variation in process conditions. A high correlation was obtained between the destructive 

test (USP Apparatus 2) and the nondestructive test (NIRS). NIR accurately predicts 

dissolution using a single PLS model instead of multiple PLS models at each time point. 

Validation of this methodology can be used for implementation in the quality by design 

strategy (QbD) and real time release testing (RTRT) in the pharmaceutical industry 

ensuring product quality. 
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Chapter 8. Enabling real time release testing by NIR prediction of 

dissolution of tablets made by Continuous Direct Compression 

8.1. Introduction 

Recently, pharmaceutical industry has been moving from batch processing to continuous 

manufacturing (CM). One of the major advantages of CM setup is that intermediate and 

final product quality can be monitored in real time without interrupting production. In a 

such a CM line, powder is exposed to different levels of strain generated in the feeders, 

mill, blender, and feed frame. Vanarase et al. observed that the shear generated in the 

mill led to efficient micro-mixing, and that pairing the mill with a blender provided best 

possible mixing performance [134].  Portillo et al. used two different convective blenders 

to demonstrate the effect of rotation rate, cohesion, and mixer inclination on the mixing 

behavior [135]. The total strain developed in a blender depends on the number of blade 

passes [136] which in turn is affected by the powder properties [134]. Mendez et al. 

[116] observed an increase in hydrophobicity with an increase in feed frame speed in the 

presence of a lubricant. Osorio et al. reported an improvement in blend homogeneity with 

an increasing amount of Acetaminophen in the blend [137]. Such process and 

formulation parameters can affect the release of the drug from the tablet. 

The drug release is characterized using ‘in vitro dissolution testing’, during product 

development to develop a specification, and then during routine manufacturing for 

quality control of the solid dosage forms. Despite its widespread use in the 

pharmaceutical industry, dissolution testing has several shortcomings discussed 
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previously. There has been a growing interest in the use of NIR for prediction of drug 

release from tablets obtained from continuous manufacturing.  

Cui et al. used a single time point to study and predict the drug release as a function of 

API physical properties [138]. Basalious et al. used DOE analysis at two different time 

points to study the effect of polymeric surfactants and crystallization inhibitors on drug 

release [139]. Dumarey et al. used bi-directional projection to orthogonal structures 

(O2PLS) on the entire dissolution profile to study the effect of granule and compression 

variability [140]. Zannikos et al. used NIR to predict the dissolution rate for 

Carbamazepine tablets [118]. Freitas et al. used NIR to predict the effect of pH on the 

drug release at seven different time points, which involved construction of seven different 

PLS-1 models [119]. Hernandez et al. used a Partial least squares-2 approach to predict 

dissolution of tablets exposed to different levels of mechanical strain [70]. The PLS- 1 

model is based on only one Y variable (dissolution at a single time point). Performing 

several different PLS-1 models for drug released at different time points would be time 

consuming and hence not practical. The PLS-2 has been used for relating X variables to 

multiple Y values. Though PLS-2 deals with several X and Y variables at a time, it 

averages all X and Y variables. It generates only one data set of score and loading 

vectors, which might not be optimum to quantify relationships between all X and all Y 

variables. 

Principal Component Analysis (PCA) combined with a regression technique can be a 

simpler alternative to the complex model building approaches described above. Polizzi et 

al. adopted a two-step process, a PCA followed by PLS to predict mechanical properties 
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of blend compacts from raw materials properties [141]. Xie et al. used Principal 

Component regression to evaluate the relationship between segregation and physical 

properties of pharmaceutical blends [142]. Sande et al. demonstrated superiority of 

PCA/PCR to simplify the 8 time- point dissolution profiles to two latent variables 

(Principal components) and established correlations between the formulation and 

dissolution [143]. Huang et al. demonstrated the applicability of PCA to identify the 

source of variability of dissolution shift upon stability [144].  

This work investigates a simpler and an efficient alternative to PLS regression, using 

Principal Component Analysis combined with Multi linear regression (MLR). NIR 

spectroscopy yields data of high dimensionality, since each sample is described with 

hundreds of variables (wavelengths). PCA simplifies the variable space from hundreds or 

thousands to a few (three to five) latent variables, which capture the major variation in 

the NIR data. The dissolution profiles on the other hand can be described by a model 

dependent (Weibull is used here) [145] [146] or a model independent approach [147]. 

Multi linear regression can be established between the Eigenvalues thus obtained and the 

observed attributes of interest of the tablet. Such multivariate models enhance process 

understanding by providing an insight into the process mechanics. MLR models are easy 

to communicate, simple to construct, and are self-explanatory, since each individual x 

variable used in the equation can be observed to be related to certain chemical and 

physical properties of the samples [40]. 
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The case study examined in this work focuses on the effect of process and formulation 

parameters in a continuous direct compression line on the dissolution profiles. The goal is 

to predict these profiles in real time.  

8.2. Materials and method: 

8.2.1. Materials 

The same formulation used in 6.2.1 was used here. 

8.2.2. Continuous tablet manufacturing via direct compaction:  

Tablets were made in a continuous direct compaction line. The setup is described in 

Chapter 2, section 2.2.4. 

8.2.3. Experimental Design:  

Two sets of tablets were included in the study- the target (or prediction) set and the 

calibration set. The prediction set tablets were made at a targeted drug concentration of 

9% APAP and a targeted force of 24 kN. The blender speed was kept constant at 200 rpm 

and the feed frame speed was 25 rpm. The dissolution profiles of these tablets were 

predicted by utilizing the data obtained from an experimental design built around this 

targeted condition. The tablets included in this experimental design comprised of the 

calibration set. The four variables (and their levels) included were: API concentration 

(low, medium, high), Blender speed (150rpm, 200rpm, 250rpm), feed frame speed 

(20rpm, 25rpm, 30rpm), and compaction force (8KN, 15KN, 24KN) (Table 8-1). The 

experimental design consisted of a 34-1 fractional factorial design with additional repeated 

center points (3 center point runs) resulting into a total of 30 conditions highlighted in 
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Table 8-2. 6 tablets were analyzed every design point, resulting into a total of 180 (30*6) 

tablets.  

Table 8-1: The four variables included in the design were: API concentration, blender speed, feed frame speed 

and compression force. Three levels of each variable were examined 

Level 

 

API 

Concentration 

Blender 

speed (RPM) 

Feed frame speed 

(RPM) 

Compression 

force 

0 low 150 20 8KN 

1 medium 200 25 16KN 

2 high 250 30 24KN 

 

Table 8-2: The fractional factorial combinations included in the design. A total of 27 design points with 

additional repeated center points (3 center points) was included. 

 A B C D 

1 0 0 0 0 

2 0 0 1 1 

3 0 0 2 2 

4 0 1 0 1 

5 0 1 1 2 

6 0 1 2 0 

7 0 2 0 2 

8 0 2 1 0 

9 0 2 2 1 

10 1 0 0 1 

11 1 0 1 2 

12 1 0 2 0 

13 1 1 0 2 

14 1 1 1 0 

15 1 1 2 1 

16 1 2 0 0 

17 1 2 1 1 

18 1 2 2 2 

19 2 0 0 2 

20 2 0 1 0 

21 2 0 2 1 

22 2 1 0 0 

23 2 1 1 1 

24 2 1 2 2 
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25 2 2 0 1 

26 2 2 1 2 

27 2 2 2 0 

28 1 1 1 1 

29 1 1 1 1 

30 1 1 1 1 

8.2.4. Analytical testing of tablets:  

The tablets made by the above method were subjected to different at-line tests, described 

below 

8.2.5. At line Near- infrared transmission spectroscopy:  

A Bruker Optics Multipurpose Analyzer (MPA) FT-NIR spectrometer (Billerica, 

Massachusetts) was used to collect tablet spectra in transmission mode. The advantage of 

using transmittance mode in NIR spectroscopy is that a the light interacts with the entire 

sample (i.e., the tablet), rather than just its surface, thus helping quantitative 

determination [66]. The spectral range chosen was from 12500 to 5800 cm-1 with a 

resolution of 32 cm-1. A background and a tablet spectrum were obtained by averaging a 

total of 256 background scans and sample scans respectively.  

8.2.6. Dissolution:  

A total of 180 dissolution profiles (30 design points*6 tablets/design point) of the tablets 

obtained from continuous line were used to build the calibration model. A VK 7010 

dissolution apparatus (Varian Inc., Santa Clara, CA) fitted with USP paddles was used to 

study the drug release. The paddle rotational speed was 50 rpm. The dissolution medium 

used was phosphate buffer at pH 5.8 and the media temperature was maintained at 

37.0±0.5oC. Six tablets were each placed in the dissolution apparatus chambers 
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containing 900 ml of medium, and were placed into the dissolution vessels 

simultaneously at the start of the experiment.  A peristaltic pump VK 810 (Varian Inc., 

Santa Clara, CA) was used to pump out aliquots of the dissolution medium at 3-minute 

time intervals. The medium was then filtered through 35 μm full flow filters prior to 

detection using a UV spectrophotometer (Varian Inc., Santa Clara, CA) at a wavelength 

of 243 nm. Absorbance values for each tablet were converted to the percent of drug 

released at each analysis time. 

8.3. Data analysis: 

8.3.1. Multivariate data analysis:  

The data obtained from the NIR spectrometer was analyzed using Unscrambler X 10.2 

(Camo, Oslo, Norway). The data was baseline corrected, where the lowest absorbance 

value in the spectrum was subtracted from the absorbance values at all the other 

wavenumbers. This was followed by a Savitzky-Golay first derivative, fitted to a second 

order polynomial with a total of 11 smoothing points. The algorithm is based on 

performing a least squares linear regression fit of a polynomial around each point in the 

spectrum to smooth the data. The second derivative of the fitted polynomial is then 

calculated. This pretreatment removed the baseline offset between samples and improved 

the resolution of the peaks that carried the chemical information associated with the 

concentration of the API. 

Principal Component Analysis (PCA) was performed on this pre-treated data (section 

2.3.2). The scores (eigenvalues) obtained from the PCA reflected the amount of variance 
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in the data explained by each Principal Components (PC). These eigenvalues were used 

for further analysis. 

8.3.2. Dissolution data fitting:  

The dissolution profiles obtained from the USP dissolution apparatus were analyzed 

using two approaches: a) model independent approach (parameters: shape, level 1, level 

2) and (b) model dependent approach (Weibull parameters: α- and β). 

8.3.3. Model independent approach:  

In the model independent approach, a dissolution curve is described by calculated 

parameters without additional need for selecting a mathematical model and adopting a 

curve-fitting procedure. A previously developed methodology, level-shape analysis, was 

used. A detailed description of the level-shape analysis can be found elsewhere [147]. 

The methodology looks at a dissolution curve in terms of level and shape separately. The 

advantage of this approach is taking into account the auto-correlation in the dissolution 

profile as time series data. Mathematically, the level of the ith dissolution curve can be 

defined as the average release percentage across n time points: 

 

while the shape is calculated by performing PCA on the residual matrix for all the 

averaged dissolution profiles considered. The construction of residual matrix enables to 

calculate the shape of a profile that is independent of its level. The residual matrix (R) is 

constructed by subtracting the grand mean (y..), row and column effects (yi. and y.j , 

respectively): 
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Software JMP 10 (SAS institute, Inc., Cary. NC) was used for level-shape analysis.  

8.3.4. Model dependent approach:  

DDSolver, an add-in program in Microsoft excel [148], was used to facilitate the 

modeling of dissolution data using non-linear optimization method. Different dissolution 

models from the built-in model library were fitted to the above dissolution data and it was 

observed that the Weibull model best described the dissolution kinetics.  

% 𝐷𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 100 ∗ {1 − 𝑒−
(𝑡)𝛽

𝛼 } 

The Weibull model was selected based on high adjusted R-square (~0.989-0.995), the 

Akaike Information Criteria (AIC) [149], and the Model Selection Criterion (MSC). The 

higher the MSC, the better is the fit of the model to the data. Generally, a MSC value of 

more than 2 to 3 indicates a good fit. The MSC obtained from fitting the Weibull model 

to the dissolution data was approximately in the range of 4.5 to 5, indicating a very good 

fit. 

8.3.5. Multilinear regression between NIR data and dissolution data:  

A multivariate linear regression technique (discussed in chapter 2, section 2.3.1) was 

used to predict the value of more than one response from a set of predictors. The model 

inputs included the score values from the principal component analysis of the NIR 

spectrum. The outputs for the model independent approach are the level and shape values 

for dissolution profiles. Likewise, the outputs for the model dependent approach are the 
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coefficients (α and β) in the Weibull model. A quadratic response surface model was built 

and the main effects, two-way interaction, and three- way interaction were included in the 

model. The four-way interaction was not examined because the fractional factorial design 

used in the study is unable to distinguish it from the error term. After a preliminary 

analysis, only those terms that had a significant effect on the model were retained and the 

final model coefficients were obtained. The predicted dissolution profile can then be 

reconstructed using the descriptive values from both approaches. Mathematically, the 

linear regression model for the jth sample unit can be expressed as: 

𝑌𝑗 =  𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2 + ⋯ + 𝜖𝑗 

where 𝜖 is a random error, x is the input predictor, Y is the output to be predicted, and 𝛾 

are the unknown and fixed regression coefficient.  

8.4. Results and Discussion: 

As mentioned earlier, data was obtained from two different sets of tablets - the calibration 

set and the validation (prediction) set. The calibration set consisted of 180 tablets (30 

design points*6 tabs/design point). The focus of this work was to demonstrate the 

feasibility of using the information gleaned from PCA to predict tablet dissolution 

performance. The results are divided into three sections; Section 3.1 discusses Near IR 

Spectroscopy data analysis; Section 3.2 focuses on Multi-linear regression between the 

NIR data and the dissolution parameters, and finally Section 3.3 uses the regression to 

predict the dissolution profiles for the targeted design point. 
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8.4.1. Near IR Spectroscopy data analysis: 

NIR data was collected over a spectral range of 12500 to 5800 cm-1. High absorbance 

values were recorded as the wavenumber decreased beyond 6919 cm-1. Further pre-

processing of the data indicated that results for wavenumber from 6919 to 5200 were noisy 

and carried very little information. In addition, the first few wavenumbers from 12500 cm-

1 to 11996 cm-1 were observed to contribute very little information to the pre-processed 

spectra. The final range chosen was from 11996 to 6919 cm-1. 

 

As is commonly the case, a baseline offset was observed to be present in the NIR 

absorbance data. The offset was removed by subtracting the lowest intensity in the spectra 

(which occurred at highest wavenumber) from all the other variables for each sample 

vector. This treatment was useful in removing the effect of scattering on the NIR signal 

[150]. The effect of compaction force and API concentration were evident on the baseline 

corrected NIR absorbance spectra (Figure 8-1). It was observed that the absorbance 

decreased with an increase in the compaction force. As a side note, the process parameters 

and the concentration conditions reported on each of the graphs in the following sections 

are targeted conditions. They represent the targeted design conditions during the 

continuous manufacturing run. 
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Figure 8-1: Effect of compaction force on the baseline corrected absorbance data for the DOE tablets. The 

absorbance was observed to decrease with increasing force. The compression conditions mentioned are the 

conditions that were targeted. 

 

The concentration effects were further enhanced after a Savitzky- Golay first derivative 

(second order polynomial, 11-point smoothing) treatment [151]. The noise level, the 

number of data points, and the sharpness of the features of interest were considered while 

choosing the smoothing window and the derivative order. The second order polynomial 

and an 11- point smoothing enhanced the signal-to-noise ratio without compromising on 

the resolution of the peaks. Dissolution was observed to be affected by both process 

parameters (here compaction force, blender and feed frame rpm) and the chemical 

properties (API concentration). Hence, the aim of the pre-treatments was to enhance the 

contribution of the API concentration simultaneously preserving the effect of compaction 

force (Figure 8-2 b). Different combinations of pre-treatments including Standard Normal 

Variate followed by Savitzky Golay first derivative, and baseline correction followed by 

Savitzky Golay second derivative were tested. Principal Component Analysis was 
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performed on the data obtained from each of these treatments. The validation set was then 

projected onto the scores plot obtained from each of these pretreated data. The pre-

treatment that explained maximum variance in the validation set was finally chosen. In this 

case, baseline correction followed by Savitzky Golay first derivative explained 99% 

variance in the validation set and the results for these pretreatments are reflected in Table 

8-3. 

Table 8-3: Procedure used for choosing the pre-treatment for NIR data. The pre-treatment that explained 

maximum variance of the validation set was chosen. The baseline correction treatment followed by Savitzky 

Golay first derivative explained 99% variation in the validation set and was chosen. 

 Explained Variance 

Treatments PC-1 PC-2 PC-3 Total 

SNV 42 4 1 47 

SNV+SG11(1) 3 2 17 22 

BL+SG 11(1) 99 0 0 99 

 

The effect of API concentration was observed in two API peaks 8500-9000 cm-1 and 11500 

cm-1 (Figure 8-2 a). The effect of compaction force was evident through the entire spectrum 

(Figure 8-2b). 
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Figure 8-2: Effects of API concentration and compaction force enhanced after pretreatments. a) Trends with 

respect to API concentration were enhanced and evident in peaks around 8500 and 11500 cm-1 (left) b) Trends 

with respect to changing compaction force were preserved (right). 

PCA was performed on the NIR data obtained from the calibration tablets. The PCA 

algorithm has the capability to separate chemical variations of the API from those of the 

excipients and from other physical changes [152]. The PCA decomposes the raw data 

matrix (X) into a structure part and a noise part [153].  

𝑋 = 𝑇𝑃𝑇 + 𝐸 = 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝑁𝑜𝑖𝑠𝑒 

The Eigenvalues obtained from PCA carry information about the processing and 

formulation history of the tablet. The principal components are calculated one at a time and 

are orthogonal to each other, meaning that after the calculation of the first PC, its 

contribution is removed from the original X matrix and the next PC is computed. 

The PCA on the NIR data yielded three principal components accounting for 100% of the 

total variation in the data. The first principal component (PC1) explained 85% of the total 

variance in the data. Three different clusters were observed in the scores plot (Figure 8-3) 

along the PC1 axis, which grouped according to the compaction force. The forces indicated 

on the scores plot are targeted forces and the tablets could have experienced compaction 

pressures in and around the targeted forces. The aim of this work was not to compute the 

compaction force or the API concentrations of each tablet but to use NIR to extract the 

information stored in the tablets for dissolution prediction. 
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Figure 8-3: Scatter plot of the first two PCs. PC1 explains 85% variation in the data and groups according to 

increasing compaction force. PC2 accounts for 12%.  

To confirm this further, the PC1 scores were plotted against the relative density of the 

tablets (Figure 8-4). The relative density was proportional to the compaction force of 

tablets. The PC1 scores displayed a good correlation with the relative density, which 

confirmed the relation between PC1 and relative density and hence the compaction force.  

 

Figure 8-4: PC1 correlates well with the relative density of the compacts, which is related to the compaction 

force experienced by the tablets. The scores increased as the tablet relative density increased 
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PC2 explained 12 % of the total variance in the NIR data (Figure 8-5 (a)). Grouping the 

Eigenvalues with respect to targeted API concentration yielded clusters with decreasing 

API concentration along PC2 axis. A good correlation was obtained between PC2 

Eigenvalues and the observed API concentration (Figure 8-5 (b)). It was observed that 

tablets could be made at a lower API concentration even in the presence of some 

uncharacterized variability. However, this approach did not take into account the actual 

concentration of the API in the tablets, and the final the aim was to predict the dissolution 

profiles of the tablets using NIR spectroscopy alone. 

 

   

Figure 8-5: The PC2 correlated with the observed API concentration a) Scores plot (left); PC2 captured the 

changes in API concentration. b) PC2 highly correlated with the observed API concentration in the tablets 

(right). 

The loading plot for PC2 (Figure 8-6) was observed to have peaks in the range of 8500-

9000 cm-1 and another one in the range of 11500 cm-1. These peaks corresponded to the 

characteristic peaks for acetaminophen.  
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Figure 8-6: The loadings plot showing APAP peaks at 8500-9000 cm-1 and 11500 cm-1 explaining the specificity of 

PC2 to API concentration 

The chemical or physical meaning of PC3 could not be easily determined. It was more 

likely related to the amount of shear experienced by the powders throughout the continuous 

line. The strain experienced by the powder blends lead to the coating of Magnesium 

Stearate (the lubricant) on other particles, affecting the particle bonding, and hence the 

internal structure of the tablets [24]. The shear experienced by the powder in the continuous 

line is known to be affected by the blender speed and the feed frame rotation rate [116] and 

is also known to have an impact on the micro- mixing on MgSt, which in turn affects tablet 

dissolution. 

As mentioned earlier, the samples consisted of a total of 180 tablets (30 design points*6 

tablets/ design point). The Eigenvalues for all the 180 tablets were obtained for each of the 

principal components (PC1, PC2, PC3). To leverage the tablet-to-tablet variability, the 

average eigen values for each condition (averaged over 6 tablets each condition) were 

calculated leading to a total of 30 scores per principal component. These Eigenvalues were 

further used for Multi-linear regression modeling in section 3.2 
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8.4.2. Multi-linear regression:  

Multi-linear regression was used to examine the relationship between the Eigen values 

obtained from the PCA and the dissolution parameters obtained either by the model 

independent (2.3.2.1) or the model dependent approach (2.3.2.2), each of which is 

discussed in the following sections. 

Regression between the PCA scores and the parameters obtained from the model 

independent approach: 

The level was calculated by using the average of individual dissolution profile across all 

the time points. The shape was calculated by performing a PCA on the residual matrix after 

the level was subtracted. The principal components were based on the covariance matrix. 

The first two PCs explained 98.7% of the variability of the dataset as shown in Figure 8-7, 

and thus two eigenvectors, corresponding to “Shape I” and “Shape II” were calculated, 

together with their associated Eigenvalues, to represent the shape of dissolution profiles. 

 

Figure 8-7: PCA on the residual matrix for the calculation of shape of the dissolution profiles. The first two PCs 

explain most of the variability in the data 
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After the level and shape parameters for dissolution profiles were obtained, a regression 

model was fitted between the parameters and regressor variables PC1, PC2 and PC3 

(Figure 8-8). The regression model included the main effects, two-way interactions, and 

three-way interactions. The equation for each of the parameters was calculated from the 

model estimate. The equation provided a statistically good fit with r-square values of 0.92, 

0.89 and 0.90 for level, shape I and shape II predictions respectively (p<0.001). 
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Figure 8-8: Regression model based on level-shape analysis, using average dissolution profile. R-square values of 

0.80, 0.82 and 0.73 for level, shape I and shape II predictions respectively suggesting a good fit. 

 

The equations for each of the parameters, level, shape I, and shape II are given in the 

Appendix section. 

Regression between the PCA scores and the parameters obtained from the model 

dependent approach: 

The parameters (α and β) obtained from the model dependent approach were used as the 

dependent variables. A multilinear regression was built between these dependent variables 

and the regressor variables: PC1, PC2 and PC3 (Figure 8-9). A good fit was observed for 

both α and β with an R-square of 0.91 and 0.82 respectively. 

 

Figure 8-9: Regression based on Weibull model, using averaged dissolution profile. The R-square was 0.87 and 

0.69 respectively indicating a good fit. 

 

8.4.3. Internal method validation: 

The aim of this section was to test the utility of this approach in predicting the dissolution 

profiles of an internal validation set. Ten tablets from the 180 tablets that were made in 
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section 2.2.2 were included in the internal validation set. These tablets were randomly 

picked from these 180 tablets and covered different conditions with respect to the four 

input variables-API concentration, compaction force, and blender and feed frame speed. 

The PCA followed by the regression exercise was repeated for the remainder of 170 tablets 

where the ten internal validation tablets were kept out. A multi-linear regression was 

obtained using both model dependent and model independent approaches as described in 

section 3.2 for these 170 tablets. The dissolution profiles of the remainder ten tablets 

included in the internal validation set were predicted using the regression models 

developed. 

 

The internal validation set was projected into the scores plot space as shown in Figure 8-10. 

All the ten spectra were within the 95% confidence interval as marked by the ellipse 

(Hotelling’s T2 test) 

 

Figure 8-10: Projection of the ten internal validation tablets onto the scores plot of the calibration set consisting 

of the remainder 170 tablets. The projected tablets were within the 95% Hotelling’s ellipse. 
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The model dependent and independent multi-linear regression equations were then used to 

predict the dissolution profiles for the validation set tablets. F1 (difference factor) and f2 

analysis (similarity factor) were used to compare the difference and similarity between the 

reference and the predicted dissolution profiles [133]. The f1 and f2 analysis are a common 

approach recommended by FDA’s Guidance for Industry [132] and is a model- 

independent approach to define dissolution similarity based on the mean-squared 

difference between a pair of profiles. A predicted dissolution profile is considered similar 

to the reference profile if the f1 value is less than 15 and the f2 value between the two 

profiles is not less than 50. 

Table 8-4 highlights the f1 and f2 values for the ten validation tablets using both the model 

dependent and model independent approach. An average f1 value of 6 and f2 value of 65 

was observed for the ten tablets.  

Table 8-4: Similarity and difference factor calculations for internal validation set tablets. An average f1 value of 

6 and f2 value of 65 was observed for the ten tablets. 

Sr. No. Sample name 
Model Dependent Model Independent 

f1 f2 f1 f2 

1 S1-03-01 4.33 71.29  9.83 55.13  

2 S2-06-02 4.24 63.28  5.34  59 

3 S3-09-03 6.09 62.7  1.62  64.35 

4 S4-12-03 5.21 62.52  5.75  60.72 

5 S5-17-07 3.83 75.21  2.89  78.66 

6 S6-17-10 7.25 63.01  1.4  89.87 

7 S7-18-04 3.93 75.38  1.08  94.37 

8 S8-23-07 7.91 61.6  1.16  93.49 

9 S9-26-06 9.12 60.1  2.99  68.56 

10 S10-27-08 8.17 56.94  3.92  72.80 

8.4.4. Prediction of dissolution profiles for the targeted design point (or 

external validation set): 
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The targeted design condition was 9% acetaminophen and 24 kN targeted force. This was 

a completely independent set made in the continuous line on a different day. After the 

steady state was reached, tablets were sampled from the tablet press outlet. Six of the 

sampled tablets were analyzed first with NIR and their dissolution profile was predicted 

using the regression models obtained from the two approaches described in the previous 

section. The tablets were then subjected to dissolution testing to compare the prediction to 

the actual results that would be obtained.  

 

The first step was to determine if the targeted tablet spectra was within the defined scope 

of the model, both with respect to concentration and compaction force. The spectra of the 

six tablets made under the targeted design condition were projected onto the PCA scores 

space developed from the calibrations tablets. It was observed that tablets were within the 

95% confidence interval given by the Hotelling’s ellipse and grouped with the calibration 

tablets in the area of 9% APAP and closer to the 24 kN range (Figure 8-11). This implies 

that the projected samples were described well by the calibration model. 
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Figure 8-11: Projection of the prediction/ validation set onto the calibration set built from 180 tablets. The 

projected tablets fell within the 95% Hotelling’s ellipse and grouped with the 9% APAP and 24 kN tablets. 

 

The Eigenvalues for the prediction set were obtained from the projection data. The first 

three Eigenvalues, PC1, PC2, and PC3 of each tablet were used as the regressor variables 

in the models developed above to predict the dissolution parameters. Once the dissolution 

parameters were obtained, the dissolution profiles were calculated for each individual 

tablet. For the model independent approach, based on the level and shape values obtained, 

the predicted profile is the one that is most similar profile to the available profiles in the 

calibration sets with respect to level and shape. In the case of the model dependent 

approach, the Weibull equation was used to construct the entire dissolution profiles.  

 

Figure 8-12 collates the reference and the predicted dissolution profiles for the six 

individual tablets using the model independent approach. The f1 value for these tablets was 

in the range of 3 to 18 and the f2 value was in the range of 45 to 78. All the six tablets 

except tablet 2 (f1=18.6, f2= 45.44) were considered statistically similar.  
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Figure 8-12: Predicting individual dissolution profile from the model independent approach. All the six tablets 

except tablet 2 (f2= 45.44) were considered statistically similar as per f2 analysis. 

The dissolution profiles predicted using Model dependent approach (Figure 8-13) gave 

accurate predictions with a high f2 values ranging from 75 to 79 with differences between 

the profiles being smaller than about 10%. The f1 value for these tablets was between 3 to 

10. 
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 Figure 8-13: Predicting individual dissolution profile from model dependent approach. The similarity factor is 

greater than 50 indicating a good agreement between the observed and predicted 

The way the model-independent approach works is that it finds the most similar profile in 

the calibration set to the predicted profile (both level and shape). In other words, it cannot 

create a new profile based on the calibration sets. This approach works in a sense that the 

predicted profile is similar to the reference. The precision of the prediction requires the 

calibration sets to be fully comprehensive and diversified for the combination. In our case, 

the accuracy of the dissolution profile predictions for the model independent approach can 

be improved by including more tablets in the calibration set spanning a range of conditions. 

This work confirmed the hypothesis that using NIR it is possible to predict the dissolution 

profiles.  

8.5. Conclusions 
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This work addressed a challenge in implementing real-time release methods for tablets: the 

need to predict dissolution profiles. Both a model dependent and a model independent 

approach for dissolution prediction were examined. A quality-by-design approach was 

used to predict tablet dissolution profiles nondestructively. Designed experiments were 

used to understand the impacts of process changes. The established multivariate linear 

regression model was able to predict the dissolution profile of individual tablets based on 

its NIR spectrum. A PCA algorithm was used to extract the effect of process and 

formulation variation from the Near IR data of tablets. The model dependent approach gave 

better predictions than the model independent approach for the current data set. This was 

observed to be a fast approach circumventing the need to predict process parameters for 

any given condition and the need to have a model for every dissolution time point.  
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Chapter 9. Conclusions and recommendations 

Real time quality assurance is a highly desirable goal for both of batch and continuous 

manufacturing systems. The work presented in this dissertation focused on developing 

and employing tools for real time release testing in both types of applications. Critical 

Quality Attributes (CQAs) of blend and direct compression tablets (blend uniformity, 

tablet content uniformity, and tablet dissolution) were predicted using either real-time 

measurements (on-line or at-line) or model-based methodologies. A scientific evaluation 

of different sampling methodologies for RTRt was undertaken and these methods were 

compared to the traditional sampling approaches. This chapter summarizes the work 

presented in this dissertation and outlines recommendations for future work. 

9.1. Conclusions: 

The RTRt work was performed on three different platforms ranging from lab scale batch 

setup to pilot scale tablet production to direct compaction of tablets using a continuous 

manufacturing line, discussed in chapter 2. Different data analysis algorithms employed 

to extract qualitative and quantitative information like PCA, PLS and MLR were 

discussed. The work discussed in chapters 3,4, and 5 was conducted on a pilot-scale PAT 

platform equipped with appropriate fixtures to facilitate PAT testing along with 

withdrawing samples using the traditional approaches. The experiments discussed in 

chapter 6 and 7 were conducted on a lab-scale blending shearing-compaction platform to 

evaluate and capture the effect of shear on tablet properties. The final segment of this 

dissertation discussed in chapter 8 was conducted on a continuous manufacturing 

platform.  
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With this background, the first specific aim discussed the implementation of a strategy 

for blend uniformity monitoring in a batch process (Chapter 3). This was a first published 

attempt to predict blend end point for a blend containing Phenytoin Sodium, a NTI drug. 

The calibration model building took into consideration the effects of scale changes, 

spectrometer differences and the variability introduced by the different excipients on NIR 

spectra. The effect of baseline differences arising from different spectrometers were 

reduced by employing data pre-treatments. The mean concentration after 30 minutes of 

blending predicted using NIR was within 10% of the target dose (15%). 

The second specific aim involved developing a RTR strategy to assess content uniformity 

of tablets obtained by compacting the blends used in the previous aim (chapter 4), and 

comparing different sampling strategies for the PAT platform (chapter 5). Near IR 

spectroscopy was found to be an effective tool for expedited C.U. predictions enabling 

interrogation of a greater number of tablet samples. These extensive tablet C.U. studies 

provided a rigorous basis for assessing and validating the various thief sampling and PAT 

methods and determining their relative accuracy and reliability. A bias was observed in 

the thief samples withdrawn at the completion of the blending operation and the 

technique was observed to oversample the drug even when the blend was sub- potent. 

This was explained by the abundance of the API agglomerates and their preferential flow 

into the sampling cavity. These agglomerates manifested themselves in the form of super-

potent tablets, the detection of which was possible owing to the extensive and expedited 

C.U. sampling and analysis enabled by transmission spectroscopy. The utility of online 

blend monitoring to detect the blend micro-mixing attributes such as lubricity and degree 
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of agglomeration was questionable. Choosing the right sampling tools is an important 

aspect of RTRt and the work in this aim addressed this requirement. 

A key component of a meaningful RTR strategy for most products is the ability to predict 

dissolution utilizing the available on/at-line sensing infrastructure. Dissolution testing 

typically takes from several minutes to several hours and is therefore not possible to 

measure it directly online. Therefore, dissolution must be predicted from other 

measurements (i.e., using a soft-sensing) method. Specific aim 3 focused on developing a 

RTR strategy for dissolution of tablets made from blends exposed to different strain 

levels in batch processing (Chapter 6 and 7). The first step towards attaining this goal was 

to study the effect of strain on tablet properties like tensile strength and porosity, on inter-

particle bonding, and the degree of tablet relaxation. Tablets at higher strain levels 

exhibited maximum axial relaxation, greater recovered elastic energy, and lower tensile 

strength. This was attributed to the coating of MgSt on different ingredients, 

compromising the bonding between the particles. Increasing blend shear strain was 

observed to slow down the rate of drug release from tablets. Near IR diffuse reflectance 

spectroscopy was observed to pick up the effects of strain on tablet properties. A PLS-2 

calibration model was built where the amount of drug released at different time points 

was used as the dependent variable and the NIR spectra was used as the independent 

variable. A good agreement between the observed and the predicted dissolution profiles 

was obtained (f2, similarity factor values greater than 65).  

The fourth and final aim focused on predicting dissolution of tablets obtained from the 

continuous direct compaction (CDC) line (chapter 8). Four different parameters were 
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varied in the CDC line throughout the study; API concentration, blender speed, feed 

frame speed, and compaction force. The RTR approach adopted here was slightly 

different, where the dissolution profiles were described either using surrogate models 

(soft sensing) or adopting a model independent modified-PCA approach. The information 

from the NIR was extracted using PCA and the scores were correlated to the dissolution 

parameters using MLR models. Individual dissolution profiles could be predicted using 

this approach with a high correlation between the predicted and the observed dissolution 

profiles (f2 values between 75 and 79). This successfully completed the RTR strategy, 

with the prediction of tablet dissolution profiles using soft sensing combined with at-line 

Near IR measurements. 

9.2. Method Implementation: RTRt for dissolution  

The validation results in chapter 7 and 8 demonstrated the feasibility of predicting 

dissolution profiles based on NIR diffuse reflectance spectra in batch and continuous 

system. Two different approaches were discussed; a PLS-2 approach, and a ‘PCA 

combined with surrogate model’ approach. The PCA combined with surrogate model 

approach is outlined in Figure 9-1 (left). This approach was easy to implement, describing 

the dissolution profiles in terms of independent parameters, where the auto correlation 

between dissolution values at different time points was circumvented. The steps for 

validation and prediction of a fresh test set using a calibration model are discussed in Figure 

9-1 (right). The implementation strategy follows recent European Medicines Agency 

(EMEA) guidelines that state: "The NIRS method should, as a pre-condition, be able to 

reject samples that are outside of its defined scope (e.g. out of range, compositionally 
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incorrect)” [154]. The strategy was implemented by first using PCA to determine whether 

the spectra were within the defined scope of the model. Thus, PCA was used to determine 

whether the NIR spectra were similar to those obtained from tablets compressed at a certain 

force. The second step was to determine whether tablets had the expected drug 

concentration. This third step predicted the dissolution behavior using the PLS NIR 

calibration model (chapter 7) or the Multi-linear regression models between the PCA 

scores and the dissolution parameters (chapter 8). The fourth step compared the NIR 

predicted dissolution profiles with those obtained from the USP Apparatus 2 dissolution 

tests. If tablets meet these requirements the batch can be released. 
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Figure 9-1 –Strategy for dissolution model building using ‘tablet NIR and surrogate models (soft sensing)’ 

approach (left). Strategy for prediction of the validation set using the dissolution models (right)- Courtesy: 

Hernandez et al., Prediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to 

different levels of strain 

9.3. Recommendations for future work 

9.3.1.  Utilizing the blending platform for different case studies: 

Chapter 3,4, and 5 used a blending PAT platform to develop RTR strategies for B.U. and 

C.U. in batch processing and compare sampling strategies. This strategy was tested for a 

single API, Phenytoin Sodium. This case study highlighted the presence of API 

agglomeration and the utility of extensive stratified sampling to detect the agglomerates. 

Properties of API and excipients can pose potential challenges in developing such 

platform technologies. Developing effective PAT methodologies for such challenging 

blends (segregating blends, low potency blends) can help develop representative and 

robust protocol, and test the potential to repeatedly implement a given PAT system across 

a manufacturing platform. For such challenging blends, the platform equipped with 

modern analytical technologies and control models will facilitate development of 

protocols for effective control during mixing.  Process monitoring methods will enable 

the evaluation of blend uniformity, assay, tendency for segregation, effect of raw material 

variability, environmental conditions, and other critical parameters associated with 

achieving the desired state of homogeneity.  Investigating different materials will help 

correlate the “quality” of blends to product critical quality attributes (CQAs) will provide 

a science-based approach to optimizing blender design, sensor design, mixing protocols, 

and models for measuring or predicting blend and final product quality. Also, these 

studies should be carried out using different spectrometers and various chemometric 

systems to determine instrument dependence of results.  
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9.3.2. Detection of agglomerates in tablets using Raman Mapping  

In chapter 3, 4 and 5, NIR predictions of tablet C.U. yielded results highlighting presence 

of super potent tablets. As mentioned earlier, for tablets containing a narrow therapeutic 

index drug, presence of super potent units can have adverse effects on patient health. As 

highlighted in chapter 5, the presence of drug agglomerates was detected in the blend 

samples. These blends were further compacted into tablets in a tablet press. The feed 

frame in tablet press has been observed to exhibit high shear environment which can lead 

to partial or complete breaking of such agglomerates [116]. As such, tablets need to be 

studied further to detect and visualize the presence and the degree of agglomeration, if 

any.  This can be accomplished by scanning different tablet layers and obtaining a spatial 

distribution of API throughout the tablet.   

This can be achieved by imaging different layers of the tablet using a chemical imaging 

system. A primary analysis of some of these super potent tablets was done using mPAT 

system (H2Optx Inc, San Jose, California) to see if agglomerates were observed in the 

tablets Figure 9-2. The mPAT system uses Raman Imaging to scan 4mm x 4mm cross 

section of a tablet. After scanning one layer, a specified thickness of the tablet was 

shaved off using a ‘pillerator’ attachment, and the new layer of the tablet was scanned 

again.  
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Figure 9-2: mPAT LAB+ Pillerator assembly. Enables automatic sectioning of tablets with layer by layer 

hyperspectral scanning using Raman Spectroscopy 

Each of the pixels were analyzed using Classical Least Squares to determine the amount 

of API and other excipients in them, which was repeated for all the pixels creating a 

surface image Figure 9-3 (top). These layers were stacked up to obtain a spatial 

distribution of the API and excipients as shown in Figure 9-3 (bottom). The API is shown 

in red. Localized clusters of API were observed for one of the super potent tablets.  

 

Figure 9-3: Raman imaging for an over-potent (compared to the average) blend O2 tablet. Surface plot of a 

single layer (left). 3-D stacked plot of 12 layers (right). Agglomerates of Phenytoin Sodium can be observed. 

Phenytoin-Red, Lactose- Green, MCC- Blue, MgSt- Yellow.  
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The feasibility of using this tool to locate agglomerates has been discussed here. There 

are a few issues that need to be addressed. Tablets exhibiting sub-potency should be 

analyzed and compared to the super potent tablets to determine the differences in the 

structure and the agglomerates. Efforts must be taken to distinguish and delineate an API 

agglomerate from the surrounding API pool. The size of the agglomerates should be 

measured in an effort to quantify the actual amount of API in the agglomerate. An 

example is shown in Figure 9-4, where the API agglomerates for a tablet containing 12% 

nominal API are highlighted. The API particles can be categorized based on their size 

and the agglomerate size can be estimated using this tool. These observations can also be 

related to the process and the formulation properties to help manufacture better quality 

tablets. 

 

Figure 9-4: Size distribution for API in a tablet containing 12% nominal API concentration. The blue color 

indicates tablets greater than 250 µ size.  

9.3.3. RTRt for dissolution prediction: Investigating different case studies 

In an effort to predict dissolution for tablets manufactured in CM systems, only one type 

of formulation, directly compressed tablets, was examined in chapter 8. This formulation 
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had relatively simple dissolution behavior, determined primarily by three parameters: 

tablet porosity, amount of API, and extent of shear experienced by the blend. For such a 

system, a small number of degrees of freedom are needed to predict dissolution behavior, 

and both model dependent and model independent methods worked satisfactorily. More 

complex formulations where drug release might depend on amounts of other ingredients 

(such as controlled-release polymers and pH modifiers) might require a larger number of 

factors, and perhaps a more extensive calibration set, but to the extent that the relevant 

parameters can be tested non-destructively, the methods introduced in chapter 8 are likely 

to be effective. A broader study involving different formulations should be undertaken, 

and the merits and demerits of different multivariate methodologies should be examined 

to predict dissolution in real time. Importantly, once the ability to predict dissolution 

profiles reliably is properly demonstrated, meeting the remaining requirement for closed-

loop quality control, real-time quality assurance, and real-time release should be 

relatively straightforward.  
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Appendix I 

Multi linear regression equations for dissolution profile parameters: 

For model independent parameters:  

Level =  74.1239 - 81.658 PC1 + 103.405 PC2 + 30.1696 PC3 + 377.843 PC1*PC2 + 

          1762.93 PC1*PC3 - 653.277 PC2*PC3 - 38489.1 PC1*PC2*PC3 

 

\ 

Shape I  =  3.57359 - 330.254 PC1 + 254.108 PC2 + 176.14 PC3 - 1050.08 PC1*PC2 + 

          6994.8 PC1*PC3 - 2452.04 PC2*PC3 - 109821 PC1*PC2*PC3 
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Shape II  =  -0.811668 + 65.2325 PC1 - 100.161 PC2 + 15.1698 PC3 - 566.01 

             PC1*PC2 - 1989.88 PC1*PC3 + 1310.25 PC2*PC3 + 41747.1 PC1*PC2*PC3 

 

 

For model dependent parameters:  

α = 129.78 + 585.5 PC-1 + 637 PC-2 - 594 PC3 + 9918 PC-1*PC-2 - 3278 PC-1*PC3 

+ 32418 PC-2*PC3 + 4731 PC-1*PC-2*PC3 
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β = 1.3198 + 0.140 PC-1 + 2.242 PC-2 - 1.757 PC3+ 24.76 PC-1*PC-2 + 25.6 PC-1*PC3 

+ 39.8 PC-2*PC3 - 978 PC-1*PC-2*PC3 
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