
EXPLORING POWER-PERFORMANCE-QUALITY
TRADE-OFFS FOR EXASCALE COMBUSTION

SIMULATION

BY YUBO QIN

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Ivan Rodero

and approved by

New Brunswick, New Jersey

May, 2016

ABSTRACT OF THE THESIS

Exploring Power-Performance-Quality trade-offs for

Exascale Combustion Simulation

by Yubo Qin

Thesis Director: Ivan Rodero

The computational demand of high-performance computing (HPC) applications has

brought major changes to the HPC system architecture. As a result, it is now possible

to run simulations faster and get more accurate results. But behind this, power and

energy are becoming critical concerns for HPC systems, e.g. Titans electric cost is

about $9 million per year[1]. Power efficiency has become a critical challenge for the

exascale research challenges, and U.S. Department of Energy (DOE) has set the goal

to achieve exascale performance with a power budget of 20MW[2].

Current research efforts have studied power and performance tradeoffs, and how to

balance these, e.g., using DVFS to meet power constraints, which significantly impacts

performance. However, scientific applications may not tolerate degradation in perfor-

mance and other tradeoffs need to be explored to meet power budgets, e.g., involving

the application in making energy-performance tradeoff decisions.

This research focuses on studying the properties and exploring the performance and

powerenergy tradeoffs of Low-Mach-Number Combustion (LMC) application which is

an Adaptive Mesh Refinement (AMR) algorithm. Our experimental evaluation provides

an empirical evaluation of different application configurations that gives insights into the

power-performance tradeoffs space for this LMC or AMR-based application workflows.

ii

The key contribution of this work is a better understanding of the running behavior of

this AMR-based application and the power-performance tradeoffs for this application

under power constraints, which can be used to better schedule power budgets across

HPC systems.

iii

Acknowledgements

I would like to start by acknowledging my family in China who has always been very

understanding and encouraging during my studies. I would like to thank my advisor

Prof. Ivan Rodero and Prof. Manish Parashar for their invaluable guidance, support

and encouragement during this research and throughout my graduate studies. I am

thankful to Jim Housell and Prof. Sandro Rigo for their excellent support and guidance.

Also am thankful to Prof. Deborah Silver for being on my thesis committee. I also

thank all my colleagues in RDI2.

This presented work is supported in part by the US National Science Foundation

(NSF) via grant numbers ACI 1339036, ACI 1310283, DMS 1228203, and IIP 0758566;

by the Director, Office of Advanced Scientific Computing Research, Office of Science, of

the US Department of Energy through the Scientific Discovery through Advanced Com-

puting (SciDAC) Institute of Scalable Data Management, Analysis and Visualization

(SDAV) under award number DE-SC0007455; by the Advanced Scientific Computing

Research and Fusion Energy Sciences Partnership for Edge Physics Simulations (EPSI)

under award number DE-FG02-06ER54857; by the ExaCT Combustion Co-Design Cen-

ter via subcontract number 4000110839 from UT Battelle; by the RSVP grant via sub-

contract number 4000126989 from UT Battelle; and by an IBM Faculty Award. The

research was conducted as part of the NSF Cloud and Autonomic Computing (CAC)

Center at Rutgers University and the Rutgers Discovery Informatics Institute (RDI2).

iv

Dedication

To my parents, dear brothers and sisters and all the prayers.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . viii

List of Figures . ix

1. Introduction . 1

1.1. Motivation . 1

1.2. Problem description . 2

1.3. Overview of the approach . 3

1.4. Contribution . 3

1.5. Thesis organization . 3

2. Related work . 5

2.1. Energy efficiency . 5

2.2. Power management . 6

2.3. Power measurement systems . 7

3. Background . 8

3.1. Overview of combustion simulation software 8

3.2. BoxLib . 9

3.2.1. Parallel Programming Model . 9

3.2.2. Hybrid MPI-OpenMP . 10

3.2.3. Checkpoint and Plotfile . 10

vi

3.3. Adaptive Mesh Refinement . 10

3.3.1. AMR algorithm . 11

3.3.2. Types of Refinement . 12

3.3.3. Grid Hierarchy and time-stepping procedure 12

3.4. Combustion simulation mathematical model 14

3.5. RAPL . 17

3.5.1. Power capping . 18

3.5.2. RAPL measurement . 18

3.5.3. RAPL algorithm . 18

4. Experimental evaluation . 21

4.1. Infrastructure overview . 21

4.1.1. CAPER Cluster . 21

4.1.2. DELL Cluster . 22

4.1.3. Power measurement methodology 22

4.2. Exploration of LMC load imbalance exploration 23

4.3. AMR resolution adjustment . 28

4.4. AMR mesh and LMC output . 31

4.5. Evaluation of different levels of refinement for different number of cores 33

4.6. Evaluation of energy consumption of different levels of refinement under

variety number of cores . 35

4.7. Evaluation of the impact of RAPL power capping on LMC performance 37

4.8. Evaluation of power budget acquisition through power capping and res-

olution degradation . 39

4.9. Evaluation of power budget management 41

5. Conclusions and future work . 44

References . 45

vii

List of Tables

3.1. M-state, represent worst case power based on worst case memory band-

width and access pattern allowed in this state 20

4.1. Top 10 number of call functions . 26

4.2. Top 10 time consuming functions . 28

4.3. AMR parameters which are used to tune simulation resolution 28

4.4. Configuration for experiment of execution time of different levels of re-

finement under variety number of cores 33

4.5. Configuration for experiment of power consumption of different levels of

refinement under variety number of cores 35

4.6. Configuration for experiment of exploring the affection of RAPL power

capping on LMC performance . 37

4.7. Configuration for experiment of getting available power budget through

power capping and resolution degradation 40

4.8. Configuration for experiment of exploring the power-performance trade-

offs . 42

viii

List of Figures

3.1. Type of refinement . 12

3.2. AMR hierarchical grid structure . 13

3.3. AMR space-time diagram . 13

3.4. Power domains for which power monitoring/control is available 17

4.1. LMC power consumption curve with different (qualitative) resolution levels 25

4.2. Selected LMC MPI Running Behavior Statistics 26

4.3. AMR mesh grids outcome of the example configuration 30

4.4. Refinement level directly affects AMR resolution: mesh grid density is

increasing while refinement level is increasing and relevant flame plots

are getting finer (more accurate) . 31

4.5. Different level of refinement and LMC output image 32

4.6. Execution time of running different levels LMC on CAPER cluster through

2 to 128 cores. 33

4.7. Execution time of running different levels LMC on DELL cluster through

2 to 256 cores. 34

4.8. Power consumption of different levels of refinement under different num-

ber of cores . 36

4.9. Relationship between different resolution of LMC and their execution

time under different power capping levels 38

4.10. Relationship between different resolution of LMC and the energy con-

sumption under different power capping levels 38

4.11. Energy consumption trend for different power caps and refinement levels 40

4.12. Available power budget from applying resolution degradation and appro-

priate power capping . 41

ix

4.13. Level 3 LMC power consumption without power capping or resolution

degradation . 43

4.14. Level 4 LMC power consumption with power capping or resolution degra-

dation . 43

x

1

Chapter 1

Introduction

1.1 Motivation

High performance computing (HPC) was introduced in the 1960s, they have been played

an important role in the field of computational science. From design perspective, HPC

were built to maximize performance while irrespective of power and energy consump-

tion, though their energy consumption has already occupied a large part of cost (i.e.,

operation cost). However, as we are approaching the exascale era, power is turning

from an optimization goal to a critical operation constraint. U.S Department of Energy

(DOE) has currently set a bound of 20MW for an exascale system.[3] This strict power

constraint poses a hard research challenge with current hardware and software. Tianhe-

2, the top one supercomputer as of 2015, has a peak performance of 54.9 PetaFLOPS

at 17.8 MW, which is 1.9 GigaFLOPS per watt. However, achieving the goal of exas-

cale computing at 20 MW, it requires 50 GigaFLOPS per watt. So that, current HPC

system still need at least a 26 times power efficiency improvement towards exascale.

In order to achieve this exascale system power constraint, current research efforts

have studied power and performance tradeoffs, and how to balance these.[4, 5, 6, 7, 8, 9]

Many power management strategies have been proposed[10, 11, 12, 13, 14], but most of

the work is tend to choose a performance loss for the application and then attempt to

constraint the power consumption under that performance loss. Even if this can meet

power constraints, it significantly impacts performance. Since scientific applications

may not tolerate degradation in performance, other tradeoffs need to be explored to

meet power budgets. At the same time, it is clear that future HPC system will have a

whole-system power constraint that will be filtered down to job-level power constraint.

This indicates that the application should be involved in making tradeoffs decisions.

2

This research targets a Center for Exascale simulation of Combustion in Turbulence

(ExaCT) Low-Mach-number Combustion simulation code (LMC). [15] This combus-

tion simulation is developed based on Adaptive-Mesh-Refinement (AMR) algorithm.

The AMR method can be customized to resolve problems at different resolution lev-

els. This property motivates us to find the potential tradeoffs to run applications in

power-constrained environments without impacting performance by tolerating lower

resolution/quality levels.

1.2 Problem description

Whole-system power constraints will be filtered down to job-level power constraints,

i.e., power budgets need to be managed at application or workflow level. This research

use power capping techniques to meet the job-level power constraints while maintaining

the performance.

Nowadays, many research efforts have studied power and performance tradeoffs,

and most energy models or strategies are based on runtime (e.g., leveraging MPI slack)

for power clamping or power capping techniques, like Dynamic Voltage and Frequency

Scaling (DVFS) to constraint the power. However, power and performance are in the

two sides of a balance scale, that it is hard to improve one side without scarifying the

other one. Therefore, one of the key problems addressed in this research is keeping

the power bound (or budget) without losing performance, which is challenging for real

world application targeting exascale.

To address this challenge, we believe that the applications should be involved in

making tradeoff decisions. For this specific application, LMC combustion simulation

code, we propose to exploit AMR unique properties (e.g., dynamically resolution ad-

justment) together with power capping to address this issue.

3

1.3 Overview of the approach

In this work, AMR codes consider a hierarchy of grids of differing resolution ranging

from the coarsest to the finest. It can focus computational resources in regions of in-

terest but decrease computing resolution in regions with less interest. Less resolution

means lighter workload and less power consumption. Therefore, this flexible resolution

property gives us a potential opportunity to extract power budget for other usage. In

order the take best advantage of it, this work first studies the mechanisms and policies

to control AMR properties, and then, it characterizes LMC power performance running

on different number of cores with different levels of resolution (e.g., levels of refinement

in AMR). Finally, the characterization is complemented with power capping techniques

(i.e., RAPL). The overarching goal of this thesis is to understand the tradeoffs be-

tween power-performance and quality, and building models taking into account AMR

properties for managing power budgets and workflow at scale.

1.4 Contribution

The contributions of this work are summarized below:

1. It presents an empirical evaluation of different configurations of application that

gives insights into the energy-performance-quality tradeoff for scientific data-

driven workflows.

2. It provides a comprehensive study of this LMC simulation performance, quality,

and power and energy behavior.

3. It presents a proof-of-concept study of potential of power capping and power

management to balance power-performance-quality tradeoffs.

1.5 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 summarizes the related work.

Chapter 3 presents background information related to the techniques used in this re-

search. Chapter 4 describes the evaluation methodology and presents the results of the

4

experimental evaluation. Chapter 5 concludes the chapter and outlines ongoing and

future research.

5

Chapter 2

Related work

2.1 Energy efficiency

Energy-efficiency has become a critical concern for HPC applications. There are many

approaches have been proposed to obtaining energy savings during HPC application

execution. Some of them are to focus on identifying stalls during the execution by

measuring architectural parameters from performance counters as proposed in[4, 5, 6].

In addition to using performance counters, Rountree et al.[10] developed a runtime

system called Adagio, by doing the critical path analysis, it can determine which tasks

may be slowed down and also suitable opportunities to apply DVFS to minimize the

performance loss in the parallel execution. This achieves significant energy saving in

scientific application with negligible performance lose. However, this approach appears

beneficial when applications have computation or communication imbalances among

participating processes, which is typically not the case for a highly efficient parallel

application nor suitable for the LMC program targeted in this work. Some approaches

in[7, 11] are proposing to determine the communication phases to apply DVFS. Kan-

dalla et al.[16] give algorithms to save energy in the collectives such as MPI Alltoall

and MPI Bcase. Moreover, Ioannou et al.[12] describe a runtime system for the In-

tel Single-chip Cloud Computer (SCC) processor to detect repeatable communication

phases followed by an application of frequency scaling. Donofrio et al.[8] have studied

energy efficiency for extreme-scale science and developed Green Flash, an application-

driven design to improve the kernels computational efficiency. Li et al.[13] developed

a new power-aware performance prediction model of hybrid MPI/OpenMP program-

ming model and combine memory and disk management techniques to provide per-

formance guarantees for control algorithms. Rodero et al.[14] explored the potential

6

of application-centric aggressive power management of HPC scientific workloads while

considering power management mechanisms and controls available at different levels

and different subsystems. Gmall et al.[9] explored data-related energy/performance

trade-offs for end-to-end co-design simulation workflows on current and on-going high-

end computing systems. Lively et al.[17] explored and investigated energy consump-

tion and execution time of different parallel implementation of scientific applications

on multi-cluster systems.

Most of the work described above are from system level and are based on tolerating

performance loss and constrain the power consumption under that performance loss.

The work presented here discusses the possibility to filter down power constraint to job-

level, and then take advantage of applications specific properties, such as resolution, to

keep the power budget while maintaining the level of performance.

2.2 Power management

The cost of provisioning power in data centers is a very large fraction of the total

cost of operating a data center.[18, 19] Therefore the ability to cap peak power con-

sumption is a desirable feature in modern data centers.[20] Many power management

approaches have been proposed to provide performance guarantees while constrain-

ing power budget. Sartori et al.[21] describe a peak power management technique for

multi-core systems by choosing the power state for each core that meets the power

constraints. Cebrian et al.[22] develop a power balancing strategy that through bor-

rowing power budgets from cores that consume lower power to dynamically adapts the

per-core power budgets. While, Gandhi et al.[23] give a power capping strategy to meet

the power budget by inserting idle cycles during execution. This approach aims at con-

trolling the average power consumption, but cannot guarantee the peak power. So a

number of other approaches are proposed through reconfiguring hardware to meet the

power budget. Meng et al.[24] provide a power management strategy through dynamic

reconfiguration of cores by cache resizing. Konotorinis et al.[25] propose a table-driven

adaptive core reconfiguration technique that configures core resources such as load-store

7

queues and floating point units to meet peak power budget. Most of the power man-

agement strategies are using DVFS. Since Intel SandyBridge family processors, Intel

provide Running Average Power Limit (RAPL) for controlling the power constraint

on processors and memory. Several studies have begun to evaluate the RAPL power

management system. Rountree et al.[26] explore RAPL as a replacement for DVFS in

HPC systems by evaluating power consumption for package and memory subsystem.

Zhang et al.[27] give a systematic evaluation of RAPL behavior such as stability, setting

time, overshoot and, etc. RAPL also been used to study application runtime variability

and power optimization for exascale computing in work of Allan et al.[28][21] Sarood

et al.[29] use RAPL to set power bounds on across an over-provisioned cluster running

homogeneous application processes. This work also takes advantage of RAPL power

controlling ability to dynamically manage power consumption.

2.3 Power measurement systems

Measuring the power/energy consumption of software components is the key for energy-

aware scheduling, accounting and budgeting. RAPL measurement mechanism is de-

scribed in[28] and Marcus et al.[30] has investigated the RAPL measurements perfor-

mance and discussed the practical obstacles that existed in performing these measure-

ments on complex modern CPUs. Vignesh et al.[31] studied the greenness of the in-situ

and the post-processing visualization pipelines using RAPL to measure the CPUs and

RAMs power consumption and with an average error rate of less than 1%. Venkatesh et

al.[32] use RAPL to measure energy consumption in large message-passing applications.

8

Chapter 3

Background

3.1 Overview of combustion simulation software

Nowadays, more then 85% energy in the US is provided by combustion. Meanwhile,

the internal combustion engine is still widely used in the world. Those place enor-

mous pressure to improve the combustion efficiency in both power generation devices

and transportation. For this purpose, combustion simulation is important for scientists

to gain insight of turbulent flame combustion process. But simulating practical-scale

combustion is a challenging work. Because typically, combustion process often involves

hundreds of species and thousands of chemical reactions, and the problem is inher-

ently multi-scale both in time and space.[15] At same time, from an engineering point

of view, practical flows in combustion simulation are mostly turbulent.[33] Turbulent

combustion models use systematic mathematical derivations based on the Navier-Stokes

equations.[34] Traditionally, people use direct numerical simulation (DNS) approaches

to solve Navier-Stokes equations. This approach is based on explicit numerical methods

for the compressible flow equations on uniform grids. This DNS is good to be used in

small idealized combustion simulation problems geared at the fundamental nature of

turbulence/chemistry interactions. However, this approach is not ideal for large-scale

combustion simulation. On the one hand, it requires very fine spatial grids to resolve

the local flame structure. On the other hand, it requires small time steps to resolve the

acoustic and chemical time scales inherent in the model.

In LMC combustion code, the Center for Computational Sciences and Engineer-

ing (CCSE) has taken a different research approach that explicitly targeted both the

temporal and spatial multi-scale aspects of combustion modeling. First, instead of the

traditional compressible equations, a low Mach number formulation is used. Second,

9

adaptive mesh refinement (AMR) is used to increase computational utilization that

focus computational resources in regions of interest but decrease computing resolution

in regions with less interest. Third, robust integration methods are employed to allow

reasonable solution behavior with a minimum of computational resolution. By those

three features, the computational requirements of this combustion simulation has been

reduced by a factor of 10,000 relatives to traditional approaches.[35]

This combustion code is embodied in a hybrid C++/FORTRAN software system.

In this framework, memory management and control flow are expressed in the C++

portions of the program and the numerically intensive portions of the computation are

handled in FORTRAN. The software is written using a layered approach, with a foun-

dation library, BoxLib, that is responsible for the basic algorithm domain abstractions

at the bottom, and a framework library, IAMR, that marshals the components of the

AMR algorithm, at the top. Support libraries built on BoxLib are used as necessary

to implement application components such as interpolation of data between levels, the

coarse/fine interface synchronization routines, and linear solvers used in the projections

and diffusion solves.[36]

3.2 BoxLib

BoxLib was developed at the Center for Computational Sciences and Engineering

(CCSE) at Lawrence Berkeley National Laboratory. It is a software library containing

all the functionality for building massively parallel, block-structured adaptive mesh

refinement (AMR) applications for solving time-dependent PDEs in two and three

dimensions.[37] Following sections give a high-level overview of Boxlib features.

3.2.1 Parallel Programming Model

MultiFab is the fundamental parallel abstraction in BoxLib, which holds the data on

the union of grids at a level of refinement. A MultiFab is composed of multiple Fortran

array boxes and each Fab is a multidimensional array of data on a single grid. Fabs at

each level of refinement are distributed independently, thus each processor can operate

10

independently on its local data. But for operations that require data owned by other

processors, the MultiFab operations are preceded by a data exchange between processors

to fill ghost cells. Each processor contains meta-data that is needed to full specify the

data locality and processor assignments of the Fabs.

3.2.2 Hybrid MPI-OpenMP

The basic parallelization strategy uses a hierarchical programming approach for mul-

ticore architectures based on both MPI and OpenMP. In the pure-MPI instantiation,

each Fab is assigned to a core, and each core communicates with every other core using

only MPI. In the hybrid approach, where on each socket/node there are n cores that all

access the same memory, we can divide our domain into fewer, larger grids, and assign

each Fab to a socket/node, with the work associated with that grid distributed among

the n cores using OpenMP.

3.2.3 Checkpoint and Plotfile

Data for checkpoints and analysis are written in a self-describing format that consists

of a directory for each time step written. Checkpoint directories contain all necessary

data to restart the calculation from that time step. Plotfile directories contain data for

post-processing, visualization, and analytics, which can be read using VisIt. Checkpoint

and Plotfiles are portable to machines with a different byte ordering and precision from

the machine that wrote the files.

3.3 Adaptive Mesh Refinement

Variety of approaches have been used to reduce the computational costs of simulating

combustion flows and Adaptive Mesh Refinement (AMR) turn out to be a very effective

one. Berger and Oliger developed AMR for computing time-dependent solutions to

hyperbolic partial differential equations in multiple space dimensions.[38] Later on, this

AMR approach has been developed for a variety of engineering problems.[39, 40, 41]

The beauty of AMR is that it focus computational resources in regions of interest

11

but decrease computing resolution in regions with less interest. This largely increase

computational utilization and therefore minimizing memory and storage requirements.

It is powerful especially in treating problems with multiple scales.

AMR is based on a sequence of nested grids with successively finer resolution in

both time and space. In this approach, fine grids are formed by dividing coarse cells

by even integer factor Rl in each direction. Rl is called refinement factor, it is the ratio

in resolution between consecutive levels, and is uniform in all spatial directions. Rl

is typically 2 or 4. Increasingly finer grids are recursively embedded in coarse grids

until the solution is adequately resolved with each level contained in the next coarser

level. An error estimation procedure based on user-specified criteria evaluates where

additional refinement is needed and grid generation procedures dynamically create or

remove rectangular fine grid patches as resolution requirements change.

3.3.1 AMR algorithm

A general AMR formulation is presented below.

Advance (l,t)

If (time to regrid) then

Regrid (l)

FillPatch (l,t)

Integrate (l,t, ∆tl)

If (l ¡ lfinest) then

For isub = 1, , rl

Advance (l + 1, t + (isub - 1) ∆tl+1)

Average down (l, t + ∆tl)

Reflux (l, t + ∆tl)

End if

Regrid (l): generate new grids at levels l + l and higher

FillPatch (l, t): fill patch of data at level l and time t

12

Integrate (l, t, ∆t): Advance data at level l from t to t + ∆t, averaging and storing

fluxes at boundaries of level l grids if l ¿ 0 and level l cells at boundary of l + 1

Average down (l,t): average (in space) level l + 1 data at time t to level l

Reflux (l,t): Add (time- and space-averaged) refluxing corrections to level l cells at

time t adjacent to level l + 1 grids

3.3.2 Types of Refinement

Adaptive mesh refinement has several type of refinement grids. It includes the following

main four types as illustrated in Figure 3.1.

(a) Unstructured (b) Mesh distortion

(c) Point-wise structured refinement (d) Block-structured refinement

Figure 3.1: Type of refinement

3.3.3 Grid Hierarchy and time-stepping procedure

The adaptive mesh refinement (AMR) algorithm uses a hierarchical grid structure, in

Figure 3.2, which composed of rectangular, uniform grids of varying resolution. Each

refinement level is represented as a union of rectangular grid patches of a specific res-

olution contained within the computational domain. By definition, level 0 covers the

13

entire problem domain. The widths of the cell in the level l grids differ from those at

l + 1 by refinement factor Rl. The grids are properly nested, i.e. the union of grids at

level l + 1 is contained in the union of grids at level l. The containment is strict in the

sense that, except at physical boundaries, the level l grids are large enough to ensure

that there is a border at least one level l cell surrounding each level l + 1 grid.

During the adaptive mesh process, the AMR timestep consists of separate timesteps

on each of the levels. Those including synchronization operations that insure correct

behavior at the coarse-fine interfaces, and regridding operations which permit the re-

fined grids to track complex and/or interesting regions of the flow. The ratio of the

level l and the level l + 1 time steps is Rl. Figure 3.3 shows a space-time diagram

of a single level 0 timestep, during which a regridding operation moves the interface

between levels 1 and 2.

Figure 3.2: AMR hierarchical grid structure

Figure 3.3: AMR space-time diagram

14

3.4 Combustion simulation mathematical model

The fundamental mathematical model of combustion simulation is the compressible

Navier-Stokes equations for a reacting flow.[36] Navier-Stokes equations, the formula-

tion below , is named after Claude-Louis Navier and George Gabriel Stokes, describe

the motion of viscous fluid substances.[42] It governs the motion of fluids and can be

seen as Newton’s second law of motion for fluids.

ρ(
∂u

∂t
+ u · ∇u) = −∇p+∇ · (µ(∇u+ (∇u)T))− 2

3
µ(∇ · u)I) + F (3.1)

where u is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and µ is the

fluid dynamic viscosity. These equations are always solved together with the continuity

equation:

∂ρ

∂t
+∇ · (ρu) = 0 (3.2)

In the LMC, it has considered a multicomponent gaseous mixture ignoring Soret and

Dufour effects, body forces and radiative heat transfer, and assume a mixture model for

species diffusion.[43, 44] The governing equations, which express conservation of mass,

momentum and energy, augmented by species transport, are:

∂ρ

∂t
+∇ · ρU = 0 (3.3)

∂ρU

∂t
+∇ · ρUU +∇p = ∇ · τ (3.4)

∂ρE

∂t
+∇ · ρUE + pU = ∇ · λ∇T +

∑
m

∇ · hmρDm∇Ym +∇ · τU (3.5)

∂ρYm

∂t
+∇ · ρUYm = ∇ · ρDm∇Ym − ω̇m (3.6)

where ρ is the density, U is the velocity, E is the total energy, Ym is the mass fraction

15

of species m, T is the temperature, and ω̇m is the net destruction rate for species m

due to chemical reactions. Also, λ is the thermal conductivity, τ is the stress tensor, cp

is the specific heat of the mixture, and em(T), hm(T) and Dm are the internal energy,

enthalpy and species mixture-averaged diffusion coefficients of species m, respectively.

We note that for these equations, we have
∑

Ym = 1,
∑
ρDm∇Ym = 0, and

∑
ω̇m = 0

so that the sum of the species transport equations gives the conservation of total mass.

These evolution equations are supplemented by an equation of state for a perfect gas

mixture:

p0 = ρRmixT = ρRT
∑
m

Ym

Wm
(3.7)

where Wm is the molecular weight of species m, and R is the universal gas constant.

To simulate reacting flow, one possible approach is to simply discretize this system of

equations above. However, the compressible flow equations provide a general description

of essentially continuum fluid dynamic phenomena. Therefore, an alternative approach

to directly discretize the compressible equations is to exploit the separation of scales

between the acoustic waves and the fluid motion by adopting a low Mach number

formulation

The low Mach number combustion formulation was first introduced by Rehm and

Baum [45] and was later derived rigorously from low Mach number asymptotic analysis

by Majda and Sethian [46]. It is a classical solution of the compressible Navier-Stokes

or Euler equations for non-isentropic fluids. The Mach number, is denoted by M, is

a fundamental dimensionless number. By definition, it is the ratio of a characteristic

velocity in the flow to the sound speed in the fluid.[47] The basic steps of the anal-

ysis are first to normalize the problem by rescaling and then to expand the terms in

the compressible Navier-Stokes equations in M. Equating terms in Mach number and

examining the behavior as M → 0 one can show that in an unconfined domain, the

pressure can be decomposed as:

p(x, t) = p0 + π(x, t) (3.8)

16

where p0 is the ambient thermodynamic pressure and is a perturbational pressure

field that satisfies π/p0 ∼ O(M2). (In a more general setting, p0 is a function of t.) With

this decomposition, p0 defines the thermodynamic state; all thermodynamic quantities

are independent of π.

With this decomposition, the low Mach number equations for an open domain are

∂ρ

∂t
+∇ · ρU = 0 (3.9)

∂ρU

∂t
+∇ · ρUU +∇π = ∇ · τ (3.10)

∂ρh

∂t
+∇ · ρUh = ∇ · λ∇T +

∑
m

∇ · hmρDm∇Ym (3.11)

∂ρYm

∂t
+∇ · ρUYm = ∇ · ρDm∇Ym − ω̇m (3.12)

Thought these still similar to the compressible equations, the low Mach number

model expresses the energy equation in terms of enthalpy, h(T,Ym) =
∑

m hm(T)Ym.

More importantly, acoustic waves are instantaneously equilibrated and the equation of

state, p0 = ρRmixT, now constrains the evolution. As a result, this description retains

compressibility effect due to heat release but removes the time scale associated with

acoustic wave propagation from the dynamics of the system. In this form, the pertur-

bation pressure, π, plays the role of a Lagrange multiplier to constrain the evolution so

that this constraint is satisfied.

These equations are supplemented by an equation of state for a perfect gas mixture:

ρcp(
∂T

∂t
+ U · ∇T) = ∇ · µ∇T +

∑
m

(ρDm∇Ym · ∇hm + hmω̇m) (3.13)

17

3.5 RAPL

Since Intel Sandy Bridge processors, Intel has introduced capabilities for both onboard

power meters and power clamping. The Intel Running Average Power Limit (RAPL)

provides a standard interface for measuring and limiting processor and memory power

by HW, OS, applications and, etc. The power limit and the time window (Power,

TimeWindow) form essential parameters of RAPL interface.[48, 49]

Users can measure and control processor power consumption by using several model-

specific registers, or MSR using two basic privileged instructions, readmsr and writemsr

through the MSR kernel module. This module exports a file interface at /dev/cpu/N/msr

(with N being the CPU number) that, given suitable file permission, can be used to

read and write any MSR on the node.

Intel has separated the Sandy Bridge family into two classes namely client and server.

The two architectures share a subset of RAPL features where the server class provides

additional features such as DRAM power measurement. The Sandy Bridge architecture

supports three power domains on both server and client architectures. In Figure 3.4,

both architectures support package (PKG) and Power Plane 0 (PP0) domains, while

the server adds a separate DRAM domain and the client adds a second power plane

(PP1).

Figure 3.4: Power domains for which power monitoring/control is available

18

3.5.1 Power capping

Exascale computing will be power limited. To satisfy this requirement, either to limit

the number and speed of processors or, more likely, using power capping to enforce

execution under the power budgets. Power capping techniques can provide the possi-

bilities of energy savings for computing devices. As the name implies, power capping

limits the instantaneous power used by a computing device. It is widely used to fulfill

power constraints and save energy. More over, it is also implemented for power budget

management and thermal control for data centers and computing devices.

In order to keep processor power consumption under the user-defined threshold,

RAPL has combined automatic DVFS and clock throttling techniques. But unlike

most proposed mechanisms that maintain instantaneous power limits, RAPL employs

an internal model of energy consumption, to estimate and maintain an average power

limit over a sliding time window. The power limit and the time window form essential

parameters of RAPL memory interface. Multiple limits can be set simultaneously for

different power and thermal constraints. RAPL can control and measure power in three

distinct domains, including the cores and caches, the entire CPU, or the DRAM.[50]

3.5.2 RAPL measurement

RAPL provides capabilities to measure energy and power usage of different parts of the

silicon chip. RAPL supports approximately 1ms resolution measurements. Its sensor

data is read from model-specific registers (MSR) and exported by the Linux kernel via

devfs, which makes these measurements readily available to profiling tools.[51]

3.5.3 RAPL algorithm

RAPL algorithm determines the power budget for the next interval based on memory

bandwidth, specified power limit, time window and a history of power consumption.

This algorithm aims to deterministically maintain a power limit while maximizing mem-

ory bandwidth and performance. RAPL algorithm including three formulas. The first

equation calculates the hard limits and the second one computes the soft limits. The

19

third equation is used for updating the M states in Table 3.1.

The hard limit is computed at beginning of each interval and it is calculated by

subtracting the power consumed over the last N-1 intervals from the available power

budget. However, only use hard limit to determine M-state from Table 1 and therefore

control the memory bandwidth and limits might lead to several drawbacks. Firstly, M-

state in Table 1 represent worst case power based on worst case memory bandwidth and

access pattern allowed in this state, thus it is unlikely to represent any realistic workload

or its true memory power consumption. Secondly, the algorithm uses the entire window

in computing the power budget for the next interval, which cannot represent the most

recent workload phase behavior. Also, it tends to allocate the entire available budget

in single intervals which has largely bad effect for multithreaded server workloads in

multi-core systems. To address these issue, RAPL also computes the soft limits that

shift the time window by M intervals to capture the most recent workload behavior.

And by predicting average bandwidth demand over the next M time intervals, it can

smooth the effects of power limit. Moreover, instead of using wore case power in Table

1, it updates them at the end of each time interval using the Weighted Running Average

(WRA) formula. And use the updated M-state table to select a power state for next

interval.

PwrBudgethard = N · PwrLimit−
N−1∑
i=1

MemoryPwri (3.14)

PwrBudgetsoft =
N · PwrLimit−

∑N−1
i=M MemoryPwri

M
(3.15)

WRAnew[M] = a ·MemoryPwr + (1− a) ·WRAcurr[M] (3.16)

20

MPL STATES BANDWIDTH (%) POWER (W)

MPL0 100 11.9

MPL1 80 10.5

MPL2 66.67 9.46

MPL3 57.14 8.70

MPL4 50.0 8.12

MPL5 44.44 7.67

MPL6 40.0 7.30

MPL7 36.16 6.31

MPL8 33.33 6.01

MPL9 30.25 5.69

MPL10 27.07 5.35

MPL11 23.58 4.99

MPL12 20.0 4.61

MPL13 16.34 4.23

MPL14 12.33 3.80

MPL15 8.24 3.37

Table 3.1: M-state, represent worst case power based on worst case memory bandwidth
and access pattern allowed in this state

21

Chapter 4

Experimental evaluation

4.1 Infrastructure overview

4.1.1 CAPER Cluster

CAPER (Computational And data-enabled Platform for Energy efficiency Research) is

a unique and flexible instrument funded by The National Science Foundation that com-

bines high performance Intel Xeon processors with a complete deep memory hierarchy,

latest generation co-processors, high performance network interconnect and powerful

system power instrumentation.

It is currently an eight-node cluster, which is capable of housing concurrently, in

one node up to eight general-purpose graphical processing units (GPGPU), or eight

Intel many-integrated-core (MIC) coprocessors - or any eight-card combination of the

two; and up to 48 hard disk drives (HDD), or solid-state drives (SSD). A single-node

configuration features a theoretical peak performance of 20TF/s (single precisions) or

10TF/s (double precision) and supports up to 32TB of storage and 24TB of flash-based

non-volatile memory. A separate node serves as a login and storage server.

This hardware configuration is unprecedented in its flexibility and adaptability as

it can combine multiple components into a smaller set of nodes to reproduce specific

configurations. This platform also mirrors key architectural characteristics of high-

end system, such as XSEDE’s Stampede system at TACC, and provides several unique

features to support critical research goals such as software/hardware co-design. CAPER

provides a platform to validate models and investigate important aspects of data-centric

and energy efficiency research.

22

4.1.2 DELL Cluster

DELL platform includes a 32 node Dell M610 blade cluster, consisting of two Dell

M1000E Modular Blade Enclosures, necessary interconnect/management infrastruc-

ture, and a supervisory node. Each enclosure is maximally configured with sixteen

blades, each blade having two Intel Xeon E5504 Nehalem family quad-core processors

at 2.0 GHz, forming an eight core node. Each node has 24 GB RAM and 73 GB of

local disk storage (10,000 RPM), twelve nodes have an additional 1 TB of local storage.

The network infrastructure is comprised of an integrated 16-port Mellanox InfiniBand

switch within each blade chassis, each switch linked to the switch in the other chassis.

All blades have Mellanox Quad-Data-Rate (QDR) InfiniBand interface cards. There is

also an integrated (redundant) 1 Gigabit Ethernet within each chassis, with two pairs

of 10 Gigabit uplink capabilities in each chassis. In the aggregate, the cluster system

consists of 32 nodes, 256 cores, 768 GB memory and 14.5 TB disk capacity, with a 20

Gigabit InfiniBand network and two 1 Gigabit Ethernet networks.

4.1.3 Power measurement methodology

Our experiment platform CAPER is instrumented with both coarse- and fine-grained

power metering at server level. On the one hand, an instrumented Raritan iPDU

PX2-4527X2U-K2 provides power measurements at 1 Hz. While, on the other hand,

a Yokogawa DL850E ScopeCorder provides voltage and current measurement for all

nodes through 1 Ms/s modules, and can sample power data at rate of up to 10 KHz.

In addition to those server level measurement, we have RAPL meter to provide power

measurement at a up to 20Hz sampling rate in processor level.

Use of RAPL power metering

RAPL meter measuring power through reading Machine-Specific Registers (MSRs). In-

tel released Power Gadget API for using RAPL. This API is a framework that provides

very comprehensive information including reading current estimated processor power,

current processor frequency, base frequency, thermal design power (TDP), current tem-

perature, timestamps and etc. Also, Intel gives a ready-to-use software-based power

23

monitoring tool called Intel Power Gadget, this has a completed interface for using

RAPL. We are using this to measure the processors power usage.

RAPL meter sampling frequency considerations

Thought, according to Intels manual,[48] RAPL MSRs would update at rate of once

every 1 ms, using very lower frequency (e.g. less than 20 ms) may result in significant

overhead and might also increase the power consumption, which would make the data

less meaningful.[52] Also, since the instantaneous processor frequency would change

very frequently, sampling data may be more useful if you sample often and average the

samples overtime. So, Intel recommend sampling frequency of 50 ms or upper. For our

experiment, we dont require high resolution power data, so we choose to sample twice

per second.

Reading power measurement data from PDU

Raritan PDU keep measuring the whole servers power consumption and writing the

power measurement data to power log files with timestamp. CAPER has eight nodes,

so we extract real-time power measurement data and the timestamp from each nodes

power log file after simulation started using Simple Network Management Protocol

(SNMP) queries to the PDU from a side script running in an independent node.

4.2 Exploration of LMC load imbalance exploration

LMC is a massively parallel distributed program. Running on thousands processors are

very likely have load imbalance problem. Especially in AMR, the number of grids also

changes and is seldom an integer multiple of the number of processors, it is therefore

inefficient to assign the grids sequentially to the processors, and it is very likely to be

load imbalanced. Therefore, this experiment is aimed at exploring LMC program load

balancing. There are many studies on AMR load imbalance issue,[53, 54, 55] also many

strategies and balancers have been introduced to address it.[56]

In order to understand the application characteristics, we first measure LMC run-

time power consumption. Then we use profiling tools to trace its running behavior,

trying to find out how much time does it spend on MPI operations such as MPI Wait.

24

The goal is to evaluate the possibility to cap power during imbalanced regions.

To trace LMC running behavior, we first tried out some profiling tools, such as

PAPI, Perf and TAU. However, we concentrated in the built-in profiling mechanisms

already implemented in BoxLib, i.e., we used AMRprofParser to analyze the profiling

data.

Measuring power consumption

The command provided below runs LMC on 64 cores under resolution from level 3

to level 1. Intel power gadget is used to measure real-time power consumption.

mpirun -machinefile hostfile.txt -np 64 .LMC2d.Linux.g++.gfortran.SDC.MPI.ex

inputfile amr.max lev=#level

Profiling LMC running behavior

To enable LMC profiling function, we need to recompile it with following configuration

setting:

USE MPI=TRUE

PROFILE=TRUE

TRACE PROFILE=TRUE

COMM PROFILE=TRUE

Then we can get this executable file:

LMC2d.Linux.g++.gfortran.COMTR PROF.SDC.MPI.ex

Running this program, in addition to plotfile and checkpoint file, we can get profiling

file bl prof D 00XX in folder bl prof.

To analyze the resulting data, we need to use AMRProfParser. This tool is a

standalone profiler program existed in BoxLib library.

To use AMRProfParser, we need to compile the code with following configuration

setting:

USE MPI=FALSE

PROFILE=TRUE

TRACE PROFILE=TRUE

COMM PROFILE=FALSE

25

Then we get:

amrprofparser2d.Linux.g++.gfortran.DEBUG.TRACE PROF.ex

To use it, we can type appropriate options and profiling data directory to it as the

following format.

./amrprofparser2d.Linux.g++.gfortran.DEBUG.TRACE PROF.ex [options] profd-

dirname

For example, with option [-ws] it is possible to get a profile summary.

Discussion of results

Figure 4.1 shows the power consumption curve of running LMC on 64 cores. The

curve is very flat, which means LMC keep the processors in the maximum performance

for the whole time. From this point of view, LMC is running in a balanced way.

Although it looks good from the power consumption curve, there still exist possibility

that processors are running on highest power without doing actual work. Therefore,

we continue to trace LMC function call and function execution time.

Figure 4.1: LMC power consumption curve with different (qualitative) resolution levels

26

Table 4.1 show the top 10 function calls when running LMC with level 4 on 128

cores.

Function name Number of calls

Waitall 277,328,482

AsendTsii 146,652,558

ArecvTsii 146,652,558

AllReduceR 46,855,296

Alltoall 11,975,168

Alltoallv 11,975,168

ReduceR 502,784

Allgather 315,648

BCastTsi 84,992

AllReduceI 84,096

NameTag 59,136

Table 4.1: Top 10 number of call functions

Figure 4.2 shows the percentage of selected funcion calls using level 1 to level 3 on

profiled LMC.

Figure 4.2: Selected LMC MPI Running Behavior Statistics

27

We can see that function Waitall occupied most function call, and the higher level of

refinement, the more Waitall function will be called. However, the number of function

calls does not equal to the time program spend on it. So, we continue to profile the

time spend on each function, which is shown in Table 4.2. This table shows that the

most time consuming function Amr::coarseTimeStep() occupied 76.94% execution time

but only been called 20 time. While function LinOp::prepareForLevel() has been called

8297520 times but only occupies 1.75% execution time.

According to [36], LMC code has embedded load balance scheme which described

in Crutchfiled[57] and in Rendleman et al.[58] This load balance scheme is based on a

dynamic programming approach for solving the knapsack problem: the computational

work in the irregularly sized grids of the AMR data structures is equalized among the

available processors. After the initial allocation of grids some additional changes to the

grid distribution are performed to reduce communications between processors. Also,

BoxLib fundamental parallel abstraction is the MultiFab, and MultiFab operations

are performed with an owner computes rule with each processor operating indepen-

dently on its local data. For operations that require data owned by other processors,

the MultiFab operations are preceded by a data exchange between processors. Each

processor contains meta-data that is needed to fully specify the geometry and proces-

sor assignments of the MultiFabs. The results obtained clearly supports that LMC

has well address the load-balancing issue, therefore there is not much space for power

budgeting management within the application at function call level. The following

addresses the characterization of LMC performance-power-quality tradeoffs and power

management at a coarser grain level (i.e., workload level).

28

Function name Number of calls Minus Percent %

Amr::coarseTimeStep 20 539.3 76.94

CollectData Alltoall 22421 18.4 4.99

StateData::checkPoint 54 33.8 4.83

CGSolver::solve bicgstab 5374 33.8 3.05

LinOp::prepareForLevel 8297520 12.8 1.75

mg tower bottom solve 1869 11.8 0.85

MultiGrid::solve 4598 7.5 1.69

CGSolver::dotxy 77640 5.9 0.72

Amr::writePlotFile 3 3.3 0.48

Projection::doNodalProjection 216 2.5 0.48

FabArray::FillBoundary 424250 0.46 0.40

Table 4.2: Top 10 time consuming functions

4.3 AMR resolution adjustment

LMC simulation program is based on AMR algorithm, which uses a hierarchical grid

structure, and fill finer patches on the region of interest. Therefore, the simulations

resolution from the computational point of view is mainly directed from the AMR algo-

rithm resolution configuration. There are many parameters controlling AMR solution,

but in the work, only those four parameters listed in Table 4.3 have been used to tune

the simulation resolution.

Parameter Definition

amr.n cell Number of cells in each direction at the coareset level

amr.max level Number of levels of refinement above the coarsest level

amr.ref ratio Ratio of coarse to fine grid spacing between subsequent levels

amr.regrid int How often to regrid

Table 4.3: AMR parameters which are used to tune simulation resolution

29

Each parameter has different impact on the resolution, which is illustrated with

the example use case shown in Figure 4.3. The parameters of the example case are

discussed as follows.

Example case:

• amr.n cell = 32 32 32

This would define the domain size (at coarsest level) to have 32 cells in the x-direction,

32 cells in the y-direction and 32 cells in the z-direction. (If it is in the 2D input file,

the last number will be ignored). As shown in Figure 4.3, there are 32 cells in both x

and y direction.

• amr.max level = 2

This would set a maximum of 2 refinement levels in addition to the coarse level. Within

the calculation, the number of refinement level must be 6 amr.max level, but it can

be change in time and it is not necessary always be equal to amr.max level. Because

these additional levels will only be created if the tagging criteria are such that cells are

flagged as needing refinement. Figure 4.3 shows the mesh grids with maximum of 2

refinement levels.

• amr.ref ratio = 4 2

Refinement ration means how many individual cells will a cell be divided into. For

example in the left-hand side Figure 4.3, Setting amr.ref ratio = 4 2 means dividing

cell into 4 cells from levels 0 and 1, and dividing cell into 2 from levels 1 and 2.

• amr.regrid int = 2

This would tell the code to regrid every 2 steps. This means level l+1 grids will be

created every 2 level l time steps.

30

Figure 4.3: AMR mesh grids outcome of the example configuration

Issued found for pushing LMC to higher resolution level

By default, the maximum level of refinement for the LMC program was set to be

level 3. When we tried to increase the parameter amrṁax level to 4 or higher, the

program will thrown the following error:

BOXLIB ERROR: Multigrid Solve: failed to converge in max iter iterations

This error arises because when we are trying to solve a linear system with multigrid

and the tolerance is below roundoff – that particular solve is the “sync project”. Since

the norm computed is a function of the number of cells and resolution, when we add

refinement levels, eventually roundoff starts to dominate and we have to loosen the

tolerances. To confirm this, we run LMC with option “mg.v=4” and we see the norm

of the residual not dropping below the tolerance set in the inputs file.

Solution of increase LMC resolution level higher than 3 LMC input includ-

ing two files, input.2d.* and probin.3d.test. input.2d.* contains all run-time informa-

tion and probin.3d.test file includes all detailed settings for refinement control. We

take refinement level 5 as an example. First, we need to set max trac lev = 5 in the

probin.3d.test file. This is the maximum refinement level triggered by refinement on

31

the flame tracer. According to how it is set up, if the mass fraction of the species desig-

nated as the flame tracer is larger than flametracval (set in the probin file), the the cell

is tagged for refinement. The tracer species is set in the inputs file to atomic hydrogen

via the line: ”ns.flameTracName = H”. Second, we need to change proj.sync tol to

1.0e-8. This is to increase the tolerance in the inputs and fix the issue weve discussed

above. Finally, we can go to input.2d.* file and change amrṁax level to 5. By do these

changes, we can successfully running the LMC to higher resolution level.

4.4 AMR mesh and LMC output

Figure 4.4 compares the LMC output with lower and higher level of refinement. And

the output resolution is increase with the level of refinement goes higher. Figure 4.5

shows AMR mesh grids of different levels ranging from coarse to finer. In level 0, AMR

generate regular grids that covers the entire computational domain. As the maximum

refinement level increase, AMR will tag and refine the cells in the region which need

higher resolution, so that it can increase the computational utilization by focusing

computational resources in regions of interest but decrease computing resolution in

regions with less interest. This also can be seen from Level 2 to Level 4, where finer

grids are more concentrate on the center curve region.

(a) Lower resolution (b) Higher resolution

Figure 4.4: Refinement level directly affects AMR resolution: mesh grid density is
increasing while refinement level is increasing and relevant flame plots are getting finer
(more accurate)

32

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 4 LMC output image

Figure 4.5: Different level of refinement and LMC output image

33

4.5 Evaluation of different levels of refinement for different number

of cores

This experiment is first run on CAPER cluster, with a maximum of 128 cores, from

level 1 to level 4 on 2, 4, 8, 16, 32, 64 and 128 cores. The execution time is recorded

simply with the system tool “time”.

Configuration

Parameter Value

Platform CAPER and DELL cluster

Number of cores 2 to 128 quadratic growth

Level of refinement level 1 to level 4

Time step 10

Time unit Second

Table 4.4: Configuration for experiment of execution time of different levels of refine-
ment under variety number of cores

Figure 4.6: Execution time of running different levels LMC on CAPER cluster through
2 to 128 cores.

34

Figure 4.7: Execution time of running different levels LMC on DELL cluster through
2 to 256 cores.

The results of the first experiment using CAPER cluster are shown in Figure 4.6.

As can be clearly seen from the level 4 line, which is yellow line with solid dot maker,

the more computing resource we use, the faster the execution is. Comparing these four

lines, we can also notice that the slope is decreasing from level 4 to level 1, and then

the lines go to a relative flat zoom. From this notice, we can see that heavier workload

need more computational resources, but provisioning more resources do not bring any

performance increase. In Figure 4.6 it can be seen from level 1 to level 3 lines that their

tails are tilting a little bit, but level 4 line doesnt have this trend. In order to show

its trend more clearly, we ran this experiment on DELL cluster (256 cores cluster).

The result is shown in Figure 4.7. All levels’ curve is like a “U”, that tilt in the head

and tile. From level 1 to level 4, the head turning point, which marked by red dot,

are respectively 4, 8, 16 and 32 cores. Then they tend to get into a flat zoom, while

under the 256 core, the execution time are all increase. From these two experiments we

can conclude that, to achieve optimal running time, we need to configure appropriate

number of processors to execute certain level of quality for the LMC program and using

35

more processors does guarantee better performance.

4.6 Evaluation of energy consumption of different levels of refinement

under variety number of cores

In this experiment, we are aim at exploring the energy consumption of running LMC

with different level of refinement under multiple number of cores.

Energy is the product of power and time, therefore, in this experiment, we need

to measure the execution time and power respectively. To measure time, we still use

Linux command TIME in the script file. And for the CPU power, we are using RAPL

power meter to measure it. RAPL power meter is a sub-function of Intel Power Gadget

program, which has been mentioned in previous background section. We are sampling

power data every 0.5 second.

Configuration

Parameter Value

Platform CAPER cluster

Number of cores 2 128 quadratic growth

Level of refinement level 1 to level 4

Time step 10

Time unit Second

Power measurement object 8 nodes processors

RAPL sample rate 2 Hz

Table 4.5: Configuration for experiment of power consumption of different levels of
refinement under variety number of cores

36

Figure 4.8: Power consumption of different levels of refinement under different number
of cores

Figure 4.8 shows that there is a huge energy difference on the beginning of this

curve. When running on 2 cores, the highest one (level 4) consumes almost 930 KJ

while the lowest one (level 1) only take around 0.6 KJ. Since this experiment measure

the all 8 node processors power status, the huge energy consumption of level 4 comes

from the long execution time. It takes 1,314 seconds to run level 4 job while only 10

seconds to execute level 1. Most energy consumption comes from processors in idle

state. But when assign appropriate processor resources to it, the curve reaches the flat

zoom, the energy consumption difference is reasonable and stable. From this point of

view, an appropriate number of cores for a certain workload is very crucial for energy

consumption.

37

4.7 Evaluation of the impact of RAPL power capping on LMC per-

formance

This experiment is aimed at studying the impact of power capping on LMC power-

performance. And it would also give us a reference about the optimal power capping

setting for different resolution levels.

We use level 1 to level 4 in LMC as inputs to measure the time and power consump-

tion. Since CAPER CPU power is 95W (Intel Xeon E5-2650 V2), in this experiment,

we cap the CPU power to 25W, 35W, 45W, 55W, 65W, 75W, 85W, and 95W and record

the package energy consumption (PKG) and execution time respectively. Package en-

ergy consumption is the energy used by the CPU chip itself including cores, caches and

graphics, etc.

Configuration

Parameter Value

Platform CAPER cluster

Number of cores 64 cores

Level of refinement level 1 to level 4

Time step 10

Time unit Second

Power measurement object 8 nodes processors

Power capping 95W to 25W decrease by 10

RAPL sample rate 2 Hz

Table 4.6: Configuration for experiment of exploring the affection of RAPL power
capping on LMC performance

We use Intel power gadget tool to cap the power. To use it, we assign value to the

parameter MY POWER LIMIT, then compile and run it. We use linux command line

“time” to measure the execution time. The execution command line is provided as

follows:

time mpirun -machinefile hostfile.txt -np 64 .LMC2d.Linux.g++.gfortran.SDC.MPI.ex

38

inputfile amr.max lev=#level

For the power measurement, we also use the Intel power gadget tool. When running

it, it will give the real-time power consumption data every 0.5 second.

Figure 4.9: Relationship between different resolution of LMC and their execution time
under different power capping levels

Figure 4.10: Relationship between different resolution of LMC and the energy con-
sumption under different power capping levels

Figure presents the energy consumption result of executing level 1 to level 4 LMC

39

program on certain number of cores under different power capping configurations. Those

curves have the same pattern that sharply decreasing from 25 to 35 and becoming flat

between 65 and 95. The lowest energy consumption is appearing when CPU power was

capped to 45W to 55W. This can be explaining from execution data that without any

CPU power capping, LMC program will boots CPU to 65W to 75W during execution

whatever executing on how many cores. This also can be seem from the flat curve on

segment 65W to 95W on each chart. Therefore, the advantage of power capping is

working when CPU power down below 65W, and optimize between 45W to 55W.

4.8 Evaluation of power budget acquisition through power capping

and resolution degradation

The previous experiments have characterized the behavior of LMC. It can be concluded

that the execution time will increase as the level of refinement/resolution increases or

CPU power is capped down. Also, the energy consumption trend for different power

caps and refinement levels is shown in Figure 4.11. The energy consumption presents the

same trend as the execution time, i.e., LMC will consume more energy as the levels of

refinement/resolution increase or capping down CPU power. The question here is how

to use this characterization to create available power budget. We propose to combine

these two factors, adjusting resolution and applying appropriate power capping, to get

available power budget for running other tasks (e.g., checkpointing).

40

Configuration

Parameter Value

Platform CAPER cluster

Number of cores 64 cores

Resolution level 3 2 1

Time step 10

Time unit Second

Power measurement RAPL meter

Power cap RAPL

Table 4.7: Configuration for experiment of getting available power budget through
power capping and resolution degradation

Figure 4.11: Energy consumption trend for different power caps and refinement levels

41

Figure 4.12: Available power budget from applying resolution degradation and appro-
priate power capping

In previous Figure 4.1, we measured the power consumption of running LMC with

different resolution. It shows that the execution time decreases when decreasing the

resolution. Therefore, we apply appropriate power capping to the the medium and

low resolution execution to make their execution equal the execution time in highest

resolution. As shown in Figure 4.12, the red region is the available power budget

extracted from the total power budget.

4.9 Evaluation of power budget management

We have tested the impact of power capping and level of refinement of LMC on the

performance and energy consumption. We also observed the potential power saving

from degrading resolution and implementing power capping. The goal of this experi-

ment is being able to use power budgets opportunistically for running other tasks. In

the experiment, we propose to use this power budget to do checkpointing, which will

increase the resilience and make the LMC program running more reliably.

In this experiment, we are proposing to degrade LMC resolution and cap its running

42

power, then use this power budget to do check pointing. However, there are some limi-

tations due to the code characteristics: (i) we can not separate the checkpoint function

from simulation program, and (ii) we can not dynamically control LMC resolution.

To address these two issues, we use two LMC executions running alternatively on

two set of nodes to emulate one execution dynamically adjusting resolution and doing

checkpoint. Each set of nodes contains three nodes for execution. When the first

execution start doing checkpoint then the second set start another execution with lower

resolution. We focus on system level power consumption.

We implement this using a flag to coordinate these two LMC executions. We’ve

recompiled the first LMC set program to let it write flag when it start to do checkpoint,

and the second LMC set keeps reading the flag to start running when the flag turn to

be true. As shown in Figure 4.13, when the blue curve is the first instance (set 1) of

LMC finishes its execution, it triggers the second instance (set 2), which is the orange

curve. Once the second instance is completed the first one is triggered again and so

on. By doing this, we can emulate a single LMC execution running and dynamically

change the resolution while giving the available power budget for doing checkpoint.

Configuration

Parameter Value

Platform CAPER cluster

Number of cores 64 cores

Resolution level 4 3

Time step 10

Time unit Second

Power measurement object 3 nodes processors

Power cap RAPL

Table 4.8: Configuration for experiment of exploring the power-performance tradeoffs

43

Figure 4.13: Level 3 LMC power consumption without power capping or resolution
degradation

Figure 4.14: Level 4 LMC power consumption with power capping or resolution degra-
dation

In Figure 4.14, the blue curve is the set 1 running the high resolution LMC (level

4). Once it starts doing checkpointing, the set 2 (in orange curve) is triggered to run

LMC at level 3. Configuring power capping appropriately, the total power consumption,

which is shown in gray curve on the top, is kept constant. This means we successfully

constraint the power budget of LMC to perform other tasks (i.e., checkpointing).

44

Chapter 5

Conclusions and future work

In this work, we have focused on studying the properties and exploring the perfor-

mance, quality and power/energy tradeoffs of Low-Mach-Number Combustion (LMC)

application which is based Adaptive Mesh Refinement (AMR) algorithm. The key

contributions of this work are (1) we present an empirical evaluation of different config-

urations of application that gives insights into the energy-performance-quality tradeoff

for this work, (2) we provided a comprehensive study of this LMC simulation perfor-

mance, power and energy behavior, and (3) we propose a power-performance-quality

tradeoff for this application, which can be used to better schedule power budgets across

HPC systems.

Our current work investigates how to leverage these insights to implement a runtime

to manage power budgets dynamically. Moreover, instead of trading-off with resolution,

we also plan to explore the possibility of managing resources dynamically (e.g., cores) to

manage power budgets. Future work also includes the management and scheduling of

power budgets at whole system scale for assigning power budgets to other applications,

not necessarily to the LMC workflow.

45

References

[1] “Meet the fastest, most powerful science machine
in the world: Titan supercomputer.” [Online]. Avail-
able: http://www.computerworld.com/article/2473620/high-performance-
computing/meet-the-fastest–most-powerful-science-machine-in-the-world–titan-
super.html

[2] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington, G. Chiu,
R. Colwell, W. Dally, J. Dongarra et al., “Doe advanced scientific computing advi-
sory subcommittee (ascac) report: Top ten exascale research challenges,” USDOE
Office of Science (SC)(United States), Tech. Rep., 2014.

[3] M. Tolentino and K. W. Cameron, “The optimist, the pessimist, and the global
race to exascale in 20 megawatts,” Computer, vol. 45, no. 1, pp. 0095–97, 2012.

[4] R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron, “Cpu miser: A performance-
directed, run-time system for power-aware clusters,” in Parallel Processing, 2007.
ICPP 2007. International Conference on. IEEE, 2007, pp. 18–18.

[5] C.-h. Hsu and W.-c. Feng, “A power-aware run-time system for high-performance
computing,” in Proceedings of the 2005 ACM/IEEE conference on Supercomputing.
IEEE Computer Society, 2005, p. 1.

[6] S. Huang and W. Feng, “Energy-efficient cluster computing via accurate workload
characterization,” in Proceedings of the 2009 9th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid. IEEE Computer Society, 2009, pp.
68–75.

[7] V. W. Freeh and D. K. Lowenthal, “Using multiple energy gears in mpi programs on
a power-scalable cluster,” in Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming. ACM, 2005, pp. 164–173.

[8] D. Donofrio, L. Oliker, J. Shalf, M. F. Wehner, C. Rowen, J. Krueger, S. Kamil,
and M. Mohiyuddin, “Energy-efficient computing for extreme-scale science.” IEEE
Computer, vol. 42, no. 11, pp. 62–71, 2009.

[9] M. Gamell, I. Rodero, M. Parashar, J. C. Bennett, H. Kolla, J. Chen, P.-T. Bremer,
A. G. Landge, A. Gyulassy, P. McCormick et al., “Exploring power behaviors and
trade-offs of in-situ data analytics,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. ACM, 2013,
p. 77.

[10] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W. Freeh, and
T. Bletsch, “Adagio: making dvs practical for complex hpc applications,” in Pro-
ceedings of the 23rd international conference on Supercomputing. ACM, 2009, pp.
460–469.

46

[11] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, transparent frequency
and voltage scaling of communication phases in mpi programs,” in SC 2006 con-
ference, proceedings of the ACM/IEEE. IEEE, 2006, pp. 14–14.

[12] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra, “Phase-based application-
driven hierarchical power management on the single-chip cloud computer,” in
Parallel Architectures and Compilation Techniques (PACT), 2011 International
Conference on. IEEE, 2011, pp. 131–142.

[13] D. Li, B. R. De Supinski, M. Schulz, K. Cameron, and D. S. Nikolopoulos, “Hybrid
mpi/openmp power-aware computing,” 2010.

[14] I. Rodero, S. Chandra, M. Parashar, R. Muralidhar, H. Seshadri, and S. Poole,
“Investigating the potential of application-centric aggressive power management
for hpc workloads,” in High Performance Computing (HiPC), 2010 International
Conference on. IEEE, 2010, pp. 1–10.

[15] “Exact — center for exascale simulation of combustion in turbulence.” [Online].
Available: http://exactcodesign.org/

[16] K. Kandalla, E. P. Mancini, S. Sur, and D. K. Panda, “Designing power-aware
collective communication algorithms for infiniband clusters,” in Parallel Processing
(ICPP), 2010 39th International Conference on. IEEE, 2010, pp. 218–227.

[17] C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, and K. Cameron, “Energy
and performance characteristics of different parallel implementations of scientific
applications on multicore systems,” International Journal of High Performance
Computing Applications, vol. 25, no. 3, pp. 342–350, 2011.

[18] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and J. Underwood, “Power
routing: dynamic power provisioning in the data center,” in ACM Sigplan Notices,
vol. 45, no. 3. ACM, 2010, pp. 231–242.

[19] J. Hamilton, “Cost of power in large-scale data centers,” Blog entry dated, vol. 11,
p. 28, 2008.

[20] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap: adaptive
dvfs and thread packing under power caps,” in Proceedings of the 44th annual
IEEE/ACM international symposium on microarchitecture. ACM, 2011, pp. 175–
185.

[21] J. Sartori and R. Kumar, “Distributed peak power management for many-core
architectures,” in Design, Automation & Test in Europe Conference & Exhibition,
2009. DATE’09. IEEE, 2009, pp. 1556–1559.

[22] J. M. Cebrián, J. L. Aragon, and S. Kaxiras, “Power token balancing: Adapting
cmps to power constraints for parallel multithreaded workloads,” in Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE International. IEEE,
2011, pp. 431–442.

[23] A. Gandhi, M. Harchol-Balter, R. Das, J. O. Kephart, and C. Lefurgy, “Power
capping via forced idleness,” 2009.

47

[24] K. Meng, R. Joseph, R. P. Dick, and L. Shang, “Multi-optimization power manage-
ment for chip multiprocessors,” in Proceedings of the 17th international conference
on Parallel architectures and compilation techniques. ACM, 2008, pp. 177–186.

[25] V. Kontorinis, A. Shayan, D. M. Tullsen, and R. Kumar, “Reducing peak power
with a table-driven adaptive processor core,” in Proceedings of the 42nd annual
IEEE/ACM international symposium on microarchitecture. ACM, 2009, pp. 189–
200.

[26] B. Rountree, D. H. Ahn, B. R. De Supinski, D. K. Lowenthal, and M. Schulz,
“Beyond dvfs: A first look at performance under a hardware-enforced power
bound,” in Parallel and Distributed Processing Symposium Workshops & PhD Fo-
rum (IPDPSW), 2012 IEEE 26th International. IEEE, 2012, pp. 947–953.

[27] H. Zhang and H. Hoffmann, “A quantitative evaluation of the rapl power control
system,” Feedback Computing, 2015.

[28] A. Porterfield, R. Fowler, S. Bhalachandra, B. Rountree, D. Deb, and R. Lewis,
“Application runtime variability and power optimization for exascale computers,”
in Proceedings of the 5th International Workshop on Runtime and Operating Sys-
tems for Supercomputers. ACM, 2015, p. 3.

[29] O. Sarood, A. Langer, L. Kalé, B. Rountree, and B. De Supinski, “Optimiz-
ing power allocation to cpu and memory subsystems in overprovisioned hpc sys-
tems,” in Cluster Computing (CLUSTER), 2013 IEEE International Conference
on. IEEE, 2013, pp. 1–8.

[30] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy consumption
for short code paths using rapl,” ACM SIGMETRICS Performance Evaluation
Review, vol. 40, no. 3, pp. 13–17, 2012.

[31] V. Adhinarayanan, W.-c. Feng, J. Woodring, D. Rogers, and J. Ahrens, “On
the greenness of in-situ and post-processing visualization pipelines,” in Parallel
and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE Inter-
national. IEEE, 2015, pp. 880–887.

[32] A. Venkatesh, K. Kandalla, and D. K. Panda, “Evaluation of energy characteristics
of mpi communication primitives with rapl,” in Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International.
IEEE, 2013, pp. 938–945.

[33] B. Aupoix, D. Arnal, H. Bézard, B. Chaouat, F. Chedevergne, S. Deck, V. Gleize,
P. Grenard, and E. Laroche, “Transition and turbulence modeling,” AerospaceLab,
no. 2, pp. p–1, 2011.

[34] N. Peters, “Turbulent combustion: The state of the art,” in Turbulent
Combustion. Cambridge University Press, 2000, pp. 1–65, cambridge Books
Online. [Online]. Available: http://dx.doi.org/10.1017/CBO9780511612701.002

[35] “Laboratory-scale flames.” [Online]. Available:
https://ccse.lbl.gov/research/combustion/

48

[36] J. Bell, M. Day, A. Almgren, M. Lijewski, C. Rendleman, R. Cheng, and I. Shep-
herd, “Simulation of lean premixed turbulent combustion,” in Journal of Physics:
Conference Series, vol. 46, no. 1. IOP Publishing, 2006, p. 1.

[37] J. Bell, A. Almgren, V. Beckner, M. Day, M. Lijewski, A. Nonaka, and W. Zhang,
“Boxlib users guide,” Technical Report, CCSE, Lawrence Berkeley National Labo-
ratory. Available at: https://ccse. lbl. gov/BoxLib/BoxLibUsersGuide. pdf, Tech.
Rep., 2012.

[38] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial dif-
ferential equations,” Journal of computational Physics, vol. 53, no. 3, pp. 484–512,
1984.

[39] K. G. Powell, P. L. Roe, and J. Quirk, “Adaptive-mesh algorithms for compu-
tational fluid dynamics,” in Algorithmic trends in computational fluid dynamics.
Springer, 1993, pp. 303–337.

[40] J. Bell, M. Berger, J. Saltzman, and M. Welcome, “Three-dimensional adaptive
mesh refinement for hyperbolic conservation laws,” SIAM Journal on Scientific
Computing, vol. 15, no. 1, pp. 127–138, 1994.

[41] X. Gao and C. Groth, “Parallel adaptive mesh refinement scheme for three-
dimensional turbulent non-premixed combustion,” in 46th AIAA Aerospace Sci-
ences Meeting and Exhibit, Reno, Nevada, AIAA paper, vol. 1017, 2008, p. 2008.

[42] “Navierstokes equations.” [Online]. Available:
https://en.wikipedia.org/wiki/navierstokesequations

[43] R. J. Kee, J. Warnatz, and J. Miller, “Fortran computer-code package for the eval-
uation of gas-phase viscosities, conductivities, and diffusion coefficients.” NTIS,
SPRINGFIELD, VA(USA), 1983, 37, 1983.

[44] J. Warnatz, “Influence of transport models and boundary conditions on flame
structure,” in Numerical methods in laminar flame propagation. Springer, 1982,
pp. 87–111.

[45] R. Rehm and H. Baum, “The equations of motion for thermally driven, buoyant
flows,” J. RES. NATL. BUR. STAN. Journal of Research of the National Bureau
of Standards, vol. 83, no. 3, p. 297, 1978.

[46] A. MAJDA and J. Sethian, “The derivation and numerical solution of the equations
for zero mach number combustion,” Combustion science and technology, vol. 42,
no. 3-4, pp. 185–205, 1985.

[47] T. Alazard, “A minicourse on the low mach number limit,” Discrete and Contin-
uous Dynamical Systems Series S, vol. 1, no. 3, pp. 365–404, 2008.

[48] I. Intel, “and ia-32 architectures software developer’s manual, 2011,” Intel order
Number, 64.

[49] V. Sundriyal and M. Sosonkina, “Runtime power-aware energy-saving scheme for
parallel applications,” 2015.

49

[50] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl: memory
power estimation and capping,” in Low-Power Electronics and Design (ISLPED),
2010 ACM/IEEE International Symposium on. IEEE, 2010, pp. 189–194.

[51] “Measuring power on intel xeon phi product family devices.” [Online].
Available: https://software.intel.com/en-us/articles/measuring-power-on-intel-
xeon-phi-product-family-devices

[52] “Using the intel power gadget api on mac os x.” [Online]. Avail-
able: https://software.intel.com/en-us/blogs/2012/12/13/using-the-intel-power-
gadget-api-on-mac-os-x

[53] Z. Lan, V. E. Taylor, and G. Bryan, “A novel dynamic load balancing scheme for
parallel systems,” Journal of Parallel and Distributed Computing, vol. 62, no. 12,
pp. 1763–1781, 2002.

[54] T. Wen, J. Su, P. Colella, K. Yelick, and N. Keen, “An adaptive mesh refinement
benchmark for modern parallel programming languages,” in Proceedings of the
2007 ACM/IEEE conference on Supercomputing. ACM, 2007, p. 40.

[55] A. C. Calder, B. Curts, L. Dursi, B. Fryxell, G. Henry, P. MacNece, K. Olson,
P. Ricker, R. Rosner, F. X. Timmes et al., “High-performance reactive fluid flow
simulations using adaptive mesh refinement on thousands of processors,” in Super-
computing, ACM/IEEE 2000 Conference. IEEE, 2000, pp. 56–56.

[56] Q. Meng, J. Luitjens, and M. Berzins, “A comparison of load balancing algorithms
for amr in uintah,” Scientific Computing and Imaging Institute, University of Utah,
Tech. Rep. UUSCI-2008-006, 2008.

[57] W. Y. Crutchfield, “Load balancing irregular algorithms,” Technical Report
UCRL-JC-107679, Lawrence Livermore National Laboratory, Tech. Rep., 1991.

[58] C. A. Rendleman, V. E. Beckner, M. Lijewski, W. Crutchfield, and J. B. Bell,
“Parallelization of structured, hierarchical adaptive mesh refinement algorithms,”
Computing and Visualization in Science, vol. 3, no. 3, pp. 147–157, 2000.

