INSIGHTS INTO MECHANISMS OF METAL HOMEOSTASIS

IN STAPHYLOCOCCUS AUREUS

By

ZUELAY E. ROSARIO-CRUZ

A dissertation submitted to the
Graduate School – New Brunswick
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree of
Doctor of Philosophy
Graduate Program in Microbial Biology
Written under the direction of
Jeffrey M. Boyd
And approved by

New Brunswick, New Jersey
May 2016
ABSTRACT OF THE DISSERTATION

Insights into Mechanisms of Metal Homeostasis in *Staphylococcus aureus*

by ZUELAY E. ROSARIO-CRUZ

Dissertation Director:
Jeffrey M. Boyd, Ph.D.

Staphylococcus aureus is a major public health concern worldwide. The human immune system employs oxidative- and copper-dependent mechanisms that disrupt metal homeostasis within the invading microorganism. This thesis describes new factors involved in iron-sulfur cluster biogenesis and copper detoxification in *S. aureus*, representing additional mechanisms of metal homeostasis that might aid this pathogen during host infection. Strains lacking the low-molecular-weight thiol bacillithiol (*bshA* mutants) display growth defects that are alleviated by the addition of exogenous Fe or the amino acids leucine and isoleucine. The *bshA* strain has decreased activities of Fe-S proteins, such as LeuCD, IlvD, AcnA, and GltBD, suggesting that the absence of BSH leads to a general defect in Fe-S cluster biogenesis. The growth defects and decreased enzymatic activities of the *bshA* strain are exacerbated in strains lacking other factors involved in Fe-S cluster biogenesis, such as the Fe-S cluster carriers Nfu and SufA, and partially suppressed by their overexpression, suggesting a functional overlap between BSH and Fe-S cluster carriers in Fe-S cluster biogenesis. We also found a two-gene operon involved in preventing copper (Cu) intoxication. These genes encode an ATPase Cu transporter (*copB*) and a putative lipoprotein (*cbl*). Mutational inactivation of *copB* or *cbl* resulted in Cu sensitivity, and their phenotypes are exacerbated in strains also lacking the highly conserved Cu exporter CopA, suggesting that CopB and Cbl are additional mechanisms that prevent Cu intoxication in *S. aureus*.
Overexpression of either *copB* or *cbl* leads to increased Cu resistance in other *S. aureus* clinical isolates lacking these genes. We show that *copB* and *cbl* are co-transcribed, up-regulated under Cu stress, and repressed by CsoR. Genetic and biochemical evidence show that Cbl is a membrane-associated, surface-exposed lipoprotein that binds up to four Cu$^+$ ions. Collectively, the research presented in this thesis describes new roles for BSH and Cbl in metal homeostasis in the human pathogen *S. aureus*.
ACKNOWLEDGEMENTS

I would like to extend my gratitude to the many people who helped me throughout these years. First and foremost, I would like to thank my advisor Jeff M. Boyd for his guidance and support, for always being available to provide feedback and discuss ideas, and for making this such a productive experience. I would also like to thank present and past members of the Boyd Lab, for their scientific contributions or for making life in lab more enjoyable. I would also like to thank my thesis committee, Dr. William J. Belden, Dr. Donald Y. Kobayashi, and Dr. Thomas Leustek, for their time and invaluable feedback.

Thanks to Dr. Max M. Häggblom and the Department of Biochemistry and Microbiology for providing me with the opportunity to join the Microbial Biology program and be part of the General Microbiology Laboratory during all these years. Being a Teaching Assistant has been one of the most rewarding experiences I have had as a graduate student. Special thanks to Dr. Diane F. Davis for being such an inspirational educator and teaching me how to teach. I would also like to thank Dr. Ines Rauschenbach for allowing us to be actively involved in the Teaching Lab and for always finding ways to make the teaching-learning experience more gratifying.

I would like to thank the Graduate School of New Brunswick, as well as, the many Alumni and friends of the Department that, through their generous donations, made fellowships, scholarships, and travel awards possible. I am deeply grateful for your financial support and, like you, I hope that someday I can give back some of what I have received.

Finally, I would like to thank my dad, my dear Mom Abby, and my partner Manuel for providing me with unfailing and continuous encouragement throughout these years. This accomplishment would have been impossible without their unconditional love and support.
TABLE OF CONTENTS

Abstract ii
Acknowledgements iv
List of Tables vi
List of Figures vii
Preface x
Introduction 1

Chapter 1 – Bacillithiol has a Role in Fe-S Cluster Biogenesis in *Staphylococcus aureus* 7

Chapter 2 – The *copBcbl* Operon Protects *S. aureus* From Copper Intoxication: Cbl is an Extracellular Membrane-Associated Copper-Binding Protein. 64

Concluding Remarks 101

Appendix A – Supplementary Material for Chapter 1 106
Appendix B – Supplementary Material for Chapter 2 120
Appendix C – Suggestions for Future Research 136

References 143
LIST OF TABLES

CHAPTER 1

Table 1.1. Strains and plasmids used in Chapter 1.

CHAPTER 2

Table 2.1. Strains and plasmids used in Chapter 2.

APPENDIX A

Table 1.S1. Oligonucleotides used in Chapter 1.

Table 1.S2. Generation times for growth analyses conducted in defined media.

APPENDIX B

Table 2.S1. Oligonucleotides used in Chapter 2.

Table 2.S2. Co-occurrence of *cbl* and other genes involved in copper homeostasis.
LIST OF FIGURES

CHAPTER 1

Figure 1.1. An *S. aureus* strain lacking BSH has a growth defect in a chemically defined medium that is corrected by exogenous iron supplementation. 46

Figure 1.2. A BSH-deficient strain has a growth defect in chemically defined media lacking either leucine or isoleucine. 47

Figure 1.3. An *S. aureus* strain lacking BSH has decreased Fur accessible iron when cultured in a chemically defined medium. 48

Figure 1.4. The activities of Fe-S cluster-dependent enzymes are decreased in a *S. aureus* strain lacking BSH. 49

Figure 1.5. An *S. aureus* BSH-deficient strain does not have increased intracellular ROS accumulation. 51

Figure 1.6. Genetic analyses provide insight into the role of BSH in Fe-S cluster biogenesis. 52

Figure 1.7. The phenotypes of a strain lacking BSH are partially suppressed by multicopy expression of genes encoding Fe-S cluster carrier proteins. 54

Figure 1.8. *S. aureus* SufA is an Fe-S cluster carrier. Panel A; AcnA activity is decreased in cell-free lysates from strains lacking either SufA or Nfu when *acnA* expression is decoupled from the native promoter. 56

Figure 1.9. Diverse *S. aureus* isolates lacking BSH have defects in Fe-S cluster biogenesis. 58

Figure 1.10. Working model for Fe-S cluster biogenesis in *S. aureus*. 60

CHAPTER 2

Figure 2.1. The *cbl* and *copB* gene products protect against copper intoxication. 88

Figure 2.2. Cbl functions independently of CopA and CopB and intracellular Cu 90
accumulation exacerbates the phenotypes of the \textit{copB} and \textit{cbl} mutants.

Figure 2.3. The \textit{copBcbl} operon is upregulated under copper stress. 92

Figure 2.4. The \textit{copBcbl} operon is regulated by CsoR. 94

Figure 2.5. Cbl is a membrane-associated and surface-exposed protein. 95

Figure 2.6. The \textit{S. aureus} Cbl protein binds Cu$^+$ \textit{in vitro}. 97

Figure 2.7. Working model for copper homeostasis in \textit{S. aureus}. 98

CONCLUDING REMARKS

Figure 1. Summary of findings including revised models for Fe-S cluster biogenesis, metal buffering, and copper homeostasis in \textit{S. aureus}. 105

APPENDIX A

Figure 1.S1. Verification of the \textit{bshA} and \textit{bshC} mutant strains. 106

Figure 1.S2. An \textit{S. aureus bshA} mutant strain displays growth defects in defined media when subcultured from an exponential growth phase culture. 107

Figure 1.S3. A \textit{bshA} mutant strain displays poor growth on solid chemically defined media lacking either Leu or Ile that is alleviated by either amino acid or Fe supplementation. 109

Figure 1.S4. Transcription of genes required for protein synthesis is decreased in \textit{S. aureus} cells cultured in chemically defined media limited for either amino acids or Fe. 110

Figure 1.S5. Cells of the WT and \textit{bshA} mutant strains have similar concentrations of cellular Fe when cultured in TSB medium. 111

Figure 1.S6. The \textit{leuC} and \textit{acnA} genes are induced to similar levels in the parent and \textit{bshA} mutant strains containing either \textit{pacnA} or \textit{pleuCD}. 112

Figure 1.S7. Overexpression of \textit{sufA} corrects the isoleucine-dependent growth defect of a \textit{bshA} mutant in liquid medium. 113

Figure 1.S8. The \textit{sufA} gene is expressed in the \textit{bshA} mutant and the mRNA 114
corresponding to *sufA* accumulates to similar levels in the WT and *bshA* strains.

Figure 1.S9. The growth defects of the *S. aureus* COL and MW2 strains lacking BSH are suppressed by multicopy expression of the *sufA* gene.

APPENDIX B

Figure 2.S1. Schematic of the conserved domains in the CopA, CopB, and Cbl proteins.

Figure 2.S2. Genomic location of *cbl* from select organisms.

Figure 2.S3. PCR verification of of the *copBΔ, cblΔ*, and *copB cblΔ* mutant strains.

Figure 2.S4. Overexpression of *cbl* confers copper resistance in other *S. aureus* isolates.

Figure 2.S5. Transcriptional activity of the *copBcbl* operon in the *S. aureus* strain Newman wild-type and *csoR* mutant.

Figure 2.S6. Analysis of diverse Cbl-like proteins.

Figure 2.S7. A *Bacillus subtilis ydhK (cbl)* mutant is sensitive to Cu intoxication.

Figure 2.S8. SDS-PAGE analysis of purified *S. aureus* Cbl.

Figure 2.S9. BCS has higher affinity for Cu\(^+\) than to apo-Cbl.

APPENDIX C

Figure 3.S1. Addition of Mn to the growth medium prevents Cu toxicity.

Figure 3.S2. Copper sensitivity in *S. aureus* is independent of oxygen.

Figure 3.S3. Transposon insertion in *copB* leads to a polar effect in *cbl*.

Figure 3.S4. The *copBcbl* operon is upregulated in a strain lacking the MntR regulator.
PREFACE

Chapter 1 has been published as “Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus,” Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM. 2015. Mol Microbiol. 98(2):218-42. PMID: 26135358.
Rosario-Cruz Z contribution: Figures 1, 2, 3A, 4, 5, 6, 7, 9 & 10; Supplementary Figures S1, S2, S3, S4, S6, S7, S8, S9; Table 1; Supplementary Table S1, S2.

Chapter 2 is in preparation for publication as “The copBcbl Operon Protects S. aureus From Copper Intoxication: Cbl is an Extracellular Membrane-Associated Copper-Binding Protein”, by Rosario-Cruz Z and Boyd JM, to be submitted to the Journal of Biological Chemistry.
Rosario-Cruz Z contribution: All data used to generate figures and tables included in this chapter.
INTRODUCTION

General Overview of *Staphylococcus aureus*. *Staphylococcus aureus* was discovered in the 1880s by Alexander Ogston, a surgeon who was trying to find the causative agent for the inflammation and suppuration of the surgical wounds of his patients. He used the Greek word “*staphyle*” to describe the grape-like clusters observed under the microscope. A few years later, Friedrich Julius Rosenbach suggested the species name “*aureus*” that means gold in Latin, due to the golden pigmentation of its colonies. *S. aureus* is a Gram-positive cocci, non-motile, non-spore forming bacterium that respires aerobically or, in the absence of oxygen, it can undergo fermentation or use nitrate as an alternate electron acceptor.

Staphylococcus aureus is a human commensal mostly found on the skin and nose of nearly one third of the population. It is normally asymptomatic, but it is considered an opportunistic pathogen because it can cause serious illnesses once it passes the skin barrier by abrasions, surgery, or injections, especially in individuals with a compromised immune system. *S. aureus* is known for causing mild skin and soft tissue infections, such as folliculitis, boils, and carbuncles, some of which can develop into more serious skin infections like cellulitis and necrotizing fasciitis. *S. aureus* can also cause more life-threatening infections such as meningitis, bacteremia, endocarditis, pneumonia, and osteomyelitis, as well as toxin-based illnesses like food poisoning and toxic shock syndrome (Klevens *et al.*, 2007; Otto, 2010).

A major challenge of treating *S. aureus* infections derives from its ability to rapidly acquire resistance to antibiotics, a phenomenon documented as epidemic waves (Chambers and DeLeo, 2009). The first wave of antibiotic resistance occurred in the 1940s, when penicillin-resistant *S. aureus* arose as a result of treating staphylococcal infections with penicillin (Barber and Rozwadowska-Dowzenko, 1948). In 1959, methicillin was introduced
to treat penicillin-resistant \textit{S. aureus}, but two years later the “birth” of methicillin-resistant \textit{S. aureus} (MRSA) was reported (Barber, 1961), representing the onset of the second wave of antibiotic resistance. In the United States MRSA was first reported in a Boston hospital in 1968 (Barrett \textit{et al.}, 1968). After the 1970s, MRSA outbreaks were reported worldwide, representing the beginning of the third wave of antibiotic resistance. Until this moment, most MRSA infections were reported from intensive care units, hospital rooms, and nursing homes, as well as many cases among dialysis patients, diabetics, patients with intravenous lines, and other immunocompromised individuals. These infections were coined as healthcare-associated, or HA-MRSA infections. The fourth wave started in the 1990s when MRSA outbreaks started to become more prevalent outside healthcare facilities to individuals who had not been hospitalized or had undergone a medical procedure. These community-associated MRSA (CA-MRSA) infections continue to be commonly reported from childcare centers (McAdams \textit{et al.}, 2008), athletic teams (Benjamin \textit{et al.}, 2007), inmates (CDC, 2003), and soldiers (Morrison-Rodriguez \textit{et al.}, 2010). Their containment is difficult because the organism can easily spread from an infected wound through skin-to-skin contact, by touching a contaminated surface, or by using an item (equipment, clothes, towels, etc.) that an infected person has used before.

Methicillin-resistant \textit{S. aureus} strains are resistant to all \(\beta\)-lactams (penicillins, cephalosporins, monobactams, and carbapenems), leaving a limited number of antibiotics to treat staphylococcal infections. Currently, invasive MRSA infections are treated with last resort drugs, such as vancomycin, daptomycin, and linezolid, but resistance to these antibiotics has already been reported (CDC, 2002; Marty \textit{et al.} 2006; Sánchez \textit{et al.}, 2010).

\textit{Staphylococcus aureus} outbreaks have been reported around the world (Skov \textit{et al.}, 2012), making this pathogen a major public health concern worldwide. According to the United States Centers for Disease and Control Prevention (CDC), more people died due to \textit{S.
infections than AIDS in 2005. In 2011, reports on CA-MRSA infections surpassed HA-MRSA infections. In 2012, there were 74,693 cases of *S. aureus* infections and 9,937 deaths in the United States alone (CDC, 2013). Although this represents a significant decrease in incidence and mortality (Dantes *et al*., 2013), hospitalization and mortality rates continue to have a major financial burden. In the United States, CA-MRSA infections alone are estimated to cost at least $478 million every year (Lee *et al*., 2013). Direct medical costs (emergency room visit, hospitalization, and treatment) range between $2,277-$3,200 for a single CA-MRSA case (Lee *et al*., 2013), while there is a median charge of $6,916 per every HA-MRSA case due to prolonged hospitalizations and increased hospital (Cosgrove *et al*., 2005). This, combined with its high incidence, in both healthcare and community settings, and its ability to rapidly develop antibiotic resistance, underscore the importance of continuing to study staphylococcal biology in order to identify novel drug targets.

Oxidative Stress and Metal Imbalance at the Host-Pathogen Interface. In order to identify new drug targets, we first need to understand how our body kills invading microorganisms. One of the bacterial killing mechanisms employed by neutrophils and macrophages involves the generation of superoxide via an NADPH-dependent oxidase (NOX), a process known as the oxidative burst. The transfer of electrons from NADPH to molecular oxygen leads to the production of superoxide (O$_2^-$), that is then reduced to peroxide (H$_2$O$_2$). Peroxide can be further reduced to other secondary reactive oxygen species (ROS), including hydroxyl radicals (OH*) or hypochlorite (OCl-) and chloramines via the myeloperoxidase (MPO) complex. Overall, all of these ROS can accumulate within the phagocytosed microbe and cause oxidative stress. In addition to the oxidative burst process, macrophages also accumulate copper (Cu$^+$) via the ATP7A transporter. The accumulated Cu$^+$ can either react with H$_2$O$_2$, leading to an amplified effect of oxidative stress within the
phagolysosome, or it can diffuse into the phagocytosed microbe and cause toxicity by other mechanisms (discussed below).

The oxidative burst is critical in mounting an effective fight against pathogenic microorganisms. A defect in the NOX system results in an immunodeficiency disorder known as chronic granulomatous disease (CGD) (Song et al., 2011). CGD patients suffer frequent bacterial and fungal infections, mostly caused by *S. aureus*, *Pseudomonas* spp., *Nocardia* spp., *Aspergillus* spp., and *Candida albicans*. CGD affects about 1 in 200,000 people worldwide and is usually diagnosed during infancy or childhood with a life expectancy of 20 years old (Liese et al., 2000). A defect in the ATP7A transporter leads to a syndrome known as Menkes disease (Kaler, 2011). Menkes disease patients often suffer bacterial infections (Menkes et al., 1962; Gunn et al., 1984; Uno and Arya, 1987; Kreuder et al., 1993), highlighting the importance of Cu-mediated bacterial killing in the host immune system.

One of the bacterial targets of ROS are protein-bound cofactors composed of iron (Fe) and sulfur (S) called iron-sulfur (Fe-S) clusters (Hurst et al., 1991; Flint et al., 1993; Jang and Imlay, 2007). Oxidation of solvent-exposed Fe−S clusters results in protein inactivation and release of Fe$^{2+}$. This “free” iron can participate in Fenton chemistry, leading to the production of highly reactive OH$^-$ that can oxidize DNA, lipids, and proteins. Like Fe$^{2+}$, Cu$^+$ may also cause toxicity within the bacterium by performing Fenton-type chemistry. Alternatively, it can also compete with other metals and deplete cellular thiols, leading to an altered function of metalloproteins and changes in the redox state of the cell. Therefore, in order to cause infections, *S. aureus* must find ways to overcome the effects of the oxidative burst and copper toxicity at the host-pathogen interface.

Like other pathogens, *S. aureus* employs several strategies to prevent oxidative stress or overcome the effects of ROS toxicity (reviewed in Gaupp et al., 2012). Some of these
include the use of enzymes that can directly detoxify ROS, such as superoxide dismutase (sodA and sodM) (Clements et al., 1999; Wright Valderas and Hart, 2001), catalase (katA) (Horsburgh, Ingham, et al., 2001), and the alkyl hydroperoxide reductase system (ahpCF) (Cosgrove et al., 2007). Because “free”, non-chelated Fe\(^{2+}\) can participate in Fenton chemistry, S. aureus uses transcriptional regulators that sense intracellular pools of Fe\(^{2+}\) and control Fe uptake (Horsburgh, Ingham, et al., 2001; Reniere and Skaar, 2008), as well as proteins that chelate or store intracellular Fe, such as ferritin and the DNA-binding homologue MrgA (Horsburgh, Clements, et al., 2001). The peroxide sensing regulator PerR derepresses katA, ahpCF, fin, and mrgA expression, among other genes, when the PerR-bound Fe reacts with H\(_2\)O\(_2\) (Horsburgh, Clements, et al., 2001). Several repair systems are employed when oxidation and damage of macromolecules occurs. In E. coli (Outten et al., 2004), oxidized Fe-S clusters are presumably repaired by the Suf scaffolding system. The thioredoxin system (TrxAB) not only facilitates H\(_2\)O\(_2\) reduction, but it can also maintain cellular thiols in their reduced state (Uziel et al., 2004). When oxidized, protein bound-methionine residues are repaired by methionine sulfoxide reductases (Singh et al., 2015). S. aureus can also use non-protein thiol-containing molecules, like coenzyme A (CoA), cysteine (Cys), and bacillithiol (BSH) to help maintain a reduced cytoplasm.

To maintain copper homeostasis, S. aureus uses the copper-sensitive operon repressor (CsoR) that senses and binds intracellular copper leading to derepression of the copAZ operon (Baker et al., 2011). CopZ is a cytoplasmic chaperone that binds and delivers copper to target proteins, including CsoR and the copper exporter CopA. Like glutathione (GSH) in Escherichia coli (Helbig et al., 2008), other non-protein thiols, such as Cys and BSH, may also be involved in chelating intracellular Cu, preventing it from damaging other macromolecules.
Research Goal and Objectives. The overarching goal of this work was to identify and characterize additional factors involved in metal homeostasis in *S. aureus* that could provide insight into how this pathogen survives at the host-pathogen interface when facing oxidative burst and copper stress during infection. The work presented here led to updated models of iron-sulfur cluster biogenesis and copper homeostasis in *Staphylococcus aureus*.

- Chapter 1 examines the role of the low-molecular-weight thiol bacillithiol (BSH) in iron-sulfur cluster biogenesis.
- Chapter 2 describes the role of an additional copper exporter and a membrane-bound copper-binding protein in maintaining copper homeostasis.
CHAPTER 1

BACILLITHIOL HAS A ROLE IN IRON-SULFUR BIOGENESIS

IN STAPHYLOCOCCUS AUREUS

Abstract

Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activity of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IIVD, required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either *sufA* or *nfu*, suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase, verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in *S. aureus*.
Introduction

Staphylococcus aureus is the causative agent of a variety of diseases ranging from mild skin and soft tissue infections to life-threatening illnesses such as bacteremia, pneumonia, osteomyelitis and endocarditis (NCIRS, 2011). It is estimated that nearly half a million-staphylococcal infections occur every year in the United States alone, causing over 10,000 deaths (Klein *et al.*, 2007) and posing a large financial burden (Noskin *et al.*, 2007). The high prevalence of *S. aureus* infections and its ability to rapidly acquire resistance to antibiotics underscores the importance of studying the physiology of this human pathogen and identifying new antimicrobial targets.

In order to successfully cause infections, *S. aureus* must protect itself from a number of external stressors including reactive oxygen species (ROS). *S. aureus* is exposed to ROS during host colonization and infection when polymorphonuclear leukocytes and macrophages produce ROS as part of their antimicrobial killing mechanism (Quinn and Gauss, 2004). Humans that have a genetic predisposition rendering their phagocytic cells incapable of producing ROS often have chronic *S. aureus* infections, thereby highlighting the importance of ROS in preventing and combating infection (Song *et al.*, 2011).

One of the cellular targets of ROS are protein-bound cofactors composed of iron and inorganic sulfur called iron-sulfur (Fe-S) clusters (Hurst *et al.*, 1991; Flint *et al.*, 1993; Keyer and Imlay, 1997; Jang and Imlay, 2007). Proteins requiring Fe-S clusters have diverse cellular functions including: redox reactions (Orme-Johnson *et al.*, 1968; Pomposiello and Demple, 2001), DNA repair (Rudolf *et al.*, 2006), environmental sensing (Khoroshilova *et al.*, 1997; Kamps *et al.*, 2004; Sun *et al.*, 2012), cofactor biosynthesis (Martinez-Gomez and Downs, 2008), branched-chain amino acid (BCAA) biosynthesis (Flint and Emptage, 1988), and antibiotic resistance (Yan *et al.*, 2010). Oxidation of solvent-exposed Fe-S clusters by
ROS can result in cluster destruction and increased unincorporated iron (Fe), that can participate in Fenton chemistry (Imlay and Linn, 1988). Many bacteria are highly reliant on Fe-S cluster chemistry for metabolic processes, and therefore, cluster inactivation or disintegration may result in metabolic standstill (Imlay, 2006; Jang and Imlay, 2007).

Because of the toxic nature of Fe and S, organisms have evolved tightly regulated systems to metabolize Fe-S clusters (reviewed in Johnson et al., 2005). *S. aureus* uses the SufCDSUB Fe-S cluster biosynthetic machinery (Diep et al., 2006). In *S. aureus*, cysteine is used as a sulfur source to build Fe-S clusters, but the Fe and electron donors remain unknown (Selbach et al., 2010). After synthesis, the pre-formed Fe-S clusters are transferred to carrier molecules that can then traffic the clusters to target apoproteins (reviewed in Py and Barras, 2010). Work by our group has shown that the *S. aureus* *nfu* gene (SAUSA300_0839) is an Fe-S cluster carrier (Mashruwala et al., 2015). *S. aureus* also has a putative A-type Fe-S cluster carrier (Vinella et al., 2009) that we name SufA (SAUSA300_0843). Additional *S. aureus* cellular components involved in Fe-S cluster biogenesis remain unidentified.

Among other functions, low-molecular-weight (LMW) thiols are involved in maintaining an intracellular reduced environment and repairing proteins damaged by ROS (Prinz et al., 1997; Fahey, 2013). Like other Firmicutes, *S. aureus* does not synthesize the LMW thiol glutathione (GSH), but it does produce bacillithiol (BSH) (Newton et al., 2009; Pöther et al., 2013; Posada et al., 2014). Although their chemical structures are not similar, BSH is a functional analog of GSH (Newton et al., 2009; Sharma et al., 2013). *S. aureus* strains lacking BSH are sensitive to thiol and oxidative stressors as well as to thiophilic metals (Rajkarnikar et al., 2013; Posada et al., 2014). Transcription of genes involved in BSH biosynthesis is induced by diamide in *S. aureus* and *B. subtilis* (Gaballa, Antelmann, et al., 2013; Posada et al., 2014), and the intracellular BSH concentration increases upon peroxide stress in *S. aureus* (Rajkarnikar et al., 2013) and *Bacillus pumilus* (Handtke et al.,
In *B. subtilis*, the BSH biosynthesis genes are under the transcriptional control of Spx that senses disulfide stress (Gaballa, Antelmann, *et al.*, 2013). These findings are consistent with the fact that LMW thiols have been associated with roles in metabolizing ROS or repairing proteins damaged by ROS (Carmel-Harel and Storz, 2000; Dickinson and Forman, 2002). BSH is also involved in toxin metabolism including the detoxification of the antibiotic fosfomycin in *S. aureus* and methylglyoxal in *B. subtilis* (Newton *et al.*, 2012; Roberts *et al.*, 2013; Chandrangsu *et al.*, 2014). In *B. subtilis*, BSH acts as a buffer to aid in controlling the size of the labile Zn pool to ensure proper metalation of apoproteins, but prevent Zn toxicity (Ma *et al.*, 2014). BSH binds Zn with high affinity *in vitro*.

To gain insight into the role(s) of BSH in staphylococcal metabolism, we constructed and examined BSH-deficient strains in diverse *S. aureus* isolates. The BSH-deficient strains have phenotypes resembling strains defective in Fe-S cluster biogenesis. Further analysis found that strains lacking BSH have decreased activity of Fe-S cluster-requiring enzymes. The phenotypes of the BSH-deficient strains were suppressed by multicopy expression of the Fe-S cluster carriers Nfu or SufA. Collectively, the results presented herein suggest that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters in *S. aureus*.
Experimental Procedures

Reagents. Restriction enzymes, quick DNA ligase kit, deoxynucleoside triphosphates, and Phusion DNA polymerase were purchased from New England Biolabs. Oligonucleotides were obtained from Integrated DNA Technologies and are listed in Table S1. The plasmid mini-prep kit and gel extraction kit were purchased from Qiagen. Lysostaphin was purchased from Ambi Products. DL-Threo-3-isopropylmalic acid was purchased from Wako Chemicals. Tryptic Soy Broth (TSB) was purchased from MP Biomedicals. ELC chemiluminescent detection kit was purchased from Pierce. Primary and secondary antibodies were purchased from Sigma-Aldrich and Bio-Rad, respectively. Unless specified, all other chemicals were purchased from Sigma-Aldrich and were of the highest purity available.

Bacterial Strains and Growth Conditions. Bacterial strains used in this work are listed in Table 1. Unless otherwise noted, the *S. aureus* strains used in this study are derived from the community-associated MRSA USA300 LAC strain was cured of the pUSA03 plasmid that confers erythromycin resistance (Voyich et al., 2005; Pang et al., 2010). *S. aureus* strains were cultured in TSB or a defined media and *Escherichia coli* strains were grown in Luria Broth (LB) medium. All bacteria were cultured at 37°C. The chemically defined media was modified from (Mah et al., 1967) and contained: 1g (NH₄)₂SO₄, 4.5g KH₂PO₄, 10.5g K₂HPO₄, 110 mM NaCl, 30 mM KCl, 50 µg nicotinic acid, 50 µg pantothenic acid, 50 µg thiamine, 0.3 µg biotin and 2.5 mg of individual amino acids, per 100ml. The 11 amino acid media contained the following amino acids: Gly, Val, Leu, Thr, Phe, Tyr, Cys, Met, Pro, Arg, His. When supplemented to the media chemicals were added at the following concentrations: 50-200 µM Fe₂(NH₄)₂(SO₄)₂, 5-200 µM CoCl, 10-300 µM CuSO₄, 10-300 µM MnSO₄, 10-300 µM ZnSO₄. Iron was not added to growth media unless specified. For anaerobic growth on solid media, 20 mM nitrate was added to the plates as a terminal electron acceptor. Cultures were grown in one of four ways: (i) overnight cultures were
grown in 7 ml culture tubes containing 1 ml of TSB media with shaking at 200 rpm; (ii) 250 ml flask containing 50 ml of media with shaking at 200 rpm; (iii) 25 ml tubes containing 5 ml of media with shaking at 200 rpm; or (iv) in 96-well plates containing 200 µl of media per well and continuous shaking on high.

For phenotypic analysis, growth was monitored in 96-well plates using a BioTek 808E Visible absorption spectrophotometer and culture density as monitored at 595 nm. The chemically defined media contained either the 11 amino acids (AA) necessary for growth or the 20 canonical AA, unless otherwise specified. For inoculation, strains were cultured to either stationary (OD$_{600}$ of ~10) or exponential (OD$_{600}$ of 1) in TSB, 250 µL of cells were pelleted and resuspended in 1 mL of PBS before diluting 1:100 into fresh media.

When appropriate, antibiotics were added at the following concentrations: 150 µg ml$^{-1}$ ampicillin (Amp), 6 or 30 µg ml$^{-1}$ chloramphenicol (Cm) (defined or complex media, respectively), 10 µg ml$^{-1}$ erythromycin (Erm), 3 µg ml$^{-1}$ tetracycline (Tet), 50 µg ml$^{-1}$ kanamycin (Kan), and 150 ng ml$^{-1}$ anhydrotetracycline (A-Tet).

Construction of Plasmids and Mutant Strains. Unless otherwise specified, chromosomal DNA from JMB1100 was used as the template for PCR reactions used in the construction of plasmids. All plasmids were isolated from *E. coli* DH5α and transformed into electrocompetent *S. aureus* RN4220 using standard protocol (Kreiswirth et al., 1983). Phage α80 was used for plasmid and chromosomal transductions (Novick, 1991). All bacterial strains were verified by PCR prior to analysis. DNA sequencing was conducted by Genewiz (South Plainfield, NJ).

Mutational inactivation of the *S. aureus bshA* and *bshC* genes was achieved by allelic replacement (*bshA::kanR*) or chromosomal deletion (*bshCΔ*). Approximately 500 base pairs upstream and downstream of the *bshA* gene (SAUSA300_1349) were PCR amplified using
chromosomal DNA as template and the following primers: 1349up5BamHIXmaI and 1349up3stopMluIKpnINheI; 1349down5NheKpnIMluI and 1349down3SalI. PCR products were gel purified and fused by PCR using the 1349up5BamHIXmaI and 1349down3SalI primers. The PCR product was digested with EcoRI and Sall, and ligated into similarly digested pJB38 (Bose et al., 2013). The recombinant vector was transformed into chemically competent E. coli DH5α. PCR was used to screen for colonies harboring the recombinant plasmid. The pJB38_bshAΔ plasmid was isolated and digested with MluI and NheI. A kanamycin cassette (kanR) was PCR amplified using pDG783 as a template (Fisher and Hanna, 2005). The PCR product was digested with MluI and NheI ligated to similarly digested pJB38_bshAΔ. After plasmids were mobilized into S. aureus (at 30°C), a single colony was used to inoculate 5 ml of TSB with Kan. Cultures were grown at 42°C for plasmid integration. Single colonies were inoculated in 5 ml of TSB at 30°C for plasmid resolution. To screen for the loss of plasmid, cultures were diluted 1:25,000 and plated (100 µl) on TSA containing A-Tet. Colonies were scored for Cm and Kan resistance. Colonies that were Cm sensitive and Kan resistant were screened for the double recombination event using the 1349comp5BamHI and 1349comp3SalI primers.

The bshC (SAUSA300_1071Δ) mutant was created using the same protocol mentioned above with the following changes. The 1071up5EcoRI and 1071upfuse primers and the 1071dwnfuse and 1071dwnSalI primers were used to amplify the upstream and downstream DNA, respectively. The 1071up5EcoRI and 1071dwnSalI primers were used for joining the two PCR products. The 1071vfyup and 1071vfyDwn primers were used to verify the bshCΔ strain.

For complementation and expression studies genes cloned into pEPSA5 (Forsyth et al., 2002) contained an engineered sodA ribosomal binding site. Genes cloned into pCM28 (Pang et al., 2010) contained the native promoters.
To construct the *bshA* complementing vector, the 1349comp5BamHI and 1349comp3SalI primers were used to PCR amplify the *bshA* gene; the PCR product was digested with BamHI and NheI and ligated into similarly digested pCM28 to yield pCM28_bshA. For the *nfu* overexpression vector, the nfu5BamRBS and nfu3SalI primers were used to PCR amplify the *nfu* gene; the PCR product was digested with BamHI and SalI and ligated into similarly digested pEPSA5 to yield pEPSA_nfu. For the *sufA* overexpression vector, the sufA5EcoRI and sufA3BamHI primers were used to PCR amplify the *sufA* gene; the PCR product was digested with EcoRI and BamHI and ligated into similarly digested pEPSA5 to yield pEPSA_sufA. To construct the pEPSA5_ilvD the ilvDBamHIRBS and ilvDmulIdwn primers were used to amplify *ilvD*, which was digested and ligated into similarly digested pEPSA5_leuCD_FLAG.

The pCM28_sufCDSUB plasmid was created by using yeast homologous recombination cloning (YRC) in *Saccharomyces cerevisiae* FY2 as previously described (Joska *et al.*, 2014). The pLL39_FLAG_srrAB plasmid was used as a template for the yeast cloning cassette (YCC) and the FLAG affinity tag (Joska *et al.*, 2014). The pCM28 vector was linearized with BamHI and SalI. The amplicons for the pCM28_sufCDSUB were created using the following primer pairs: pcm28YCCfor and sufYCC3; YccSuf and Sufinternal3; Sufinternal5 and SufpCM28rev.

For expression and purification of recombinant proteins from *E. coli* BL21 A1, the pET20b_sufA and pET24a_acnA were constructed to encode a C-terminal poly-histidine affinity tag. The sufA5ndeI and sufAXhoI or the AcnANheI and AcnAXhoI primers were used to PCR amplify the *sufA* and *acnA* genes, respectively. The PCR products were digested with either NdeI and XhoI or NheI and XhoI, and then ligated into similarly digested pET20b or pET24a.
Transcriptional Reporter Assays. *S. aureus* strains containing the pCM11-derived or pXEN-1 reporters were grown overnight in TSB with Erm or Cm, respectively. The overnight cultures (>16 hours) were subcultured into 5 ml of fresh media (1:100). Culture aliquots were periodically removed (200 µl) and culture optical density (A_{590}) and fluorescence or luminescence was monitored using a Perkin Elmer HTS 7000 Plus Bio Assay Reader. GFP was excited at 485 nm and emission was read at 510 nm. Relative fluorescence units or light intensities were normalized with respect to the culture optical density.

RNA isolation and quantification of mRNA transcripts. Cells were cultured in TSB overnight in biological triplicates. Cells were pelleted by centrifugation and resuspended in PBS before diluting 1:100 into defined media (20 AA, 11 AA or 11 AA + 100 µM Fe). Cells were cultured in one of two ways. Cultures used for assessing *rpsB*, *rpsL* and *tsf* transcript levels were grown in 250 ml flasks containing 50 ml media shaking at 200 rpm. Cells were harvested after 30 mins by centrifugation at 4000 rpm at 4°C. Cultures used for assessing transcript levels of *leuCD*, *acnA*, and *sufA* were cultured in 25 ml tubes containing 5 ml of chemically defined medium containing 20 AA and harvested at OD (A_{600}) of 1. All cells were harvested by centrifugation and treated with RNAProtect (Qiagen) for 10 minutes at room temperature. Cells were pelleted by centrifugation and stored at -80 °C. Pellets were thawed and washed twice with 0.5 ml of lysis buffer (50 mM RNAse-free Tris, pH 8). Cells were lysed with 20 µg DNase and 20 µg Lysostaphin for 30 minutes at 37°C. RNAs were isolated as using TRIzol reagent (Ambion - Life Technologies) as per manufacturer protocol. DNA was digested with the TURBO DNA-free kit (Ambion - Life Technologies). cDNA libraries were constructed using isolated RNA as a template. An Applied Biosystems StepOnePlus thermocycler was used to quantify DNA abundance. Primers for quantitative real-time PCR (qPCR) are listed in Table S1 and were designed using the Primer Express 3.0 software from Applied Biosystems.
Determination of Intracellular Iron Concentration. Bacterial strains were cultured as biological triplicates for 18 hours in TSB. For culturing in chemically defined medium, cells were pelleted, washed with PBS and subcultured (1:100) in new 250 ml polycarbonate flasks (Corning) containing 50 ml of defined medium containing 20 AA. Cells were cultured with shaking at 200 rpm to OD (A_{600}) of 0.8 (approximately 3.5 hours after inoculation). For culturing in TSB strains were subcultured into 5 ml of TSB in a 15 ml metal-free conical tubes at a ratio of 1:100. Cultures were grown to mid-log at 37°C, shaking at 200 rpm until an OD$_{600}$ of 5.5 was achieved.

Cells were pelleted by centrifugation at 4°C and supernatants removed and pellets were flash frozen and stored at -80°C until use. Pellets thawed and washed with 10 ml of 0.5 M EDTA to remove extracellular metals. Cells were washed two more times with 1 ml of deionized water before suspending in 1 mL of deionized water. An aliquot of 0.5 ml was transferred into a metal-free tube and 1 ml of 50% nitric acid was added (Fischer Optima Ultra-pure). Samples were incubated at 50°C overnight and then diluted with 9 ml of deionized water.

The quantitative analysis of 56Fe in digested samples was performed on a Thermal Element II double-focusing sector field high-resolution inductively coupled plasma mass spectrometer (HR-ICPMS, Thermo Fisher Scientific, Bremen, Germany) equipped with ESI auto sampler (Elemental Scientific, Omaha, NE). The sample uptake was achieved through self-aspiration via a 0.50 mm ID sample probe and sample capillary. The Fe concentrations were determined using the following operation parameters: RF power, 1250W; Cool gas, 16.00 L min$^{-1}$; Auxiliary gas, 0.83 L min$^{-1}$; Sample gas 1.03 L min$^{-1}$; Resolution mode medium; 10 Runs with 1 pass; 20 samples per peak; samples time 0.01 sec.
Protein Concentration Determination. Protein concentration was determined using a bicinchoninic acid assay modified for a 96-well plate (Olson and Markwell, 2007). Bovine serum albumin (2 mg ml\(^{-1}\)) was used as a standard.

Enzyme Assays. To examine enzyme activity in the WT and bshA mutant strains, overnight cultures grown in TSB-Cm were pelleted and resuspended in PBS (1:4). Resuspended cells were used to inoculate (1:100) defined media containing 20 AA (50 ml culture) with and without 1% xylose. To examine enzyme activity in lysates harvested from the sufA and nfu mutant strains shown in Figure 8, strains were cultured in 5 ml of TSB in 25 ml shake tubes.

(i) Isopropylmalate Isomerase (LeuCD). Cultures were grown in defined media until they reached an OD \((A_{600})\) of 1, harvested by centrifugation and resuspended in 50 mM Tris (pH 8.0) containing 10 mM MgCl\(_2\) (lysis buffer). Cells were lysed by the addition of 2 µg DNAse and 2 µg lysostaphin and incubated at 37°C until confluent lysis was noted (30 minutes). Cellular lysates were clarified by centrifugation and LeuCD was assayed by the addition of 25 µl of cell-free extract to 620 µl of lysis buffer and 10 mM DL-3-isopropylmalic acid (Wako Chemicals). LeuCD was assayed for the ability to convert 3-isopropylmalate to dimethylcitraconate acid spectrophotometrically at 240 nm (dimethylcitraconate \(\varepsilon_{240}\)nm = 4.35 mM\(^{-1}\) cm\(^{-1}\), (Gross et al., 1963)) as previously described (Boyd et al., 2008). Strains were cultured in 5 ml of TSB-Cm in 25 ml tubes for sufA and nfu mutant analysis.

(ii) Dihydroxy-acid Dehydratase (IlvD). Cultures were cultured, harvested and lysed as described above. IlvD activity was assayed by adding 25 µl of cell-free lysate to 620 µl of lysis buffer and 10 mM D,L-2,3-dihydroxy-isovalerate (Wako Chemicals). The ability of IlvD to produce keto-acids from D,L-2,3-dihydroxy-isovalerate was monitored spectrophotometrically at 240 nm (keto acids \(\varepsilon_{240}\)nm = 0.19 mM\(^{-1}\) cm\(^{-1}\), (Flint et al., 1993)).
(iii) Aconitase (AcnA). Cells were cultured and harvested as described above. Cellular pellets were resuspended in 25 mM Tris-citrate, 25 mM NaCl, pH 8 buffer (AcnA buffer). Twenty-five µl of cellular lysates were added to 620 µl of AcnA buffer buffer containing 20 mM DL-isocitrate (Sigma-Aldrich). When indicated, crude extracts were anaerobically incubated with 50 µM (NH₄)₂Fe(SO₄)₂ for 1 hr and AcnA activity assayed. When indicated, 100 µM Fe or 500 µM DTT were added. AcnA activity was determined by monitoring the conversion of isocitrate to cis-aconitate spectrophotometrically at 240 nm (cis-aconitate ε240 nm = 3.6 mM⁻¹ cm⁻¹, (Kennedy et al., 1983)).

(iv) Glutamate synthase (GltBD or GOGAT). Cells were cultured and harvested as described above. Cells were harvested and resuspended in 50 mM Tris–HCl (pH 7.7). Cells were lysed as described above. Cellular lysates were clarified by centrifugation and GOGAT was assayed by the addition of 60 µl of 50 mM glutamine (pH 7.7), 60 µl of 5 mM α-ketoglutarate (pH 7.7), 60 µl of cell-free extract and 60 µl of NADPH (0.75 mM) to 600 µl of lysis buffer. GOGAT activity was determined by monitoring the rate of NADPH oxidation at 340 nm (ε340 nm = 6.22 mM⁻¹ cm⁻¹, (Dougall, 1974)).

Immunoblot Analysis. A total of 20 or 45 µg of total protein (pleuCD or pacnA samples, respectively) were separated using an 8% SDS-PAGE gel. Proteins were then transferred to a PVDF membrane and incubated with mouse monoclonal anti-FLAG primary antibody (1:4000 dilution) and subsequently HRP conjugated secondary antibody (1:12000 dilution). The blots were developed using chemi-luminescent detection (Pierce). The blots were scanned as TIFF images.

Measurement of Endogenous Reactive Oxygen Species. Intracellular ROS was measured as previously described (Myhre et al., 2003; Arenas et al., 2011; Tavares et al., 2011). Cultures were grown in TSB until they reached an OD₆₀₀ of 6. Cells were harvested, washed
twice with PBS and resuspended in PBS. The 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe was added to a final concentration of 10 µM. Fluorescence was monitored using a Perkin Elmer HTS 7000 Plus Bio Assay Reader by exciting at 485 nm and emission was read at 535 nm. Fluorescence units were normalized with respect to (i) the auto-fluorescence of DCFH-DA and then to (ii) the optical density (A_{590}) of each culture.

Recombinant Protein Overproduction and Purification. *E. coli* strain BL21 AI containing a protein expression vector was grown in 2x standard LB at 37°C in 3 L Fernbach flasks containing 1 L of media. Cultures were grown to an OD$_{600}$ of 0.6 then cooled to 25°C. Arabinose (1 mM) and IPTG (0.1 mM) were added. Cultures were grown for an additional 12 hours before cells were harvested by centrifugation. Cell paste was flash frozen with liquid nitrogen and stored at -80°C.

Frozen cell paste was suspended in two volumes of buffer A (50 mM Tris-HCl, pH 8.0, 150 mM NaCl) containing DNase (0.03 mg ml$^{-1}$). Cell suspensions were passed three times through a chilled French pressure cell at 4°C. Cell lysates were clarified by centrifugation (39,000 X g for 40 min at 4°C). The clarified cell extract was loaded onto a 1.6 x 10 cm pre-equilibrated Ni$^{2+}$-loaded Chelating Sepharose Fast Flow (Qiagen) column and washed with 20 column volumes of 50 mM Tris, pH 8.0, 1 M NaCl. The column was equilibrated with buffer A and recombinant protein was eluted during a 30 column volume linear gradient from 0 to 100% elution buffer (50 mM Tris, pH 8.0, 250 mM imidazole). Fractions that contained the protein of interest at >95% purity by SDS-PAGE analysis were pooled and dialyzed overnight in 50 mM Tris-HCl, pH 8.0, 10% (v/v) glycerol, and 150 mM NaCl. The SufA protein was concentrated over a 3,000 Da molecular mass cutoff membranes (Amicon). Finally, the proteins were pelleted into liquid nitrogen and stored at -80°C until needed. All steps were performed at 4°C and buffers used for dialysis had the pH adjusted at 4°C. Iron and sulfur determination was conducted as previously described (Boyd
et al., 2009). The SufA Fe-S cluster was destroyed and iron was removed from the sample as previously described (Kennedy and Beinert, 1988). EDTA was removed from the SufA solution by dialysis against buffer A and three successive buffer exchanges.

Anaerobic Work. Anaerobic work was performed using a Coy anaerobic chamber (Grass Lake, MI) or vacuum manifold. Solutions, plasticware and liquid and solid growth media was allowed to equilibrate (> 6 hours) inside the chamber before use. Petri plates containing solid media were incubated in an air incubator within the anaerobic chamber.

Fe-S Cluster Reconstitution. All the steps were performed under strictly anaerobic conditions (<1 ppm dioxygen). Purified SufA was adjusted to 60 µM in reconstitution buffer (50 mM Tris, 150 mM NaCl, 5 mM DTT, pH 7.5). Protein was allowed to reduce for 1 hr. Cluster reconstitution was initiated by adding a five-fold excess of ferrous ammonium sulfate and lithium sulfide (300 µM final concentration) as previously described (Boyd et al., 2009). The reaction mixture was allowed to proceed for 1 hr before excess Fe and S were removed by desalting using a PD-10 column (GE Healthcare) that had been pre-equilibrated with reconstitution buffer. Reconstituted protein was concentrated using YM-3 Centrifuplus Centrifugal Concentrators (Millipore), prior to use in activity assays. UV-Visible absorption spectra were recorded using a Beckman-Coulter DU800 spectrophotometer.

Fe-S Transfer Assay. All steps were performed under anaerobic conditions (<1 ppm dioxygen), in a Coy anaerobic chamber. Purified, recombinant AcnA was incubated in reconstitution buffer for 30 minutes. Cluster transfer mixtures were obtained by combining 4 µM AcnA and 4 µM SufA in a final volume of 20 µl in reconstitution buffer. As a control, SufA was left out of the reaction mixture and replaced with 8 µM Fe^{2+} and 8 µM S^{2-} (in reconstitution buffer). Mixtures were incubated at room temperature (23°C) for the indicated amounts of time, at which point 16 µl aliquots were removed and assayed for AcnA activity.
Activity assays were performed in final volume of 1 ml and contained reconstitution buffer with 20 mM DL-isocitrate. AcnA activity was assayed as described above.
Results

An *S. aureus* strain lacking BSH has a growth defect in a chemically defined medium that is corrected by exogenous iron supplementation. The *bshA* (SAUSA300_1349) and *bshC* (SAUSA300_1071) gene products catalyze the first and last steps of the BSH biosynthetic pathway, respectively (Gaballa *et al.*, 2010; Parsonage *et al.*, 2010; Upton *et al.*, 2012). Inactivation of either *bshA* or *bshC* results in an inability to synthesize BSH in *S. aureus* (Rajkarnikar *et al.*, 2013). In order to study the physiological role(s) of BSH, we created *bshA* and *bshC* mutant strains in the *S. aureus* community-acquired MRSA strain USA300 LAC (Burlak *et al.*, 2007). The mutant strains were verified using PCR (Figure 1.S1) and phenotypic analysis found that the generation times of the wild-type (WT; 0.8 ± 0.1 hr) and BSH-deficient (*bshA*; 0.8 ± 0.1 hr) strains were not significantly different when cultured in complex liquid media (TSB).

To further investigate the physiological roles of BSH in *S. aureus*, we utilized a chemically defined medium for growth containing 11 amino acids (AA) (11AA; PRMCLVYTFGH), as well as, sources of nitrogen, phosphorus, sulfur, and four vitamins. The absence of any of the 11 AA or glucose resulted in either no growth or a severe growth defect in the WT strain, suggesting that the supplied AA did not provide sufficient carbon for growth (data not shown).

The WT and *bshA* mutant were cultured to either stationary or exponential growth phase in TSB before washing the cells and subculturing into a defined medium containing 11 AA. The *bshA* mutant strain displayed an extended lag prior to outgrowth when compared to the WT strain. This phenotype was noted when strains were subcultured from cultures grown to either stationary (Figure 1.1A) or exponential growth phase (Figure 1.S2A). The generation times of the *bshA* strain subcultured from either stationary or exponential growth
phase cultures were ~3-fold greater than the generation times of the WT strain (Table 1.S2). Importantly, we were able to genetically complement these defects, verifying that the absence of the \(bshA \) gene was responsible for the observed phenotypes (Figure 1.1A).

We found that supplementation of the 11 AA growth medium with iron (>50 µM Fe\(^{2+}\)) decreased the time that it took for the \(S.\ aureus \) BSH-deficient strain to initiate outgrowth when subcultured from either stationary (Figure 1.1B) or exponential phase (Figure 1.S2B) cultures. In addition, supplementation of the growth medium with Fe significantly decreased the generation time of \(bshA \) mutant strain (Table 1.S2). Supplementing the medium with either Cu\(^{2+}\), Zn\(^{2+}\), Co\(^{2+}\), or Mn\(^{2+}\) did not improve the extended lag phase or decrease the generation time of the \(bshA \) mutant, suggesting that the growth correction is specific to Fe (data not shown). For the remainder of this thesis, unless explicitly stated, the chemically defined or complex media was not supplemented with exogenously supplied Fe.

The \(bshA \) mutant strain displays poor growth in media lacking isoleucine or leucine. Results presented above show that a \(bshA \) mutant strain has a growth defect when cultured in an 11 AA medium, and such defect is alleviated by supplementing the medium with Fe. We examined whether any alternative factors could also correct the growth defect of the \(bshA \) mutant strain.

We found that the time taken for the \(bshA \) mutant strain to initiate outgrowth was also decreased when subcultured from either stationary or exponential growth phase cultures into defined medium containing the 20 canonical AA (Figure 1.2A and Figure 1.S2C). The generation time of the \(bshA \) mutant strain was ~1.5-fold greater than the WT when subcultured from either stationary or exponential phase cultures (Table 1.S2).
We individually removed amino acids from the growth medium and found that the
\textit{bshA} mutant strain did not grow during the course of the assays when subcultured from either
stationary (\textbf{Figure 1.2B}) or exponential (\textbf{Figure 1.S2D}) growth phase cultures into defined
liquid medium containing 19 AA lacking leucine (Leu). We also found that the BSH-deficient strain had an extended lag phase relative to the WT strain when subcultured from
either stationary (\textbf{Figure 1.2C}) or exponential (\textbf{Figure 1.S2E}) growth phase cultures into
defined liquid medium containing 19 AA lacking isoleucine (Ile). Moreover, the generation
times of the BSH-deficient cultures were increased in absence of Ile (\textbf{Table 1.S2}).
Supplementation of either the Leu- or Ile-deplete 19 AA liquid media with Fe (>50 µM)
corrected the growth phenotypes of the \textit{bshA} mutant strain (data not shown).

The \textit{bshA} mutant strain also displayed growth defects when cultured on chemically
defined solid media lacking either Leu or Ile. We cultured the WT and \textit{bshA} mutant in
complex media, serial diluted the cultures, and spot plated the strains atop solid defined
media. As shown in \textbf{Figure 1.S3}, the colonies of the \textit{bshA} mutant were smaller than the WT
colonies when cultured on 19 AA media plates lacking either Ile or Leu. The growth defects
of the \textit{bshA} mutant on solid media containing 19 AA were alleviated by supplementing the
medium with either of the missing AA or Fe (\textbf{Figure 1.S3}).

\textbf{Iron or amino acid limitation leads to decreased expression of genes necessary for
protein synthesis.} When cultured on defined medium containing 11 AA, the WT strain
displayed an extended lag prior to outgrowth and this lag was decreased when the medium
was supplemented with the remaining 9 canonical AA (\textbf{Figures 1.2 and 1.S2}). In \textit{S. aureus},
AA limitation results in accumulation of (p)ppGpp and the induction of the stringent response
(Crosse \textit{et al.}, 2000; Geiger \textit{et al.}, 2010). The accumulation of (p)ppGpp can result in
growth arrest and an extended lag before outgrowth (Gao \textit{et al.}, 2010), that is, in part, the
result of decreased transcription of genes necessary for protein synthesis including \textit{rpsB}, \textit{rpsL}, and \textit{tsf} (Geiger \textit{et al.}, 2010; Reiss \textit{et al.}, 2012).

We examined whether subculturing from complex medium (TSB) into chemically defined 11 AA medium was resulting in decreased transcription of \textit{rpsB}, \textit{rpsL}, and \textit{tsf}, that were alleviated upon subculturing into media containing 20 AA. As shown in Figure 1.\textit{S4A}, the abundances of the transcripts corresponding to \textit{rpsB}, \textit{rpsL}, and \textit{tsf} were decreased in cells subcultured from TSB into chemically defined medium containing 11 AA relative to the abundances in cells subcultured into medium containing 20 AA.

Supplementation of the 11 AA growth medium with Fe also decreased the time taken for the WT strain to initiate outgrowth, suggesting that the \textit{S. aureus} cells cultured in our chemically defined medium were starved for Fe (\textit{Figures 1.1 and 1.\textit{S2}}). Previous studies found that Fe starvation results in (p)ppGpp accumulation triggering the stringent response (Vinella \textit{et al.}, 2005; Miethke \textit{et al.}, 2006). We quantified the abundances of mRNA transcripts corresponding to the \textit{rpsB}, \textit{rpsL}, and \textit{tsf} genes from WT cells subcultured from a complex medium (TSB) into chemically defined media containing 11 AA with and without Fe supplementation (100 \textmu M). As shown in Figure 1.\textit{S4B}, the abundances of mRNA transcripts corresponding to \textit{rpsB} and \textit{rpsL} were increased upon Fe supplementation, whereas transcription of \textit{tsf} was not significantly altered. Collectively, these findings suggest that subculturing \textit{S. aureus} cells from TSB medium into chemically defined medium containing 11 AA leads to the stringent response, that can be attenuated by supplementing the chemically defined growth medium with either AA or Fe.

\textbf{An \textit{S. aureus} strain lacking BSH is defective in intracellular iron metabolism.} Iron is essential for a number of cellular processes, yet high intracellular Fe pools can result in toxicity (Imlay and Linn, 1988; Keyer and Imlay, 1996). Cells maintain a low concentration
pool of cytoplasmic Fe not ligated by macromolecules sometimes referred to as free or non-incorporated Fe, that is used to metalate Fe-dependent enzymes and synthesize Fe-containing cofactors (Woodmansee and Imlay, 2002).

The *S. aureus isdB* gene encodes a protein involved in iron acquisition that is under the transcriptional control of the ferric uptake regulator (Fur) (Reniere and Skaar, 2008). Fur acts as a transcriptional repressor when bound to Fe (Horsburgh, Ingham, *et al.*, 2001). We used an *isdB* transcriptional reporter to qualitatively monitor the Fur-accessible Fe pool in the WT and *bshA* mutant strains. Overnight cultures were diluted to an OD of 0.1 (A_{600}) in chemically defined media containing 20 AA and luciferase activity monitored over time. As illustrated in Figure 1.3A, *isdB* transcriptional activity was increased in the *bshA* mutant strain when compared to the WT. The largest difference in transcriptional activity was noted during late exponential growth phase (3.5 hours post subculturing; (OD of 0.8 (A_{600})). These data suggest that a BSH-deficient strain has less Fur-accessible Fe than the WT resulting in derepression of *isdB*.

Two scenarios can explain the decreased Fur-accessible Fe in the BSH-deficient strain. The absence of BSH either result in decreased in Fe uptake, thereby lessening the total Fe load of the cell, or it results in decreased Fur-accessible Fe, without affecting total cellular Fe load. To differentiate between these scenarios, we examined whether the amount of total cellular Fe was increased in cells lacking BSH. Cells were cultured to an OD of 0.8 (A_{600}) in chemically defined medium containing 20 AA without Fe supplementation prior to determining total ^{56}Fe load using inductively coupled plasma mass spectrometry (ICP-MS). As illustrated in Figure 1.3B, there was not a significant difference in cell associated Fe load between the WT and *bshA* mutant. There was also not a significant difference in Fe load between the WT and *bshA* cells cultured in complex medium (TSB) to late exponential growth phase (Figure 1.3S5). Collectively, these data suggest that an *S. aureus bshA* mutant
strain has decreased pools of Fur-accessible Fe, but the same overall Fe load as the WT strain.

An *S. aureus* strain lacking BSH is defective in Fe-S cluster biogenesis. The growth defects of the *bshA* mutant strain grown in defined media without either Leu or Ile led us to hypothesize that the absence of BSH resulted in a defect in synthesizing these amino acids. The biosynthesis Leu and Ile requires the enzymes isopropylmalate isomerase (IPMI) and dihydroxy-acid dehydratase (IlvD), respectively. The IPMI and IlvD enzymes are dehydratases that require a [Fe$_4$-S$_4$] cluster for catalysis (Kennedy *et al.*., 1983; Kohlhaw, 1988; Flint and Emptage, 1988). In *S. aureus*, IPMI is encoded by the *leuCD* genes.

The *S. aureus bshA* mutant did not grow in defined media lacking Leu, and therefore, we were unable to measure the activity of the *leuCD* gene products expressed at chromosomal levels from cells cultured in a medium lacking Leu. We were unable to detect LeuCD activity in cell extracts from strains cultured in media containing Leu (data not shown). To circumvent these problems, we cloned the *leuCD* genes under the transcriptional control of XylRO (pleuCD), that allowed us to culture the *bshA* mutant in media containing Leu and induce *leuCD* expression by the addition of xylose. In addition, this construct contained an N-terminal FLAG affinity tag on LeuC allowing us to monitor LeuC protein abundance. We found that *pleuCD* genetically complemented the Leu auxotrophy of a *leuD* mutant strain, thus verifying the functionality of our construct (data not shown). To ensure that the detected LeuCD activity was originating from the plasmid-based *leuCD* alleles, assays were conducted in strains containing a null allele of the chromosomally encoded *leuD* gene. The *pleuCD* vector was mobilized into the *leuD* and *bshA leuD* mutant strains. Cultures were grown to an OD of 1 (A$_{600}$) in 20 AA media prior to assessing LeuCD activity in cell lysates. The strain lacking BSH displayed 57 ± 7% LeuCD activity when compared to the parent strain (Figure 1.4A). Western blot analyses revealed that FLAG_LeuC protein
accumulated in both strains, but accumulation was lower in the \textit{bshA} mutant strain (\textbf{Figure 1.4A, inset}). We quantified the abundance of the mRNA transcript corresponding to \textit{leuC} in cells cultured as described above and found that \textit{leuC} was induced to statistically indistinguishable levels in the WT and \textit{bshA} mutant strains (\textbf{Figure 1.8S6}).

The \textit{bshA} mutant displayed a long lag prior to outgrowth when cultured in the absence of Ile and we were unable to detect IlvD activity in cells cultured in media containing Ile. We used a similar strategy as outlined above to monitor IlvD activity in the WT and \textit{bshA} mutant strains. We cloned the \textit{ilvD} gene into a plasmid under the transcriptional control of XylRO (\textit{pilvD}). The \textit{pilvD} plasmid genetically complemented an \textit{ilvD} mutant strain verifying, the functionality of the plasmid-encoded \textit{ilvD} allele (data not shown). N- or C-terminal FLAG-tagged IlvD variants did not functional \textit{in vivo}. The \textit{pilvD} was mobilized into the \textit{ilvD} and \textit{bshC ilvD} mutant strains. Strains containing \textit{pilvD} were cultured defined media containing 20 AA, \textit{ilvD} expression induced and IlvD activity was assessed in cellular lysates. When compared to the parent the IlvD activity was 49 ± 8\% in the strain lacking BSH (\textbf{Figure 1.4B}).

The data presented suggest that Fe-S cluster-dependent proteins have lower activity in the BSH-deficient strains. We wanted to determine if the lack of BSH resulted in a general defect in Fe-S cluster biogenesis or if the effect was specific to the enzymes required for BCAA biosynthesis. Like LeuCD and IlvD, aconitase (AcnA) is a \([\text{Fe}_{4}\text{-S}_{4}]\) -requiring dehydratase enzyme. We cloned the \textit{acnA} gene into a plasmid under the transcriptional control of XylRO (\textit{pacnA}). The construct included a C-terminal FLAG affinity tag to aid in monitoring protein abundance. The FLAG-tagged \textit{acnA} allele genetically complemented the glutamate (Glu) and glutamine (Gln) requirement of an \textit{acnA} mutant strain, verifying the functionality of the FLAG-tagged AcnA allele (data not shown). Strains containing \textit{pacnA} were cultured in defined media containing 20 AA to an OD of 1 (\textit{A}_{600}) in the presence and
absence of xylose to induce acnA expression. As shown in Figure 1.4C, the BSH-deficient strain had 64 ± 1% AcnA activity in cell-free lysates when compared to the parent strain. Western blot analysis revealed that the AcnA protein accumulated in both strains (Figure 1.4C, inset), but accumulation was lower in the bshA mutant strain. We quantified the abundance of the mRNA transcript corresponding to acnA in the WT and bshA mutant strains cultured as described above and found that it was induced to similar levels in both strains (Figure 1.5S6).

The Fe-S cofactor of AcnA can be damaged by univalent oxidants causing oxidation of the [Fe₄-S₄] cluster and cofactor disintegration to the non-catalytically active [Fe₃-S₄]¹⁺ cluster and Fe³⁺ (Kent et al., 1982). Anaerobic incubation of non-active [Fe₃-S₄]¹⁺ AcnA with Fe²⁺ and a reductant results in a repaired [Fe₄-S₄] cluster and active AcnA (Kennedy et al., 1983). To determine if cell lysates harvested from the BSH-deficient strains were enriched for the [Fe₃-S₄]¹⁺ form of AcnA, we incubated crude extracts generated from the acnA and bshA acnA strains containing the pacnA with Fe²⁺ and DTT prior to assessing AcnA activity. We found that the AcnA activity in lysates harvested from the bshA mutant was ~65% that of the WT, but anaerobic incubation with Fe²⁺ did not increase AcnA activity in cell lysates harvested from either the WT or BSH-deficient strain (data not shown). These data verify that a strain lacking BSH has decreased AcnA activity and suggest that this is not the result of enrichment for the inactive, but repairable [Fe₃-S₄]¹⁺ form of AcnA.

An S. aureus BSH-deficient strain does not accumulate increased intracellular ROS. S. aureus strains lacking BSH are sensitive to thiol and oxidative stressors (Rajkarnikar et al., 2013; Posada et al., 2014). Fe-S clusters can be oxidized by ROS resulting in cluster destruction and decreased activity of enzymes that require Fe-S clusters for catalysis (Imlay, 2006). ROS are formed as byproducts of growth in an aerobic environment and strains lacking ROS scavenging mechanisms accumulate endogenous ROS resulting in damage to
Fe-S clusters and decreased enzymatic activity of proteins requiring these cofactors (Keyer and Imlay, 1996; Keyer and Imlay, 1997; Jang and Imlay, 2007; Mashruwala et al., 2015). We conducted a series of experiments to determine if the decreased activity of Fe-S cluster-dependent enzymes in an S. aureus strain lacking BSH could be the result of increased intracellular ROS.

S. aureus uses an ortholog of the B. subtilis PerR transcriptional repressor to sense and respond to H\textsubscript{2}O\textsubscript{2} (Lee and Helmann, 2006). The dps gene, that encodes an iron-binding protein that protects DNA from oxidative damage, is a member of the PerR regulon and expression of dps is upregulated upon PerR oxidation by H\textsubscript{2}O\textsubscript{2} (Horsburgh, Clements, et al., 2001). We examined the transcriptional activity of the dps promoter as a proxy for PerR-dependent alterations in transcription. As shown in Figure 1.5A, the transcriptional activity of the dps promoter was similar in the WT and bshA mutant when cultured in 20 AA defined medium, but the activity was increased in the ahpC and perR mutant strains. These data (i) confirm that PerR is a repressor of dps transcription, (ii) suggest that an ahpC mutant has elevated H\textsubscript{2}O\textsubscript{2} stress resulting in PerR derepression, and (iii) verify that a strain lacking BSH does not result in PerR derepression.

S. aureus has two superoxide dismutases (SodA and SodM). A strain lacking SodA has a growth defect upon aerobic growth (increased generation time), whereas a strain lacking SodM does not (data not shown). These findings are consistent with previous work suggesting that SodA is the primary superoxide dismutase in S. aureus cells when cultured under standard laboratory conditions (Wright Valderas and Hart, 2001). Additional studies found that sodA was induced by incubation with the redox cycling molecule methyl viologen, suggesting that sodA is induced when intracellular ROS accumulates (Clements et al., 1999; Karavolos et al., 2003).
We used a sodA transcriptional reporter construct as a proxy for intracellular ROS accumulation in the WT and bshA mutant strain. Strains harboring this construct were grown aerobically in 20 AA medium and transcriptional activity was monitored. The transcriptional activity of the sodA gene was similar in the bshA mutant and WT strains (Figure 1.5B). Importantly, as previously noted, the promoter activity of sodA increased upon addition of methyl viologen and transcriptional activity increased to similar levels in the WT and bshA mutant strains. These data suggest that bshA mutant strain does not accumulate a higher titer of ROS than the WT strain.

We qualitatively measured intracellular ROS using the compound 2’,7’-dichlorofluorescin diacetate (DCHF-DA) (Arenas et al., 2011; Tavares et al., 2011). DCHF-DA is membrane permeable and is converted to the fluorescent molecule 2’,7’-dichlorofluorescein (DCF) upon oxidation (Wang and Joseph, 1999; Myhre et al., 2003). We cultured the WT and bshA mutant strains aerobically to mid-exponential phase (OD of 6 (A600)) in TSB and monitored DCF formation in cell suspensions. The rate of DCF formation was also assessed in an ahpC mutant strain as a positive control. The WT and bshA mutant strains had similar rates of DCF formation, whereas the ahpC mutant had an increased rate of DCHF-DA oxidation indicative of increased ROS accumulation (Figure 1.5C).

Lastly, we examined whether the growth defects of the bshA mutant were dioxygen-dependent. To this end, we serial diluted cultures of the WT and bshA mutant and spot plated the strains on 19 AA solid media lacking either Leu or Ile and incubated the cultures either aerobically or anaerobically. We included 20 mM nitrate as a terminal electron acceptor for anaerobic incubations. When compared to the WT, the bshA mutant strain displayed a small colony phenotype on plates lacking either Leu or Ile when incubated in the presence or absence of dioxygen (data not shown). As previously noted, the growth defects of the bshA mutant were alleviated by supplementing the media with either the missing AA or Fe (data
not shown). These data suggest that the phenotypes exhibited by S. aureus strains lacking BSH are not oxygen-dependent or the result of increased intracellular ROS.

Genetic analyses provide insight into the function of BSH in Fe-S cluster biogenesis. The data presented led to the hypothesis that BSH has a role in Fe-S cluster biogenesis. We examined whether bshA had a genetic interaction with additional genes involved in Fe-S cluster biogenesis. Work in our group has found that the Nfu protein (SAUSA300_0839) can bind and transfer Fe-S clusters in vitro and that an nfu mutant strain has decreased activity of Fe-S cluster requiring proteins in vivo leading to the hypothesis that Nfu is an Fe-S cluster carrier (Mashruwala et al., 2015). S. aureus also has a putative A-type Fe-S cluster carrier protein (SufA; SAUSA300_0843) (Krebs et al., 2001; Vinella et al., 2009). We have not been successful in constructing strains with null or deletion mutations in the SufCDSUB Fe-S cluster assembly system (Mashruwala et al., 2015). Our findings, in conjunction with the findings of others, has led to a model wherein both the Nfu and SufA proteins can accept Fe-S clusters from the Suf Fe-S cluster biosynthetic machinery and traffic the cofactors to apoproteins (Figure 1.10).

We constructed the bshA nfu and bshA sufA double mutant strains and conducted auxanographic analysis. In addition to Ile and Leu auxotrophies, the bshA nfu double mutant strain did not grow in media lacking Glu and Gln (Figure 1.6A). The bshA nfu double mutant was proficient for growth in 20 AA defined medium (data not shown). Returning either the nfu or bshA genes to the bshA nfu double mutant abolished the need to supplement the media with Glu and Gln (data not shown). The growth of the bshA sufA double mutant in chemically defined media was indistinguishable from that of the bshA mutant strain (data not shown).
AcnA is necessary to produce α-ketoglutarate, the precursor for Glu and Gln biosynthesis and an acnA mutant cannot grow in media lacking Glu and Gln (Figure 1.6A). We assayed AcnA activity in cell-free lysates generated from the WT, bshA, nfu, and sufA strains, as well as, the bshA sufA and bshA nfu double mutant strains that had been cultured to an OD of 1 (A_{600}) in chemically defined medium containing 20 AA. As illustrated in Figure 1.6B, AcnA activity in the bshA nfu double mutant was lower than AcnA activity of the bshA and nfu single mutants. The sufA mutant strain did not display decreased AcnA activity and the AcnA activity in the bshA sufA double mutant was indistinguishable from that of the bshA mutant.

Glutamate synthase (GltBD or GOGAT) is an Fe-S cluster dependent enzyme that generates Glu from Gln and α-ketoglutarate (Vanoni and Curti, 1999). We hypothesized that the Glu and Gln requirement of the bshA nfu double mutant was, in part, due to a defect in GOGAT function. The WT, bshA, sufA, nfu strains, as well as, the bshA sufA and bshA nfu double mutant strains were cultured to an OD of 1 (A_{600}) in a defined medium containing 20 AA and GOGAT activity assessed in cell-free lysates. As a control, we included a gltD mutant strain. When compared to the GOGAT activity of the WT strain, the bshA, nfu, and bshA nfu strains showed 50 ± 2 %, 47 ± 2 %, and 23 ± 7 % GOGAT activity, respectively (Figure 1.6C). GOGAT activity was slightly decreased in the sufA mutant (79 ± 13 %), but the effects of the bshA and sufA mutations on GOGAT activity were not additive. The gltD mutant strain did not have detectable GOGAT activity (data not shown). These data suggest that the Nfu and BSH molecules are functionally redundant in Fe-S cluster biogenesis and their roles are not limited to Fe-S cluster-dependent dehydratase enzymes.

The defects of strains lacking BSH are suppressed by multicopy expression of genes encoding Fe-S cluster biogenesis factors. Functional overlap has previously been shown to exist between Fe-S cluster assembly and trafficking components. We examined whether the
growth defects of the BSH-deficient strain could be suppressed by multicopy expression of
genes encoding alternate Fe-S cluster biogenesis factors. To this end, we placed additional
copies of the sufCDSUB operon into the bshA mutant strain via multicopy plasmid
(pCM28_sufCDSUB) and conducted phenotypic analysis. The presence of the sufCDSUB
genes in trans did not correct the growth defects or the decreased AcnA activity of the bshA
mutant strain (data not shown).

We individually introduced the nfu and sufA genes into the bshA mutant strain in
multicopy via episome (pnfu and psufA). As shown in Figure 1.7A, sufA overexpression
partially rescued the Ile- and Leu-dependent growth defects of the bshA mutant strain on
solid chemically defined media. The presence of sufA in multicopy also corrected the growth
of the bshA mutant in defined liquid medium containing 19 AA, but lacking Ile (Figure
1.87). We also found that multicopy expression of sufA increased the AcnA activity in cell-
free lysates harvested from a BSH-deficient strain (Figure 1.7B), while it did not
significantly affect the growth or AcnA activity of the WT strain.

Overexpression of nfu provided a slight correction of the Leu- and Ile-dependent
growth defects of the bshA mutant on solid media (Figure 1.7A). The presence of nfu in
multicopy also increased the AcnA activity in cell-free lysates harvested from the bshA
mutant strain, but no significant difference was observed in the WT strain (Figure 1.7B).

We next examined whether sufA expression was altered in a bshA mutant. To this
deepth, we cultured the WT, bshA, and sufA mutant strains to an OD of 1 (A_{600}) in chemically
defined media containing 20 AA and quantified the abundance of the mRNA transcript
corresponding to sufA. We found that the sufA transcript accumulated to similar levels in the
WT and bshA strains, but was undetectable in the sufA mutant (Figure 1.88). These data
suggest that sufA is transcribed in the bshA mutant, but not expressed at a level sufficient to
compensate for absence of BSH. Collectively, these data suggest that the role of BSH in Fe-S cluster biogenesis in *S. aureus* has functional overlap with the proposed Fe-S cluster biogenesis factors SufA and Nfu.

The *S. aureus* SufA protein can bind and transfer Fe-S clusters. Results shown above show that *sufA* overexpression suppressed the phenotypes of *bshA* mutant strain, but the function(s) of the *S. aureus* SufA had not been verified. The SufA protein from *S. aureus* USA300 LAC shares 33-37% identity with the previously described A-type trafficking proteins SufA, ErpA, and IscA from *E. coli*. In addition, the cysteine residues thought to act as ligands for the Fe-S cluster (Cys: 37, 101, and 103) are conserved in the *S. aureus* SufA proteins from diverse clinical isolates. Phenotypic studies found that the *sufA* mutant strain did not display any growth defects and has the same generation times as the WT strain when cultured in defined or complex media (data not shown).

The *sufA* mutant strain did not have decreased AcnA activity in cellular lysates when AcnA was expressed from the chromosome using the native promoter (**Figure 1.6B**), but we had not controlled for possible differences in *acnA* expression between the WT and *sufA* mutant strain. We examined whether a *sufA* mutant had lower AcnA activity when *acnA* expression is decoupled from the native promoter. We disrupted the chromosomal *acnA* allele and mobilized the *pacnA* plasmid into the *acnA* and *sufA acnA* double mutant strains. Using *pacnA* allowed us to assay AcnA activity and monitor protein abundance in cell free lysates. We assessed AcnA activity in a *nfu acnA* double mutant as a control (Mashruwala et al., 2015). As shown in **Figure 1.8A**, the AcnA activity in the cell-free lysates harvested from the *sufA* or *nfu* mutant strains was 66 ± 1% and 56 ± 3% of the AcnA activity of the parent strain, respectively. Western blot analysis revealed that AcnA protein accumulated in all strains (**Figure 1.8A, inset**).
To verify these findings, we constructed the sufA leuD and nfu leuD double mutant strains and mobilized the pleuCD plasmid into these strains. The LeuCD activity was assayed in the nfu leuD double mutant as a control. The LeuCD activity in cell-free lysates harvested from the sufA and nfu mutant strains was 64 ± 9% and 54 ± 1% of the LeuCD activity of the parent strain, respectively (Figure 1.8B).

We next tested the hypothesis that SufA could bind an Fe-S cluster in vitro. The S. aureus SufA was overproduced in and purified from E. coli. The purified SufA protein had a reddish brown color, similar to that of Fe-S cluster-containing proteins, but the color diminished upon aerobic dialysis consistent with SufA binding a labile, dissociable cofactor (data not shown). The protein was transferred to an anoxic atmosphere and the Fe-S cluster was chemically reconstituted. The holo-SufA had a UV-Visible absorption spectrum similar to previously examined holo-A-type carrier proteins (Figure 1.8C) (Krebs et al., 2001; Gupta et al., 2009). Metal analysis found that holo-SufA bound 2.4 ± 0.2 atoms of S and 2.3 ± 0.3 atoms of Fe (n = 4) per protein monomer. The stoichiometry of metal binding and spectral data are suggestive of Fe-S cluster binding by the S. aureus SufA protein.

We then examined whether holo-SufA could transfer an Fe-S cluster to an apoprotein. We overproduced and purified S. aureus AcnA from E. coli. We removed the Fe-S cluster from AcnA resulting in a protein that was enzymatically inactive. Upon chemical reconstitution, the S. aureus holo-AcnA had a maximal specific activity of 48 units mg⁻¹ with isocitrate as a substrate. We then combined apo-AcnA (4 µM) with an equimolar concentration of reconstituted holo-SufA (4 µM) or a two-fold excess of Fe²⁺ and S²⁻ (8 µM each). Samples were periodically removed and AcnA activity assessed. As illustrated in Figure 1.8D, the holo-SufA was able to activate the AcnA enzyme whereas the combination of DTT, Fe and S did not significantly increase AcnA activity during the course of the assay. Our results show that the holo-SufA (4 µM) activated ~54% of the AcnA (4 µM; assuming
that maximal activity is 48 units mg^{-1}) during the course of the assays. Metal analysis found that holo-SufA bound 2.4 Fe per monomer implying that we added ~9.6 µM Fe to our assays via holo-SufA. It requires 16 Fe atoms to fully activate 4 µM AcnA, and therefore, we expected ~60% activation upon holo-SufA addition, which is slightly higher than the 54% activation witnessed upon incubation of apo-AcnA with holo-SufA. Collectively, the results presented are consistent with the hypothesis that the S. aureus SufA protein is an Fe-S cluster carrier protein.

BSH has a conserved role in staphylococcal metabolism. We aimed to determine if alternate S. aureus isolates lacking BSH are defective in Fe-S cluster biogenesis. We constructed and examined the phenotypes of BSH-deficient strains in the S. aureus isolates Newman, MW2, and COL. Strains lacking BSH displayed various phenotypes when grown in defined media. The Newman bshA mutant strain did not grow in the 18 AA medium lacking both Ile and Leu (Figure 1.9A) and it displayed an increased generation time in the 20 AA medium (Table 1.S2). The MW2 strain lacking BSH did not grow without Ile and Leu supplementation (data not shown), as well as, Glu and Gln (Figure 1.9B), and the S. aureus COL strain lacking BSH had an extended lag before outgrowth when cultured in the absence of Ile (Figure 1.9C). The generation times of the MW2 bshA and COL bshA mutant strains were not statistically different from their respective parent strains (Table 1.S2).

We examined AcnA activity (expressed from the chromosome) in cellular lysates of the BSH-deficient and BSH-proficient strains in the different S. aureus backgrounds. In all isolates examined, strains lacking BSH had lower AcnA activity than the respective parent strain (Figure 1.9D).

Results presented above found that the presence of sufA in multicopy partially corrected the phenotypic defects of an S. aureus USA300 LAC bshA mutant strain. We
examined whether the presence of \textit{sufA} in multicopy also corrected the phenotypes of the \textit{S. aureus} strains COL, MW2 or Newman lacking BSH. The presence of the \textit{sufA} gene in multicopy corrected the growth defects of the COL \textit{bshA} mutant strain (Figure 1.S9A) and the Glu and Gln auxotrophies of the MW2 \textit{bshA} mutant strain (Figure 1.S9B). Surprisingly, the presence of the \textit{sufA} gene in multicopy in the Newman background resulted in a severe growth defect in the parental strain (data not shown). Collectively, the data presented suggest that BSH has a conserved role in Fe-S cluster biogenesis in \textit{S. aureus}.
Discussion

Staphylococcus aureus does not synthesize the well studied low-molecular-weight (LMW) thiol glutathione (GSH), but it does produce the LMW thiols bacillithiol (BSH), coenzyme A and cysteine (delCardayré *et al.*, 1998; Newton *et al.*, 2009; Gaballa *et al.*, 2010). Work by others found that BSH, like GSH, can function as an intracellular redox buffer and detoxification agent (Newton *et al.*, 2009; Chi *et al.*, 2011; Sharma *et al.*, 2013; Gaballa, Chi *et al.*, 2013; Chandrangsu *et al.*, 2014). The work presented herein suggests that BSH also functions in the biogenesis of Fe-S clusters.

There are various links between LMW thiols and Fe-S clusters. In many organisms, cysteine serves as the sulfur source to synthesize Fe-S clusters (Zheng *et al.*, 1993). In addition, a majority of Fe-S clusters are bound by proteins using cysteine thiolates as ligands (Beinert *et al.*, 1997). LMW thiols can directly ligate Fe-S clusters or act as ligands for Fe-S clusters in conjunction with a protein (Bandyopadhyay, Gama, *et al.*, 2008; Qi *et al.*, 2012). Lastly, LMW thiols can provide electrons for (i) the reduction of disulfide bonds freeing potential Fe-S ligating cysteine thiols (Schafer and Buettner, 2001), and (ii) the reduction of peroxides, thereby preventing damage to Fe-S clusters (Mills, 1957; Jang and Imlay, 2007).

Genetic and biochemical studies have defined roles for GSH in Fe-S cluster biogenesis in both eukaryotes and prokaryotes (Gardner and Fridovich, 1993; Rodríguez-Manzaneque *et al.*, 2002; Skovran and Downs, 2003; Gralnick and Downs, 2003; Thorgersen and Downs, 2009). In fact, it is possible that GSH has a role in all four modules of Fe-S cluster biogenesis: synthesis, trafficking, insertion and repair.

GSH has a role in trafficking and inserting Fe-S clusters. A number of monothiol glutaredoxin proteins are involved in sensing and trafficking intracellular iron. Strains lacking specific monothiol glutaredoxins display growth defects, have altered intracellular
iron pools and have decreased activity of enzymes that require Fe-S clusters for catalysis (Rodriguez-Manzaneque et al., 2002; Mühlenhoff et al., 2010; Yeung et al., 2011). In conjunction with monothiol glutaredoxins, GSH can ligate an Fe-S cluster, that can subsequently be transferred to an apoenzyme (Feng et al., 2006; Iwema et al., 2009; Luo et al., 2010; Zhang et al., 2013). GSH can also directly bind and transfer an Fe-S cluster in vitro, but whether this occurs in vivo is currently unknown (Qi et al., 2012). In addition, GSH has a role in inserting Fe-S clusters by maintaining reduced thiols in apoproteins that can act as ligands for Fe-S clusters. Evidence also exists suggesting that GSH plays a role in trafficking Fe-S clusters or a molecule necessary for Fe-S synthesis from the mitochondrion to the cytosol in eukaryotic cells (Srinivasan et al., 2014).

GSH could function in de novo Fe-S cluster synthesis and repair. GSH acts as a cytosolic Fe buffer by ligating Fe, thus decreasing the concentration of non-incorporated Fe in the cytosol (Thorgersen and Downs, 2008; Hider and Kong, 2011), and therefore, it is possible that GSH has a role in providing Fe for de novo Fe-S cluster biogenesis. In E. coli, the activity of AcnA is inversely proportional to the concentration of headspace dioxygen, that is likely due to dioxygen or ROS damage to the Fe-S cluster. Reactivation of damaged AcnA was slowed in the absence of GSH although it was not determined whether this was the result of defective de novo Fe-S cluster biogenesis or defective Fe-S cluster repair (Gardner and Fridovich, 1993). After oxidation, [Fe₄-S₄]³⁺ clusters can disintegrate into [Fe₃-S₄]¹⁺ and Fe³⁺ (Djaman et al., 2004). Repair of the [Fe₃-S₄]¹⁺ cluster requires an electron and Fe²⁺ and it has been proposed that GSH can provide electrons to reduce Fe³⁺ to Fe²⁺ (Nappi and Vass, 1997). GSH could also act as the Fe²⁺ donor for Fe-S cluster repair. It should be noted that a GSH deficient E. coli repair [Fe₃-S₄]¹⁺ clusters at the same rate as GSH proficient strains (Djaman et al., 2004).
The study herein demonstrates that BSH also has a role in Fe-S cluster biogenesis, but our findings raise the question as to what function BSH might perform in this process. We have placed BSH in the Fe-S cluster trafficking module of Figure 10 because of the following findings: (i) strains lacking BSH have phenotypic similarities to a strain lacking the Fe-S cluster trafficking molecule Nfu, (ii) strains lacking BSH have decreased activities of Fe-S cluster-requiring enzymes, (iii) the decreased activity of AcnA in a bshA mutant strain is not corrected by incubation with reductant and Fe^{2+}, suggesting that the lack of BSH does not result in an enrichment of the [Fe_3-S_4] form of AcnA, (iv) the phenotypes of a strain lacking BSH are exacerbated in a strain lacking an Fe-S cluster carrier (Nfu), and (v) the phenotypes of the BSH-deficient strains are partially suppressed by multicopy expression of either the SufA or Nfu Fe-S cluster carriers.

In *B. subtilis*, BSH acts as a cytosolic Zn buffer and BSH binds Zn *in vitro* with high affinity (Ma *et al.*, 2014). It is reasonable to hypothesize that BSH also serves as an Fe buffer in *S. aureus*. In such a capacity, BSH could aid in providing Fe for cellular processes such as Fe-S cluster biogenesis. In support of this hypothesis, we found that *S. aureus* strains lacking BSH (i) had growth defects that are corrected by supplementing the growth media with Fe, (ii) had decreased Fur accessible Fe, but the same overall Fe load as the WT, and (iii) had phenotypes that were corrected by overexpression of the A-type carrier SufA. In addition to their roles as Fe-S cluster carriers, A-type carriers bind Fe^{2+} and Fe^{3+} *in vitro* (Huangen Ding and Clark, 2004; Mapolelo *et al.*, 2012). The Fe^{3+} bound forms of A-type carriers can provide Fe for Fe-S cluster assembly on the U-type (NifU and IscU) Fe-S cluster scaffolds *in vitro* in the presence of cysteine (Baojin Ding *et al.*, 2005; Mapolelo *et al.*, 2012). Further genetic and biochemical studies support a role for Fe binding by A-type carriers in Fe-S cluster assembly *in vivo* (Huangen Ding *et al.*, 2004; Landry *et al.*, 2013). We should note that *nfu* overexpression also corrected the decreased AcnA activity of BSH-deficient cells.
and Nfu has not been shown to bind mononuclear Fe. Our lab is actively testing the hypothesis that BSH acts as a cellular Fe buffer.

Similar to our findings, studies in *S. enterica* found that the addition of exogenous Fe corrects the growth defects and auxotrophies of strains deficient in Fe-S cluster biogenesis (Skovran and Downs, 2003; Skovran *et al*., 2004). Moreover, *S. enterica* mutants lacking GSH have decreased Fur-accessible Fe (Thorgersen and Downs, 2008). Likewise, we found that the BSH-deficient strains have decreased Fur accessible Fe and the growth defects are corrected by supplementing the growth medium with Fe. *E. coli* strains missing the Isc Fe-S cluster biosynthetic system or the NfuA Fe-S cluster trafficking protein are sensitive to Fe starvation (Outten *et al*., 2004; Angelini *et al*., 2008). Work by Rolfe *et al.* found that during the lag phase of growth, *S. enterica* increased transcription of genes that function in Fe acquisition (Rolfe *et al*., 2012). The mRNA transcript abundances corresponding to the sufABCDE genes, that are induced under Fe starvation conditions (Outten *et al*., 2004), also increased during the lag growth phase. These transcriptional changes resulted in increased Fe uptake and an overall increased cellular Fe load in preparation for exponential growth. Interestingly, transcriptional profiling in *S. aureus* found that mRNA abundance corresponding to genes encoding putative Fe acquisition proteins (*isdA, isdC, feoA, feoB, fhuA, fhuB* and *sirA*) were altered in a strain lacking BSH (Posada *et al*., 2014). To our knowledge, strains lacking GSH do not have an extended lag prior to outgrowth or have increased generation times that are corrected by the addition of Fe to the growth media.

Our results show that the activities of the Fe-S cluster dependent enzymes AcnA, LeuCD, IlvD and GOGAT were decreased in the *bshA* mutant. We also found that AcnA and LeuC proteins accumulated in both the WT and *bshA* mutant, but accumulated to lower levels in the strains lacking BSH. Interestingly, the *acnA* and *leuC* genes were induced to similar levels in the WT and *bshA* strains. It is currently unknown why these proteins accumulate to
lower levels in the bshA mutant, but we have noted similar phenomena in alternate S. aureus strains missing Fe-S cluster biogenesis factors (Nfu or SufT; Figure 8A and A.A. Mashruwala and J.M. Boyd, unpublished results). As previously mentioned, damaged [Fe$_3$S$_4$]$^{1+}$ clusters can be repaired by anaerobic incubation with Fe$^{2+}$. We found that the addition of Fe$^{3+}$ and DTT did not increase the activity of AcnA in cell-free lysates of the bshA mutant suggesting that we were not enriching for the [Fe$_3$S$_4$]$^{1+}$ form of AcnA in the bshA mutant under the conditions examined. One possible explanation for our findings is that the rate of Fe-S cluster incorporation into apo-AcnA and apo-LeuCD is decreased in a BSH-deficient strain and the cellular proteolytic machinery degrades the apo-forms of the enzymes at a faster rate than the holo-forms. This scenario is supported by the findings that particular Fe-S proteins are turned over by the cellular proteolysis machinery at a faster rate in the apo-form relative to the holo-form (Mettert and Kiley, 2005; Wang et al., 2007; Crooks et al., 2010; Pan et al., 2012). We are currently examining the role(s) of the Clp proteasome in processing holo- and apo-forms of Fe-S proteins.

The growth phenotypes and decreased AcnA activity of the BSH-deficient strains was partially alleviated by multicopy expression of genes that encode Fe-S cluster carriers. Work by our group and others has found that the growth defects of strains lacking a particular Fe-S cluster biosynthesis scaffolding/trafficking protein can be suppressed by overexpression of a gene encoding alternative biosynthesis scaffolding/trafficking protein (Takahashi and Tokumoto, 2002; Tokumoto et al., 2004; Santos et al., 2007; Bandyopadhyay, Naik, et al., 2008; Boyd et al., 2008; Vinella et al., 2009). It should be noted that while overexpression of sufA or nfu correct some or all of the phenotypes of a BSH-deficient strain, multicopy expression of the sufCDSUB operon does not correct these phenotypes. These findings suggest that the presence of BSH may not augment Fe-S cluster biosynthesis in a linear pathway consisting of SufCDSUB and Fe-S cluster carrier molecules.
Biochemical studies on the *S. aureus* SufA found that it bound equimolar quantities of Fe and S and had spectral properties similar to alternate characterized A-type proteins ligating an Fe-S cluster (Wollenberg *et al.*, 2003; Gupta *et al.*, 2009; Mapolelo *et al.*, 2012). A-type proteins have been found to ligate either [Fe₂-S₂] or [Fe₄-S₄] clusters *in vitro*, but native *E. coli* SufA purifies with a [Fe₂-S₂] cluster (Gupta *et al.*, 2009; Mapolelo *et al.*, 2012). The nature of the Fe-S cluster bound by *S. aureus* SufA is currently unknown and will require additional biophysical experimentation. The holo-SufA protein was also able to activate *S. aureus* AcnA protein, whereas apo-SufA or a combination of Fe, S, and DTT were not. The rate at which *S. aureus* holo-SufA activated apo-AcnA was similar to the reported rates for Fe-S cluster transfer from *E. coli* SufA to apo-ferredoxin, as well as, *Synechocystis* PCC6803 IscA to apo-adenosine 5’-phosphsulfate reductase (Wollenberg *et al.*, 2003). Higher rates of Fe-S cluster transfer from holo-A-type carriers (both [Fe₂-S₂] and [Fe₄S₄] forms) to apoproteins have been noted and it is currently unknown why there are discrepancies in the rates of Fe-S cluster transfer to apoproteins (Mapolelo *et al.*, 2013).

The growth of various *S. aureus* clinical and laboratory isolates lacking BSH displayed differences in the severity and complexity of phenotypes. Importantly, the growth phenotypes were suppressed by either providing amino acids that require Fe-S enzymes for synthesis or by the expression of *sufA* or *nfu* from a multicopy plasmid. In addition, the activity of AcnA was decreased in all BSH-deficient strains examined. The *S. aureus* BSH-deficient strain with the most amino acid auxotrophies (MW2; Leu, Ile, Glu an Gln) also had the lowest AcnA activity in extracts. Variations in the levels of BSH produced among different *S. aureus* isolates have been reported (Posada *et al.*, 2014), whereas some *S. aureus* laboratory strains (NCTC 8325 lineage) do not produce BSH as a result of an eight base pair duplication in the *bshC* gene (Newton *et al.*, 2012; Pöther *et al.*, 2013) and one strain produces twice as much Cys as BSH (Posada *et al.*, 2014). We do not provide evidence as to
why the growth phenotypes of these *S. aureus* strains differ, and therefore, we can only speculate that the necessity for the role(s) that BSH plays in Fe-S cluster biogenesis is more predominant in some isolates than in others.

In conclusion, the work herein highlights a previously undescribed function for BSH. Future studies will be necessary to determine the exact role(s) that BSH plays in the biogenesis of Fe-S clusters and whether this role is conserved in alternate species that synthesize BSH. Evidence suggests that the ability to synthesize Fe-S clusters is essential for *S. aureus* viability and, importantly, the mechanisms used by *S. aureus* to synthesize Fe-S clusters are different than the mechanisms utilized by mammals (Bae *et al.*, 2008; Chaudhuri *et al.*, 2009; Fey *et al.*, 2013). Moreover, due to its absence in humans, molecules like BSH are potential targets for antimicrobial therapy. The continued study of BSH and Fe-S cluster biogenesis could unveil attractive targets for therapeutic intervention against staphylococcal infections.
Figure 1.1. An *S. aureus* strain lacking BSH has a growth defect in a chemically defined medium that is corrected by exogenous iron supplementation. A representative experiment monitoring the growth of the wild-type (WT) strain with pCM28 (JMB1100; filled squares), *bshA* mutant with pCM28 (JMB1382; open circles) and *bshA* mutant with pCM28 *bshA* (JMB1382; filled circles) in chemically defined medium containing glucose and 11 amino acids (11 AA; PRMCLVYTPGH) without (Panel A) and with (Panel B) the addition of 100 µM Fe\(^{2+}\). Strains were cultured to stationary phase in TSB prior to subculturing into defined media.
Figure 1.2. A BSH-deficient strain has a growth defect in chemically defined media lacking either leucine or isoleucine. Representative growth analyses of the wild-type (WT) strain with pCM28 (JMB1100; filled squares), bshA mutant with pCM28 (JMB1382; open circles) and bshA mutant with pCM28_bshA (JMB1382; filled circles) are shown. Strains were cultured in chemically defined media without Fe supplementation. The growth media contained either the canonical 20 amino acids (AA) (Panel A) or 19 AA lacking either leucine (Panel B) or isoleucine (Panel C). Strains were cultured to stationary phase prior to subculturing.
Figure 1.3. **An *S. aureus* strain lacking BSH has decreased Fur accessible iron when cultured in a chemically defined medium.** Panel A; The transcriptional activity of the *isdB* promoter is increased in a strain lacking BSH. The WT (filled circles; JMB1100) and *bshA* mutant (open circles; JMB1382) strains containing the *isdB* transcriptional reporter (pXEN-1_isdB) were cultured in defined medium containing the canonical 20 amino acids (AA) and luminescence was monitored over time. The luminescence data were standardized to culture optical density (A$_{590}$) before plotting. The data represent the average of three biological replicates with errors presented as standard deviations. Panel B; The WT and *bshA* mutant strains have the same amount of total cellular Fe when cultured in a defined medium. The WT (JMB1100) and *bshA* mutant (JMB1382) strains were cultured in 20 AA defined medium to an OD (A$_{600}$) of 0.8 prior to determining the total cell associated 56Fe using ICP-MS. The data represent the mean of three independent experiments and each experiment was conducted in biological triplicate. Errors are presented as standard deviations. A paired t-test was performed on the samples in Panel B and N.S. denotes not significant ($p = 0.95$).
Figure 1.4. The activities of Fe-S cluster-dependent enzymes are decreased in an *S. aureus* strain lacking BSH. Panel A; Isopropylmalate isomerase (LeuCD) activity is decreased in cell-free lysates from strains lacking BSH, despite the accumulation of LeuCD protein. The *leuD* (JMB3707) mutant and *bshA leuD* (JMB5227) mutant strains containing *pleuCD* were cultured in the presence and absence of 1% xylose to induce *leuCD* expression prior to assessing LeuCD activity in cell-free lysates. Inset: Western blot analysis of the FLAG_LeuC protein showing that LeuC protein accumulates in both strains upon induction.

Panel B; Dihydroxyacid dehydratase (IlvD) activity is decreased in cell-free lysates from strains lacking BSH. The *ilvD* (JMB3804) and *bshC ilvD* (JMB4417) mutant strains containing *pilvD* were cultured in the presence and absence of 1% xylose to induce *ilvD* expression prior to assessing IlvD activity in cell-free lysates. Panel C; The activity of aconitase (AcnA) is decreased in cell-free lysates from strains lacking BSH, despite AcnA protein accumulating. The *acnA* (JMB3702) and *bshA acnA* (JMB5225) mutant strains containing *pacnA* were cultured in the presence and absence of 1% xylose to induce *acnA* expression prior to assessing AcnA activity in cell-free lysates. Inset: Western blot analysis of the AcnA_FLAG protein showing that AcnA protein
accumulates in both strains upon induction. Strains were cultured in a chemically defined medium containing the canonical 20 amino acids. The data shown represent the average of three experiments and errors are displayed as standard deviations.
Figure 1.5. An *S. aureus* BSH-deficient strain does not have increased intracellular ROS accumulation. Panel A; PerR-dependent transcriptional activity is not altered in a strain lacking BSH. The transcriptional activity of the *dps* promoter was monitored in aerobically grown cultures of the wild-type (WT) (JMB1100), *bshA* mutant (JMB1382), *ahpC* mutant (JMB1163), and *perR* mutant (JMB2151) strains containing pdps. Panel B; The transcriptional activity of the *sodA* promoter is not increased in cells lacking BSH. The transcriptional activity of the *sodA* gene was monitored in aerobically grown cultures of the WT (JMB1100; circles) and *bshA* mutant (JMB1382; triangles) strains containing psodA without (filled symbols) and with (open symbols) 75 µM methyl viologen. Panel C; Strains lacking BSH do not have an increased rate of 2’,7’-dichlorofluorescein (DCF) formation. The WT strain (JMB1100; filled circles), *bshA* mutant (JMB1382; filled triangles) and *ahpC* mutant (JMB5511; open squares) strains were cultured aerobically in TSB to late-exponential growth phase before the addition of 2’,7’-dichlorofluorescein diacetate to cell suspensions and the rate of DCF formation was monitored. The data shown represent the average of three biological replicates with errors presented as standard deviation.
Figure 1.6. Genetic analyses provide insight into the role of BSH in Fe-S cluster biogenesis. Panel A; A *bshA nfu* double mutant strain is auxotrophic for glutamate and glutamine. Representative growth analysis of the wild-type (WT) (filled squares; JMB1100), *bshA* mutant (open circles; JMB1382), *nfu* mutant (filled triangles; JMB 2316), *bshA nfu* double mutant (filled circles; JMB2220) and *acnA* mutant (open squares; JMB1163) in defined medium containing 18 amino acids (AA) lacking Glu and Gln. Panel B; An *S. aureus* strain lacking BSH has decreased AcnA activity and the effect is exacerbated in an *nfu* mutant strain. AcnA activity was assessed in cell-free lysates harvested from the WT (JMB1100), *bshA* mutant (JMB1382), *nfu* mutant (JMB2316), and *sufA* mutant (JMB2223) strains, as well as, the *bshA sufA* (JMB5230) and *bshA nfu* (JMB2220) double mutant strains. Panel C; A strain lacking BSH has decreased glutamate synthase (GOGAT) activity and the effect is exacerbated in an *nfu* mutant strain. The activity of GOGAT was assessed in cell-free lysates of the WT (JMB1100), *bshA* mutant (JMB1382), *nfu* mutant (JMB2316) and *sufA* mutant (JMB2223) strains, as well as, the *bshA nfu* (JMB2220) and *bshA sufA* (JMB5230) double mutant strains. For Panels B and C, strains were cultured in a chemically defined medium.
containing 20 AA prior to assaying AcnA or GOGAT. The data in Panels B and C represent the average of biological triplicates with errors presented as standard deviations.
Figure 1.7. The phenotypes of a strain lacking BSH are partially suppressed by multicopy expression of genes encoding Fe-S cluster carrier proteins. Panel A; The isoleucine and leucine dependent growth defects of a strain lacking BSH are partially suppressed by multicopy expression of either *sufA* or *nfu*. Representative spot plate analysis of the wild-type (WT; JMB1100) or *bshA* mutant (1382) strains containing pEPSA, *sufA* or *pnu*. Strains were cultured overnight, serial diluted and spot plated on chemically defined solid media containing either 20 amino acids (AA) or 19 AA media, lacking either Ile or Leu. All media was supplemented with 0.1% xylose. Panel B; The decreased AcnA activity of the *bshA* mutant is suppressed by multicopy expression of either *sufA* or *nfu*. AcnA activity was assayed in cell-free lysates from strains cultured in chemically defined medium supplemented with 20 AA and 0.1% xylose. The strains were the same as those used to generate the data presented in Panel A. The data shown represent the average of biological quadruplicates with
errors presented as standard deviations. Paired t-tests were performed on the data illustrated in Panel B and * denotes $p < 0.05$.
Figure 1.8. *S. aureus* SufA is an Fe-S cluster carrier. Panel A; AcnA activity is decreased in cell-free lysates from strains lacking either SufA or Nfu when *acnA* expression is decoupled from the native promoter. The activity of AcnA was determined in cell-free lysates from the *acnA* mutant (JMB3702), *sufA acnA* double mutant (JMB3632), and *nfu acnA* double mutant (JMB3538) strains containing *p*acnA. Strains were cultured aerobically in TSB with 1% xylose prior to assessing AcnA activity in cell lysates. The data represent the average of biological triplicates with standard deviations shown. Inset: Western blot analysis of the AcnA_FLAG protein showing that AcnA protein accumulates in all strains.

Panel B; LeuCD activity was decreased in cell-free lysates from strains lacking Nfu or SufA when *leuCD* expression was decoupled from the native promoter. The *leuD* mutant (JMB3707), *sufA leuD* double mutant (JMB3708), and *nfu leuD* double mutant (JMB3506)
strains containing pleuCD were cultured in TSB with 1% xylose before cells were harvested and LeuCD activity assessed in cell-free lysates. The data represent is the average of biological triplicates with standard deviations shown. Panel C; Chemically reconstituted S. aureus SufA has UV-Visible absorption spectra similar to known Fe-S cluster binding proteins. Representative UV-Visible absorption spectra of the SufA protein (230 µM) before (dashed line) and after chemical Fe-S cluster reconstitution (solid line). Panel D; Holo-SufA protein can transfer an Fe-S cluster to apo-AcnA protein. Apo-AcnA (4 µM) was incubated with either holo-SufA (4 µM) (closed circles) or 8 µM Fe^{2+} and 8 µM S^{2-} (open circles). At the indicated times, aliquots of the samples were removed and assayed for AcnA activity. The data presented represent the average of three experiments and errors presented as standard deviations.
Figure 1.9. Diverse *S. aureus* isolates lacking BSH have defects in Fe-S cluster biogenesis. Panel A; An *S. aureus* Newman strain lacking BSH has a growth defect that is corrected by exogenously supplied Ile and Leu. The growth of strain Newman (squares; JMB1422) and the Newman *bshA* mutant (circles; JMB6253) was monitored in chemically defined media containing either 20 amino acids (AA) (filled symbols) or 18 AA lacking Ile and Leu (open symbols). Panel B; An *S. aureus* MW2 strain lacking BSH is auxotrophic for Glu and Gln. The growth of the strain MW2 (squares; JMB1324) and the MW2 *bshA* mutant (circles; JMB5197) was monitored in defined media containing either 20 AA (filled symbols) or 18 AA lacking Glu and Gln (open symbols). Panel C; An *S. aureus* COL strain lacking BSH has a growth defect that is corrected by exogenously supplied Ile. The growth of strain COL (squares; JMB1325) and COL *bshA* mutant (circles; JMB6167) were monitored in
defined media containing either 20 AA (filled symbols) or 19 AA lacking Ile (open symbols). All strains used in Panels A, B and C were cultured to stationary phase before subculturing. Panel D; AcnA activity is decreased in diverse S. aureus isolates lacking BSH. Strains with and without the ability to synthesize BSH were cultured in chemically defined media containing 20 AA. Cells were harvested and AcnA activity was monitored in cell-free lysates. AcnA enzymatic activity was standardized with respect to that of the parent strain and to the total protein concentration of the representative lysate. The data presented represent the average of three independent experiments and error is shown as standard deviation.
Figure 1.10. **Working model for Fe-S cluster biogenesis in S. aureus.** The activation of an apoprotein by the addition of an Fe-S cluster requires three steps: synthesis, trafficking and insertion. In our model the cysteine desulfurase SufS provides the S^0 to the scaffold complex SufBCD, where the Fe-S clusters are synthesized. The Nfu and SufA carrier molecules accept Fe-S clusters from SufBCD and traffic the Fe-S clusters to apoproteins. The Fe-S cluster is then inserted into the apoprotein thereby activating the protein. Data presented in this study suggest that BSH has roles in Fe homeostasis and Fe-S cluster trafficking.
Table 1.1. Strains and plasmids used in this study.

Staphylococcus aureus strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype / Description</th>
<th>Background</th>
<th>Source / Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN4220</td>
<td>Restriction-negative S. aureus</td>
<td>RN1</td>
<td>(Kreiswirth et al., 1983)</td>
</tr>
<tr>
<td>JMB1100</td>
<td>Parent strain</td>
<td>LAC</td>
<td>A.R. Horswill</td>
</tr>
<tr>
<td>NE892</td>
<td>SAUSA300_2013(leuD):Tn(ermB)</td>
<td>JE2</td>
<td>(Fey et al., 2013)</td>
</tr>
<tr>
<td>NE718</td>
<td>SAUSA300_2006(ilvD):Tn(ermB)</td>
<td>JE2</td>
<td>(Fey et al., 2013)</td>
</tr>
<tr>
<td>NE861</td>
<td>SAUSA300_1246(acnA):Tn(ermB)</td>
<td>JE2</td>
<td>(Fey et al., 2013)</td>
</tr>
<tr>
<td>NE1728</td>
<td>SAUSA300_1349(bshA)::Tn(ermB)</td>
<td>JE2</td>
<td>(Fey et al., 2013)</td>
</tr>
<tr>
<td>NE1100</td>
<td>SAUSA300_0446(gltD)::Tn(ermB)</td>
<td>JE2</td>
<td>(Fey et al., 2013)</td>
</tr>
<tr>
<td>JMB1382</td>
<td>SAUSA300_1349(bshA)::kanR</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB1381</td>
<td>SAUSA300_1071(bshC)Δ</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB2151</td>
<td>SAUSA300_1842(perR)::kan</td>
<td>LAC</td>
<td>(Horsburgh et al., 2002)</td>
</tr>
<tr>
<td>JMB1163</td>
<td>SAUSA300_0380(ahpC)::tetM</td>
<td>LAC</td>
<td>V. Torres</td>
</tr>
<tr>
<td>JMB1144</td>
<td>SAUSA300_0843(sufA)Δ</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB3707</td>
<td>SAUSA300_2013(leuD):Tn(ermB)</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB5272</td>
<td>SAUSA300_1349::kanR, 2013(leuD)::Tn(ermB)</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB3804</td>
<td>SAUSA300_2006(ilvD)::Tn(ermB)</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB4417</td>
<td>SAUSA300_1071(bshC)Δ, 2006(ilvD)::Tn(ermB)</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB3702</td>
<td>SAUSA300_1246(acnA)::Tn(ermB)</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB5225</td>
<td>SAUSA300_1349(bshA)::kanR, 1246(acnA)::Tn(ermB)</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB3703</td>
<td>SAUSA300_1071(bshC)Δ, 1246(acnA)::Tn(ermB)</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB1165</td>
<td>SAUSA300_0839(nfu)Δ</td>
<td>LAC</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>JMB2316</td>
<td>SAUSA300_0839(nfu)::tetM</td>
<td>LAC</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>JMB2220</td>
<td>SAUSA300_1349(bshA)::kan, 0839(nfu)::tetM</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB1146</td>
<td>SAUSA300_0843(sufA)Δ</td>
<td>LAC</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>JMB2223</td>
<td>SAUSA300_0843(sufA)::tetM</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB5230</td>
<td>SAUSA300_1349(bshA)::kanR, 0843(sufA)::tetM</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB3538</td>
<td>SAUSA300_nfuΔ, 1246(acnA)::Tn(ermB)</td>
<td>LAC</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>JMB3632</td>
<td>SAUSA300_sufA::tetM, 1246(acnA)::Tn(ermB)</td>
<td>LAC</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>JMB3506</td>
<td>SAUSA300_nfuΔ, 2013(leuD)::Tn(ermB)</td>
<td>LAC</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>Strain Name</td>
<td>Relevant Genotype / Description</td>
<td>Source / Reference</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>JMB3708</td>
<td>SAUSA300_sufA::tetM, 2013(LeuD)::Tn(ermB)</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB6628</td>
<td>SAUSA300_0446(gltD)::Tn(ermB)</td>
<td>LAC</td>
<td></td>
</tr>
<tr>
<td>JMB1422</td>
<td>parent strain</td>
<td>Newman</td>
<td></td>
</tr>
<tr>
<td>JMB1422</td>
<td>Newman</td>
<td>E. Skaar</td>
<td></td>
</tr>
<tr>
<td>JMB6253</td>
<td>bshA::Tn(ermB)</td>
<td>Newman</td>
<td></td>
</tr>
<tr>
<td>JMB1324</td>
<td>parent strain</td>
<td>MW2</td>
<td></td>
</tr>
<tr>
<td>JMB1325</td>
<td>bshA::kan</td>
<td>MW2</td>
<td></td>
</tr>
<tr>
<td>JMB1325</td>
<td>parent strain</td>
<td>COL</td>
<td></td>
</tr>
<tr>
<td>JMB6167</td>
<td>bshA::Tn(ermB)</td>
<td>COL</td>
<td></td>
</tr>
</tbody>
</table>

Other Strains

<table>
<thead>
<tr>
<th>Name</th>
<th>Relevant Genotype / Description</th>
<th>Source / Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli PX5</td>
<td>Molecular cloning</td>
<td>Protein Express</td>
</tr>
<tr>
<td>E. coli BL21 AI</td>
<td>Protein production</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae FY2</td>
<td>ura3-52 yeast recombination cloning</td>
<td>W. Belden</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Plasmid Name</th>
<th>Locus / Function</th>
<th>Source / Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pJB38</td>
<td>Mutant construction</td>
<td>(Bose et al., 2013)</td>
</tr>
<tr>
<td>pJB38_bshAΔ</td>
<td>SAUSA300_1349A for chromosomal deletion</td>
<td></td>
</tr>
<tr>
<td>pJB38_bshA::kanR</td>
<td>SAUSA300_1349::kanR for allelic replacement</td>
<td></td>
</tr>
<tr>
<td>pJB38_bshCΔ</td>
<td>SAUSA300_1071A for chromosomal deletion</td>
<td></td>
</tr>
<tr>
<td>pCM11</td>
<td>Vector with promoterless gfp transcriptional reporter</td>
<td>(Malone et al., 2009)</td>
</tr>
<tr>
<td>pCM11_dps (pdps)</td>
<td>SAUSA300_2092 (dps) transcriptional reporter</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>pCM11_sodA (psodA)</td>
<td>SAUSA300_1513 (sodA) transcriptional reporter</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>pCM28</td>
<td>Genetic complementation vector</td>
<td>(Pang et al., 2010)</td>
</tr>
<tr>
<td>pCM28_bshA</td>
<td>SAUSA300_1349 for complementation</td>
<td></td>
</tr>
<tr>
<td>pCM28_sufCDSUB</td>
<td>SAUSA300_818-822</td>
<td></td>
</tr>
<tr>
<td>pXEN-1_isdB (pisdB)</td>
<td>Transcriptional fusion of SAUSA300_1028 to luxCDABE</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>pEPSA5</td>
<td>Vector for genetic complementation with xylose-inducible promoter</td>
<td>(Forsyth et al., 2002)</td>
</tr>
<tr>
<td>pEPSA5_leuCD_FLAG (pleuCD)</td>
<td>SAUSA300_2012-13 with N-terminal FLAG affinity tag</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>Expression Vector</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>pEPSA5__ilvD (pilvD)</td>
<td>SAUSA300_2006</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>pEPSA5__acnA_FLAG (pacnA)</td>
<td>SAUSA300_1246 with C-term FLAG affinity tag</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>pEPSA5__nfu</td>
<td>SAUSA300_0839 genetic complementation</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
<tr>
<td>pEPSA5__sufA</td>
<td>SAUSA300_0843 genetic complementation</td>
<td></td>
</tr>
<tr>
<td>pET20b</td>
<td>Expression vector with C-terminal poly-histidine affinity tag</td>
<td>EMD Millipore</td>
</tr>
<tr>
<td>pET24a</td>
<td>Expression vector with C-terminal poly-histidine affinity tag</td>
<td>EMD Millipore</td>
</tr>
<tr>
<td>pET20b_sufA</td>
<td>Expression vector for expressing and purifying SufA</td>
<td></td>
</tr>
<tr>
<td>pET24a_acnA</td>
<td>Expression vector for expressing and purifying AcnA</td>
<td>(Mashruwala et al., 2015)</td>
</tr>
</tbody>
</table>
CHAPTER 2
THE copBcbl OPERON PROTECTS STAPHYLOCOCCUS AUREUS
FROM COPPER INTOXICATION:
CBL IS AN EXTRACELLULAR MEMBRANE-ASSOCIATED COPPER-BINDING PROTEIN

Abstract

Host macrophages accumulate copper during infection, forcing microbes to employ strategies to tightly control the intracellular concentration of copper. Among other mechanisms, bacteria utilize membrane proteins involved in the exportation of excess cytoplasmic copper. In addition to the copper exporter CopA, we found that the arginine catabolic mobile element (ACME) of the Staphylococcus aureus USA300 clone contains an additional copper exporter (CopB) and a putative lipoprotein (Cbl). Mutational inactivation of copB or cbl resulted in increased copper sensitivity and further inactivation of copA resulted in exacerbated phenotypes, suggesting that CopB and Cbl are additional mechanisms that prevent copper intoxication. We show that copB and cbl are co-transcribed and negatively regulated by CsoR in response to copper stress. We found that Cbl is a membrane-bound, surface-exposed lipoprotein that binds up to four Cu\(^{+}\) ions in vitro. These findings suggest that the copBcbl operon is an additional mechanism employed by the highly successful S. aureus USA300 clone to survive copper stress.
Introduction

Copper (Cu) is a trace element required by most organisms. Because of its ability to cycle between its reduced (Cu\(^{+}\)) and oxidized (Cu\(^{2+}\)) states, it can have catalytic and structural roles in metalloenzymes, such as dioxygen reductases (Sousa et al., 2012), superoxide dismutases (Osman et al., 2013), laccases (Claus, 2003), and several enzymes involved in denitrification (Tavares et al., 2006). Although essential, high intracellular concentrations of Cu can be toxic. Cu toxicity may be, in part, due to its ability to compete with other transition metals and displace them from active centers of proteins. For example, Cu can displace iron from iron-sulfur cofactors leading to cluster destruction and protein inactivation (Macomber and Imlay, 2009; Chillappagari et al., 2010; Fung et al., 2013). Cu intoxication could also occur as a result of Fenton-type chemistry, in which Cu\(^{+}\) reacts with hydrogen peroxide leading to the formation of hydroxyl radicals (OH•) (Gunther et al., 1995), that can, in turn, damage proteins, membrane lipids, and DNA. That said, in *Escherichia coli*, cells that accumulate Cu do not have heightened sensitivity to hydrogen peroxide or increased mutagenesis frequency, suggesting that the direct mechanism of copper toxicity is not due to oxidative damage in this organism (Macomber et al., 2007).

One of the strategies our body uses to kill invading microorganisms is limiting the bioavailability of certain trace metals (Hood and Skaar, 2012). Recently, it was found that humans also use trace metals to intoxicate pathogens. In human macrophages, the ATP7A transporter facilitates Cu accumulation into the phagosome and impairment of ATP7A leads to a defect in bacterial killing (White et al., 2009). The Cu-responsive fluorescent probe CS1 has been used to visualize changes in the distribution of Cu pools when mouse macrophages are challenged with *Salmonella enterica* sv. Typhimurium (Achard et al., 2012). Together with superoxide generated via the phagosomal NADPH oxidase, Cu accumulated in
macrophages can amplify the toxicity effects and kill the invading pathogen (Hodgkinson and Petris, 2012).

A disrupted ATP7A gene also leads to poor dietary uptake of copper, affecting copper distribution in the body resulting in decreased activities of Cu-dependent enzymes, a syndrome known as Menkes disease (Kaler, 2011). As a complication, Menkes disease patients often suffer bacterial infections (Menkes et al., 1962; Gunn et al., 1984; Uno and Arya, 1987; Kreuder et al., 1993), highlighting the importance of proper Cu homeostasis for proper function of the immune system.

The finding that copper has been used as an antimicrobial agent by our immune system is relatively recent, but the antimicrobial properties of this metal have been recognized for some time (Grass et al., 2011), ranging from its uses to sterilize chest wounds and drinking water by ancient civilizations (Dollwet and Sorenson, 1985), to recent hospital trials showing its capacity to reduce microbial load on touch surfaces (Casey et al., 2010; Marais et al., 2010; Mikolay et al., 2010; Schmidt et al., 2012). The United States Environmental Protection Agency approved the use of nearly 300 copper alloys as a supplement for standard cleaning and disinfection practices for environmental surfaces, such as bed rails, door knobs, over-bed tables, sinks, faucets, among other surfaces.

Staphylococcus aureus is a public health concern worldwide that causes skin and soft tissue infections, as well as more severe and life-threatening diseases like pneumonia, osteomyelitis, and bacteremia (Klevens et al., 2007; Otto, 2010). Like all pathogens, *S. aureus* must employ strategies to tightly control intracellular copper levels and avoid copper intoxication at the host-pathogen interface. Bacteria use copper-responsive transcriptional regulators, membrane transporters, intracellular copper chaperones and chelating molecules as mechanisms to prevent copper toxicity (Solioz and Stoyanov, 2003; Rensing and Grass, 2003; Osman et al., 2013). In *S. aureus*, the copper-sensitive operon repressor (CsoR) binds
Intracellular copper leading to derepression of the \textit{copAZ} operon (Baker \textit{et al.}, 2011). CopA is a membrane-bound protein that exports copper (Sitthisak \textit{et al.}, 2007) and CopZ is a cytoplasmic chaperone that binds and delivers copper to target proteins, including CopA (Radford \textit{et al.}, 2003). Some \textit{S. aureus} strains have an additional copper transporter (\textit{copB}), that is sometimes co-localized with a multicopper oxidase (\textit{mco}) (Baker \textit{et al.}, 2011). The \textit{copBmco} operon is located on either a self-replicating plasmid or a chromosomally integrated plasmid (Baker \textit{et al.}, 2011). The presence of the \textit{copBmco} operon is associated with increased resistance to copper and, like the \textit{copAZ} operon, \textit{copBmco} expression is negatively regulated by CsoR (Baker \textit{et al.}, 2011). In addition to its role in copper homeostasis, it has been suggested that Mco also has a role in preventing oxidative stress (Sitthisak \textit{et al.}, 2005). How copper enters the cell in \textit{S. aureus} remains unknown.

In the present work, we characterized the role of a two-gene operon consisting of a copper transporter protein (\textit{copB}) and a putative lipoprotein (\textit{cbl}). We tested the hypothesis that the \textit{copB} and \textit{cbl} gene products prevent Cu intoxication in \textit{S. aureus}. Mutational inactivation of \textit{copB} or \textit{cbl} resulted in increased Cu sensitivity and the phenotype was exacerbated in strains unable to export Cu via CopA. We show that the \textit{copB} and \textit{cbl} genes are co-transcribed and negatively regulated by CsoR in response to Cu stress. Genetic and biochemical data suggest that the \textit{cbl} gene product is a membrane-bound lipoprotein oriented to the extracellular environment and binds up to four Cu$^+$ ions. This is the first study that shows roles for (i) the \textit{copBcbl} operon in Cu homeostasis, and (ii) Cbl in preventing Cu intoxication in \textit{S. aureus}.

Experimental Procedures

Reagents. Restriction enzymes, quick DNA ligase kit, deoxynucleoside triphosphates, and Phusion DNA polymerase were purchased from New England Biolabs. Primers listed in Table 2.S1 were obtained from Integrated DNA Technologies. Plasmid mini-prep and gel extraction kits were purchased from Qiagen. Lysostaphin was purchased from Ambi Products. Tryptic Soy Broth (TSB) was purchased from MP Biomedicals. ELC chemiluminescent detection kit was purchased from Pierce. Primary and secondary antibodies were purchased from Sigma-Aldrich and Bio-Rad, respectively. Pierce Protease and Phosphatase Inhibitor Mini Tablets were purchased from ThermoScientific. GSTrap 4B columns and PreScission Protease were purchased from GE Healthcare. Unless specified, all other chemicals were purchased from Sigma-Aldrich and were of the highest purity available.

Bacterial Strains and Growth Conditions. Bacterial strains used in this work are listed in Table 2.1. Unless otherwise noted, the S. aureus strains used in this study are derived from the community-associated MRSA USA300 LAC strain was cured of the pUSA03 plasmid that confers erythromycin resistance (Voyich et al., 2005; Pang et al., 2010). S. aureus strains were cultured in TSB or a defined media and Escherichia coli strains were grown in Luria Broth (LB) medium. Unless otherwise specified, all bacterial strains were cultured at 37 °C. The chemically defined media was modified from previous studies (Mah et al., 1967): 1 g (NH₄)₂SO₄, 4.5 g KH₂PO₄, 10.5 g K₂HPO₄, 110 mM NaCl, 30 mM KCl, 50 µg nicotinic acid, 50 µg pantothenic acid, 50 µg thiamine, 0.3 µg biotin, and 2.5 mg of individual twenty amino acids, per 100 ml. When supplemented to the media, chemicals were added at the following concentrations: 10-300 µM CuSO₄; 50-200 µM Fe₂(NH₄)₂(SO₄)₂; 5-200 µM CoCl; 10-300 µM MnSO₄; 10-300 µM ZnSO₄. When appropriate, antibiotics were added at the following concentrations: 150 µg per ml ampicillin (Amp), 6 or 30 µg per ml chloramphenicol (Cm) (defined or complex media, respectively), 10 µg per ml erythromycin (Erm), 3 µg per ml
tetracycline (Tet), and 150 ng per ml anhydrotetracycline (A-Tet). Overnight cultures were grown in 7 ml culture tubes containing 2 ml of TSB, shaking at 200 rpm. When growing overnight cultures of strains containing pEPSA-derived plasmids, 2% xylose was added to the media. Cultures used for transcriptional studies were grown in 25 ml tubes containing 5 ml of media, shaking at 200 rpm.

Construction of Mutant Strains and Plasmids. Unless otherwise specified, chromosomal DNA from JMB1100 was used as the template for PCR reactions used in the construction of plasmids. All plasmids were isolated from *Escherichia coli* PH5α and transformed into electrocompetent *S. aureus* RN4220 using standard protocol (Kreiswirth *et al.*, 1983). Phage α80 was used for plasmid and chromosomal transductions (Novick, 1991). All bacterial strains were verified by PCR prior to analysis. DNA sequencing was conducted by Genewiz (South Plainfield, NJ).

Mutational inactivation of the *S. aureus* *copB* and *cbl* genes was achieved by chromosomal deletion to yield the *copBΔ*, *cblΔ*, and *copBΔ cblΔ* mutant strains. For the *copBΔ* mutant, upstream and downstream regions of the *copB* gene (SAUSA300_0078) were PCR amplified using the following primers: ZRC199 and ZRC200; ZRC164 and ZRC201. PCR products were gel purified and fused by PCR using the ZRC199 and ZRC201 primers. For the *cblΔ* mutant, upstream and downstream regions of the *cbl* gene (SAUSA300_0079) were PCR amplified using the following primers: ZRC166 and ZRC167; ZRC168 and ZRC169. PCR products were gel purified and fused by PCR using the ZRC166 and ZRC169 primers. For the *copBΔ cblΔ* double mutant, upstream and downstream regions of the *copBcbl* operon were PCR amplified using the following primers: ZRC185 and ZRC186; ZRC168 and ZRC169. PCR products were gel purified and fused by PCR using the ZRC185 and ZRC169 primers. The *copBΔ*, *cblΔ*, and *copBΔ-cblΔ* PCR products were digested with EcoRI and SalI, and ligated into similarly digested pJB38 (Bose *et al.*, 2013). The
recombinant vectors were transformed into chemically competent *E. coli* PH5α. PCR was used to screen for *E. coli* colonies harboring the recombinant plasmids using ZRC196 and ZRC201 primers for pJB38_copBΔ; ZRC196 and ZRC169 for pJB38_cblΔ; and ZRC196 and ZRC169 for pJB38_copBΔ-cblΔ. The plasmids were isolated and mobilized into RN4220 *S. aureus*. Single colonies were used to inoculate 5 ml of TSB with Cm. Cultures were grown at 42°C for plasmid integration. Single colonies were inoculated in 5 ml of TSB at 30°C for plasmid resolution. To screen for the loss of plasmid, cultures were serial diluted (1:50,000) and 50-100 µl were plated on TSA containing A-Tet. Colonies were scored for Cm sensitivity. Colonies that were Cm sensitive were screened using PCR for the double recombination event. The copBΔ mutant strain was verified using the ZRC139 and ZRC201 primers. The cblΔ and copBΔ-cblΔ mutants were verified using the ZRC139 and ZRC169 primers.

To construct the *copA::Tn(ermB) and csoR::tn(ermB)* mutants in the USA300 LAC background, lysates were generated from the respective NARSA (Fey *et al.*, 2013) strains and used to transduce the WT parent strain (JMB1100). These lysates were also used to make double mutant strains. The pTET plasmid was used to construct the *copA::Tn(tet) and csoR::Tn(tet)* in the USA300 LAC background by allelic exchange as previously described (Bose *et al.*, 2013).

Mutational inactivation of the following genes was confirmed using PCR with the following primers: *copA::Tn(ermB), copA::Tn(tet), and copZ::Tn(ermB)* with ZRC133 and ZRC134; *csoR::Tn(ermB) and csoR::Tn(tet)* with ZRC153 and ZRC155.

For complementation and expression studies genes cloned into pEPSA5 (Forsyth *et al.*, 2002) contained an engineered *sodA* ribosomal binding site. To construct the *copB* complementing vector, the ZRC146 and ZRC141 primers were used to PCR amplify the *copB* gene; the PCR product was digested with BamHI and SalI and ligated into similarly
digested pEPSA5 to yield pEPSA5_copB. To construct the \textit{cbl} (full length) complementing vector, the ZRC149 and ZRC150 primers were used to PCR amplify the full length \textit{cbl} gene; the PCR product was digested with BamHI and SalI and ligated into similarly digested pEPSA5 to yield pEPSA5_cbl(FL). For the truncated version of \textit{cbl}, the ZRC184 and ZRC150 primers were used. The PCR product was digested with BamHI and SalI, and ligated into similarly digested pEPSA5 to yield pEPSA_cbl_T. \textit{E. coli}, RN4220, USA300, Newman, or MW2 strains containing plasmids were PCR verified, using the pEPSA5upveri and ZRC141 (pEPSA_copB), or pEPSA5upveri and ZRC150 [(pEPSA5_cbl(FL) or pEPSA_cbl_T)].

The pEPSA5_cbl-FLAG vector was constructed by using ZRC149 and ZRC181. The insert was digested with BamH1 and NheI, then ligated into similarly digested pEPSA5_CitB-FLAG (Mashruwala \textit{et al.}, 2015). Strains containing the pEPSA5_cbl-FLAG plasmid were PCR verified using the pEPSA5upveri and ZRC181 primers.

The pEPSA5_nuc2(FL)-\textit{cbl} and pEPSA5_nuc2(SS)-\textit{cbl} vectors were created by using yeast homologous recombination cloning (YRC) in \textit{Saccharomyces cerevisiae} FY2 as previously described (Joska \textit{et al.}, 2014). The pEPSA5_CitB-FLAG vector was linearized with NheI. The amplicon for the pEPSA5_nuc2(FL)-\textit{cbl} was created using the following primer pairs: ZRC188 and ZRC189; ZRC191 and ZRC193. The amplicon for the pEPSA5_nuc2(SS)-\textit{cbl} was created using the following primer pairs: ZRC188 and ZRC190; ZRC192 and ZRC193. Strains containing the pEPSA5_nuc2(FL)-\textit{cbl} and pEPSA5_nuc2(SS)-\textit{cbl} plasmids were PCR verified using the ZRC188 and ZRC193 primers.

For expression and purification of recombinant proteins from \textit{E. coli} BL21 DE3, the pGEX-6P-1 vector was used (GE Healthcare). The pGEX-6P-1_\textit{cbl} was constructed using the ZRC198 and ZRC178 primers. The PCR product was digested with BamH1 and Xho, and then ligated into similarly digested pGEX-6P-1.
To construct the *copBcbl* transcriptional reporter, approximately 500-750 bp upstream of the *copB* RBS was amplified using the ZRC139 and ZRC140 primers. The PCR product was digested with HindIII and KpnI and ligated into similarly digested pCM11 (Malone *et al.*, 2009).

qRT-PCR. RNA isolation and quantitative real-time PCR were performed as previously described with a few modifications (Rosario-Cruz *et al.*, 2015). The WT (JMB1100) strain was cultured overnight in TSB in biological triplicates. Cells were pelleted by centrifugation and resuspended in PBS before diluting 1:100 into chemically defined media without and with 100 µM Cu. Cells were harvested 6 hr post-inoculation (OD ~1, A$_{600}$) by centrifugation, treated with RNAProtect (Qiagen) for 10 min at room temperature, and stored at -80 °C until their use. Pellets were thawed and washed twice with 0.5 ml of lysis buffer (50 mM RNAse-free Tris, pH 8). Cells were lysed with 20 µg DNAse and 20 µg Lysostaphin for 30 minutes at 37°C. RNAs were isolated as using TRIzol reagent (Ambion) as per manufacturer’s protocol. DNA was digested with the TURBO DNA-free kit (Ambion - Life Technologies) and RNA quantified using a Nanodrop (ND-1000) Spectrophotometer. cDNA libraries were constructed using isolated RNA as a template with High Capacity RNA-to-cDNA Kit (Applied Biosystems). Power SYBR Green PCR Master Mix (Applied Biosystems) was used to perform qRT-PCR in an Applied Biosystems StepOnePlus thermocycler. Data was analyzed using the ΔΔCt method. CopARTfwd and CopARTrev primers were used to detect *copA* transcripts; CopBRTfwd and CopBRTrev primers were used to detect *copB* transcripts; CblRTfwd and CblRTrev primers were used to detect *cbl* transcripts. 16s transcripts detected with 16sfwdRT and 16srevRT primers were used as a reference. RT primers were designed using the Primer Express 3.0 software from Applied Biosystems.

Transcriptional Reporter Assays. Transcriptional or promoter reporter assays were performed as previously described with a few modifications (Rosario-Cruz *et al.*, 2015).
Strains containing the pCM11-derived reporters were grown overnight in TSB with Erm. The overnight cultures (>16 hours) were pelleted and resuspended in PBS. Washed cells were subcultured into 5 ml of fresh chemically defined media (1:100) with and without copper. Culture aliquots were periodically removed (200 µl) and culture optical density (A$_{590}$) and fluorescence was monitored using a Perkin Elmer HTS 7000 Plus Bio Assay Reader. GFP was excited at 485 nm and emission was read at 535 nm. Relative fluorescence units were normalized with respect to the culture optical density at each time point.

Cell Fractionation. Overnight cultures were diluted to 0.1 OD (Abs$_{600}$) in fresh TSB with Cm. Cultures were induced with 0 % or 0.2 % xylose at 1 OD (Abs$_{600}$), incubated for 2 hr, and harvested by centrifugation. Cultures were resuspended and washed with PBS. Cells were lysed (PBS with 10 µg DNAse, 10 µg Lysostaphin, Protease and Phosphatase Inhibitor Mini Tablets) at 37 °C for ~45 min. Cell fractionation protocol was followed as previously described with some modifications (Ranjit et al., 2011). Cell lysates were spun for 10 min at 4 °C to remove unbroken cells. Supernatants (whole cell, crude lysates) were spun at 100,000 \times g for 2 hr at 4 °C in Beckman Polyallomer Centrifuge Tubes using a Beckman Optima TLX Ultracentrifuge and TLA 120.2 rotor. The resulting supernatant was saved as the cytoplasmic fraction. The pellet (crude membrane fraction) was resuspended in membrane buffer (100 mM Tris-HCl [pH 7.5], 100 mM NaCl, 10 mM MgCl$_2$, 10 % glycerol, 0.1 % SDS) to solubilize membrane proteins and spun down as described above to to remove the detergent-insoluble material; supernatants were saved as the membrane soluble fractions. Protein concentrations from all fractions were determined as described above.

Western Blot Analysis. Protein concentration was determined using a bicinchoninic acid assay modified for a 96-well plate (Olson and Markwell, 2007) and bovine serum albumin (2.6 mg per ml) as a protein standard. A total of 40 µg of total protein per sample was separated using a 12 % SDS-PAGE gel. Proteins were then transferred to a PVDF membrane.
and incubated with mouse monoclonal anti-FLAG primary antibody (1:4000 dilution) and subsequently HRP conjugated secondary antibody (1:12000 dilution). The blots were developed using chemi-luminescent detection (Pierce) and scanned as TIFF images.

Recombinant Protein Expression and Purification. *Escherichia coli* BL21 DE3 containing the pGEX-6P-1_cbl vector was grown overnight in LB Amp and used to inoculate 1L of 2x YT media (16 g tryptone, 10 g yeast extract, and 5 g NaCl, pH 7.0) with Amp to 0.1 OD (Abs600). Cultures were grown shaking at 30°C, induced with 1 mM IPTG at 0.8 OD (Abs600), and incubated for additional 4 hr. Cultures were harvested by centrifugation at 4°C, resuspended in cold PBS, and stored at -80°C. For lysis, thawed cell pastes were passed through a French press three times and cell lysates were clarified by centrifugation (15000 × g for 30 min at 4°C). Cell extracts were loaded onto GSTrap 4B columns (GE Healthcare) pre-equilibrated with binding buffer (PBS, pH 7.4) and then washed with 10 column volumes of binding buffer. Column was washed with PreScission cleavage buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5) and then incubated overnight at 4°C with the PreScission Protease Mix (PreScission cleavage buffer with PreScission Protease) before eluting the recombinant protein with PreScission cleavage buffer. All fractions were analyzed for purity by SDS-PAGE. Apo-Cbl concentrations were estimated using ε = 19940 M⁻¹ cm⁻¹ (based on amino acid content); Cu⁺-Cbl were determined using the Bradford method and apo-Cbl as a standard.

Copper Binding and BCS Competition Assays. All biochemical assays were conducted under strict anaerobic conditions, either in a Coy anaerobic chamber (Grass Lake, MI) or using sealed cuvettes. After purification, apo-Cbl protein was transferred to the anaerobic chamber and the buffer exchanged (buffer R: 10 mM MOPS, 50 mM NaCl, pH 7.4) using a PD-10 column (GE Healthcare). When necessary, protein was concentrated using YM-3 Centrifiplus Centrifugal Concentrators (Millipore). CuCl stocks were prepared anaerobically.
For Cu\(^+\)-binding assays, 0-10 mol equivalents of CuCl were added to purified apo-Cbl (10-25
\(\mu\)M) using an airtight syringe in a final volume of 1 ml (buffer R). UV-Visible absorption
spectra (200-800 nm) were recorded using a Beckman-Coulter DU800 spectrophotometer. The dilution of copper was considered negligible as the total added volume was less than 15
\(\mu\)l.

Competition assays with the Cu\(^+\) specific chelator bathocuproine disulfonate (BCS) (Sigma) were conducted as previously described (Ma, Cowart, Scott, et al., 2009; Grossoehme et al., 2011). Varying concentrations of Cu\(^+\) (0-50 \(\mu\)M) were added to apo-Cbl (10 \(\mu\)M) previously mixed with BCS (40 \(\mu\)M) in buffer R and the UV-visible absorption spectra recorded. BCS forms a complex with Cu\(^+\) in a 2:1 ratio \([\text{Cu}^+(\text{BCS})_2]\), that can be monitored by changes in absorbance at 483nm with an overall association constant of \(\beta_2 = 10^{19.8}\) (Xiao et al., 2004). To determine the Cu\(^+\) binding constant of Cbl, apo-Cbl (5 \(\mu\)M) was incubated with 0, 80, 100, and 120 \(\mu\)M BCS in buffer R. Cu\(^+\) (40 \(\mu\)M) was added to each sample, incubated anaerobically for 2 hr for equilibration, and absorption of spectra taken.

The concentrations of apo-Cbl and metalated-Cbl were determined by the Bradford method using apo-Cbl as a standard. Assuming four binding sites \(n=4\), the average association constant \((K_{\text{Cbl}})\), the dissociation constant \((K_D)\), and the Hill coefficient \((n_H)\) of Cbl were determined as follows:

\[
K_{\text{Cbl}} = [\text{Cu}^{+4}-\text{Cbl}] / ([\text{apo-Cbl}] [\text{Cu}^{+}]) = 1/K_D \\
n_H = (\log \{\theta / (1 - \theta)\} + \log K_D) / \log [\text{Cu}],
\]

where the Cu\(^+\) occupancy (\(\theta\)) of Cbl is the ratio of Cu-bound Cbl to total Cbl:

\[
\theta = [\text{Cu}^{+4}-\text{Cbl}] / ([\text{Cu}^{+4}-\text{Cbl}] + [\text{apo-Cbl}])
\]
Results

Analyses of S. aureus genes involved in copper homeostasis. We analyzed the S. aureus USA300 FPR3757 genome (Diep et al., 2006) for genes involved in copper (Cu) homeostasis. We found the copper-sensitive operon repressor (CsoR), that senses and binds intracellular Cu leading to derepression of the copAZ operon (Baker et al., 2011). CopA is a membrane-bound Cu-exporting protein and CopZ is an intracellular Cu-binding chaperone (Sitthisak et al., 2007).

Further analysis identified the SAUSA300_0078 locus as an additional copper transporter (CopB; Figure 2.1A). CopB shows 36% identity with CopA and contains most of the conserved structural elements of P1B-ATPases (Figure 2.51). These structural elements include the phosphatase domain (TGES), the conserved CPX metal-binding sequence, and the ATP-binding domain (MXGDGXNDXP). However, CopB lacks the metal-binding CXXC motifs in the N-terminal region present in CopA and instead has a His-rich N-terminus.

An additional 546-bp open reading frame encoding a putative lipoprotein (cbl) is located 17-bp downstream of copB. Cbl (copper-binding lipoprotein) contains a duplicated DUF1541 domain (Marchler-Bauer et al., 2015) that has not been described previously. The copB and cbl genes are located within the arginine catabolic mobile element (ACME) (Diep et al., 2006), a 31-kb transposable element located adjacent to the SCCmecIV cassette.

We conducted a search for cbl homologues in the genomes of other sequenced Prokaryotes. We identified ~200 Cbl-like proteins with the majority belonging to the Actinobacteria and Firmicutes phyla. Additional analysis revealed that these organisms also have at least one additional Cu detoxification protein (CopA, CopZ, or CopB) (Table 2.S2). The cbl gene is often co-localized near genes or within apparent operons encoding alternate
genes involved in Cu homeostasis (Figure 2.S2). The Cbl homologues contain the lipobox motif typical of lipoproteins, that is characterized by the presence of a L-[A/S/T]-[G/A]-C sequence (Hutchings et al., 2009). Other staphylococci also have cbl located in an apparent operon with or nearby the copB gene (Figure 2.S2). Taken together, these findings led to the hypothesis that CopB and Cbl have roles in Cu homeostasis.

S. aureus strains lacking CopB or Cbl are sensitive to Cu. We began testing the hypothesis that the *copB* and *cbl* genes have roles in Cu homeostasis by constructing mutant strains containing individual deletions of *copB* or *cbl* in the *S. aureus* USA300 strain LAC (Figure 2.S3), that differs from the *S. aureus* USA300 strain FPR3757 by a few SNPs (Li et al., 2009). The wild-type (WT), *copB*, and *cbl* strains were spot plated on chemically defined media containing varying concentrations of Cu, zinc (Zn), iron (Fe), cobalt (Co), or manganese (Mn). The *copB* and *cbl* mutant strains only showed increased sensitivity to Cu as displayed by decreased number of colony forming units (CFUs) when cultured in the presence of Cu and these phenotypes were genetically complemented (Figure 2.1B).

We conducted genomic analysis and found that the *S. aureus* USA400 strain MW2 lacks the *copB*cbl operon. We mobilized the *copB* or *cbl* genes to the MW2 strain via plasmid and examined Cu sensitivity. As shown in Figure 2.1C, *copB* and *cbl* over-expression in the MW2 strain led to increased resistance to Cu. We also found that *cbl* over-expression in the *S. aureus* strains Newman, COL, and RN4220 strains led to increased Cu resistance (Figure 2.S4). These data suggest that CopB and Cbl have roles in Cu homeostasis.

Strains lacking CopB or Cbl display exacerbated phenotypes in cells unable to export cytoplasmic Cu. We next investigated whether CopB and Cbl had a functional redundancy with other factors involved in preventing Cu intoxication. Inactivation of genes involved in similar functions in the cell often lead to synergistic phenotypes (Pérez-Pérez et al., 2009).
S. aureus strains lacking CopA accumulate cytoplasmic Cu and are sensitive to Cu intoxication (Sitthisak et al., 2007). We constructed a copA copB double mutant strain and examined Cu sensitivity. We found that strains lacking either copA or copB had decreased growth on solid media containing >50 µM Cu, but the copA copB double mutant displayed an exacerbated sensitivity to Cu and at a much lower Cu concentration. (Figure 2.2A). These findings suggest that both CopA and CopB are involved in preventing Cu toxicity.

The copA cbl double mutant strain also displayed an increased sensitivity to Cu when compared to the copA and cbl single mutants (Figure 2.2B). Moreover, the copA copB cbl triple mutant was more sensitive to Cu intoxication than the copA copB double mutant strain (Figure 2.2C).

CopZ is a Cu chaperone involved in binding and trafficking intracellular Cu (Radford et al., 2003). The S. aureus copZ mutant does not display a Cu sensitivity phenotype (data not shown). Moreover, the copZ copB and copZ cbl strains displayed Cu sensitivity phenotypes that were indistinguishable from the copB and cbl single mutants (data not shown).

Collectively, the results presented in Figure 2.2 suggest that (a) strains lacking CopB or Cbl have increased sensitivity to Cu, (b) CopA and CopB have a functional overlap in Cu homeostasis and function as Cu exporters, (c) Cbl has an independent mechanism from CopB and CopA, and (d) CopZ is not required to prevent Cu intoxication under the conditions examined.

The copBcbl operon is upregulated under Cu stress. As mentioned above, the copB and cbl genes are separated by 17-bp and appear to be located in an apparent operon. To determine whether the copB and cbl genes are co-transcribed, RNA was isolated from WT cultures grown in chemically defined media with Cu and cDNA libraries were generated. Using cDNA as a template and primers nested within copB and cbl, we were able to obtain an
amplicon corresponding to the intergenic region between copB and cbl (Figure 2.3A). A PCR product was only obtained when RT was used in the generation of the cDNA libraries, confirming that the amplicon was not a result of contaminating genomic DNA.

We next investigated the transcriptional changes of the copBcbl operon in response to Cu. To this end, we cultured the WT strain without and with 100 µM Cu before isolating RNA and generating cDNA libraries. We monitored the expression of copB and cbl transcripts by quantitative RT-PCR. The S. aureus copAZ operon is induced during Cu stress (Sitthisak et al., 2007; Baker et al., 2010; Baker et al., 2011), and therefore, we quantified abundance of the copA transcript as a control. As shown in Figure 2.3B, copB and cbl transcripts are upregulated ~4-fold upon Cu stress, whereas copA is upregulated by ~8-fold.

We used a copBcbl transcriptional reporter to further analyze the regulation of the copBcbl operon. To verify the functionality of the reporter, we monitored its activity in the WT strain grown in chemically defined media with varying Cu concentrations. As shown in Figure 2.3C, transcriptional activity of copBcbl increased in a dose-dependent manner.

P_{1B}-ATPases are a subgroup of membrane-bound proteins that participate in the transport of heavy metals (Cu, Zn, and Co) across membranes (Argüello et al., 2007). We examined the transcriptional activity of copBcbl when the WT strain was challenged with excess Mn^{2+}, Fe^{2+}, Zn^{2+}, and Co^{2+}. As shown in Figure 2.3D, transcriptional activity of copBcbl is not altered upon challenge with the metals examined. Likewise, the copB and cbl mutant strains did not display increased sensitivity to Mn, Fe, Zn, or Co at concentrations that decreased the survival of the WT (data not shown). These results suggest that the copBcbl operon specifically responds to Cu stress.

Expression of the copBcbl operon is CsoR-dependent. CsoR is the copper-sensitive operon repressor that, upon binding intracellular Cu, derepresses the transcription of the copAZ
The operon (Baker et al., 2011). We were interested in knowing whether the expression of the copBcbl operon, like the copAZ operon, was also regulated by CsoR. The CsoR binding site was identified in the promoter region of copZA in Bacillus subtilis (Smaldone and Helmann, 2007) and is characterized by a G/C pseudo-inverted repeat region (TACCNNNNNGGG-GGTA). We analyzed the promoter region of the copBcbl operon and, as depicted in Figure 2.4A, it contains a hypothetical CsoR binding site ~100-bp from the translational start site. Therefore, we hypothesized that copBcbl expression was regulated by CsoR.

We cultured the WT and the csoR strains containing the copBcbl reporter in chemically defined media and monitored transcriptional activity. As shown in Figure 2.4B, the transcriptional activity of copBcbl is higher in the csoR mutant strain, suggesting that the copBcbl operon is negatively regulated by CsoR. The addition of Cu led to increased transcription of copBcbl in the WT strain, but to a much less extent in the csoR mutant strain (Figure 2.4B), suggesting that transcription of the copBcbl operon is primarily controlled by CsoR. The S. aureus strain Newman lacks the copBcbl operon, but we found that copBcbl transcriptional activity was also increased in an S. aureus Newman csoR mutant strain (Figure 2.55).

Cbl is membrane-associated and surface-exposed. Our results support the hypothesis that the copBcbl operon is involved in providing Cu resistance, but functions have not been assigned to Cbl or the DUF1541 domain. We conducted a series of experiments to determine the physiological function of the cbl gene product.

Cbl is a putative lipoprotein. We conducted cell fractionation experiments to verify the cellular location of the Cbl protein. We cloned the cbl gene under the transcriptional control of a xylose inducible promoter (xylRO) and included a C-terminal FLAG affinity tag (pEPSA5_cbl-FLAG). The FLAG-tagged cbl allele genetically complemented the Cu
sensitivity of the cbl mutant strain, verifying the functionality of Cbl-FLAG (data not shown). Cultures of the cbl mutant strain harboring the pEPSA_5_cbl-FLAG vector were grown in the presence and absence of xylose to induce cbl expression, cells were harvested, and components were separated into cytoplasmic and membrane fractions. Western blot using anti-FLAG antibodies was used to monitor Cbl_FLAG in whole cell extracts, cytoplasmic fractions, and membrane fractions. As shown in Figure 2.5A, the Cbl-FLAG protein (~21 kDa) was detected in whole cell extracts and membrane fractions, but not in cytosolic fractions, confirming that Cbl is a membrane-associated protein. Cbl-FLAG bands were also detected in non-induced samples, albeit at a much lower intensity, a result that is likely due to leaky expression of the xylRO promoter.

The TOPCONS algorithm (Bernsel et al., 2009) predicted that Cbl contains an N-terminal signal-sequence (Figure 2.S1A) that is characteristic of proteins that are directed to secretory pathways for translocation across the cytoplasmic membrane (Hutchings et al., 2009). We examined whether the functionality of the Cbl protein depends on its cellular localization. To do this, we cloned the cbl gene lacking the signal-sequence, referred to as the truncated Cbl or Cbl(T). As shown in Figure 2.5B, the Cbl(T) did not complement the Cu sensitivity phenotype of the cbl mutant strain, whereas the full-length Cbl did, suggesting that membrane localization is required for Cbl to prevent Cu intoxication.

While lipoproteins in Gram-negative bacteria may be anchored to the cytoplasmic membrane or the outer membrane, and facing either the periplasmic space or the extracellular surface, lipoproteins in Gram-positive bacteria are anchored to the cytoplasmic membrane with the C-terminal facing the extracellular surface (Navarre et al., 1996; Kovacs-Simon et al., 2011). We constructed chimeric proteins consisting of Cbl(T) and either Nuc2 or the Nuc2 signal sequence. Nuc2 is a membrane-bound, surface-exposed protein (Kiedrowski et al., 2014). The chimeric proteins consisted of (a) Cbl(T) fused to the C-terminus of the full
length Nuc2 (pEPSA5_nuc2(FL)-cbl), or (b) Cbl(T) fused to the Nuc2 signal-sequence (pEPSA5_nuc2(SS)-cbl) (Figure 2.5C). Both chimeric constructs genetically complemented the Cu sensitivity phenotype of the cbl mutant strain (Figure 2.5C). Altogether, data presented in Figure 2.5 suggest that Cbl is a membrane-associated protein that requires membrane localization and surface exposure to prevent Cu intoxication.

Cbl binds copper in vitro. The phenotypic and genetic analyses presented thus far show that Cbl is necessary for preventing Cu intoxication in *S. aureus*. We next tested the hypothesis that Cbl prevents Cu intoxication by binding Cu.

The soluble Cbl(T) protein was expressed and purified from *Escherichia coli* (Figure 2.8S). Cu$^+$ binding was examined using UV-visible absorption spectroscopy. Upon titrating Cu$^+$ into apo-Cbl, increases in the absorption spectrum in the UV region ($\lambda_{260\text{nm}}$) were observed (Figure 2.6A). We found that Cu$^+$ binding reaches saturation after the addition of ~4 molar equivalents (Figure 2.6B). Moreover, the formation of Cu$^+$-Cbl follows a sigmoidal trend and, upon fitting the data to a Hill plot, the theoretical Hill coefficient (n_H) was determined to be ~4.3 with a dissociation constant (K_D) in the ~10$^{-19}$ M range.

We conducted competition experiments to verify the Cu$^+$ binding affinity of Cbl. Bathocuprione disulfonate (BCS) is a Cu$^+$ specific chelator that forms a complex with Cu$^+$ in a 2:1 ratio [Cu$^+$-(BCS)$_2$], that can be monitored by the change in absorbance at 483 nm with an overall association constant of $\beta_2 = 10^{19.8}$ (Xiao et al., 2004). Titration of Cu$^+$ (0-140 µM) into a solution containing a mixture of 5 µM apo-Cbl and 40 µM BCS leads to immediate formation of the Cu$^+$-(BCS)$_2$ complex (Figure 2.8S), indicating that BCS has a higher affinity for Cu$^+$ than Cbl. BCS becomes saturated after the addition of 80 µM Cu$^+$, corresponding to a Cu$^+$:BCS ratio of 2. Titration of more Cu$^+$ does not lead to additional
formation of the Cu\(^+\)-(BCS)\(_2\) complex, suggesting that the additional Cu\(^+\) titrated into the mixture might be associating to Cbl.

To determine the Cu\(^+\) binding affinity of Cbl, mixtures containing apo-Cbl (5 µM) and Cu\(^+\) (40 µM) were prepared anaerobically. Different amounts of BCS (0, 80, 100, and 120 µM) were added to each sample and the UV-visible absorption spectra taken. In each sample, the formation of Cu\(^+\)-Cbl was detected at A\(_{260\text{nm}}\) and the formation of Cu\(^+\)-(BCS)\(_2\) at A\(_{483\text{nm}}\) (Figure 2.6C). From these data, the Cu\(^+\) binding affinity of Cbl (log K\(_\text{Cbl}\)) was estimated to be 17.3 ± 0.1. We obtained an n\(_H\) of 3.8 ± 0.1, indicating positive cooperativity of Cu\(^+\) binding. The K\(_D\) was in the 10\(^{-18}\) M range and, like the n\(_H\), these values were in close agreement with the theoretical values determined in using the Hill fit shown in Figure 2.6B.
Discussion

This study was initiated to further investigate the mechanisms of copper (Cu) homeostasis in *Staphylococcus aureus*. The work presented herein have re-affirmed the roles of CopA and CsoR in Cu efflux and intracellular Cu sensing, respectively. We have also assigned roles for the *copB* and *cbl* gene products in protecting against Cu intoxication. These data, as well as published work on CopA (Sitthisak *et al.*, 2007), CopZ, and CsoR (Baker *et al.*, 2011), resulted in a working model for Cu detoxification in the *S. aureus* USA300 strain LAC (Figure 2.7).

Upon sensing Cu in the cytosol, CsoR derepresses transcription of the *copAZ* and *copBcbl* operons. CopZ binds intracellular Cu and delivers it to its target proteins, such as CsoR, CopA, or CopB. The CopA and CopB proteins function to efflux Cu from the cytosol. Cbl is a membrane-associated, surface-exposed protein that binds Cu on the outside of the cell preventing it from entering the cytosol and/or binds Cu after efflux by CopA or CopB.

Our work shows that Cbl is a copper-binding lipoprotein with a Cu$^{+}$ binding affinity (log K_{Cbl}) of 17.3 ± 0.1. The reported Cu$^{+}$ binding affinity of the *S. aureus* (Grossoehme *et al.*, 2011) *B. subtilis* (Ma, Cowart, Scott, *et al.*, 2009) and *Mycobacterium tuberculosis* (Ma, Cowart, Ward, *et al.*, 2009) copper-sensing CsoR proteins have Cu$^{+}$ binding affinities of >18. The intracellular Cu$^{+}$ trafficking chaperone CopZ from *B. subtilis* shows a similar binding affinity for Cu$^{+}$ to that of Cbl (~17.0) (Singleton *et al.*, 2009), that is similar to the reported binding affinity of the metallochaperone HAH1 involved in Cu$^{+}$ trafficking to ATP7A (Badarau and Dennison, 2011). The CusCFBA system is involved in the detoxification of Cu$^{+}$ from the periplasm of *Escherichia coli* (Delmar *et al.*, 2013). The metallochaperone of this system, CusF, has a lower Cu$^{+}$ affinity (~14) than what we report here for Cbl (Bagchi *et al.*, 2013).
Methicillin-resistant *S. aureus* (MRSA) infections are highly prevalent in community settings and this epidemic is widely attributed to the spread of the USA300 clone (Tenover *et al.*, 2006; Talan *et al.*, 2011). The majority of the genetic differences between USA300 and other staphylococcal strains of clinical importance is the presence of mobile genetic elements including the arginine catabolic mobile element (ACME) (Diep *et al.*, 2006). Deletion of the ACME region does not alter global gene expression, but it does decrease the fitness of the USA300 clone in a rabbit bacteremia model (Diep *et al.*, 2008), and therefore, it is believed that genes encoded within the ACME region provide a fitness advantage to the pathogen. For instance, the constitutive expression of the ACME-arginine-deiminase system (*arc*) allows survival in acidic conditions (Thurlow *et al.*, 2013) and the ACME-encoded *speG* gene provides resistance to high levels of host-derived polyamines (Joshi *et al.*, 2011; Thurlow *et al.*, 2013), thereby contributing to the colonization and persistence of *S. aureus* on human skin.

The use of copper-mediated killing by the host macrophages, together with its increasing use in healthcare settings (Noyce *et al.*, 2006; Salgado *et al.*, 2013), may be factors that could be selecting for copper-resistant microorganisms by promoting the dissemination of mobile genetic elements that confer copper resistance. The highly successful USA300 clone (Diep *et al.*, 2006) lacks the *copBmco* present in alternate *S. aureus* strains (Baker *et al.*, 2011); however, we found a two-gene operon located within the ACME region consisting of CopB, a copper transporter, and Cbl, a copper-binding lipoprotein. The USA300 *copB* and *cbl* genes are also present in *S. epidermidis* (Zhang *et al.*, 2003). However, in *S. epidermidis*, a gene encoding a multicopper oxidase (SE0127, *mco*) is located between *copB* and *cbl*, but *mco* is absent in the USA300 clone (Diep *et al.*, 2006; Resch *et al.*, 2013). Although with some genetic variances, other genes of the USA300 ACME region are also present in the human commensal *S. epidermidis* (Diep *et al.*, 2006; Miragaia *et al.*, 2009), and phylogenetic
analysis suggests the horizontal transfer event occurred prior to the epidemic expansion of the USA300 strain (Planet et al., 2013). It is worth noting that S. epidermidis has three copper-exporting proteins, perhaps providing the organism an increased fitness advantage for growth and survival on human skin. Both S. aureus and S. epidermidis are skin commensals, so it is tempting to speculate that the horizontal gene transfer events may have been promoted by copper stress conditions exerted by the host immune system. Our bioinformatics analysis revealed that, in addition to S. epidermidis, other staphylococcal species also have the cbl gene, including S. xylosus, S. capitis, and S. haemolyticus, all of which are skin commensals. Other studies show that the acquisition of genetic elements from other species that share the same niche is a strategy employed by S. aureus to adapt to new hosts (Lowder et al., 2009; Resch et al., 2013).

A USA300 Latin American variant (USA300-LV) has become one of the most prevalent clones associated to MRSA infections in community settings in South America. Phylogenetic analysis revealed that most of the genomic differences between USA300-LV and USA300 were associated to mobile genetic elements, specifically the absence of the ACME region in the USA300-LV clones (Planet et al., 2015). Despite this finding, the copB and cbl genes were found in more than 50% of the examined USA300 and USA300-LV genomes. In the USA300-LV strains, the copB and cbl genes are located adjacent to their SCCmec variant, and the locus has been designated as the Copper and Mercury Resistance (COMER) mobile element (Planet et al., 2015). The acquisition of mobile genetic elements containing copper pathogenicity islands has also been discovered in other organisms (Hao et al., 2015). Overall, these studies provide additional evidence that constant copper exposure (immune system, healthcare settings, and/or diet) may not only promote the dissemination of genetic elements that result in the development of metal-resistant microorganisms, but also strains that are hyper-virulent and have antimicrobial resistance.
Copper resistance mechanisms acquired via transposable elements include copper transporters, multicopper oxidases or, as reported in this study, membrane-bound lipoproteins. Another lipoproteins involved in copper metabolism has been identified in the intracellular pathogen *Mycobacterium tuberculosis* (Festa et al., 2011), but this lipoprotein does not have any structural similarities to Cbl. Comparable to the *S. aureus* *cbl* gene, the *M. tuberculosis* *lpqS* gene is co-localized with other copper homeostatic genes and is derepressed by one of the copper-sensing regulators under copper stress. Moreover, a strain lacking LpqS is sensitive to copper and has an attenuated growth phenotype in THP1-derived macrophages (Sakthi and Narayanan, 2013), suggesting a role in combating copper toxicity within macrophages.

Bacterial surface proteins are often attractive targets for the development of vaccines because of their potential roles in nutrient uptake and host adhesion. Proteome analysis revealed that the majority of the surface-associated proteins expressed by USA300 in a murine systemic infection are lipoproteins (Diep et al., 2014). Interestingly, Cbl was detected from murine kidneys and livers 6 days post-infection (Diep et al., 2014), however, it is unknown whether Cbl is also highly abundant during a natural human systemic infection or contributes to the virulence of *S. aureus*. Cbl is not conserved throughout all *S. aureus* clinical isolates, potentially excluding it as a suitable vaccine antigen.

In summary, this work describes an additional strategy by which the *S. aureus* USA300 clone prevents copper intoxication. The ACME-encoded *copBcbl* operon may also be contributing to the high success of this clone in surviving the copper-dependent killing mechanism employed by the host immune system. Having a better understanding on how pathogens prevent copper toxicity can be used to design compounds that can override the bacterial copper homeostatic mechanisms and, at the same time, enhance the effects of copper accumulation within the host macrophages.
A.

![Gene Location Diagram]

Figure 2.1. The cbl and copB gene products protect against copper intoxication. (A) Chromosomal location of genes involved in copper homeostasis in the *S. aureus* USA300 strain FPR3757. The *copB* (SAUSA300_0078) and *cbl* (SAUSA300_0079) genes are located in the Arginine Catabolic Mobile Element (ACME) region, adjacent to the SCCmecIV genetic element. (B) The *copA, copB,* and *cbl* gene products are necessary to prevent Cu intoxication. Top: The WT (JMB1100) and *copB* (JMB7900) strains containing the pEPSA5 and pEPSA5_copB are shown. Bottom: The WT (JMB1100) and
cbl (JMB7711) strains containing the pEPSA5 and pEPSA5_cbl are shown. Strains were serial diluted and spot plated on chemically defined media without or with 50 μM Cu. (C) copB or cbl overexpression leads to increased copper resistance in the S. aureus USA400 strain MW2. The S. aureus MW2 wild-type (JMB1325) containing the pEPSA5, pEPSA5_copB, or pEPSA_cbl vectors is shown. Strains were serial diluted and spot plated on chemically defined media without or with 100 μM Cu.
Figure 2.2. Cbl functions independently of CopA and CopB and intracellular Cu accumulation exacerbates the phenotypes of the copB and cbl mutants. (A) The phenotypes associated with copB and copA mutations are synergistic. The WT
(JMB1100), copA (JMB4084), copB (JMB7900), and copA copB (JMB8009) strains were serial diluted and spot plated on chemically defined media without or with 10 µM Cu. (B) A strain lacking CopA and Cbl shows increased sensitivity to Cu. The WT (JMB1100), cbl (JMB7711), copA (JMB4084), and copA cbl (JMB7803) strains were serial diluted and spot plated on chemically defined media without or with 50 µM Cu. (C) Cbl functions independently of CopB and CopA. The WT (JMB1100), copA copB (JMB8009), copA cbl (JMB7803), copB cbl (JMB7901), and copA copB cbl (JMB7972) strains were serial diluted and spot plated on chemically defined media without or with 10 µM Cu.
Figure 2.3. The *copBcbl* operon is upregulated under copper stress. (A) The *copB* and *cbl* genes are co-transcribed. RNA was isolated from the WT (JMB1100) strain grown in chemically defined medium with 100 μM Cu and cDNA libraries generated. (i) Schematic showing the primer pair (ZRT21 and ZRT24) used to detect the *copBcbl* transcript; expected size: 643-bp. (ii) Agarose gel electrophoresis was used to detect the *copBcbl* amplicon generated using cDNA libraries as template DNA. A reaction without reverse transcriptase (-RT) was included as a control for genomic DNA contamination.
(B) The copA, copB, and cbl genes are induced upon copper stress. The S. aureus WT (JMB1100) was cultured in chemically defined media containing 0 µM or 100 µM Cu. RNA was isolated, cDNA generated, and the abundance of the copA, copB, and cbl transcripts were quantified. Data show fold induction of genes of interest upon addition of Cu. Data represent the average of biological triplicates with errors presented as standard deviations. (C) Transcriptional activity of the copBcbl operon increases in synergy with Cu addition. Activity of the copBcbl transcriptional reporter was monitored in the S. aureus USA300 WT strain (JMB1100) grown in chemically defined media containing 0, 50, 100, or 200 µM Cu. (D) Transcriptional activity of the copBcbl operon is specific to copper stress. Activity of the copBcbl transcriptional reporter was monitored in the S. aureus USA300 WT strain (JMB1100) grown in chemically defined media containing 100 µM Cu²⁺, 100 µM Mn²⁺, 100 µM Fe²⁺, 100 µM Zn²⁺, or 50 µM Co²⁺. For Panels (C) and (D), fluorescence data was standardized to culture optical density (A₅₉₀) and data represent the average of biological triplicates with errors presented as standard deviations.
A.

Bsu CsoO copZA 5’ – ATACCTACGGGGGTAT –3’
SaNwmn CsoO copAZ 5’ – ATACCTATAGGGGTAC –3’
SaFPR3757 copAZ 5’ – ATACCTATAGGGGTAC –3’
SaFPR3757 copBcbl 5’ – ATACCTGGGGTGGGTAT –3’

B.

Figure 2.4. The copBcbl operon is regulated by CsoR. (A) Comparison of the S. aureus USA300_FPR3757 copAZ and copBcbl promoter regions to the B. subtilis copZA and S. aureus Newman copAZ promoter region. The proposed CsoR binding site is shown in bold. (B) Transcriptional activity of the copBcbl operon is higher in a csoR mutant. Activity of the copBcbl transcriptional reporter was monitored in the S. aureus USA300 WT strain (JMB1100) and csoR mutant (JMB6807) grown in chemically defined media containing 0 µM or 100 µM Cu 100 µM Cu. Fluorescence data was standardized to culture optical density (A590). Data shown represent the average of biological triplicates with errors presented as standard deviations.
Figure 2.5. **Cbl is a membrane-associated and surface-exposed protein.** (A) Monitoring Cbl abundance in whole cell extracts, cytoplasmic fractions, and membrane fractions. The cbl mutant containing the pEPSA5_cbl(FL)-FLAG was cultured in the absence (0% xyl) and presence (0.1% xyl) of xylose prior to fractionation and analysis. ND; not detected. Representative densitometry and Western blot (inset) analysis shown. (B) The membrane-anchor and signal-sequence are necessary for Cbl function. (i)
Schematic showing the Cbl variants. The full length \textit{cbl} gene or truncated \textit{cbl} gene, lacking the N-terminus membrane-anchor signal-sequence, were cloned into the pEPSA5 plasmid to yield the pEPSA_cbl(FL) and pEPSA_cbl(T) vectors, respectively. (ii) The WT (JMB1100) and \textit{cbl} (JMB7711) strains harboring the pEPSA5, pEPSA5_cbl(FL), or pEPSA5_cbl(T) vectors were serial diluted and spot plated on chemically defined media without and with 100 \textmu M copper. (C) Cell surface exposure is necessary for Cbl function. (i) Schematic showing the Cbl chimeric variants. The truncated \textit{cbl} gene, lacking the N-terminal membrane-anchor signal-sequence, was fused to either the full length \textit{nuc2} or the \textit{nuc2} membrane-anchor signal-sequence and cloned into the pEPSA5 plasmid to yield the pEPSA5_nuc2(FL)-cbl and pEPSA5_nuc2(SS)-cbl vectors, respectively. (ii) The WT (JMB1100) and \textit{cbl} (JMB7711) strains harboring pEPSA5, pEPSA5_nuc2(FL)-cbl, or pEPSA5_nuc2(SS)-cbl vectors were serial diluted and spot plated on chemically defined media containing 0 \textmu M or 100 \textmu M Cu.
Figure 2.6. The *S. aureus* Cbl protein binds Cu$^+$ *in vitro*. (A) UV-Visible absorption spectra of apo-Cbl (10 μM) anaerobically titrated with 1-8 Cu$^+$ molar equivalents. (B) Cbl binds approximately 4 molar equivalents of Cu$^+$. Data are plotted as absorbance at 260 nm vs Cu$^+$ molar equivalents (circles). (C) Hill plot of data from Panel B. (D) Determination of Cu$^+$ binding affinity of Cbl. UV-visible absorption spectra after BCS (0, 80, 100, and 120 μM) was titrated into mixtures containing apo-Cbl (5 μM) and CuCl (40 μM). The graph shows spectral changes representing the formation of Cu$^+$-Cbl and Cu$^+$-BCS at 260nm and 483nm, respectively.
Figure 2.7. Working model for copper homeostasis in S. aureus. The CsoR transcriptional regulator senses and binds intracellular copper, leading to derepression of the copAZ and copBcbl operons. CopA is a copper-exporting transmembrane protein, while CopZ is a chaperone protein that binds and transfers copper to targets proteins. CopB is an additional copper-exporting protein, whereas Cbl is a membrane-bound, surface-exposed copper-binding lipoprotein. Cbl likely functions in (a) preventing copper uptake by tightly binding Cu in the extracellular environment, and (b) binding Cu exported via CopA or CopB to prevent it from re-entering the cell.
Table 2.1. Strains and plasmids used in this study.

Staphylococcus aureus strains

<table>
<thead>
<tr>
<th>Strain name</th>
<th>Genotype/Description</th>
<th>Background</th>
<th>Source / Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN4220 (JMB1103)</td>
<td>Restriction-negative S. aureus</td>
<td>RN1</td>
<td>(Kreiswirth et al., 1983)</td>
</tr>
<tr>
<td>JMB2790</td>
<td>SAUSA300_2494(copA)::Tn ermB)</td>
<td>JE2</td>
<td>(Fey et al., 2013)</td>
</tr>
<tr>
<td>JMB3488</td>
<td>SAUSA300_2043(csoR)::Tn ermB)</td>
<td>JE2</td>
<td>(Fey et al., 2013)</td>
</tr>
<tr>
<td>JMB1100</td>
<td>S. aureus USA300 wild-type strain</td>
<td>LAC</td>
<td>A.R. Horswill</td>
</tr>
<tr>
<td>JMB4084</td>
<td>SAUSA300_copA::Tn ermB)</td>
<td>LAC</td>
<td>This study</td>
</tr>
<tr>
<td>JMB6807</td>
<td>SAUSA300_csoR::Tn (tet)</td>
<td>LAC</td>
<td>This study</td>
</tr>
<tr>
<td>JMB7900</td>
<td>SAUSA300_copBΔ</td>
<td>LAC</td>
<td>This study</td>
</tr>
<tr>
<td>JMB7711</td>
<td>SAUSA300_cblΔ</td>
<td>LAC</td>
<td>This study</td>
</tr>
<tr>
<td>JMB7901</td>
<td>SAUSA300_copBΔ-cblΔ</td>
<td>LAC</td>
<td>This study</td>
</tr>
<tr>
<td>JMB8009</td>
<td>SAUSA300_copBΔ, copA::Tn ermB)</td>
<td>LAC</td>
<td>This study</td>
</tr>
<tr>
<td>JMB7803</td>
<td>SAUSA300_cblΔ, copA::Tn ermB)</td>
<td>LAC</td>
<td>This study</td>
</tr>
<tr>
<td>JMB7972</td>
<td>SAUSA300_copBΔ-cblΔ, copA::Tn ermB)</td>
<td>LAC</td>
<td>This study</td>
</tr>
<tr>
<td>JMB1324</td>
<td>parent strain</td>
<td>MW2</td>
<td>P. Schlievert</td>
</tr>
<tr>
<td>JMB1325</td>
<td>parent strain</td>
<td>COL</td>
<td>A. Horswill</td>
</tr>
<tr>
<td>JMB1422</td>
<td>parent strain</td>
<td>Newman</td>
<td>E. Skaar</td>
</tr>
<tr>
<td>JMB6338</td>
<td>NWMN_1991csoRΔ</td>
<td>Newman</td>
<td>E. Skaar</td>
</tr>
</tbody>
</table>

Other Strains

<table>
<thead>
<tr>
<th>Name</th>
<th>Relevant genotype/Description</th>
<th>Source / Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli PH5α</td>
<td>Molecular cloning</td>
<td>Protein Express</td>
</tr>
<tr>
<td>E. coli BL21 DE3</td>
<td>Protein expression and purification</td>
<td></td>
</tr>
<tr>
<td>Bacillus subtilis 168</td>
<td>Wild-type Bsu trpC2 (JMB7761)</td>
<td>V. Carabetta</td>
</tr>
<tr>
<td>Bacillus subtilis 168</td>
<td>Bsu strain lacking Cbl (BSU05790) (JMB7762)</td>
<td>V. Carabetta</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae FY2</td>
<td>ura3-52 yeast recombination cloning</td>
<td>W. Belden</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Plasmid name</th>
<th>Locus/Function</th>
<th>Source / Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pJB38</td>
<td>Mutant construction</td>
<td>(Bose et al., 2013)</td>
</tr>
<tr>
<td>pTET</td>
<td>pJB38 with tet(M)</td>
<td>(Bose et al., 2013)</td>
</tr>
<tr>
<td>pJB38_copBΔ</td>
<td>copBΔ for chromosomal deletion</td>
<td>This study</td>
</tr>
<tr>
<td>pJB38_cblΔ</td>
<td>cblΔ for chromosomal deletion</td>
<td>This study</td>
</tr>
<tr>
<td>Vector Name</td>
<td>Description</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>pJB38_copB_cbl_Δ</td>
<td>copB_cbl_Δ for chromosomal deletion</td>
<td>This study</td>
</tr>
<tr>
<td>pEPSA5</td>
<td>Vector for genetic complementation with XylRO promoter</td>
<td>(Forsyth et al., 2002)</td>
</tr>
<tr>
<td>pCM11</td>
<td>Vector with promoterless gfp for transcriptional studies</td>
<td>(Malone et al., 2009)</td>
</tr>
<tr>
<td>pCM11_copB</td>
<td>copB transcriptional reporter</td>
<td>This study</td>
</tr>
<tr>
<td>pEPSA5_copB</td>
<td>copB complementation vector</td>
<td>This study</td>
</tr>
<tr>
<td>pEPSA5_cbl_FL</td>
<td>cbl (full length) complementation vector</td>
<td>This study</td>
</tr>
<tr>
<td>pEPSA5_cbl_T</td>
<td>cbl (truncated version) complementation vector</td>
<td>This study</td>
</tr>
<tr>
<td>pEPSA5_cbl_FL(-)FLAG</td>
<td>cbl (full length) containing a C-terminal FLAG tag</td>
<td>This study</td>
</tr>
<tr>
<td>pEPSA5_nuc2_FL(-)cbl</td>
<td>nuc2 (full length) fused to cbl (full length)</td>
<td>This study</td>
</tr>
<tr>
<td>pEPSA5_nuc2_SS(-)cbl</td>
<td>nuc2 (signal sequence) fused to cbl (full length)</td>
<td>This study</td>
</tr>
<tr>
<td>pGEX-6P-1</td>
<td>Expression and purification vector</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>pGEX-6P-1_-cbl</td>
<td>cbl expression and purification vector</td>
<td>This study</td>
</tr>
</tbody>
</table>
CONCLUDING REMARKS

The goal of this work was to investigate additional metal homeostasis mechanisms employed by Staphylococcus aureus that could aid in surviving the oxidative and copper insults that the organism faces at the host-pathogen interface. The results from this work led to revised models of Fe-S cluster biogenesis and copper homeostasis in S. aureus, summarized in Figure 3.1.

S. aureus does not produce the nearly ubiquitous thiol glutathione (GSH), instead it produces bacillithiol (BSH). The work presented in Chapter 1 suggests that BSH has a role in Fe-S cluster biogenesis, but the exact role of BSH remains unknown. Genetic evidence suggests that BSH may participate as an Fe-S cluster carrier; the bshA mutant displays growth phenotypes that resemble strains lacking other Fe-S cluster carriers and their overexpression rescue the growth defects and lower enzymatic activities of Fe-S cluster-dependent proteins of the bshA mutant strain. Whether BSH can bind Fe-S clusters and transfer clusters to apo-proteins in vitro, without or with other proteins, requires further investigation. These roles have been shown for GSH, in which it can bind Fe-S clusters either by itself or in conjunction with glutaredoxins in vitro (Qi et al., 2012, Zhang et al., 2013). It would be interesting to know whether GSH can compensate for the loss of function of BSH in Fe-S cluster biogenesis and rescue the phenotypes shown by the bshA mutant, by either addition to the growth medium or by engineering strains to express GSH biosynthetic genes.

The findings that the bshA mutant has higher levels of “free” Fe and Fe supplementation to the growth medium corrects the growth defects of the bshA strain suggest that BSH could also be acting as an Fe buffer, analogous the the role it plays as a
Zn buffer (Ma et al., 2014). In this capacity, BSH may be participating as an Fe donor for Fe-S biogenesis. This hypothesis, however, has not been tested and requires further investigation.

The work presented in Chapter 2 elucidates the role of the copBcbl operon in copper homeostasis. CopB is a copper exporter and Cbl is a copper-binding lipoprotein. This work provides genetic and biochemical evidence showing that Cbl is a membrane-bound, surface-exposed protein that prevents copper toxicity by binding up to four Cu\(^+\) ions. Phenotypic and transcriptional analysis suggest that the copBcbl operon is upregulated only under copper stress, but it does not rule out the possibility that Cbl could bind other metals in vitro. We predict that the conserved histidine residues located within the DUF1541 regions are involved in binding copper. Structural studies are currently being performed to better understand which residues might be involved in binding copper. Once we gain insight into what residues are involved in ligand binding, site-directed mutagenesis of the proposed metal-binding residues can be used to determine the effect on Cu-binding affinity of Cbl. Because the human immune system uses copper to kill invading bacteria, ongoing experiments are examining whether CopB or Cbl, or both, are necessary to promote survival in human macrophages, a finding that could establish a direct link between the copBcbl operon and pathogenesis.

The presence of the copBcbl operon within a genetic mobile element raised the question about the possibility of these genes being present in other microorganisms. Bioinformatic analysis led to the discovery that Cbl is also present in several other S. aureus pathogens, specifically in a livestock-associated methicillin-resistant strain. We speculate that the use of copper-fed diets as an alternative to antibiotics for growth
promotion might have exerted a selective pressure for the \textit{copBcbl} operon in this clone, albeit with a truncated \textit{copB}. Collaborators are currently screening for \textit{cbl} in a library of \textit{S. aureus} strains isolated from various animals. Results from this study could provide additional evidence that support the hypothesis that copper resistance genes are spread via mobile genetic elements among staphylococcal strains.

The oxidative burst and copper toxicity killing mechanisms employed by phagocytes disrupts metal homeostasis within the pathogen. Having a better understanding on how \textit{S. aureus} maintains metal homeostasis can help us identify potential drug targets to treat staphylococcal infections. This research identifies two potential biochemical pathways that could be as drug targets; Fe-S cluster biogenesis and Cu homeostasis. \textit{S. aureus} has numerous Fe-S-cluster-dependent proteins, of which several are required for essential processes, making Fe-S cluster biogenesis an indispensable pathway in \textit{S. aureus} (Roberts \textit{et al.}, in preparation). Strains lacking factors involved in Fe-S clusters biogenesis, such as Nfu or SufS, have decreased survival upon challenging with neutrophils (Mashruwala \textit{et al.}, 2015; Roberts \textit{et al.}, in preparation). Strains that do not produce BSH show decreased survival in murine macrophages (Pöther \textit{et al.}, 2013) and whole blood assays (Posada \textit{et al.}, 2014). These results suggest that disruption of Fe-S cluster biogenesis affects bacterial fitness during infection. Some of these molecules, including BSH, are not produced by humans and they could be used to design drugs that can affect the ability of the pathogen to synthesize Fe-S clusters. Targeting this essential process can thus lead to a metabolic standstill and eventual bacterial killing.
Strains lacking Cu defense mechanisms, such as the copper exporter CopA (White
et al., 2009) and Cbl (data not shown), have decreased survival in macrophages. Inability
of cells to export excess cytoplasmic Cu (copA mutants) also results in decreased survival
on solid copper-coated surfaces (Große et al., 2014), providing additional evidence that
Cu defense mechanisms are important for surviving the antimicrobial properties of Cu.
Drugs targeting proteins that prevent Cu intoxication (CopA, CopB, and Cbl in S. aureus)
could be used to override bacterial defense mechanisms and thus amplify the Cu-
dependent killing mechanism of the host.

Recent studies identify Cbl as one of ~fifty cell-surface proteins expressed by S.
aureus in a mouse model of infection (Diep et al., 2014). Bacterial surface proteins are
often used as vaccine targets because of their roles in nutrient uptake, host adhesion, and
bacterial pathogenesis (Grandi, 2010), making Cbl an attractive antigen that could be
used as part of a multicomponent vaccine. Current clinical trials are evaluating the use of
a vaccine against S. aureus that uses the lipoprotein MntC, required for Mn uptake, as
one of the antigens of their multicomponent vaccine candidate (Anderson et al., 2014).
Because S. aureus uses lipoproteins to acquire metals like Fe and Mn, that are depleted
during infection, as well as other lipoproteins to prevent Cu intoxication, inactivation of
the lipoprotein biogenesis pathway may be used an additional drug target. In Gram
positive and Gram negative organisms, a diacylglycerol transferase (Lgt) modifies
exported lipoproteins for their anchoring to the cytoplasmic membrane (Hutchings et al.,
2009). Drugs targeting this enzyme could be used to disrupt the proper localization of
secreted proteins, thereby affecting numerous lipoproteins that are used by the organism
to maintain metal homeostasis during infection.
Figure 3.1. Summary of findings including revised models for Fe-S cluster biogenesis and copper homeostasis in *S. aureus*. This work describes a role for the low-molecular-weight thiol bacillithiol in Fe-S cluster biogenesis in *S. aureus* (Chapter 1). It also identifies the *copBcbl* operon, consisting of a copper exporter protein (CopB) and copper-binding lipoprotein (Cbl), and their role in copper detoxification in *S. aureus* (Chapter 2).
Figure 1.S1. Verification of the \textit{bshA} and \textit{bshC} mutant strains. Amplicons corresponding to the \textit{bshA} locus amplified from the wild-type (WT) (JMB1100; lane 2) and \textit{bshA}:\textit{kanR} (JMB1382; lane 3) strains were separated using agarose gel electrophoresis. Amplicons corresponding to the \textit{bshC} locus amplified from the WT (JMB1100; lane 4) and \textit{bshC}\textDelta mutant (JMB1381; lane 5) strains were separated using agarose gel electrophoresis. The oligonucleotides used to verify the \textit{bshA}:\textit{kanR} mutant were 1349compBamHI and 1349compSalI. The oligonucleotides used to verify the \textit{bshC}\textDelta mutant were 1071vfyup and 1071vfyDwn.
Figure 1S2. An *S. aureus bshA* mutant strain displays growth defects in defined media when subcultured from an exponential growth phase culture. Representative growth traces of the wild-type (WT) with pCM28 (JMB1100; filled circles), *bshA* with pCM28 (JMB1382; open circles), and *bshA* with pCM28_(*bshA*) (JMB1382; filled triangles) are shown. Strains were cultured to an optical density of 1 (A₆₀₀) in TSB before cells were harvested, washed with PBS and subcultured into defined media. Panel A; An
S. aureus bshA mutant strain has a growth defect in a defined medium containing 11 amino acids (AA) (PRMCLVYTPGH). Panel B; Supplementing the 11 AA defined medium with 100 µM Fe$^{2+}$ decreases the generation time and decreases the extended lag time before outgrowth of the bshA mutant strain. Panel C; An S. aureus bshA mutant strain displays a growth defect in defined medium containing 20 AA without Fe supplementation that manifests as a lag before outgrowth and an increased generation time. Panel D; An S. aureus bshA mutant strain does not grow in a liquid defined medium containing 19 AA, but lacking Leu. Panel E; An S. aureus bshA mutant strain has an increased lag before outgrowth when cultured in a liquid defined medium containing 19 AA, but lacking Ile.
Figure 1.S3. A \textit{bshA} mutant strain displays poor growth on solid chemically defined media lacking either Leu or Ile that is alleviated by either amino acid or Fe supplementation. The WT (JMB1100) and \textit{bshA} mutant (JMB1382) strains were cultured overnight in TSB prior to serial diluting with PBS and spot plating on chemically defined media containing either 20 amino acids (AA) or 19 AA, lacking either Leu or Ile with and without supplementation with 100 µM Fe.
Figure 1.S4. Transcription of genes required for protein synthesis is decreased in *S. aureus* cells cultured in chemically defined media limited for either amino acids or Fe. Wild-type *S. aureus* cells (JMB1100) were subcultured from a complex medium (TSB) into chemically defined media containing either 11 amino acids (AA), 20 AA, or 11 AA + 100 µM Fe. After 30 minutes of incubation, RNA was isolated and the abundances of mRNAs corresponding to the *rpsB*, *tsf* and *rpsL* genes were quantified. Panel A; Ratios of mRNA abundances from cells cultured in a 11 AA medium to cells cultured in a 20 AA medium. Panel B; Ratios of mRNA abundances from cells cultured in a 11 AA + 100 µM Fe medium to cells cultured in a 11 AA medium. All cDNA libraries were prepared from biological triplicates and analyzed at least two times. All data represent averages with standard deviations shown. Paired t-tests were performed and * denotes *p* < 0.05 and N.S. denotes not significant.
Figure 1.S5. Cells of the WT and bshA mutant strains have similar concentrations of cellular Fe when cultured in TSB medium. Total 56Fe was determined in the WT (JMB1100) and bshA mutant (JMB1382) grown in TSB medium using ICP-MS. The data represent the mean of three independent experiments conducted in biological triplicate and errors are presented as standard deviations. A paired t-test was performed on the samples and N.S. denotes not significant ($p > 0.1$).
Figure 1.S6. The *leuC* and *acnA* genes are induced to similar levels in the parent and *bshA* mutant strains containing either *pacnA* or *pleuCD*. The mRNA abundances of the *acnA* or *leuC* genes were determined in cells grown in defined media containing 20 amino acids (AA). Panel A; The *acnA* (JMB3702) and *bshA acnA* (JMB5225) mutant strains containing the *pacnA* plasmid were cultured in the presence and absence of 1% xylose to an OD of 1 (A$_{600}$), RNA was isolated and the *acnA* transcript quantified. Panel B; The *leuD* (JMB3707) mutant and *bshA leuD* (JMB5227) mutant strains containing the *pleuCD* plasmid were cultured in the presence and absence of 1% xylose to an OD of 1 (A$_{600}$), RNA was isolated and the *leuC* transcript was quantified. Data are plotted as fold-induction relative to non-induced samples. cDNA libraries were prepared from biological triplicates and analyzed two times. All data represent averages with errors presented as standard deviations. Paired t-tests were performed on the samples and p values are shown.
Figure 1.S7. Overexpression of sufA corrects the isoleucine-dependent growth defect of a bshA mutant in liquid medium. Representative growth analysis of the wild-type (WT) strain (JMB1100) with pEPSA (open squares) or pEPSA_sufA (psufA) (filled squares) and the bshA mutant (JMB1382) with either pEPSA (open circles) or psufA (filled circles) in chemically defined media containing either 19 amino acids (AA) lacking Ile (Panel A) or 20 AA (Panel B). All media was supplemented with 0.1% xylose.
Figure 1.S8. The *sufA* gene is expressed in the *bshA* mutant and the mRNA corresponding to *sufA* accumulates to similar levels in the WT and *bshA* strains. The mRNA abundance corresponding to the *sufA* gene was determined in cells of the WT (JMB1100), *bshA* (JMB1382), and *sufA* (JMB2223) mutant strains previously grown to an optical density of 1 (A_{600}) in chemically defined media containing 20 amino acids. All cDNA libraries were prepared from biological triplicates and analyzed two times. All data represent averages with standard deviations shown. N.D. denotes not detectable.
Figure 1.S9. The growth defects of the *S. aureus* COL and MW2 strains lacking BSH are suppressed by multicopy expression of the *sufA* gene. Panel A; Multicopy expression of *sufA* corrects the Ile-dependent growth defect of an *S. aureus* COL strain lacking BSH. A representative experiment showing the growth of strain COL (JMB1325) with pEPSA (open squares) or pEPSA_*sufA* (filled squares) and the COL *bshA* mutant strain (JMB6167) with pEPSA (open circles) or *psufA* (filled circles) was monitored in chemically defined media containing 19 amino acids (AA) and 0.1% xylose, but lacking Ile. Panel B; Multicopy expression of *sufA* corrects the Glu and Gln dependent growth defect of the *S. aureus* MW2 strain lacking BSH. A representative experiment showing the growth of the MW2 strain (JMB1324) with pEPSA (closed squares) or *psufA* (open squares) and the MW2 *bshA* mutant strain (JMB5197) with
pEPSA (open circles) or psufA (filled circles) was monitored in chemically defined media containing 18 AA and 0.1% xylose, but lacking Glu, Gln.
<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence (5’ → 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1349up5BamHIXmal</td>
<td>GGATCCCCCGGGCAGGATATTTTTCCACCATTAGCTAACTTAGCTAGTTG</td>
</tr>
<tr>
<td>1349up3stopMluIKpnINheI</td>
<td>ACGCGTGGTACCCGCTAGCTTTATCCAGAACCCACCATGGGACGGGTAACGCTAGTTTCAGGATGTTGTTTTGAGATA</td>
</tr>
<tr>
<td>1349down5NheKpnIMluI</td>
<td>GCTAGCGGTACCACCGCTAGCGAGTTTGGGTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>1349down3SalI</td>
<td>CCCGTCAGACCCGTTTTCCAGCTATACAGTTTTATATTAGGATGAGTTT</td>
</tr>
<tr>
<td>1349comp5BamHI</td>
<td>CCCGGATCCGGGCGTTACGCTACAGTTTTATATTAGGATGAGTTT</td>
</tr>
<tr>
<td>1349comp3SalI</td>
<td>CCCGTCAGACCCGCCCTGCTTCAATAATGAGATTATCC</td>
</tr>
<tr>
<td>1071up5EcoRI</td>
<td>GGGGAAATTCCGAGATCTACGTCTTTATATTAGGATGAGTTT</td>
</tr>
<tr>
<td>1071upfuse</td>
<td>ACGCGGTGGTACCCGCTAGCGAGTTTGGGTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>1071dwnfuse</td>
<td>GCTAGCGGTACCACCCGCCAGGATGAGTTTGGGTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>1071dwnSalI</td>
<td>GGGGAAATTCCGAGATCTACGTCTTTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>1071vfyup</td>
<td>GGGTGGGTGGTACCCGCTAGCGAGTTTGGGTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>1071vfyDwn</td>
<td>GCAGTTTTGGTCTTGTGATGTTGCTATTATCTTCCGCTGTC</td>
</tr>
<tr>
<td>nfu5BamRBS</td>
<td>CCCGATCCCTAGAACGAGATGAGTAATTTTATCCAGGCTAGTATTAAT</td>
</tr>
<tr>
<td>nfuveri5</td>
<td>GGGGAATTCCGAGATCTACGTCTTTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>nfuveri3</td>
<td>GGGGAAATTCCGAGATCTACGTCTTTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>sufAup5EcoRI</td>
<td>GGGGAAATTCCGAGATCTACGTCTTTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>sufAdwn3BamHI</td>
<td>CCCGATCCCTAGAACGAGATGAGTAATTTTATCCAGGCTAGTATTAAT</td>
</tr>
<tr>
<td>ilvDBamHIRBS</td>
<td>GGGGAAATTCCGAGATCTACGTCTTTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>nfu3SalI</td>
<td>CCCGTCAGACCCGTTTTCCAGCTATACAGTTTTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>ilvDmulldwn</td>
<td>GGGGAAATTCCGAGATCTACGTCTTTATATTATAGGATGAGTTT</td>
</tr>
<tr>
<td>pcm28YCCfor</td>
<td>AAAAACCTACAGAAGCCTGCTGACATGGGACGGGATAACAGGGTAAATAG</td>
</tr>
<tr>
<td>sufYCC3</td>
<td>TCTCAGCGTGGTTTTGGCCCGGTACCACCGCTTCCCGGACTATATTAC</td>
</tr>
<tr>
<td>YccSuf</td>
<td>TCTCAGCGTGGTTTTGGCCCGGTACCACCGCTTCCCGGACTATATTAC</td>
</tr>
</tbody>
</table>
CCTGTATCCCTA
Sufinternal3 TCTAATATCGGAAAATCCTTGATTACTTCAATGTTAAGCT
Sufinternal5 GACGTATAGAAATCAAGGATTTTCCGATATTAGA
SufpCM28rev GATTACGAAATCATGATCGAATGCTAGCGGAAGGTAAGCT
 AATGGCTTAACCAAC
dpsHindIII CCCCAAGCTTGCCAATCGTATATTATTGATGAAACTG
dpsKpnI GGGGTTACACCTCCTTAATTTGTCTACGTCTTTC
sodHindIII GGGAATCTTCGATTCAATGTTAAGCT
 CCGGATCCCGGAAGTCAAGG
sodKpnI GGGGTTACCCCTCTTTTAGATATTTATTTTATAATTAATTTC
 GGG
sufA5ndeI GGGCATATGCAACGATTATTAACAGAAAGCAGC
sufAXhoI GGGGCTCGAGGCAATTTTCAGG
rpsBfwdRT GATGCTATCGTGCGGTAAA
rpsBrevRT CCTTGTTGACCTTCAAGATTGCA
tsffwdRT CTGGCGGCGGATTGATG
tsfrevRT ATCGCTTTATCGATGTCACCAC
rpsLfwdRT GCGTTTATCAAACAAACATCGGAAT
rpsLrevRT ACTGTGTTTCTTGTAGGATTTGCTCGGATAC
leuCfwdRT CAGCCTGGCAAGACAATCGT
leuCrevRT AGCACAAATGCTCCATGTG
AcnARTFor GGACAACCTTCTTATTTCACATTCC
AcnARTRev TTGCCGCTTTTGGATATGAA
SufARTFor TGGGTGGCGGTTTCCA
SufARTrev CTACCACAGCGCAATGGAAGCA
Table S2. Generation times for growth analyses conducted in defined media.\(^a\)

<table>
<thead>
<tr>
<th>Medium</th>
<th>Figure</th>
<th>Relevant genotype of strains assayed</th>
<th>Generation times (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WT, pCM28</td>
<td>bshA, pCM28</td>
</tr>
<tr>
<td>11AA</td>
<td>Fig 1A</td>
<td>3.4 ± 0.2</td>
<td>9.2 ± 0.2</td>
</tr>
<tr>
<td>11AA + 100 µM Fe</td>
<td>Fig 1B</td>
<td>3.5 ± 0.1</td>
<td>6.1 ± 0.1</td>
</tr>
<tr>
<td>20AA</td>
<td>Fig 3A</td>
<td>1.3 ± 0.1</td>
<td>2.2 ± 0.2</td>
</tr>
<tr>
<td>19AA (- Leu)</td>
<td>Fig 3B</td>
<td>2.1 ± 0.1</td>
<td>NG(^b)</td>
</tr>
<tr>
<td>19AA (- Ile)</td>
<td>Fig 3C</td>
<td>2.2 ± 0.0</td>
<td>2.6 ± 0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medium</th>
<th>Figure</th>
<th>Relevant genotype of strains assayed</th>
<th>Generation times (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WT, bshA</td>
<td>20AA (^b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20AA</td>
<td>dropout (^c)</td>
</tr>
<tr>
<td>20AA or 18AA (- Ile, Leu)</td>
<td>Fig 9A</td>
<td>1.9 ± 0.1</td>
<td>2.5 ± 0.1</td>
</tr>
<tr>
<td>20AA or 18AA (- Glu, Gln)</td>
<td>Fig 9B</td>
<td>1.5 ± 0.3</td>
<td>1.7 ± 0.2</td>
</tr>
<tr>
<td>20AA or 19AA (- Ile)</td>
<td>Fig 9C</td>
<td>2.8 ± 0.1</td>
<td>2.9 ± 0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medium</th>
<th>Figure</th>
<th>Relevant genotype of strains assayed</th>
<th>Generation times (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WT, pCM28</td>
<td>bshA, pCM28</td>
</tr>
<tr>
<td>11AA</td>
<td>Fig S2A</td>
<td>3.0 ± 0.2</td>
<td>9.0 ± 0.2</td>
</tr>
<tr>
<td>11AA + 100 µM Fe</td>
<td>Fig S2B</td>
<td>2.5 ± 0.2</td>
<td>3.1 ± 0.1</td>
</tr>
<tr>
<td>20AA</td>
<td>Fig S2C</td>
<td>1.7 ± 0.1</td>
<td>2.5 ± 0.3</td>
</tr>
<tr>
<td>19AA (- Leu)</td>
<td>Fig S2D</td>
<td>2.0 ± 0.0</td>
<td>NG</td>
</tr>
<tr>
<td>19AA (- Ile)</td>
<td>Fig S2E</td>
<td>1.8 ± 0.1</td>
<td>2.6 ± 0.1</td>
</tr>
</tbody>
</table>

\(^a\) Generation times were determined from biological triplicates and are presented in hours.

\(^c\) Dropout media is missing one or more amino acids. The growth medium used to generate Figure 7A contains 18 AA without Leu and Ile supplementation. The growth medium used to generate Figure 7B contains 19 AA without Ile supplementation. The growth medium used to generate Figure 7C contains 19 AA without Leu supplementation.
Figure 2. S1. Schematic of the conserved domains in the CopA, CopB, and Cbl proteins. The CopA and CopB proteins are structurally similar in that they both have a phosphatase domain (TGES), a conserved CPX metal-binding sequence, and a ATP-binding domain (MXGDGXNDXP). However, the N-terminus of the CopA protein contains two metal-binding CXXC motifs, while the N-terminus of the CopB protein contains a His-rich region. The Cbl protein contains a membrane-anchor signal-sequence (filled with horizontal lines), as predicted using the TOPCONS web server (Bernsel et al., 2009), and two DUF1541 domains as identified by the National Center for Biotechnology Information’s Conserved Domains Database (Marchler-Bauer et al., 2015).
Figure 2. S2. Genomic location of cbl from select organisms. In several microorganisms, the Cbl homologue was found to be co-localized with other genes involved in copper homeostasis. A few operonic structures are shown.
Figure 2.S3. PCR verification of the copBΔ, cblΔ, and copB-cblΔ mutant strains.

Amplicons corresponding to the copB (SAUSA300_0078) locus amplified from the wild-type (WT) strain (JMB1100; lane 1) and the copBΔ strain (JMB7900; lane 2) are shown; amplicons corresponding to cbl (SAUSA300_0079) from the WT strain (JMB1100; lane 3) and cblΔ mutant strain (JMB7711; lane 4) are shown; amplicons corresponding to the copBcbl (SAUSA300_0078-0079) genes from the WT strain (JMB1100; lane 5) and copBΔ cblΔ double mutant strain (JMB7901; lane 6) are shown. The ZRC139 and ZRC201 primer pair was used to verify the ~1-kb deletion in the copBΔ strain. The ZRC139 and ZRC169 primer pair was used to verify the ~0.5-bp deletion in the cblΔ mutant and ~2.6-kb deletion in the copBΔ cblΔ double mutant strain.
Figure 2.S4. Overexpression of *cbl* confers copper resistance in other *S. aureus* isolates. The Newman (JMB1422), COL (JMB1324), MW2 (JMB1325), and RN4220 (JMB1103) strains expressing either the pEPSA5 and pEPSA5_cbl vectors are shown. Strains containing the pEPSA5_cbl vector show increased copper resistance compared to the strains containing the pEPSA (empty) vector. Overnight cultures were serial diluted and spot plated on chemically defined media without and with Cu.
Figure 2.S5. Transcriptional activity of the copBcbl operon in the S. aureus strain Newman wild-type and csoR mutant. The S. aureus Newman WT (JMB1422; filled circles) and csoR mutant (JMB6338; open circles) strains harboring the copBcbl promoter reporter were cultured in chemically defined media. Fluorescence was monitored over time and data was standardized to the optical density (A590) of each culture. Data shown represent the average of biological triplicates with errors presented as standard deviations.
Figure 2.S6. Analysis of diverse Cbl-like proteins. Strictly conserved residues located within the domain of unknown function (DUF1541) identified using the National Center for Biotechnology Information’s Conserved Domains Database (Marchler-Bauer et al., 2015) are shown in red. The lipobox motif typical of lipoproteins and characterized by the presence of a L-[A/S/T]-[G/A]-C sequence (Hutchings et al., 2009) is shown in green.
Figure 2.S7. A *Bacillus subtilis* ydhK (cbl) mutant is sensitive to Cu intoxication.

Overnight cultures were serial diluted and spot plated on chemically defined media without and with Cu.
Figure 2.8. SDS-PAGE analysis of purified *S. aureus Cbl*. Cbl(T) was expressed and purified from *E. coli* BL21 DE3. Samples were obtained at various steps to verify for the presence of and purification of the recombinant protein. Lane 1: cell lysate; Lane 2: clarified cell-free lysate; Lane 3: flow-through after applying sample to column; Lane 4: column wash with binding buffer; Lane 5: column wash with high-salt buffer; Lanes 6 and 7: eluent after cleavage with PreScission protease.
Figure 2.S9. BCS has higher affinity for Cu+ than to apo-Cbl. Titration of Cu+ (0-140 μM) into a solution containing a mixture of apo-Cbl (5 μM) and BCS (40 μM) leads to immediate formation of the Cu+(BCS)2 complex. The formation of Cu+(BCS)2 was monitored by plotting the increase in absorbance at 483 nm versus the [Cu+] / [BCS] ratio. Buffer: 10 mM MOPS, 50 mM NaCl, pH 7.4.
Table 2.S1. Oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0078upEcoR1New2 (ZRC199)</td>
<td>GGGGAATTCATGAAATCATTTCCAAATGAATGTCAT</td>
</tr>
<tr>
<td>0078upfuseNew2 (ZRC200)</td>
<td>ACGCGTGCTCTAGCGTACAGCCACAGCATTTCATTTCAT</td>
</tr>
<tr>
<td>0078dwnfuse (ZRC164)</td>
<td>GCTACGCGTACCGTCAGCGTCAGTAGAATAATGAAGT</td>
</tr>
<tr>
<td>0078dwndelSalI (ZRC201)</td>
<td>GGTCGACGTAAGGCATTAATGCAAC</td>
</tr>
<tr>
<td>0079delEcoR1 (ZRC167)</td>
<td>GGGGAATTCCACAGTAAATATATATATTCAN</td>
</tr>
<tr>
<td>0079upfuse (ZRC168)</td>
<td>ACGCGTGCTACGTAGCGTAGATACGATAATATATACAT</td>
</tr>
<tr>
<td>0079dwnfuse (JMB168)</td>
<td>GGTCGACGTAAGGCATTAATGCAAC</td>
</tr>
<tr>
<td>0079delSalI (ZRC169)</td>
<td>GGGATCCACGACCCCCCTTTATTTATATATTCAN</td>
</tr>
<tr>
<td>0079delEcoR1 (ZRC175)</td>
<td>GGGGAATTCCACAGTAAATATATATATTCAN</td>
</tr>
<tr>
<td>0079upfusenew (ZRC185)</td>
<td>ACC</td>
</tr>
<tr>
<td>pJB38upstream (ZRC196)</td>
<td>CCCGAAAGTCCGACCTGACGTC</td>
</tr>
<tr>
<td>pEP0078BamH1rbs (ZRC146)</td>
<td>GGGATCCAGCATAATCATCAATTACATGATGACATTCC</td>
</tr>
<tr>
<td>0078dwnSalI (ZRC187)</td>
<td>GGGTGCACTTTATTTAATTATGTAAGGCATTAATGCA</td>
</tr>
<tr>
<td>0079BamH1rbs (ZRC149)</td>
<td>GGGGAATCCAGATAGGAGTTTATTATGAT</td>
</tr>
<tr>
<td>0079BamRBStrunk (ZRC184)</td>
<td>CCGGATCCAGATAGGAGTTTATTATGGGAAAGAT</td>
</tr>
<tr>
<td>0079dwnSalI (ZRC150)</td>
<td>GGGTGACTTATCGTGCTTTACGTCATT</td>
</tr>
<tr>
<td>0079dwnNhel (ZRC181)</td>
<td>GGGGCTAGCCTCGTGCTTTACGTCATT</td>
</tr>
<tr>
<td>pEP_nuc</td>
<td>TCGGTACCAGGGATCCCTGTTAGCAGTGACCAAAGAGAAGTACGAGTA</td>
</tr>
<tr>
<td>Sequence ID</td>
<td>Sequence String</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>(ZRC188)</td>
<td>GTGGCAATATGAAAGTC</td>
</tr>
<tr>
<td>nucFL_0079for</td>
<td>AAAACACAGAAAATTAATTTTGGAGTAAAGATGAAAAAGATA</td>
</tr>
<tr>
<td>(ZRC191)</td>
<td>AAGACACTAATGACCA</td>
</tr>
<tr>
<td>nucFL_0079rev</td>
<td>TGGTCATTAGTGTCTTTATCTTTTCTCTTTACTCTCAAAATATTTA</td>
</tr>
<tr>
<td>(ZRC189)</td>
<td>ATTTCTGTGTTTT</td>
</tr>
<tr>
<td>nucSS_0079for</td>
<td>GGTTGATTAGCATTTTCAATTTATGATCAGTGAAGAAAAGATAA</td>
</tr>
<tr>
<td>(ZRC192)</td>
<td>AGACACTAATGACCA</td>
</tr>
<tr>
<td>nucSS_0079rev</td>
<td>TGGTCATTAGTGTCTTTATCTTTTCTCTTTATCATGATTCAAAATTGA</td>
</tr>
<tr>
<td>(ZRC190)</td>
<td>AATGCTAATACACC</td>
</tr>
<tr>
<td>FLAG_0079rev</td>
<td>TCACCGTCATGGTCTTTGAGTCGCTAGCTGTTCTCAGCTCA</td>
</tr>
<tr>
<td>(ZRC193)</td>
<td>TTTTCTGTGCTTCAAA</td>
</tr>
<tr>
<td>0079T BamHIGST5</td>
<td>GGGGGATCCATGGATGAAAA</td>
</tr>
<tr>
<td>(ZRC198)</td>
<td></td>
</tr>
<tr>
<td>0079 XhoI GST3</td>
<td>GGGCTCGAGTTATCGTGTTTTCAGCTATTTCCGTATCC</td>
</tr>
<tr>
<td>(ZRC178)</td>
<td></td>
</tr>
<tr>
<td>2494Cu TransUp5 BamHI</td>
<td>CCGGATCCCAGGACTGCTGTTGTCAGACAC</td>
</tr>
<tr>
<td>1 (ZRC133)</td>
<td></td>
</tr>
<tr>
<td>2495 CopZ Down3 SalI</td>
<td>CCGTCGACGACAGGGAAGATGCATATTAACACCAC</td>
</tr>
<tr>
<td>(ZRC134)</td>
<td></td>
</tr>
<tr>
<td>2043 up BamHI</td>
<td>CCGGATCCATGAACACACAAGATAATGCACATCATTC</td>
</tr>
<tr>
<td>(ZRC153)</td>
<td></td>
</tr>
<tr>
<td>2043 dwn SalI</td>
<td>CCGTCGACCTTATGCTTTTATCAATTCTTTGGAAGAGTCACTA</td>
</tr>
<tr>
<td>(ZRC155)</td>
<td></td>
</tr>
<tr>
<td>0078 Hind III5</td>
<td>GGGAAGCTTCCGACGTATACAGAATACATTTTGAAG</td>
</tr>
<tr>
<td>(ZRC139)</td>
<td></td>
</tr>
<tr>
<td>0078 KpnI 3</td>
<td>GGGGGTACCGTATTTTGATGATTGATGCTCTCCACC</td>
</tr>
<tr>
<td>(ZRC140)</td>
<td></td>
</tr>
<tr>
<td>16sfwd RT</td>
<td>TGAAGGCCCACGCTCAA</td>
</tr>
<tr>
<td>16s rev RT</td>
<td>TTCGACATCAAGTTTCCAGTTT</td>
</tr>
<tr>
<td>CopART fwd (ZRT19)</td>
<td>GTTTTGCCATGCGCATTG</td>
</tr>
<tr>
<td>CopART rev (ZRT20)</td>
<td>GCAGCGACTACCTACCTACCAT</td>
</tr>
<tr>
<td>CopBRT fwd (ZRT21)</td>
<td>CGCTGTCGAAAAAGATTAGGTA</td>
</tr>
<tr>
<td>CopBRT rev (ZRT22)</td>
<td>GCTTCTTATCTCTTGCCATGA</td>
</tr>
<tr>
<td>CblRT fwd (ZRT23)</td>
<td>AAAATGAGAGCCATATGAGCATAA</td>
</tr>
<tr>
<td>CblR Trev (ZRT24)</td>
<td>CTTAAAATTCACCCTCATTAGTGATT</td>
</tr>
</tbody>
</table>
Table 2.S2. Co-occurrence of \textit{cbl} and other genes involved in copper homeostasis.

<table>
<thead>
<tr>
<th>Other \textit{Staphylococcus} spp.</th>
<th>Identity (%)</th>
<th>CopA</th>
<th>CopZ</th>
<th>CopB</th>
<th>Cbl or Cbl-like locus tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{S. xylosus}</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>syx:SynWH7803_239</td>
</tr>
<tr>
<td>\textit{S. aureus} USA300-ISMMS1</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>saui:AZ30_00405</td>
</tr>
<tr>
<td>\textit{S. aureus} USA300_TCH1516</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>sax:USA300HOU_00085</td>
</tr>
<tr>
<td>\textit{S. aureus} ST398 (MRSA)</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td>sug:SAPIG0066</td>
</tr>
<tr>
<td>\textit{S. haemolyticus} Sh29/312/L2</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td>shh:ShL2_00034</td>
</tr>
<tr>
<td>\textit{S. haemolyticus} JCSC1435</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td>sha:SH0107</td>
</tr>
<tr>
<td>\textit{S. capitis}</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>scap:AYP1020_2000</td>
</tr>
<tr>
<td>\textit{S. epidermidis} RP62A</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td>ser:SERP2437</td>
</tr>
<tr>
<td>\textit{S. epidermidis} SEI</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>seps:DP17_1330</td>
</tr>
<tr>
<td>\textit{S. epidermidis} PM221</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>sepp:SEB_00082</td>
</tr>
<tr>
<td>\textit{S. epidermidis} ATCC 12228</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>sep:SE0128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Bacteria</th>
<th>Identity (%)</th>
<th>CopA</th>
<th>CopZ</th>
<th>CopB</th>
<th>Cbl or Cbl-like locus tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Listeria monocytogenes}</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td>lmn:LM5578_p08</td>
</tr>
<tr>
<td>\textit{Macrococcus caseolyticus}</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td>mcl:MCCL_0244</td>
</tr>
<tr>
<td>\textit{Bacillus subtilis} subsp. spizizenii</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>bst:GYO_0837</td>
</tr>
<tr>
<td>\textit{Bacillus subtilis} subsp. subtilis 168</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>bsu:BSU05790</td>
</tr>
<tr>
<td>\textit{Bacillus endophyticus}</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>beo:BEH_05620</td>
</tr>
<tr>
<td>Bacterial Species</td>
<td>Accession Numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terribacillus aidingensis</td>
<td>tap:GZ22_12290</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paenibacillus polymyxa Sb3-1</td>
<td>ppoy:RE92_19100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus megaterium QM B1551</td>
<td>bmq:BMQ_1912</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virgibacillus sp. SK37</td>
<td>vir:X953_05555</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysinibacillus fusiformis</td>
<td>lfu:HR49_03025; lfu:HR49_01355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus infantis</td>
<td>bif:N288_02930; bif:N288_24750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus coagulans DSM 1</td>
<td>bcoa:BF29_1213</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paenibacillus odorifer</td>
<td>pod:PODO_14475</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planococcus sp. PAMC 21323</td>
<td>pln:Plano_0489</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus atrophaeus NRS 1221A</td>
<td>batr:TD68_15650</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus clausii</td>
<td>bcl:ABC3339</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysinibacillus varians</td>
<td>lgy:T479_21155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeotgalibacillus sp. D5</td>
<td>jeo:JMA_02420; jeo:JMA_03940</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnobacterium inhibens</td>
<td>caw:Q783_11895; caw:Q783_09480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exiguobacterium sp. MH3</td>
<td>exm:U719_02690</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus methylotrophicus UCMB5036</td>
<td>baml:BAM5036_054_02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium glycinophilum</td>
<td>cgy:CGLY_09370</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Accession Numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysinibacillus sphaericus</td>
<td>lsp:Bsph_0156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus amyoliquefaciens XH7</td>
<td>bxh:BAXH7_00562</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paenibacillus beijingensis</td>
<td>pbj:VN24_22495</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exiguobacterium sibiricum</td>
<td>esi:Exig_0513</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus pseudofirmus</td>
<td>bpf:BpOF4_13005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceanobacillus iheyensis</td>
<td>oih:OB1140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnobacterium sp. 17-4</td>
<td>crn:CAR_c20620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinicoccus halodurans</td>
<td>shv:AAT16_13970; shv:AAT16_01510; shv:AAT16_14010; shv:AAT16_00070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solibacillus silvestris</td>
<td>siv:SSIL_3565</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium doosanense</td>
<td>cdo:CDOO_07935</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus durans</td>
<td>edr:LIU_14260</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kocuria rhizophila</td>
<td>krh:KRH_23210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kytococcus sedentarius</td>
<td>kse:Ksed_23430</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium terpenotabidum</td>
<td>cter:A606_00550</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecium NRRL B-2354</td>
<td>efm:M7W_13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geobacillus sp. C56-T3</td>
<td>gct:GC56T3_1826</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium humireducens</td>
<td>chm:B842_06105</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium callunae</td>
<td>ccn:H924_04305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geobacillus thermoleovorans</td>
<td>gte:GTCCBUS3UF5_</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain</td>
<td>Reference Nos.</td>
<td>GenBank Accession Numbers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geobacillus kaustophilus</td>
<td>46</td>
<td>gka:GK1692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermacoccus nishinomiyaensis</td>
<td>39, 46</td>
<td>dni:HX89_00255; dni:HX89_00435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium ureicelerivorans</td>
<td>41</td>
<td>cuv:CUREI_00645</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kocuria palustris</td>
<td>47, 43</td>
<td>kpl:KPaMU14_08335; kpl:KPaMU14_01730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium glutamicum SCgG2</td>
<td>38, 37</td>
<td>cgg:C629_00605; cgg:C629_11975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium deserti</td>
<td>38</td>
<td>cdx:CDES_00545</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium camporealisens</td>
<td>37</td>
<td>ccj:UL81_00275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium marinum</td>
<td>37</td>
<td>cmq:B840_13000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetragenococcus halophilus</td>
<td>34</td>
<td>thl:TEH_14250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium kroppenstedtii</td>
<td>36</td>
<td>ckp:ckrop_0602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geobacillus sp. JF8</td>
<td>47</td>
<td>gjf:M493_08730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium epidermidicanis</td>
<td>42, 34</td>
<td>cei:CEPID_12385; cei:CEPID_00290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium maris</td>
<td>44</td>
<td>cmd:B841_03275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium casei</td>
<td>38</td>
<td>ccg:CCASEI_00555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clostridium pasteurianum DSM 525</td>
<td>38</td>
<td>epae:CPAST_c11450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brevibacillus brevis</td>
<td>44</td>
<td>bbe:BBR47_27630</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium efficiens</td>
<td>43</td>
<td></td>
<td>cef:CE0282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus plantarum 16</td>
<td>36</td>
<td></td>
<td>lpz:Lp16_D005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melissococcus plutonius</td>
<td>39</td>
<td></td>
<td>mpx:MPD5_1685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus lehensis</td>
<td>33</td>
<td></td>
<td>ble:BleG1_3639</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Light blue indicates the presence of one homologue of the protein of interest. Dark blue indicates 2 homologues of the protein of interest. Black indicates more than 3 homologues of the protein of interest.
Figure 3.S1. Addition of Mn to the growth medium prevents Cu toxicity. The WT (JMB1100), copA (JMB4084), and copB (JMB3561) strains were spot plated in chemically defined media (20AA) with (A) 0µM Cu and 0µM Mn, (B) 0µM Cu and 100µM Mn, (C) 100µM Cu and 0µM Mn, or (D) 100µM Cu and 100µM Mn. Addition of Mn alone does not improve or affect the growth of the strains (Panel B). The copB strain has increased sensitivity to Cu (Panel C), but addition of Mn corrects the Cu sensitivity phenotype (Panel D).
Figure 3.S2. Copper sensitivity in *S. aureus* is independent of oxygen. (A) Strains deficient in copper detoxification (*bshA*, *copA*, *copB*, and *copA copB* mutants) do not have increased sensitivity to the superoxide generator methyl viologen (10 µM; 20AA media). A strain lacking superoxide dismutase (SodA) was used as a positive control. (B) The *bshA* and *copB* strains are sensitive to Cu (10 µM; 20AA media) when incubated under anaerobic conditions. Strains used in panels A and B: WT (JMB1100), *bshA* (JMB1382), *copA* (JMB4084), *copB* (JMB3561), *copA copB* (JMB7281), and *sodA* (JMB6203).
Figure 3.S3. Transposon insertion in \textit{copB} leads to a polar effect in \textit{cbl}. The WT (JMB1100), \textit{copB::tn} (JMB3561), \textit{copB\textDelta} (JMB7900), \textit{cbl::tn} (JMB7046), and \textit{cbl\textDelta} (JMB7711) strains were spot platted on chemically defined media (20AA) without (left) and with (right) 50 \textmu M Cu.
Figure 3.S4. The *copBcbl* operon is upregulated in a strain lacking the MntR regulator. Transcriptional activity of the *copBcbl* reporter was monitored in the WT (JMB1100) and *mntRΔ* (JMB1210) strains cultured in chemically defined media (20AA). Reporter used from strain JMB5372.
Figure 3.S5. The copBcbl operon is repressed under excess Mn conditions. The WT strain (JMB1100) containing the copBcbl reporter was grown in rich media (TSB) containing varying concentrations of Mn (0-2mM). Transcriptional activity of copBcbl was monitored over time. Data shown represents average of copBcbl expression at 8 hrs post sub-culturing using biological triplicates with standard deviation as error bars.
Preliminary results show that the addition of Mn prevents Cu toxicity in strains that are otherwise sensitive to Cu (Figure 3.S1). Why and how does Mn prevent Cu toxicity? To start addressing this question, we first need to know what the targets of Cu toxicity in *S. aureus* are. Data shown suggest that Cu toxicity is independent of oxygen; a *copB::tn* strain is not sensitive to oxidative stress and its Cu sensitivity phenotype repeats under anaerobic conditions (Figure 3.S2). These phenotypes suggest that, in *S. aureus*, Cu toxicity might not be a result of reactive oxygen species derived via Fenton-type chemistry. Because Cu can compete with other metals like Fe and displace them from metalloproteins, another cellular target of Cu are protein-bound Fe-S clusters. This leads to the following question: Does Mn prevent Cu from targeting Fe-S clusters? A possible mechanism is that Mn outcompetes Cu and prevents it from targeting and damaging Fe-S clusters. Note that these phenotypic assays were conducted using *copB::tn* strains. After constructing a *copBΔ* strain, we noticed that it did not have the same phenotype as the *copB::tn* strain (Figure 3.S3). Moreover, the *copB::tn* strain has the same phenotype as the *cblΔ* strain, suggesting that transposon insertion in *copB* leads to a polar effect in *cbl*.

MntR controls the expression of Mn uptake systems; *mntABC* is derepressed by MntR under low Mn conditions (Horsburgh et al., 2002). Preliminary results also show that *copBcbl* transcriptional activity is higher in an *mntR* mutant strain (Figure 3.S4), suggesting that the expression of *copBcbl* is negatively regulated by MntR. I also found that addition of Mn to the growth medium represses *copBcbl* expression (Figure 3.S5). A possible explanation is that MntR helps prevent copper toxicity by derepressing genes involved in Mn uptake (*mntABC*), leading to increased intracellular levels of Mn, as well as derepression of genes involved in copper detoxification (*copBcbl*). These data also
suggest that MntR controls the CsoR regulon (copAZ and copBcbl). It would be interesting to know whether strains deficient in copper detoxification (copA, copB, or cbl mutants) have increased expression of genes involved in Mn uptake and/or accumulate higher levels of intracellular Mn. Blocking Mn import would then prevent protection against Cu toxicity.

The host immune system limits Mn availability to invading pathogens and studies show that S. aureus uses Mn uptake systems as mechanisms to overcome Mn starvation during infection (Kehl-Fie et al., 2013). Mn uptake may be an additional mechanism employed by S. aureus to prevent Cu toxicity within macrophages. Preliminary studies show that a cbl mutant strain has decreased survival in macrophages (data not shown). It would be interesting to look at whether inactivation of the lipoprotein MntC (metal-binding component of MntABC uptake system) in a cbl strain further decreases the survival of S. aureus in macrophages. Decreased survival of a cbl mntC double mutant strain in macrophages would suggest that Mn uptake has a role in preventing Cu toxicity at the host-pathogen interface.
REFERENCES

number of acid-labile sulfur groups sharing an unpaired electron with iron. *Proc Natl Acad Sci USA* 60: 368–372.

