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ABSTRACT OF THE THESIS 

DISINTEGRATING PAPER-BASED TOUCH SENSORS  

By JIHYUN RYU 

Thesis Director: 

Professor Aaron Mazzeo 

 

This thesis investigates the disintegrating properties of compacted cellulose-based material 

used as touch sensors.  Pressurized compaction of powdered microcrystalline cellulose 

(MCC) enabled the fabrication of compacted substrates with quantities ranging from 50 

mg to 400 mg and with pressure from 45 to 135 MPa.  Along with the quantity of powdered 

MCC and compressive pressure, thin sheets had thicknesses varying from 190 to 1210 µm 

and porosities ranging from 19% to 47%.  With agitated flows of bubbles of 2.7 𝑐𝑚3

𝑠𝑒𝑐⁄  

to speed up the rate of transiency, the cross-sectional area of the substrates disintegrated 

by 89% to 100% in approximately an hour.  The area of the substrate was plotted as a 

function of time on a logarithmic scale to describe the transient, disintegrating behavior.  

The rate of disintegration was related to the degree of porosity and thickness of the 

substrates, according to dimensional analysis.  Touch sensors fabricated with stencil-

patterned electrodes made suitable platforms for other electronic components, tested with 

a microprocessor-based system.   
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1. Introduction 

The growing demand for electronics has led to shorten service life of devices, which 

has resulted in high levels of a waste stream, known as “E-waste” [1].  Conventional metallic 

and plastic electronic devices or components designed to be stable and widely used are 

generally non-renewable or non-degradable, which can potentially cause adverse 

environmental impacts as they often contain toxic materials such as gallium arsenide and 

cadmium[1][2].  New technologies in the subfield of degradable electronics[3] have 

demonstrated capabilities for complete dissolution in quiescent liquids[4][5].   

Hwang, et al. focused on the modeling/fabrication of transient electronic substrates 

which dissolved in quiescent bodies of water[5]. The “vanishing” nature of transient 

electronic devices in quiescent liquids ranged from minutes to days depending on the 

composition of the substrate[5][6].  However, there are still open questions about modeling 

and characterizing the dissolution or disintegration of transient electronic devices in 

agitated flows of solvent.  There are opportunities to reduce the cost and complexity of 

materials and processes used for the fabrication of electronic devices with the use of 

environmentally sustainable materials, such as paper-based or polymer-based 

materials[7][8][9].  Such cellulose-based materials are receiving attention as potentially 

versatile, cost-effective electronic devices and sensors.  These renewable materials refined 

from trees or plants may be suitable as substrates for the manufacture of low-cost, simple, 

and efficient electronic components.   

Powdered microcrystalline cellulose (MCC), often utilized in pharmaceutical 

tablets as a binding material, has configurations of regularly repeating cellulose polymer 

chains that are stable when exposed to moisture[10][11].  While not soluble in water, 
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compacted MCC will disintegrate or separate into microscopic particles with agitation.  

Many experiments have used a rotating paddle in a container with standardized geometries 

to characterize the disintegration of compacted tablets.  As the rotating speed of a shaft 

increases, the flow shortens the time to disintegrate the substrates[12].  For MCC compacted 

at a pressure higher than 80 MPa, it can take more than an hour to disintegrate completely 

in a container with a mixing flow[13].  Nonetheless, substrates for electronic applications 

will likely require distinct aspect ratios with thin sheets instead of thick tablets, and there 

appears to be a lack of information in the literature concerning the disintegration of thin 

sheets of compacted MCC. 

The overarching goal of this work is to understand how agitation affects the rate of 

disintegration of cellulose-based substrates suitable for transient electronic applications.  

The use of mechanically agitated solutions with bubbly flows enhances the mixing 

performance and the disintegration of substrates.  As expected, the above process 

successfully degrades transient electronic devices at faster rates than in quiescent flows.  

This work also presents the Buckingham-Pi Theorem-based dimensional analysis to 

address the scalability of the approach. 

Since cellulose-based substrates behave as insulators (i.e., resistance to flow of 

electric charges), a conductive material was printed on the substrates to build paper-based 

circuits.  Conductive paint (Bare Paint) is an inexpensive, non-toxic material that quickly 

dries at room temperature.  It is also compatible with many surfaces including paper, 

plastic, and fabrics.  In this work, we employed this conductive ink to pattern electrical 

traces without soldering on the cellulosic substrates.  The electrical traces handled low-

current electrical signals with potentials between 0 and 5 Volts.  
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2. Experimental Design 

The fabrication and characterization of a transient touch sensor required multiple 

experimental steps: pressurized compaction, mechanical agitation, stencil-based patterning 

of conductive traces, and testing with an Arduino-based system.  Pressurized compaction 

was the method used for the fabrication of a thin sheet from a powder.  Mechanical 

agitation with a bubbly flow facilitated disintegration of substrates.  Stencil-based 

patterning applied conductive ink that served as electrical circuitry on the surface of the 

insulating compacted MCC.  The Arduino-based system served as the electronic system 

for detecting touch. 

 

2.1. Compaction of Microcrystalline Cellulose 

Direct compression is the key mechanism employed to fabricate thin transient 

substrates for electronic touch sensors.  This manufacturing process is simple and similar 

to conventional techniques for tableting, which enable the mass production of tablets with 

desired uniformity.  For the pressurized compaction, we initially constructed a punch tool 

made of steel.  Turning a metallic rod in a lathe, we fabricated a flat-faced punch with a 

diameter of 19.0 mm (i.e., 0.75 inches).  To machine a die cavity with a thickness of 3.5 

cm, we drilled a hole cut through the center of a metallic plate to match the punch.  The 

punch and die system formed a thin sheet by localizing the applied pressure with a small 

clearance which restricted the radial expansion of the powder.  For pressurized compaction, 

we started with placing a specified mass of powdered MCC in the oven under the 

temperature of 50 ºC for 30 minutes to evaporate the moisture and limit the variable effects 

from humidity.  The dried powder was manually fed into the enclosed cavity of the die.  
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Figure 1a describes the initial volume occupied by the un-compacted powdered MCC was 

greater than the compacted volume of the discrete particles.  A manual hydraulic press 

(Carver Lab Press) provided compressive pressure to compact the powdered MCC to a thin 

sheet.  The punch dwelled in the die for 30 seconds. During the compaction, the 

compressive pressure plastically deformed the powdered MCC and increased the area of 

internal bonding.  Hence, the plastic deformation caused the reduction in the volume of 

pores between the discrete particles as illustrated in Figure 1b.  Figure 1c shows a thin sheet 

fabricated with 200 mg at 90 MPa with a diameter of 19.0 mm (i.e., 0.75 inches).  

The difference in the amount of powdered MCC used for pressurized compaction 

resulted in a varying range of thicknesses for the thin sheets.  In ascending order of mass 

from 50 mg to 400 mg (i.e., 50 mg, 100 mg, 200 mg, and 400 mg), the thicknesses of thin 

sheets showed the pressure dependent tendency.  Varying the compressive pressure ranging 

from 45 MPa to 135 MPa (i.e., 45 MPa, 90 MPa, and 135 MPa), we set 12 combinations 

along with the masses and pressures: Combination 1 (50 mg and 45 MPa), Combination 2 

(100 mg and 45 MPa), Combination 3 (200 mg and 45 MPa), Combination 4 (400 mg and 

45 MPa), Combination 5 (50 mg and 90 MPa), Combination 6 (100 mg and 90 MPa), 

Combination 7 (200 mg and 90 MPa), Combination 8 (400 mg and 90 MPa), Combination 

9 (50mg and 135 MPa), Combination 10 (100mg and 45 MPa), Combination 11 (200mg 

and 135 MPa), and Combination 12 (400mg and 135 MPa).    
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Figure 1: Schematic rendering for direct compression to prepare thin sheets from the 

powdered MCC using a manual hydraulic press.  (a) Initial state for pressurized compaction 

in the punch and die system with the powder distributed randomly throughout the die mold 

before the application of compressive pressure.   (b) Maintaining the peak pressure to 

compress the powdered MCC for 30 seconds.  (c) Photo of a thin sheet compacted with 

200 mg of MCC at 90 MPa which had a diameter of 19 mm and a thickness of 540 µm.  

The corresponding thicknesses were proportional to the amount of MCC used, while the 

thicknesses were inversely proportional to applied pressure. 
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2.2. Platform for Testing the Disintegration of Substrates in 

Bubbly Flows 

As stated above, this work focused on how bubble-agitated water enhanced the rate 

of disintegration of a transient substrate.  To track the changing area of a thin sheet, we 

first assembled the testing platform.  The testing platform consisted of an acrylic box and 

a cylindrical test area made of sections of syringes with inner diameters of 24.0 mm.  A 

small supporting unit with a mesh screen held the substrate apart from the camcorder (Full 

HD 60p from Sony) with a distance of 17.0 cm.  The unit with mesh screen was removable 

and placed approximately 3.0 cm away from the top edge of the cylinder and 2.5 cm above 

the surface of the water.  Before gluing the cylinder and acrylic box using epoxy glue and 

silicone adhesive (Sil-poxy from Smooth-On) to prevent water leakage, we drilled a hole 

with an outer diameter of 3.20 mm (i.e., 0.13 inches) at a contact surface of the cylinder 

and acrylic box to connect the air pump and bubble distributor via air tubes.  In the middle 

of the air pump and a bubble distributor, we placed a control valve that allowed the 

streaming of air flow in one direction.   

The system successfully agitated the water with bubbles to disintegrate compacted 

thin sheets of cellulose and recorded the shrinking cross-sectional areas of the substrates 

by timed acquisition of still images with the camcorder.  To acquire the images, we stopped 

injecting the air to a bubble distributor for 10 seconds to 1 minute and waited for the water 

to stagnate before taking a snapshot. 

The rate of bubbly flow was proportional to the applied pressure from the air pump.  

To control the rate of flow, we placed a needle valve (Ultra Precision Needle Valve from 

Ideal Valve) between the air pump and the air distributor as shown in Figure 2a.  We opened 
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the valve to have an upstream pressure of 17.0 kPa (2.5 psi) and a downstream pressure of 

14.0 kPa (2.0 psi). Volumetric flow rate corresponding to the number of turns is 

           𝑄𝐺 =  962 ×  𝐶𝑣 √
𝑃1

2−𝑃2
2

𝑆.𝐺.×𝑇
 ,                                                (1)  

where 𝑃1and 𝑃2are the upstream and downstream pressures of air in the units of psig, 𝐶𝑣 is 

the flow coefficient of the needle valve with the maximum value of 0.08 in increment of 

0.004 for each turn, S.G is the specific gravity of air which has a value of 1.0 where air at 

70 ̊F and 14.7 psia, and T represents the absolute temperature in degrees Rankine.   

The number of bubbles varied along with the speed of the bubbles.  A high-speed 

camera (Basler 180km) captured the bubbles that flowed upward in the water at intervals 

of 0.017 seconds (i.e., 60 fps).  During the image processing, a set of recorded images for 

30 seconds enabled us to count the number and calculate the volume of bubbles that passed 

through an arbitrary line.  We then converted the volumetric flow rate into a mass flow 

rate.  Tracking bubbles along subsections of test areas at different depths, we made 

coordinated measurements of the bubbles to ensure the accuracy of the measurements of 

the average flow rate.  With an assumption that the air bubbles were spherical, we used the 

Ideal Gas Law to describe the relation of gas molecules to their environment through 

pressure, temperature, and volume: 

                                                           P × V = 𝑛 × 𝑅 × 𝑇,                                                (2) 

where P is the absolute pressure of air, V is the volume the gas occupies, n is the number 

of moles of gas present, R is the universal gas constant, and T is the absolute temperature 

in degrees Kelvin.  Because the amount of air in the unit volume represented the density, 

the expression for the density is obtained by rearranging the Ideal Gas Law    
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                                                               ρ =  
𝑀×𝑃

𝑛×𝑅×𝑇
 ,                                                        (3) 

Knowing the density of air, the product of the density and volumetric flow rate gives the 

mass flow rate 

                                                                𝑚̇ =  𝜌 × 𝑄,                                                       (4) 

The hydrostatic pressure varies along with the depth from the place of substrate to the 

bubble distributor can be simply expressed by 

                                                         P =  ρ𝑤𝑎𝑡𝑒𝑟 × g ×  h,                                              (5) 

where ρ is the density of water at 15 ºC, g is the gravitational acceleration, and h is distance 

a bubble travels along the graduated cylinder.  Substituting the hydrostatic pressure in place 

of pressure in the Ideal Gas Law, the equation for mass flow rate is 

                                                       𝑚̇ =  
𝑀× ρ𝑤𝑎𝑡𝑒𝑟×g× h 

𝑛×𝑅×𝑇
∗ 𝑄,                                           (6) 
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Figure 2: Experimental setup for characterization of the disintegration of a thin sheet of 

compacted cellulose.  (a) Schematic rendering of the platform for the disintegration of a 

transient substrate in bubble-agitated water.  A camera captured the changing areas of 

transient substrates used for image processing.  The needle valve controlled the pressure of 

the air.  (b) Photo of the setup taken by the camcorder from above the experiment.  Initially, 

a thin sheet was placed on the mesh screen approximately 2.5 cm above the surface of the 

water.  After introducing the bubble-agitated water, a thin sheet immersed into the water 

and bubbles forcibly broke apart a substrate and then disintegrated residue sunk to the 

bottom when they were small enough to pass through the mesh screen.    
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2.3. Printing of Conductive Traces on a Substrate 

A cellulose-based material derived from wood pulp is an electrically resistive 

material which forms the substrate.  A dielectric constant is an index which describes the 

ability of a capacitor to store charges[14].  For the measurement of a dielectric constant for 

the compacted substrates, we applied the conductive ink on both surface of a thin sheet to 

make a parallel-plate capacitor containing a dielectric that filled the voids between the 

surfaces.  The dielectric constant, denoted by 𝜀𝑟, is calculated by 

𝜀𝑟 =  
𝐶×𝑑

𝐴×𝜀0
,                                                             (7) 

where C is the capacitance of a thin sheet, d is the thickness of a substrate, A is the area of 

surface, and 𝜀0 is a permittivity of air (i.e., 8.854*10−12 F/m).   

The substrate is further patterned with conductive electrodes to create a touch 

sensor.  Patterning the electrode, as demonstrated step by step in Figure 3, involves 

masking the compacted MCC with a stencil pattern[15] and applying the conductive ink to 

the opened areas rendered by stencil.  A laser engraver (VersaLaser from Universal Laser 

Systems) is used to cut the desired pattern in the stencil with the dimensions of 11 mm 

width and 17 mm height on a self-adhering film (Frisket Film), then attached it to the 

substrate as illustrated in Figure 3a.  To secure the attachment of film and substrate, we 

gently rubbed and tapped the portion of contacting area with a tip of a blunt object.  Figure 

3b represented that the use of a squeegee allowed spreading of the uniform thickness of 

conductive material along the open mask to accommodate a desired trace of electrodes on 

the compacted thin sheet.  To keep substrates away from the humidity and increase the rate 

of drying, we placed the substrates in the plastic container for 15 min keeping them at room 
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temperature.  After the conductive ink was sufficiently dried, we carefully removed the 

film as depicted in Figure 3c.  The thin sheet compacted with Combination 7 had a diameter 

of 19 mm as shown in Figure 3d.  The positive and negative charges on each of electrode 

attracted each other, but the charges coalesced on the electrodes because MCC placed 

between them.   
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Figure 3: Schematic illustrations of stencil-based method for patterning the electrode on 

substrate to fabricate of a capacitive button.  (a) Laser engraved stencil to create the open 

pattern on the thin film.  The open mask was self-adhesive on the surface of substrate.  (b) 

Throughout the substrate, squeegee uniformly spread the conductive ink along the pattern.  

(c) After detaching the mask from substrate, a button had E-shaped electrodes composed 

of conductive ink.  A winding path made of the exposed MCC divided electrodes of button.   

(d) Photo of a single capacitive button. The tape secured the attachment of wires on each 

electrodes.   
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2.4. Electrical Characterization and Sensing of Touch 

Each button described in this work is a capacitor which has the ability to store an 

electrical energy.  To test the sensing of a touch, we built a simple circuit comprised a 

capacitive button, resistors, several electronic components, and Arduino-based system.    A 

button connected to the resistor with a value of 330 kΩ and a voltage source in series to 

have a first order RC circuit (left) allowing to detect a capacitance changed by measuring 

the impedance when finger bridged the electrical trace as described in Figure 4a (right).  

The resistor limited the voltage across the capacitor cannot instantly respond to a change 

in the voltage source.  Arduino Uno generated the step input of 5V to RC circuit and 

detected how much time the capacitive button took to charge, giving it an estimate of the 

capacitance[16].  An integrated circuit (IC) combined with the RC circuit was a voltage 

amplifying device, the operational amplifier (op-amp).  The difference between the input 

and output impedances determined the gain of the op-amp.  By taming the high differential 

voltage, the output signal is in-phase with the signal of entry, and then the non-inverting 

operational circuit produced a unity gain.  To buffer the output signal when a finger touched 

a button that flowed into the RC circuit, we used an operational amplifier (µa741) to build 

the voltage follower.  Figure 4b depicted the simple circuit for the sensing of touch.  Digital 

input pins of Arduino UNO only offered two possible states, which were on or off.  A 

finger triggered the circuit with some impedance as described by the paper on paper-based 

touch pads[7].  When a finger bridged the gap between the active electrode and grounded 

electrode, the Arduino-based system detected the changes in capacitance, then lit up the 

light emitting diode (LED). 
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Figure 4: Schematic drawing for sensing of touch of a single button that formed the RC 

circuit.  (a) Description of an ideal RC circuit without (left) and with (right) external 

coupling of the finger.  Since human body contains the water act as electrolytes which 

caused the change the capacitance in the RC circuit when finger touched a capacitive 

button.  (b) Arduino UNO lit up the LED by estimating the time to charge the button when 

finger bridged the active and ground electrodes.    
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2.5. Characterization of Disintegration of Substrate 

For the scale of transience, the observations of the changing area as a function of time 

explain how bubbles enhanced the disintegration of the individual thin sheet, fabricated 

with different experimental combinations.  Each set of combinations consisted of twenty 

consecutive images taken by the camcorder during the assigned time domain ranging from 

0.5 seconds to 1 hour in a logarithmic scale; then the images were evaluated to track the 

change in the size of compacted thin sheet.  MATLAB Image Processing Toolbox detected 

the size reduction of a thin sheet remained on the mesh screen and eliminated the undesired 

segments that caused the error in calculation of the area of substrate.  For example, the 

script for morphological enhancement and analysis techniques removed a mesh screen 

placed beyond of the substrate and reflection of light on the surface of water in the object 

processing.   

Based on the changing area as a function of time, increasing the compaction pressure 

brought the particles closer to each other that caused a decrease in the degree of porosity.  

A thin sheet compacted with Combination 12, in turn, had the lowest porosity, resulting in 

the slowest speed of the disintegration of the 12 combinations.  Through the dimensionless 

analysis, we made the expectation of the behavior of a system, including the parameters 

that affected the rate of the disintegration of transient substrates with a limited number of 

experiments.  The basic theorem of non-dimensional analysis supported the effect of 

porosity using the relationship between the physical quantities and the magnitudes of the 

base units to derive the logical consequences.  The Buckingham Pi theorem simplified a 

physical problem by appealing to dimensional homogeneity that enabled the limited 
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number of dimensionless П parameters to acquire the propensity of the disintegration in 

the water. 

 

3. Results and Discussion 

Regarding the disintegrating touch sensor, this section refers to the aspect of 

disintegration of transient substrate and performance of electrical touch sensor/ keypad: the 

transient behavior as a degradable substrate in the bubble-agitated water and the 

functionality as an electrical touch sensor.   

 

3.1 Disintegration of Transient Substrate 

As a consequence of the densification of powdered MCC, the quantity of powdered 

MCC varied the resulting thicknesses of transient substrates.  The use of a micrometer 

(Anytime Tools) enabled the measurement of the thickness of each combination. We 

measured the thickness at five points (i.e., center, top, bottom, left, and right), used to 

calculate the degree of pore structure in thin sheets.  Since the die cavity limited the radial 

expansion, the thickness is the only concern, closely associated in the porous structure of 

a thin sheet.  The porosity of MCC played a major role in the calculation of volume.  The 

equation for the porosity was simply defined as a ratio of bulk to true density of the thin 

sheet.  The porosity was inversely proportional to bulk density complied with thickness of 

the substrate 

                                𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 − 
𝜌𝑏𝑢𝑙𝑘

𝜌𝑡𝑟𝑢𝑒
,                                            (8) 
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The value for theoretical true density of powdered MCC is 1.60  
𝑔

𝑐𝑚3⁄  [16] which had a 

constant value at room temperature, while the thickness of a tablet varied correspondingly 

to the experimental conditions of compression.  Consequently, a given quantity of MCC 

compressed at different pressure, thinner substrates have the higher density.  Combinations 

1 through 4 fabricated with the compressive pressure of 45 MPa had resulting thicknesses 

of 210 µm, 350 µm, 640 µm, and 1210 µm, and their corresponding porosities were 47%, 

37%, 32%, and 28 %, respectively.  At the pressure of 90 MPa, the thicknesses of 

Combinations 5 to 8 were 200 µm, 310 µm, 610 µm, and 1130 µm while their porosities 

were 45%, 30%, 28%, and 22 %, respectively.  For the remaining four combinations with 

135 MPa, the thicknesses were 190 µm, 300 µm, 570 µm, and 1080 µm, porosities were 

43%, 30%, 23%, and 19 %, respectively.  This differences was used for tracking the area 

changing in the bubble-agitated water.  Thin sheets produced with 12 combinations, the 

thicknesses were inversely proportional to the degree of porosities.   

  Each experiment for the disintegrating 12 combinations was conducted two times in 

the bubble-agitated water to increase the accuracy of image processing; then we averaged 

each set of data to identify the difference in the rate of disintegration regarding the change 

in the degree of porosity.  The wide range of thickness domain and the level of porosity for 

compacted MCC, therefore, had significant impact on the rate of disintegration.  With 

given restrictions varying the compressive pressure and the mass of powder for compaction 

of cellulosic powder, porosities, which affected the speed of the disintegration, complied 

with the thickness of the substrate.  The bubble distributor controlled by the needle valve 

provided the bubbly flow with the volumetric flow rate of 2.7 𝑐𝑚3

𝑠𝑒𝑐⁄  (i.e., 0.08 mg/sec).  

Figure 5 showed five serial images that captured the  
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Figure 5: A set of five images demonstrated the disintegration of a transient substrate in 

the bubble-agitated water with the volumetric flow rate of 2.7𝑐𝑚3/ 𝑠𝑒𝑐.  To facilitate 

visualization, the contrast adjusted images (left) were juxtaposed with the post-processed 

images (right).  The script used in image processing detected an outline of the 

disintegrating substrate, and then calculated the area of residues on the mesh screen.  (a) 

Before introducing the bubbly flow, a thin sheet was placed on the mesh screen.  (b) After 

5.5 seconds, bubbles broke the substrate into several chunks of particle.  (c) Air drastically 

reduced the size of a compacted MCC in 48 seconds.  (d) For about 10 minutes, agitated 

water disintegrated more than half of the transient substrate.  (e) Only a few particles 

remained on the mesh after 1 hour.    
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changing area of a transient substrate at different times and their corresponding post-

processed images.  The MATLAB script converted the contours of a particles remained on 

the mesh screen into the post-processed images.  The bubble-agitated water gradually 

disintegrated Combination 7, as a consequence, the introduced bubbles degraded 30%, 

48%, 89%, and 99 % of the initial size of a thin sheet after 5.5 seconds, 48 seconds, 630 

seconds, and 1 hour, respectively.  This tendency of size reduction of transient substrates 

in bubbly flow also emerged from the other 11 combinations. 

Figure 6 illustrates the effectiveness of bubble-agitated water on the rate of 

disintegration of thin sheets.  Along with the techniques of image processing for the 

calculation of the changing area, it was possible to make a comparison between with and 

without bubbly flow from the semi-log plot of which represented the size of particles 

remained on the mesh screen as a function of logarithmic time.  When the water contacted 

with the compacted MCC, the molecules of the water weaken the intermolecular bonds by 

moving away from each other. As compacted thin sheets absorbed the water, it 

subsequently swelled rather than dissolving or disintegrating by contacting with the water.  

As a result, the areas of the substrates grew and the cracks appeared on the surface. 

The area of a substrate in the bubbly flow decreased sharply corresponding to the 

quantity of powdered MCC used and the degree of porosity.  The efficacy of bubbles in 

the disintegration of compacted substrates was analyzed by comparing the changing area 

of a thin sheet in the bubble-agitated to in the quiescent water.  Under the given volumetric 

flow rate of 2.7 𝑐𝑚3

𝑠𝑒𝑐⁄  for all 12 combinations, the bubbly flow degraded half of the thin 

sheet in five minutes, while the remaining residues required a longer time to be broken 

apart since the beginning stage of disintegrating test had a higher possibility for the   
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Figure 6: The plot in logarithmic scale illustrates how bubble-agitated water enhanced the 

size reduction of thin sheets depending on the quantity of powdered MCC: (a) 400 mg, (b) 
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200 mg, (c) 100 mg, and (d) 50mg.  The dashed lines represent the area when the substrates 

became the quarter of the initial size.  All the substrates experienced swelling when water 

penetrated the voids and weakened the internal bonding of compacted thin sheets.  

However, the data set with 400 mg of MCC show this occurrence.  The bubbles completely 

disintegrated the group of thin sheets which have degrees of porosity above 28% (i.e., 

Combinations 1 through 6, and 9).  The bubbly flow disintegrated 98%, 97%, 95%, and 89 

% of the transient substrates compacted with Combinations 7, 8, 11 and 12.    
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collision to occur between the bubbles and the thin sheet compared to the rest of 55 

minutes.  There was a correlation between the porosity, which determined the hardness of 

the substrates, and the rate of the disintegration of the substrates in the bubbly flow. The 

bubbles disintegrated entire substrates fabricated with Combinations 1 through 7, and 10 

within 1 hour. However, 2.4%, 2.6%, 5.5% and 11% of residues remained on the mesh 

screen for the Combination 6, 9, 11, and 12, respectively.     

By using fundamental parameters that influenced the rate of size reduction of a 

substrate, we derived three sets of non-dimensional parameters.  The use of constant values 

for a volumetric flow rate, the area of thin sheets, and a theoretical density for powdered 

MCC facilitated the creation of the plot that visualized the relationship among the non-

dimensional parameters.  The elapsed time depended on the properties of a substrate and 

the bubbly flow.  We treated R as the time required for the size reduction of substrate that 

dominated the rate of disintegration and assume that  

R = f (𝑊1, 𝑊2, 𝑊3, 𝑊4, 𝑊5),                                              (10) 

where 𝑊1= Q, the speed of bubbly flow, 𝑊2= h, the thickness of transient substrate, 𝑊3= 

ρ, the density of MCC, 𝑊4= m, the amount of powder used for pressurized compression, 

𝑊5=A, the area of the substrate, and R=t, the time needed to be quarter size of original 

substrate.  The quantities involved three mechanical fundamental dimensions M, L, and T 

(i.e., mass, length, and time).  In the units we adopted in the previous step, the primary 

dimensions of the quantities composed of the independent dimensions: [Q] =𝐿3𝑇−1, [h] 

=L, [ρ] =M𝐿−3 , [m] =M, [A] =𝐿2 , and [t] =T.  We reduced the total number of the 

dimensional parameters by solving the dimensional equations to obtain three non-
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dimensional П groups: 𝜋1 =
𝑄∗𝑡

ℎ3 ,  𝜋2 =
𝜌∗ℎ3

𝑚
, and 𝜋3 =

𝐴

ℎ2 . By substituting third 

dimensionless parameter for the variable in the 𝜋2, then we set out the function: 

𝜋1 = 𝑓(𝜋2),                                                       (11) 

or filling in the П-terms gives: 

𝑄∗𝑡

𝐴1.5  = 𝑓 (
𝜌∗ ℎ3

𝑚
 ),                                                 (12) 

The first non-dimensional parameter, 𝜋1 included the variables related to the disintegrating 

test.  Within the confines of the dimension of a thin sheet, we expect that less time will be 

required for the disintegration when an air pump provides a higher speed of bubbles, 

whereas the substrates with larger area will take longer time to disintegrate given a specific 

flow rate.  Referring the propensity of a thin sheet depended on the quantity of a powder 

used for the pressurized compaction and the compaction pressure, 𝜋2 accounted for the 

property of a compacted MCC.  As a larger amount of pure powdered MCC was used for 

compression at the given compressive pressure, the thickness is increased cubically so that 

𝜋2 is extremely sensitive to the thickness of substrate.  In addition, if we use the same 

amount of a powder consisting of MCC and lactose powder, the thickness of a compacted 

pellet of the binary mixture will be changed relying on the weighted fraction and the 

densities of two components.   

As shown in Figure 7, the correlation of two non-dimensional parameters enabled 

the anticipation of the proclivity of the rate of disintegration of the substrate and might be 

useful for predicting outcomes from future experiments.  According to the log-log plot for 

the Buckingham Pi Theorem, the amount of powdered MCC and the resulting thickness 
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distinguished the time needed to reduce the area of the substrates under the constant speed 

of bubbles as the porosity was inversely proportional to the density of the compacted MCC.  

For example, the substrate compacted with Combination 1, which had the highest porosity 

among 12 combinations, took the shortest time in the disintegration compared to the other 

combinations.  The applied compaction pressure also influenced on the hardness of 

substrate, a higher compressive pressure strengthened the internal bonding of compacted 

MCC causing a slower size reduction, nevertheless, involved the same ratio of the pore 

structure.  Based on the numeric data from the disintegrating test, less time was required to 

disintegrate the substrate with a higher degree of porosity, which had the consistency of 

the physical interpretation of the rate of disintegration of the transient substrate. 
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Figure 7: The Buckingham Pi Theorem supports the significance of the porosity in the rate 

of size reduction using the relationship between two dimensionless parameters.  The 

porosity can be an index to predict the speed of disintegration without the experimental 

data.  The solid lines connect the group of thin sheets which has equal quantity of powdered 

MCC and the dashed lines tie with the combinations compacted at the same compressive 

pressure.  When comparing porosity values, Combination 1 includes the most porous 

structures among the 12 combinations.  It has the fastest speed of disintegration which 

reduces to be a quarter of the initial size.  The substrates compacted at a higher 

compressive pressure result in a lower porosity with a slower rate of disintegration.   
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3.2 Performance of Touch Sensor and Digital Keypad 

To measure the insulating property of compacted MCC, impedance analyzer 

(HP4192A) was used to measure the changes in impedance and capacitance of compacted 

MCC at varying frequencies between 5 Hz and 13,000 kHz.  Combinations 4 and 8, which 

varied in the thickness of the substrates, resulted in dielectric constant measurements 

ranging from 1.0 to 2.4.  We demonstrated the functionality of a button by using the LCR 

meter (B&K Precision).  Upon touching the button, the capacitance increased from 17 pF 

to 5.5µF responding to touch.  Ten corresponding capacitive buttons were arranged in a 

block to create a digital keypad for the application.  A printed circuit board (PCB) 

physically integrated ten electrical touch sensors with the surface-mounted wirings. The 

wirings were aggregated with an Arduino-based system via 11 pins block terminal, 

soldered on PCB.  We designed a single layered PCB (OSH Park) with dimension of 8 cm 

width by 11 cm height as shown in figure 8a.  The PCB had ten with 12 mm a diameter 

holes for each button that allowed the bubbles flow through the buttons attached on the 

board.  Conductive ink was used to form a trail between the buttons and the PCB.  The 

touch sensors were further connected to the pad of each assigned wiring on the surface of 

the PCB to transmit the electrical signal when the finger touched the touch sensors.  To 

distribute the electrical signals to each corresponding buttons, we used a demultiplexer chip 

(TI CD4067 BE 1:16), a 16-bit microcontroller, which sufficiently forwarded one electrical 

signal to 10 individual buttons.  The demux took single input from touching, then switched 

and transmitted the binary information to activate the output on the unique channel while 

others remained inactive.  As a result, the connection of the demux with the RC circuit and 

an op-amp on the breadboard equalized the output to each button on the digital keypad.  
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On the other breadboard, we employed ten LEDs connecting to each digital input pin on 

the Arduino UNO to response the touching as seen in Figure 8b.  Each button has 

interdigitated eletrodes with individual conductive trace to form an active electrode, while 

all the buttons share the same electrical ground. The produced measurable changes in 

capacitance triggered the corresponding LED when the finger bridged the electrical traces 

on individual capacitive button.  Simultaneous touching of multiple touch sensors caused 

lighting multiple LEDs. 
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Figure 8: A digital keypad with capacitive buttons integrated with a conventional PCB.  

(a) Photo of a keypad comprising ten touch sensors on the PCB. With the dimension 8 cm 

width and 11 cm height, the single layered PCB has ten holes, composed of three rows and 

three columns numbers of “1” through “9”, and another extra row has the place for the 

number of “0”.  An 11-pin block terminal aggregates the surface wirings on the PCB to 

transmit the measurable changes in capacitance to the Arduino-based system.  (b) Photo 

of all the electrical components connected on the breadboard and Arduino UNO.  (c) Each 

touch sensor addressed an individual LED.  The corresponding LED lit up when the finger 

touched button “4”.  
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4. Conclusions 

The use of powdered MCC exhibited the possibility that will open up new 

opportunities in the field of transient touch sensors.  The pressurized compaction of pure 

MCC varied the thicknesses of thin sheets containing the different degree of pore structures 

that related to the transience of substrates.  The plots for the changing area of thin sheets 

as a function of time in the logarithmic scale accounted for the efficacy of the bubble-

agitated water which disintegrated the compacted substrates much more quickly than sheets 

left in quiescent water.  The Buckingham Pi Theorem provided the information associated 

with the porosity and the rate of size reduction from the bubbly flow based on the numerical 

data obtained from the disintegrating experiment.  The technique for the stencil-patterning 

of electrodes granted a conductive property to thin sheets in the fabrication of capacitive 

button.  The touch sensor triggered a reaction with an Arduino-based system that activated 

the LED when the finger bridged the electrical traces.  By integrating ten touch sensors 

with the conventional electronic device, a digital keypad served as a demonstration. 

In the future, thin sheets with binary mixtures consisting of MCC and other 

components, such as powdered lactose or disintegrant, will vary the rate of the 

disintegration of the substrate including the pore structures in the bubble-agitated water. 

The speed of bubbles controlled by the concentration of chemical reactions may enhance 

the efficiency of the size reduction of a transient substrate.  In addition, the mixture 

potentially enable the fabrication of a flexible and degradable electronic device. 
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Appendix A: Supplementary Figures 

 

Supplementary Fig. 1: The swelling effect of compacted thin sheet with combination 6 

(i.e., 100 mg of powdered MCC compacted at 90 MPa).  When the substrate was immersed 

in the water, the water soaked into the porous regime of the substrate, and then reacted with 

the amorphous region of compacted MCC.  The swelling can lead to cracks on the surface 

of a substrate regardless of the quantities of MCC used for compaction.  The comparison 

of the area of the substrate based on the diameter was obtained from the object analysis in 

MATLAB Image Processing Toolbox to verify the swelling effect of water.    
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Supplementary Fig. 2: Images of the changing area of a button of Combination 7 (i.e. 200 

mg of powdered MCC compacted at 90 MPa).  (a) Before introducing the bubble-agitated 

water, it was possible to observe the E-shaped electrode.  (b) 3.3 seconds after introducing 

the bubbles, a button swelled and became disfigured as the substrate absorbed the water.  

(c) After 20 seconds, the bubbles broke the button apart into small pieces, becoming 

unrecognizable.  (d) 110 seconds later, water dissolved the majority of conductive ink on 

the substrate.  (e) Only a few pieces of residue without conductive material remained on 

the mesh screen over 1 hour.  When comparing the button to the substrate fabricated with 

same condition, the area of leftover was approximately 2.2 times as large as that of 

Combination 7.  
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Supplementary Fig. 3:  The step by step of image processing.  (a) The size of the original 

image was befitted to focus on the desired area of the substrate (“imcrop”).  (b)The cropped 

image was converted to gray scale for further morphological enhancement and analysis 

(“rgb2gray”).  (c) The limitation of the luminance removed the background characteristic 

such as the mesh screen and reflection of water to facilitate the dilation of fragments on the 

images (“imopen”).  (d) By selecting the brightness within the specified ranges and eroding 

the selected pixels to neighboring pixels, the areas of post-processed images were 

approximately same as raw images (“imadjust”).  (e) To calculate the numerical value of 

the area of the substrate, the adjusted image was converted into a black and white image 

(“im2bw).  In the final step, we converted the unit of collected data into the metric system 

and then plotted the calculated area as a function of the semi-log scale of time.   
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Supplementary Fig. 4: Two possible reasons for the difference in the ideal porosity and 

the actual porosity may be due to manufacturing imperfections: the uneven thickness of a 

thin sheet and misalignment of punch.  (a) When the powdered MCC was randomly 

distributed throughout the die cavity, the flat-face punch compressed the protruding 

particles.  Hence, the resulting thicknesses were uneven, potentially, the degrees of porosity 

were not linearly proportional to the quantity of powdered MCC.  (b) The misalignment of 

the flat-face punch during the pressurized compaction caused the gradient on the substrate.         
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Supplementary Fig. 5: The example case of errors caused from object analysis in the 2D 

Image Processing.  This example illustrates three types of error: Merging of two particles 

in layers, in adjacent placement, and missing the particles due to the intensity of luminance.  

When the particle was placed above the other particle or adjacent to neighboring particles, 

2D image processing recognized them as a large chunky particle.  The limitation of the 

intensity of light to eliminate background characteristic also caused the error. By analyzing 

a total 720 images at once with same pixel selection, the post-processed images omitted 

the area of particles. 
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Supplementary Fig. 6: The dielectric constant of compacted thin sheets with 

Combinations 4 and 8.  The resulting dielectric constant are lower than 2.5 which means 

the compacted thin sheets have insulating property.   

 

 

 

 

 

 

 



36 

 

 

Appendix B: Supplementary Table 

Mass (mg) Pressure (MPa) Thickness (µm) Porosity 

(%) 

Size reduction of 

wafer (time to 

completely 

disintegrated) 
0 seconds Relaxation 

(2 Hours 

later) 

 

50 

45 (Comb.1) 205 210 47 100% (4.8 mins) 

90 (Comb.5) 200 200 45 100% (11 mins) 

135 (Comb.9) 190 190 43 100% (16 mins) 

 

100 

45 (Comb.2) 330 350 37 100% (10 mins) 

90 (Comb.6) 310 330 30 100% (38 mins) 

135 (Comb.10) 300 305 28 98% 

 

200 

45 (Comb.3) 600 640 32 100% (21 mins) 

90 (Comb.7) 560 610 28 99% 

135 (Comb.11) 520 570 23 95% 

 

400 

45 (Comb.4) 1150 1210 28 100% (25 mins) 

90 (Comb.8) 1070 1130 22 97% 

135 (Comb.12) 1010 1080 19 89% 

 

Supplementary Table: Thicknesses of thin sheets and their corresponding porosities 

along with 12 combinations of pressurized compaction.  The thickness is proportional to 

the amount of powdered MCC used for direct compression while inversely proportional to 

the pressure and porosity.   
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Appendix C: List of supplementary Movies 

 

Supplementary Movie 1: Bubble-agitated water with the volumetric flow rate of 

2.7 𝑐𝑚3

𝑠𝑒𝑐⁄  (i.e., 0.08 mg/sec). 

 

Supplementary Movie 2: The swelling of Combination 7 (200mg of powdered MCC 

compacted at 90 MPa) in quiescent water. 

 

Supplementary Movie 3: Disintegration of Combination 7 in bubbly flow. 
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Supplementary Movie 4: The performance of a single button.  

 

Supplementary Movie 5: The performance of ten digital key pad.   

 

Supplementary Movie 6: Bubble-agitated water with an air pressure of 10 psi to 

disintegrate keypad.  
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Supplementary Movie 7: A keypad made with buttons of Combination 7 (i.e., 200 mg 

and 90 MPa) in the quiescent water. 

 

Supplementary Movie 8: Disintegration of keypad made with buttons of Combination 7 

(i.e., 200mg and 90 MPa) in bubbly flow at the air pressure of 10 psi. 
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Appendix D: MATLAB Code 

MATLAB code for acquiring the area changing of a thin sheet disintegrated in the bubble-

agitated water with a volumetric flow rate of 2.7𝑐𝑚3

𝑠𝑒𝑐⁄  

(The code below is written the size reduction for a group of transient substrates that 

compacted with 400 mg, but the code for the other masses and pressures are similar) 

%% This MATLAB script was used to object analysis.   
%  The transient substrate was compacted with 400 mg under three 

pressures (45, 90, and 135 MPa).  
%  Total 180 images includes 120 images in bubble-agitated water and 60 

images in quescient water. 

  
%% Loading the type of 'JPEG' images and setup the reference size for 

the cropping.  
clear all; close all; clc; 
D=dir('*.jpg'); 
imcell=cell(1,numel(D)); 
areatab=[]; 
widthx=800; heighty=800;  

  
%% Find the location of the cropping in circular shape in each set of 

images.  

  
factorx1=1125; factory1=1075; 

factorr1=0.58*sqrt(factorx1^2+factory1^2); 
circle_1_1=450; circle_2_1=425;%58 %400mg 90MPa 
factorx2=1000; factory2=1025; 

factorr2=0.60*sqrt(factorx2^2+factory2^2); 
circle_1_2=450; circle_2_2=425;%60 %400mg 135MPa 
factorx3=1500; factory3=950; factorr3=0.51*sqrt(factorx3^2+factory3^2); 
circle_1_3=450; circle_2_3=425;%51 %400mg 90MPa 
factorx4=1050; factory4=1025; 

factorr4=0.61*sqrt(factorx4^2+factory4^2); 
circle_1_4=450; circle_2_4=425;%61 %400mg 135MPa 
factorx5=700; factory5=1050; factorr5=0.72*sqrt(factorx5^2+factory5^2); 
circle_1_5=450; circle_2_5=425;%72 %400mg 45MPa  
factorx6=700; factory6=900; factorr6=0.76*sqrt(factorx6^2+factory6^2); 
circle_1_6=450; circle_2_6=425;%73 %400mg 45MPa  
factorx7=200; factory7=900; factorr7=1.0*sqrt(factorx7^2+factory7^2); 
circle_1_7=450; circle_2_7=425;%60 %400mg 135MPa (quiescence) 
factorx8=700; factory8=950; factorr8=0.83*sqrt(factorx8^2+factory8^2); 
circle_1_8=450; circle_2_8=425;%65 %400mg 90MPa (quiescence) 
factorx9=0; factory9=850; factorr9=1.05*sqrt(factorx9^2+factory9^2); 
circle_1_9=450; circle_2_9=425;%65 %400mg 45MPa (quiescence) 

  
%% For-loop of the 2D image processing includes cropping the images to 

get the desired area, 
% pixel selection, contrast enhancement, and region properties 
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for i=1:180 

     
y=imread(D(i).name); 
x_1=size(y); 
cenrows=x_1(1,1)/2; 
cencols=x_1(1,2)/2; 
if i>=1 && i<=20 
z=imcrop(y,[ cenrows+factorx1,cencols-1500-

factory1,1070+widthx,heighty+1070]); size_z=size(z); 
    ci=[500+circle_1_1,520+circle_2_1,factorr1]; 
else if i>=21 && i<=40 
     z=imcrop(y,[ cenrows+factorx2,cencols-1500-

factory2,1070+widthx,heighty+1070]); size_z=size(z); 
     ci=[500+circle_1_2,520+circle_2_2,factorr2]; 
else if i>=41 && i<=60 
     z=imcrop(y,[ cenrows+factorx3,cencols-1500-

factory3,1070+widthx,heighty+1070]); size_z=size(z); 
     ci=[500+circle_1_3,520+circle_2_3,factorr3]; 
else if i>=61 && i<=80 
     z=imcrop(y,[ cenrows+factorx4,cencols-1500-

factory4,1070+widthx,heighty+1070]); size_z=size(z); 
     ci=[500+circle_1_4,520+circle_2_4,factorr4]; 
else if i>=81 && i<=100 
     z=imcrop(y,[ cenrows+factorx5,cencols-1500-

factory5,1070+widthx,heighty+1070]); size_z=size(z); 
     ci=[500+circle_1_5,520+circle_2_5,factorr5]; 
else if i>=101 && i<=120 
     z=imcrop(y,[ cenrows+factorx6,cencols-1500-

factory6,1070+widthx,heighty+1070]); size_z=size(z); 
     ci=[500+circle_1_6,520+circle_2_6,factorr6]; 
else if i>=121 && i<=140 
    z=imcrop(y,[ cenrows+factorx7,cencols-1500-

factory7,1070+widthx,heighty+1070]); size_z=size(z); 
    ci=[500+circle_1_7,520+circle_2_7,factorr7]; 
else if i>=141 && i<=160 
    z=imcrop(y,[ cenrows+factorx8,cencols-1500-

factory8,1070+widthx,heighty+1070]); size_z=size(z); 
    ci=[500+circle_1_8,520+circle_2_8,factorr8]; 
else if i>=161 && i<=180 
    z=imcrop(y,[ cenrows+factorx9,cencols-1500-

factory9,1070+widthx,heighty+1070]); size_z=size(z); 
    ci=[500+circle_1_9,520+circle_2_9,factorr9];  
    end 
    end     
    end 
    end 
    end 
    end 
    end 
    end 

     
end 
   [xx,yy]=ndgrid((1:size_z(1))-ci(1),(1:size_z(2))-ci(2)); 
    mask=uint8((xx.^2+yy.^2)<ci(3)^2); 
    z2=uint8(zeros(size(z))); 
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    z3(:,:,1)=z(:,:,1).*mask; 
    z3(:,:,2)=z(:,:,2).*mask; 
    z3(:,:,3)=z(:,:,3).*mask; 
%figure; imshow(z3); %imtool(z3); 
z_origin=z3; 
z_gray=rgb2gray(z_origin); 
z_dilated=imopen(z_gray,strel('disk',25)); 
z_adjust=imadjust(z_dilated,[0.07,0.60],[],1.2);  
z_sharpened=imsharpen(z_adjust); 
temp=zeros(1070+widthx,1070+heighty,3); 
for n=1:1070+widthx 
    for m=1:1070+heighty 
        if z_sharpened(n,m)>=50 
            temp(n,m,1:3)=255; 
            end 
    end 

  
end 
cropbs=im2bw(temp); 
se=strel('disk',3); 
cropbw=imerode(cropbs,se); 
areatab=[areatab;bwarea(cropbw)]; 
end 

  
%% Unit conversion from pixel to metric system (mm) and assign the x,y 

values 

  
areatab1=areatab(1:20); px2me1=1712.21/21; 
areatab2=areatab(21:40); px2me2=1732.08/21; 
areatab3=areatab(41:60); px2me3=1748.27/21; 
areatab4=areatab(61:80); px2me4=1741.68/21; 
areatab5=areatab(81:100); px2me5=1746.68/21; 
areatab6=areatab(101:120); px2me6=1736.68/21; 
areatab7=areatab(121:140); px2me7=1860.91/21; 
areatab8=areatab(141:160); px2me8=1880.52/21; 
areatab9=areatab(161:180); px2me9=1880.55/21; 
matab1= areatab1/px2me1^2;matab2= areatab2/px2me2^2; matab3= 

areatab3/px2me3^2; 
matab4= areatab4/px2me4^2; matab5= areatab5/px2me5^2; matab6= 

areatab6/px2me6^2; 
matab7= areatab7/px2me7^2; matab8= areatab8/px2me8^2; matab9= 

areatab9/px2me9^2; 
h1=matab1'; h2=matab2'; h3=matab3'; h4=matab4'; h5=matab5';h6=matab6'; 

h7=matab7'; h8=matab8'; h9=matab9';  
% Average the thickness along with the pressure 
M1=[h1;h3]; M2=[h2;h4]; M3=[h5;h6];  
at_1=mean(M1); at_2=mean(M2); at_3=mean(M3); 
% Assign the time in logarithmic scale 
x=logspace(0,3.55,20); timetab_1=x';  

  
%% Create the semi-logarithmic plot to view the tendency of the 

disintegration of compacted thin sheets 
 figure(501); 
 hLine1=semilogx(timetab_1,at_3,'-.rs','MarkerSize',20,'LineWidth',8); 
 hold all; 
 hLine7=semilogx(timetab_1,h5,'rx','MarkerSize',15); 
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 hLine8=semilogx(timetab_1,h6,'rx','MarkerSize',15); 
 hLine2=semilogx(timetab_1,at_1,'-.gs','MarkerSize',20,'LineWidth',8); 
 hLine9=semilogx(timetab_1,h1,'gx','MarkerSize',15); 
 hLine10=semilogx(timetab_1,h3,'gx','MarkerSize',15); 
 hLine3=semilogx(timetab_1,at_2,'-.bs','MarkerSize',20,'LineWidth',8); 
 hLine11=semilogx(timetab_1,h2,'bx','MarkerSize',15); 
 hLine12=semilogx(timetab_1,h4,'bx','MarkerSize',15); 
 hLine4=semilogx(timetab_1,matab7,'-go','MarkerSize',20,'LineWidth',8); 
 hLine5=semilogx(timetab_1,matab8,'-ro','MarkerSize',20,'LineWidth',8); 
 hLine6=semilogx(timetab_1,matab9,'-bo','MarkerSize',20,'LineWidth',8); 
 hold off; 
  axis([0.0 3.85*10^3 0 355]) 
legend([hLine1,hLine2,hLine3,hLine4,hLine5,hLine6],'400mg, 23% 

(2.7cm^3/s)','400mg, 17% (2.7cm^3/s)','400mg, 11% (2.7cm^3/s)','400mg, 

23% (0cm^3/s)',... 
    '400mg, 17% (0cm^3/s)','400mg, 11% 

(0cm^3/s)','Location','southwest','Orientation','vertical'); 
xlabel ('Time (sec)','FontSize',45); 
ylabel ('Area (mm^2)','FontSize',45); 
set(gca,'LineWidth',5,'FontSize',45,'FontWeight','normal','FontName','T

imes') 

  
%% Save the set of data in excel  
filename_1='Total400mg.mat'; save(filename_1); 
A=[matab1;matab2;matab3;matab4;matab5;matab6]; B=[at_3;at_1;at_2]; 
filename_2='Total400mg.xlsx'; xlswrite(filename_2,A); 

filename_3='Avg400mg.xlsx';xlswrite(filename_3,B); 
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Appendix E: Arduino Code 

Assign each LED to a button and estimate the capacitance by calculating the time required 

the button takes to charge 

#define Output A1 

#define Input A0 

#define LED0 11 

#define LED1 10 

#define LED2 9 

#define LED3 8 

#define LED4 7 

#define LED5 6 

#define LED6 5 

#define LED7 4 

#define LED8 3 

#define LED9 2 

#define MultiplexA A2 

#define MultiplexB A3 

#define MultiplexC A4 

#define MultiplexD A5 

 

unsigned long StartTime; 

unsigned long ElapsedTime1; 

unsigned long ElapsedTime2; 

unsigned long ElapsedTime3; 

unsigned long ElapsedTime4; 

unsigned long ElapsedTime5; 

unsigned long ElapsedTime6; 

unsigned long ElapsedTime7; 

unsigned long ElapsedTime8; 

unsigned long ElapsedTime9; 

unsigned long ElapsedTime10; 

unsigned long TotalStartTime; 

const int NumReadings=30; 

const int SkipCountsForSmoothing=5;  

int AverageNow=0; 

long int Counter=0; 

 

int Threshold1=45; 

int Threshold2=45; 

int Threshold3=45; 

int Threshold4=45; 

int Threshold5=45; 
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int Threshold6=45; 

int Threshold7=45; 

int Threshold8=45; 

int Threshold9=45; 

int Threshold10=45; 

 

const float ThresholdFactor=1.02; 

int Thresholds1[NumReadings]; 

int Thresholds2[NumReadings]; 

int Thresholds3[NumReadings]; 

int Thresholds4[NumReadings]; 

int Thresholds5[NumReadings]; 

int Thresholds6[NumReadings]; 

int Thresholds7[NumReadings]; 

int Thresholds8[NumReadings]; 

int Thresholds9[NumReadings]; 

int Thresholds10[NumReadings]; 

 

int ThresholdsTotal1=NumReadings*Threshold1; 

int ThresholdsTotal2=NumReadings*Threshold2; 

int ThresholdsTotal3=NumReadings*Threshold3; 

int ThresholdsTotal4=NumReadings*Threshold4; 

int ThresholdsTotal5=NumReadings*Threshold5; 

int ThresholdsTotal6=NumReadings*Threshold6; 

int ThresholdsTotal7=NumReadings*Threshold7; 

int ThresholdsTotal8=NumReadings*Threshold8; 

int ThresholdsTotal9=NumReadings*Threshold9; 

int ThresholdsTotal10=NumReadings*Threshold10; 

 

int Index1=0; 

int Index2=0; 

int Index3=0; 

int Index4=0; 

int Index5=0; 

int Index6=0; 

int Index7=0; 

int Index8=0; 

int Index9=0; 

int Index10=0; 

 

void setup() 

{ 

  pinMode(Output, OUTPUT); 

  pinMode(Input, INPUT); 

  pinMode(LED1, OUTPUT); 

  pinMode(LED2, OUTPUT); 
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  pinMode(LED3, OUTPUT); 

  pinMode(LED4, OUTPUT); 

  pinMode(LED5, OUTPUT); 

  pinMode(LED6, OUTPUT); 

  pinMode(LED7, OUTPUT); 

  pinMode(LED8, OUTPUT); 

  pinMode(LED9, OUTPUT); 

  pinMode(LED0, OUTPUT); 

  pinMode(MultiplexA, OUTPUT); 

  pinMode(MultiplexB, OUTPUT); 

  pinMode(MultiplexC, OUTPUT); 

  pinMode(MultiplexD, OUTPUT); 

  digitalWrite(MultiplexA, LOW); 

  digitalWrite(MultiplexB, LOW); 

  digitalWrite(MultiplexC, LOW); 

  digitalWrite(MultiplexD, LOW); 

  digitalWrite(LED1,LOW); 

  digitalWrite(LED2,LOW); 

  digitalWrite(LED3,LOW); 

  digitalWrite(LED4,LOW); 

  digitalWrite(LED5,LOW); 

  digitalWrite(LED6,LOW); 

  digitalWrite(LED7,LOW); 

  digitalWrite(LED8,LOW); 

  digitalWrite(LED9,LOW); 

  digitalWrite(LED0,LOW); 

   

  for(int ThisReading=0; ThisReading < NumReadings; ThisReading++){ 

    Thresholds1[ThisReading]=Threshold1; 

    Thresholds2[ThisReading]=Threshold2; 

    Thresholds3[ThisReading]=Threshold3; 

    Thresholds4[ThisReading]=Threshold4; 

    Thresholds5[ThisReading]=Threshold5; 

    Thresholds6[ThisReading]=Threshold6; 

    Thresholds7[ThisReading]=Threshold7; 

    Thresholds8[ThisReading]=Threshold8; 

    Thresholds9[ThisReading]=Threshold9; 

    Thresholds10[ThisReading]=Threshold10; 

  } 

  Serial.begin(9600); 

  Serial.println("System for Measuring Capacitance"); 

  Serial.println("Time to reach 2V in microseconds"); 

  TotalStartTime=millis(); 

   

} 

void loop() 
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{ 

  digitalWrite(MultiplexA,LOW); 

  digitalWrite(MultiplexB,HIGH); 

  digitalWrite(MultiplexC,LOW); 

  digitalWrite(MultiplexD,HIGH); 

  delay(10); 

  digitalWrite(Output,HIGH); 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime1=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 

   

  digitalWrite(MultiplexA,HIGH); 

  digitalWrite(MultiplexB,LOW); 

  digitalWrite(MultiplexC,LOW); 

  digitalWrite(MultiplexD,HIGH); 

  delay(10); 

  digitalWrite(Output,HIGH); 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime2=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 

   

  digitalWrite(MultiplexA,LOW); 

  digitalWrite(MultiplexB,LOW); 

  digitalWrite(MultiplexC,LOW); 

  digitalWrite(MultiplexD,HIGH); 

  delay(10); 

  digitalWrite(Output,HIGH); 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime3=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 

   

  digitalWrite(MultiplexA,HIGH); 

  digitalWrite(MultiplexB,HIGH); 

  digitalWrite(MultiplexC,HIGH); 

  digitalWrite(MultiplexD,LOW); 

  delay(10); 

  digitalWrite(Output,HIGH); 



48 

 

 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime4=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 

   

  digitalWrite(MultiplexA,LOW); 

  digitalWrite(MultiplexB,HIGH); 

  digitalWrite(MultiplexC,HIGH); 

  digitalWrite(MultiplexD,LOW); 

  delay(10); 

  digitalWrite(Output,HIGH); 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime5=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 

   

  digitalWrite(MultiplexA,HIGH); 

  digitalWrite(MultiplexB,LOW); 

  digitalWrite(MultiplexC,HIGH); 

  digitalWrite(MultiplexD,LOW); 

  delay(10); 

  digitalWrite(Output,HIGH); 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime6=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 

   

  digitalWrite(MultiplexA,LOW); 

  digitalWrite(MultiplexB,LOW); 

  digitalWrite(MultiplexC,HIGH); 

  digitalWrite(MultiplexD,LOW); 

  delay(10); 

  digitalWrite(Output,HIGH); 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime7=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 
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  digitalWrite(MultiplexA,HIGH); 

  digitalWrite(MultiplexB,HIGH); 

  digitalWrite(MultiplexC,LOW); 

  digitalWrite(MultiplexD,LOW); 

  delay(10); 

  digitalWrite(Output,HIGH); 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime8=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 

   

  digitalWrite(MultiplexA,LOW); 

  digitalWrite(MultiplexB,HIGH); 

  digitalWrite(MultiplexC,LOW); 

  digitalWrite(MultiplexD,LOW); 

  delay(10); 

  digitalWrite(Output,HIGH); 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime9=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 

   

  digitalWrite(MultiplexA,HIGH); 

  digitalWrite(MultiplexB,LOW); 

  digitalWrite(MultiplexC,LOW); 

  digitalWrite(MultiplexD,LOW); 

  delay(10); 

  digitalWrite(Output,HIGH); 

  StartTime=micros(); 

  while(digitalRead(Input)<1){ 

  } 

  ElapsedTime10=micros()-StartTime; 

  digitalWrite(Output,LOW); 

  delay(20); 

   

  Serial.println(""); 

  Serial.println(ElapsedTime1,DEC); 

  Serial.println(ElapsedTime2,DEC); 

  Serial.println(ElapsedTime3,DEC); 

  Serial.println(ElapsedTime4,DEC); 

  Serial.println(ElapsedTime5,DEC); 

  Serial.println(ElapsedTime6,DEC); 
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  Serial.println(ElapsedTime7,DEC); 

  Serial.println(ElapsedTime8,DEC); 

  Serial.println(ElapsedTime9,DEC); 

  Serial.println(ElapsedTime10,DEC); 

  Serial.println(""); 

  //AverageNow=Counter%SkipCountsForSmoothing;  

  if(ElapsedTime1> Threshold1*ThresholdFactor){ 

    digitalWrite(LED9,HIGH); 

  } 

  else{ 

  digitalWrite(LED9,LOW); 

  } 

  if(ElapsedTime2> Threshold2*ThresholdFactor){ 

    digitalWrite(LED8,HIGH); 

  } 

  else{ 

  digitalWrite(LED8,LOW); 

  } 

  if(ElapsedTime3> Threshold3*ThresholdFactor){ 

    digitalWrite(LED7,HIGH); 

  } 

  else{ 

  digitalWrite(LED7,LOW); 

  } 

  if(ElapsedTime4> Threshold4*ThresholdFactor){ 

    digitalWrite(LED6,HIGH); 

  } 

  else{ 

  digitalWrite(LED6,LOW); 

  } 

  if(ElapsedTime5> Threshold5*ThresholdFactor){ 

    digitalWrite(LED5,HIGH); 

  } 

  else{ 

  digitalWrite(LED5,LOW); 

  if(ElapsedTime6> Threshold6*ThresholdFactor){ 

    digitalWrite(LED4,HIGH); 

  } 

  else{ 

  digitalWrite(LED4,LOW);   

  } 

  if(ElapsedTime7> Threshold7*ThresholdFactor){ 

    digitalWrite(LED3,HIGH); 

  } 

  else{ 

  digitalWrite(LED3,LOW); 
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  } 

  if(ElapsedTime8> Threshold8*ThresholdFactor){ 

    digitalWrite(LED2,HIGH); 

  } 

  else{ 

  digitalWrite(LED2,LOW); 

  } 

  if(ElapsedTime9> Threshold9*ThresholdFactor){ 

    digitalWrite(LED1,HIGH); 

  } 

  else{ 

  digitalWrite(LED1,LOW); 

  } 

  if(ElapsedTime10> Threshold10*ThresholdFactor){ 

    digitalWrite(LED0,HIGH); 

  } 

  else{ 

  digitalWrite(LED0,LOW); 

  } 

} 

}  
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