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ABSTRACT OF THE THESIS
Combined Source-Channel Coding Using Multilevel/Phase Modulation
by Andrew T. Weitzner

Thesis Director: Professor David G. Daut

A combined source-channel coding and modulation approach is implemented
for the encoding, transmission and remote reconstruction of a first-order one-
dimensional Gauss-Markov source described by the correlation coefficient p. The
source encoder employs differential pulse code modulation (DPCM). This is an
efficient encoding scheme in the absence of channel errors. However, DPCM
degrades rapidly in the presence of channel errors. . Trellis-Coded Modulation is
used to provide error protection without incurring a bandwidth expansion. This
is accomplished by using m-bit DPCM with a rate m/(m + 1) trellis code and
a 2™l ary modulation technique such als multiple phase-shift keying (MPSK)
or quadrature amplitude modulation (QAM). The trellis codes used are those
developed by Ungerboeck. Performance of the overall system is evaluated on
a mean square reconstructed error (MSRE) versus channel signal-to-noise ratio
(SNR;,) criterion for an AWGN Channel. The system performance is increased
by 3 to 7 dB as compared to an uncoded system and results are within 1.0 to

2.3 dB of the Ry bound. The technique demonstrates an effective bandwidth
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efficient means for transmitting source encoded data represented by more than
one bit per source symbol which has not been previously demonstrated in the

technical literature.
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1 Introduction

The use of combined source coding and channel coding techniques provide ef-
fective methods for maintaing the integrity of source encoded data when it is
tranmitted over a noisy channel. Popular data compression techniques such as
DPCM and the block Cosine transform require error protection in noisy channel
environments. With the advent of Trellis-Coded Modulation (TCM) [14], system
performance may be improved without the bandwidth expansion penalty that
was once associated with the use of coding. It is therefore the goal of this thesis
to study the proper matching of source coding, channel coding and modulation
techniques to maximize system performance.

A combined source coding, channel coding and modulation approach is de-
scribed for the efficient encoding, transmission and reconstruction of a highly-
correlated sampled data source. The approach follows the combined source-
channel coding work done by Modestino and Daut [1,2], which used Binary Phase
Shift Keying (BPSK) modulation exclusively. At that time, a desire for good
high-rate convolutional codes was expressed. Codes of rate m/(m + 1) are now
available in the form of trellis codes. Trellis codes have also made use of multi-
level and multiphase modulation schemes practical. This leads to the combined
source coding, channel coding and modulation approach described here.

»

One may question whether it is necessary to “match” separately optimized

source encoders channel encoders and modulators. Although a principle result



of Shannon’s information theory is that the source @d channel coding functions
are fundamentally separable, it is shown clearly in [3] that this assumption is
Jjustifiable only in the limit of arbitrarily complex encoders and decoders. In
practical situations there are limitations on complexity and a combined source
coder, channel coder and modulator may be simpler to design and implement
[4,6].

The method used here is that of attempting to acheive performance levels
attaining rate-distortion bounds. A useful and accurate rate-distortion bound
must first be developed. This requires accurate models to represent the infor-
mation source and the channel charcteristics. Careful selection of a performance
evaluation criterion is also needed. A strategy can then be devised to meet those
bounds for various system parameters. In this thesis it is argued that a strat-
egy in which all system components are designed in tandem, to a single system
performance criterion, will provide superior performance over a system which
combines éparately optimized system components. Therefore the proper selec-
tion of source encoder, channel encoder and modulation parameters must include
a knowledge of available (or necessary) channel characteristics and transmitter
power in order to achieve the best possible system performance. The important
distinction to be made is that the source encoder designer should understand the
channel and specify how the data is to be transmitted.

In addition to the work of [1] and [2] the combined source-channel concept

recent advances have been cited in the literature. Two studies have focused on the



use of trellis source codes [4,6] while another has studied quantizer optimization
[5]. The source trellis codes in [4] and [6] are effective techniques for approaching
the 1-bit per symbol rate-distortion bound in noisy channel environments. While
in [1] and [2] greater than 1-bit per symbol was achieved at the expense of a
bandwidth expansion This study is unique in that it the modulation technique is
considered as a design variable in the overall system configuration. An emphasis
in this study is to efficiently achieve performance above the 1-bit bound when
sufficient signal power is available without introducing a bandwidth expansion.
The approach is twofold; first, the system performance is bounded based on the
source model, the available channel bandwidth and channel input signal-to-noise
ratio. Second, a suitable source encoding method is selected and then channel
coding and modulation techniques are chosen which optimize the transmission
of the specific source data.

The syétem under consideration is shown in Figure 1. The approach here is
to take a one-dimensional (1-D) Gauss-Markov source with correlation coefficient
p and encode it using an m-bit differential pulse code modulation (DPCM) tech-
nique. One source symbol will then be transmitted for each channel symbol.!
This will be accomplished by a system using a rate »r = m/(m +1) trellis code in
combination with a 2™+ ary modulation technique such as PSK or QAM. Com-

parison will be made to a reference system using uncoded PSK with 2™ signal

1 Although other combinations are possible, this demonstrates a source encoder to channel

encoder relationship of interest.
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research are presented. In addition, Appendix A details the implementation
and justification for the design of the communication system software analysis
package. Appendix B contains the derivation of the R, results and Appendix C

documents the software used in the study.



where N is the number of times that the channel is used to transmit a codeword
and R is the information rate in bits per second. E(R) and E(R) are the respec-
tive upper and lower bounds on the channel “reliability function.” The coefficient
A is a function weakly dependent on N. For any given modulation scheme and
channel, knowledge of these parameters allows one to make Pr(e) as small as
desired by choosing N sufficiently large.

For the discrete memoryless channel a typical form of the reliability function
is shown in Figure 2. In pal:ticular, we see that E(R) and E(R) coincide for
R. < R < C, where C is the channel capacity. Since the reliability function is

convex cap with slope = —1 at R = R,, we notice that
B(R)>Ro—R (2)
Hence R, is the first-order lower bound on E(R) and
Pr(e) < 2~NE(R) < 2-NRo-R] (3)

While this bound is weaker than Equation 1 for some values of R, it is exponen-
tially optimum for rate R = R.. The importance is that a relatively accurate
bound exists which is described by a single parameter, namely Rj.

While the previous results represent the performance of a system using block
codes, similar results have been made for convolutional codes. Viterbi [22] has
shown that the R, parameter also correctly describes the performance of convo-

lutional codes for certain rates as

Pr(e) < c2~Fo/R) | for R < R, (4)



Figure 2: The Reliability function

where v is the constraint length and is roughly equivalent to the block length
N. The parameter c is a function weakly dependent on R. An important aspect
of convolutional codes is that their performance is generally superior to block
codes having similar complexity. Also, they may be simpler to encode and the
decoding algorithms available are more amenable to soft-decision methods.

Massey argues that it is more constructive to design a communications system
to an Ry criterion rather than a raw probability of error, Pr(e), and capacity, C.
Whereas, capacity defines the limit of achievable rates of reliable communications
over a channel, there is no way to show how to achieve those rates with finite
system complexity.

On the other hand, a system designed to a error probability criterion is sen-
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sible only if coding is not used. The problem here, Massey contends, is that the
communications engineer may design the system to an error probability criterion
and then attempt to use coding strictly as an error-correction procedure. This
separation of coding and modulation may lead to inefficient designs which require
excessive redundancy.

The inefficiency is due to differences between the Hamming distance used to
design convolutional codes and the Euclidean space in which modulation schemes
exist. Although separate coding and modulation have been successful for sys-
tems using binary phase-shift keying (BPSK) and quadrature phase-shift keying
(QPSK or 4-PSK), these schemes transmit 1 bit per orthogonal dimension for
which increasing Hamming distance can be mapped into increasing Euclidean
distance. When the same techniques are applied tq general M-level modulation
systems, we are lead to believe that so-called “high-level” modulation schemes
which use greater than 1 bit per dimension are inefficient, requiring very high
signal-to-noise ratios and extensive coding to produce satisfactory results. This
is because a relationship between Hamming distance and a modulation schemes
Euclidean distance may not exist.

In contrast, for modulation over the AWGN channel, R, is determined directly
from the Euclidean distance relationship between signal points in the modulation
scheme. Ry correctly describes the performance of high-level modulation schemes
when coding is used. It is then of interest to derive and analyze the R, function

for specific modulation schemes. From these results a theoretical reference is
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available which can be compared to the system simulation results of Section 6.
The trellis codes used in the simulation are discussed in Section 3 and are designed
to maximize Euclidean distance so that high-level modulation improvements are
possible. The improvements are a direct result of exploitation of the properties
of the Ry function.

Before determining the specific Ry results it is meaningful to emphasis some
of the advantages of using the R, function in communication system design. One
of the most attractive properties is its simplicity. In Appendix B it is shown
that Ry can be arrived at by a Union bound approximation of the forward proof
of the coding theorem. For an AWGN channel with equally likely symbols this
leads to a result of the form

1 LY .
Ro=—logy 75733 e k/am (%)
I=1 h=1

Where the only unknown is d},, the square Euclidean distance between signal
points in a modulation scheme. This result implies that it is simply to deter-
mine R, for a given signal constellation. Therefore, we can use R, to determine
the bound on the coded performance of various modulation schemes and make
relative comparisons between them, in terms of required coding complexity. In
turn Ry can be used to design (seek) modulation schemes which are optimal
when using coding. This result may very well differ from constellations which
are designed without coding in mind.

The R, function can also be used to determine the effect of receiver quantiza-
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tion. The result is represented as R, and is calculated by modeling the receiver
front end as an additional discrete channel cascaded onto the AWGN channel.
The quantizer can be modeled as a continuous signal input to discrete n-level
output channel with transition probabilities assigned due to the quantization lev-
els. In the case of n = 2, the hard-decision versus soft-decision tradeoff can be
assessed. This results in a 2 dB loss between the unquantized and hard-decision
systems. Also, when soft-decision decoding is used the concept that coding is an
error correction procedure is lost because the demodulator does not make hard
errors which require correction by a subsequent decoder.

Another important concept involving Ry was developed by Savage [30] and
recently amended by Arikan [31]. It is shown that R, is an upper bound to
R .omp, the computational cutoff rate for sequential decoders. This is the rate
at which the memory requirements for sequential decoders becomes unbounded.
This alone has been cited as a strong argument for R, as the practical bound on
communication system performance [12].

Finally, we see that Ry can be viewed as a realistic bound on achievable
signalling rates. Whereas capacity may only be guaranteed with infinite length
codewords, Ry promises specific probability of error bounds for a given codelength

used with a modulation scheme of interest.
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channel. This allows us to interpret the abstract quantity of dimensions in terms
of the physical characteristic of bandwidth. For MPSK and QAM the specific
bandwidth is due to the shape of the low-pass signal used to represent the data
and modulate the carrier. Using a rectangular pulse for the symbol duration T
seconds, the bandwidth is approximately 1/T seconds™!.

The bandwidth efficiency of a digital modulation technique is the ratio R/W,
where R is the information rate in bits per second and W is the required band-
width in hertz. Bandwidth efficiency can be measured in units bits/sec/Hz.
MPSK and QAM both have efficiency approximated by log, M bits/sec/Haz.

The R, development is based on a system in which we have a source that
produces one of L messages and a channel which has an alphabet of size M. We
would like to transmit a message by using the channel N times. The modula-
tor transmits a character in its alphabet by sending a waveform s;(t) onto the
channel, where i =1,..., M —1 to represent M unique waveforms. By using the
channel IV times, a vector representing message [ is formed s) = (84, 813, ---, 81n)-

Gallager [9] has shown for such a system that the Ry function is given by

R, =mq§x—los; [E‘:Qa\/ITu]Z (6)

for which g; is the probability of transmitting letter z and Pr;; is the channel
transition probability representing the a prior probability of the receiver deciding
in favor of letter j given that letter ¢ was transmitted.

For channel transition probabilities determined by the additive white Gaus-
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sian noise (AWGN) channel with zero-mean and variance Ny/2 it has been shown

in [11] that R, becomes

Ry =max—log} 3 e/ guq; (")
L J

The expression d}; is equivalent to ||s; — s;||?, the square Euclidean distance
between signal points s; and s; in a given constellation. When all symbols are

equally likely in an M-point constellation the result simplifies to

I d3. /AN
R0=_1082—mzze_ 35/ 4No (8)
=1 j=1

From the above equation, it is seen that R, is easy to determine for a mod-
ulation technique from the coordinates of the signal points in the modulation
scheme. The R, function can be used to determine the relative performance of
various modulation techniques. In developing and rating modulation schemes it
would also be of useful to appreciate the bounds on the R, function itself.

Shannon had shown that for the AWGN channel, there exists an R, upper

bound for any modulator-demodulator pair given by

log, e

R, =

[1 + En/No — 4/1 %(EN /No)’]

+ %log, [-;—(1 + \/1 + (EN/No)z)] (9)

constrained only in energy

{Isilz}SNEN; 1=0,1,---, M —1. (10)
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E)\ represents the energy per dimension. Equation 10 implies that the signal
constellation energy must average +/E) per dimension. For 2-dimensional con-
stellations the average energy per symbol, E, = 2Ejy, should lie within a circular
boundary E{|s;|*} < 2Ey per symbol.

The average energy constraint is a consequence of the bounding technique
used. In practical situation, some have argued that a peak power constraint is
more realistic [12,28]. In this case, the 2-dimensional signal sets abide to a power

limitation defined by
ls;] < \/-Z—E_N per symbol? (11)
A peak constraint is typical of many physical channels as such travelling wave
tube amplifiers (TWTA) used in satellite communications.
We have seen that reliable communication is possible for rates less than Rj.
While this may be a practical bound, it is not the ultimate bound and is a
consequence of a union bound technique. The capacity, C, represents the upper

bound on communication. The equation

1 2By

is 2 to 3 dB superior to Rj but may require infinite coding complexity to achieve.

Ry is now used to determine the relative performance of the modulation

2 The definition for the peak energy value is correct for the 2-dimensional bound, 2Rj. This

makes the MPSK average and peak constraint signal sets identical



1 0
. @
Ay=20
BPSK
m=1
‘e | ol &
\ =0.765
3@ (Y
4@ o,
5.. .3
8-PSK
m=3
®9o 012 @5 @8 A,-0632 avg
A0= 0.471 peak
o 03| 02 @015
13 e0]| @1 @4
@10 7| o014 @ 11
16-QAM
m=4

1

@0
|A0=1.414

2

|

@3

4-PSK / 4-QAM

m=2

3
o0

2 -
o< 20=03%

e
@0

6@

30|02

®15

13@

10

TR X

7

12/4-PSK
m=4

Figure 3: Channel signalling sets

17



18

schemes used in the simulation. The constellations are shown in Figure 3. Based
on this signal space representation the R, function been evaluated by the com-
puter program in Appendix C. The algorithm which were used in the software
are based on the expressions derived in Appendix B for M-ary PSK and M-ary

QAM.

For M-ary PSK the following expression was derived:

Ro = — logs M,zze {

22 [sin —1‘7-2.-(1 =] )] 2} bits /symbol (13)
where N, is the number of dimensions per symbol and is 1 for M = 2 and 2 for
all integer values of M greater than 2.
For M-ary QAM a closed form expression can also be used:
vM VM VM VM

Ro=—logs 5 3 > > 5" exp {207 o[-+ Ga-i]) (9

! iSiATias1Am
here a = 1/4/10 for the average power constraint and a = 1/ V/18 for the peak
power constraint in figure 3.

In addition, the Ry function was determined for a QAM-PSK hybrid con-
stellation called 12/4-PSK. This constellation is shown in Figure 3 and will be
discussed further. Due to its unusual construction a closed form expression for
R, was not feasible and calculation is best performed using Equation (7).

The Ry curves are shown in Figures 4,5 and 6. Each graph displays a fam-
ily of curves for a modulation type. The R, functions for M-ary PSK are in

Figure 4. Curves are plotted for BPSK, 4-PSK, 8-PSK and 16-PSK. The curve
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represents a practical bound on the amount of information which can be which
can transmitted by the modulation technique at a given channel signal-to-noise
ratio with arbitrarily small probability of error. Using Equations (3) or (4), as
long as R < R, we are guaranteed that a code exists for which the probability of
error can be made small by choosing N sufficiently large. Notice that as Ry — R
approaches zero, N must approach co to maintain a small value of Pr(e).

The following can be observed in Figure 4: Each curve has a threshold at
which the amount of information saturates. For an M-ary constellation this
occurs at log, M bits/symbol. Above SNR; of 20 dB channel errors are rare and
the information rate is limited by the constellation size. Notice that the family
of PSK curves overlap at low SNR; until the saturation level of each constellation
is reached. This implies that increased quantization by the transmitter does not
necessarily degrade information transfer.

For BPSK saturation at 1 bit/symbol occurs near 6 dB. Notice that 4-PSK
saturates at 2 bits/symbol for the same channel SNR. This is due to the increase
from 1 to 2 dimensions and therefore a doubling in channel capacity between
BPSK and 4-PSK. In practical systems that extra dimension may not be available
since it is common to transmit two independent data sources on the inphase and
quadrature components of a QPSK system. In this study the focus is on two
available dimensions.

As channel input signal-to-noise ratio increases, so does the channel capacity.

For example, when SNR; surpasses 12 dB the use of 4-PSK is wasteful of channel
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capacity since 3 bits/symbol can be supported by the use of 8-PSK. Similarly, 16-
PSK becomes efficient at SNR; > 18 dB. The ultimate performance is specified
by capacity, C, and the more practical bound R§ which is identical to the R,
functions for small SNR;. As shown in Figures 4 through 6 the proper bounds
for two-dimensional modulation are twice the values of Equations 9 and 12 when
the results are presented in bits per symbol.

The Ry curves for QAM are shown in Figure 5. The QAM curves are more ef-
ficient than PSK for M greater than 2 bits/symbol as compared with R}. Specif-
ically at M = 16, QAM achieves saturation at 4 dB less than PSK. Notice in the
QAM functions the Ry values for family of curves are not aligned at low SNR; as
does PSK. This can be remedied by optimizing the probabilities of each channel
letter as shown in [28]. Although in practice, the loss is small enough that the

extra compiexity is considered not to be necessary.

A direct comparison of PSK and QAM signal constellations is shown in Fig-
ure 6. For M =4 the sets are identical. At M =16 the average power constrained
QAM is superior to 16-PSK as was stated. Also included in Figure 6 is the per-
formance of a QAM system with the peak-power constraint applied. The peak
power constrained 16-QAM signals must lie on or within the circle which the 16-
PSK signals form. This causes the peak version of 16-QAM to be 2.5 dB inferior
to the average constraint. While the peak power constrained 16-QAM is only

slightly superiority to 16-PSK, the PSK modulation is preferred in this circum-
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3 Trellis Coded Modulation

We now discuss the coding which will be used to achieve the bounds of the pre-
vious section. Trellis Coded Modulation (TCM) is a bandwidth efficient modu-
lation technique. It does so by regarding the channel coder and the modulator
as single entity. The technique adds redundancy into the signal via coding and
also expands the channel signalling set to “make room” for coding without a
bandwidth expansion of the resultant signal.

Trellis codes may thought of as a generalized form of convolutional codes.
Convolutional codes are designed to maximize Hamming distance and generally
they can only perform efficiently for modulation techniques in which maximiza-
tion of the Hamming distance corresponds to maximizing Euclidean distance.
This is typical of the orthogonal and bi-orthogonal signal sets which operate at
bandwidth efficiencies of R/D < 1 bit/dimension. The most common examples
are BPSK and 4-PSK. For bandwidth efficient modulation (i.e., bandwidth ef-
ficiency of greater than 1 bit/dimension) a relationship does not exist between
increasing Hamming distance corresponding to increasing Euclidean distance.

Alternatively, trellis codes are constructed by maximizing the Euclidean dis-
tance between messages as they appear on the channel for a given signal con-
stellation. This is the sense in which TCM regards the coder and the modulator
as an entity. Ungerboeck developed codes which maximize Euclidean distance

by a method called “mapping by set partitioning”. The technique partitions the
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signal set successively into subsets with increasing minimum distance between
nearest neighbors in the new subset of the signal constellation.

The existence of trellis codes can be seen from the R, function for multi-level
modulation. Trellis codes take advantage of the larger value of Ry that occurs
when the number of letters in a signal constellation are expanded. By keeping the
information rate constant, the Ry — R term becomes larger in Equation (3) and
allows the same performance with a reduced codelength. Examining Figure 4
we see that if it is desired to transmit 2 bits/symbol at Pr(e) = 10~5, this can
be done by using 4PSK at 12.9 dB. Alternately Rj predicts that 2 bits/symbol
can be achieved at 3.8 dB and R, for 8-PSK predicts 2 bits/symbol at 4.8 dB.
Therefore by using a rate 2/3 code it should be possible to transmit 2 bits/symbol
by using 8-PSK with a savings of 8 dB. For this case, Ry — R is small and
Equation (3) would imply the need for a very large code length. However at
SNR; = 7 dB, Ry — R becomes 0.5 and Equation (3) guarantees that performance
can be described as

Pr(e) < 2N/ (15)

Therefore a code must exist such that Pr(e) < 1075 for N ~ 33. In practice
codes with good performance of much smaller length exist. The conservative
prediction of Ry is due to method of bounding used. This is twofold: 1) Ry is
not an ultimate upper bound on coding performance; 2) R, is determined by

averaging the set of all possible codes. This includes mostly poor codes which
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stem from the elegant random coding argument used in the forward proof of
the coding theorem. The removal of some of these codes may lead to a tighter
bound but the simplistic Ry bound would be lost. Hence, the R, function should
be used to determine where good short constraint length codes may exist when
R < R,.

The trellis codes developed by Ungerboeck have the same form as the previous
example. To transmit m bits of information per symbol a rate m/(m +1) code is
used. The m +1 encoded bits are transmitted using a channel signalling set from
the previous section with an alphabet of size 2™+, Performance gain is measured
against a reference system of m bits per symbol using an uncoded modulation
with 2™ letters in the channel signalling alphabet.

The trellis codes are constructed by the mapping by set partioning technique
aimed at maximize free Euclidean distance (ED). The mapping takes a channel
signalling set and successively partions it into subset with increasing minimum
distances Ag < A; < Aj;-.- between the signals of the subsets. The technique
is illustrated in Figure 7 for 8-PSK. A result of the mapping is a numbering
scheme assigned to each signal point. The numbering has been included for each
modulation scheme in Figure 3. Notice that for MPSK the partion results in the

natural binary mapping of the channel signals. 3

The following rules are used by Ungerboeck [14] in developing the 8-PSK

3 Although other mappings are possible by permuting subsets.
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trellis codes:

1) each of 8-PSK signal should occur regularly and with equal probability.

2) transitions starting from the same state come from either B0 or B1.

3) transitions joining in the same state receive signals either from subset B0
or Bl.

4) parallel transitions receive signals either from subset C0 or C1 or C2 or
Cs.

The technique is extended in a similar fashion for 16-QAM. The resulting
signal map is in Figure 8. The transmission rate in this case is 3 bits/symbol

using at rate 3/4 code. This will be compared to uncoded 8-PSK as a reference.

The encoders are of two forms as illustrated in Figure 9. In [38] it is shown
that every convolution encoder has a equivalent systematic encoder which may
contain feedback. Furthermore, the systematic encoder can be realized with the
same number of memory elements as the minimal feedback-free encoder. The
feedforwardAencoder can be realized directly from the parity generator polyno-
mial, G(D) and the dual systematic feedback code is taken from the parity check
polynomial H(D), where D is the delay operator similar to 2! in z-transforms.

The two functions are related by
G(D)H(D)=0 (16)

Algebraic details can be found in [38]. It is worth mentioning when G(D)

represents a non-systematic feed-forward code it may be very difficult to find
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Figure 9: Convolutional encoders a) feedforward version b) systematic feedback

version

G(D) from H(D) and vice versa.

While the two forms provide equal performance, it is advantageous to search

for good systematic codes because they cannot have catastrophic error propaga-

tion. This greatly reduces the search space and the associated computation time.

In addition the systematic code may be preferred since the data is available at

the receiver when the channel is clean. This could be taken advantage of during

periods when the channel is noise-free to free-up computational power.

The codes used in this study are in Tables 1 through 3. Codes for 4-PSK
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Constraint [ CCV | Asympt coding gain (dB)
Length v octal G4psk/BPsk

2 5 7 3.98

4 23| 35 6.02

6 133 | 171 7.00

Table 1: Rate 1/2 feedforward codes

are standard convolutional codes of rate 1/2 from Odenwalder [15]. The im-
plementation of these codes is optimal since Hamming distance (HD) equals
Euclidean distance for gray mapped 4-PSK. These codes will be implemented in
non-systematic feed-forward form. The rate 2/3 and 3/4 codes are from Unger-
boeck [24]. Thése codes are for use with 8-PSK, 16-PSK and 16-QAM. The
codes will be implemented in the systematic feedback form as given in [24]. Also,
this study has avoided the use of rate 2/3 codes for 8-AMPM from [14]. Al-
though 8-AMPM performs similar to QAM in the uncoded case and has an R,
advantage over 8-PSK by 1.3 dB, the codes found for 8-PSK out-perform coded
8-AMPM for constraint length less than v = 9. Subsequently, 8-AMPM codes

were dropped from Ungerboeck’s follow-up paper [24].

Tables 1 through 3 also include the asymptotic coding gain provided by each
code. This is determined by the increase in free Euclidean distance over the
uncoded case. The free Euclidean distance is the distance of the minimum path

in the code trellis which diverges and remerges with the all zero path. The free
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distance of the uncoded case is A, for the reference modulation technique. The

gain is calculated by example for 2 bits/symbol according to
20 log( dgree (8PSK)/Ap(4PSK)) (17)

For the 4-PSK codes the free distance is calculated by noticing that

diree,ED = {/20free, D (18)

The event error probability can be determined with knowledge of dgec and N (dge.),
the average multiplicity of error events with distance dg... Using maximum like-
lihood decoding, the error-event probability will asymptotically approach the
lower bound [16]

Pr(e) 2 N(d,m)erfc%(dﬁ,, /2v/20) (19)

More aécurate descriptions of trellis-coded modulation performance can be
found in [39]. The preceding equation was also used in Figures 4 and 5 for
determination of the SNR; which yields Pr(e) = 10~® for uncoded modulation.
In this case the multiplicity of errors is the number of nearest neighbors. The

calculations are documented in Appendix C.
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4 Source Encoding and Performance Evaluation

In the previous sections the means for data transmission have been developed.
The discussion will now focus on the data to be transmitted. The presentation has
been made in this order because the emphasis in this study is to consider source
coding for bandwidth efficiency as opposed to a pure data reduction approach.
The data source under consideration is the one-dimensional first-order Gauss-
Markov process which is one of the basic models for a correlated data source. It

is described according to
S; = pS.-_,, + VV,'; for 1 2 0 (20)

where p is the autoregression or correlation coefficient and must be in the range
0 < |p| £ 1 and W; is a sequence of independent and identically distributed
(ii.d.) random variables with common variance 2. The sequence {S;} then has
autocorrelation given by Rss(k) = 02 p*/(1 — p?) and the variance is therefore
oy =0,/(1-p%).

The DPCM system block diagram is shown in Figure 10. The system uses

linear prediction to determine future values of S; as

K
Sf=) aYia (21)
k=0
The prediction error is minimized when the prediction filter is equivalent to the

system model [18], therefore we should have ap = p, ap = 0 for all k& # 0.

Although in noisy systems it may be optimal to choose other values of p [19]. In
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this study it is sufficient to maintain oy = p.

The DPCM encoder operates by making a prediction, .§';" , of the current value
of S; using past values of S; and produces the difference between the predicted
and actual values in the sequence E;. The difference sequence is quantized and
transmitted over the channel for remote reconstruction at the receiver. The
sequence E; has a much lower variance than does S; and it is possible to represent
it with less bits than S; would require to maintain similar reproduction accuracy.
In doing so, the data rate is reduced but the sensitivity to channel errors may be
increased.

The following is an overview of the DPCM system . The quantity
Y;=8:+Q: (22)

represents the local estimate of S; which is applied as the input to the predictor.
In the absence of channel errors this is identical S’f‘ , the reproduced estimate of
S; transmitted to the destination. The error incurred in this case are due only
to the instantaneous quantization error @;. For our specific example with a = p,

in the absence of quantization errors the quantity
$ = o¥: (23)

represents the causal least mean-square (LMS) predicted estimate of S;. Notice
that the quantization error will generally cause S to differ from S;. To optimize

the prediction made at the decoder , the predictor in the encoder does not make
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Number of Output | Normalized Step Size | Mean Square
Levels Q ) Quantizer noise
2 1.596 0.3634
4 0.9957 _ 0.1188
8 0.5860 0.03744

Table 4: Optimum uniform gaussian quantizer

use S;. Instead, it makes use of Y; which is identical to information available at
the decoder when no channel errors occur.

The transmitted sequence {X;} is represented by an m-bit uniform quantizer.
Since the signal is gaussian it can be represented by one of Q@ = 2™ level from a

Max quantizer [25] as
Xi=[1-(Q-1)/2)bo.; 1=0,1,...,Q -1 (24)

where o, is the standard deviation of the error sequence {E;} and § is the optimal
step sizes determined by Max in relation to normalized .. For a given number
of quantizer levels the proper values of § are shown in Table 4. The Gauss-
Markov source, when used with the matched predictor in the DPCM scheme
yields o, = o,,. Note that the phrase “m-bit DPCM” will used in this document

to refer to a DPCM encoder containing an m-bit quantizer.

The quantizer in the DPCM system outputs symbols with a natural binary

mapping. For more than 2 levels, the quantizer outputs bits which are not of
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equal weight. An error to the most-significant bit (MSB) will cause more distor-
tion than a least significant bit (LSB) error. The nai;ural mapping is such that an
MSB makes a greater contribution to the variance of the DPCM encoder output
than does an LSB. In developing a transmission system it may be beneficial to

minimize MSB errors during transmission at the expense of LSB errors.

4.1 System performance measurement

The validity of a source encoding method must verified by a measure of quality.
In voice and image systems the criterion may be a subjective one and difficult
describe mathematically. In this study the system performance is based on a
channel input signal-to-noise ratio (SNR;) versus output signal-to-noise ratio
(SNR,). The results are quite similar in form to the R, curves. The SNR,
is calculated on a mean square reconstruction error (MSRE) basis. The mean-
square error is the most common performance measurement in statistical systems
and has been used extensively to analyze DPCM and Gauss-Markov systems
[19][27]. It is also attractive from a mathematical standpoint because it easy
implement and analyze.

The output signal-to-noise ratio (SNR,) in decibels is defined as:
SNR, = 10log(o?/e7) (25)

where o is the variance of original signal produced by the source sequence {S;},
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and

er = B{[S; - 5} (26)
is the mean-square reconstruction error between the original source data and the
data reproduced at the user.

The MSRE can be expressed in terms of three components [19]
e =€+ €m + € (27)

here €, represents the quantization error. Similarly, ¢, represents the error due to
channel noise. The term ¢, is a mutual error term which has been found to be
much less significant in DPCM systems with respect to the other terms [19]. In a
more general sense to all source encoding techniques, ¢, reflects the information
efficiency of the source coding technique and e, reflects the sensitivity of the
source coding technique to channel errors.

The input signal-to-noise ratio (SNR;) is based on the signal energy per chan-
nel use in the presence of AWGN noise with double-sided spectral density No/2.
The comparison between the different modulation techniques is accomplished us-
ing energy per symbol as opposed to energy per bit. For 2-D channel symbols

the input channel signal-to-noise ratio in decibels is defined according to

SNR; = 10log ;E/'“z]
1]

= 10log[2FE,/No] (28)

Figure 11 illustrates the system performance using uncoded modulation for

the first-order Gauss-Markov source with autoregression coefficient p = 0.95.
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The gaussian quantizer was used for 1,2 and 3 bits per DPCM symbol. The data
was transmitted as one source symbol per channel symbol by using BPSK for 1

bit, 4-PSK for 2 bits and 8-PSK for 3 bits.

Included in Figure 11 is the rate-distortion bound and R bounds on SNR, for
operation over the AWGN channel. As demonstrated in [1] the rate-distortion
bound for the Gauss-Markov source with a mean-square fidelity criterion is
equated to the channel capacity of Equation (12) and is used to solve for SNR,
in terms of SNR;. The same technique is used to obtain the equivalent R bound
in terms of maximum SNR,. The development of the 1-D Gauss-Markov with a
mean-square error criterion is from Berger [27]. The rate-distortion bound can

be expressed parametrically as

D= (2—32 / : min{, S(1)}dA (29)

and

1\? (= 1 S(A)
R(D) = (5) [ max {0,-2—log, : }d,\ (30)
where D is the fidelity measure and R(D) is the information rate in bits/sample

at which D may be achieved. The term S(A) is the discrete power spectral

density of the Gauss-Markov process

(1= p")al
— 2pcos A + p?

5(A) =1 (31)

The rate-distortion bound and R§ bound have been solved for by using the
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MathCAD®© “software package and are documented in Appendix C. By using

Equation (12) the expression

R(c?/SNR,) = glog, [1 + g\rh%_- (32)

allows a value for SNR; to determine R(D) which is then used to “look-up” the
corresponding D on the rate-distortion curve. The output signal-to-noise ratio
is defined similar to Equation (27) as SNR, = 03/D. The R} bound can also be
solved for in a similar manner.

The uncoded system performance curves of Figure 11 resemble the Ry curves.
For each quantization level, the characteristic linear and saturation regions exist.
In the linear region the noise has the greatest effect on system performance,
here performance is proportional to SNR;. In the saturation region relatively
few errors are made and the performance is due solely to quantization error. At
low SNR; the channel can only support 1 bit per channel use and 1-bit DPCM
with BPSK performs best, providing SNR, =11.8 dB at saturation. As SNR; is
increased above 12 dB the channel can now support 2 bits per use and SNR, =18
dB is available with the 2-bit DPCM over 4-PSK combination. Similarly, above
SNR; =18 dB the system can achieve SNR, =22.1 dB per symbol with 3-bit
DPCM using 8-PSK. The performance at this level is due only to quantization
noise and the 3-bit system is 10.3 dB and 4 dB above the 1 and 2 bit systems,

respectively and clearly it would be wasteful of channel capacity to use them for

*MathCAD is copyright protected by MathSoft, Inc.



44

high SNR;.

For low channel signal-to-noise ratio the situation reverses. At SNR; = 9
dB for example, the 1-bit system provides 11.8 dB. Use of the 2 bit system can
provide 16 dB but the performance is in the linear region and highly sensitive to
channel noise fluctuation, while the 3-bit system would yield less than 6.5 dB of
reconstructed signal-to-noise ratio at the receiver. This differs from the Ry results
which show that an increase in the alphabet size of an optimized modulation
scheme does not decrease the information throughput. The performance loss
should be attributed to the sensitivity to channel noise of the source encoding
technique. Performance of the system can be improved by either seeking source
encoding methods with less noise sensitivity or by decreasing the effect of channel
noise. In Section 6 the later will be addressed and shown to have significant

improvement by using trellis coding.

4.1.1 Source coding performance bound

In the previous section the rate-distortion bounds gave limits on the system
performance based on the channel quality and the specific source model. The
bound was independent of the source encoding technique. In this section a simple
approximation to the performance of a source encoder for the Gauss-Markov
source is given.

The upper bound for the output signal-to-noise ratio of Gauss-Markov source

represented by m bits per symbol is found simply by finding the fidelity D which
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Bits per | Rate-Distortion | Quantization Noise | Simulation
symbol [ bound (dB) bound (dB) Result (dB)
1 16.1 14.5 11.8
2 22.2 19.4 18.0
3 28.2 24.4 22.1

Table 5: Source coding performance bounds, p = 0.95

corresponds to rate R(D) = m bits from the rate-distortion function. Since the
function is described by parametric equations of integrals, an accurate approxi-
mation was more easily determined by using a cubic spline method to interpolate
specific values. The results are shown in Table 5. The values exceed the simula-

tion results by 4.2 to 6.1 dB.

The difference is attributed to the efficiency of DPCM as a source encoding
method. Its performance is limited by the quantization noise in the DPCM
encoder. In [19] it is shown that quantization error term in Equation (27) is

equivalent to the quantizer variance, i.e.
2
€ = 0, (33)

Using Equations (25) and (27) the value of SNR, due to quantization noise for

the noiseless channel is

SNR, = o2 /0] (34)

For the uniform Max quantizer the values of ¢ for 2,4 and 8 quantizer levels
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are given in [25]. The corresponding SNR, values are in Table 5 and represent a
performance bound on DPCM using Max quantizing for the various quantization
levels. The results are within 2.7 dB of the simulated values and accounts for most
of the difference from the ideal source encoder. The remaining difference may be
due to the actual probability density function of the DPCM error sequence which
is not truly gaussian since it is effected by the the propagation of quantization
errors.

While the DPCM system is limited to the quantization noise bound, it is
possible to achieve greater results using other source encoding methods. An
adaptive DPCM system makes it possible to reduce the quantization noise. In [6]
a comparison of trellis source coding methods are shown which perform above the
Max quantizer bound but below the 1-bit rate-distortion bound. It is important
to realize that in this study an alternative is offered to devising complex source
encoders which approach the 1-bit rate-distortion bound. That alternative is to
increase channel signal-to-noise ratio and use 2-bit DPCM and operate above the

1-bit bound.
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5 Combined Source Coding, Channel Coding

and Modulation

5.1 Fundamental concepts

A combined source coding, channel coding and modulation approach represents a
logical extension to the combined source-channel coding of [1] and the combined
channel coding and modulation of [14]. This research has focussed on analyz-
ing such a combined system approach. The evaluation of a sample system is
performed in an empirical study to promote interest for more advanced analytic
work. A discussion is presented on the motivation and goals of the combined
system and its differences from previous approaches.

Communication systems may be implemented from designs in which the
source coder, channel coder and modulator are considered separate and inde-
pendent subsystems. The resultant system may fall considerably short of what
is achievable. In this study it is argued that a combined source coding, chan-
nel coding and modulation approach can optimize overall system performance.
Massey had made a similar argument for the design of joint channel coding and
modulation schemes. This position lead to the discovery of Trellis Coded Mod-
ulation.

One of the most important aspects of the combined system is that the design

goal is to minimize distortion. This may differ slightly from the combined channel
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coding and modulation system where the goal is to minimize the probability of
a bit error. While both systems are designed to minimize errors, the distinction
lies in how the two approaches minimize the effects of errors when they occur.
One of the most tangible methods for minimizing the effect of errors is the use
of Gray coding in an uncoded system. In Gray coding all nearest neighbors in a
signal space have a hamming distance of 1 bit. This reduces the effect of typical
channel noise since it will usually cause only one bit to be in error. In general,
the approach should be to make the distortion proportional to the noise.

In many systems the source produces data with a natural mapping. This
is true of most analog source encoders. Consider an example of a simple PCM
system for the encoding, transmission and remote reconstructing a black and
white image over an AWGN channel. The system assigns one octal digit per
pixel with octal 0 representing white and octal 7 as black. Between 0 and 7 lies
graduated ghades of grey. A distortion measure is assigned as the absolute value
between the transmitted and received signal values. So if a dark pixel represented
by 6 is transmitted and channel noise causes a 4 to selected at the receiver, then
a distortion of 2 is assigned. During the transmission of this data, we would like
to minimize the average distortion. Using 8-PAM modulation and no coding,
the natural mapping of Figure 12 is the best since it causes the distortion to
be proportional to the noise for all symbols. The same situation using Gray
coding is no longer optimum. For example if a 2 is transmitted, noise causing

the selection of the right nearest-neighbor causes a distortion of 4 units.
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Natural Binary Mapping 0 1 2 3 4 5 6 7

000 001 o010 011 100 101 110 111
—@ @ @ @ *——© o—
000 001 011 010 110 111 101 100

Gray Mapping 0 1 3 2 6 7 5 4
Figure 12: Channel mapping for example

For other modulation schemes the choice is not as obvious. When using 8-
PSK, natural and Gray coding are almost equivalent because the natural map
is penalized for having 0 and 7 as adjacent signals. The problem becomes more
complex when coding is introduced. In a coded system, the concept of nearest
neighbor may not exist as the erroneous output of the decoder may depend on

both channel noise and the data sequence from the source.

5.2 System objectives

The objecfives of a combined source coding, channel coding and modulation
system can now be stated and discussed. The following may be simplistic, but it
is used to develops some important points.

1) The goal of a combined source coding, channel coding and modulation
system is to minimize the distortion of the reconstructed signal at the receiver.

2) The primary goal of channel coding in the system is to maximize free
euclidean for the given modulation technique. The coding should also have a
secondary goal to maintain “on average” the mapping relationship of the source

encoder letters.
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Item 1 implies that the components of the system must be optimized together.
It also implies that the primary criterion used to evaluate the system should be
an end-to-end performance measure which may be similar to source encoding
evaluation methods, i.e., a fidelity criterion. In this approach individual compo-
nents can be evaluated and compared by their performance within the system.
For example, two source coding methods can be compared for their sensitivity
to channel noise. While one method may be more efficient at achieving the rate-
distortion bounds in a noiseless system, another method which is less sensitive
to channel noise may provide better overall system performance in certain situa-
tions. Similarly, channel coding and modulation techniques can be compared on
their ability to improve overall system performance.

Item 2 implies that channel codes can be sought from existing techniques but
codes which are similar may provide different performance in conjunction with
a source coding method. This is attributed to the code’s ability to minimizes
distortion of the source letters when channel errors are made. It may also be
possible to find coding and modulation schemes whose performance is brought
to light only within the context of the combined system. As discussed in section 4,
such a scheme may increase the reliability of MSB transmission at the expense
of lower order bits in a natural binary mapped symbol.

In [1] a technique was used to minimization the effect of channel error on
symbols produced by a DPCM source. The system assumed BSPK modulation

exclusively and therefore coding had to be used judiciously since it increased the
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efficient transmission.

3) The use of DPCM as an effective method of source encoding. While only
one method of encoding is analyzed, the use of DPCM allows for a comprehensive
study of all system components parameters because of the ability to increase
quantization and thereby increase system performance.

4) Rate-distortion tools to determine the performance limitations for the
transmission of a Gauss-Markov source.

From these tools a system approach is taken. The rate-distortion bounds on
capacity and Rg for the Gauss-Markov process in Figure 11 tell us what is possible
for one channel use. The Ry curves for specific modulation techniques tell us how
to achieve near these bounds in practice. In [1] we found out that the system
worked best when all bits were coded. That work concluded that good high rate
codes were needed. By using high rate codes, such as » = m/(m+1), all bits could
be coded with a minimum in bandwidth expansion. The trellis codes presented
provide the high rate codes needed and do so with no bandwidth expansion. In
this study this is the approach taken, although other options may be desirable
to trade bandwidth for a decrease in power requirements. If we consider the
objective of this study to maximize fidelity to the user, then the purpose is to
determine what is the best way to represent and transmit data from a given source
in a fixed bandwidth for a given signal-to-noise ratio. An alternate viewpoint
of the same situation is to determine what source quantization, bandwidth and

signal-to-noise ratio are needed to achieve a desired fidelity at the receiver.
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We can now review the basic system of Figure 1. The system takes a
DPCM symbol quantized to m bits and transmits it over the channel with a
rate m/(m + 1) trellis code using either PSK or QAM modulation containing
2™+1 signal points in its constellation. At the receiver, decoding is performed
by a Viterbi decoder based on Euclidean distance. The Viterbi decoder provides
maximum likelihood (ML) decoding of convolutional codes and is feasible for
code constraint lengths less than ten. System performance is compared against
a reference system of m-bit DPCM transmitted over uncoded 2™-ary PSK. The
choice of m depends on the available channel signal-to-noise ratio and the fidelity
required. Increasing m can increase fidelity but only if sufficiently large signal-to-
noise ratio is available. In this study values of m = 1,2 and 3 are demonstrated.
The values chosen allow for an informative and complete set of tradeoffs to be
performed. The value m = 1 demonstrates a system with the least complexity
and the least required channel power. While values above m = 3 may have
practical uée but repeat similar tradeoffs that add little insight to the study.

There are a number of tradeoffs to be investigated. The first issue is the
effectiveness of the coded system. If the codes are effective then we should expect
to approach the asymptotic coding gains predicted by in Tables 1 through 3. A
true coding gain should replicate the uncoded system performance only offset
at a lower SNR;, as opposed to only improving fidelity (SNR,) in the linear
performance region. Included in this issue is the need to verify if the complexity

due to increased constraint length is justifiable by an appropriate increased in
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system performance.

The next tradeoff is the use of modulation technique. The tradeoff is most
interesting at 3 bits/symbol, where a choice of uncoded 8-PSK, coded 16-PSK,
coded 16-QAM and coded 12/4-PSK are available. Below 3 bits/symbol the
options between coded systems provide little performance gain as compared to
the simplicity of coded PSK modulation. Above 3 bits/symbol the PSK signals
become excessively inefficient as compared to QAM; while at 3 bits/symbol a
valid tradeoff exists.

A closely related topic is the peak-power versus average-power constraint im-
posed by the possible channel characteristics as discussed in Section 2. The PSK
signals are not effected by this situation. The issue is the relative performance
of the 16-QAM signal with the power constraint applied and the use of 16-QAM
modified into 12/4-PSK to counter the situation. While R, has given insight into
how the modulation schemes will perform, the actual performance may differ be-
cause of effects which only become obvious within the context of the combined
system.

The last issue to be examined is that of the DPCM encoder output to trellis
coder mapping. This will determine whether the trellis codes have a preferential
mapping which best maintains the natural binary mapping of the source symbols,
thereby reducing distortion. It may be difficult to explain such a phenomenon in
analytics terms but the results will yield insight into the problem. If such a result

exists then each trellis code should have an appropriate mapping associated with
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it when transmitting weighted binary data.

Specific to this study, the use of Ungerboeck’s trellis codes represent one
solution for how the DPCM symbols should be coded and mapped onto the
channel. Robust performance from the trellis code is expected since all bits from
the source encoder are channel coded. The mapping by set partitioning specifies
the coder to signal space relationship. This leaves how the DPCM symbols are
applied to the trellis encoder. The Ungerboeck codes used all have a uniform
error probability (UEP). The UEP property impiies that each coded bit has
an equal probability of error independent of the mapping. In the next section
we shall see that a mapping which follows the set partioning produces the best
results. Since the codes are systematic the MSB épeciﬁes the subset with the
greatest intra-signal distance and the LSB specifies the subset with the smallest
intra-signal distance ( the subset at distance A, is always specified by the “parity

bit”, yo, output by the convolutional encoder embedded in the trellis coder).
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6 Simulation results

The use of a system simulation allows for a more complete understanding of the
interaction between components which make-up the total system. The result
of a simulation is of course only as good as the model on which it is based.
The details of the implementation are in Appendix A. For clarity all system
parameters assumptions are restated here:

1) The Gauss-Markov source uses autoregression coefficient p = 0.95 and its
random input sequence {W;} is defined by o = 1 and py = 0.

2) The DPCM encoder and decoder use 'ﬁrst-order predictors with a = 0.95

3) The channel has infinite bandwidth and is an AWGN channel with a power
spectrum of S(w) = No</2

4) The Viterbi decoder uses soft-decisions maintained at 100 levels of quanti-
zation. This leads to performance which is indistinguishable from infinite quan-
tization. A decoding depth of 100 bits is used.

5) The simulation results are based on 100,000 symbols iterations per point.
Points were simulated at the following values of SNR;: E,/N, = 0,1,2,...,25
dB and E,/N, = 2.5,6.5,11.5,12.5 and 13.5 dB.

The simulation results are in Figures 13 through 20. The coefficient p = 0.95
implies a highly correlated source which is typical of voice and image signals.
The simulation of 100,000 source symbols was chosen per the 10/Pr(e) rule

discussed in Appendix A so as to guarantee accurate results for Pr(e) > 10~%.
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As demonstrated in Appendix A, this choice leads to a 99% confidence that the
results are within 6% of the actual probability. Probabilities of error smaller than
10~* are visually indistinguishable when using the mean square error criterion.

Also, the size chosen would be a practical example for a frame of image data.

6.1 Effect of coding and constraint length

The improvement due to coding with various code constraint length is demon-
strated in Figures 13 through 16. Simulations for codes of constraint length
v = 2,4 and 6 were performed. The decoding complexity grows exponentially
with constraint length and v = 6 is a good limitation on practical complexity. In
the following section coding gain will be used to refer to the difference between
the value of SNR; that can be used by two different techniques to achieve iden-
tical fidelity (SNR,) by using a different combination of either source resolution,
code constraint or modulation type. While performance gain will refer to the
increased fidelity, measured in SNR,, that can be achieved by different systems
at the same SNR;.

The following characteristics can be observed: the coded systems offer im-
provements which approach the 3 to 7 dB asymptotic coding gains predicted in
Section 2. In each case the saturation level of SNRy is reached at a much lower
value of SNR;. The saturation effect is quite similar to the R, function. Notice

that as the constraint length is increased the saturation effect becomes much
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sharper. Also, most of the coding gain is achieved by the short v = 2 codes. The
larger constraint lengths add an additional 1 to 2 dB of coding gain.

The 1-bit DPCM system with rate 1/2 and v = 2 code for 4-PSK has a 3.5 dB
coding gain over the uncoded system with BPSK. Alternatively, the coded system
may be viewed as having a 1.8 dB performance gain over the coded system at
SNR; = 4 dB. The v = 4 code adds another 0.5 dB of coding gain and the v = 6
is approximately 1.1 dB superior to the v = 2 code. At this point performance
is less than 2 dB from the Rj bound and it is expected that any other method
used can add only marginal improvement. Part of the improvement of the coded
4-PSK is due to the extra dimension which BSPK cannot access as was discussed
in the Section 2.

These results are similar to [1] where 1-bit DPCM was coded onto two uses
of BPSK with the use of the same rate 1/2 codes. Although that work was for
two-dimensional image information, a relative comparison in terms of coding gain
and proximity to R} is justifiable. In this case the two approaches are basically
the same since the uncoded data is transmitted via BSPK and the coded scheme
uses two channel uses. In this study the modulation is 4-PSK formed by two

orthogonal BPSK signals.

In Figure 14 the 8-PSK trellis coded system with 2-bit DPCM offers superior
performance over the 1-bit systems when SNR; > 8 dB is available. By going

to 2-bit DPCM the system performance can be increased to SNR, ~ 18 dB.
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The coded 8-PSK has a 2 dB coding gain over the uncoded 4-PSK system at
SNR; = 9 dB for v = 2. It is reasonable to expect that for larger SNR; this gain
will approach the asymptotic coding gain of 3 dB which is predicted in Table 2
An additional coding gain of almost 4 dB occurs with constraint length 6 and
this is within 1 dB of the Rj bound. For all of the results in Figure 14 the DPCM
symbols were mapped to the encoder as MSB= z; and LSB= z;. The alteration
of the mapping will be discussed later. In comparison to [1] a true equivalent can
not exist. This is because there is no added dimension or bandwidth associated
with the uncoded or coded systems. Instead a relative comparison to a system
with a bandwidth expansion is made.

In [1] a 2-bit DPCM symbol is transmitted via an uncoded system using 2
BPSK channel uses and the performance saturates at SNR; = 16 dB or 8 dB from
2. R;. By using a rate r = 1/2 and v = 6 coding on each bit and then expanding
to 4 BPSK channel uses, the same performance was achieved at SNR; = 11 dB
or 4 dB from 4 - R}. This is a 5 dB coding gain or a 50% gain relative to Rj. In
contrast, the system in Figure 14 saturates at only 12 dB for the uncoded system
and 8 dB for the coded system with v = 6. While the coding gain is only 4 dB,
the improvement relative to R{ is 80% with no bandwidth expansion.

The results for 3-bit DPCM transmitted using 16-PSK trellis coded modula-
tion are shown in Figure 15. The use of 8 level quantization brings performance
up to SNR, =~ 22 dB when SNR; > 13.5 dB is available. As anticipated by R,,

16-PSK becomes inefficient as compared to R;. The v = 2 code has an 3 dB
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gain over the uncoded system which is in agreement with the asymptotic coding
gain. Another 1 dB can be achieved with the v = 6 code. This is about 3.5 dB
from the R; bound.

In comparing again to [1] the 3-bit system here offers performance gains
which were not possible in the other approach. A later study of the block cosine
transform [2] introduced higher rate codes but e specific results for rate 3/4
codes using two channel symbols are available. A result in [1] was obtained for
3-bit DPCM transmitted over 4 BPSK channel uses with a 1/2 rate code on the
MSB. Fidelity improvements were found only in thé linear region and not in the

saturation region.

6.2 QAM versus PSK

Some of the inefficiency of 16-PSK relative to R} can be made up by using 16-
QAM in Figure 16 which makes more efficient use of the signal space. The use
of 16-QAM TCM is generally 1.5 dB more efficient than 16-PSK TCM for codes
of equal constraint length when an average power constraint is applied. The
constraint length v = 6 16-QAM code is within 2.2 dB of the R} bound. Notice
that at low SNR; the QAM performance falls off more sharply than does PSK,
this may have to do with the number of channel letters which are accessible for a
given intensity of noise. In PSK the number grows roughly proportional whereas

in QAM the number grows more rapidly.
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Again as in the uncoded case it is important to realize that using increased
quantization levels improves system performance only when there exist sufficient
transmitter power. For example, at SNR; = 5 dﬁ R§ implies that 15.6 dB is
obtainable. For codes with v = 2, the 1-bit system with 4-PSK TCM achieves
SNR, = 11.8 dB while 2-bit DPCM with 8-PSK produces only 5 dB performance
at the receiver. The performance is poorer for 3-bi1; DPCM, which yields only 3

dB with 16-PSK and SNR, less than zero with 16-QAM.

6.2.1 Average versus peak power constraint

As discussed previously, a peak power constraint is sometimes considered a more
realistic model of a practical channel. For the peak constraint the channel signals
should lie on or within a circle representing the peak power. This means that
the PSK signal set remains the same but the QAM intra-set distance must be
reduced from 2/4/10 to 2/+/18 which results in a 2.5 dB loss from the average
QAM signal set. The relationship is shown in Figure 17. For the peak constraint,
QAM looses its superiority to PSK. This result has been verified in studies of
non-linear channels [13], which is similar to the peak constraint because the
transmitter power is “backed off” and limited into a linear region of the channel.

For the peak power constraint channel some of the losses incurred by 16-
QAM may be recovered by using the 12/4-PSK constellation of Section 2. One
of the attractive properties of 12/4-PSK is that intra-signal distance are only

increased over peak constrained 16-QAM so that codes developed for 16-QAM
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can be used without modification. The result in Figure 18 is that 12/4-PSK is
slightly superior to 16-PSK, about (0.5 dB). This can be compared to the 1 dB

difference in R, between 16-PSK and 12/4-PSK in Figure 6 at SNR; = 13 dB.

6.2.2 Effect of bit mapping

In Figures 19 and 20 the effect of the bit mapping between the DPCM quantizer
and the trellis coder is investigated. In both cases the greatest effect is at low
SNR; values before the threshold effect occurs. In 2-bit DPCM with 8-PSK TCM
the effect diminishes at the threshold, which should always be operated above.
For the 3-bit case with 16-PSK TCM the effect is ‘more pronounced. An extra
1 dB of SNR; is required to achieve the saturation level at SNR, = 22 dB.

In all cases the performance seems to correspond to the subset distance which
the bits specify in the channel signal partion. It appears that the MSB from the
quantizer should be mapped to the highest order bit into the encoder, that is
¢, for the rate m/(m + 1) trellis codes. Likewise the LSB should correspond
to z; in all cases. Since the codes are systematic, the encoder inputs z,,,...,2;
correspond directly to the embedded convolutional coder output y,,,...,y; which
specifies the signal map.

A similar phenomenon has also been reported by Omura [42]. For a rate 2/3
code it was determined that bits entering the top of the encoder had a smaller

probability of error than bits entering the bottom of an encoder.
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6.2.3 Comparison to R,

The simulation section is concluded by some remarks on the comparison of the
simulation results to the Ry results. It should first be noted that direct com-
parison to the individual Ry function plots is difficult because the trellis coded
systems use modulation techniques with 2™*! points while the uncoded systems
use modulation with 2™ points. Nevertheless, certain observations can be made
with the use of either Equation (3) or (4). Good performance is expected when
R, — R is sufficiently greater than 0 or when R,/ R is sufficiently greater than 1.
Comparison of the R, curves and the simulation results seem to yield a general
trend that the knee in the simulation results curves occur at the same value of
SNR; as does when Ry — R = 0.6 for v = 6 codes and Ry, — R =~ 0.9 for the
v = 2 trellis codes. For example, in Figure 14 the result for 2-bit DPCM using
8-PSK with v = 6 has its saturation knee at about 8 dB. The corresponding R,
curve in Figure 4 shows that 8-PSK has an R, value of 2.6 bits per symbol at
SNR; = 8‘ dB. Since the information rate is 2 bits per symbol, Ry — R is 0.6. This
supports the claim made that Ry can be used to find where good short constraint
length codes exist.

As shown in Section 2, one of the best uses of Ry is to compare the relative
performance of various modulation technique. The relative performance pre-
dicted by R, for 16-PSK, 16-QAM and 12/4-PSK was verified in the simulation

results. The results were accurate for both the average power constraint and
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peak power constraint channels.
Finally, Rj; represents a practical goal for system performance. For constraint
length v = 6 codes, performance was 1.0 to 3.5 dB from Rj. Absolute comparison

to Rj is possible because it is independent of the the modulation technique used.
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7 Summary and Conclusions

This thesis has investigated a combined source coding, channel coding and mod-
ulation approach to communication system design. The intention is to show that
a system which is optimized as a whole is more robust than one designed by
“pasting together” separately optimized pieces of the system. In this study the
technique was applied to a specific example. Namely, the transmission of a first-
order gauss-markov source over a AWGN channel using DPCM source encoding
and two-dimensional modulation. The process and concepts were presented in
general a manner so that the analysis could be applied to many systems.

The method used can be outlined as follows:

1) For a given source model and selected performance criterion, the bounds
on system performance can be determined based on knowledge of the channel
cha.racteri‘stics.

2) The channel symbol rate is set equal to source symbol rate. Thereby
creating a fixed bandwidth system.

3) A tradeoff is done to determine the best grouping of source encoding,
channel encoding and modulation technique for a given level of channel input
signal-to-noise ratio.

In analyzing system performance, the source encoder, channel coder and mod-
ulator were studied within the context of the total system and improvements were

possible by making tradeoffs between the three sections. The quantization of the
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source encoder was modified between 2, 4 and 8 levels. It was determined that
increased quantization can improve system performance by also increasing the
channel signalling set but only when adequate channel input signal-to-noise ratio
is available. At low SNR;, increased quantization actually deteriorates perfor-
mance.

The use of trellis coding greatly increased system performance without band-
width expansion. The choice of code rate is determined by the source quanti-
zation. It was found that most of the improvement comes with short constraint
codes while additional improvement is possible with longer constraint lengths.
Also investigated was the source coder to channel coder bit map. The simulation
indicated that a proper mapping exists which corresponds to the set partitioning
method.

In the area of modulation, the Ry function was used to show that for constella-
tion of size 8 or less, the set of M-ary PSK schemes are the simplest and provide
near optimal performance as compared to Ry. At 16 points the PSK method
become inefficient and 16-QAM provides superior performance for the average
power constraint channel. These results were verified by the simulation for the
trellis coded versions of PSK and QAM. For the beak power constraint chan-
nel QAM losses its superiority but some of this may be regained by a modified
version of 16-QAM called 12/4-PSK.

The use of Ry led to insightful information as toA the performance capabilities

of each modulation technique. By using longer constraint length codes the R
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bound was approached within 2.0 dB for 1-bit using 4-PSK, 1.0 dB with 2-bits
using ‘8-PSK while the 16-QAM with 3-bit DPCM combination came within
2.2 dB of Rj. This supports the argument that Ry is a good bound on achievable
performance but it was found to be overly conservative on estimating coding
complexity.

It is important to realize that the technique can be generalized to study other
systems. The source encoder was investigated for quantization levels of DPCM
but this could be expanded to include comparison of different source encoder
techniques. The rate-distortion bound shows that performance of DPCM is sub-
optimal.

The selection of the method of system performance measurement should be
done carefully. In this study, a mean square error criterion was used because
it is mathematically attractive and it provides a good measure of average per-
formance.- An average criterion is appropriate for systems with random noise
fluctuations sqch as gaussian noise. The a.veta.gin'g technique has a threshold
effect which makes noise variations below a certain level indistinguishable. For
example 10~* and 107! Pr(e) might provide about the same mean square error
and this may be a useful statement for a practic;al system which is not sen-
sitive to infrequent errors. Alternatively, a systems may be sensitive to long
but infrequent burst errors which can be obscured by averaging technique. Fur-
thermore, in the real world system performance measures may be highly sub-

jective and difficult to define by analytically means. This does not imply that
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simple analytic methods are not useful, rather it seems intuitively correct that
sub jective performance should be monotonically increasing with decreasing mean
square error, even if the relationship is non-linear or has insensitive plateau-like

regions.

7.1 Future research

This study can be expanded in a number of areas. These can be placed into two
basic categories. The first category involves studying more complex aspects of
each subsystem. This can be used to extend the knowledge on optimizing the
implementation of practical systems. The second category is in the development
of analytical work to better describe and bound the performance of the combine
source-channel coding and modulation system.

The first category would include performance studies of more complex models
of realistics source models and source encoders for image and voice systems.
More realistic channels models should be implemented to truly appreciate the
robustness of various source encoding methods. In the coding and modulation the
symbol rate and channel rate where set equal. This forced system performance
to only three unique levels. By using recent results in Multiple Trellis Coded
Modulation [40] more finely quantized system performance is possible by using
codes with non-integex; throughput.

The second category raises the need for a more complete theory. One area
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which needs to be understood more completely is the source encoder to channel
encoder mapping relationship. Related to this is the possibility of finding codes
which are designed to minimize distortion for specific data types. In doing so it
would be worthwhile to gain a more thorough understanding of Viterbi decoder
error statistics as these determine the distortion.

Finally, there is a need to develop systems which represent a truly combined
source coding, channel coding and modulation technique. In this thesis, an ex-
ample which may be considered as “matched” source coding, channel coding and
modulation was investigated. A promising area would be the development of

source trellis codes for multilevel/ multiphase modulation.
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A Appendix A: Simulation Approach and De-
sign

As part of this study a software simulation package was developed for the anal-
ysis of the communications system under consideration. In the this section the
methodology of simulation will be discussed. Also the scope of effort will be
documented.

The simulation package objective is to implement the overall system of Fig-
ure 1. The system includes the Gauss-Markov source, the DPCM encoder and
decoder, trellis coder, AWGN channel, the Viterbi decoder and finally the system
performance statistics. The system is implemented in a custom software package

included in Appendix C.

A.1 Simulation Methodology

In approaching the the simulation, two methods can be identified in ways to
determine the effects of interference in noisy communication systems [20]. One
method is to simulate the deterministic noise-free signal paths and apply a sta-
tistical understanding to the noisy-paths and calculate the effect. The second
approach is to use a Monte-Carlo techniques where all random processes are
simulated and the results are determined by running large numbers of trials to

get statistical averages on the frequency of occurrence of error events.



79

Each method has advantages and disadvantages [20]. The first approach
allows for a saving in computation but requires a complete knowledge of the
statistical properties of the random processes involved. In most systems , es-
pecially ones with non-linearities, the statistical properties may not be possible
to determine. Furthermore, accuracy of the results are highly dependent on the
completeness of the knowledge of the random properties. The second approach
is a brute force method which can be computationally exhaustive. Its major
advantage is that it does not require the intimate details of the statistical prop-
erties. The major disadvantage is that events with low frequency of occurrence
take considerable computational time to get results with high confidence factors.

The approach taken here is similar to that taken by [20]. This involves a
hybrid approach in which the all signal paths are simulated in a deterministic
manner except the channel noise and the random component in the source model.
A Monte-Carlo approach is then used to subject the Viterbi decoder to the the
variations in channel noise as well as variation in the source sequence pattern.

This ﬁpproach is most appropriate due to the nonlinearity of the Viterbi
decoder. The performance of the Viterbi decoder is not only affected by the
channel noise but includes the sequence of data transmitted over the channel.
All the remaining components in the system are deterministic linear systems

who'’s operation is either well understood or defined.
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A.1.1 Monte Carlo method

The Monte Carlo method is based on simulating the random processes in a
system with the help of random number generators. By using number generators
which accurately simulate the random process, useful statistical averages can be
developed by performing a sufficient number of trials.

In discussing the Monte Carlo method it should first be mentioned that the
simulation was implemented in two phases. The first phase involved the devel-
opment of the trellis coder and the Viterbi coder. The system was verified by
implementing known codes from Ungerboeck. In ‘this phase performance was
measured on a probability of error basis. To verify small probabilities of error
(i.e. P(e) = 10°) extensive use of monte carlo simulation is necessary. The second
phase was the complete simulation of the system in Figure 1.

In running large simulations it is important to estimate the number of trials
which w111 be required for accurate results. The Monte-Carlo method is based on
the Law of Large Numbers in probability theory [32]. Consider an experiment of
repeated Bernoulli trials where the probability of success is p and the probability
of failure is 1 —p. If the experiment is repeated n times with S,, successes then it is
expected that S,,/n approaches p for n large. This is our intuitive understanding

of probability. The law of large numbers states this mathematically as:

o

here € is the sampling error. For finite n the right side of Equation (35) is less

-S—'l—p’<e}—-)1 (35)
n
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the one. The actual value is referred to as the “confidence factor”, .i.e., the
probability that the experimental results are a good approximation (within ¢)
to the actual probability. The confidence factor can be well approximated by a

form of the DeMoivre-Laplace limit theorem [32].
S, —np

Pr{|—m———
{ \v/np(1 - p)

where Q(f) is the normal distribution. For a given sampling error and confi-

< ﬂ} —2Q(p) -1 (36)

dence factor ,v, a sufficient number of trials can be determined by noticing that

p(p — 1) <1/4 and solving for n as

2 e (14

here Q~(-) represents the inverse Gaussian error-prc;bability function. This leads
to the rule of thumb that 10/p trials are sufficient [33], as it implies a 99%
confidence that the sample probability is within 6% of the actual value. For
example, £o prove that a certain coded system prodﬁces a probability of bit error

Pr(e) = 107* the simulation should use a sequence of a least 100,000 bits.

A.1.2 Random number generation

The random number generator which is used is very important in the outcome
of the simulation results. The ideal uniform random number generator should
have a sample autocorrelation function which approximates the impulse function

R,.(7) = (No/2)8(7). A class of important generator are the linear congruential
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generators (LCG). The generator used here is the Wichmann-Hill generator [34]
which uses 3 LCG’s. This is an exceptionally effective algorithm shown to have
excellent statistical properties [35]. It is generated by the following iterative set

of equations

I, = (1711 -I,_,) mod 30269
Jo = (172-J,_,) mod 30307

K, = (170.K,_,) mod 30323

I, Jn K,
[30269 30307 T 30323] Y (38)

The generator produces the uniform random number u, which is uniform
over the interval [0,1) and has mean y, = 1/2 and variance o, = 1/12. Gaus-
sian random numbers are generated by use of the central limit theorem which is
generalization of Equation (36). It states that the sum of ii.d random variables
approaches a gaussian distribution. A gaussian number,, with gy = 0 and

0} =1 can be generated from the uniform numbers of Equation (38) as

b= éum] ~6 (39)

The generator has been shown to have a period of 7.0 - 1012 in [35]. This
period is very large in respect to the simulation which calls on the generator at

most 36 times per bit and runs through between 10° and 107 bits per simulation.
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A.2 Systemm Components

The Gauss-Markov source, DPCM encoder and decoder are implemented in a
straightforward manner as would be a digital filter per Figure 10. The input
data sequence {W;} is developed by the gaussian random number generator with
mean g, = 0 and variance o2 = 1 for simplicity. The DPCM encoder differs
from ordinary digital filters in that it contains an embedded quantizer tp produce
the channel data in a digital format. The encoder therefore contains simulated
analog-to-digital and digital-to-analog converters. Similarly, the DPCM decoder
must first use an analog-to-digital converter before operating on the data.

The most significant section of the simulation package includes the trellis
coder, channel and Viterbi decoder. The AWGN channel is implemented in a
complex baseband representation. The baseband model is appropriate because
any channel effects caused during modulation, transmission and demodulation
can be included in the model. This includes transmission and receiver filters, in-
tersymbol interference, carrier phase tracking problems, non-linear channel dis-
tortion and other effects. Although these effects are not implemented in this
study for the sake of studying more basic concepts. Since the channel noise is
gaussian, the in-phase and quadrature noise are independent and their effects
may be implemented separately in simulation.

The trellis coder combines the channel coder and modulator. This is accom-

plished by a convolutional encoder which is cascaded to a signal space map. The
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signal map determines the specific location of the channel letter in the signal

space based on the convolutional encoder output and the modulation technique.

A.2.1 Viterbi decoder

The Viterbi decoder is a maximum likelihood decoding algorithm for convolu-
tional codes. A detailed explanation is found in [22]. Briefly, the decoders func-
tion is to search through the familiar trellis diagram associated with the noiseless
convolutional encoder and find the path that differs least from the received se-
quence. That difference is called a metric and is measured in square Euclidean
distance.

The Viterbi decoder is the most complex part of the system. Its design is
based on the implementation recommended by Heller and Jacobs [21]. The ma-
jor difference is that the Viterbi decoder implemented for this study is based on
Euclidea.ﬁ distance rather than Hamming distance. The decoder is a pipeline
structure composed of the following functional units; the branch metric calcula-
tor, the add-compare-select (ACS) section, the path memory and the data output
section.

The branch metric calculator acts as a bank of M “matched filters” at the
receiver front end. A branch metric is calculated based on a the likelihood func-
tion, Pr(y|z) the probability that y was received given that = was transmitted.

For the system under consideration with equally-likely symbols this is calculated
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as.

m = bmac - Iy h $l|2 (40)

where byg, is the maximum branch metric value and |y — «;|? is the squared
Euclidean distance between the received signal and the lin point in the signal
constellation, ;. This results in the branch metric, m;, which is inversely pro-
portional to the distance between the received signal y and z;.

The received signal y is quantized before the branch metric calculation. For
two quantizer levels the system is called a hard-decision decoder and the branch
metric becomes the “optimal receiver”. By using infinite quantizer level, an ad-
dition 2 to 3 dB in performance is made available. A system with more than 2
levels is called a soft decision decoder. For 8 or more levels the loss becomes neg-
ligible. The simulations performed in this study will use 100 level of quantization
throughout.

The ACS section is responsible for updating the new state metric associated
with each of the 2” states in the trellis. For each state the ACS determines which
of the 2 paths merging into the new state has the largest metric. The largest
value is added to the branch metric and this becomes the new state metric for
the current state.

The path memory maintains the history of decisions made to get to each state.
In [21] it was determined that the path history should be at least 4 constraint

lengths deep. This modification implies that the decoder is no longer optimal,
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but the impact is minimal. In this simulation, a path memory of length 100 is
used throughout.

Finally, the decoder is responsible for outputting data. The data is available
after the 100 bit path memory delay. The data can then be reconstructed by the
DPCM decoder and compared to the transmitted data for performance measure-
ment. The performance measure is that of Equations (25) and (26). Specifically,

for a simulation of length L symbols

o3 L

SNR, = 20log ) Ef;l[s.' — 5“']2

(41)

with the values L = 100000, o3, = 1 and p = 0.95 chosen for this study.
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B Appendix B: By Bound

B.1 Derivation of R, results

The following section develops the Ry results of chapter 2. First the Ry function
is derived as a result of the forward proof of the coding theory as was shown by
Gallager [10]. The R, function is then determined for the AWGN channel per
Wozencraft and Jacobs [11]. From this result the specific Ry functions for M-ary
PSK and QAM are presented.

The proof of the coding theory uses the random coding technique of Shannon.
Instead of proving probability of error for specific codes, the random coding
procedure bounds the average probability of error for all possible codewords
which can be formed. The derivation is based on the assumption that the channel
will be used N times to transmit a message m. The channel has an input alphabet

of size M. The average probability of error can be written as

Pe,m = Z z gn (Xm ) PN (¥ |Xm ) Prlerror|m, x,, y] (42)

Xm ¥
for message m, the probability of transmitting m and receiving it in error for
all possible channel input sequences, x,,, transitioﬁing into channel output se-
quences y. This is calculated for all possible codewords that can represent m, of
which there are MY combinations. The term Py(y|x,,) is the transition prob-
ability of sequence x,, being transformed into received sequence y due to the

statistical noise properties of the channel. The codeword sequences are assigned
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the arbitrary probability gy(x.,) of choosing sequence x,, to represent m. While
Prlerror|m, x,,,y] represents the probability of an error for the combination of
m, the chosen sequence of x,, and the possible received sequence y.

Aside: The union bound

For a given set of events 4,,

M P
P(UAm) < [Z P(A,,,)] ; 0<p<1 (43)
m m=1
this is true since the events may “overlap”. The use of p generalizes the result
and is restricted to a range of interest.
Using the maximum likelihood decoding rule, the receiver should choose in

favor of message m' if

Pr(y[Xm) = max Pr(y|xnm,). (44)

An error event occurs if m' # m. Therefore for the given values of m,x,, & y we
call A,, the error event that x,, is selected such that Py(y|xm') > Pn(¥|xXm)-

Then

Prlerror|m,xm,y] < P( U A,,.:) (45)

m'#m

< { > P(Am’)} (46)

m'#m

where A, is the probability of all events which satisfy Equation (44). This can

be stated simply as

Pr(An) = > an(Xmt) (47)

Xt PN(Y|Xn1)2 PN(Y | Xm)
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The last equation can provide some very useful information by bounding
the result with more tangible information. For the set of error events due to

maximum likelihood decoding it must be true that for s > 0

Pr(y|Xm) ’
o] 2

Then an upper bound can be written as

PN(YIXM')]‘ (49)

Pr(Am) < ) an(xm [
(Am) < 2 awlxn) | By )
Substitution into equation 46 and noting that there are M — 1 choices of

m' # m yields

s\ P
Pr(y|Xms) } 8>0

50
Pr(yixm) , 0<p<1 )

Prlerror|m,x,,y] < {(M -1) Z an(Xmr) [
X!
Substitution into (42) and replacement of the dummy variable x,,' by x results

in

P < (U =1 ST an(an) Putr i) (S anta) eE T

Xm Y PN(y|xm)

this can be rewritten

Pms@-1rE S an(n) Py )| [ £ a(s)Puylsn)”] (52

y

Replacing the dummy variable x,, by x and setting s = 1/(1 + p) leads to the

bound of interest

1+p
P (M -1y [}; qN(x,,.)PN(y|xm)l+’] ; 0<p<1  (53)
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In this study we are interested in a discrete memoryless channel (DMC) with

AWGN noise. For a DMC each channel symbol is independent so that

Py(ylx) = l:[lp(ynlzn) (54)
an(x) = ]:[19(%) ' (55)

The DMC bound is then
N N 1+p
P < (M =13 1> I a(=n) I1 P(ynlz,.).”’] ; 0<p<1  (56)
Yy X n=1 n=1
The product term can then be represented
N 1+p
Pop < (=17 T3 [S o) Pl ] 7
n=1 ¥y z
For a channel with K-input letters and J-output letters this can be written
J-1[K-1 1+p\ N
P < (M — 1) {Z [Z Q(k)P(J'lk)l/”"] } (58)
3=0 Lk=0

An exponential form can be realized by defining rate R = log, M/N and

M = 2BN_ For N selected as M — 1 < 28N < M the bound becomes

P, < 2{-NlEo(pq)-oR]} (59)
where
J-1[K-1 1+
Eo(p,q) = —log; 3 | Y- q(k)P(j|k)"/*** (60)
7=0 Lk=0

The average probability over all messages is then bounded as

M
P, =Y Pr(m)P,,. < 9{-N[Eo(e,q)-,R]} (61)

m=1
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Since p and q are arbitrary, the tightest bound occurs when

Pe < 2—Nn3’1‘11x[Eo(p, Q) - pR] (62)

The R, bound is then obtained by setting p = 1

Ry, = m‘?xEO(l’q)
= max-— logzz;) Zq(k)\/P(;)Ik] (63)

For the AWGN channel the transition probability is approximated as [11]

P(jlk) =Q (J%-—;) (64)

where Q(-) is the Gaussian error function and d; is the euclidean normal dis-
tance between channel letters ¢ and j defined as d;; = ||(s; — si)||. Using this

information the Ry bound becomes

Ry = max — log, Z 2 q(k)\] (%}k—”)} (65)

i=0 | k=0

The Error function can be over-bound as Q(a) < e=*'/2, At this point it is

assumed that the channel has M input and output letters. The squared term in

(65) is expanded as the product of a summation in k and a summation in the

dummy variable i. The exponential terms are grouped and the j terms drop-out.
Then replacement of dummy variable k by j results in

Ry = g —log, 3.3 [a()a(i) e (L2210 (66)

i=137=1
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Finally for equally likely symbol this reduces to

o = ~logy 755 33 [esp (L2721 ()

i=1j=1
To determine R, for a modulation technique in the presence of AWGN it is
necessary only to have knowledge of the coordinates of the letters in the signal
space map and use this to determine the euclidean distance between letters.
For programming purposes it is useful to obtain a closed-form expression.
The R, function for M-PSK is arrived at by realizing an expression for d;;. The
MPSK signal uses 1 dimension per symbol for M = 2 and 2 dimensions for
M > 3. In general the N,-dimension symbol must lie on a hypersphere of radius

V' N,Ey. From the signal space geometry it is clear that
dij = ||si— sl (68)

T i = ) M
= 24/N,Eysin ﬁ(i —3); for (69)

Therefore Ry for MPSK is

R L {

[sm —(1 — _7)] } bits/symbol (70)

i=1 j=1
The closed form R, expression relies finding an expression which translate
the number used to identify two points into the distance between them, therefore
the relationship may result in an algorithm with little mathematical insight. For

QAM a closed form expression is determined which in initial form is useful, while

the final form is mostly for software implementation.
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The expression is arrived at by noticing that the QAM signals form a square
lattice of M points equally spaced by 2a4/2Ey. The value 4/2Ey represents the
energy limit for the 2 dimensional symbol and a equal \/iﬁ(—) for an average
power constraint while ¢ = \/m for the peak power constraint. Using a two

component vector to enumerate the signal points as

(71)

|
8§

The R, function can be determined with the j representing the channel output

Ry, = —log;— M’ EZ { 2} (72)
= —log;, — e EZexp{a, N } (73)

vM VM VM VM

= log > > Y zexp{za o [t 3 + G - 3]} (79

11=1j1=143=1j3=1

coordinates as follows




1 Appendix C: Software

1.1 R, and capacity determination

C THIS PROGRAM GENERATES THE R0 FUNCTION FOR
C PAM, PSK, QAM AND 12/4.PSK MODULATION IN AWGN
PARAMBTER IDIM=61
COMMON PI, A, ASQ, ART,RSIN,RCOS
DIMENSION RO(IDIM),D(64,64)
DIMENSION RCOS(16),RSIN(16)
INTBGER DB,L,H
REAL DIST,N
CHARACTER*4 NAME
PI = 4.0 * ATAN(1.0)
NAME = 'DUMY’
WRITE(1,*) 'ENTER 0 FOR PAM, 1 FOR PSK, 2 FOR QAM, 3 for 12/4PSK’
READ(1,*) IOPTION
WRITE(1,*) "ENTER CONSTELLATION SIZE,AMPLITUDE,0UTPUT FILE NAMB’
READ(1,*) A,N
READ(1,*) NAME
ASQ = A ** 2.0
ART = SQRT(A)
C############################################.

C PRBE-CALCULATE SIGNAL DISTANCES #

94



CHEHBHBHBRRHRAH R RRERRRERAERRRRRRBRRHRRBHRBREH
DUMMY=1.0
CALL DATA(DUMMY)
DO 50 L=1,A,1
DO 50 H=1,A,1
50 D(H,L)= DIST(IOPTION,L,H)
CHRUBRHUBRHRBHRBBRBRRRERB BB LR R RRRBRBRRRRRRRRRA
C CALCULATE RO FOR SIG-TO-NOISE RATIOS #
CHAMAAERHURBRRH R BB RS RBRERRRRRRRBRR BB R RS
DO 10 DB = -10,80,1
BTON= 10.0 ** (FLOAT(DB)/10.0)
I= DB+11
VALUE = 0
D020 L=1,A1
DO 20 H=1,A,1
20 VALUE = VALUB + EXP( D(H,L)* RTON®N)
10 RO(I) = (-1)*LOG( VALUE/ASQ)/LOG(2.0)
OPEN (UNIT=10,FILE= NAME )
WRITE (10,%) RO
CLOSE (UNIT=10)
END
CHEHHHHRRMRYARRBRB R A A AR ARV ARRRRRRRRSH

C END OF MAIN #
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CHERHFHFEREAEARARAARLH AR AR AR AR RR R AR SRS SR #

FUNCTION DIST(IOPTION,L,H)

CHEREFAFARRERAARAREA R AR RRAR A AR AR RARRARAARS

C SUBROUTINE TO CALC SQUARE DIST #

CHARMFREEREAEAREEAARAER R A AR AR AR AR LA R AR A AR

COMMON PI, A, ASQ, ART,RSIN,RCOS

DIMENSION RSIN(16),RCOS(16)

COMPLEX CL, CH

INTEGER L,H

IF (IOPTION .EQ. 0 ) THEN

DIST = (-1) * ( (L-H)/(A-1))**2

BLSBIF (IOPTION .EQ. 1) THEN

DIST = (-1) * ( SIN(PI*(L-H)/A) )**2

BLSBIF (IOPTION .EQ. 2) THEN

CL = CMPLX( ANINT(L/ART+.48), AMOD( L-1.0,ART)+1)

CH = CMPLX( ANINT(H/ART+.49), AMOD( H-1.0,ART)+1)

DIST = (-1)* ( CABS(CL.CH)/(ART-1))**2

ELSE

DIST =-1.0%(RSIN(L)- RSIN(H))**2+(RCOS(L).-RCOS(H))**32)

ENDIF

RETURN

END

CHA#RERERRARAARAARRAARRRAA R EAER R AERAES
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C THIS SUBROUTINE DEFINBS THE POSITION #
C OF THE 12/4.PSK SIGNAL POINTS #
CHFAREERFFEAEFFFHAEAAFF AR EAF R AR RS
SUBROUTINE DATA(DUMMY)
COMMON PI, A, ASQ, ART,RSIN,RCOS
DIMENSION RSIN(16),RCOS(16)
ALPHA= SIN(PI/12.0)
BBTA= COS(PI/12.0)
B=SQRT(1.0/18.0)
RCOS(16)=-B
RSIN(16)=-B
RCOS(1)=B
RSIN(1)=-B
RCOS(2)=B
RSIN(2)=B
RCOS(3)=-B
RSIN(3)=B
RCOS(4)=BBTA
RSIN(4)=-ALPHA
RCOS(B)=ALPHA
RSIN(5)=BBTA
RCOS(6)=-BBTA

RSIN(6)=ALPHA



RCOS(7)=-ALPHA

RSIN(7)=-BBTA

RCOS(8)=3*B

RSIN(8)=3*B

RCOS(9)=-3*B

RSIN(9)=3*B

RCOS(10)=-3*B

RSIN(10)=-3*B

RCOS(11)=3*B

RSIN(11)=-3*B

RCOS(12)=-ALPHA

RSIN(12)=BBETA

RCOS(13)=-BRETA

RSIN(13)=-ALPHA

RCOS(14)=ALPHA

RSIN(14)=-BBETA

RCOS(18)=BETA

RSIN(15)=ALPHA

RETURN

BND

C THIS PROGRAM GENERATES THE CAPACITY AND R0* FUNCTIONS

DIMENSION ROSTAR(61), C(61)
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INTEGER DB

DO 10 DB = -10,50,1

BTON= 10.0 ** (FLOAT(DB)/10.0)

I=DB+11

VALUB = LOG( EXP(1.0))/LOG(2.0)/2.0

VALUE = VALUB*(1+BTON- SQRT(1.0+BTON**2))

ROSTAR(I) = VALUB+ LOG(.8%(1+ SQRT(1+ETON**2)))/ LOG(2.)/2.

c(1) = .5 * LOG( 1 + 2*ETON)/L0G(2.0)

OPEN (UNIT=10,FILE="STAR’)

OPEN (UNIT=11,FILE="CAP’)

WRITE (10,*) ROSTAR

WRITE (11,*) C

CLOSE (UNIT=10)

CLOSE (UNIT=11)

END
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1.2 Rate-distortion bound calculation

This section contains the formatted input to use the engineering spreadsheet
program MathCAD. The first MathCAD file calculates the SNR; which causes
uncoded modulation to yeild Pr(e) > 1075. The second file is used to calculate

the rate-distortion bound of a Gauss-Markov.



THIS MATHCAD FILE CALCULATES AN APPROXIMATION FOR

FOR FINDING THE SNR REQUIRED TO YEILD

P(€ )=10~-5 FOR VARIOUS MODULATION TECHNIQUES

=10
TOL := 10 l:=1..8
Nfree dfree :=
1] T B 1 1
Q(p) = |-| |1 - erf|— § :=1 1 2
2 2
] E 2.25 (2
. 2 —
-5 3 40.8
ans := root|Nfree -Q($) - 10 ,§ 2 T
1 i 1 3 2-sin|-
2
i 2 ] 0.4
ans T
1 2-sin|—
S :=10'1log ‘2 = 121 |
1 dfree 2
i 1 i 2
S 9
1 T
9.58816909 BPSK 2-sin|—
SNR for 12.90324282 | 4PSK 16
: 16.93245539 | SAMPM
Pr(e)=10"5 18.23614965 | 8PSK
20.0621662 16QAM
in dB 21.63301825| 12/4PSK
22.61489125 | 16QAMpeak
24.08822835 | 16PSK
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THIS MATHCAD FILE CALCULATES THE RATE DISTORTION BOUND
FOR A FIRST ORDER GAUSS-MARKOV PROCESS DESCRIBED BY '
CORRELATION COEFFICIENT p AND DISTORTION MEASURED AS THE

MEAN-SQUARED ERROR

A RELATIONSHIP BETWEE INPUT SNR VS. OUTPUT SNR IS
DETERMINED IN UNITS OF DECIBEL

The following section assigns values and does some
pre-calulation to minimize computation time. The value
P is the autoregressive coefficient of the Gauss-Markov
source. The value of x were choosen by trial and error
to obtain sufficient range and detail of the R(d) and D
curves. Note that in MathCAD ‘:=’ means assign while ‘=’

displays the current value of a variable

Assignments: Pre-calculations:
p := 0.95 log2 := log(2)
8 :=0 ..11 2
Pl :=1 -p
X =
e 2 1
2 P2 =1 +p G = |—
1.5 [
1.2
1 2
.5 P1C = pl-C
.25
.1
. 05 1
. 025 c =
.01 2-log2
. 005
.001




CALCULATION OF RATE-DISTORTION FUNCTION

MathCAD calculations such as integrals and roots of
functions are calculated with increasing resolution until
a set tolerance is met. The tolerance choosen below was
determined to provide sufficient resolution while keeping
calculation time reasonable.

TOL := 0.0001

The following parameteric equations define the
rate-distorion function for a Gauss-Markov Source. The
function d[©] represents the distorion measure while r([9]

determines the minimum rate at which 4[®] is possible.

p1o s(X)
s(k) := g(k) :=c-log
P2 - 2-p-cos(X) xe

a := [—i—] J‘:r if[s(l) < xe,s(l),xe] ax

3 2'T

1 ™
r = — I if(g(x) > 0,g9(A),0)
3] 2w 4w
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Input SNR versus outpur SNR Calculation

The d[0®] is related to SNRout per equation

While SNRin is calculated in terms of r[8]

2
c Ns := 2
SNRoute := 10 log|— Ns is dimensions per symbol
d
e

This equation is a form of the capacity expression for
the AWGN channel
2

r . —
8 Ns
SNRine ¢= 10- log|Ns- |2 -1
The Ro* equivalent is best calculated
by use of a root determination function
SNR := 0 initial gquess
N := 2 dimensions per symbol
N1l := N-log(e)

Ro* function

N1 2
RO1(SNR) := -[1 + SNR - {1 + SNR |
2-1log2
N 1 2
ROstar(SNR) := RO1(SNR) + -log|—[1 + {1 + SNR

2:-log2 2

vale := root [ROstar(SNR) - re ,SNR]

SNRJ'.nze := 10- log [vale- 4] WRITE (capacity) := SNRin

104



In this section a cubic spline method is used to

determine SNRin values at integer values from the

results for graphical purposes.
i:x=0..20

S1 := cspline(SNRin,SNRout)

S2 := cspline(SNRin2,SNRout)

RATE := interp[Sl,SNRin,SNRout,snr ]
i

1

ROstar := interp [sz,SNRinz,SNRout,snr ]
i

write interpolated values
to disk

WRITE (CAPsnr) := RATE
i

WRITE(ROsnr) := ROstar
i
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CAICULATED THE SNR UPPER-BOUND FOR 1,2 & 3 BITS USING

THE GIVEN p
f = 0.95 k:==1..5
bits :=
s3 := cspline(r,SNRout) k
1
1.904
2
2.761
SNRoutMAX := interp[sB,r,SNRout,bits ] 3
k k
bits SNRoutMAX
k k
1 16.131 dB, 1 bit optimal & uniform quant.
[ 1.904 21.573 dB, 2 bit uniform quantizer
2 22.151 dB, 2 bit optimal
2.761 26.733 | dB, 3 bit uniform quantizer
3 28.172 dB, 3 bit optimal
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1.3 System simulation

This section contains the system simulation program for the rate 3/4 trellis codes.
The rate 1/2 and 2/3 programs are of a highly similar nature, but are kept as
separate programs to the decrease computation time. The structure of the Viterbi
decoder is based on [44]. Sample input and output files follow the program.

C FB3/4.F **** FEEDBACK ENCODER VERSION ***

C COMMUNICATION SYSTEM SIMULATION PROGRAM

C SOURCE: GAUSS.-MARKOV, ONE.DIMENSION

C SOURCE ENCODER: DPCM 3.BITS, MATCHED TO SOURCE MODEL

C CHANNEL CODER: RATE 3/4 TRELLIS CODES (CCV EXTERNAL)

C MODULATION: 16.PSK, 16-QAM, 12/4PSK OR GRAY 8.-PSK (UNCODED)

C CHANNEL: AWGN USING LCG WITH PERIOD TE12

C CHANNEL DECODER: VITERBI ALGORITHM BASED ON EUCLIDEAN DISTANCE

C SOURCE DECODER: APPROPRIATE DPCM EXPANDER

C PROGRAM INPUTS: SOURCE CORRELATION COEFFICIENT; CODER CCV, MEMORY
C LBENGTH & QUANTIZATION LBVBL; LCG SBEDS
C PROGRAM OUTPUTS: VITERBI DECODBR STATISTICS, SOURCE SEQUENCE AND
C RBCONSTRUCTED OUTPUT DATA SEQUENCE.
PARAMETER(M=2**13)
INTEGER LINKLIST(0:M-1,8), IDIST(0:M-1),I0UT(4),STATEBUFFERTP(15)
INTEGER METRIC(0:M-1), IPATH(0:M-1,150), TBRM(0:15)
DIMENSION IDNEW(0:M-1),RCOS(0:15),RSIN(0:18)
DIMENSION PATHMEM(150),IPATHMEM(3,150),INPUT(0:M-1,3)

REAL X1,X2



INTEGER H(0:3,12),V,GRAY(0:15)

COMMON STATBBUFFBR(15),KBITS,DELTA(5),P

GRAY MAP (FOR 8.PSK) AND MAX QUANTIZER STEPS

DATA GRAY/0,1,3,2,6,7,5,4,12,13,15,14,10,11,9,8/

DBLTA(1)=1.596

DBLTA(2)=0.996

DELTA(3)=0.586

DBLTA(4)=0.335

DBLTA(5)=-1881

INITS=0

INITD=0

INITE=0

INITC=0

OPBN(UNIT=10,FILE="F34STATS®)

OPEN(UN;IT=11,FILB='[WEITZN’BR..HOM'B.SIM]F34SBT')

WRITE(10,*)’BENTBR 1 TO SUPRBESS DATA I/O®

RBAD(11,*)NOIO

IF (NOIO .NB. 1)THEN

OPBN(UNIT=12,FILE='SOURCE.DAT")

OPEN(UNIT=14,FILE="SINK.DAT")

BENDIP

ISYNC=126

POWER=1.
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WRITE(10,*)'INPUT V, THE CONTRAINT LENGTH’

RBAD(11,%)V

KBITS=V+3

WRITE(10,*)’'ENTER 0 FOR 16.PSK, 1 FOR 16-QAM’

READ(11,%)MAP

WRITE(10,*)’ENTER THE SCALING FACTOR FOR THE QUANTIZER'

READ(11,*) FACTOR

WRITE(10,*)’ENTER THE LENGTH OF THE SURVIVOR TO BE PATHMEMD'

READ(11,*) IMEM

WRITE(10,*)’ENTER THE SEEDS FOR THE RANDOM NUMBER GENERATOR'

RBAD(11,*) ISEED1,ISEED32,ISEED3

WRITE(10,*)’ENTER BITS PER ROUND **

READ(11,*) NTOTAL

WRITE(10,*)’)ENTER REPORT FREQUENCY IN BITS’

READ(11,*) IFREQ

WRITE(10,*)’ENTER DPCM TO CHANNBL BIT MAP®

READ(11,*) MAP1,MAP2,MAP3

WRITE(10,*)’'ENTER BITS PER SOURCE SYMBOL’

RBAD(11,*) NUMBIT

WRITE(10,*)’ENTER SOURCE CORRELATION CORFF®

READ(11,*) P

WRITE(10,*)’ENTER 0 FOR ES, 1 FOR EB’

RBAD(11,%) ITEST
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PI=ACOS(-1.0)
IF (ITBST .BQ. 0) THEN
KGAIN=1
BLSB
KGAIN=NUMBIT
ENDIF
ISHFT=2%%(3.NUMBIT)
IFREQ=(IFRE Q/3)*3
C DPCM TO TRELLIS BNCODBR MAPPING
MAP1=2**(MAP1-1)
MAP2=2**(MAP32.1)
MAP3I=2**(MAP3.1)
€ H(1,J)IS THE PARITY.CHECK MATRIX COBFFICIENTS WHICH DETBRMINE
C THBE CONNECTIONS IN THE FEEDBACK BNCODER. HO IS THE COEFF'S
C FROM THE HO(D) POLYNOMIAL - BNTER LOWSET ORDER FIRST
€ RCOS AND RSIN ARE BEVALUATED AND PATHMEMD SO THAT THEIR VALUES MAY
C  BE RETREIVED LATER WITHOUT COMPUTATION WHEN NEEDED
C  NOTE: TO SIMULATE UNCODED 8.PSK, H3 IS SBT TO 0 AND
C  Ho, H1 AND H2 ARB SBT APPROPRIATELY
WRITE(10,*)'INPUT THB PARITY CHECK COBFFS FOR Ho’
READ(11,%) (H(0,I),I=0,V)
WRITE(10,*)'INPUT THE PARITY CHECK COBFFS FOR H1’

RBAD(11,*) (H(1,I),I=0,V)
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WRITE(10,*)’'INPUT THE PARITY CHECK COBFFS FOR H2
READ(11,*) (H(3,I),I=0,V)
WRITE(10,*))INPUT THE PARITY CHECK COEFFS FOR H3'
READ(11,*) (H(3,I),I=0,V)
¢} SECTION TO DEFINE SIGNAL SPACE MAP; MAP=0 FOR 16.PSK WITH
] NATURAL MAP, -1 FOR 8.PSK WITH GRAY MAP, 1 FOR 16-QAM
C  WITH AVERAGE POWER CONSTRAINT, 2 FOR 16-QAM WITH PREAK P‘OWER
C CONSTRAINT, AND 3 FOR 12/4.PSK WITH PEAK CONSTRAINT
IF (MAP .EQ. 0) THEN
DO 15 111=0,18
RCOS(I11)=COS((I11)*P1/8.4+PI/16.)
RSIN(I11)=SIN((I11)*P1/8.+PI/16.)
15 CONTINUR
BLSBIF (MAP .EQ. -1) THEN
DO 16 111=0,18
RCOS(GRAY(I11))=COS((I11)*PI/8.4PI/16.)
RSIN(GRAY(I11))=SIN((I11)*PI/8.+PI/16.)
16 CONTINUE
ELSEIF (MAP .LT. 3) THEN
A=SQRT(1.0/10.0)
IF (MAP .BQ. 2) A=SQRT(1.0/18.0)
RCOS(0)=-A

RSIN(0)=-A
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RCOS(1)=A

RSIN(1)=-A

RCOS(2)=A

RSIN(2)=A

RCOS(3)=-A

RSIN(3)=A

RCOS(4)=3%A

RSIN(4)=-A

RCOS(5)=A

RSIN(8)=3*A

RCOS(6)=-3%A

RSIN(6)=A

RCOS(7)=-A

RSIN(T)=-3%A

RCOS(8)=3*A

RSIN(8)=3"A

RCOS(9)=-3*A

RSIN(9)=3%A

RCOS(10)=-3*A

RSIN(10)=-3*A

RCOS(11)=3%A

RSIN(11)=-3*A

RCOS(12)=-A
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RSIN(12)=3%*A
RCOS(13)=.3%A
RSIN(13)=-A
RCOS(14)=A
RSIN(14)=-3%A
RCOS(18)=3%A
RSIN(18)=A
ELSB
ALPHA= SIN(PI/132.0)
BETA= COS(PI/12.0)
A=SQRT(1.0/18.0)
RCOS(0)=-A
RSIN(0)=-A
RCOS(1)=A
RSIN(1)=-A
RCOS(2)=A
RSIN(2)=A
RCOS(3)=-A
RSIN(3)=A
RCOS(4)=BETA
RSIN(4)=-ALPHA
RCOS(5)=ALPHA

RSIN(8)=BETA



c

(o]

RCOS(8)=-BETA
RSIN(8)=ALPHA
RCOS(T)=-ALPHA
RSIN(T)=-BBTA
RCOS(8)=3%A
RSIN(8)=3%A
RCOS(9)=-3%A
RSIN(9)=3%A
RCOS(10)=-3*A
RSIN(10)=-3%A
RCOS(11)=3%A
RSIN(11)=-3*A
RCOS(13)=-ALPHA
RSIN(12)=BBTA
RCOS(13)=-BBTA
RSIN(13)=-ALPHA
RCOS(14)=ALPHA
RSIN(14)=-BBTA
RCOS(15)=BETA

RSIN(18)=ALPHA

ENDIF

TABLBS FOR DECODING ARE GOING TO BE SET UP. BACH STATE IS

REPRESENTBD BY A NUMBBR CURSTATRB. TOTSTATE IS THE TOTAL NUMBER OF STATES ,
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THIS IS AN BEXTENDED STATE SO THAT KNOWLEDGE OF THE STATE DIRBCTLY
YBILDS THE ENCODER OUTPUT..I.B. STATBBUFFBR(V+2) AND STATEBUFFER(V+1) CORRESPOND
TO THE SYSTBMATIC INPUT BITS

TOTSTATBE=2**(V+3)

DO 1 CURSTATE=0,TOTSTATE-1

CALL DECTOBIN(CURSTATRE)

MBTRIC(CURSTATR )=STATEBUFFBR(V+3)*8+STATEBUFFBR(V+2)*4+STATBBUFFER(V+1)*2+STATBBUFFBR(1)

THE INPUT TO THBE ENCODER CORRBSPONDING TO BACH STATB IS
COMPUTED. THEN THE PREVIOUS STATE OF THE BNCODBR WHICH IS LINKED TO
THE PRBSENT STATE BY THE BRANCH(I3) IS FOUND
INPUT(CURSTATE,1)=STATBBUFFER(V +3)
INPUT(CURSTATB,2)=STATBBUFFBR(V +12)
INPUT(CURSTATE,3)=STATBBUFFBR(V+1)

DO 708 I=1,V+3

708  STATBBUFFERTP(I)=0

DO ¢IA=0,1

DO 4 IB=0,1

DO ¢41C=0,1

I3=IA*4+4+IB*2+IC+1

DO 705 K=1,V-1
ISUMM=STATBBUPFBR(K)+H(1,K)*IC+H(2,K)*IB

& +H(3,K)*IC + H(0,K)*STATEBUFFER(V)



705 STATEBUFFERTP(K+1)=MOD(ISUMM,2)

STATBBUFFERTP(1)=STATEBUFFER(V)

IVAL=0

DO 706 K=1,V

106 IVAL=IVAL+STATBBUFFERTP(K)*2**(K-1)

LINKLIST(CURSTATB,I3)=IVAL+1C*2%¢V +IB*2¢*(V +1)

& +IA*2°%(V +2)

4 CONTINUE

1 CONTINUB

71  WRITE(6,*)INPUT THE ENERGY PBR BIT TO NOISBE RATIO IN DB’

READ(5,*) DBNO

IF(DBNO .GT. 210) GO TO 2020

WRITE(10,*)’'EB/NO=",DBNO

RTBMP =SQRT((0.125/KGAIN)*10%*(_DBNO/10.))

RNOISBE=RTEMP

c STATE NETRIC(IDIST), THE PAST NOISB SAMPLBES (PNSE) THE CONTENT

(o] OF THB RBGISTBRS OF THE ENCODER(STATEBUFFBR), THE PRESENT AND PAST

o} CHANNEL SYMBOL OUTPUT (HEX) ARB INITIALIZED TO BE ZERO

DO 79 I=0,TOTSTATE-1

79  IDIST(I)=0.

IBE=0

INBITS=0

DO 21 I=1,V+3
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STATBBUFFBR(I)=0
21 CONTINUB
HBEX1=0
HBX2=0
INDBX=1
C THR FOLLOWING REPRESNTS AN BNCODER . THE PROGRAM RBADS AN OCTAL
C CHARACTER FROM THE STDIN (IE UNIT 5) ,CONVERTS IT TO BINARY, AND
C AND INPUTS THBE THRER BITS INTO THE BNCODBR. THE PRERVIOUS
C CHANNBL SYMBOLS (HBX1 AND HEX2) ARE ADVANCED AND THBE BNCODBR
C  PUTS OUT A NEW HBX1.
C THE VALUBES MAP1 TO MAP3 ARE USED TO EXTRACT INDIVIDUAL BITS
C FROM KDATA. MAPX SHOULD BQUAL 1,2 OR 4 TO GRBT AT THB LSB,
C  MIDDLE BIT AND MSB,REPECTIVBLY. NATURAL MAPPING IS MAP[1,2,3]
C BQUAL [1,2,4]
18 CONTINUB
DO 707 K=V.1,1,-1
ISUMM=STATEBUFFBR(K+1)+H(1,K)*STATBBUFFER(V +1)+H(2,K)*STATEBUFFER(V +12)
& +H(3,K)*STATEBUFFBR(V+3) + H(0,K)*STATRBUFFBR(1)
707 STATEBUFFBRTP(K)=MOD(ISUMM,2)
STATEBUFFER(V)=STATEBUFFBR(1)
DO 709 K=V.1,1,-1
709 STATEBUFFBR(K)=STATEBUFFERTP(K)

C  #eessessssss GET THE PCM CHARACTER *9%¢*
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[o]

CALL SOURCE(SOUT,INITS)

IF (NOIO .NE. 1)WRITE(132,*)SOUT

CALL DPCM(SOUT,KDATA,INITD,NUMBIT)

L LI LD L) SHIFT KDATA LERT ®¢tsssstttses

ssses8s NUMBIT=1 : 2 BITS ***+ssassasss

*sssses NUMBIT=2 : 1 BIT **esesseesnss

KDATA=KDATA*ISHFT

STATEBUFFER(V+1)=MOD(KDATA /MAP1,2)

STATEBUFFER(V+2)=MOD(KDATA /MAP2,2)

STATEBUFFER(V+3)=MOD(KDATA/MAP3,2)

HEX3=HEX2

HEX2=HEX1

HEX1=STATEBUFFBR(V+3)*8+STATEBUFFER(V +2)*4+STATEBUFFER(V+1)*2+STATEBUFFER(1)

ICR AND ICI FORM THE REAL AND IMAGINARY PART OF THE SUFFICIENT

STATISTICS. TERM CORRESPONDS TO THE FIRST TERM OF THB

EXPRESSION FOR THE METRIC

X1= GRAN(0.0,POWER,ISEED1,ISEED2,ISEED3)

X2= GRAN(0.0,POWER,ISEED1,ISEED3,ISEED3)

ICREAL=ROUND((RCOS(HEX2)/2+RNOISE*X1)*FACTOR®*3)

ICIMAG=-ROUND((RSIN(HEX32)/2+RNOISE*X2)*FACTOR**2)

DO T 15=0,15

IF (MAP .BQ. 0) THEN

TBRM(I8)=ROUND((RCOS(I5)*ICREAL.RSIN(I5)*ICIMAG)*2)
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C

BELSB

TBRM(I8)= FACTOR®**2/2-ROUND((RCOS(I5)/2*FACTOR**2.ICREAL)**3 4

& (RSIN(I5)/3*FACTOR**2+ICIMAG)**32)

ENDIF

CONTINUE

THE FOLLOWING SIMULATE A DECODER WHICH INPUTS THE SUFFICIEENT

STATISTICS ICREAL AND ICIMAGE (OR ANY INPHASE AND QUADRQTURE SAMPLED

VOLTAGES OF THE DEMODULATOR) AND TRELLIS SEARCH FOR THE MAXIMUM

LIKLIHOOD SEQUENCE. METMAX IS THE LARGEST MRTRIC FO RTHE

STATES AT A STAGE OF DECODING

METMA X =-10000000

FOR BACH STATE, THERE ARE FOUR BRANCHES (I6) MBRGING INTO IT.

IDMERGE IS THE METRIC OF THBE SURVIVOR, WHICH LAST BRANCH IS IBRCH.

THE SURVIVOR IS PATHMEMD IN THE TABLE IPATH. THE STATE METRIC IS

THEN UPDATED.

DO 8 CURSTATE=0,TOTSTATE-1

IDMRGE =IDIST(LINKLIST(CURSTATE,1))

IBRCH=1

DO 9 16=2,8

ITEMP =IDIS T(LINKLIST(CURSTATE,Is))

IF (IDMRGB .GE. ITEMP) GO TO 9

IBRCH=I6

IDMRGE=ITEMP
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CONTINUB

IDNEW(CURSTATE)=IDMRGE+ TERM(MBTRIC(CURSTATR))

IPATH(CURSTATE,INDEX)=LINKLIST(CURSTATR,IBRCH)

THE STATE WITH THBE LARGBST MBTRIC (LARGMET) IS FOUND AND PATHMEMD

IF (IDNBW(CURSTATE) .LE. MBTMAX) GO TO 8

METMAX=IDNBW(CURSTATRE)

LARGMBT=CURSTATB

CONTINUB

THE SURVIVOR WITH THE LARGEST METRIC IS TRACED BACK A NUMBER OF

STATES TO FIND THE DECODED INFORMATION SEQUENCE. IPOINT SERVES

AS A POINTER TRACING FROM ONB STATE TO ANOTHER. THE LOCATION

OF STORAGE FOR LARGMET AT THE PRESENT DECODING STATE IS POINTED TO

BY THE POINTER CALLED INDBX, WHICH IS INCREMENTED BY MODULO

ARITHMBTICS. THE INPUT TO THE ENCODER IS PATHMEMD BY A CIRCULAR

STRUCTURE CALLED IPATHMEM, SO THAT IT MAY BE RETRIBVED LATER FOR

COMPARISON WITH THE DECODED SEQUBNCE,,"IS1’
IPOINT=LARGMEBET

ITR1=IPATHMBEM(1,INDEX)

ITR2=IP ATHMEM(2,INDEX)

ITR3=IP ATHMEM(3,INDBEX)

TR=PATHMEM(INDEX)

IPATHMEM(1,INDEX)=IDLAY1

IPATHMEM(2,INDBX)=IDLAY2
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IPATHMEM(3,INDEX)=IDLAY3

PATHMEM(INDEX)=DELAY

IDBLAY1=STATEBUFFER(V+3)

IDBLAY2=STATEBUFFER(V+1)

IDBLAY3=STATBBUFFER(V+1)

DELAY=SOUT

DO 10 I7=1,INDEX

IPOINT=IPATH(IPOINT,INDEX+1-I7)

10 CONTINUEB

IF (INDBEX .BQ. IMEM) GO TO 17

ITIMBS=IMEM.-.INDEX

DO 11 18=1,ITIMBS

IPOINT=IPATH(IPOINT IMEM.I8 +1)

11 CONTINUR

17 IF ((ITR1 .NBE. INPUT(IPOINT,1)).AND.(INBITS .GT. IMBM*3))

& IB=IB+1

IF ((ITR2 .NB. INPUT(IP OINT,2)).AND.(INBITS .GT. IMEM*3))

& IB=IB+1

IF ((ITR3 .NB. INPUT(IP OINT,3)).AND.(INBITS .GT. IMEM*3))

& IB=IB+1

IF (INBITS .GT. IMEM®*3) THEN

C eeesses FORM THE DECODER OUTPUT BITS ****

(¢} eeesess INTO AN OCTAL CHARACTER. hadad
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KOUT=INPUT(IPOINT,1)*MAP3+INPUT(IPOINT,2)*MAP2+
& INPUT(IPOINT,3)*MAP1
C  eesses REMOVE RIGHT PADDED ZEROS **eseese
KOUT=KOUT/ISHPFT
CALL BXPAND(KOUT,EXPDAT,INITE,NUMBIT)
IF (NOIO .NE. 1)WRITB(14,*)BXPDAT
CALL SNR(TR,BXPDAT,INITC,SNROUT)
BNDIF
C  THBE DISTANCE TABLB IS UPDATED
DO 209 CURSTATBE=0,TOTSTATE-1
IDIST(CURSTATR)=IDNEW(CURSTATR)
209 CONTINUB
C THR INDEX AND THE COUNT FOR THBE NUMBER OF DECODED BITS‘AB.D
C INCREMENTED. IB IS THE NUMBER OF BIT BRRORS MADE. THB BIT ERROR
C  PROBABILITY IS COMPUTED FOR BVERY 10000 BITS, THE BER WOULD BE PRINTED
C UNTIL THE DECODER HAS DECODED THE REQUIRED NUMBBR OF BITS (NTOTAL).
INDEX=INDBX+1
IF (INDEX .GT. IMEM) INDBX =1
INBITS=INBITS+3
IF (MOD(INBITS,IFREQ) .NB. 0) GO TO 75
BER=IB*1./INBITS
WRITE(10,*) INBITS,’'BITS DECODED,BRROR=",IE,’ BER=",BER

WRITE(6,*)’'SNR OUT:’,SNROUT
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180 FORMAT(1X,18,’ BITS ARE DECODED,ERROR=",15,’ BER=",F11.10)

76 IF (INBITS .LT. NTOTAL) GO TO 18

WRITE(10,270)

270 FORMAT(’ X—X—X—X—X—X")

IF (1.BQ.1) GO TO 71

CLOSE(10)

CLOSB(12)

CLOSB(14)

CLOSB(11)

2020 STOP

END

[+ THE SUBROUTINE DECTOBIN CONVERTS A DECIMAL NUMBER INTC A BINARY

[¢] NUMBER OF LENGTH KBITS: MSB IS STATEBUFFER(1), LSB IS STATEBUFFBR(KBITS)

SUBROUTINE DECTOBIN(IDEC)

COMMON STATEBUFFBR(15),KBITS,DBLTA(5),P

IQUOT=IDBC

DO 16 I=1,KBITS

STATBBUFFBR(KBITS+1-1)=IQUOT/2**(XBITS.I)

IQUOT=IQUOT-STATEBUFFER(KBITS+1.1)*2**(KBITS-I)

16 CONTINUB

RBETURN

BEND

Cc ROUND PERFORMS A ROUNDING FUNCTION.
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C  RBTURNS NEARBST WHOLB NUMBER
FUNCTION ROUND(RB)
IF (RB .GB. 0.) ROUND=RB+.5
IF (RB .LT.0.) ROUND=RE. 5
RETURN
BND
SUBROUTINE NOISB(X1,X32,P O WER,ISBBD)
c GBNBRATBS GAUSSIAN NOISB FROM TWO RANDOM NUMBBRS WHERB X1 OR X2 IS
C THB AMOUNT OF NOISE TO BE ADDED TO THE SIGNAL BASED ON THB
C NUMBER POWER.
C POWEBR —; NOISE VARIANCBE.
C X1 AND X2 ARE INDBPEDBENT GAUSSIAN DISTRIBUTED RANDOM
C  VARIABLES.
C  DRBCLARE VARIABLES.
C ISEBD MUST BE KEPT AS A GLOBAL VARIABLE (L.B. KEEP
C  ITS CHANGES AT DIFFERBNT CALLS OF NOISB)
RBAL X1,X2,POWBR,U1,U2,PI,T1
INTBGER ISBBD
PI=2*ACOS(-1.0)
POW=POWER
U1=RAN4(ISEED1,ISERD32,ISBED3)
U2=RAN4(ISBED1,ISEED2,ISEED3)

T1=(.2.0*ALOG(U1))**0.5
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X1=POW®*T1*COS(3.0°PI*U2)
X2=POWH*T1*SIN(2.0°PI*U2)
RETURN
END
C  UNIFORM RANDOM NUMBER GENERATOR SUBROUTINE
C  OVER INTERVAL (0,1)
FUNCTION RAN4(ISEED1,ISEED2,ISEEDS)
INTEGER A1,A3,A3,C1,C3,C3
PARAMETER (A1=171,C1=0,M1=30269)
PARAMETER (A2=172,C2=0,M2=30307)
PARAMETER (A3=170,C3=0,M3=30323)
ISEED1=MOD(A1*ISEED1 +C1,M1)
xsnnm;Mon(uqsnnnucz,uz)
ISEED3=MOD(A3*ISEED3 4 C3,M3)
R1=FLOAT(ISEED1)/PLOAT(M1)
R2=FLOAT(ISEED2)/FLOAT(M3)
R3=PLOAT(ISEED3)/PLOAT(MS3)
RAN4= AMOD(R1+R2+R3,1.0)
RETURN
END
C SUBROUTINE GRAN.FT7 .
C ;i; GENERATES A GAUSSIAN RANDOM NUMBER *

FUNCTION GRAN(MEAN,SIGMA, ISEED1,ISEED2,ISEED3)
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RBEAL MEAN

DO 11=1,12

U = U 4+ RAN4(ISEED1,ISEED2,ISEED3)

GRAN = SIGMA * (U.6) + MEAN

RETURN

END

SUBROUTINE SOURCE(OUT,INIT)

COMMON STATEBUFFER(15),KBITS,DBLTA(S),P

SAVE ISEED1,ISEED2,ISEED3

IF (INIT.EQ.0)THEN

ISBEBD1=12

ISBED2=234

ISBED3=23486

OUT=0.0

INIT=1

ENDIF

W=GRAN(0.0,1.0,ISEED1,ISEED2,ISEED3)

OUT =P*O0UT + W

RETURN

END

SUBROUTINE DPCM(INDAT,0UTSIG,ISTAT,NUMBIT)

REAL INDAT



SAVE SHAT

IF (ISTAT .BQ. 0) THEN

SHAT=0.0

ISTAT=1

ENDIF

ERROR=INDAT.SHAT

CALL QUANT(ERROR,OUTSIG,NUMBIT,EST)

CALL PRED(EST,SHAT)

WRITE(6,*)ERROR,EST,0UTSIG

RETURN

END

SUBROUTINE EXPAND(DATIN,SHAT,ISTAT,NUMBIT)

COMMON STATEBUFFER(15),KBITS,DELTA(5),P
INTBGER DATIN
IF (ISTAT .EQ. 0) THEN
SHAT=0.0
ISTAT=1
ENDIF
Q=2**NUMBIT
OUT2=DELTA(NUMBIT)*(DATIN.(Q-1)/2.0)
SHAT=SHAT+OUT2
CALL PRED(0.0,SHAT)

RETURN
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END

SUBROUTINE PRED(X1,X32)

COMMON STATEBUPFER(15),KBITS,DELTA(5),P

X2=P* (X1+X2)

RETURN

END

SUBROUTINE QUANT(VALIN,OUT1,NUMBIT,0UT2)

COMMON STATEBUFFER(15),KBITS,DELTA(5),P

INTEGER OUT1

OUT1 =0

TESTVL=VALIN+DELTA(NUMBIT)*2**(NUMBIT-1)

DO 1 TESTBIT=NUMBIT,1,.1

IOUT(NUMBIT-TESTBIT +1)=0

SARVAL=DELTA(NUMBIT)*2**(TESTBIT-1)

IF (TESTVL.GE.SARVAL)THEN

IOUT(NUMBIT.TESTBIT +1)=1

OUT1=0UT142**(TESTBIT-1)

TESTVL=TESTVL-SARVAL

ENDIF

CONTINUER

Q=2**NUMBIT

OUT2=DELTA(NUMBIT)*(OUT1-(Q-1)/2.0)

RETURN
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BND

SUBROUTINE SNR(SIG1,S51G3,INIT,SNROUT)

COMMON STATEBUFFER(15),KBITS,DELTA(5),P

SAVE ERR, NTOTAL

PROGRAM CALCULATES THE SNR DIFFERENCE BETWEEN TWO

REAL VALURD SIGNAL FILBS AS:

SNR=10 LOG( 1/B-[S1-S2]**2"%(1/(1-P**2)) )

IF (INIT .BQ. 0) THEN

NTOTAL=0

INIT=1

BNDIF

GAIN=1.0/(1-P**2)

NTOTAL=NTOTAL+1

BRR=(SIG1-SIG2)**2+BERR

BT2=BRR/NTOTAL

SNROUT=10.0*LOG10( (1.0/BT2)*GAIN)

RETURN

BND

The follow is the input file v34set.dat

1 SURPRBESS I/O

002 MEMORIES PER TAP BIN

PSK(0),QAM(1),GRBYPSK(-1),QAMPK(2),12/4PSK(3)
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10 SCALING FACTOR

100 SURVIVOR LENGTH

12

234

3456 ISERD1,ISEED2,ISBED3
300300 RUN LENGTH

300300 REPORT FREQUENCY

123 DPCM BIT ORDER INTO CODER
3 DPCM BITS PER SYMBOL

95 CORRELATION COBFFICIENT
0 USE ENBERGY PER SYMBOL

1 0 000 HO TAPS

0 1 000 Hl TAPS

0 0 101 H2 TAPS

0 0 010 H3 TAPS

100 SNR

800 excape sar (exceeds 210)

The following is the sample output of the simulation program

ENTER 1 TO SUPRESS DATA I/0

INPUT V, THE CONTRAINT LENGTH

INPUT 0 FOR 16-PSK, 1 FOR 16-QAM

INPUT THBE SCALING FACTOR FOR THE QUANTIZER
INPUT THE LENGTH OF THE SURVIVOR TO BE STORED

INPUT THE SEBEDS FOR THE RANDOM NUMBER GENERATOR
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