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Let ` be a prime. For any algebraically closed field F of positive characteristic p 6= `,

we show that there is an isomorphism πsn[1
p ] ∼= πn,0(F )[1

p ] for all n ≥ 0 of the nth stable

homotopy group of spheres with the (n, 0) motivic stable homotopy group of spheres over

F after inverting the characteristic of the field F . For a finite field Fq of characteristic

p, we calculate the motivic stable homotopy groups πn,0(Fq)[1
p ] for n ≤ 18 with partial

results when n = 19 and n = 20. This is achieved by studying the properties of the

motivic Adams spectral sequence under base change and computer calculations of Ext

groups.
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Chapter 1

Introduction

For any field F , Morel and Voevodsky construct a triangulated category SHF in which

one can use techniques of stable homotopy theory to study schemes over F [MV99].

Just as for the stable homotopy category SH of topology, it is an interesting problem

to compute the stable motivic homotopy groups of spheres πs,w(F ) = SHF (Σs,w
1,1)

over F , where 1 denotes the motivic sphere spectrum. In this dissertation, we use the

motivic Adams spectral sequence (MASS) to determine the structure of the motivic stable

homotopy groups of spheres πn,0(Fq) over finite fields Fq when n ≤ 18 with the assistance

of computer calculations.

For a field F of characteristic different from `, write A∗∗(F ) for the bigraded mod `

motivic Steenrod algebra over F and H∗∗(F ) for the mod ` motivic cohomology ring of

F , which are discussed in chapter 3. The mod ` motivic Adams spectral sequence of the

sphere spectrum 1 over F is defined in chapter 4 and has second page

E
f,(s,w)
2 = Ext

f,(s+f,w)
A∗∗(F ) (H∗∗(F ), H∗∗(F )).

The motivic Adams spectral sequence of 1 over F converges to the homotopy groups of the

H-nilpotent completion of the sphere spectrum πs,w(1∧H(F )) = SHF (Σs,w
1,1∧H) for fields

F of finite mod ` cohomological dimension by proposition 4.17. We show in proposition

4.21 that the motivic Adams spectral sequence over finite fields and algebraically closed

fields converges to the `-primary part of πs,w(F ) for s > w ≥ 0. Our argument relies on

the fact that the groups πs,w(F ) are torsion for s > w ≥ 0 [ALP15].

Dugger and Isaksen have calculated the 2-complete stable motivic homotopy groups

of spheres up to the 34 stem over the complex numbers [DI10] by using the motivic

Adams spectral sequence. Isaksen has extended this work largely up to the 70 stem

[Isa14a, Isa14b]. We are led to wonder, how do the motivic stable homotopy groups vary
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for different base fields?

Morel determined a complete description of the 0-line πn,n(F ) in terms of Milnor-Witt

K-theory [Mor12]. In particular, π0,0(F ) is isomorphic to the Grothendieck-Witt group

of F and for all n > 0 there is an isomorphism πn,n(F ) ∼= W (F ) where W (F ) is the Witt

group of quadratic forms of F . See [Wei13, II.5.6] for a definition of GW (F ) and W (F ).

For the 1-line πn+1,n(F ), partial results have been obtained in [OØ14]. Ormsby has

investigated the case of related invariants over p-adic fields [Orm11] and the rationals

[OØ13], and Dugger and Isaksen have analyzed the case over the real numbers [DI15]. It

is now possible to perform similar calculations over fields of positive characteristic, thanks

to work on the motivic Steenrod algebra in positive characteristic [HKØ13].

Denote the nth topological stable stem by πsn. Over the complex numbers, Levine

showed there is an isomorphism πsn
∼= πn,0(C) [Lev14, Cor. 2]. We obtain a similar

result in theorem 5.6 for an algebraically closed field F of positive characteristic after

`-completion away from the characteristic of F . Our argument uses the motivic Adams

spectral sequence and properties of the motivic Adams spectral sequence under base

change. In particular, we must work with the motivic stable homotopy category over

the ring of Witt vectors of a field of positive characteristic. We use the construction of

a spectrum which represents motivic cohomology by Spitzweck [Spi13] to construct the

motivic Adams spectral sequence over Dedekind domains.

Theorem 1.1. Let F be an algebraically closed field of positive characteristic p. For all

s ≥ w ≥ 0, there are isomorphisms πs,w(F )[1
p ] ∼= πs,w(C)[1

p ].

Proof. When s > w ≥ 0, the groups πs,w(F ) and πs,w(C) are torsion by proposition

4.21. The isomorphism πs,w(F )[1
p ] ∼= πs,w(C)[1

p ] follows when s > w ≥ 0 from theorem

5.6 by summing up the `-primary parts. When s = w ≥ 0 the result follows by Morel’s

identification of the 0-line in [Mor12].

Corollary 1.2. Let F be an algebraically closed field of positive characteristic p. For all

n ≥ 0 the homomorphism Lc : πsn[1
p ]→ πn,0(F )[1

p ] is an isomorphism.

For a finite field Fq with an algebraic closure Fp, theorem 1.1 helps us analyze the

mod ` motivic Adams spectral sequence over Fq by comparing the spectral sequences over



3

Fq and Fp. In particular, we obtain the following calculation of the motivic stable stems

over Fq.

Theorem 1.3. Let Fq be a finite field of characteristic p. For all 0 ≤ n ≤ 18, there is an

isomorphism πn,0(Fq)[1
p ] ∼= (πsn ⊕ πsn+1)[1

p ].

Proof. Propositions 6.8, 6.11, 6.12 calculate the `-completion of πn,0(Fq) for primes ` 6= p

when the Bockstein acts trivially on H∗∗(Fq;Z/`). Propositions 7.8, 7.10, and 7.11 cal-

culate the `-completion of πn,0(Fq) for primes ` 6= p when the action of the Bockstein

on H∗∗(Fq;Z/`) is non-trivial. The `-completions of πn,0(Fq) are shown to agree with

the `-primary part of πn,0(Fq) for n > 0 in proposition 4.21. When n = 0, the result

follows by Morel’s identification of π0,0(Fq) with the Grothendieck-Witt ring of Fq, since

GW (Fq) ∼= Z⊕ Z/2 [Sch85, Ch. 2, 3.3].

In the case of a finite field Fq where the Bockstein acts non-trivially on the motivic

cohomology of Fq with Z/2 coefficients, i.e., when q ≡ 3 mod 4, we use computer calcula-

tions to identify the E2 page of the mod 2 motivic Adams spectral sequence. We discuss

the methods of calculation in chapter 8.

It is interesting to note that at the prime ` = 2, the pattern πn,0(Fq)∧2 ∼= (πsn⊕ πsn+1)∧2

obtained in theorem 1.3 does not hold in general. Recall that (πs19)∧2
∼= Z/8 ⊕ Z/2,

(πs20)∧2
∼= Z/8, and (πs21)∧2

∼= Z/2⊕ Z/2. We show that if q ≡ 5 mod 8, then

π19,0(Fq)∧2 ∼= (πs19)∧2 ⊕ Z/4 and π20,0(Fq)∧2 ∼= (πs20)∧2 ⊕ Z/2.

In the mod 2 Adams spectral sequence of topology, the class κ ∈ πs20 is detected by the

class g which is in Adams filtration 4. The calculation in proposition 6.9 implies that the

class κ ∈ π20,0(Fq) is in Adams filtration 3 when q ≡ 5 mod 8 but in Adams filtration 4 if

q ≡ 1 mod 8. See 6.10 for more details and references. It is still an open question whether

or not πn,0(Fq)∧2 ∼= (πsn ⊕ πsn+1)∧2 holds when q ≡ 3 mod 4 and n = 19 or n = 20.

The 2-primary calculations presented in this dissertation have been submitted for

publication [WØ16]. The odd primary calculations have not yet appeared elsewhere.
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Chapter 2

The stable motivic homotopy category

We first sketch a construction of the stable motivic homotopy category that will be con-

venient for our purposes and set our notation. Treatments of stable motivic homotopy

theory can be found in [Ayo07,DRØ03,DLØ+07,Jar00,Hu03].

2.1 Base schemes

A base scheme S is a Noetherian separated scheme of finite Krull dimension. We write

Sm/S for the category of smooth schemes of finite type over S. Denote the category of

presheaves of sets on Sm/S by Pshv(Sm/S). A space over S is a simplicial presheaf on

Sm/S. The collection of spaces over S forms the category Spc(S) = ∆opPshv(Sm/S),

where morphisms are natural transformations of functors. We write Spc∗(S) for the cat-

egory of pointed spaces. Note that Spc(S) is naturally equivalent to the category of

presheaves on Sm/S with values in the category of simplicial sets sSet. We will occasion-

ally switch between the two perspectives.

We will be focused on the special cases where S is the Zariski spectrum of a Hensel

local ring in which ` is invertible or a field of positive characteristic different from `. For a

field F of positive characteristic, the ring of Witt vectors of F is a complete Hensel local

ring W (F ) with residue field F . A thorough analysis of the ring of Witt vectors is given

in [Ser79, II §6].

2.2 The projective model structure

We are able to perform familiar constructions from homotopy theory with schemes thanks

to the construction of the motivic model category due to Morel and Voevodsky [MV99].
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We will assume the reader is familiar with the basic properties of model categories, which

can be found in [Hir03,Hov99].

The first model category structure we endow Spc(S) with is the projective model

structure, see [Bla01, 1.4], [DRØ03, 2.7], [Hir03, 11.6.1].

Definition 2.1. A map f : X → Y in Spc(S) is a (global) weak equivalence if for any

U ∈ Sm/S the map f(U) : X(U) → Y (U) of simplicial sets is a weak equivalence. The

projective fibrations are those maps f : X → Y for which f(U) : X(U)→ Y (U) is a Kan

fibration for any U ∈ Sm/S. The projective cofibrations are those maps in Spc(S) which

satisfy the left lifting property for trivial projective fibrations. The projective model

structure on Spc(S) consists of the global weak equivalences, the projective fibrations,

and the projective cofibrations.

The category Spc(S) equipped with the projective model structure is cellular, proper,

and simplicial [Bla01, 1.4]. Furthermore, Spc(S) has the structure of a simplicial monoidal

model category, with product × and internal hom Hom. We write Map(X ,Y) for the

simplicial mapping space for spaces X and Y.

Definition 2.2. For a smooth scheme X over S, we write hX for the representable

presheaf of simplicial sets. For U ∈ Sm/S, the simplicial set hX(U) is given by hX(U)n =

Sm/S(U,X) for all n ∈ ∆ where the face and degeneracy maps are the identity map. We

will frequently abuse notation and write X for hX .

The constant presheaf functor c : sSet → Spc(S) associates to a simplicial set A the

presheaf cA defined by cA(U) = A for any U ∈ Sm/S.

The functor c is a left Quillen functor when Spc(S) is equipped with the projective

model structure. Its right adjoint EvS : Spc(S) → sSet satisfies EvS(X) = X(S). One

can show that representable presheaves and constant presheaves in Spc(S) are cofibrant

in the projective model structure.

2.3 The Nisnevich local model structure

Although the representable presheaf functor embeds Sm/S into Spc(S), colimits which

exist in Sm/S are not necessarily preserved in Spc(S). That is, if X = colimXi in Sm/S,
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it need not be true that hX = colimhXi , e.g., colim(hA1 ← hGm → hA1) 6= hP1 . To fix

this, one introduces the Nisnevich topology on Sm/S.

Definition 2.3. Let S be a base scheme. For any X ∈ Sm/S, let U = {Ui → X} be

a finite family of étale maps in Sm/S. We say U is a Nisnevich covering of X if for

any x ∈ X there exists a map Ui → X in U and a point u ∈ Ui for which the induced

map of residue fields k(x) → k(u) is an isomorphism. The Nisnevich covers determine a

Grothendieck topology on Sm/S, which is called the Nisnevich topology.

Definition 2.4. An elementary distinguished square is a pull-back square in Sm/S

V ′ //

��

X ′

f
��

V
j // X

for which f is an étale map, j is an open embedding, and f−1(X − V ) → X − V is an

isomorphism, where these subschemes are given the reduced structure.

Morel and Voevodsky proved in [MV99, 3.1.4] that the Nisnevich topology is generated

by covers coming from the elementary distinguished squares. That is, a presheaf of sets

F on Sm/S is a Nisnevich sheaf if and only if for any elementary distinguished square, as

in definition 2.4, the resulting square

F (X) //

��

F (V )

��
F (X ′) // F (V ′)

is a pull-back square.

We now set out to modify the projective model structure on the category of spaces

over a base scheme S. In particular, we would like to declare a collection of maps C to be

weak equivalences which may not already be weak equivalences in the projective model

structure. The general procedure for this is Bousfield localization, which is defined by

Hirschhorn in [Hir03, 3.3.1] and proven to exist in good circumstances in [Hir03, 4.1.1],

such as when C is a set. To be brief, for a model category M and a class of morphisms

C inM, the left Bousfield localization of M at C—if it exists—is a model category LCM

with the same underlying category asM, but the weak equivalences are the C-local weak
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equivalences, the cofibrations are the same as inM, and the fibrations are determined by

the right lifting property. The C-local weak equivalences include the weak equivalences of

M and all maps in C.

Definition 2.5. For a pointed space X and n ≥ 0, the nth simplicial homotopy sheaf

πnX of X is the Nisnevich sheafification of the presheaf U 7→ πn(X (U)).

Write WNis for the class of maps f : X → Y which satisfy f∗ : πnX → πnY is an

isomorphism of Nisnevich sheaves for all n ≥ 0. The Nisnevich local model structure on

Spc∗(S) is the left Bousfield localization of the projective model structure with respect

to WNis.

Definition 2.6. Let WA1 be the class of maps πX : (X × A1)+ → X+ for X ∈ Sm/S.

The motivic model structure on Spc∗(S) is the left Bousfield localization of the projective

model structure with respect to WNis ∪ WA1 . We write SpcA
1

∗ (S) for the category of

pointed spaces equipped with the motivic model structure. The pointed motivic homotopy

category HA1

∗ (S) is the homotopy category of SpcA
1

∗ (S).

For pointed spaces X and Y, write [X ,Y] for the set of maps HA1

∗ (S)(X ,Y). The nth

motivic homotopy sheaf of a pointed space X over S is the sheaf πnX associated to the

presheaf U 7→ [Sn ∧ U+,X ].

There are two circles in the category of pointed spaces: the constant simplicial presheaf

S1 pointed at its 0-simplex and the representable presheaf Gm = A1 \ {0} pointed at 1.

These determine a bigraded family of spheres Si,j = (S1)∧i−j ∧G∧jm .

Definition 2.7. For a pointed space X over S and natural numbers i and j, write πi,jX

for the set of maps [Si,j , X].

The category of pointed spaces Spc∗(S) equipped with the induced motivic model

category structure has many good properties which make it amenable to Bousfield lo-

calization. In particular, Spc∗(S) is closed symmetric monoidal, pointed simplicial, left

proper, and cellular.
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2.4 The stable Nisnevich local model structure

With the unstable motivic model category in hand, we now construct the stable motivic

model category using the general framework laid out in [Hov01].

Let T be a cofibrant replacement of A1/(A1 − {0}). One can show that T is weak

equivalent to S2,1 in SpcA
1

∗ (S) [MV99, 3.2.15]. The functor T ∧ − on SpcA
1

∗ (S) is a left

Quillen functor, which we may invert by creating a category of T -spectra.

Definition 2.8. A T -spectrum is a sequence of spaces Xn ∈ SpcA
1

∗ (S) equipped with

structure maps σn : T ∧Xn → Xn+1. A map of T -spectra f : X → Y is a collection of

maps fn : Xn → Yn which is compatible with the structure maps. We write SptT (S) for

the category of T -spectra of spaces.

The level model structure on SptT (S) is given by declaring a map f : X → Y to be a

weak equivalence (respectively fibration) if every map fn : Xn → Yn is a weak equivalence

(respectively fibration) in the motivic model structure on Spc∗(S). The cofibrations

for the level model structure are determined by the left lifting property for trivial level

fibrations.

Definition 2.9. Let X be a T -spectrum. For integers i and j, the (i, j) stable homotopy

sheaf of X is the sheaf πi,jX = colimn πi+2n,j+nXn. A map f : X → Y is a stable

weak equivalence if for all integers i and j, the induced maps f∗ : πi,jX → πi,jY are

isomorphisms.

Definition 2.10. The stable model structure on SptT (S) is the model category where the

weak equivalences are the stable weak equivalences and the cofibrations are the cofibra-

tions in the level model structure. The fibrations are those maps with the right lifting

property with respect to trivial cofibrations. We write SHS for the homotopy category

of SptT (S) equipped with the stable model structure.

The stable model structure on SptT (S) can be realized as a left Bousfield localization

of the level-wise model structure [Hov01, 3.3].

Just as for the category SptS1 of simplicial S1-spectra, there is not a symmetric

monoidal category structure on SptT (S) which lifts the smash product ∧ in SHS . One
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remedy is to use a category of symmetric T -spectra SptΣ
T (S). The construction of this

category is given by Hovey in [Hov01, 7.7]. It is proven in [Hov01, 9.1] that there is a

zig-zag of Quillen equivalences from SptΣ
T (S) to SptT (S), so SHS is equivalent to the

homotopy category of SptΣ
T (S) as well. Since Quillen equivalences induce equivalences of

homotopy categories, the category SHS is a symmetric monoidal, triangulated category,

where the shift functor is given by [1] = S1,0 ∧ −.

Definition 2.11. For a T -spectrum E over S, write πi,jE for the group SHS(Σi,j
1, E).

In the case where E = 1 and S = Spec(D), we simply write πi,j(D) for SHS(Σi,j
1,1).

In addition to the category of T -spectra, we will find it convenient to work with the

category of (Gm, S
1) bispectra, see [Jar00,DLØ+07].

Definition 2.12. Consider the simplicial circle S1 as a space over S, given by the constant

presheaf. An S1-spectrum over S is a sequence of spaces Xn ∈ Spc∗(S) equipped with

structure maps σn : S1 ∧Xn → Xn+1. A map of S1-spectra over S is a sequence of maps

fn : Xn → Yn that are compatible with the structure maps. The collection of S1-spectra

over S with compatible maps between them forms a category SptS1(S).

First equip SptS1(S) with the level model structure with respect to the Nisnevich local

model structure on Spc∗(S). The nth stable homotopy sheaf of an S1-spectrum E over S

is the Nisnevich sheaf πnE = colimπn+jEj . A map f : E → F of S1-spectra over S is a

simplicial stable weak equivalence if for all n ∈ Z the induced map f∗ : πnE → πnF is an

isomorphism of sheaves. The stable Nisnevich local model category structure on SptS1(S)

is obtained by localizing at the class of simplicial stable equivalences, as in definition 2.10.

The motivic stable model category structure on SptS1(S) is obtained from the simplicial

stable model category structure by left Bousfield localization at the class of maps WA1 =

{Σ∞X+ ∧ A1 → Σ∞X+ |X ∈ Sm/S}. Write SptA
1

S1(S) for the motivic stable model

category LWA1
SptS1(S) and write SHA1

S1(S) for its homotopy category. For S1-spectra E

and F over S, write [E,F ] for the group SHA1

S1(S)(E,F ). The nth motivic stable homotopy

sheaf of an S1-spectrum E is the Nisnevich sheaf πA
1

n E associated to the presheaf U 7→

[Sn ∧ Σ∞U+, E].

Definition 2.13. In the projective model structure on Spc∗(S), the space Gm pointed
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at 1 is not cofibrant. We abuse notation, and write Gm for a cofibrant replacement of

Gm. A (Gm, S
1) bispectrum over S is a Gm-spectrum of S1-spectra. More concretely, a

(Gm, S
1) bispectrum E is a bigraded family of spaces Em,n with bonding maps σm,n :

S1 ∧ Em,n → Em,n+1 and γm,n : Gm ∧ Em,n → Em+1,n which are compatible, meaning

that the following diagram commutes.

Gm ∧ S1 ∧ Em,n
τ∧Em,n //

Gm∧σ
��

S1 ∧Gm ∧ Em,n
S1∧γ
��

Gm ∧ Em,n+1
γ // Em+1,n+1 S1 ∧ Em+1,n

σoo

We write SptGm,S1(S) for the category of (Gm, S
1) bispectra over S. Consider SptGm,S1(S)

as the category of Gm-spectra of S1-spectra, we first equip SptGm,S1(S) with the level

model category structure with respect to the motivic stable model category structure on

SptS1(S). The motivic stable model category structure on SptGm,S1(S) is the left Bousfield

localization at the class of stable equivalences.

There are left Quillen functors Σ∞S1 : Spc∗(S) → SptS1(S) and Σ∞Gm : SptS1(S) →

SptGm,S1(S). Additionally, the category SptGm,S1(S) equipped with the motivic stable

model structure is Quillen equivalent to the stable model category structure on SptT (S);

see [DLØ+07, p. 216].

Definition 2.14. To any S1-spectrum of simplicial sets E ∈ SptS1 we may associate the

constant S1-spectrum cE over S with value E. That is, cE is the sequence of spaces cEn

with the evident bonding maps. For a simplicial spectrum E, we also write cE for the

(Gm, S
1) bispectrum Σ∞GmcE. This defines a left Quillen functor c : SptS1 → SptGm,S1(S)

with right adjoint given by evaluation at S. Compare with [Lev14, 6.5].

2.5 Base change of stable model categories

Definition 2.15. Let f : R→ S be a map of base schemes. Pull-back along f determines

a functor f−1 : Sm/S → Sm/R, which induces Quillen adjunctions (f∗, f∗) : SpcA
1

∗ (S)→

SpcA
1

∗ (R) and (f∗, f∗) : SptT (S)→ SptT (R).

We now discuss some of the properties of base change. A more thorough treatment is

given in [Mor05, §5]. The map f∗ sends a space X over R to the space X ◦ f−1 over S.
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The adjoint f∗ is given by the formula (f∗Y)(U) = colim
U→f−1V

Y(V ), as described in [HW14,

§12.1]. For a smooth scheme X over S, a standard calculation shows f∗X = f−1X.

Additionally, if cA is a constant simplicial presheaf on Sm/S, it follows that f∗(cA) = cA.

The Quillen adjunction (f∗, f∗) extends to both the model category of T -spectra and

(Gm, S
1) bispectra by applying the maps f∗, and respectively f∗, term-wise to a given

spectrum. In the case of f∗ for T -spectra, for instance, the bonding maps for f∗E are

given by

T ∧ f∗En
∼=−→ f∗(T ∧ En)→ f∗(En+1)

as f∗T = T . The same reasoning shows that the adjunction (f∗, f∗) extends to (Gm, S
1)

bispectra.

Write Q (respectively R) for the cofibrant (respectively fibrant) replacement functor

in SptT (S). The derived functors Lf∗ and Rf∗ are given by the formulas Lf∗ = f∗Q and

Rf∗ = f∗R.

Let f : C → B be a smooth map. The functor f# : Sm/C → Sm/B sends a scheme

X → C to X → C
f−→ B, and induces a functor f# : SpcA

1

∗ (B)→ SpcA
1

∗ (C) by restricting

a presheaf on Sm/B to a presheaf on Sm/C. The functor f∗ is canonically equivalent to

f# on the level of spaces and spectra.

2.6 The connectivity theorem

Morel establishes the connectivity of the sphere spectrum 1 over fields F by studying

the effect of Bousfield localization at WA1 of the stable Nisnevich local model category

structure on SptS1(Spec(F )) (see definition 2.12).

An S1-spectrum E over S is said to be simplicially k-connected if for any n ≤ k, the

simplicial stable homotopy sheaves πnE of definition 2.12 are trivial. An S1-spectrum E

is k-connected if for all n ≤ k the motivic stable homotopy sheaves πA
1

n E are trivial.

Theorem 2.16 (Morel’s connectivity theorem). If E is an S1-spectrum over S which is

simplicially k-connected, then E is also k-connected.

Proof. When F is an infinite field, the argument given in [Mor12] goes through. When
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F is a finite field, Morel’s argument relies on a proof of Gabber’s presentation lemma in

the case of one point for a finite field (see [Mor12, 1.15] for the statement). A letter of

Gabber to Morel [Gab15] establishes this case of Gabber’s presentation lemma, and so

the connectivity theorem holds without qualification on the field F .

The connectivity theorem along with the work in [Mor04, §5] yield the following. This

also follows from [Voe98, 4.14].

Corollary 2.17. Over a field F , the sphere spectrum 1 is (−1)-connected. In particular,

for all s− w < 0 the groups πs,w(F ) are trivial.

2.7 Comparison to the classical stable homotopy category

The following result of Levine plays a fundamental role in our calculations [Lev14, Thm. 1].

Theorem 2.18. If S = Spec(C), the map Lc : SH → SHS is fully faithful.

Proposition 2.19. Let f : R→ S be a map of base schemes. The following diagram of

stable homotopy categories commutes.

SH
Lc

##

Lc

{{
SHS

Lf∗ // SHR

Proof. The result follows by establishing f∗ ◦ c = c on the level of model categories. For

a constant space cA ∈ Spc(S), we have f∗cA = cA by the calculation

(f∗cA)(U) = colim
U→f−1V

cA(V ) = A

given the formula for f∗ in section 2.5. As the base change map is extended to T -spectra

by applying f∗ term-wise, the claim follows.

Proposition 2.20. Let S be a base scheme equipped with a map Spec(C) → S. Then

Lc : SH → SHS is faithful.

Proof. For symmetric spectra X and Y , the map Lc : SH(X,Y )→ SHC(cX, cY ) factors

through SHS(cX, cY ) by proposition 2.19. Hence Lc : SH(X,Y ) → SHS(cX, cY ) is

injective by theorem 2.18.
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Chapter 3

Motivic cohomology

Spitzweck has constructed a spectrum HZ in SptΣ
T (S) which represents motivic cohomol-

ogy Ha,b(X;Z) defined using Bloch’s cycle complex when S is the Zariski spectrum of

a Dedekind domain [Spi13]. Spitzweck establishes enough nice properties of HZ so that

we may construct the motivic Adams spectral sequence over general base schemes and

establish comparisons between the motivic Adams spectral sequence over a Hensel local

ring in which ` is invertible and its residue field.

3.1 Integral motivic cohomology

Definition 3.1. Over the base scheme Spec(Z), the spectrum HZSpec(Z) is defined by

Spitzweck in [Spi13, 4.27]. For a general base scheme S, we define HZS to be f∗HZSpec(Z)

where f : S → Spec(Z) is the unique map.

Let S be the Zariski spectrum of a Dedekind domain D. For X ∈ Sm/S, there is

a canonical isomorphism SHS(Σ∞X+,Σ
i,nHZ) ∼= Ha,b(X;Z), where Ha,b(−;Z) denotes

motivic cohomology [Spi13, 7.19]. The isomorphism is functorial with respect to maps in

Sm/S. Additionally, if i : {s} → S is the inclusion of a closed point with residue field

k(s), there is a commutative diagram for X ∈ Sm/S.

SHS(Σ∞X+,Σ
i,nHZ)

∼= //

��

Ha,b(X;Z)

��
SHk(s)(Li∗Σ∞X+,Σ

a,bHZ)
∼= // Ha,b(Li∗X,Z)

If the residue field k(s) has positive characteristic, there is a canonical isomorphism

of ring spectra Li∗HZS ∼= HZk(s) [Spi13, 9.16].

Proposition 3.2. If f : R→ S is a smooth map of base schemes, then Lf∗HZS ∼= HZR.
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Proof. Since f is smooth, Lf∗ = f∗ by the discussion in [Mor05, p. 44]. The result now

follows, as it is straightforward to see that f∗HZS ∼= HZR.

3.2 Motivic cohomology with coefficients Z/`

For a prime `, write HZ/` for the cofiber of the map `· : HZ→ HZ in SHS . The spectrum

HZ/` represents motivic cohomology with Z/` coefficients. For a smooth scheme X over

S, we write H∗∗(X;Z/`) for the motivic cohomology of X with Z/` coefficients. If S is

the Zariski spectrum of a ring R, we will write H∗∗(R;Z/`) for the motivic cohomology

of R. In this section, we calculate H∗∗(Fq;Z/`) when q and ` are relatively prime.

The now established Beilinson-Lichtenbaum conjecture gives a ring homomorphism

Ha,b(Fq;Z/`) → Ha
et(Fq;µ⊗b` ) which is an isomorphism when a ≤ b; when a > b, the

groups Ha,b(Fq;Z/`) vanish [MVW06, 3.6]. Furthermore, Hn,n(F ;Z/`) ∼= KM
n (F )/`

where KM
n (F ) denotes the Milnor K-theory of F . In particular, KM

1 (F ) = F× is the

group of units of F and KM
1 (F )/` = F×/F× ` is the group of units of F modulo `th

powers.

We will also identify the action of the Bockstein homomorphism β on H∗∗(Fq;Z/`).

The Bockstein homomorphism is the connecting homomorphism in the long exact se-

quence associated to the short exact sequence of coefficients

0→ Z/`→ Z/`2 → Z/`→ 0.

Definition 3.3. We set some notation which will be used in our description of the mod

` motivic cohomology of finite fields. For a field F with characteristic different from 2,

−1 ∈ µ2(F ) is a non-trivial second root of unity. We write τ for the class corresponding

to −1 via the isomorphism H0,1(F ;Z/2) ∼= µ2(F ) and ρ for the class corresponding to

−1 in H1,1(F ;Z/2) ∼= F×/F× 2. Note that the class ρ is trivial if and only if
√
−1 ∈ F .

For a finite field Fq of odd order, the group of units F×q is cyclic, there is an isomorphism,

H1,1(Fq;Z/2) ∼= Z/2, and we write u for the non-trivial class of H1,1(Fq;Z/2). We remark

that u = ρ if and only if q ≡ 3 mod 4.

For a prime ` > 2, write ζ for a primitive `th root of unity in a field F , should the

field F have one. If F has a primitive `th root of unity ζ, we write γ for the class of ζ in
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F×/F× `, which is trivial if and only if
√̀
ζ ∈ F .

A finite field Fq will contain an `th root of unity if and only q ≡ 1 mod `. For a general

finite field Fq, let i be the smallest positive integer for which qi ≡ 1 mod `. Then the field

extension Fqi contains an `th root of unity, and we write ζ for the class corresponding

to a primitive `th root of unity in H0,i(Fq;Z/`) ∼= µ`(Fqi). We write γ for the class

corresponding to the primitive `th root of unity ζ in H1,i(Fq;Z/`) ∼= H1
et(Fq;µ⊗i` ) ∼=

F×
qi
/F× `

qi
, and u for a generator of H1,i(Fq;Z/`). Note that γ is trivial in H1,i(Fq;Z/`) if

and only if qi ≡ 1 mod `2. When qi 6≡ 1 mod `2, γ is non-trivial and we take u to be γ.

Proposition 3.4. 1. For any finite field Fq with q odd, there are isomorphisms

H∗∗(Fq;Z/2) ∼=


F2[τ, u]/(u2) if q ≡ 1 mod 4

F2[τ, ρ]/(ρ2) if q ≡ 3 mod 4.

The action of the Bockstein is determined by β(τ) = ρ which is trivial if and only

if q ≡ 1 mod 4. The bidegree of τ is (0, 1) and the bidegree of ρ and u is (1, 1).

2. Suppose ` is an odd prime, Fq is a finite field with characteristic different from `, and

let i be the smallest positive integer for which ` | qi − 1. The motivic cohomology

of Fq is the associative, graded-commutative Z/`-algebra

H∗∗(Fq;Z/`) ∼=


F2[ζ, u]/(u2) if qi ≡ 1 mod `2

F2[ζ, γ]/(γ2) if qi 6≡ 1 mod `2

The action of the Bockstein is determined by β(ζ) = γ, which is trivial if and only

if qi ≡ 1 mod `2. The bidegree of ζ is (0, i) and the bidegree of u and γ is (1, i).

Proof. Because of the Beilinson-Lichtenbaum conjecture, we reduce the problem to cal-

culating Hp
et(Fq;µ

⊗q
` ) when p ≤ q. A calculation in Galois cohomology by Soulé in

[Sou79, III.1.4] shows that H0
et(Fq;µ

⊗j
` ) and H1

et(Fq;µ
⊗j
` ) are the cyclic group of order

gcd(`, qj − 1), and all higher cohomology groups vanish. When ` 6= 2, the sheaf µ⊗i` is the

constant sheaf Z/`, and so the products

H0
et(Fq;µ⊗b` )⊗Ha

et(Fq;µ⊗c` )→ Ha
et(Fq;µ⊗b+c` )

are isomorphisms.
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For x, y ∈ H∗∗(Fq;Z/`), the Bockstein homomorphism is a derivation, i.e.,

β(xy) = β(x)y + (−1)|x|xβ(y)

where |x| denotes the topological degree [Voe03, (8.1)]. It then suffices to identify the

action of the Bockstein on τ or ζ.

The Bockstein fits into the following exact sequence in weight i.

H0
et(Fq;µ⊗i`2 ) //

∼=
��

H0
et(Fq;µ⊗i` )

β //

∼=
��

H1
et(Fq;µ⊗i`2 )

∼=��
µ`2(Fqi)

−` // µ`(Fqi) // F×
qi
/F× `

qi

Hence the Bockstein then is trivial if and only if Fqi contains a primitive `2 root of unity.

This occurs if and only if qi ≡ 1 mod `2.

We remark that in the case of a finite field Fq, the element ζ ∈ µ`(Fqi) is the analog

of τ ∈ µ2(Fq) at an odd prime `. Furthermore, γ ∈ F×
qi
/F× `

qi
is the analog of the class

ρ ∈ F×q /F× 2
q at an odd prime `. We use distinct notation to avoid confusion with the

specific role τ and ρ play in Voevodsky’s calculation of the motivic Steenrod algebra and

its dual in [Voe03].

We will make frequent use of Geisser’s rigidity theorem for motivic cohomology [Gei04,

1.2(3)], which we adapt to our needs.

Proposition 3.5. Let D be a Hensel local ring in which ` is invertible. Write F for

the residue field of D and write π : D → F for the quotient map. Then the map

π∗ : H∗∗(D;Z/`) → H∗∗(F ;Z/`) is an isomorphism of Z/`-algebras. Furthermore, the

action of the Bockstein is the same in either case.

Proof. The rigidity theorem for motivic cohomology [Gei04, 1.2(3)] gives the isomor-

phism. The map Lπ∗ gives comparison maps for the long exact sequences which define

the Bockstein over D and F . The rigidity theorem shows that the long exact sequences

are isomorphic, so the action of the Bockstein is the same in either case.
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3.3 Mod ` motivic cohomology operations of finite fields

The mod ` motivic Steenrod algebra over a base scheme S, which we write as A∗∗(S), is the

algebra of bistable mod ` motivic cohomology operations. A bistable cohomology operation

is a family of operations θ∗∗ : H∗∗(−;Z/`)→ H∗+a,∗+b(−;Z/`) which are compatible with

the suspension isomorphism for both the simplicial circle S1 and the Tate circle Gm.

In the case where S is the Zariski spectrum of a characteristic 0 field, Voevodsky

identified the structure of this algebra in [Voe03, Voe10]. Voevodsky’s calculation was

extended to hold where the base is the Zariski spectrum of a field of positive characteristic

p 6= ` by Hoyois, Kelly, and Østvær in [HKØ13]. In both cases, the structure of the algebra

of mod ` motivic cooperations was also identified. We now adapt these calculations to

the particular case where the base scheme is Spec(Fq).

Proposition 3.6. The mod 2 motivic Steenrod algebra A∗∗(Fq) over Fq with q odd is

the associative Z/2-algebra generated by the Steenrod square operations Sqi for i ≥ 1

and the cup products x ∪ − for x ∈ H∗∗(Fq;Z/2). The Steenrod square operation Sq2i

has bidegree (2i, i) and Sq2i+1 has bidegree (2i+ 1, i). The operation Sq1 agrees with the

Bockstein β. The Steenrod square operations Sqi satisfy modified Adem relations which

are listed below. We include these formulas for completeness, as they are explicitly used

in the computer calculations discussed in chapter 8. See definition 3.3 for our notation of

the elements τ , ρ, and u in H∗∗(Fq;Z/2)

1. (Cartan formula): For cohomology classes x and y, the following relations hold.

Sq1(xy) = Sq1(x)y + xSq1(y)

Sq2i(xy) =
i∑

r=0

Sq2r(x)Sq2i−2r(y) + τ
i−1∑
r=0

Sq2r+1(x)Sq2i−2r−1(y)

Sq2i+1(xy) =
i∑

r=0

(
Sq2r+1(x)Sq2i−2r(y) + Sq2r(x)Sq2i−2r+1(y)

)
+

ρ
i−1∑
r=0

Sq2r+1(x)Sq2i−2r−1(y)
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2. (Adem relations): If a+ b ≡ 0 mod 2, then

SqaSqb =


∑[a/2]

j=0

(
b−1−j
a−2j

)
Sqa+b−jSqj a, b odd∑[a/2]

j=0

(
b−1−j
a−2j

)
τ jSqa+b−jSqj a, b even.

If a is odd and b is even, then

SqaSqb =

[a/2]∑
j=0

j even

(
b− 1− j
a− 1− 2j

)
Sqa+b−jSqj +

[a/2]∑
j=0
j odd

(
b− 1− j
a− 1− 2j

)
ρSqa+b−1−jSqj .

If a is even and b is odd

SqaSqb =

[a/2]∑
j=0

(
b− 1− j
a− 2j

)
Sqa+b−jSqj +

[a/2]∑
j=1
j odd

(
b− 1− j
a− 2j

)
ρSqa+b−j−1Sqj .

3. (Right multiplication by H∗,∗):

Sq1τ = τSq1 + ρ

For i > 0, one can derive the following formulas from the Cartan relation.

Sq2iτ = τSq2i + τρSq2i−1

Sq2i+1τ = τSq2i+1 + ρSq2i

For all a > 0,

Sqaρ = ρSqa and Sqau = uSqa.

Proposition 3.7. Let ` be an odd prime and suppose Fq is a finite field of characteristic

p with p 6= `. The mod ` Steenrod algebra is an associative Z/`-algebra generated by the

Bockstein β, the reduced power operations P i for i ≥ 1, and the cup products x ∪ − for

x ∈ H∗∗(Fq;Z/`) subject to the usual Adem relations [Voe03, 10.3].

In the case where β(ζ) = γ, we have the additional relations βζ = ζβ + γ, βγ = γβ,

and the reduced power operations commute with cup products. If β(ζ) = 0, the reduced

power operations and the Bockstein commute with cup products.



19

3.4 The Hopf algebroid of cooperations for HZ/`

The dual Steenrod algebra A∗∗ = HomH∗∗(A∗∗, H∗∗) has the structure of a Hopf algebroid

which was identified over fields of characteristic 0 by Voevodsky in [Voe03, 12.6] and

over fields of positive characteristic by Hoyois, Kelly, and Østvær in [HKØ13, 5.5]. A

homogeneous homomorphism f : A∗∗ → H∗∗ is said to have bidegree (a, b) if it decreases

bidegree by (a, b).

For x ∈ Ha,b, consider x also as the element of A−a,−b which is the left H∗∗-module

homomorphism which kills the Steenrod squares, respectively the reduced power opera-

tions and the Bockstein, and maps 1 to x. Given the isomorphism Ha,b ∼= H−a,−b, this

construction defines a homomorphism ηL : H∗∗ → A∗∗.

For a prime ` > 2, write Atop∗ for the topological dual Steenrod algebra. Milnor studied

the structure of Atop∗ in [Mil58] and found that Atop∗ is the graded-commutative F`-algebra

F`[τi, ξj | i ≥ 0, j ≥ 1]/(τ2
i ) where the degree of τj is 2`j−1 and the degree of ξj is 2(`j−1).

We may also give Atop∗ a second grading by declaring the weight of τj and ξj to be `j − 1.

Furthermore, Milnor identified the Hopf algebra structure of (F`,Atop∗ ). We now record

the structure of the motivic dual Steenrod algebra at a prime ` over a finite field, which

is due to [HKØ13], cf. [Voe03].

Proposition 3.8. 1. The mod 2 dual Steenrod algebra A∗∗(Fq) for a finite field Fq of

characteristic different from 2 is an associative, commutative algebra of the following

form.

A∗∗(Fq) ∼= H∗∗(F )[τi, ξj | i ≥ 0, j ≥ 1]/(τ2
i − τξi+1 − ρτi+1 − ρτ0ξi+1)

Here τi has bidegree (2i+1 − 1, 2i − 1) and ξi has bidegree (2i+1 − 2, 2i − 1).

The structure maps for the Hopf algebroid (H∗∗(Fq),A∗∗(Fq)), which we write sim-

ply as (H∗∗,A∗∗), are as follows.

(a) The left unit ηL : H∗∗ → A∗∗ is given by ηL(x) = x.

(b) The right unit ηR : H∗∗ → A∗∗ is determined as a map of Z/2-algebras by

ηR(ρ) = ρ and ηR(τ) = τ+ρτ0. In the case where ρ is trivial, i.e., q ≡ 1 mod 4,

the right and left unit agree ηR = ηL.
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(c) The augmentation ε : A∗∗ → H∗∗ kills τi and ξi, and for x ∈ H∗∗, ε(x) = x.

(d) The coproduct ∆ : A∗∗ → A∗∗ ⊗H∗∗ A∗∗ is a map of graded Z/2-algebras

determined by ∆(x) = x⊗1 for x ∈ H∗∗, ∆(τi) = τi⊗1+1⊗τi+
∑i−1

j=0 ξ
`j
i−j⊗τj ,

∆(ξi) = ξi ⊗ 1 + 1⊗ ξi +
∑i−1

j=1 ξ
`j
i−j ⊗ ξj .

(e) The antipode c is a map of Z/2-algebras determined by c(ρ) = ρ, c(τ) = τ+ρτ0,

c(τi) = −τi −
∑i−1

j=0 ξ
`j
i−jc(τj), and c(ξi) = −ξi −

∑i−1
j=1 ξ

`j
i−jc(ξj).

2. Let ` be an odd prime and Fq a finite field with characteristic different from `. The

mod ` dual Steenrod algebra over Fq is the associative, graded-commutative algebra

(in the first index) given by A∗∗(Fq) ∼= H∗∗(Fq) ⊗F` A
top
∗ . Furthermore, (H∗∗,A∗∗)

is a Hopf algebroid, and the structure maps are as follows.

(a) The left unit ηL : H∗∗ → A∗∗ is given by ηL(x) = x.

(b) The right unit ηR : H∗∗ → A∗∗ is determined as a map of Z/`-algebras by

ηR(ζ) = ζ − γτ0 and ηR(γ) = γ. In the case where the Bockstein acts trivially

on H∗∗, the right and left unit agree ηR = ηL.

(c) The augmentation ε : A∗∗ → H∗∗ kills τi and ξi, and ε(x) = x for x ∈ H∗∗.

(d) The coproduct ∆ : A∗∗ → A∗∗ ⊗H∗∗ A∗∗ is a map of Z/`-algebras determined

by ∆(x) = x ⊗ 1 for x ∈ H∗∗, ∆(τi) = τi ⊗ 1 + 1 ⊗ τi +
∑i−1

j=0 ξ
`j
i−j ⊗ τj ,

∆(ξi) = ξi ⊗ 1 + 1⊗ ξi +
∑i−1

j=1 ξ
`j
i−j ⊗ ξj . Note that in A∗∗ ⊗A∗∗, the product

is given by (x⊗ x′)(y ⊗ y′) = (−1)|x
′||y|xy ⊗ x′y′.

(e) The antipode c is a map of Z/`-algebras determined by c(γ) = γ, c(ζ) = ζ+γτ0,

c(τi) = −τi −
∑i−1

j=0 ξ
`j
i−jc(τj), and c(ξi) = −ξi −

∑i−1
j=1 ξ

`j
i−jc(ξj).

3.5 Steenrod algebra over Dedekind domains

Let S be the Zariski spectrum of a Dedekind domain D in which ` is invertible. Spitzweck

shows in [Spi13, 11.24] that for an odd prime `, the mod ` dual Steenrod algebra with Z/`

coefficients A∗∗(D) has the structure of a Hopf algebroid similar to that of proposition

3.8. At the prime 2, Spitzweck’s result shows A∗∗(D) is generated by the elements τi and

ξj , but does not establish the relations for τ2
i .
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Definition 3.9. Let D be a Dedekind domain, and let C denote the set of sequences

(ε0, r1, ε1, r2, . . .) with εi ∈ {0, 1}, ri ≥ 0, and only finitely many non-zero terms. The

elements τi ∈ A2`i−1,`i−1(D) and ξi ∈ A2`i−2,`i−1(D) are constructed in [Spi13, 11.23].

For any sequence I = (ε0, r1, ε1, r2, . . .) in C, write ω(I) for the element τ ε00 ξ
r1
1 · · · and

(a(I), b(I)) for the bidegree of the operation ω(I).

In [Spi13, 11.24] Spitzweck identifies the structure of the mod ` dual Steenrod algebra,

which we record here.

Proposition 3.10. Let D be a Dedekind domain. As an HZ/`-module, there is a weak

equivalence
∨
I∈C Σa(I),b(I)HZ/`→ HZ/`∧HZ/`. The map is given by ω(I) on the factor

Σa(I),b(I)HZ/`.

For ` > 2, this establishes the isomorphism A∗∗(D) ∼= H∗∗(D)⊗F` A
top
∗ as an associa-

tive, graded-commutative Z/`-algebra.

In the case ` = 2, one must be careful about the relations for τ2
i in A∗∗. In particular,

we need the analog of [Voe03, 6.10]. We give an argument when D is a Hensel local ring.

Proposition 3.11. Let D be a Hensel local ring in which 2 is invertible and let F denote

the residue field of D. Then the following isomorphism holds.

H∗∗(Bµ2,Z/2) ∼= H∗∗(D,Z/2)[[u, v]]/(u2 = τv + ρu)

Here ρ ∈ H1,1(D;Z/2) ∼= F×/F× 2 and τ ∈ H0,1(D;Z/2) ∼= µ2(F ) are given in defi-

nition 3.3. Further, v is the class v2 ∈ H2,1(Bµ2) defined in [Spi13, p. 81], and u ∈

H1,1(Bµ2;Z/2) is the unique class satisfying β̃(u) = v, where β̃ is the integral Bockstein

determined by the coefficient sequence Z→ Z→ Z/2.

Proof. The motivic classifying space Bµ2 over D (respectively F ) fits into a triangle

Bµ2+ → (O(−2)P∞)+ → Th(O(−2)) by [Voe03, (6.2)] and [Spi13, (25)]. From this

triangle, we obtain a long exact sequence in mod 2 motivic cohomology [Voe03, (6.3)]

and [Spi13, (26)]. The comparison map Lπ∗ : SHD → SHF induces a homomorphism

of these long exact sequences. The rigidity theorem 3.5 and the 5-lemma then show that

the comparison maps are all isomorphisms. As the desired relation holds in the motivic
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cohomology of Bµ2 over F , and the choices of u and v are compatible with base change,

the result follows.

Proposition 3.12. Let D be a Hensel local ring in which ` is invertible. The coproduct

∆ for A∗∗(D) is as given in proposition 3.8(d).

Proof. This follows from the calculation in [Spi13, 11.23].

All that remains to identify the structure of A∗∗(D) is the right unit and the antipode.

Proposition 3.13. Over a Hensel local ring in which ` is invertible, the right unit ηR

and the antipode c are given by the formulas in proposition 3.8(b,e).

Proof. Naturality of the reduced power operations guarantees that the actions on H∗∗(D)

and H∗∗(F ) agree, since the cohomology groups are isomorphic. This additional structure

determines the right unit and the antipode.

Remark 3.14. Let D be a Dedekind domain in which ` is invertible, and consider the map

f : Z[1/`]→ D. A key observation in the proof of [Spi13, 11.24] is that f∗ : A∗∗(Z[1/`])→

A∗∗(D) satisfies f∗τi = τi and f∗ξi = ξi for all i. For a map j : D → D̃ of Dedekind

domains in which ` is invertible, it follows that j∗τi = τi and j∗ξi = ξi for all i.

Proposition 3.15. Let D be a Hensel local ring in which ` is invertible and let F

denote the residue field of D. Then the comparison map π∗ : A∗∗(D) → A∗∗(F ) is an

isomorphism of Hopf algebroids.

Proof. Remark 3.14 shows that the map π∗ : A∗∗(D)→ A∗∗(F ) is an isomorphism of left

H∗∗(F )-modules. The compatibility of the isomorphism with the coproduct, right unit,

and antipode follows from propositions 3.12 and 3.13.

Definition 3.16. A set of bigraded objects A = {x(a,b)} is said to be motivically finite

[DI10, 2.11] if for any bigrading (a, b) there are only finitely many objects y(a′,b′) ∈ X for

which a ≥ a′ and 2b− a ≥ 2b′ − a′.
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We say a bigraded algebra or module is motivically finite if it has a generating set

which is motivically finite. One benefit is that a motivically finite H∗∗(X)-module is a

finite dimensional Z/`-vector space in each bidegree.

Proposition 3.17. Let D be a Dedekind domain in which ` is invertible. The Steenrod

algebra over D is isomorphic to the dual of A∗∗(D), that is,

A∗∗(D) ∼= HomH∗∗(A∗∗(D), HZ/`∗∗(D)).

Proof. As the algebra of cooperations A∗∗(S) is motivically finite, we may identify its

dual with the Steenrod algebra. See [HKØ13, 5.2] and [Spi13, 11.25].

Corollary 3.18. Let D be a Hensel local ring in which ` is invertible with residue field

F . The comparison map π∗ : A∗∗(D)→ A∗∗(F ) is an isomorphism.

3.6 Base change for finite fields

Proposition 3.19. Consider a prime power q = pn and let ` be a prime different from

p. For a field extension f : Fq → Fqj where j is relatively prime to `(`− 1), the induced

map f∗ : H∗∗(Fq)→ H∗∗(Fqj ) and f∗ : A∗∗(Fq)→ A∗∗(Fqj ) are isomorphisms.

Proof. Let i be the smallest positive integer for which qi ≡ 1 mod `. In other words,

i is the order of q in F×` . Since j is relatively prime to ` − 1, the integers q and qj

have the same order in F×` . By proposition 3.4, we see that there are isomorphisms

H∗,∗(Fq;Z/`) ∼= H∗,∗(Fqj ;Z/`). We first show f∗ : H∗∗(Fq)→ H∗∗(Fqj ) is an isomorphism

by using the presentation in proposition 3.4. The map on mod ` motivic cohomology is

determined by its behavior on H0
et(Fq;µ⊗i` ) ∼= µ`(Fqi) and H1

et(Fq;µ⊗i` ) ∼= F×
qi
/F× `

qi
. The

map µ`(Fqi)→ µ`(Fqij ) is an isomorphism, as an `th root of unity in Fqi is sent to an `th

root of unity in Fqij .

As long as j is relatively prime to `, the map F×
qi
/F× `

qi
→ F×

qij
/F× `

qij
is an isomorphism.

For suppose conversely, that for a generator α ∈ F×
qi
/F× `

qi
there is an `th root of α in Fqij .

In this case, the extension Fqi → Fqij would factor through the splitting field F of x`−α

over Fqi . The degree of the extension Fqi → F is `, since Fqi has a primitive `th root of

unity. Hence ` | j, contradicting (j, `) = 1.
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Finally, remark 3.14 establishes that f∗ : A∗∗(Fq) → A∗∗(Fqj ) is an isomorphism.

Hence by proposition 3.17, f∗ : A∗∗(Fq)→ A∗∗(Fqj ) is an isomorphism as well.

Proposition 3.20. Let q be a prime power which is relatively prime to `. Write F̃q

for the union of the field extensions Fqj over Fq with j relatively prime to `(` − 1).

The field extension f : Fq → F̃q induces isomorphisms f∗ : H∗∗(Fq) → H∗∗(F̃q) and

f∗ : A∗∗(Fq)→ A∗∗(F̃q).

Proof. This follows by a colimit argument, using proposition 3.19.

Proposition 3.21. Let q be a prime power and suppose ` is relatively prime to q. For a

field extension f : Fq → Fqj where ` | j, the map f∗ : H1,∗(Fq)→ H1,∗(Fqj ) is trivial and

f∗ : H0,∗(Fq)→ H0,∗(Fqj ) is injective.

Proof. We follow the argument given for proposition 3.19. Let i be the order of q in

F×` . The map µ`(Fqi) → µ`(Fqij ) is injective, so all that remains is to identify the

map F×
qi
/F× `

qi
→ F×

qij
/F× `

qij
. Let α ∈ F×

qi
be a generator of F×

qi
/F× `

qi
. Then since ` | j,

the extension Fqi → Fqij factors through the splitting field of x` − α over Fqi , so that

√̀
α ∈ Fqij . It now follows that the map F×

qi
/F× `

qi
→ F×

qij
/F× `

qij
is trivial.

Corollary 3.22. Let Fq be a finite field with algebraic closure f : Fq → Fp and let ` be

a prime different from p. Then f∗ : H1,∗(Fq) → H1,∗(Fp) is trivial and f∗ : H0,∗(Fq) →

H0,∗(Fp) is injective.
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Chapter 4

Motivic Adams spectral sequence

The motivic Adams spectral sequence over a base scheme S may be defined using the

appropriate notion of an Adams resolution, see [Ada95, Swi75, Rav86] for treatments in

the topological case. We recount the definition for completeness and establish some basic

properties of the motivic Adams spectral sequence under base change. We follow Dugger

and Isaksen [DI10, §3] for the definition of the motivic Adams spectral sequence. See

also [HKO11, §6].

Let p and ` be distinct primes and let q = pn for some integer n ≥ 1. We will be

interested in the specific case of the motivic Adams spectral sequence over a field and

over a Hensel discrete valuation ring with residue field of characteristic p. We write H

for the spectrum HZ/` over the base scheme S and H∗∗(S) for the motivic cohomology

of S with Z/` coefficients. The spectrum H is a ring spectrum and is cellular in the sense

of Dugger and Isaksen [DI05] by [Spi13, 11.4].

4.1 Construction of the mod ` motivic Adams spectral sequence

Definition 4.1. Consider a spectrum X over the base scheme S and let H denote the

spectrum in the cofibration sequence H → 1 → H → ΣH. The standard H-Adams

resolution of X is the tower of cofibration sequences Xf+1 → Xf → Wf given by Xf =

H
∧f ∧X and Wf = H ∧Xf [Ada95, §15].

X0 = X

j0 %%

H ∧Xi1oo

j1 &&

H ∧H ∧Xi2oo · · ·oo

H ∧X

•
∂0

99

H ∧H ∧X

•
∂1

77

Definition 4.2. Let X be a T -spectrum over S and let {Xf ,Wf} be the standard H-

Adams resolution of X. The motivic Adams spectral sequence for X with respect to H is
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the spectral sequence determined by the following exact couple.

⊕π∗∗Xf
i∗ // ⊕π∗∗Xf

j∗xx
⊕π∗∗Wf

∂∗

ff

The E1 term of the motivic Adams spectral sequence is E
f,(s,w)
1 = πs,wWf . The index f

is called the Adams filtration, s is the stem, and w is the motivic weight. The Adams

filtration of π∗∗X is given by Fiπ∗∗X = im(π∗∗Xi → π∗∗X).

Proposition 4.3. Let S denote the category of spectral sequences in the category of

Abelian groups. The associated spectral sequence to the standard H-Adams resolution

defines a functor M : SHS → S. Furthermore, the motivic Adams spectral sequence is

natural with respect to base change.

Proof. The construction of the standard H-Adams resolution is functorial because SHS

is symmetric monoidal. Given X → X ′ we get induced maps of standard H-Adams

resolutions {Xf ,Wf} → {X ′f ,W ′f}. As π∗∗(−) is a triangulated functor, we get an induced

map of the associated exact couples, and hence of spectral sequences M(X)→M(X ′).

Let f : R → S be a map of base schemes. The claim is that there is a natu-

ral transformation between M : SHS → S and M ◦ Lf∗ : SHS → SHR → S. Let

X ∈ SHS and let {Xf ,Wf} be the standard HS-Adams resolution of X in SHS . We

may as well assume X is cofibrant, so QX = X where Q is the cofibrant replacement

functor. Let {X ′f ,W ′f} denote the standard HR-Adams resolution of Lf∗X = f∗X.

Observe that {f∗Xf , f
∗Wf} = {X ′f ,W ′f}, since f∗1 = 1, f∗HS = HR, and Lf∗ is a

monoidal functor. We therefore have a map {Lf∗Xf ,Lf∗Wf} → {X ′f ,W ′f}. Applying

Lf∗ : SHS(Σs,w
1,−) → SHR(Σs,w

1,Lf∗−) to {Xf ,Wf} gives a map of exact couples,

and therefore a map ΦX : MS(X) → MR(Lf∗X). It is straightforward to verify that Φ

determines a natural transformation.

Corollary 4.4. For a map of base schemes f : R→ S, there is a map of motivic Adams

spectral sequences Φ : MS(1)→MR(1). The map Φ is furthermore compatible with the

induced map π∗∗(S)→ π∗∗(R).
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4.2 The E2 page of the motivic Adams spectral sequence

We now turn our attention to the identification of the second page of the motivic Adams

spectral sequence. The arguments in topology, which can be found in [Ada95, Swi75],

largely translate to the motivic setting with some modifications. The arguments given by

Hu, Kriz, and Ormsby in [HKO11] and Dugger and Isaksen in [DI10, §7] go through in

the case where the base scheme S is the Zariski spectrum of a Dedekind domain by the

work of Spitzweck [Spi13]. There are two different approaches to identify the E2 page of

the motivic Adams spectral sequence: homological and cohomological. The homological

approach uses the structure of the Hopf algebroid of mod ` homology cooperations and the

methods turn out to be useful in greater generality. The cohomological approach uses the

structure of the mod ` Steenrod algebra and is more amenable to machine calculations.

Definition 4.5. A particularly well behaved family of spectra in SHS are the cellular

spectra in the sense of [DI05, 2.10]. A spectrum E ∈ SHS is cellular if it can be con-

structed out of the spheres Σ∞Sa,b for any integers a and b by homotopy colimits. A

cellular spectrum is of finite type if for some k it has a cell decomposition with no cells

Sa,b for a− b < k and at most finitely many cells Sa,b for any a and b [HKO11, §2].

Proposition 4.6. Suppose X is a cellular spectrum over the base scheme S. The motivic

Adams spectral sequence for X has E2 page given by

E
f,(s,w)
2

∼= Ext
f,(s+f,w)
A∗∗(S) (H∗∗S,H∗∗X).

with differentials dr : E
f,(s,w)
r → E

f+r,(s−1,w)
r for r ≥ 2. Here Ext is taken in the category

of A∗∗-comodules.

See [Ada95,Swi75,Rav86] for details on the homological algebra of comodules.

Proof. The argument given for [DI10, 7.10] goes through given that H is a cellular spec-

trum, as was proven in [Spi13, 11.4]. The cellularity of X and H is sufficient to ensure

that the Künneth theorem holds, which is needed in the argument.

Corollary 4.7. If X and X ′ are cellular spectra over S and X → X ′ induces an iso-

morphism H∗∗X → H∗∗X
′, then the induced map M(X)→M(X ′) is an isomorphism of
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spectral sequences from the E2 page onwards.

Corollary 4.8. Let f : R → S be a map of base schemes, and consider a cellular

spectrum X over S. Suppose f∗ : H∗∗(S) → H∗∗(R), f∗ : A∗∗(S) → A∗∗(R), and

f∗ : H∗∗X → H∗∗(Lf∗X) are all isomorphisms. Then MS(X) → MR(Lf∗X) is an

isomorphism of spectral sequences from the E2 page onwards.

Corollary 4.9. Let D be a Hensel local ring in which ` is invertible and write F for the

residue field of D. Then the comparison map M(D) → M(F ) is an isomorphism at the

E2 page.

Proof. Propositions 3.15, 3.5, and corollary 4.8 give the result when X = 1.

The argument for proposition 4.6 is based on the construction of the reduced cobar

resolution of H∗∗X. From the standard H-Adams resolution {Xf ,Wf} of X, we extract

the following sequence

X → H ∧X → ΣH ∧H ∧X → Σ2,0H ∧H∧2 ∧X → · · · . (4.10)

Applying H∗∗(−) to this sequence yields the reduced cobar resolution of H∗∗X

H∗∗X → A∗∗ ⊗H∗∗X → A∗∗ ⊗A∗∗ ⊗H∗∗X → · · · (4.11)

where A∗∗ = H∗∗H is the kernel of the augmentation map ε : A∗∗ → H∗∗, and the tensor

products are taken over H∗∗. Here one must take care to distinguish the left and right

module actions of H∗∗ on A∗∗ and A∗∗!

The complex obtained from (4.11) by applying HomA∗∗(H∗∗,−) is called the reduced

cobar complex, and its homology gives the E2 page of the Adams spectral sequence by a

standard argument, which we outline. Note that applying π∗∗(−) to (4.10) yields the E1

term of the motivic Adams spectral sequence. The Hurewicz map

π∗∗(H ∧H
∧f ∧X) ∼= HomA∗∗(H∗∗, H∗∗(H ∧H

∧f ∧X)),

is an isomorphism since H∗∗(H ∧H
∧f ∧X) is an extended A∗∗-comodule, and the map

HomA∗∗(H∗∗, H∗∗(H ∧H
∧f ∧X))→ HomA∗∗(H∗∗, H∗∗(H ∧H

∧f+1 ∧X))

agrees with d1 in the motivic Adams spectral sequence; see [DI10, 7.10], [Ada95, p. 323],
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[Swi75, p. 469]. When the left and right units of the Hopf algebroid (H∗∗(S),A∗∗(S)) do

not agree, the reduced cobar complex is difficult to use for practical calculations. However,

the (unreduced) cobar complex takes a simpler form in this case.

Definition 4.12. Let S be a base scheme, and let (H∗∗,A∗∗) denote the Hopf algebroid

for mod ` motivic homology over S. The cobar complex is the chain complex (C∗(S), dC)

with terms Cs(S) = H∗∗⊗H∗∗A⊗s∗∗ . The standard notation for an element α⊗x1⊗· · ·⊗xs

in Cs(S) is α[x1| · · · |xs]. The map dsC sends the element α[x1| · · · |xs] to

[ηR(α)|x1| · · · |xs] +
s∑
i=1

(−1)sα[x1| · · · |∆(xi)| · · · |xs] + (−1)s+1α[x1| · · · |xs|1].

When s = 0, the map d0
C , given by α[ ] 7→ [ηR(α)] − [α], can be identified with ηR − ηL.

The juxtaposition product of x0[x1| · · · |xs] ∈ Cs(S) and y0[y1| · · · |xt] ∈ Ct(S) is given by

x0[x1| · · · |xs] ∗ y0[y1| · · · |yt] = x0[x1| · · · |xs|y0y1| · · · |yt].

We now turn our attention to the cohomological approach.

Definition 4.13. Let X be a T -spectrum over S. An H∗∗-Adams resolution of X is a

tower of cofibration sequences Xf+1 → Xf → Wf in SHS of the following form. Each

spectrum Wf has a description Wf
∼= ∨αΣpα,qαH where the set of indices {(pα, qα)}

is motivically finite (see definition 3.16), and the induced map H∗∗Wf → H∗∗Xf is a

surjection.

X0 = X

j0 $$

X1
i1oo

j1 !!

X2
i2oo · · ·oo

W0

•
∂0

==

W1

•
∂1

==

Proposition 4.14. Let X be a cellular spectrum over S, and suppose H∗∗(X) is a

motivically finite free H∗∗-module. The standard H-Adams resolution of X (see definition

4.1) is an H∗∗-Adams resolution.

Proof. The conditions on X ensure that for any f the spectrum Wf is a motivically finite

wedge of suspensions of H. Furthermore, the map jf : Xf → H ∧ Xf = Wf induces a

surjection j∗f : H∗∗Wf → H∗∗Xf , since if x : Xf → H represents a class in H∗∗Xf , the

class in H∗∗Wf represented by H ∧Xf
H∧x−−−→ H ∧H µ−→ H maps to x under j∗f .
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Proposition 4.15. Suppose X ∈ SHS satisfies the hypotheses of proposition 4.14. The

motivic Adams spectral sequence for X has E2 page given by

E
f,(s,w)
2

∼= Ext
f,(s+f,w)
A∗∗(S) (H∗∗X,H∗∗S)

with differentials dr : E
f,(s,w)
r → E

f+r,(s−1,w)
r for r ≥ 2. Here Ext is calculated in the

category of left modules over the Steenrod algebra A∗∗.

Proof. The usual argument given in the topological situation goes through. The cellularity

of X and H, and consequently of Wf and Xf , allow one to use the Künneth theorem to

calculate π∗∗(Wf ) and H∗∗(Wf ). As each Wf is a motivically finite cell spectrum, there

is an isomorphism π∗∗(Wf ) ∼= HomA∗∗(H
∗∗(Wf ), H∗∗). For further details, consult the

treatment in [Rav86, §2.1].

4.3 Convergence of the motivic Adams spectral sequence

To simplify the notation, write Ext(R) for ExtA∗∗(R)(H
∗∗(R), H∗∗(R)) when working over

the base scheme S = Spec(R). For any Abelian group G and any prime `, we write G(`)

for the `-primary part of G and G∧` = lim←−G/`
ν for the `-completion of G.

Definition 4.16. Let ` be a prime and X a spectrum over S. The `-completion of X is

the homotopy limit X∧` = holimX/`ν . For H the mod ` motivic cohomology spectrum

and {Xf ,Wf} the standard H-Adams resolution of X, the H-nilpotent completion of X is

the spectrum X∧H = holimf X/Xf [Bou79, §5]. The H-nilpotent completion has a tower

given by Ci = holimf (Xi/Xf ).

Recall that the homotopy limit of an inverse system of spectra (Xν , gν) may be defined

as the homotopy fiber of
∏
ν Xν

id−G−−−→
∏
Xν where Gν is the composition

∏
Xν → Xν

gν−→

Xν−1; see [Bou79, 1.8], [Ada95, §15].

Proposition 4.17. Let S be the Zariski spectrum of a field F with characteristic p 6= `,

and let X be a cellular spectrum X over S of finite type (definition 4.5). If either

` > 2 and F has finite mod ` cohomological dimension, or ` = 2 and F [
√
−1] has finite

mod 2 cohomological dimension, the motivic Adams spectral sequence converges to the
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homotopy groups of the H-nilpotent completion of X

E
f,(s,w)
2 ⇒ πs,w(X∧H).

Furthermore, there is a weak equivalence X∧H
∼= X∧` .

Proof. The argument given in [HKO11] carries over to the positive characteristic case

from the work of [HKØ13]. See [OØ14, 3.1] for the analogous argument for the motivic

Adams-Novikov spectral sequence.

We say a line s = mf + b in the (f, s)-plane is a vanishing line for a bigraded group

Gf,s if Gf,s is zero whenever 0 < s < mf + b.

Proposition 4.18. If F is an algebraically closed field of characteristic p 6= `, then a

vanishing line for Ext∗∗(F ) ∼= Ext∗∗(W (F )) at the prime ` is s = (2` − 3)f . If Fq is a

finite field of characteristic p 6= `, then a vanishing line for Ext∗∗(Fq) ∼= Ext∗∗(W (Fq)) at

the prime ` is s = (2`− 3)f − 1.

Proof. A vanishing line exists for Ext(F ) ∼= Ext(W (F )) when F is an algebraically closed

fields by comparison with C and the topological case [DI10]. The vanishing line s =

f(2`− 3) from topology [Ada61] is therefore a vanishing line for Ext(F ) ∼= Ext(W (F )).

For a finite field Fq, the line s = f(2` − 3) − 1 is a vanishing line for Ext(Fq) ∼=

Ext(W (Fq)) by the identification of the E2 page of the motivic Adams spectral sequence

given in sections 7.1 and 6.1 below.

We now discuss the convergence of the motivic Adams spectral sequence over the ring

of Witt vectors associated to a finite field or an algebraically closed field.

Proposition 4.19. Let W (F ) be the ring of Witt vectors of a field F that is either a finite

field or an algebraically closed field of characteristic p and let ` be a prime different from

p. The motivic Adams spectral sequence for 1 over W (F ) converges to π∗∗(1
∧
H) filtered by

the Adams filtration, where 1∧H is the H-nilpotent completion of 1 (see definition 4.16).

Proof. The convergence MW (F )(1) ⇒ π∗∗(1
∧
H) follows by the argument given for [DI10,

7.15] given the vanishing line in the motivic Adams spectral sequence by proposition

4.18.
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Proposition 4.20. Let R and S be base schemes for which the motivic Adams spectral

sequence for 1 converges to π∗∗(1
∧
H); see propositions 4.17 and 4.19 for examples. A

map of base schemes f : R → S yields a comparison map MS(1∧H) → MR(1∧H) which is

compatible with the induced map π∗∗(1
∧
H(S))→ π∗∗(Lf∗1∧H(S))→ π∗∗(1

∧
H(R)).

Proof. Let {Xf (S),Wf (S)} denote the standard H-Adams resolution of 1 over S. We now

construct a map π∗∗(1
∧
H(S))→ π∗∗(1

∧
H(R)). Recall from proposition 4.3 that f∗Xf (S) =

Xf (R). Since Lf∗ is a triangulated functor, there are maps Lf∗(1/Xf (S))→ 1/Xf (R),

and so a map Lf∗1∧H(S)→ 1
∧
H(R) by the universal property for 1∧H(R) = holim1/Xf (R).

Let Ci(S) denote the tower for 1∧H(S) over S defined in 4.16. Similar considerations give

a map of towers Lf∗Ci(S) → Ci(R). Hence MS(1∧H) → MR(1∧H) is compatible with the

induced map π∗∗(1
∧
H(S))→ π∗∗(1

∧
H(R)).

Proposition 4.21. Let F be a field of characteristic p with finite mod ` cohomological

dimension for all primes ` 6= p. Suppose the mod ` motivic Adams spectral sequence for

1 over F has a vanishing line, such as when F is a finite field or an algebraically closed

field. Then the `-primary part of πs,w(F ) is finite whenever s > w ≥ 0.

Proof. Ananyevsky, Levine, and Panin show that the groups πs,w(F ) are torsion for s >

w ≥ 0 in [ALP15]. It follows that the group πs,w(F ) is the sum of its `-primary subgroups

πs,w(F )(`). We set out to show that πs,w(F )(`) is finite when ` 6= p.

The motivic Adams spectral sequence converges to π∗∗(1
∧
` ) by proposition 4.17. The

vanishing line in the motivic Adams spectral sequence shows that the Adams filtration of

πs,w(1∧` ) has finite length, and as each group E
f,(s,w)
2 is a finite dimensional F`-vector space

we conclude the groups πs,w(1∧` ) are finite. From the long exact sequence of homotopy

groups associated to the triangle 1
∧
` →

∏
1/`ν →

∏
1/`ν defining 1

∧
` , we extract the

following short exact sequence of finite groups.

0→ lim←−
1 πs+1,w(1/`ν)→ πs,w(1∧` )→ lim←−πs,w(1/`ν)→ 0 (4.22)

Similarly, from the triangles 1
`ν ·−−→ 1→ 1/`ν we extract the short exact sequences

0→ πs,w(1)/`ν → πs,w(1/`ν)→ `νπs−1,w(1)→ 0,
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which form a short exact sequence of towers. The maps in the tower {πs,w(1)/`ν} are

given by the reduction maps πs,w(1)/`ν → πs,w(1)/`ν−1. Since the tower {πs,w(1)/`ν}

satisfies the Mittag-Leffler condition, we have lim←−
1 πs,w(1)/`ν = 0. The associated long

exact sequence for the inverse limit gives the short exact sequence

0→ πs,w(1)∧` → lim←−πs,w(1/`ν)→ lim←− `νπs−1,w(1)→ 0. (4.23)

The group lim←− `νπs−1,w(1) is the `-adic Tate module of πs−1,w(1), which is torsion-free.

Since lim←−πs,w(1/`ν) is finite by (4.22), the map lim←−πs,w(1/`ν)→ lim←− `νπs−1,w(1) is trivial.

But since the sequence (4.23) is exact, the group lim←− `νπs−1,w(1) is trivial, πs,w(1)∧`
∼=

lim←−πs,w(1/`ν), and πs,w(1)∧` is finite.

Write K(i) for the kernel of the canonical map πs,w(1)∧` → πs,w(1)/`i. The tower

· · ·K(i) ⊆ K(i− 1) ⊆ · · · ⊆ K(1) consists of finite groups and so it must stabilize. Hence

the tower

· · · → πs,w(1)/`ν → πs,w(1)/`ν−1 → · · · → πs,w(1)/`

must also stabilize. There is then some N for which `Nπs,w(1) = `νπs,w(1) for all ν ≥ N ,

and so `Nπs,w(1) is `-divisible. From the short exact sequence of towers `νπs,w(1) →

πs,w(1)→ πs,w(1)/`ν , taking the inverse limit yields the exact sequence

0→ `Nπs,w(1)→ πs,w(1)→ πs,w(1)∧` → 0.

Since πs,w(1)∧` is finite it is `-primary, and there is a short exact sequence

0→ `Nπs,w(1)(`) → πs,w(1)(`) → πs,w(1)∧` → 0.

The group `Nπs,w(1)(`) must be zero. Suppose for a contradiction that it is non-zero.

Then `Nπs,w(1)(`) must contain Z/`∞ as a summand, which shows the `-adic Tate module

of πs,w(1) is non-zero—a contradiction.

We now identify the groups πs,s(1
∧
` ) for s ≥ 0.

Proposition 4.24. Let F be a finite field or an algebraically closed field of characteristic

p 6= `. When s = w ≥ 0, the motivic Adams spectral sequence of 1 over F converges to

the `-completion of πs,w(F ).

Proof. From proposition 4.17 it follows that at bidegree (s, w) = (s, s) the motivic Adams
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spectral sequence converges to the group πs,w(1∧` ). Since πs−1,s(1) = 0 by Morel’s con-

nectivity theorem, the short exact sequence (see [HKO11, (2)])

0→ Ext(Z/`∞, πs,s(1))→ πs,s(1
∧
` )→ Hom(Z/`∞, πs−1,s(1))→ 0

gives an isomorphism Ext(Z/`∞, πs,s(1)) ∼= πs,s(1
∧
` ). In [Mor12, 1.25], Morel has calcu-

lated π0,0(F ) ∼= GW (F ) and πs,s(F ) ∼= W (F ) for s > 0 where W (F ) is the Witt group of

the field F . For the fields under consideration, GW (F ) and W (F ) is a finitely generated

Abelian group. But for any finitely generated Abelian group A, there is an isomorphism

Ext(Z/`∞, A) ∼= A∧` [BK72, Ch.VI§2.1], which concludes the proof.
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Chapter 5

Stable stems over algebraically closed fields

Let F be an algebraically closed field of positive characteristic p. We write W = W (F ) for

the ring of Witt vectors of F , K = K(F ) for the field of fractions of W , and K = K(F ) for

the algebraic closure of K. Note that K is a field of characteristic 0. The previous sections

have set us up with enough machinery to compare the motivic Adams spectral sequences

at a prime ` 6= p over the associated base schemes Spec(F ), Spec(W ), and Spec(K). We

will often write the ring instead of the Zariski spectrum of the ring in our notation. For any

Dedekind domain R, we write Ext(R) for the trigraded ring ExtA∗∗(R)(H
∗∗(R), H∗∗(R)).

Proposition 5.1. Let F be an algebraically closed field of positive characteristic p, and

let ` be a prime different from p. The E2 page of the mod ` motivic Adams spectral

sequence for 1 over W , the ring of Witt vectors of F , is given by

E
f,(s,w)
2 (W ) ∼= Extf,(s+f,w)(W ) ∼= Extf,(s+f,w)(F ).

Proof. Since W is a Hensel local ring with residue field F , proposition 4.9 applies.

Proposition 5.2. Let F be an algebraically closed field of characteristic p. The homo-

morphism f : W → K induces isomorphisms of graded rings f∗ : H∗∗(W )→ H∗∗(K) and

f∗ : A∗∗(W )→ A∗∗(K).

Proof. It is sufficient to establish isomorphisms for motivic cohomology, as H∗∗(S) ∼=

H−∗,−∗(S). Since H∗∗(W ) ∼= H∗∗(Fp), we have H∗∗(W ) ∼= F`[ζ] where ζ ∈ H0,1(W ) ∼=

µ`(W ). We also have H∗∗(K) ∼= F`[ζ]. To identify the ring map f∗ : H∗∗(W )→ H∗∗(R)

it suffices to identify the value of f∗(ζ). The homomorphism f∗ : H0,1(W ) → H0,1(K)

may be identified with µ`(W )→ µ`(K), which is an isomorphism. Hence f∗ : H∗∗(W )→

H∗∗(K) is an isomorphism. The argument given for proposition 3.15 establishes that

j∗ : A∗∗(W )→ A∗∗(K) is an isomorphism.
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Corollary 5.3. Let F be an algebraically closed field of characteristic p. The homomor-

phisms W → K and W → F induce isomorphisms of motivic Adams spectral sequences

for 1 from the E2 page onwards. In particular, Ext(F ) ∼= Ext(W ) ∼= Ext(K).

Lemma 5.4. Let f : k → K be an extension of algebraically closed fields of characteristic

0. For all s ≥ w ≥ 0, base change induces an isomorphism πs,w(k)→ πs,w(K).

Proof. Let ` be a prime. The maps f∗ : H∗∗(k) → H∗∗(K) and f∗ : A∗∗(k) → A∗∗(K)

are isomorphisms, hence the induced map of cobar complexes C∗(k)
f∗−→ C∗(K) is an

isomorphism. It follows that the map Mk(1) → MK(1) is an isomorphism from the E2

page onwards. The homomorphism Lf∗ : π∗∗(1
∧
H)→ π∗∗(1

∧
H) is therefore an isomorphism

since it is compatible with the map of spectral sequences. Propositions 4.21 and 4.24

identify πs,w(1∧H) with πs,w(1)∧` for all s ≥ w ≥ 0 over both k and K. By [ALP15], the

groups πs,w(k) and πs,w(K) are torsion for s > w ≥ 0 and so they are the sum of their

`-primary parts. This establishes the result for s > w ≥ 0. When s = w ≥ 0, the result

follows by proposition 4.24 and Morel’s identification of the groups πn,n(F ).

Corollary 5.5. Let K be an algebraically closed field of characteristic 0. For any n ≥ 0,

the map Lc : πsn → πn,0(K) is an isomorphism.

Proof. The statement is true when K = C. The previous proposition extends the result

to an arbitrary algebraically closed field of characteristic 0.

Theorem 5.6. Let F be an algebraically closed field of characteristic p and let ` be

a prime different from p. Then there is an isomorphism πs,w(F )∧`
∼= πs,w(C)∧` for all

s ≥ w ≥ 0.

Proof. Consider the homomorphisms F ← W → K. The induced maps on the motivic

Adams spectral sequence are compatible with the maps of homotopy groups

π∗∗(1
∧
H(F ))← π∗∗(1

∧
H(W ))→ π∗∗(1

∧
H(K))

By corollary 5.3, the maps MF (1) ← MW (1) → MK(1) are isomorphisms at the E2

page, and so there are isomorphisms π∗∗(1
∧
H(F )) ∼= π∗∗(1

∧
H(W )) ∼= π∗∗(1

∧
H(K)). For
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s ≥ w ≥ 0, propositions 4.21 and 4.24 give isomorphisms πs,w(1∧H(F )) ∼= πs,w(F )∧` and

πs,w(1∧H(K)) ∼= πs,w(K)∧` . The result now follows from lemma 5.4.

Corollary 5.7. Let F be an algebraically closed field of characteristic p and let ` be a

prime different from p. The homomorphism Lc : (πsn)∧` → πn,0(F )∧` is an isomorphism for

all n ≥ 0.

Proof. The previous theorem yields the following diagram for all n ≥ 0.

(πsn)∧`
∼=
Lc

&&

Lc

&&

Lc

""

πn,0(1∧H(W ))
∼= //

∼=
��

πn,0(K)∧`

πn,0(F )∧`

The map Lc : (πsn)∧` → πn,0(K)∧` is an isomorphism by corollary 5.5, and so all of the

maps in the above diagram are isomorphisms.

Let tC : SHC → SH denote the topological realization functor defined in [MV99,

Dug01]. For a prime ` > 2, we consider F` as a module over the polynomial ring F`[ζ]

where ζ ∈ H0,1(F ) acts as the identity.

When it is clear from context, we will write M(F ) for the mod ` motivic Adams

spectral sequence for the sphere spectrum over Spec(F ) instead of MF (1). For a prime p

and ` 6= p, we establish an isomorphism M(Fp) ∼= M(C). When ` = 2, this isomorphism

shows that the differential calculations for M(C) by Isaksen in [Isa14b] also hold for

M(Fp).

Proposition 5.8. Let ` be a prime and suppose p is a prime different from `. There

is an isomorphism M(Fp) ∼= M(C) from the E2 page onwards, hence the E2 page of the

motivic Adams spectral sequence over Fp is given by E
f,(s,w)
2 (Fp) ∼= Extf,(s+f,w)(C).

When ` is odd, Ext(C) takes the form

Ext(C) ∼= F`[ζ]⊗F` ExtAtop∗ (F`,F`).

Write A for the mod ` Adams spectral sequence for the sphere spectrum in topology.
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Topological realization induces an isomorphism of spectral sequences

M(C)⊗F`[ζ] F` → A.

The differentials in M(C) are determined by dr(ζ
j) = 0 for all r ≥ 2 and all j, and for

any x ∈ Er(C) the differential dr(x) is zero if and only if dr(tC(x)) is zero in A.

Proof. The proof of proposition 5.6 shows that for distinct primes ` and p there are

isomorphisms of mod ` motivic Adams spectral sequences M(Fp) ∼= M(C). At the prime

` = 2, the differentials in M(C) are analyzed in [DI10, Isa14b].

Let ` be an odd prime. We calculate Ext(C) using the cobar complex for A∗∗(C)

and Atop∗ . Let C∗top denote the cobar complex for the Hopf algebra (F`,Atop∗ ) defined

in [Rav86, A1.2.11], (see also 4.12). Recall from section 3.4 that Atop∗ has a bigrading

by assigning the appropriate weights to the generators τj and ξj . Since A∗∗(C) is the

Hopf algebra A∗∗(C) ∼= F`[ζ]⊗Atop∗ , there is an isomorphism of cobar complexes C∗(C) ∼=

F`[ζ]⊗C∗top. The universal coefficient theorem then establishes the isomorphism Ext(C) ∼=

F`[ζ]⊗ ExtAtop∗ (F`,F`).

Topological realization induces a map from the motivic Adams spectral sequence over

C to the topological Adams spectral sequence as pointed out by Dugger and Isaksen

in [DI10, §3.2]. Voevodksy proved in [Voe10, §3.4] that H∗∗(C)
tC−→ H∗top sends ζ to 1 and

induces an isomorphism H∗∗(C)⊗F`[ζ]F` → H∗top. Furthermore, the topological realization

A∗∗(C)
tC−→ A∗top factors through the isomorphism A∗∗⊗F`[ζ]F` → A

∗
top. We obtain similar

results for the topological realization of H∗∗(C) and A∗∗(C) by dualizing. The map of

cobar complexes C∗(C)→ C∗top induced by topological realization is determined by ζ 7→ 1,

τj 7→ τj and ξj 7→ ξj . But we then have a map of spectral sequences M(C)⊗F`[ζ] F` → A

which is an isomorphism at the E2 page.

We conclude this section with some remarks about the effect of base change between

finite fields on the motivic Adams spectral sequence, and how the results of this section

can be used in the analysis of the motivic Adams spectral sequence over finite fields.

Proposition 5.9. Let q be a prime power which is relatively prime to `. If j is relatively

prime to `(` − 1), the induced map M(Fq) → M(Fqi) is an isomorphism of spectral
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sequences from the E2 page onwards.

Proof. This follows from proposition 3.19 and corollary 4.8.

Proposition 5.10. Let Fq be a finite field and let ` be a prime different from the charac-

teristic of Fq. Write F̃q for the union of the field extensions Fqj over Fq with j relatively

prime to `(` − 1). The map M(Fq) → M(F̃q) is an isomorphism of spectral sequences

from the E2 page onwards.

Proof. This follows from proposition 3.20 and corollary 4.8.

Corollary 5.11. For a finite field Fq of characteristic p, the comparison map Lf∗ :

πi,j(Fq)[1
p ]→ πi,j(F̃q)[1

p ] is an isomorphism.

The next proposition enables differentials in M(Fq) to be inferred from the known

differential calculations in M(Fp) ∼= M(C). See 3.3 for the definition of u, ρ, and γ. We

remark that over any finite field the class u is defined to always be non-trivial.

Proposition 5.12. Let Fq be a finite field with algebraic closure Fp, and consider a prime

` 6= p. The class u ∈ Ext(Fq) maps to 0 in Ext(Fp), whereas any class x ∈ Ext(Fq) which

is not divisible by u maps to a non-zero class in Ext(Fp).

Proof. The induced map on the cobar complex C(Fq) → C(Fp) kills u, and induces an

injection C(Fq)/uC(Fq) → C(Fp) by proposition 3.21. The result now follows from the

calculation of Ext(Fq) given in sections 6.1 and 7.1 below.

Proposition 5.13. Let ` be a prime different from the characteristic of Fq. For n > 0,

the map Lc : (πsn)∧` → πn,0(Fq)∧` injects as a direct summand.

Proof. The map Lc : (πsn)∧` → πn,0(Fp)∧` is an isomorphism by proposition 5.6 and factors

through Lc : (πsn)∧` → πn,0(Fq)∧` . Hence (πsn)∧` → πn,0(Fq)∧` must be injective and the

comparison πn,0(Fq)∧` → πn,0(Fp)∧` gives a splitting.
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Chapter 6

The motivic Adams spectral sequence for finite fields Fq
with trivial Bockstein action

Throughout this chapter, we assume the Bockstein acts trivially on H∗∗(Fq). That is, at

the prime ` = 2 we assume q ≡ 1 mod 4. At the prime ` > 2, consider a prime power q

which is relatively prime to ` and write i for the order of q in F`. Then the action of the

Bockstein on H∗∗(Fq) is trivial if and only if qi ≡ 1 mod `2.

6.1 The E2 page of the mod ` motivic Adams spectral sequence

We will make frequent use of the structure of H∗∗(Fq;Z/`) which was determined in

proposition 3.4. For a field F , we write Ext(F ) for ExtA∗∗(F )(H
∗∗(F ), H∗∗(F )). Let

Atop∗ denote the mod ` dual Steenrod algebra of topology. We declare the weight of the

elements τj and ξj in Atop∗ to be `j − 1, so that Atop∗ is bigraded.

Proposition 6.1. The E2 page of the mod 2 motivic Adams spectral sequence for the

sphere spectrum over Fq with q ≡ 1 mod 4 is the trigraded algebra

E2
∼= Ext(Fq) ∼= F2[τ, u]/(u2)⊗F2[τ ] Ext(Fp).

For ` > 2 the E2 page of the mod ` motivic Adams spectral sequence for Fq when

qi ≡ 1 mod `2 is the trigraded algebra

E2
∼= Ext(Fq) ∼= F`[ζ, u]/(u2)⊗F` ExtAtop∗ (F`,F`).

Proof. We prove the proposition in the case ` = 2, since the proof for ` > 2 is similar.

Consult [DI10, 3.5] for a similar argument. Recall from proposition 3.8 that A∗∗(Fq) ∼=

A∗∗(Fp)⊗F2[τ ] F2[τ, u]/(u2) and H∗∗(Fq) ∼= H∗∗(Fp)⊗ F2[τ, u]/(u2). Since F2[τ, u]/(u2) is

flat as a module over F2[τ ], a free resolution H∗∗(Fp) ← P • determines a free resolution
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H∗∗(Fq)← P • ⊗ F2[τ, u]/(u2).

For a field F , consider the functor HomA∗∗(−, H∗∗) of motivically finitely generated

bigraded modules over A∗∗(F ). The canonical map

HomA∗∗(Fp)(−, H
∗∗(Fp))⊗ F2[τ, u]/(u2)→ HomA∗∗(Fq)(−⊗ F2[τ, u]/(u2), H∗∗(Fq)).

is a natural isomorphism, since a generating set for a module M over A∗∗(Fp) is also a

generating set for M ⊗ F2[τ, u]/(u2) over A∗∗(Fq) by proposition 3.8. We conclude that

Ext(Fp)⊗ F2[τ, u]/(u2) ∼= Ext(Fq).

Remark 6.2. In proposition 6.1 we must treat the case ` = 2 separately from the case

` > 2 for two reasons. First, when ` = 2 there is no isomorphism Atop∗ ⊗ F2[τ ] ∼= A∗∗(C)

because the relations for τ2
i in A∗∗(C) differ from those in Atop∗ by Voevodsky’s calculation

in [Voe03, 12.6] (compare with proposition 3.8). Second, when ` > 2 the generators ζ

and γ of H∗∗(Fq;Z/`) have weight i where i is the smallest positive integer for which

qi ≡ 1 mod `. But over Fp, the generator ζ ∈ H∗∗(Fp;Z/`) has weight 1. Hence if i > 1,

there is not a bigraded isomorphism between Ext(Fq) and F`[ζ, u]/(u2)⊗F`[ζ] Ext(Fp).

6.2 Differentials in the mod ` motivic Adams spectral sequence

We begin with the motivic Adams spectral sequence for X = HZ[1
p ] over a finite field

Fq of characteristic p, as defined in 4.2. In proposition 6.4 we identify the differentials

for MFq(HZ[1
p ]) which converges to π∗∗(HZ[1

p ]∧` ) ∼= H∗∗(Fq;Z)∧` . We accomplish this

by working backwards from our knowledge of H∗∗(Fq;Z)∧` by a calculation due to Soulé

[Sou79, IV.2].

Lemma 6.3. Let Fq be a finite field of characteristic p, and let ` be a prime different

from p. The spectrum HZ[1
p ] is cellular, and for H = HZ/`, the H-nilpotent completion

of HZ[1
p ] is weak equivalent to HZ∧` .

Proof. The spectrum HZ[1
p ] is cellular by the Hopkins-Morel theorem [Hoy15, §8.1]. We

show HZ∧` is weak equivalent to the H-nilpotent completion of HZ[1
p ] by showing that

the tower HZ/` ← HZ/`2 ← HZ/`3 ← · · · under HZ[1
p ] is an H-nilpotent resolution

under HZ[1
p ] (defined in [Bou79, 5.6]). It will then follow that the homotopy limit of this
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tower is weak equivalent to the H-nilpotent completion of HZ[1
p ], that is, HZ∧` ∼= HZ[1

p ]∧H ,

by the discussion in [DI10, §7.7] which shows Bousfield’s result [Bou79, 5.8] holds in the

motivic stable homotopy category.

The spectrum HZ[1
p ] is the homotopy colimit of the diagram HZ p·−→ HZ p·−→ · · · . From

the triangle HZ `ν ·−−→ HZ→ HZ/`ν we obtain a triangle HZ[1
p ]

`ν ·−−→ HZ[1
p ]→ HZ/`ν after

inverting p, since p 6= ` and HZ/`ν p·−→ HZ/`ν is a homotopy equivalence. Consider the

following cofibration sequence of towers.

HZ[1
p ]

=
��

HZ[1
p ]

`·oo

`·��

HZ[1
p ]

`·oo

`2·��

· · ·oo

HZ[1
p ]

��

HZ[1
p ]

=oo

��

HZ[1
p ]

=oo

��

· · ·oo

pt HZ/`oo HZ/`2oo · · ·oo

It is clear that HZ/`ν is H-nilpotent for all ν ≥ 1. For any H-nilpotent spectrum

N we show that the induced map colimν SHFq(HZ/`ν , N) → SHFq(HZ[1
p ], N) is an

isomorphism following the proof of [Bou79, 5.7]. This isomorphism holds if and only if

colim{SHFq(HZ[1
p ], N)

`·−→ SHFq(HZ[1
p ], N)} ∼= SHFq(HZ[1

p ], N)[1
` ]

vanishes for all H-nilpotent N . This follows by an inductive proof with the following

filtration of the H-nilpotent spectra given in [Bou79, 3.8]. Take C0 to be the collection

of spectra H ∧X for X any spectrum, and let Cm+1 be the collection of the spectra N

for which either N is a retract of an element of Cm or there is a triangle X → N → Z

with X and Z in Cm.

If N = H ∧X, it is clear that SHFq(HZ[1
p ], N)

`−→ SHFq(HZ[1
p ], N) is the zero map,

which establishes the base case. If the claim holds for N in filtration Cm, the claim holds

for N in filtration Cm+1 by a standard argument. The claim now follows.

Proposition 6.4. The mod 2 motivic Adams spectral sequence for X = HZ[1
p ] over Fq

when q ≡ 1 mod 4 has E1 page given by

E1
∼= F2[τ, u, h0]/(u2)

where h0 ∈ E1,(0,0)
1 . Write ν2 for the 2-adic valuation, and write ε(q) for ν2(q−1). For all

r ≥ 1 the differentials dr vanish on uτ j and hj0. If r < ε(q) + ν2(j) the differentials drτ
j
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vanish, and

dε(q)+ν2(j)τ
j = uτ j−1h

ε(q)+ν2(j)
0 .

In particular, the differential d1 is trivial, so E2
∼= E1.

For ` > 2, the mod ` motivic Adams spectral sequence for HZ[1
p ] over Fq with qi ≡

1 mod `2 has E1 page

E1
∼= F`[ζ, u, a0]/(u2)

where a0 ∈ E
1,(0,0)
1 . Note here that ζ ∈ E

0,(0,−i)
2 and u ∈ E

0,(1,−i)
2 . In this case, the

differentials are controlled by ε(q) = ν`(q
i − 1). For all r ≥ 1 the differentials dr vanish

on uζj and a0. If r < ε(q) + ν`(j) the differentials drζ
j vanish, and

dε(q)+ν`(j)ζ
j = uζj−1a

ε(q)+ν`(j)
0 .

In particular, the differential d1 is trivial, so E2
∼= E1.

Proof. We build the following H∗∗-Adams resolution of HZ[1
p ] utilizing the triangles con-

structed in 6.3.

HZ[1
p ]

j0 ##

HZ[1
p ]

`·oo

j1 ##

HZ[1
p ]

`·oo · · ·oo

HZ/`

•
∂0

;;

HZ/`

•
∂1

;;
(6.5)

The spectrum HZ[1
p ] is cellular, so the motivic Adams spectral sequence for X = HZ[1

p ]

converges to π∗∗(HZ[1
p ]∧H) by proposition 4.17. Lemma 6.3 shows that π∗∗(HZ[1

p ]∧H) ∼=

π∗∗(HZ∧` ), so the spectral sequence converges E
f,(s,w)
2 ⇒ H−s,−w(Fq;Z)∧` .

The groups H∗∗(Fq;Z)∧` were calculated by Soulé in [Sou79, IV.2].

H−s,−w(Fq;Z)∧`
∼=


Z` if s = w = 0

Z/(qj − 1)∧` if s = −1, w ≥ 1

0 otherwise.

(6.6)

Note that ν2(qj − 1) = ε(q) + ν2(j) for all natural numbers j. The formulas for the

differentials on τ j and ζj are the only choice to give H∗∗(Fq;Z)∧` as the E∞ term.

Corollary 6.7. Let Fq be a finite field of characteristic p, and let ` 6= p be a prime. The

unit map 1 → HZ[1
p ] induces a map of spectral sequences M(1) → M(HZ[1

p ]) over Fq
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which is surjective on the E2 page. The differentials calculated in proposition 6.4 hold in

the motivic Adams spectral sequence for 1 over Fq.

In addition to the above differential calculations, propositions 5.12 and 5.13 help iden-

tify differentials. Let Fq → Fp be an algebraic closure of Fq, and write Φ : M(Fq)→M(Fp)

for the induced map of spectral sequences. For x ∈ Er(Fq), we must have dr(Φ(x)) =

Φ(dr(x)). By proposition 5.8, we often know something about dr(Φ(x)), and can use this

to determine dr(x) ∈ Φ−1(dr(x)).

6.3 The prime 2

We now analyze the 2-complete stable stems π̂∗∗(Fq) = π∗∗(Fq)∧2 when q and 2 are rela-

tively prime and q ≡ 1 mod 4. The results of the previous sections allow us to identify the

nth classical 2-complete stable stem π̂sn = (πsn)∧2 as a summand of π̂n,0(Fq). Using this,

we are able to determine the E∞ page of the motivic Adams spectral sequence for Fq for

stems s ≤ 20. For the remainder of this section, let H denote the spectrum representing

motivic cohomology with Z/2 coefficients.

Proposition 6.1 shows that the irreducible elements of Ext(Fp) are also irreducible

elements of Ext(Fq) when q ≡ 1 mod 4. The only additional irreducible element in Ext(Fq)

is the class u. Table 6.1 gives the list of irreducible elements of Ext(Fq) up to stem s ≤ 21.

In this table, P is an operation of tridegree 4, (8, 4) defined on elements x ∈ Ext(Fq) which

satisfy h4
0x = 0 given by the Massey product P (x) = 〈h3, h

4
0, x〉. This table was obtained

by computer calculation and is consistent with [Isa14b, Table 8].

Elt. Filtr. (f, s, w)

u (0,−1,−1)
τ (0, 0,−1)
h0 (1, 0, 0)
h1 (1, 1, 1)
h2 (1, 3, 2)
h3 (1, 7, 4)

Elt. Filtr. (f, s, w)

c0 (3, 8, 5)
Ph1 (5, 9, 5)
Ph2 (5, 11, 6)
d0 (4, 14, 8)
h4 (1, 15, 8)
Pc0 (7, 16, 9)

Elt. Filtr. (f, s, w)

e0 (4, 17, 10)
P 2h1 (9, 17, 9)
f0 (4, 18, 10)
P 2h2 (9, 19, 10)
c1 (3, 19, 11)
[τg] (4, 20, 11)

Table 6.1: Irreducible elements in Ext(Fq) with stem s ≤ 21 for q ≡ 1 mod 4

We now begin an analysis of the differentials in the motivic Adams spectral sequence

in the range s ≤ 21 to identify the two-complete stable stems over Fq. To assist the reader
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with the computations presented below, figure 8.1 displays the E2 page and figures 8.2

and 8.3 display the E∞ page of the motivic Adams spectral sequence over Fq in the range

s ≤ 21 when q ≡ 1 mod 8 and q ≡ 5 mod 8.

Morel proved the stem π0,0(Fq) is isomorphic to the Grothendieck-Witt group GW (Fq)

in [Mor04] and Scharlau calculated GW (Fq) ∼= Z⊕Z/2 in [Sch85, Ch. 2, 3.3]. Recall that

there are isomorphisms πs0
∼= Z and πs1

∼= Z/2, so there is an isomorphism π0,0(Fq) ∼=

πs0⊕πs1. We show in proposition 6.8 that the pattern π̂n,0(Fq) ∼= π̂sn⊕ π̂sn+1 continues after

2-completion for small values of n ≥ 0. However, proposition 6.9 shows the pattern fails

when n = 19 and q ≡ 5 mod 8.

Proposition 6.8. When q ≡ 1 mod 4 and 0 ≤ n ≤ 18, there is an isomorphism π̂n,0(Fq) ∼=

π̂sn ⊕ π̂sn+1.

Proof. The irreducible elements of Ext(Fq) in this range are given in table 6.1. All

differentials dr for r ≥ 2 vanish on h0, h1, h3, c0, Ph1, d0, P c0, P
2h1 for degree reasons.

As π̂3,0(Fq) must contain π̂s3
∼= Z/8 as a summand by proposition 5.13, we conclude

d2(τ2h2) = τ2d2(h2) = 0. The only possible non-zero value for d2(h2) is uh3
1. If d2(h2) =

uh3
1, then d2(τ2h2) = uτ2h3

1 would be non-zero by the product structure of Ext(Fq) in

proposition 6.1—a contradiction. Hence d2(h2) = 0.

The non-zero Massey product Ph2 = 〈h3, h
4
0, h2〉 has no indeterminacy, because

h3E
4,(3,2)
2 + E

4,(7,4)
2 h2 = 0. Since π̂s11

∼= Z/8 is a summand of π̂11,0, the differential

d2Ph2 must vanish. The non-zero Massey product P 2h2 = 〈h3, h
4
0, h2〉 has no indetermi-

nacy, because h3E
8,(11,6)
2 + E

4,(7,4)
2 Ph2 = 0. Since d2Ph2 = 0, the topological result of

Moss [McC01, 9.42(2)] implies d2P
2h2 = 0.

The comparison map M(Fq)→M(Fp) shows that d2(h4) and d3(h0h4) must be non-

zero, as these differentials are non-zero in M(Fp) by proposition 5.12 and [Isa14b, Table

8] over C. The only possible choice for d2(h4) is h0h
2
3, but d3(h0h4) is either h0d0 or

h0d0 + uh1d0. In order to have π̂s14
∼= Z/2 ⊕ Z/2 as a summand of π̂14,0, we must have

d3(h0h4) = h0d0. A similar argument establishes d2(e0) = h2
1d0 and d2(f0) = h2

0e0. Note

that d4(h3
0h4) = 0 for degree reasons.

The elements in weight 0 are all of the form τ jx or uτ j−1x where x is not a multiple of
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τ and of weight j. The differentials of the elements in weight 0 are now readily identified

by using the Leibniz rule from proposition 6.4. Since π̂sn is a summand of π̂n,0(Fq) for all

n ≥ 0, we see that there are no hidden extensions for 0 < n ≤ 18.

Recall that there are isomorphisms π̂s19
∼= Z/8⊕ Z/2 and π̂s20

∼= Z/8.

Proposition 6.9. When q ≡ 5 mod 8, π̂19,0(Fq) ∼= π̂s19 ⊕ Z/4 and π̂20,0(Fq) ∼= π̂s20 ⊕ Z/2.

When q ≡ 1 mod 8 and 19 ≤ n ≤ 20, there is an isomorphism π̂n,0(Fq) ∼= π̂sn ⊕ π̂sn+1.

Proof. The differential d2[τg] is trivial as it lands in E
6,(19,11)
2 = 0. Since [τg] has weight

11, the class τ11[τg] is in E
4,(20,0)
∞ .

In the case q ≡ 5 mod 8, we calculate d2τ
11[τg] = uτ10h2

0[τg] 6= 0 by proposition 6.4.

This resolves all of the differentials in the 19 and 20 stems, and the calculation of the

19 stem follows. As π̂s20
∼= Z/8 must be a summand of π̂20,0(Fq) which has order 16, we

conclude π̂20,0
∼= Z/8 ⊕ Z/2 and there is a hidden extension from uτ11h2

2h4 = uτ11h3
3 to

τ12h2e0.

When q ≡ 1 mod 8, proposition 6.4 shows d2τ
11 = 0, hence d2τ

11[τg] = 0. This

resolves all of the differentials in the stems 19, 20, and 21. We note that there are no

possible hidden extensions in the 19 or 20 stem in this case. The result then follows.

Remark 6.10. The element κ ∈ πs20
∼= Z/24 is detected by g in the 2-primary Adams

spectral sequence. Toda calculated πsn for n ≤ 19 in [Tod62], Mimura and Toda calculated

the 20 stem πs20 in [MT63], and May analyzed the Adams spectral sequence for stems

s ≤ 28 in [May65]. Over a finite field Fq with q ≡ 5 mod 8, the class Lc(κ) ∈ π20,0(Fq)

is detected by uτ11h3
3 which is in Adams filtration 3, and not 4. But over Fq, the class

Lc(κ) is detected by τ11[τg] in Adams filtration 4.

6.4 The prime 3

Ravenel gives a description of the 3-primary Adams spectral sequence in [Rav86, §1.2]

which may be used to calculate Ext(Fq) given proposition 6.1. In this section, π̂ denotes

the 3-completion of the group π and i denotes the order of q in F×3 . The finite fields Fq

with trivial Bockstein action are those fields with either q ≡ 1 mod 9 or q ≡ 8 mod 9.
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The non-zero irreducible elements of the E2 page in the range s ≤ 20 are given

in table 6.2. Write R(x) for the Massey product 〈h0, h0, x〉, and Q(x) for the Massey

product 〈h0, a0, x〉.

Elt. Filtr. (f, s, w)

a0 (1, 0, 0)
h0 (1, 3, 2)
R(a0) (2, 7, 4)
b0 (2, 10, 6)

Elt. Filtr. (f, s, w)

h1 (1, 11, 6)
R(h1) (2, 18, 10)
Q2(R(a0)) (4, 15, 8)
Q3(R(a0)) (5, 19, 10)

Table 6.2: Irreducible elements in Ext(Fq) at the prime ` = 3

We now calculate the 3-complete stems π̂n,0 for n ≤ 20. Note that π̂sn is non-trivial

for the following values of n ≤ 20: 0, 3, 7, 10, 11, 13, 15, 19, and 20.

Proposition 6.11. At the prime ` = 3 and for a field Fq with a trivial Bockstein action on

H∗∗(Fq), i.e., q ≡ ±1 mod 9, there are isomorphisms π̂n,0(Fq) ∼= π̂sn⊕ π̂sn+1 for 0 ≤ n ≤ 20.

Proof. Most of the differentials on irreducible elements in the range s ≤ 20 vanish for de-

gree reasons, except for possibly d2(h1), and d2(R(h1)). In weight 0, the corresponding dif-

ferentials to analyze are d2(ζ6/ih1), d2(γζ(6/i)−1h1), d2(ζ10/iR(h1)), d2(γζ(10/i)−1R(h1)),

d2(ζ12/ih0R(h1)), and d2(γζ(12/i)−1h0R(h1))

We use the comparison map M(Fq)→M(Fp) to calculate the differentials d2(h1) and

d2(R(h1)). Proposition 5.12 shows that the comparison map sends h1 to h1 in the cobar

complex. Since d2(h1) = a0b0 holds over Fp by [Rav86], we must then have d2(h1) = a0b0

since there is nothing divisible by γ in this position. The same comparison also shows

d2(R(h1)) = b0R(a0) is non-zero. Since d2(h0) = 0 for degree reasons, the Leibniz rule

implies that d2(h0R(h1)) = h0d2(R(h1)) is non-zero.

The differentials in weight 0 are now readily calculated using the Leibniz rule. In

particular, d2(ζ6/ih0) = ζ6/ia0b0 since we have shown d2(ζ6/i) = 0 in proposition 6.4.

6.5 The primes ` ≥ 5

We continue to write π̂ for the `-completion of π when the prime ` is clear from context.

We now identify π̂n,0(Fq) for the remaining odd primes. Let ` be a prime, Fq a finite

field with characteristic different from `, and write i for the smallest positive integer
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satisfying qi ≡ 1 mod `. The action of the Bockstein on H∗∗(Fq;Z/`) is trivial if and

only if qi ≡ 1 mod `2. Since 0 < i < `, every solution of qi ≡ 1 mod ` lifts uniquely to a

solution of qi ≡ 1 mod `2 by Hensel’s lemma. We list these congruences in table 6.3.

Prime ` Congruence

2 q ≡ 1 mod 4
3 q ≡ ±1 mod 9
5 q ≡ ±1,±7 mod 25
7 q ≡ ±1,±18,±19 mod 49
11 q ≡ ±1,±3,±9,±27,±40 mod 121

Table 6.3: Congruences for trivial Bockstein action on H∗∗(Fq;Z/`)

Proposition 6.12. Let Fq be a finite field of characteristic p. For any prime ` > 3

with ` 6= p for which the action of the Bockstein on H∗∗(Fq;Z/`) is trivial, we calculate

π̂n,0(Fq) ∼= π̂sn ⊕ π̂sn+1 for 0 ≤ n ≤ 20.

Proof. For any prime ` > 2, the first non-zero group π̂n,0(Fq) with n > 0 occurs at

n = 2` − 4, detected by the class uζ`−2[ξ1] in the cobar complex. So for any prime

` > 11, the group π̂n,0(Fq) is trivial when 0 < n ≤ 20. We now turn our attention to the

remaining primes 5, 7, and 11.

Since we are assuming the action of the Bockstein on H∗∗(Fq) is trivial, the E2 page

of the mod ` motivic Adams spectral sequence is E2
∼= H∗∗(Fq) ⊗ ExtAtop∗ (F`,F`) by

proposition 6.1. For the primes 5, 7, and 11, the necessary calculations in the cobar

complex for Atop∗ can be carried out in stems s ≤ 20 without much trouble. See figures

8.8, 8.9, and 8.10 for charts of the E2 page of the motivic Adams spectral sequence at the

primes 5, 7, and 11. We find that the irreducible elements in ExtAtop∗ (F`,F`) which appear

in stem s ≤ 20 are a0 = [τ0], h0 = [ξ1], and the Massey product R(a0) = 〈h0, h0, a0〉.

When ` = 5, there are three cases based on the order of q in F×` , i.e., i is 1, 2, or 4. In

any case, the class h0 has weight 4, so ζ4/ih0 and γζ4/i−1h0 are non-zero classes in weight

0, and as the class R(a0) has weight 8, ζ8/iR(a0) and γζ8/i−1R(a0) are in weight 0. All

differentials in the range 0 < s ≤ 21 are trivial
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Chapter 7

The motivic Adams spectral sequence for finite fields Fq
with non-trivial Bockstein action

Throughout this chapter, we assume the action of the Bockstein on H∗∗(Fq) is non-trivial.

That is, at the prime ` = 2 we work over a finite field Fq with q ≡ 3 mod 4 and for a

prime ` > 2, we work over a finite field Fq with q relatively prime to ` which additionally

satisfies qi 6≡ 1 mod `2 where i is the order of q in F×` .

7.1 The E2 page of the mod ` motivic Adams spectral sequence

We first analyze the E2 page of the mod 2 motivic Adams spectral sequence, which

is isomorphic to Ext(Fq) = ExtA∗∗(Fq)(H
∗∗(Fq), H∗∗(Fq)). The action of the Bockstein

on H∗∗(Fq;Z/2) is non-trivial if and only if q ≡ 3 mod 4. In this case, the class ρ ∈

H1,1(Fq;Z/2) is non-trivial (see definition 3.3) and the action of the Bockstein on H∗∗(Fq)

is determined by β(τ) = ρ. We directly calculate the structure of Ext(Fq) up to stem

s = 21 using computer calculations discussed in chapter 8.

Proposition 7.1. When q ≡ 3 mod 4, the irreducible elements of E2(Fq) ∼= Ext(Fq) up

to stem s = 21 are the classes listed in table 7.1.

Proof. This was obtained by computer calculation. See chapter 8 for more details about

the program. Note the class τ does not appear in Ext0,(0,−1)(Fq) by the following calcu-

lation with the cobar complex (see definition 4.12).

dC(τ [ ]) = [ηR(τ)] + τ [1] = [τ ] + [ρτ0] + τ [1] = ρ[τ0]

The ρ-Bockstein spectral sequence assists in the calculation of Ext(Fq) when the action

of the Bockstein is non-trivial. We will use proposition 7.1 to identify a non-trivial
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Elt. Filtr. (f, s, w)

ρ (0,−1,−1)
[ρτ ] (0,−1,−2)
[τ2] (0, 0,−2)
h0 (1, 0, 0)
h1 (1, 1, 1)
[τh1] (1, 1, 0)
h2 (1, 3, 2)
[τh2

2] (2, 6, 3)
h3 (1, 7, 4)
[τh3

0h3] (4, 7, 3)
c0 (3, 8, 5)

Elt. Filtr. (f, s, w)

[τc0] (3, 8, 4)
Ph1 (5, 9, 5)
[τPh1] (5, 9, 4)
Ph2 (5, 11, 6)
[τh0h

2
3] (3, 14, 7)

d0 (4, 14, 8)
[τh2

0d0] (6, 14, 7)
h4 (1, 15, 8)
[τh7

0h4] (8, 15, 7)
Pc0 (7, 16, 9)

Elt. Filtr. (f, s, w)

[τPc0] (7, 16, 8)
e0 (4, 17, 10)
P 2h1 (9, 17, 9)
[τP 2h1] (9, 17, 8)
f0 (4, 18, 10)
P 2h2 (9, 19, 10)
c1 (3, 19, 11)
[τc1] (3, 19, 10)
[ρτg] (4, 19, 10)
[τ2g] (4, 20, 10)

Table 7.1: Irreducible elements in Ext(Fq) with stem s ≤ 21 for q ≡ 3 mod 4

differential in the ρ-Bockstein spectral sequence in proposition 7.3. We briefly describe

the construction of the ρ-Bockstein spectral sequence and refer the reader to [DI15,OØ13,

Orm11] for more details.

Let C be the cobar complex for Fq defined in 4.12 at the prime ` = 2. The filtration

of C given by 0 ⊆ ρC ⊆ C determines a spectral sequence, which in this case is just the

long exact sequence associated to the short exact sequence of complexes

0→ ρC → C → C/ρC → 0.

Since the complexes ρC and C/ρC are both isomorphic to the cobar complex over C, the

ρ-Bockstein spectral sequence is the following long exact sequence.

· · · ρExti(C) // Exti(Fq) // Exti(C)
d1 // ρExti+1(C) · · · (7.2)

Proposition 7.3. In the ρ-Bockstein spectral sequence for Fq with q ≡ 3 mod 4, every

irreducible element x of Ext(C) in stem s ≤ 19 other than τ has d1x = 0, whereas

d1τ = ρh0 and d1([τg]) = ρh2e0. Here, [τg] is the irreducible element of Ext(C) in stem

20, weight 11, and filtration 4.

Proof. The differential d1 vanishes on the classes h0, h1, c0, Ph1, d0, Pc0, e0, P 2h1 for

degree reasons. The remaining differentials follow from the structure of Ext(Fq) given in

proposition 7.1.

Example 7.4. In the ρ-Bockstein spectral sequence, we calculate d1τh1 = ρh0h1 = 0,
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since d1h1 = 0 and h0h1 vanishes in Ext(C). There is thus a class [τh1] ∈ Ext1,(1,0)(Fq)

which is irreducible.

At the primes ` > 2, we use the analog of the ρ-Bockstein spectral sequence to identify

the E2 page of the mod ` motivic Adams spectral sequence. Recall from definition 3.3 that

when the action of the Bockstein on H∗∗(Fq;Z/`) is non-trivial, the class γ ∈ H1,1(Fq) is

non-zero and β(ζ) = γ. The γ-Bockstein spectral sequence is the long exact sequence of

cohomology groups associated to the short exact sequence of chain complexes

0→ γC → C → C/γC → 0.

The complexes γC and C/γC are isomorphic to the cobar complex for the Hopf algebroid

(F`[ζ],F`[ζ]⊗Atop∗ ). Note that the Hopf algebroid (F`[ζ],F`[ζ]⊗Atop∗ ) is isomorphic as a

bigraded Hopf algebroid to (H∗∗(C),A∗∗(C)) if and only if q ≡ 1 mod `.

Proposition 7.5. The E1 page of the γ-Bockstein spectral sequence is given by

E1
∼= ExtF`[ζ]⊗Atop∗ (F`[ζ],F`[ζ])⊕ γ ExtF`[ζ]⊗Atop∗ (F`[ζ],F`[ζ]).

The differential d1 is determined by d1(ζj [ ]) = −jγζj−1[τ0].

Proof. Note that ExtF`[ζ]⊗Atop∗ (F`[ζ],F`[ζ]) ∼= F`[ζ] ⊗ ExtAtop∗ (F`,F`). The cobar com-

plex C(Fq) is a differential graded algebra with respect to the juxtaposition product

defined in 4.12. Let α be a cobar complex representative for a homogeneous class in

ExtF`[ζ]⊗Atop∗ (F`[ζ],F`[ζ]). Then α = ζj [ ] ∗ α′ where α′ is an element in the cobar com-

plex for Atop∗ . We calculate d1(ζj [ ] ∗ α′) = d1(ζj [ ])α′ by our assumption that dC(α) is

zero. But then the class d1(ζj [ ])α′ = −jγζj−1[τ0] ∗ α′ will vanish if and only if ` | j or

[τ0] ∗ α′ = 0 in ExtAtop∗ (F`,F`).

Remark 7.6. Note that this argument does not work at the prime ` = 2 because one

cannot pass between the cobar complex over C and the topological cobar complex since

the relations on τ2
i over C involve the class τ .
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7.2 Differentials in the mod ` motivic Adams spectral sequence

We now establish the analog of proposition 6.4 in the case where the Bockstein acts non-

trivially on H∗∗(Fq), that is, we use the motivic Adams spectral sequence for X = HZ[1
p ]

over Fq to identify the differentials on τ j and ζj in MFq(1).

Proposition 7.7. When ` = 2 and q ≡ 3 mod 4, the E1 page of M(HZ[1
p ]) is given by

E1
∼= F2[τ, ρ, h0]/(ρ2)

where h0 ∈ E
1,(0,0)
1 . For all r ≥ 1 the differentials dr vanish on ρτ j and hj0. For odd

natural numbers j, we calculate d1τ
j = ρh0. Write λ(q) for ν2(q2−1). If r < λ(q)+ν2(n)

the differentials drτ
2n vanish, and

dλ(q)+ν2(n)τ
2n = ρτ2n−1h

λ(q)+ν2(n)
0 .

Now let ` > 2 and consider a finite field Fq with non-trivial Bockstein action on

H∗∗(Fq;Z/`). Then the E1 page of M(HZ[1
p ]) is the graded-commutative F`-algebra

E1
∼= F`[ζ, γ, a0]/(γ2)

where a0 ∈ E1,(0,0)
1 . The differential d1 vanishes on aj0, γζj , and ζ`j for all j ≥ 0, but

d1ζ
j = γζj−1a0 for natural numbers j with ` - j. The E2 page takes the form

E2
∼= F`[γ, ζ`, a0]/(γ2, a0γ)⊕

`−1⊕
j=1

γζjF`[ζ`, a0]/(a0γζ
j)

Let λ(q) = ν`(q
`i − 1). For all r ≥ 2 the differentials dr vanish on a0 and γζj for

0 ≤ j ≤ `− 1. The differentials dr(ζ
`n) are trivial for r < λ(q) + ν`(n) and

dλ(q)+ν`(n)(ζ
`n) = γζ`n−1a

λ(q)+ν`(n)
0

up to multiplication by a unit in F`.

Proof. This follows the proof of proposition 6.4. The H∗∗-Adams resolution given in (6.5)

gives E
f,(s,w)
1

∼= πs,wHZ/`. When ` = 2, the order of E
∗,(−1,j)
∞ is ν2(qj−1), so we conclude

d1τ = ρh0. As we have ν2(q2j − 1) = λ(q) + ν2(j) for all natural numbers j, the claimed

formulas for the differentials on τ2n hold. A similar analysis goes through for ` > 2, since

for all natural numbers n we have ν`(q
`in − 1) = λ(q) + ν`(n).
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7.3 The prime 2

We work at the prime ` = 2 in this section and consider a finite field Fq with q ≡ 3 mod 4.

We write π̂∗∗(Fq) for π∗∗(Fq)∧2 . Multiplication by 2 in π∗∗(Fq) is detected in the mod 2

motivic Adams spectral sequence by the class h0 + ρh1 in Ext(Fq). A chart of the E2

page of the motivic Adams spectral sequence is given in figure 8.4 and a chart of the E∞

page is given in figure 8.5.

The stem π0,0(Fq) is isomorphic to the Grothendieck-Witt group GW (Fq) by [Mor04].

The isomorphism GW (Fq) ∼= Z⊕ Z/2 was established by Scharlau in [Sch85, Ch. 2, 3.3].

Recall that πs0
∼= Z and πs1

∼= Z/2. Hence we conclude π0,0(Fq) ∼= πs0 ⊕ πs1.

Proposition 7.8. When q ≡ 3 mod 4 and 0 ≤ n ≤ 18, there is an isomorphism π̂n,0(Fq) ∼=

π̂sn ⊕ π̂sn+1.

Proof. The discussion preceding this proposition establishes the claim when n = 0. We

now analyze the differentials and the group extension problem for 0 < n ≤ 18. The

differentials dr for r ≥ 2 vanish on the following generators for degree reasons: [ρτ ], ρ,

h0, h1, h3, [τh2
2], [τc0], [τPh1], d0, [τPc0], [τP 2h1]. Since π̂s1

∼= Z/2 is a summand of

π̂1,0(Fq), we must have dr[τh1] = 0 for all r ≥ 2. Since π̂s3
∼= Z/8 is a summand of

π̂3,0(Fq), we must have d2(h2) = 0. An argument similar to that given for proposition 6.8,

we conclude d2(h4) = h0h
2
3, d2(e0) = h2

1d0, and d2(f0) = h2
0e0 by comparison to M(Fq).

Also, we determine dr[τc1] = 0 for r ≥ 2 by comparing with M(Fq), as the class [τc1]

must be a permanent cycle.

The one exceptional case is d3(h0h4). Here we must have d3(h0h4) = h0d0 + ρh1d0 in

order for π̂s14 = Z/2⊕ Z/2 to be a summand of π̂14,0(Fq).

The elements in weight 0 are all of the form [τ2]ix or [ρτ ][τ2]i−1x where x is not a

multiple of τ2 and weight 2i, or of the form ρ[τ2]ix if x is not a multiple of τ2 and of

weight 2i+ 1. The differentials of the elements in weight 0 are now determined by using

the Leibniz rule. Since λ(q) = ν2(q2 − 1) ≥ 3, we have d2(τ2) = 0. This is sufficient to

ensure that for elements x in stem s ≤ 19 there are no non-trivial differentials of the form

dr[τ
2]ix = ρτ2i−1hr0x when [τ2]ix has weight 0. This resolves all differentials in weight 0
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for stems s ≤ 19 and there are no hidden 2-extensions in this range. Hence for 0 < n ≤ 18

there is an isomorphism π̂n,0(Fq) ∼= π̂sn ⊕ π̂sn+1.

Remark 7.9. It is unclear whether d2[τ2g] = [ρτg] or d2[τ2g] = 0. This is all that obstructs

the identification of the stems π̂19,0(Fq) and π̂20,0(Fq).

7.4 The prime 3

Throughout this section, Fq is a finite field with characteristic different from 3. Let

i be the smallest positive integer for which qi ≡ 1 mod 3. The assumption that the

Bockstein acts non-trivially on H∗∗(Fq;Z/3) is equivalent to qi 6≡ 1 mod 9 which amounts

to q ≡ ±2,±3,±4 mod 9. We write π̂ for the 3-completion of a group π.

Proposition 7.10. Let Fq be a finite field of characteristic different from 3 for which

qi 6≡ 1 mod 9. For any natural number n with 0 ≤ n ≤ 20, there is an isomorphism

π̂n,0(Fq) ∼= π̂sn ⊕ π̂sn+1.

Proof. We use proposition 7.5 and a calculation of ExtAtop∗ (F3,F3) (see [Rav86, p. 11] or

chapter 8) to identify the E2 page of the motivic Adams spectral sequence. Every class

x ∈ Extf,s,w
Atop∗

(F3,F3) with a0x = 0 contributes classes γζw−1x and ζwx in weight 0. If a0x

is non-zero, only the classes ζ`jx are non-zero in the E2 page. In the range n ≤ 21, only

the classes b0, h1, and b20 are not killed by multiplication by a0. Note that the weights of

b0, h1, and b20 are 6, 6, and 12 respectively. Since all of these weights are divisible by 3,

we conclude that ζ6/ib0, ζ6/ih1, ζ12/ib20, γζ(6/i)−1b0, γζ(6/i)−1b0, and γζ(12/i)−1b20 are all

non-zero classes in weight 0. This analysis identifies the E2 page of the motivic Adams

spectral sequence given in figure 8.7.

We deduce the differentials d2(h1) = a0b0 and d2(R(h1)) = b0R(a0) from the compar-

ison map M(Fq)→M(Fp) and the calculations in topology in [Rav86]. The Leibniz rule

shows d2(ζ6/ih1) = d2(ζ6/i)h1 + ζ6/ia0b0. In the case where ν`(q
6 − 1) = 2, proposition

7.7 shows d2(ζ6/i) is non-zero, and when ν`(q
6 − 1) > 2 the differential d2(ζ6/i) vanishes.

In either case, the group structure is as claimed in the 10 and 11 stem.
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Since ζ and ζ2 do not survive the γ-Bockstein spectral sequence, we must be careful cal-

culating d2(ζ10/iR(h1)). If i = 1, the class in weight 0 coming from R(h1) is [ζ3]3[ζR(h1)]

and if i = 2, the class in weight 0 coming from R(h1) is [ζ3]2[ζ2R(h1)]. When i = 1, the

comparison map M(Fq) → M(Fp) sends [ζ3]3[ζR(h1)] to ζ10R(h1). Since d2(R(h1)) =

b0R(a0) is non-zero in M(Fp) by [Rav86], it follows that d2(ζ10R(h1)) = ζ10b0R(a0) in

M(Fp). As the differential d2([ζ3]3[ζR(h1)]) must have image ζ10b0R(a0) under the com-

parison map M(Fq) → M(Fp), d2([ζ3]3[ζR(h1)]) is non-zero. Similarly, when i = 2,

[ζ3]2[ζ2R(h1)] maps to ζ10R(h1) in Ext(Fp) and so d2([ζ3]2[ζ2R(h1)]) is non-zero.

The remaining differential d2([ζ3]4/ih0R(h1)) is found to be non-zero by using the

Leibniz rule. This resolves all differentials up to stem 21. The computed product structure

shows there are no possible hidden 3-extensions in this range, hence the result.

7.5 The primes ` ≥ 5

We continue to write π̂ for the `-completion of π when the prime ` is clear from context.

We now identify π̂n,0(Fq) for the remaining odd primes. Let ` be a prime, Fq a finite field

with characteristic different from `, and write i for the smallest positive integer satisfying

qi ≡ 1 mod `. The action of the Bockstein on H∗∗(Fq;Z/`) is non-trivial if and only if

qi 6≡ 1 mod `2. At the primes up to 11, the appropriate congruences are those which do

not appear in table 6.3.

Proposition 7.11. Let Fq be a finite field of characteristic p. For any prime ` ≥ 5 with

` 6= p for which the action of the Bockstein on H∗∗(Fq;Z/`) is non-trivial, we calculate

π̂n,0(Fq) ∼= π̂sn ⊕ π̂sn+1 for 0 ≤ n ≤ 20.

Proof. For any prime ` > 2, the first non-zero group π̂n,0(Fq) with n > 0 occurs at

n = 2`−4, detected by the class γζ`−2[ξ1] in the cobar complex. So for any prime ` > 11,

the group π̂n,0(Fq) is trivial when 0 < n ≤ 20.

At the primes 5, 7, and 11, simple cobar complex calculations can be used to identify

the structure of Ext(Fq) in the range s ≤ 21. The reader may consult chapter 8 for a

discussion about a computer program to perform these calculations. Charts of the E2



56

page of the motivic Adams spectral sequence for the primes 5, 7, and 11 are given in

figures, 8.8, 8.9, and 8.10.

At the prime ` = 5, there are three cases to consider depending on the order of q

in F×5 , i.e., q has order 1, 2, or 4. In ExtAtop∗ (F5,F5), the irreducible elements in the

range s ≤ 21 are a0 = [τ0], h0 = [ξ1], and R(a0) = 〈h0, h0, a0〉. The products a0h0 and

a0R(a0) are trivial, so that there are non-trivial classes coming from ζjh0 and ζjR(a0).

For example, when i = 1 a cobar representative for the non-zero class in E
1,(7,0)
2 is

ζ4[ξ1] + γζ3(4[τ1] + [τ0ξ1]),

and a representative for the non-zero class in E
2,(15,0)
2 is

ζ8(2[ξ2
1 |τ0]− [ξ1|τ1]) + γζ7([τ1|τ1] + 3[τ0ξ1|τ1]− [ξ1|τ0τ1] + [τ1ξ1|τ0]− [τ0ξ

2
1 |τ0]).

In the range 0 < s ≤ 21, all differentials vanish for degree reasons when ` = 5. We

conclude that π̂n,0(Fq) ∼= π̂sn ⊕ π̂sn+1 for 0 ≤ n ≤ 20. The non-trivial groups may be read

off from figure 8.8.

The E2 page of the motivic Adams spectral sequence at the prime ` = 7 in the range

s ≤ 20 may be calculated in the same fashion as the prime 5. In ExtAtop∗ (F7,F7) for s ≤ 21,

the only irreducible elements are ζ, a0 = [τ0] and h0 = [ξ1]. An analysis of the γ-Bockstein

spectral sequence yields the structure of the E2 page in the same manner as at the prime

` = 5. We conclude that when ` = 7 there is an isomorphism π̂n,0(Fq) ∼= π̂sn ⊕ π̂sn+1 for

0 ≤ n ≤ 20. The non-trivial groups may be read off from figure 8.9.

The E2 page of the motivic Adams spectral sequence at the prime ` = 11 is entirely

analogous to the situation at the prime 7 in the range s ≤ 20. It follows that π̂n,0(Fq) ∼=

π̂sn ⊕ π̂sn+1 for 0 ≤ n ≤ 20. The non-trivial groups may be read off from figure 8.10.
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Chapter 8

Computer assisted Ext calculations

8.1 Minimal resolution

The computer calculations used in this dissertation at the prime 2 were performed with

the program written by Fu and Wilson [FW15] at https://github.com/glenwilson/

MassProg. The program is written in python, and calculates Ext(F ) for the fields C, R,

and Fq by producing a minimal resolution of H∗∗(F ) by A∗∗(F )-modules in a range. The

program then applies the functor HomA∗∗(F )(−, H∗∗(F )) to the minimal resolution and

calculates cohomology in each degree.

To calculate a free resolution of H∗∗(F ) by A∗∗(F )-modules, we first need the program

to efficiently perform calculations in A∗∗(F ). The mod 2 motivic Steenrod algebra is

a free left H∗∗-module with the Steenrod square operations SqI corresponding to the

admissible sequences I as a basis. Given any class x ∈ A∗∗(F ), the program applies the

relations given in proposition 3.6 to arrive at a canonical form for x in terms of the basis

{SqI | I is admissible}. This can be very time consuming, so the program uses a database

to store the canonical forms of certain elements x ∈ A∗∗(F ).

With the algebra of A∗∗(F ) available to the program, it then proceeds to calculate a

minimal resolution of H∗∗(F ) by A∗∗(F )-modules. This is where a great deal of compu-

tational effort is spent. To clarify what a minimal resolution is in practice, let ≺ denote

the order on Z × Z given by (m1, n1) ≺ (m2, n2) if and only if m1 + n1 < m2 + n2, or

m1 + n1 = m2 + n2 and n1 < n2. The reader is encouraged to compare this definition

with the definition by McCleary in [McC01, 9.3] and consult Bruner’s primer [Bru09] for

detailed calculations of a minimal resolution for the Adams spectral sequence of topology.

Definition 8.1. A resolution of H∗∗(F ) by A∗∗(F )-modules H∗∗(F )← P • is a minimal
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resolution if the following conditions are satisfied.

1. Each module P i has an ordered basis hi(j) such that if j ≤ k then deg hi(j) �

deg hi(k).

2. For any k, im(hi(k)) /∈ im(〈hi(j) | j < k〉).

3. The element deg hi(j) is minimal with respect to degree in the order ≺ over all

elements in P i−1 \ im(〈hi(j) | j < k〉).

The computer program calculates the first n maps and modules in a minimal resolu-

tion up to bidegree (2n, n). With this, it then calculates the dual of the resolution by

applying the functor HomA∗∗(F )(−, H∗∗(F )) to the resolution P •. With the cochain com-

plex HomA∗∗(F )(P
•, H∗∗(F )) in hand, the program calculates cohomology in each degree,

that is, Extf,(s+f,w)(Fq).

As the program calculates an explicit resolution of H∗∗(F ), the products of elements

in Ext(F ) can be obtained from the composition product (see [McC01, 9.5]).

8.2 Cobar complex

The computer calculations used in this dissertation at the primes ` > 2 were performed

with the program available at https://github.com/glenwilson/CobarComplex. The

program calculates Ext(Fq) and ExtAtop∗ (F`,F`) with a straightforward implementation of

the cobar complex. This is inefficient, but it suffices to identify the structure needed in

the low degrees considered in this dissertation.

8.3 Charts

The weight 0 part of the E2 page of the mod 2 motivic Adams spectral sequence over Fq

is depicted in figures 8.1 and 8.4 according to the case q ≡ 1 mod 4 or q ≡ 3 mod 4. The

weight 0 part of the E∞ page of the mod 2 motivic Adams spectral sequence over Fq can

be found in figures 8.2, 8.3, and 8.5.

In each chart, a circular or square dot in grading (s, f) represents a generator of the

F2 vector space in the graded piece of the spectral sequence. The square dots are used to
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indicate that the given element is divisible by u, ρ, or ρτ , depending on the case. Circular

dots denote elements which are not divisible by u, ρ, or ρτ . In figure 8.5, there is an oval

dot which corresponds to the class with representative τ8ρh1d0 ≡ τ8h0d0, as the class

ρh1d0 + h0d0 is killed.

The labels in the chart correspond to those elements coming from irreducible elements

of Ext(Fq). However, most of these elements must be multiplied by the appropriate power

of τ or [τ2] to land in the weight 0 part of the spectral sequence. We leave this off in the

notation, as the weights of these elements are listed in tables 6.1 and 7.1.

We indicate that the product of a given class by h0 with a solid, vertical line. The

arrow in the 0-stem indicates that hj0 is non-zero for all natural numbers j. In the case

q ≡ 3 mod 4 multiplication by ρh1 plays an important role, so non-zero products by ρh1

are indicated by dashed vertical lines. In particular, when q ≡ 3 mod 4, multiplication

by 2 in π̂∗∗(Fq) is detected by multiplication by h0 + ρh1. The lines of slope 1 indicate

multiplication by τh1 or [τh1] depending on the case.

Dotted lines are used in two separate instances in these charts. The first use is in figure

8.3, where dotted lines indicate hidden extensions by h0 and τh1. The other instance is

in figure 8.5 to indicate an unknown d2 differential.

The chart for Ext(Fq) at the prime ` = 3 with trivial Bockstein is given in figure 8.6

and with nontrivial Bockstein in figure 8.7. In figure 8.7, we indicate the names of the

classes which appear in weight 0 after multiplying by an appropriate power of [ζ3]. A

label which appears above a dot corresponds to the case where q ≡ 1 mod 3 and labels

which appear below a dot correspond to the case q ≡ 2 mod 3, but dots with just a single

label are valid in either case. The vertical lines indicate multiplication by a0 which detects

multiplication by 3.

The charts for Ext(Fq) at the primes 5, 7, and 11 are given in figures 8.8, 8.9, and

8.10. We do not indicate the names of the irreducible elements in the figure, but rather

give the weights in which the classes appear. The regions which are skipped are trivial.
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