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ABSTRACT OF THE DISSERTATION
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Dr. Larry Greenstein

In the last decade, there have been several technological trends that have occurred

together and have caused a shift in how wireless systems will be deployed. The sig-

nificant increase in the capabilities of mobile devices, combined with the proliferation

of Internet enabled services, and the improvement in the communication support pro-

vided by new waveforms for wireless communications, have initiated a shift from the

traditional, macrocell-based cellular network to new forms of radio access technolo-

gies (RATs) involving multiple, smaller cells deployed in vicinity of each other. These

small cells will often support diverse wireless technologies and be operated by different

providers. The resulting heterogeneity, unfortunately, can lead to serious internetwork

interference that can negate the improvement in overall system performance that was

the original motivation for employing many small cells in close proximity. In this thesis,

we examine different technologies that are needed for flexible spectrum management

to support the coordination that is needed for coexistence between many small cell

wireless networks. Motivated by the need for internetwork architectures that support

spectrum coordination, we (1) conduct performance evaluation associated with the joint
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deployment of mobile and fixed hotspot networks, (2) develop spectrum models that

characterize interference among different wireless entities, (3) provide new methods for

efficient hardware emulation of wireless channels, (4) devise algorithms that estimate

radio spectrum usage, and (5) provide algorithms for coordination between different

wireless systems to improve the overall system performance and spectrum efficiency.

The first part of the thesis investigates spectrum coexistence in wireless networks by

exploring the underlying performance challenges that exist when mobile hotspots are

deployed in an environment of densely deployed, static wireless access networks. Next

part of thesis investigates design of hardware emulator of radio channels to accurately

capture the effect of real-world wireless channels upon communications waveforms while

minimizing computational complexity. Next, we explore a fundamental building block

of spectrum management for supporting better utilization of radio spectrum which in-

volves predicting the impact that an emitter will have at different geographic locations.

We then examine various challenges associated with coordinating spectrum access be-

tween different wireless technologies by exploring the specific case of Wi-Fi and LTE

coexistence in emerging unlicensed frequency bands.

Finally, recognizing the broad challenges associated with addressing spectrum co-

existence in emerging wireless systems, we identify several directions for future investi-

gation and suggest different approaches for tackling these challenges.
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Chapter 1

Introduction

Exponential growth in mobile data usage is driven multitude of Internet applications

that are rapidly migrating from wired PCs to mobile smartphones, tablets, phablets,

mobile APs, wearable and Internet-of-Things (IoT) devices [1–4]. The number of global

mobile devices is expected to grow from 8 billions today to 20 billion by the year 2020 [5].

According to Cisco’s 2015 VNI report, compound annual growth rate (CAGR) of data

traffic is projected to grow 53 % from year 2015 to 2020, especially with the increase

mobile video traffic.

This growth of mobile traffic requires mobile devices with various long- and short-

distance wireless technologies to coexist in time, frequency, and spatial domains. Thus,

there is urgent need to study spectrum access techniques that maximize area spec-

trum efficiency (measured in bps/Hz/sq-Km) independent of number of devices in the

network. This thesis, therefore, investigates dynamic spectrum management to tackle

such ever increasing data demand. The salient outcome of this thesis are new wireless

tools which allow to (1) measure spectrum usage, (2) characterize interference among

wireless technologies and (3) propose coordination algorithm.

1.1 The need for Spectrum Management

Recent PCAST report advocates increase of reliance on shared spectrum using dynamic

and flexible management system with more granular control on available resources [6,7].

The spectrum could be shared under licensed, unlicensed, or new sharing models. Sev-

eral spectrum bands, as shown in figure 1.1, like TV white space, 3.5 GHz, mmWave,
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55 - 698MHz 2.4 -
2.5GHz

5.15 - 
5.835GHz

3.55 - 
3.7GHz

57 - 64GHz

TV White Space 2.4GHz ISM 3.5GHz 
Shared band

5GHz UNII/ISM 

60GHz mmWave Band

Figure 1.1: Proposed spectrum bands for deployment of wireless small cells.

unlicensed 2.4/5 GHz bands have been opened up for mobile and fixed wireless broad-

band services [8–12]. These emerging shared band scenarios will lead to co-channel net-

work deployment of multiple radio access technologies (RATs) by multiple operators.

These coexisting networks cause increased interference to each other and degradation

of the overall system performance, if no coordination is provided.

Conventionally, spectrum usage has been limited to scheduler like resource (time

/ frequency) assignment for licensed spectrum or reactive spectrum sensing protocols

like Listen-Before-Talk (LBT) for unlicensed spectrum. These protocols have limited

local network visibility and does not coordinate networks that belong to different RATs

and/or operator [13–15]. In previous work, next level of network operation is pro-

posed by schemes like regional statistical spectrum multiplexing through ‘spectrum

broker’ [16, 17], spectrum server [18], radio-based common control channels [17, 19] to

distribute operating parameters of co-existing radio networks. Most recently, database

driven centralized ‘spectrum assignment server’ (SAS) [20, 21] eliminates the require-

ment of spectrum sensing and relies on database of incumbents for dynamic spectrum

coordination. The main disadvantage of such spectrum server is the failure to up-

date database (thus, spectrum usage) on granular time scale of minutes/seconds. With

billions of operating radio devices, such central database could face the network bottle-

neck. Thus,we need spectrum management framework which is distributed in nature

in order to scale spectrum allocation with time scales of minutes/second. Furthermore,

we need framework which can accommodate modular interfaces for dissemination of
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Figure 1.2: Typical heterogeneous network with multiple RATs and owned by multiple operators

spectrum usage information, interference characteristics for different spectrum bands,

mobility management and algorithms. These modular interfaces make the framework

technology-, operator- and spectrum band- agnostic, enable interference mitigation and

improve spectrum efficiency.

1.2 Dynamic Spectrum Management

In effort to build flexible dynamic spectrum management, we need a set of standardized

APIs which collect radio/spectrum information, process it, transfer the information to

other APIs if necessary and set radio resource allocation parameters at wireless de-

vices/networks. These APIs strongly rely on underlying models of coexistence charac-

terization, spectrum usage and coordination algorithms which is the main focus of the

thesis.

1.2.1 Focus of Thesis: Modeling and Algorithm Framework

This thesis focuses on co-channel operation scenarios created by coexistence of Wi-Fi

and LTE small cells (see Fig. 1.2). We breakdown underlying spectrum management

framework in following steps -

1. Modeling coexistence performance :

The main objective is to abstract out radio access technology (RAT) specific
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MAC / PHY layer characteristics which affect its throughput when coexisting

with networks belonging to same or different RAT. For this purpose, we show two

scenarios - (1) coexistence of mobile WLAN with high density fixed WLANs [22]

, and (2) coexistence of Wi-FI and LTE networks [12].

2. Performance evaluation tools for coexisting models:

We evaluate proposed analytical coexistence models with the help of simulations

(MATLAB) and hardware experiments. We perform experimental evaluations

using ORBIT testbed available at WINLAB and several open-sourced networking

tools. Furthermore to support testing of wireless protocols on hardware emulator,

we propose a method to emulate of multi-path wireless channel which reduces

hardware computational complexity significantly for large number of coexisting

nodes [23,24].

3. Understanding location specific spectrum usage :

In this part, the objective is to build geographical region specific radio spectrum

map with information such as location, frequency and perceived power levels. We

propose a radio map method that uses radio measurements at sensors and exploits

known properties of most path loss models, with the aim of minimizing the RMS

errors in predicted dB-power. Such technique can be employed, for example, to

predict the impact of radio transmission at different geographical location. This

information when input in coordination algorithms leads to an efficient spectrum

utilization.

4. Coordinated dynamic spectrum management algorithms:

In this study, we propose a logically centralized optimization framework that

involves dynamic coordination between Wi-Fi and LTE networks by exploiting

power control and time division channel access diversity. We incorporate the pro-

posed interference characterization of Wi-Fi and LTE co-channel deployment in

the optimization to account for the specific requirements of each of the technolo-

gies. Through power control optimization, aggregate throughput is maximized

across all clients in both Wi-Fi and LTE networks while considering throughput
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requirement for each client. Through time division channel access, we achieve the

fairness among both technology based on the given policy [25].

1.2.2 Network Architecture: Enabler for the Proposed Framework

We describe an architecture for coordinating between multiple heterogeneous networks

to improve spectrum utilization and facilitate co-existence which is based on the SA-

VANT architecture which has been proposed in earlier work at WINLAB [26] and prior

architecture studies [16,27]. Figure 1.3 shows the proposed architecture, which is built

on flexible, programmable and modular architecture principles. It supports logically-

centralized but geographically distributed dynamic spectrum management involving

multiple autonomous networks. The basic design goal of this architecture is to support

the seamless communication and information dissemination required for coordination

of heterogeneous networks. This architecture leverages Internet connectivity available

at most modern radio systems.

The system consists of two-tiered controllers: the Global Controller (GC) and Re-

gional Controllers (RC), which are mainly responsible for the control plane of the archi-

tecture. The GC, owned by any neutral/authorized organization, is the main decision

making entity, which acquires and processes network state information and controls

the flow of information between RCs and databases based on authentication and other

regulatory policies. Decisions at the GC are based on different network modules, such

as radio coverage maps, coordination algorithms, policy and network evaluation matri-

ces. The RCs are limited to network management of specific geographic regions and

the GC ensures that RCs have acquired local visibility needed for radio resource allo-

cation at wireless devices. A Local Agent (LA) is a local controller, co-located with an

access point or base-station. It receives frequent spectrum usage updates from wireless

clients, such as device location, frequency band, duty cycle, power level, and data rate.

The signaling between RC and LAs are event-driven, which occurs in scenarios like the

non-fulfillment of quality-of-service (QoS) requirements at wireless devices, request-for-

update from an RC and radio access parameter updates from an RC. The key feature of

this architecture is that the frequency of signaling between the different network entities
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Figure 1.3: Enabler architecture for inter-network cooperation on radio resource management
(prior work at WINLAB)

is less in higher tiers compared to lower tiers. RCs only control the regional messages

and only wide-area network level signalling protocols are handled at the higher level,

GC. Furthermore, this architecture allows adaptive network APIs like spectrum maps,

mobility management, coordination algorithms, network policies and rules based on the

geographic area, RAT, frequency band, Quality of Service (QoS) and traffic patterns.

Thus, throughout the thesis availability of this architecture is assumed.

1.3 Thesis Organization

Overall organization of thesis is shown in Fig. 1.4. In the first part of the thesis, a dense

deployment scenario for fixed and mobile WLAN is described and potential performance

problems due to interference are identified. An analytical model for coexisting fixed and

mobile WLAN hotspots with heterogeneous traffic is presented. An adaptive channel

assignment scheme is evaluated along with the consideration of mobility speed. We

then outline methods to emulate multi-node wireless network of multipath channel with

the reduced computational complexity of emulation. Separate methods are proposed

for emulation of direct communication link and interference links while maintaining

important characteristics of channels - power delay profile and CDF of total interference
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power, respectively.

In the next part of thesis, we examine the problem of constructing a radio map that

contains estimates of spectrum usage, specifically, the RF received power in a specified

frequency band over a networks coverage area. As a starting point for our analysis, we

assume that there is a single emitter, and all sensors scan the same frequency band,

where each of the sensors measures and reports the power received from the emitter.

A proposed method of path loss based interpolation is simpler in terms of real-time

computation by the network and it requires no knowledge of the spatial correlation of

shadow fading. We also show that the estimation results come very close to those for

ideal Simple Kriging.

Finally, in the concluding part, we investigates the co-existence of Wi-Fi and LTE

networks in shared frequency bands. An analytical model for co-existing Wi-Fi and LTE

networks is developed to evaluate the baseline performance and partially validated via

experimental evaluations using USRP-based SDR platforms on the ORBIT testbed.

Further, inter-network coordination with logically centralized radio resource manage-

ment across Wi-Fi and LTE systems is proposed as a possible solution for improved

co-existence through power and time division channel access.
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Chapter 2

Performance Evaluation of Mobile Wi-Fi Hotspots in

Densely Deployed Fixed Wi-Fi Networks

In this chapter, we present a study of mobile Wi-Fi wireless LAN (WLAN) hotspots

which are used to provide cellular-Wi-Fi tethering service to personal devices. Mobile

hotspots enable cellular users to provide Internet connectivity to multiple Wi-Fi enabled

devices while on the move through Wi-Fi tethering [28, 29]. Such mobile hotspots are

increasingly feasible today due to the high Internet connectivity speeds (3-6 Mbps uplink

and 10-20 Mbps downlink) available through 4G/LTE cellular service [30]. According

to a recent industry report [31], such mobile hotspot services are expected to increase

significantly in the next 3-5 years.

Wi-Fi tethering through mobile hotspots is applicable to a variety of Wi-Fi devices,

such as laptops, tablets, cameras, portable gaming systems, MP3 players, medical de-

vices [32, 33]. Since mobile WLANs operate in the already crowded unlicensed spec-

trum, deployment of mobile WLANs pose potential interference problems if any fixed

access points (APs) are present along the travel path of the mobile AP; one such ex-

ample scenario is illustrated in Fig. 2.1(a). It is also possible that multiple mobile

WLANs may interfere with each other (intra-mobile WLAN interference) as illustrated

in Fig. 2.1(b). Both these interference scenarios (fixed-mobile and intra-mobile) may

reduce the throughput at both, fixed and mobile APs. This motivates us to study the

performance of mobile WLAN hotspots in typical urban environments which have a

high density of fixed WLAN APs. The primary goal of this study is to gain a better

understanding of the performance degradation experienced by mobile WLANs due to

interference from fixed network APs.

A rich literature is existed on the subject of fixed AP networks, including topics such
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(a) A user traveling with a mobile WLAN from point
A to B can be in range of a varying number of fixed

WLANs

Mobile WLAN−Mobile
WLAN interference

Fixed WLAN−Mobile
WLAN interference

(b) Intra-mobile WLAN and mobile WLAN-fixed WLAN interference.

Figure 2.1: Co-existing scenario of fixed and mobile APs

as performance analysis of the channel sharing mechanism of 802.11 [14], effect of AP

density on the client throughputs [34], and interference between overlapping managed

networks [15]. In contrast, there has only been a few limited studies on mobile WLANs.

In [30], the authors focus on the problem of energy efficiency for mobile hotspots,

while Hare et al. studied network characteristics, usage characteristics and deployment

feasibility for vehicular Wi-Fi hotspots in [35]. For quality-of-service (QoS) constrained

applications using mobile hotspots, Ando et al. propose a QoS control mechanism

based on TCP [36]. Here, we investigate the interaction between fixed and mobile APs;

a topic which has not been explored so far.

In our simulation based study, we focus on the throughput performance of a single

mobile AP co-existing with multiple fixed APs. Following unique characteristics of

mobile WLANs are considered to model the interaction between mobile and fixed APs:

1. Limited backhaul capacity at mobile APs due to limitations in 3G/4G/WiMAX
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backhaul connections. For example, 4G/LTE provides a median uplink and down-

link throughput up to 6 Mbps and 13 Mbps respectively [37].

2. Small number of clients (typically between 1 and 5) and smaller distances be-

tween AP and clients than traditional WLANs. In contrast, commercial enter-

prise WLAN management techniques typically deal with large number of clients

spread out at various distances from the AP locations.

3. Dynamic nature of interference due to mobility of the AP. Moving APs can stay

in or go out of range of multiple fixed APs and/or other moving APs.

In this chapter, an analytical model for coexisting fixed and mobile WLAN hotspots

with heterogeneous traffic is presented where an unsaturated traffic model for mobile

APs is considered in order to reflect the limited backhaul capacity constraint. The

model is used to evaluate the performance of a mobile WLAN as it transits through

a set of densely deployed fixed access points (APs), and performance problems due to

lack of frequency coordination are identified. An adaptive channel assignment (ACA)

scheme for improving mobile AP performance is proposed and evaluated. Furthermore,

we show that setting the scanning interval in ACA requires consideration of the speed

at which the mobile WLAN is moving in order to compensate for the throughput losses

during channel scanning.

2.1 Modeling Coexistence of Fixed and Mobile Wi-Fi APs

2.1.1 Deployment Scenario

In our MATLAB based simulation study, we consider a random deployment of multiple

fixed APs in a 10 by 0.5 sq. km area. The density of APs is varied to emulate a range of

real-world deployment scenarios including highways, residential, and commercial areas.

A single mobile AP follows a random trajectory in the given area. We assume that each

AP chooses one of the three orthogonal Wi-Fi channels in the 2.4 GHz range and the

channel assignment at fixed APs is random. Also, all APs operate in the ‘greenfield’ or

‘non-legacy support’ mode of 802.11g, i.e., it assumes that there are no 802.11b devices
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Table 2.1: Simulation parameters of Fixed and Mobile AP

Parameter Fixed AP Mobile AP

No. of APs N 1

Traffic Model Saturated Unsaturated (backhaul
limit: 6 Mbps)

Wi-Fi type 802.11g (green mode) 802.11g (green mode)

Parameters for 802.11g

Channel rate 12 Mbps 54 Mbps

Header rate 6 Mbps 6 Mbps

ACK frame rate 6 Mbps 24 Mbps

σ 9µs 9µs

SIFS 10µs 10µs

DIFS 28µs 28µs

Other parameters

MAC header 24 Bytes

PHY header 16 Bytes

H PHY header @ Header bit rate, µs

ACK 14 Bytes + PHY header @ ACK frame
bit rate

Propagation delay 1 µs

L, length of packet 1020 Bytes @ channel bit rate, µs

Ts H + L+ SIFS + tp +ACK
+DIFS + tp, µs

Tc H + L+ACKTimeout, µs

present [38]. The carrier sense threshold of all APs is fixed at 215 meters [15]. For

each fixed AP, the clients connected to it can be present at arbitrary distances; thus

the channel rate cannot be assumed to be the maximum in all cases and is set to 12

Mbps for simulation purposes, considering an average case. On the other hand, clients

of mobile APs are usually located in close proximity of the AP which makes possible for

the AP to transmit at the maximum channel rate of 54 Mbps. Since we are primarily

interested in the downlink scenarios, performance of an AP is evaluated in terms of the

throughput metric. Table 2.1 summarizes the important simulation parameters used in

this study.

2.1.2 Heterogeneity in Network

As mentioned earlier, mobile APs use 3G/4G/LTE connection for backhaul, for which

the average download throughput is typically capped around 6 Mbps. Due to such
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limited backhaul capacity, a saturated traffic model, in which the incoming packet

buffer at APs always remain full, cannot be assumed for mobile APs. This leads to

a heterogeneous network with a mix of saturated and unsaturated nodes when mobile

and fixed APs coexist in a region [39, 40]. Malone et al. [39] presents a Markov chain

model of CSMA/CA that relaxes the restriction of saturated traffic conditions given

in Bianchi’s model [14] and allows nodes to have any specified traffic arrival rate, λ

packets/sec. We have adopted the model given in reference [39] for the mixed scenario

of fixed APs (saturated node with λ → ∞) and mobile AP (unsaturated node with

λ = 736 packets/sec as per the parameters described in Table 2.1). In addition, we have

modified the model to accommodate the different channel rates at fixed and mobile AP,

i.e., 12 and 54 Mbps respectively. A summary of the mathematical model is as follows:

Ptr = 1− (1− τ1)n1(1− τ2)n2 ;

Ps1 =
τ1(1− τ1)n1−1(1− τ2)n2

Ptr
;

Ps2 =
τ2(1− τ2)n2−1(1− τ1)n1

Ptr
;

E[S] = (1− Ptr)σ + n1Ps1PtrTs1 + n2Ps2PtrTs2

+ ((1− τ2)n2 − 1− Ptr − n1PtrPs1) ∗ Tc1

(1− (1− τ2)n2 − n2PtrPs2)Tc2;

Si =
PsiLi
E[S]

;

S =
n∑
i=1

Si.

(2.1)

where ni is number of APs; τi is probability that AP transmits in randomly chosen

time slot; Ptr is the probability at least one AP transmits in a given time slot; Psi is

the probability that AP of type i successfully transmits in a given time slot; E[S] is the

expected time per slot; Tci is average time that channel is busy due to collision; Tsi is

average time that channel is busy due to successful transmission; Si is the proportion

of time that the medium used by node type i for successful transmission of data; Li is

the expected time spent transmitting payload data for node type i; S is the normalized

throughput of the system. Here, index i assumes the values 1 and 2 for mobile and fixed
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Figure 2.2: Throughput at a mobile AP as a function of number of fixed APs in the carrier
sense of the mobile AP.

APs respectively. In the modified model, Tci is adjusted based on the source of packets

(fixed or mobile or fixed-mobile) involved in a packet collision. The notations used are

consistent to those used in Bianchi’s model [14]. Also, for saturation conditions at all

APs (λ→∞), the given model reduces to Bianchi’s model.

2.1.3 Performance at Mobile Wi-Fi AP

Using the given simulation parameters, we evaluate the downlink throughput perfor-

mance of a single mobile AP based on a Markov chain model of CSMA/CA (refer to

Eq. 5.3) as a function of the number of fixed APs N = {0, . . . , 15} where N fixed APs

are present in carrier sense range of the mobile AP. From Fig. 2.2, it is observed that

as the number of fixed APs increases, the throughput at the mobile AP decreases ex-

ponentially: from 4.18 Mbps for N = 1 to 0.26 Mbps for N = 15. We will use this

preliminary results in the later sections.

2.2 Adaptive Channel Assignment

Unlike enterprise WLAN APs, commercially available mobile APs currently do not

incorporate any dynamic channel adaptation schemes, possibly because of their simpli-

fied, small form-factor, and low-cost design. In this section, we study a basic frequency

planning technique applicable to mobile APs, called ‘Adaptive Channel Assignment’

(ACA). Adaptive channel selection capability is incorporated in most fixed APs even
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Figure 2.3: Random deployment of Fixed APs and the trajectory of the mobile AP.

though it not invoked very often; for example the popular least congested channel se-

lection (LCCS) scheme on most Cisco-Linksys APs are only invoked when the AP is

power cycled [41]. Under the ACA scheme, the mobile AP scans each channel from a

candidate channel-set (here, orthogonal channels 1,6, and 11 in the 2.4 GHz band) and

logs the number of unique beacons per channel. Based on the measurements, the AP

changes to a less-crowded channel if the number of estimated APs on that channel is

less than that of its current operating channel.

2.2.1 Increase in Throughput at Mobile Wi-Fi AP

Performance of Adaptive Channel Assignment (ACA) at a mobile AP is illustrated

by considering one instance of the deployment of fixed APs as shown in Fig. 2.3. In

this scenario, the mobile AP follows a specific trajectory (as per Fig. 2.3) of length

1 km with a pedestrian speed of 2 m/s. For the results presented in this section,

ACA scanning and switching interval is fixed at 1 sec, but we study the effect of

varying the inter-scan interval in Section 2.3. Fig. 2.4(a) and 2.4(b) show the quasi-

static throughput performance of mobile APs due to ACA compared to the case when

mobile APs are statically connected to one of the three Wi-Fi channels. Since ACA

continuously updates the Wi-Fi channel to the one which results in the least amount

of interference at the mobile AP, it shows significant improvement in the throughput

performance of mobile AP over the traversed distance. Thus, we can infer that mobile
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Figure 2.4: Application of Adaptive Channel Assignement (ACA)

APs need frequent updates in the selection of Wi-Fi channel as they change their

positions.

2.2.2 Effect of Density of Fixed W-Fi APs

The performance of mobile APs using ACA is compared with the case when a static

channel is assigned at mobile APs and throughput at mobile APs is averaged over 3

possibilities of static channel assignments with varying density of fixed APs. For this

simulation, we consider the same trajectory length of 1 km, and mobile speed of 2 m/s

( 4.5 miles/hr) as described in the Sec. 2.2.1. The number of fixed APs is varied from 10

to 120 APs/km2. Results are calculated for 20, 000 runs of simulation for each density.

Fig 2.5(a) plots the average throughput at the mobile AP for static and adaptive

channel assignments, where the throughput values are averaged over the trajectory

distance. The results show that average throughput at the mobile AP with static

channel assignment is in the range of 1.37 to 5.22 Mbps for the AP densities under

consideration. With the application of ACA, these throughput values increase to 1.92

and 5.93 Mbps respectively, achieving a maximum gain in throughput of 1.24 Mbps.

The percentage throughput increase as a function of AP density is shown in Fig.2.5(b).

For lower density values, the interference offered at a mobile AP due to fixed APs is

already low; thus the gain due to ACA is low as well. But as the density of fixed APs

increases, interference at the mobile AP becomes significant and gains due to ACA are
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Figure 2.5: Increase in throughput at mobile AP due to Adaptive Channel Assignment (ACA)
as a function of the number of fix APs/km2

relatively large. The percentage gain in throughput, however saturates around 42% at

the density of 70 APs/km2. At this density, all channels are so congested that adapting

the channel does not provide increasing benefit. Further increase in the density, thus

results in lower gains.

2.3 Adaptive Channel Assignment with High Mobility

In Section 4.1 the throughput evaluations considered a quasi-static model where the

mobile AP was considered to move at a pedestrian speed of 2 m/s. But in general,

mobile APs may move with much higher speeds, especially in the case of vehicular

mobile hotspots. Also, in the previous sections we showed that the frequent updates of

the Wi-Fi channel can mitigate interference at mobile AP, which subsequently improves

the performance at mobile AP. But this involves overheads due to channel scanning

and reassignment which needs to be considered for a more accurate evaluation of the

performance with ACA. The channel switching time for the 802.11 hardware chips is

usually low (for example less than 1ms for the Atheros AR9462 chip [42]), but scanning

multiple channels and measuring the number of beacons on each channel results in a

significant overhead in the system.

During channel scanning, channel load can be estimated by two methods: (1)

dwelling on each channel long enough to estimate the channel free and channel busy
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fractions and (2) listening for beacons from co-channel APs. The method of load esti-

mation depends on the sensing deployment system; thus the scanning time would vary

from system to system. To simplify the analysis, we assume that the total scanning time

required to estimate the load on all channels and connect on the channel with the least

load is 200 ms. Since the AP cannot scan channels and transmit data at the same time,

the throughput at the mobile AP is considered to be zero during this duration. For

example, let us consider the earlier example where the channel was scanned for ACA

every second. At this scanning interval, the average throughput at the mobile AP gets

reduced by 20% because of the scanning overhead. Thus, in order to better understand

this tradeoff between the throughput loss due to scanning and the throughput gain due

to changing to a better channel, we measure the performance of the ACA scheme while

varying the scanning period (i.e. the time period between two successive scans).

In this simulation study, the average throughput of a mobile AP is evaluated over a

10km trajectory with varying ACA channel scanning period between 1 and 20 seconds.

For each value of the scanning period, the resulting throughput values are averaged

over 10, 000 simulation runs. Results are plotted for four mobility speeds, s, 16.2, 32.4,

64.8 and 97.2 km/hr (10, 20, 40 and 60 miles/hr respectively) as shown in Fig. 2.6,

keeping the density of fixed APs constant at 50 APs/km2.

If ACA is not used and instead the channel assignment is done at random, average

throughput at mobile AP is 2.94 Mbps. This can be considered as a baseline for

comparison with ACA results with varying scanning periods. For all considered values

of mobility speed, a common trend is observed for the relation between the average

throughput at a mobile AP and the ACA scanning period. As the scanning period

increases, the throughput at the mobile AP increases as the loss in throughput during

the scanning time of 200 ms decreases. The throughput values attain a local maxima

at certain values of the scanning periods (which depends on the speed of the mobile

AP), and then starts a gradual decline. This reduction in throughput stems from the

fact that with longer scanning periods, the mobile AP is using a non-optimal channel

for longer durations.

We note that local optima of average throughput is obtained at different value of



18

0 2 4 6 8 10 12 14 16 18 20
2.8

3

3.2

3.4

3.6

3.8

4

ACA scanning period (sec)

T
hr

ou
gh

pu
t (

M
bp

s)

 

 

s = 16.2 km/h
s = 32.4 km/h
s = 64.8 km/h
s = 97.2 km/h
no ACA

Local optima
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scanning interval for given values of s. For s = {16.2, 32.4, 64.8, 97.2} km/hr, local

optima is observed at scanning intervals 10, 7, 5, 4 seconds respectively. This can be

explained by the fact that at higher speeds, the mobile AP moves a greater distance

between scans, each channel assignment ceases to be optimal more quickly. Thus, we

conclude that scanning interval in ACA needs to be updated depending on mobility

speed.
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Chapter 3

Emulating Multipath Channel in Wireless Network using

Equivalent Reduced Taps

Tactical radio channel simulators need to be able to accurately capture the effect of real-

world wireless channels upon communication waveforms. The complexity of emulating

multi-node wireless communication networks is directly related to the bandwidth of the

underlying channels, and this complexity can become prohibitive to implementation

when the underlying communication waveforms have bandwidths of several hundred

MHz. The computational tasks needed to simulate a multi-node tactical scenario con-

sists of two separate components: modeling the source-to-receiver channel, and mod-

eling the impact that pairwise interference between nodes can have on the receiver’s

ability to demodulate transmissions. There is thus a need for techniques that can reduce

the computational complexity associated with radio scenario emulation. While improv-

ing the computational cost associated with modeling the source-to-receiver channel is

important, it only leads to modest gains, and it is the second case, namely modeling the

aggregate effect of many other transmitters that act as interference, that can promise

significant reduction in the computational complexity needed to accurately emulate a

tactical radio scenario.

In this study, we consider a multi-node wireless network, either military or commer-

cial, in which N terminals communicate dynamically in a peer-to-peer fashion, as shown

in Fig. 3.1. Several nodes may communicate simultaneously over the same frequency

channel, either to maximize throughput per unit bandwidth, or because the medium

access protocols were not able to resolve physical interference among the transmitters.

The number of taps needed to characterize any link is related to the bandwidth-delay

spread product, which is the product of signal bandwidth (W ) and the RMS delay spread
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Figure 3.1: Network with N = 6 nodes, and three simultaneous communications links. Node D
is receiving a desired signal from Node A and M = 2 interferers, from Nodes C and E.

(τrms) of the multipath channel. Capturing the behavior of all possible links of this

network can dominate emulator cost and/or complexity. It is therefore desirable to use

the least number of filter taps to represent each of the N(N−1) potential links. If most

links are over channels for which Wτrms is large, then the number of filter taps that

must be emulated, and the corresponding cost and complexity, can be prohibitively

large.

In the past, several hardware and software emulators have been built to evaluate

performance in such multipath scenarios [43–46], where each transmitter-to-receiver

link can be a dispersive, multipath fading channel. Studies given in [46–48] emphasize

challenges of computational complexity and simulation accuracy while implementing

tapped-delay-line channel models on hardware. Earlier studies investigate several dig-

ital signal processing and optimization techniques. In [45], an ad hoc path combining

method is proposed which employs the optimization to match total power, mean delay,

and the RMS delay spread specified by the tapped-delay-line model. Borries et al. [46]

proposes a scalar resolution technique in simulator modules for FPGA-based hardware

simulators. Kahrs and Zimmer [48] discusses multipath signal generation based on re-

placing complex-valued fading functions with aggregate noise functions which can be

generated by using Doppler filtering. Hoeher [49] studies the discrete-time multipath

channel to compute tap-gain values using a delay-weight-and-sum method. Tap reduc-

tion schemes are employed in [50] to maximize the correlation between the band-limited
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channel response functions of the estimated and reduced taps.

In our study, twofold solution based on the stochastic analysis is provided to emulate

multipath channel responses - (1) firstly, 3-tap approximation to emulate direct com-

munication link between transmitter and its intended receiver (studied in Section 3.1),

and (2) n-tap approximation at interfering links to produce overall same interference

channel at receiver as against emulating each interfering link individually (studied in

the following Section 3.2).

3.1 Emulating Direct Communication Link using Equivalent Reduced-

Tap Filters

3.1.1 Approach

Multipath channel responses occurs in wireless radio communication due to number

of reasons such as physical environment (surrounding buildings, wall, hills, etc.), path

geometry, frequency band and signal bandwidth. In most scenarios, they are typically

represented by a multi-tapped delay line, with Rayleigh-fading tap gains, and tap spac-

ings of 1/W , where W is the signal bandwidth. If the RMS delay spread of the channel

is τrms, the number of significant tap gains is some multiple of Wτrms, which can be

quite large for even moderately wideband channels. Here, we assume that the channel

can be characterized by a power delay profile (PDP) composed of a set of tap delays,

{Tk}, and a set of corresponding mean-square tap gains, {Pk}, where k = 0, 1, 2 . . . , n̂,

where n̂ is the number of significant tap gains. Here, tap delays, {Tk}, can be arbitrarily

spaced in the power delay profile. The fading statistics of the tap gains {Pk} can be

arbitrary, though here they will be assumed to be complex-Gaussian (Rayleigh fading).

We will assume an exponential PDP as actual (‘true’) PDP that follows a widely used

channel model which is described in detailed in Section ??.

3-tap Channel Approximation

In this section, we propose tap reduction method to emulate given multipath channel

which matches the PDP of channel. We investigate whether a 3-tap equivalent response
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can be derived from the PDP of ‘true’ channel with n̂ >> 1 significant tap gains, that

can be used to accurately estimate the average bit error rate, <BER>, vs. receiver

input signal-to-noise ratio, SNR. The derived 3-tap PDP can be characterized by the

sets of tap delays ({T0, T1, T2}) and tap gains ({P0, P1, P2}), where, with no loss in

generality, we set T0 = 0 and P0 = 1 − P1 − P2. We present two new methods for

matching the 3-tap PDP to the M -tap ‘true’ PDP -

1. Moment-matching approach: deriving set of {P1, P2, T1, T2} in such a way that 3-

tap PDP matches the first 4 moments of the ‘true’ PDP which produces excellent

performance agreement up to about Wτrms = 2

2. Ad-hoc approach: deriving set of {P1, P2, T1, T2} with assumption of equally

spaced taps which produces excellent performance agreement for arbitrarily large

values of Wτrms > 2.

Both approaches are explained in Section 3.1.3.

We believe the proposed solution would be of potential value to emulator design,

coding of simulation platforms and analysis programs. For emulators, it simplifies the

needed firmware, which leads to lower cost. Proposed scheme makes simulation coding

universal where only set of input parameters {P1, P2, T1, T2} changes based on the power

delay profile of given channel. The advantage of reduced-tap responses is prominent

in emulator design, especially those built for large network with multiple nodes. For

a given network with N nodes, potentially, there will be N − 1 direct communication

paths as well as N(N − 2) interfering paths in a given scenario. Assuming the number

of taps needed for the ‘true’ channel is 5Wτrms and the channel is only moderately

wideband, e.g., Wτrms = 2, the proposed 3-tap approximation can cause the reduction

in taps by more than 60% which leads to significant cost saving for emulators.

Notations and definitions used throughout the chapter are partly summarized in

Table 3.1.
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Table 3.1: Some Notations and Definitions

Bandwidth W

Power Delay Profile as a function of delay τ PDP (τ)

RMS delay spread of the channel τrms
longest delay among significant echoes in the channel τmax
(maximum time dispersion in the multipath channel)

Gain for the kth-delayed channel echo gk
Power, < |gk|2 >, for the kth-delayed channel echo Pk
Impulse response of the channel h(t)

Ricean K-Factor Kr

Noise Peaking Factor NPF, y

Multipath averaged bit-error-rate <BER>

Signal-to-noise ratio SNR

3.1.2 The Exponential Channel

Here, we introduce a widely used exponential power delay profile for multipath fading

channels, which we use here to represent the true channel and from which we derive a

multi-tap channel impulse response. We will use this assumed true channel as baseline

to develop reduced tap channel approximations in later sections.

Generic Channel Impulse Response

From Nyquist sampling theory, any linear channel of bandwidth W can be represented

by a tapped delay line, with the taps spaced by 1/W or less. Assuming a tap spacing

of 1/W , the impulse response for such a channel can be written as

h(t) =

n̂∑
k=0

gk(t)δ(t− k/W ); ( all channels), (3.1)

where n̂ is chosen so that n̂/W represents the longest delay, τmax, among the significant

echoes in the channel; and gk(t) is the slowly time-varying complex gain for the kth-

delayed channel echo which does not changes over the duration, τmax, of the impulse

response. The value of n̂ should be the smallest integer equal to or greater than Wτmax

where large n̂ implies system implementation with more computational complexity.

Proceeding further with the general case, we now model the temporal variation,

gk(t), of the gain of the kth tap. We assume that the tap gain is a Ricean process with a
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Ricean K-factor, Kr. If Kr is infinite, then the tap gain is constant (nonfading channel);

at the other extreme, if Kr is zero, then the tap gain is a zero-mean complex Gaussian

process (Rayleigh fading channel). We will assume the latter case for purposes of this

study, but the more general Ricean model for gk(t) could just as well be considered.

From the above, we can write the kth tap gain as

gk(t) = (Pk)
1/2uk(t); k = 0, . . . , n̂. (3.2)

where Pk is the mean-square value of gk(t) over time (i.e., it is the average power gain of

the channel echo at delay k/W ); uk(t) is a complex Gaussian process of zero mean and

unit variance; and each uk(t) is low-pass-filtered to have the desired Doppler spectrum.

The sum of the Pk’s is the average path gain, whose negative dB value is the path loss.

The Exponential Power Delay Profile

A simple way to characterize a multipath channel is through the set of power gains {Pk},

i.e., if this set is known, the impulse response in (3.1) can be determined by substituting

the power gain values from this set into (3.2). A widely accepted assumption [51]

is that Pk decays exponentially with increasing delay, k/W in (3.1). Then the Pk’s

are uniformly-spaced samples of a decaying exponential function of delay called the

channel power delay profile (PDP). We assume the PDP has unit area and that, for the

exponential case, it has the form [52–54]

PDP (τ) =
1

τrms
exp

(
−τ
τrms

)
; τ ≥ 0, (3.3)

where τrms is the RMS delay spread of the channel.

We will model the actual channel as a tapped delay line filter, with taps spaced of

1/W , where the kth tap gain is zero-mean and complex Gaussian with mean-square

value proportional to PDP (k/W ), (3.3). We call this discrete PDP with exponentially

decaying amplitudes the true channel. In using it, an amplitude scaling factor is intro-

duced that forces the sum of the mean-square gains to be 1. In the next section, we
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will describe an n-tap (n = 3) filter that attempts to approximate it for purposes of

emulation, simulation or analysis.

Here, we note that the exponential PDP has infinite extent which, strictly speaking,

makes the number of taps required to represent the channel n̂ → ∞. The value used

for n̂ therefore depends on where the designer/analyst chooses to truncate the PDP:

If the choice is to go out, e.g., to 5 times the RMS delay spread, then n̂ will be the

nearest integer for which n̂/W = 5τrms, i.e., n̂ ≈ 5Wτrms. Including the tap at delay

0, this means that, for Wτrms = 1, the filter would consist of 6 taps.

3.1.3 Channel with Reduced Taps

A Moment-matching 3-tap Channel Approximation

An implementation of the tapped-delay line filter above can get large as Wτrms increases

significantly beyond the order of 1, corresponding to significantly greater than 6 taps.

What we do here is propose a 3-tap filter that matches the true channel in such a way

that the first, second, third and fourth moments of its PDP are the same as those for

the true channel. It is easy to show that these four moments for the exponential profile

of Eq. 3.3 are τrms, 2(τrms)
2, 6(τrms)

3 and 24(τrms)
4, respectively. For a 3-tap channel,

the PDP is

PDP (τ) =
3∑

k=0

Pkδ(τ − Tk); (3-tap Channel). (3.4)

The design issue thus comes down to finding {Pk, Tk} for k = 0, 1, 2 such that the first 4

moments of this PDP match those of the true channel’s PDP. The solution must satisfy

the conditions P0 + P1 + P2 = 1 and T0 = 0. Without going through the algebra, the

results are as follows:

(P0, T0) = (0.3333, 0),

(P1, T1) = (0.6220, 1.2679τrms),

(P2, T2) = (0.0447, 4.7318τrms).

(3.5)

The time-varying tap gains for the filter emulation can be obtained by forming a set of

independent and identically distributed (i.i.d.) complex Gaussian processes, {uk(t)},

k = 0, 1, 2, that have the desired Doppler spectrum, and then applying Eq. 3.2 and
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Eq. 3.19.

An Ad-hoc 3-tap Channel Approximation

We considered another plausible 3-tap channel, which is independent of the PDP mo-

ments and therefore more general. We will see, moreover, that for the PDP of Eq. 3.3 at

least, it produces better performance predictions for channel with high Wτrms. Again

subject to the conditions T0 = 0 and P0 + P1 + P2 = 1, the set of values for {Pk, Tk}

for k = 0, 1, 2 is

(P0, T0) = (1/3, 0),

(P1, T1) = (1/3, τrms),

(P2, T2) = (1/3, 2τrms).

(3.6)

The PDP for this channel matches that for the true channel in the first moment; almost

matches it in the second moment (1.67τ2rms instead of 2τ2rms); and falls well short in

matching the third and fourth moments. The choice of this second 3-tap channel was

basically ad hoc and based on intuition.

3.1.4 Evaluation

This section describes a method to compute and compare receiver performance over

the true and 3-tap channels (specifically, their bit-error-rates averaged over fading) to

assess the accuracy of 3-tap equivalents as a function of bandwidth.

Evaluation Methodology

The frequency response, H(f), for each of the above channel is computed by equation

given as

H(f) =
n̂∑
k=0

(Pk)
1/2uk exp(−j2πkf/W )

for the exponential channel, and similarly for the 3-tap channel.

Note that there is not one frequency response for a channel, but an infinite num-

ber, depending on the complex values chosen for the complex Gaussian, normalized tap
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gains, i.e, {u0, . . . , un̂} for the exponential channel, and {u1, u2, u3} for the 3-tap chan-

nel. Thus, the simulation is repeated over 2000 loops to generate these sets, compute

a performance metric for each set, and then get a CDF of the values computed. (Each

of these 2000 trials should generate a new, independent sample of um at each m, so the

Doppler spectrum is irrelevant for this simulation.)

Here, we compare these two kinds of channel with respect to noise peaking factor

(NPF) which is easy to compute, and also independent of the particular modulation

format, received power and noise level. NPF arises when the channel response is fully

equalized, i.e., when the receiver filter is adapted to be 1/H(f) over the signal band-

width (this is the zero-forcing equalizer). This kind of filter totally neutralizes the

multipath response, but it causes an increase in the receiver output noise power. That

increase is just the average of [1/|H(f)|2] over the signal bandwidth and, indeed, it

requires no assumptions about the signal modulation, received power, or other link

details.

By computing the NPF, denoted as y, for a few thousand realizations of the sets

{u0, u1, . . .}, we get a population of y-values that can be described by a CDF. Applying

this procedure for both exponential and 3-tap channel, performance of 3-tap filter is

analyzed to predict the NPF statistics of exponential channel.

The 3-tap approximation is further tested in terms of the multipath-averaged bit-

error-rate, <BER>, where <BER> is formulated as function of both NPF and link

signal-to-noise ratio (input at the receiver), SNR. A close approximation to the instanta-

neous bit-error-rate, i.e., the value of BER conditioned on the value of the noise peaking

factor, y, is given for the case of M-ary quadrature amplitude modulation (M-QAM)

modulation by [55]

BER|y = 0.2 exp

(
−1.5

(M − 1)
SNR/y

)
; (3.7)

and <BER> is the bit error rate averaged over the channel realizations (in our case,

the 2000 realizations of y-values generated in the above simulations). Note that SNR/y

is the receiver output signal-to-noise ratio, which is diminished from its value at the

receiver input (SNR) by a factor y ≥ 1, i.e., the noise increase caused by the equalizing
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filter.

For a given Wτrms, <BER> vs. SNR curves are computed as follows:

1. For a channel type under consideration (exponential or 3-tap) and low value of

Wτrms (e.g., 0.5), SNR is varied in the range of 1 (0 dB) and 100 (20 dB) with

the increment step of 2 dB.

2. For each SNR value, <BER> is computed using the set of samples for y and

Eq. 3.7.

3. Steps 1 and 2 are repeated for successive doublings of Wτrms.

Finally, we note that the CDF of y and the resulting curves of <BER> vs. SNR

depend solely on Wτrms. The accuracy of the 3-tap model in predicting performance

is likely to decline with increasing Wτrms which we evaluate in detail in the following

section.

Results

As shown in Fig. 3.2, CDFs of NPF values for the exponential and moment matching

3-tap approximation channels are compared for four values of Wτrms. For lower values

of Wτrms, CDFs of both the channel overlaps with each other but as Wτrms increases

CDFs starts separating. We see that separation between the two CDFs of NPFs be-

comes significant at Wτrms = 2. This denotes the limitation of the moment matching

3-tap approximation, i.e., the approximation may only be sufficient for Wτrms up to

the value where the CDF separation begins.

Results of the bit-error-rate computations for exponential and moment matching 3-

tap approximation are shown in Fig. 3.3. The cases shown are Wτrms = 1, 2, 4 and 8, for

SNR as high as 20 dB and <BER> as low as 10−8. The separation between exponential

and 3-tap channel for a given value of Wτrms determines the accuracy of the approx-

imation. The bit-error-rate results are consistent with the previously described NPF

results for which 3-tap approximation matches very closely with exponential channel

when Wτrms < 2.
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Figure 3.2: CDFs of the Noise Peaking Factor (NPF) comparing with 3-tap moment-matching
channel

We quantify the accuracy of 3-tap approximation for bit-error-rate results forWτrms >

2 in terms of SNR discrepancy, δSNR, which is defined as the difference between SNR val-

ues required by exponential and 3-tap approximation channel to achieve <BER>= 10−8

(refer to Table 3.2). For Wτrms = 2, δSNR is less than 1 dB. As expected, δSNR in-

creases with increase in Wτrms with maximum δSNR = 2.7 dB at Wτrms = 32. Beyond

Wτrms = 32, δSNR seems to level off asymptotically with increasing Wτrms. The reason

is that the variable y in Eq. 3.7 becomes more and more narrowly distributed about a

single value as Wτrms increases without bound. (The reason, in turn, for this narrow-

ing is that the number of channel ‘correlation bandwidths’ within the signal bandwidth

increases without bound, so that the random variable y converges toward its mean.)

At the more practical bit-error-rate level <BER>= 10−4, the discrepancies are

even smaller, lying below 1.5 dB. Assuming these are acceptable discrepancies in the

prediction of link performance, even for signal bandwidths as high as 250 MHz, the 3-

tap channel approximation can be used for RMS delay spreads up to 0.13 microseconds.
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Figure 3.3: BER vs. SNR for 4-QAM Signaling comparing with 3-tap moment-matching channel

In most cases, systems with 250-MHz bandwidths will be limited to ranges so short that

RMS delay spreads hardly, if ever, exceed this value.

We repeated the above exercise for the ad-hoc 3-tap channel. As given in Table 3.2,

beyond the value Wτrms = 1, we find the discrepancies in required SNR, δSNR, to be

smaller than for the moment-matching 3-tap channel, with minimum decrease of 25%

in δSNR. As Wτrms increases to very large values, the SNR discrepancies for <BER>

= 10−8 level off at about 2.0 dB; at <BER>= 10−4 they level off at about 1.1 dB.

Overall our 3-tap approximation analysis shows to be quite promising toward the

effort of complexity reduction. For a single-carrier transmission with receiver equaliza-

tion, a suitable 3-tap approximation to the true channel can be found for any combi-

nation of bandwidth and channel delay spread of likely practical interest.
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Table 3.2: Discrepancies (dB) in SNR at <BER>= 10−8

Wτrms Moment-matching Ad-hoc 3-tap
3-tap channel channel

1 0.22 0.67

2 0.91 0.22

4 1.76 0.95

8 2.06 1.42

16 2.46 1.75

32 2.69 1.94

64 2.64 2.04

128 2.61 1.91

3.2 Emulating Co-Channel Interference Using Equivalent Reduced-

Tap Filters

In Section 3.1, we see that the multipath channel responses for each channel link can

be represented by equivalent reduced-tap filters. But in multinode wireless network,

there are a number of interfering links, so their emulation complexity, could become

dominant when multiple communication links are active simultaneously on the same

channel. The number of filter taps required per link to emulate the actual channel is a

function of the channel bandwidth W and RMS delay spread τrms. Assuming each per-

link channel to have an exponentially decaying power delay profile, this value is about

4Wτrms. We propose to emulate each link using n uniformly-spaced taps of equal

mean-square gain in such a way that overall received interference can be represented

by combining the n-tap multipath responses at the interfering links. In our case, the

required number of taps to emulate per-link channel is only 2Wτrms, while maintaining

the important characteristic (i.e., the CDF of total power, taken over the fading) of

the actual (exponential) channel. We derive this result analytically and confirm it by

simulation. Improving on this 50% reduction in required taps, we further show that the

loss in accuracy is significantly low so long as the total number of taps emulated is the

order of 16 or more. For large values of Wτrms, this can lead to even more reduction

in n and, thus, further limit the cost and complexity of emulators.
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3.2.1 Approach

To estimate the number of taps, n, needed per link, we consider the following scenario:

There are M < N interference signals at a given receiver, all having the same multipath-

averaged power; all M signals are received over channels with exponential power delay

profiles (PDPs); the M channels have independent fading and the same Wτrms; and

each channel is represented by a filter with n taps of equal mean-square gain. Our

goal is to determine the total number of per-link filter taps, n, needed for a given

M and Wτrms, such that the CDF of total instantaneous received interference power,

taken over the ensemble of all channel fades, is essentially the same as that for the

true (exponential) PDP. We use a combination of analysis and simulation to obtain the

required n. We show that, for any M , a very close CDF fit is obtained whenever n is

twice Wτrms. To implement the true (exponential) channel would require, instead, 3 or

4 times this product, so the proposed emulator approach would yield a tap reduction

of up to 50%. Furthermore, when the product nM equals or exceeds the order of 16,

the inaccuracy in using the emulator to assess interference is small for any Wτrms. For

wideband channels, where Wτrms is large, this would permit even greater reductions,

both in the total number of required taps and in the number of required taps per link.

Notations and definitions used throughout this chapter are summarized in Table 3.3.

3.2.2 The Exponential Interference Channel

The ‘true’ response of the links over which the interfering signals propagate is repre-

sented by an exponential discrete power delay profile (PDP) as explained in previous

Section 3.1.2. In this section, we further derive the instantaneous total interference

power for this channel and derive its mean and variance over the multipath fadings of

the M links. In using the channel with exponentially decaying amplitudes, an ampli-

tude scaling factor is introduced that forces the sum of the mean-square gains to be 1

(see Section 3.2.2).



33

Table 3.3: Some Notations and Definitions

Number of active nodes in the network N

Number of interfering links M , M < N

Power Delay Profile as a function of delay τ PDP (τ)

Bandwidth W

RMS delay spread of the channel τrms
Bandwidth-delay spread product Wτrms
Mean power for the kth-delayed channel echo Pk
Number of PDP rays per link for true channel n̂

Number of PDP rays per link for approximated n
channel

Power spectrum density of the transmitted signal S(f)

Power spectrum density of the received signals Srec(f)

Frequency response of the channel H(f)

Instantaneous power received from a single y
interfering link

Instantaneous power received from M interfering z
links

Total Instantaneous Interference Power

Assume there are M interfering links, all having the same transmitted power spectral

density, S(f), and the same mean-square path loss, G, to the receiver of the desired

signal. For convenience, we set G = 1. The power spectral density of a single interfering

signal at the receiver is

Srec(f) = S(f)|H(f)|2; 0 ≤ f ≤W, (3.8)

where H(f) is a random multipath fading response whose mean-square value at every

f is 1. For the case of n̂-taps (multi-ray PDP), H(f) can be written as

H(f) =
∞∑
k=0

P
1/2
k uk exp(−j2πfk/W ). (3.9)

where k/W is relative delay; Pk is the mean power in the kth ray; all the uk are

independent and each uk is a slowly time-varying complex Gaussian random process. It

fluctuates at a rate comparable to the Doppler bandwidth, which is very small compared

to the fluctuation rate of the signal (on the scale of the bandwidth, W ). Thus, we can



34

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 ’T
ru

e’
 C

ha
nn

el
 D

at
a 

S
am

pl
e

M = 6
M = 4
M = 2

Figure 3.4: Quantile-quantile plots of z for an exponential PDP with Wτrms = 16 and M =
2, 4, 6. For each M , the plot shows the closeness of z to a Gaussian variable of the same mean
and variance (red dashed line).

regard H(f) in (3.9) as quasi-static, but still a random function that will vary over

time.

The power in the received signal (conditioned on the uk) from the given interfering

link is the integral of Srec(f), (3.8), over the signal bandwidth. We can assume that

S(f) is uniform over the signal bandwidth, as in the most modern radio systems. For

simplicity and with no loss in generality, we assume that the uniform value is 1/W , so

that the total transmit power is 1. Thus, Srec(f) simplifies to the integration of |H(f)|2

over the bandwidth W . As taps are spaced at integer multiples of 1/W , the integral

of |H(f)|2 reduces to the sum of the ray powers. Thus, instantaneous power received

from one interfering link, y, over a multipath channel with an exponential power delay

profile is given by

y =

∫
f
(1/W )|H(f)|2df =

∞∑
k=0

Pk|uk|2. (3.10)

We assume that each interference link has an independent channel response. Thus, the

total instantaneous power, z, of the received interference from M links is the sum of M

independent and identically distributed (i.i.d.) variables like y.
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Analysis of the Exponential PDP

Each normalized path gain for each interference link (e.g., each uk in (3.10)) is a zero-

mean, unit-variance, complex Gaussian fading term. Thus, |uk|2 is a random variable

whose pdf is a decaying exponential of unit mean. We have learned that, as Wτrms

grows large, the pdf of z tends towards a near-Gaussian distribution. For example,

Fig. 3.4 compares quantile-quantile plots of the variable z against those of a Gaussian

variable with the same mean and variance; the closeness of each solid curve to the

straight dashed line beneath it confirms that z is near-Gaussian for the conditions

shown. For the n-tap channel with uniform mean-square gains, the same will be true as

n grows large. Therefore, the CDF of total fading power for the two kinds of channels

will be very similar so long as y has the same mean and variance for both [56]. This

motivates us to (i) derive the mean and variance of z for the exponential PDP; (ii) do

the same for the n-tap PDP; and (iii) equate the moments to obtain n as a function of

Wτrms. We complete Step (i) here.

To begin, the expression for Pk is given as

Pk =
A

Wτrms
exp

(
−k

Wτrms

)
; k = 0, . . . ,∞, (3.11)

where the factor 1/W is added to average |H(f)|2 over frequency in a bandwidth W ;

and A is chosen so that the infinite sum over k is 1. Using
∑

k x
k = 1/(1 − x) for

0 < x < 1 and k = 0, 1, . . . ,∞, we have

A = Wτrms (1− exp (−1/Wτrms)) ,

which gives Pk as

Pk =

(
1− exp

(
−1

Wτrms

))
exp

(
−k

Wτrms

)
; k = 0, . . . ,∞. (3.12)

We note that, for very large Wτrms, A approaches 1.

Due to the specific assignment of A here, we have E[y] = 1; thus, E[z] = M .

Variance of y, var{y} = E[y2]− E[y]2, requires its first and second moments where we
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already know that the first moment is 1. Now, with reference to (3.10),

E[y2] =
∑

k P
2
kE[|uk|4] +

∑
k

∑
j 6=k PjPkE[|uj |2|uk|2];

j, k = 0, . . . ,∞.
(3.13)

The mean of |uj |2|uk|2 can be evaluated considering the two cases j = k and j 6= k.

Case: k = j

Since each uk is a zero-mean, unit-variance, complex Gaussian, x = |uk|2 is an expo-

nential random variate (r.v.) of unit mean with pdf PX(x) = exp(−x);x > 0. Thus,

E[|uk|4] = 2.

Case: k 6= j

Here, xk = |uk|2 and xj = |uj |2 are independent exponential random variable with joint

pdf PXk,Xj (xk, xj) = exp(−xk) exp(−xj);xk > 0, xj > 0;

E[|uj |2|uk|2] = 1.

Thus, (3.13) simplifies to

E[y2] =
∞∑
k=0

P 2
k +

∞∑
k=0

∞∑
j=0

PjPk. (3.14)

As P 2
k and PjPk are known functions of Wτrms, we can get closed form expressions for

these sums as
∞∑
k=0

P 2
k =

1− exp(−1/Wτrms)

1 + exp(−1/Wτrms)
;

∞∑
k=0

∞∑
j=0

PkPj = 1.

(3.15)

From (3.14) and (3.15), an expression for var{y} is given by

var{y} =
1− exp(−1/Wτrms)

1 + exp(−1/Wτrms)
, (3.16)

and final expressions for mean and variance of total instantaneous interference power z
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are given by

E[z] = ME[y] = M ;

var{z} = Mvar{y} = M
1− exp(−1/Wτrms)

1 + exp(−1/Wτrms)
.

(3.17)

Finally, we note that for simulation/evaluation purpose, one might choose to trun-

cate the PDP to 4 or 5 times the RMS delay spread. Assuming the latter, n̂ will be the

nearest integer for which n̂/W = 5τrms, i.e., n̂ ≈ 5Wτrms. Including the tap at delay

0, this means that, for Wτrms = 1, the filter would consist of 6 taps.

3.2.3 Emulator Channel with Reduced Taps

This section introduces the response of the channels to be emulated, each being an

n-tap response with uniform mean-square tap gains. We derive the mean and variance

of total interference power for this channel as well and, by equating them with those

for the exponential channel, we determine the required n as a function of Wτrms.

The n-tap Channel Approximation

An implementation of the tapped-delay line filter above can get large as Wτrms increases

significantly beyond the order of 1, corresponding to significantly more than 6 taps. We

propose here an n-tap filter (n < n̂) having the PDP

PDP (τ) =
n−1∑
k=0

Pkδ(τ − Tk), (3.18)

where PDP is subject to the conditions T0 = 0 and P0 + P1 + . . .+ Pn−1 = 1; and the

set of values for {Pk, Tk} for k = 0, 1, . . . , n− 1 is

Pk = 1/n,

Tk = 2k/W.

(3.19)

The time-varying tap gains for the filter emulation can be obtained by forming a set

of i.i.d. complex Gaussian processes, {uk(t)}, k = 0, 1, . . . , n− 1, that have the desired

Doppler spectrum, and then applying (3.2). We will see that, with the above choices of
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tap amplitudes and spacings, an n can be found which gives excellent agreement with

the exponential PDP, both in the CDF of total interference power and in the RMS

delay spread.

Analysis of the n-tap PDP

The spectral analysis of instantaneous interference power, leading to (3.10) for the

instantaneous power sum, y, in an interference link, is the same for the n-tap channel.

Thus we can write

y =

n−1∑
k=0

(1/n)|uk|2. (3.20)

Since x = |uk|2 is an exponential random variate (r.v.) with pdf PX(x) = exp(−x);x >

0, the sum, v, of n unit-mean r.v.’s is an nth-order Gamma r.v. with pdf

PV (v) =
vn−1 exp(−v)

(n− 1)!
; v > 0. (3.21)

From (3.20), the received power y is v/n so that we have

PY (y) = nPV (v = ny) =
nnyn−1 exp(−ny)

(n− 1)!
; y > 0, (3.22)

which indicates the pdf of the received power, y, due to one interferer. However,

there are M such interfering links and, according to our assumptions, they are all i.i.d.

Therefore, z is a sum of n′ = nM i.i.d. exponential r.v.’s, each having a mean of 1/n.

We thus obtain the pdf of z as

PZ(z) =
nn

′
zn

′−1 exp(−nz)
(n′ − 1)!

; z > 0. (3.23)

Here, z represents the total instantaneous interference power due to M interfering links

and has mean and variance

E[z] =
n′

n
= M ; var{z} =

M

n
. (3.24)
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Table 3.4: Number of taps n as a function of Wτrms

Wτrms n (Eq. (3.25)) n (Eq. (3.26))

0.5 1.31 1

0.75 1.72 2

1 2.16 2

2 4.08 4

3 6.06 6

4 8.04 8

8 16.02 8

16 32.01 8

32 64.005 64

Required Number of Taps Per Link, n

We now combine (3.17) and (3.24) to match the moments, E[z] and var{z}, for the two

kinds of channels. The means for the two cases are automatically matched because of

our normalizations. Now equating the variances, we obtain

n =
1 + exp(−1/Wτrms)

1− exp(−1/Wτrms)
= coth

(
1

2Wτrms

)
(3.25)

which shows n to be a function of the bandwidth-delay product Wτrms only. If n is

not an integer, it can be chosen equal to the integer nearest to the formula (but never

less than 1). For example, for Wτrms = 0.5, n = 1 tap; for Wτtrms = 0.75 and 1.0,

n = 2 taps; and so on (refer to Table to 3.4). Also, it is observed that as Wτrms

increases n approaches value 2Wτrms. In light of these observations, we can write a

simple-yet-accurate approximation for n, namely,

n = Q(max(1, 2Wτrms)), (3.26)

where Q(x) means ”quantization of x to the nearest integer”. The closeness of (3.25)

and (3.26) can be discerned from Fig. (3.5).
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Figure 3.5: Number of taps n per link: Comparison of n = coth(1/(2Wτrms)) from analysis
n =(Max(1, 2 ∗Wτrms))

3.2.4 Results

The n-tap Channel Approximation

Figure 3.6 shows CDFs of total interference power, z, for each of four values of Wτrms,

namely 1, 2, 4, 8. For each such value, curves are shown for three values of M = 2, 4, 6.

Each curve seen there are actually two curves overlapped, one for the exponential PDP

and the other for the n-tap PDP with n given by (3.26). The CDF for the approximated

(n-tap) channel matches that for the exponential channel, for each given M and Wτrms.

This confirms the validity of the n-tap channel approximation.

Another issue is the RMS delay spreads for the two kinds of PDPs. Given the tap

spacing of 2/W for the n-tap channel, we computed RMS delay spread for Wτrms values

from 1 to infinity. The result is that, over that range, the RMS delay spread for the

n-tap channel increased from τrms (the RMS delay spread for the exponential PDP) to

1.155τrms, a deviation never greater than 16%.

Some intuitive aspects are worth noting: For Wτrms < 0.5, our formula, (3.26)

specifies only one tap. For this condition, the channel is essentially flat-fading (little

or no frequency selectivity), so n = 1 is an intuitively obvious solution. We can also

see that the delay span of the n-tap response ranges from 2τrms (for Wτrms = 1) to

4τrms (as Wτrms goes to infinity). This is intuitively satisfying: it suggests that the

n-tap response covers the most significant part of the response of the ’true’ channel’s
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Figure 3.6: CDFs of z for n-tap channel and true (exponential) channel, when the number of
interfering links is M = 2, 4, 6 and n = 2Wτrms.

exponential PDP.

An Alternative Approach for Mn ≥ 16

There is an alternative way of looking at this problem that leads to an even less stringent

requirement on the number of taps. It begins with the observation that, for many

studies, the model of interference must merely be accurate up to some high level of

interference, e.g., up to the 95th percentile. With that in mind, we note that the CDF

of z becomes very steep (i.e., becomes more step-like) as as the total number of emulator

taps increases to large values. For combinations of M and Wτrms where n′ = Mn is

on the order of 16 or greater, we find that the CDFs for both channels are so steep

that their 95th percentiles of total power are no more than 1 dB apart. Thus, as M

and Wτrms increase, n′ = Mn need not be bound by the prescription n = 2Wτrms; n

can be smaller, so long as Mn is 16 or greater, leading to even greater savings in the
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Figure 3.7: CDFs of z for n-tap channel approximation with n = 8 in comparison with an
exponential PDP with Wτrms = 16 for interfering links M = 2.

number of emulator taps. We can express this analytically by the prescription

n = min(2Wτrms, 16/M);

n′ = min(2MWτrms, 16).

(3.27)

As an example, consider the realistic case of two interfering links (M = 2) and

an exponential PDP with Wτrms = 16. Using the more conventional approach, the

1/W -spaced channel taps used for each interference link would span a delay interval

∼ 4τrms. Hence, the number of taps per link would be ∼ 4Wτrms = 64; and for M = 2,

the total would be 128. The above analysis shows that an emulator with a total of 16

taps (8 per link) would suffice to capture the statistics of the total interference power,

a reduction in the total and per-link numbers of taps of 8 : 1.

The CDFs of total power for the two channels in this case are shown in Fig. 3.7.

Since n is not 2Wτrms, as prescribed in (3.26), the CDFs do not lie on top of each other

(as in Fig. 3.6). However, they are only 0.8 dB apart at the 95% level. In studying the

impact of interference, the effect of this inaccuracy would be trivial.
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Chapter 4

Practical Interpolation for Spectrum Cartography

through Local Path Loss Modeling

4.1 Radio Mapping Approach

The mapping approach described here exploits the mathematical structure of most

terrestrial path loss models, which are based on numerous measurement and modeling

campaigns over many years. To be specific, the majority of path loss models published

for outdoor environments are of the form PL(d) = B + Γlog(d/dr) + S, where B

and Γ are constants that depend on frequency, antenna heights and gains, and terrain

details; S is the statistical variation of path loss about [B + Γlog(d/dr)] over all Tx-

Rx separations of distance d. Here, dr is a reference distance, which we will assume,

for convenience only, to be 1 m. Path loss models having this form can be found, for

example, in [57–62]. It is customary to regard [B + Γlog(d/dr)] as the median path

loss for distance d, and S as shadow fading, typically modeled as a zero-mean Gaussian

random process over the environment. Finally, the received power at a given point on

the terrain can be written as, Pr = Pt + PL(d), which is the quantity to be mapped.

Here, Pr corresponds to receive power, and Pt is the transmit power. Invoking the

generic path loss form assumed here, Pr is

Pr = A+ Γ log(d/dr) + S, (4.1)

where A = Pt +B.

The constants A and Γ are context-specific in that they depend on the transmit-

ted power and the terrain features over the areas to be mapped. In an environment

filled with sensors, they can be computed by the network for any small (local) area by
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measuring received power at n nearby sensors and performing least-squares estimation

(LSE) or other forms of estimation [63,64]1. With A and Γ thus quantified, the median

received power

Pm = A+ Γ log(d/dr). (4.2)

can then be computed for any given point within the local area, and thus only S needs

to be further estimated at that location of interest. This can be achieved by measuring

S at each of the n nearby sensors (i.e., by subtracting the median at the sensor from the

measured power) and then forming an n-fold weighted sum of the resulting S-estimates.

This is the essence of our approach, which we describe in detail in later sections, and

can be applied to any and all points within the coverage area to create the radio map.

For finite n, the estimates of A and Γ will be imperfect due to the corrupting effects

of the random shadow fading, with the estimates tending to improve as n increases. We

require that n > 2 in all cases and later in this paper will examine a specific scenario

wherein n = 4. We will also propose a simple weighting scheme for estimating S at a

given point (which yields a powerful variant of inverse distance weighting, IDW) that

does not require knowing the spatial statistics of shadow fading; and we will see that,

in terms of RF power estimation accuracy, the results are close to a best-case bound,

which we will derive.

4.2 The Stochastic Method

In this section, we present the heart of our approach to performing the underlying

interpolations associated with estimating received power. We start by first providing

a quick background discussion regarding the spatial characteristics of shadow fading,

then move to presenting the idealized form of our interpolation approach, which includes

analyzing the first and second moments of shadow fading at an arbitrary point.

1Throughout this study we shall explore the use of least-squares estimation, due to its combination
of simplicity and good performance, but note that our methodology can apply equally well to other
approaches, such as maximum-likelihood estimation.
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4.2.1 Spatial Correlation of Shadow Fading

The interpolation approach that we will describe will involve: (i) using in-field mea-

surements to estimate the ‘deterministic’ part of Pr at a given point; and (ii) focus on

estimating the ‘random’ part, S, at the point of interest. One can envision the shadow

fading component as a two-dimensional stochastic process over the terrain, where S at

any point is a Gaussian random variable of zero mean and standard deviation σ; and

the relationship between S-values at any two points i and j can be characterized by an

autocorrelation function,

< SiSj >= cij , (4.3)

where < X > denotes the expected value of X. The optimal way to estimate S at a

location between measurement points (sensors) is to know and exploit the correlation

properties of S over the terrain, and hence we call this the stochastic method (SM).

A popular formulation for cij that is simple to use and supported by data in the

literature [65], is the decaying exponential,

cij = σ2 exp

(
−dij
Xc

)
, (4.4)

where dij is the physical distance between points i and j, and Xc is the so-called

correlation distance of shadow fading on the terrain. The value of this parameter

depends on the type of terrain, and empirical results have been reported for different

environments [66–68].

In our computations of RMS interpolation error, we will invoke the above correlation

coefficient as well as others, showing that the precise shape of the function is not a first-

order concern in the underlying problem.

4.2.2 The Ideal Case: SM-0

Assume that Pr is to be estimated at a given point on the terrain (labeled as point

0), which is surrounded by n measuring sensors (n > 2). The parameters A and Γ are

estimated from the n measurements of received power, and will be imperfect estimates
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due to the S-values, which act like additive noise. To obtain a theoretical best-case

accuracy, however, we assume at first that these estimates are perfect. Therefore, the

median value of Pr at point 0 is exact, and the network need only predict S0 (S at point

0). To quantify the minimal RMS error in this prediction, we use the mathematics of

multivariate Gaussian distributions: Assuming that S1, .., Sn are measured precisely at

the sensors, S0 is modeled as

[S0|S1, .., Sn] ' µ0 + σ0u, (4.5)

where µ0 is the mean of S0 conditioned on S1, .., Sn and is a weighted sum over these S-

values; u is a zero-mean, unit-variance Gaussian random variate; and σ0 is the standard

deviation of the variation about the mean. We will show that the weights over the n

S-values can be determined if its correlation is known. Thus, in the ideal case, the

expected value of S0 can be known, in addition to the median of Pr. This leaves only

σ0u as the unknowable component of Pr. Thus, σ0 is the irreducible RMS error in

interpolating Pr from the sensor measurements.

It is worth noting that the above approach is equivalent to a basic form of Kriging,

which is often referred to as Simple Kriging [69]. We show in Section ?? of the Appendix

that the minimum RMS error is equivalent to the RMS error obtained from Simple

Kriging, where the bias term is precisely known.

4.2.3 Determining µ0 and σ0

For the ideal case, SM-0, the environmental parameters A, Γ, and shadow fading values

at n sensors are perfectly known. Thus, Pr,0 at point 0 is given as

Pr,0 = A+ Γ log(d0/dr) + [µ0 + σ0u], (4.6)

where d0 is the distance from point 0 to the emitter, and the bracketed term corresponds

to the shadow fading component, (4.5).

Under the ideal conditions assumed, we can determine µ0 and σ0 exactly, since
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Table 4.1: Notation description

Notation Parameter

n Number of sensors

A” Redefined path loss constant

γ Path loss exponent

Pr,i True measurement (received power) at i

Pm,i True median power at i

σ Standard deviation of shadow fading

Xc Shadow fading correlation distance

Si True shadow fading at i

W Weights vector assigned to sensor measurements

di distance between emitter and i

SM Stochastic Method

RMSE Root Mean Square Error

S = [S1, · · · , Sn] is an n-fold set of zero-mean Gaussian variates of known correlation

matrix. The joint probability density function (pdf) of this set is [70]

fS(s) = ((2π)n|Cn|)−1/2 exp

(
−1

2
(STCnS)

)
(4.7)

where Cn is n×n correlation matrix of S with determinant |Cn| and each of its elements

is computed by (4.3). Thus, from multivariate Gaussian statistics [71], [S0|S] has mean

µ0 and standard deviation σ0 given by

µ0 = (cT0C
−1
n )S,

σ20 = σ2 − cT0C
−1
n c0,

(4.8)

respectively, where c0 is the n× 1 cross-correlation vector of S0 with S, where the j-th

element is given as c0(j) =< S0Sj >. From (4.8), we see that µ0 is a weighted sum

over the S-values at the n sensors, µ0 = W TS, where the weight vector is

W = (cT0C
−1
n )T . (4.9)

Table 4.1 lists notations which we have used here and in the rest of the study.
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4.3 Reducing the Stochastic Method to Practice

Examining the SM-0 approach suggests several ways to reduce the processing to prac-

tice. This is important because: (i) in reality, the median power cannot be known

precisely; (ii) it is very difficult to determine the correlations cij and, thus, the corre-

lation matrices Cn and c0; and (iii) even if it can be done, the real-time computation

needed to obtain the weights for estimating µ0 can be quite high, especially as n in-

creases.

In this section, we present and analyze a more realizable approach, SM-1, which

addresses the first concern about the median power; and following that, we present

SM-2, which is slightly less ideal than SM-1 but addresses all three issues.

4.3.1 The First Method, SM-1

For convenience, we begin by rewriting the power measured at the i-th sensor, where we

assign dr = 1 m, and we express Γ as 10γ, where γ is the path loss exponent. We assume,

moreover, that i = 1, .., n where n is the number of sensors whose measurements are

used to predict power at a particular unmeasured point (point 0). The power received

at the i-th sensor is rewritten as

Pr,i = A+ 10γ log di + Si, i = 1, .., n,

= (A+ Zn) + 10γ log di + (Si − Zn),

(4.10)

where

Zn =
1

n

n∑
i=1

Si. (4.11)

i.e., Zn is the average of the S-values at the n sensors. The reason for this reformulation

will be made clear shortly.

A general approach to reducing the stochastic method to practice is as follows:

1. Use the n measured values of Pr,i, along with least squares estimation (LSE), to

estimate A+ Zn and γ, leading to estimates, A
′

and γ
′
, that are imperfect. Due

to the normal distribution of shadow fading values, the received power is also
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normally distributed with mean Pm, the median received power, and variance σ2.

In this case, LSE is equivalent to maximum likelihood estimation [72].

2. Use the estimates A
′

and γ
′

to estimate the shadow fading term at each sensor,

i.e.,

S
′
i = Pr,i − (A

′
+ 10γ

′
log di). (4.12)

3. To estimate Pr,0 at point 0, use the equation

P
′
r,0 = A

′
+ 10γ

′
log d0 + S

′
0. (4.13)

where d0 is the distance from the emitter to point 0, and S
′
0 is a weighted sum

over the n estimates, S
′
1, S

′
2, .., S

′
n. The weights w1, w2, .., wn are the elements of

W , (4.9).

What we call SM-1 is this three-step approach, which requires knowing the spatial

correlation matrix of shadow fading; the second reduction method to be discussed later,

SM-2, uses an ad hoc weighting approach that requires no such knowledge.

The reformulation of the power equation, (4.10), can now be explained: Conditioned

on the n values of Si, the LSE algorithm seeks a solution (A
′
, γ

′
) that minimizes the

sum over i of

(∆Pr,i)
2 = [Pr,i − (A

′
+ 10γ

′
log di)]

2. (4.14)

In so doing, it implicitly stipulates that the “noise” components in the Pr,i-values have

a zero sum over i. Thus, it behaves as though the form of Pr,i is as given in the bottom

line of (4.10), where the term common to all Pr,i is (A+Zn), hereafter referred to as A”;

and the “noise” for each Pr,i-value is (Si −Zn), hereafter referred to as S”
i . (Note that

the sum over i of S”
i is zero.) The application of the LSE algorithm, therefore, yields

A
′

as an approximation to A”, and the n S
′
i-values as approximations to the S”

i -values.

The estimate for received power at point 0 is written as

P
′
r,0 = A

′
+ 10γ

′
log d0 +

∑
i

wiS
′
i . (4.15)
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In view of the above, it can also be written as

P
′
r,0 = A” + 10γ log d0 +

∑
i

wiS
′
i − δm,0, (4.16)

where, at any point k,

δm,k = ∆A+ 10∆γ log dk,

∆A = A”−A′
and ∆γ = γ − γ′

.

(4.17)

In Section ?? of the Appendix, we derive errors ∆A and ∆γ.

Using these results, we can write an expression for (Pr,0 − P
′
r,0) which is the dB

difference at point 0 between the estimated and actual received power. The result is

∆Pr,0 = Pr,0 − P
′
r,0

=

(
δm,0 −

n∑
i=1

wiδm,i

)
+

(
S”
0 −

n∑
i=1

wiS
′
i

)
,

(4.18)

where the first part reflects the total error caused by imperfect estimation of A” and γ,

and the second part is the error due to imperfect estimation of S”
0 = S0 − Zn . While

the formulation (4.9) has involved applying W to S-values, in actuality the path loss

estimation uses S” (see 4.10). Unfortunately, using the same formulation for the weights

in terms of the correlation matrix of S” can occasionally lead to problems associated

with an ill-conditioned Cn matrix depending on the geometry. Thus, to cope with this,

one option is to calculate W using the correlation matrix of S, as in (4.9), but apply

W to S”. This leads to very little degradation of the SM-1 results when compared with

SM-0 results, as well as with results for other methods in the literature.

Further solving for ∆Pr,0, we have,

∆Pr,0 = S0 +
n∑
i=1

Si

(
αi log

(
d0∏
j d

wj

j

)
− wi

)

+
n∑
i=1

Si

1−
∑
j

wj

(βi − 1

n

) ; j = {1, .., n}

(4.19)
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where

αi =

(∑n
j=1 log dj

)
− n log di

n
∑n

j=1 (log dj)
2 −

(∑n
j=1 log dj

)2 ;

βi =
(log di)

(∑n
j=1 log dj

)
− (1/n)

(∑n
j=1 log dj

)2
n
∑n

j=1 (log dj)
2 −

(∑n
j=1 log dj

)2 .

(4.20)

∆Pr,0 is seen to be a weighted linear sum of shadow fadings S1 through Sn at the

sensors and S0 at point 0. Therefore, ∆Pr,0 is a zero-mean Gaussian random variable

whose RMS value scales with σ.

4.3.2 The Second Method: SM-2

The obvious disadvantage of SM-1 is that the spatial correlation properties of shadow

fading, and thus the weighting vector W , are difficult to estimate in practice. However,

the SM-1 analysis allows us to compute best-case bounds on attainable accuracy for

any spatial correlation process. This provides a benchmark against which to compare

less optimal but more practical schemes. Following the method of [67], where inverse

distance weighting (IDW) is applied to the estimates Si, we propose the nonparametric

weighting function

wi =
y−ν0i∑n
j=1 y

−ν
0j

; i = 1, .., n, (4.21)

where y0i is the distance from sensor i to point 0. We will use ν = 1 in our calculations,

as [67] shows little variation in error performance for ν = 1, 2 or 3. Also note that, for

any choice of ν, the n weights add to 1, as in [67], which is not necessarily true for the

weights used in SM-1.

4.4 Evaluation

4.4.1 Methodology

For the sake of concreteness, we postulate a particular geometry, as shown in Fig. 4.1. In

a 3-km x 3-km area, a grid of sensors are superimposed where the sensors are separated

by distance D = 640 m. The postulated geometry is a typical coverage area that might
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Figure 4.1: Problem geometry to be studied. The sensor layout defines a square grid, with each
square having side D. Computations are made for the square shown shaded, with sensors 1,
2, 3 and 4. Interpolation methods are applied to points inside the square to estimate received
power from the emitter at location E.

be used, e.g., in a cellular network with a primary emitter (base station), primary

clients and secondary emitters. We will use this geometry to quantify the accuracy

of specific approaches. The proposed approaches can be scaled to other dimensions

and extended to other geometries2. Towards the objective of building a radio map, we

focus on one of the sensor squares, shown by the shaded region in Fig. 4.1, and can

apply our methodology to each square within the large grid. We will compute the RMS

interpolation error at points inside the square by averaging over the statistical ensemble

of shadow fading; we can also regard this as spatial averaging over all the squares in the

grid, assuming the propagation model is statistically stationary. We assume that there

is an emitter E external to this square area and all given sensors (here, n = 4) scans the

same band, where each of the sensors measures and reports the received power from E.

We assume the sensor measurements are sufficiently wideband that the effects of local

multipath fading are averaged out. We continue to assume that the emitter location is

known; later, however, we discuss how the case of unknown location and/or multiple

emitters might be handled.

Here the impact of emitter E at any arbitrary point 0 is determined by collecting

2Another possibility is tessellating hexagons in place of squares, as in studies of cellular networks
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Table 4.2: Simulation parameters

Parameter Value

Path loss model 15.3 + 10(3.76) log10 d
(3GPP suggested model [73]) A = 15.3, γ = 3.76

Shadow fading spread σ = 5 dB

Number of sensors n = 4

Length of a side of the square D = 640 m

Assumed coordinates for n sensor (0, 0), (0, 640), (640, 640), (640, 0)
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Figure 4.2: Spatial averages over the square of RMS interpolation error, for different methods,
as a function of D/Xc. Exponential correlation function, σ = 5 dB and Emitter at E(−100, 0).

measurements at the n = 4 sensors surrounding point 0 and applying the proposed

interpolation algorithms - SM-0, SM-1, and SM-2. We evaluate the performance of

each algorithm with respect to RMS error as described in previous sections. Further,

we provide a comparison of our proposed algorithms with several common interpolation

techniques: Nearest Neighbor (NN), Inverse Distance Weighting (IDW), and Natural

Neighbor (NaN). NN is the simplest interpolation technique where estimation at the

point 0 is equal to the measurement at the sensor nearest to point 0. Both IDW and

NaN provide estimates that are weighted sums of the n sensor measurements, with the

sum of the weights being 1. For IDW, each weight is based on distance to the sensor;

for NaN, the weights are based on areas, using Voronoi cells [74].

Point 0 can be anywhere inside the square, and we will find the RMS interpola-

tion error at many such points, specifically, points on a 64 × 64 array distributed

uniformly over the square. At every one of the 64 × 64 = 4096 points, we will ob-

tain the RMS interpolation error by averaging over 10000 realizations (or instances) of
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Figure 4.3: Spatial distributions of RMS interpolation error over the square, for the SM family
and D/Xc = 1. Exponential correlation function, σ = 5 dB and Emitter at E(−100, 0).

[S0, S1, S2, S3, S4]; and then we will average over the square. The overall spatial average

will be represented by the metric <RMSE>,

< RMSE >=

√∑m
j=1 x

2
j

m
, (4.22)

where <> in this case denotes a spatial average, and xj is the RMS error at the j-th

point in the 64× 64 array. Other simulation parameters are listed in Table 4.2.

4.4.2 Effect of Sensor Spacing

The most important parameter of the sensor network design is the sensor density, e.g.,

the number of sensors per unit area. This can also be captured by the nominal spacing

between sensors which, in our problem geometry, Fig. 4.1, corresponds to the side of

the square, D.

Moreover, the impact of the spacing depends, not on its absolute value, but on that

value relative to the distance over which shadow fading decorrelates. From (4.4) (or

related correlation functions), we can use the correlation distance Xc for this purpose,

and examine <RMSE> as a function of D/Xc. Typically, Xc varies from several meters

to a few hundred meters, depending on the type of terrain [66,74].

Fig. 4.2 shows <RMSE> as a function of D/Xc when the emitter is located at

E(−100, 0) with respect to given sensor coordinates (see Table 4.2). Fig. 4.2(a) com-

pares <RMSE> for proposed approaches SM-0, SM-1, and SM-2. As expected, SM-0
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Figure 4.4: Effect of emitter location on <RMSE> vs. D/Xc. Exponential correlation function
and σ = 5 dB.

provides the lower bound of the estimation error. We note that error curves of SM-

1 overlaps with SM-2, even though SM-2 lacks knowledge of the spatial correlation

function. Furthermore, Fig. 4.2(b) shows that SM-2 estimates received power with the

lowest RMS error when compared with the NN, IDW and NaN methods.

To affirm that <RMSE> is an appropriate metric, we computed the probability

density function (pdf) and its associated cumulative distribution function (CDF) over

the m = 4096 array points within the square. Results are shown in Fig. 4.3 for the

particular case D/Xc = 1. The major finding is the same for other values of D/Xc as

well, namely, that the RMS error is fairly uniform over the square. From the figure, for

example, we observe for D/Xc = 1 and the three SM approaches, that the RMS error

is within 0.3 dB of <RMSE> at 80% of the points in the array.
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4.4.3 Effect of Emitter Location

For the family of SM approaches, the location of the emitter does not affect the estimate

of S0 but can affect the accuracy in estimating the median, Pm, at a given point. To

demonstrate this impact, Fig. 4.4 shows plots of <RMSE> vs. D/Xc for two distinct

locations. For the three SM approaches, the impact of emitter location is seen to be

relatively small (see 4.4(a) and 4.4(c)); comparing 4.4(b) and 4.4(d), we see that the

impact on NN, NaN and IDW is greater. These trends are evident across a range of

emitter locations.

4.4.4 Effect of Correlation Function

The shape of the spatial correlation function in (4.4) is exponential, but other shapes

may prevail, depending on the topography. To show the robustness of RMS error results

to this shape, we now consider two other cases−

Gaussian correlation function

We now consider the correlation function [75]

cab = σ2 exp

[
−
(
dab
Xc

)2
]

(4.23)

Comparing Figs. 4.5(a) and 4.5(b) with Figs. 4.2(a) and 4.2(b), we see no substan-

tial difference between the exponential and Gaussian correlation functions, (4.4) and

(4.23).These functions can be considered circular, i.e., in each case, the locus of con-

stant correlation is a circle. We next consider a correlation function that depends on

direction as well as distance separation.

Elliptical correlation function

In this case, the locus of constant correlation is an ellipse, tilted at some rotation angle

and having unequal major and minor axes. For one possible case, with a major-to-minor

axis ratio of 3.3, we repeated the computations and obtained the results in Figs. 4.5(c)
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Figure 4.5: Effect of spatial correlation function on <RMSE> vs. D/Xc. σ = 5 dB and emitter
at E(−100, 0).

and 4.5(d). Again, we see no dramatic departure from results for other correlation

functions.

4.5 Discussion

This section summarizes the major findings of our study through the analytical and

graphical results for a square layout of sensors. We note that these findings can be

generalized and scaled to other geometric configurations.

• The ideal stochastic method (SM-0) is identical to Simple Kriging and gives the

lower bound on <RMSE> as a function of D/Xc. The curve of <RMSE> vs.

D/Xc rises smoothly from (0, 0) and approaches an asymptotic value equal to σ.

This error curve is independent of emitter location.

• A key attribute of SM-0, SM-1 and SM-2 is that they estimate the parameters of
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the median received power, a consequence of which is that the RMS errors go to

0 as D/Xc goes to 0.

• The RMS error curves for SM-1 and SM-2 are indistinguishable from each other in

all cases; thus, using the nonparametric weighting method of SM-2 incurs virtually

no penalty. For large D/Xc, the errors are slightly higher than for SM-0; the gap

depends on the geometry of the emitter location, but is never more than about

0.2σ (1 dB for σ = 5 dB).

• IDW is computationally simpler than NaN, but NaN yields smaller RMS errors.

However, the error curves for NaN and IDW do not approach 0 as D/Xc ap-

proaches 0, in contrast to the SM cases. For both methods, the error curves are

always above those for SM-2.

• The NN method is an outlier in this field of comparison. While simpler than all

others, it is highly sensitive to emitter location and in some cases produces very

large RMS errors compared to all others.

• SM-2 is much simpler to implement than NaN and Ideal Kriging (SM-0), and

unlike the latter, requires no knowledge of the spatial correlation function. It also

provides RMS errors that are fairly uniform across the coverage error.

• The behavior of the SM family of interpolation schemes is consistently better than

IDW, NaN and NN for different spatial correlation functions.

Taken together, it appears that SM-2 provides the best tradeoff in terms of compu-

tational simplicity, RMSE performance, and robustness to emitter location, correlation

function, and other network/environment conditions.

The construction of a radio map based on interpolation from a sparsely deployed

set of distributed sensors is a promising technique for monitoring spectrum usage. The

utility of such a radio map can be extended to applications such as spectrum polic-

ing, network planning and management. The currently available two weighted-sum

methods, IDW and NaN, have an important ‘robustness’ attribute in addition to not
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requiring knowledge of the spatial correlation function: They also do not require knowl-

edge of the emitter location, or even knowledge of how many emitters are active; for

each method, the operation is independent of this information. In the case of a single

emitter of known location, the proposed stochastic methods (SM) can estimate path

loss parameters to gain an advantage, and the result has been shown to be lower RMS

errors in interpolating radio power. Notably, the practical approach SM-2 has low er-

ror in comparison with NaN and IDW when D/Xc ranges between 0 and 1 and has

consistent RMS error irrespective of the emitter location. For the most part, however,

either IDW or NaN can be used as backup interpolation methods whenever the single-

emitter location, or number of emitters, is unknown. The opportunities suggested by

this observation are worthy of further study.
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Chapter 5

Coordinated Dynamic Spectrum Management of LTE and

Wi-Fi Networks

In the future wireless heterogeneous network, it is reasonable to forecast that Wi-Fi and

LTE will be among the dominant technologies used by RATs for access purposes. Thus,

this chapter focuses on the co-channel deployment of these two technologies. LTE is

designed to operate solely in a spectrum, which when operating in unlicensed spectrum,

is termed LTE-U. It is suggested in 3GPP, that LTE-U will be used as a supplemental

downlink, whereas the uplink will use licensed spectrum. This makes the deployment

even more challenging as the UEs do not transmit in unlicensed spectrum yet experi-

ence interference from Wi-Fi transmissions. Interference scenarios in their co-channel

operation are shown in Fig5.1. To alleviate these problems, we introduce a simplistic

but accurate analytical model to characterize the interference between Wi-Fi and LTE

networks, when they coexist and share the medium in time, frequency and space [12].

Furthermore, we have partially validated the model by performing experimental anal-

ysis in the 2.4 GHz band using USRP based LTE nodes and commercial off-the-shelf

(COTS) IEEE 802.11g devices in the ORBIT testbed.

5.1 Background on Wi-Fi/LTE Co-existence

Coordination between multi-RAT networks with LTE and Wi-Fi is challenging due to

the difference in the medium access control layer of the two technologies.

Wi-Fi is based on the distributed coordination function (DCF) where each trans-

mitter senses the channel energy for transmission opportunities and collision avoidance.

In particular, clear channel assessment (CCA) in Wi-Fi involves two functions to detect

any on-going transmissions [76,77] -
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Figure 5.1: Scenarios showing challenges of LTE and Wi-Fi coexistence in the same unlicensed
spectrum.

1. Carrier sense: Defines the ability of the Wi-Fi node to detect and decode other

nodes’ preambles, which most likely announces an incoming transmission. In

such cases, Wi-Fi nodes are said to be in the CSMA range of each other other.

For the basic DCF with no RTS/CTS, the Wi-Fi throughput can be accurately

characterized using the Markov chain analysis given in Bianchi’s model [14], as-

suming a saturated traffic condition (at least 1 packet is waiting to be sent) at

each node. Wi-Fi channel rates used in the [14] can be modeled as a function

of Signal-to-Interference-plus-Noise ratio. Our throughput analysis given in the

following sections is based on Bianchi’s model.

2. Energy detection: Defines the ability of Wi-Fi to detect non-Wi-Fi (in this case,

LTE) energy in the operating channel and back off the data transmission. If the

in-band signal energy crosses a certain threshold, the channel is detected as busy

(no Wi-Fi transmission) until the channel energy is below the threshold. Thus,

this function becomes the key parameter for characterizing Wi-Fi throughput in

the co-channel deployment with LTE.

LTE has both frequency division (FDD) and time division (TDD) multiplexing

modes to operate. But to operate in unlicensed spectrum, supplemental downlink and

TDD access is preferred. In either of the operations, data packets are scheduled in the
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successive time frames. LTE is based on orthogonal frequency-division multiple access

(OFDMA), where a subset of subcarriers can be assigned to multiple users for a certain

symbol time. This gives LTE additional diversity in the time and frequency domain that

Wi-Fi lacks, since Wi-Fi bandwidth is assigned to a single user at any time. Further,

LTE does not assume that spectrum is shared, and consequently does not employ any

sharing features in the channel access mechanisms. Thus, the coexistence performance

of both Wi-Fi and LTE is largely unpredictable and may lead to unfair spectrum sharing

or the starvation of one of the technologies [78,79].

In the literature, several studies have discussed spectrum management for multi-

RAT heterogeneous networks in shared frequency bands, primarily focusing on IEEE

802.11 and 802.16 networks [80–82]. Recently, Wi-Fi and LTE coexistence has been

studied in the context of TV white space [83], in-device coexistence [84], and LTE-

unlicensed (LTE-U) [85–87]. Several studies [86–88] propose CSMA/sensing based

modifications in LTE with features like Listen-before-Talk, RTS/CTS protocol, and

slotted channel access. In other studies, to enable Wi-Fi/LTE coexistence, solutions

like blank LTE subframes/LTE muting (feature in LTE Release 10/11) [83,89], carrier

sensing adaptive transmission [86], interference aware power control in LTE [90] have

been proposed, which require LTE to transfer its resources to Wi-Fi. These schemes

give Wi-Fi transmission opportunities but also lead to performance tradeoffs for LTE.

Further, time domain solutions often require time synchronization between Wi-Fi and

LTE and increase channel signaling. Some aspects of frequency and LTE bandwidth

diversity have been explored in studies [86] and [91], respectively. Frequency diversity

is perhaps the least studied problem in Wi-Fi/LTE coexistence, while previous studies

also have yet to consider dense Wi-Fi and LTE HetNet deployment scenarios in detail.

Notably, in the literature, there are no previous studies experimentally evaluating the

coexistence performance of Wi-Fi and LTE.



63

5.2 Interference Characterization

5.2.1 Interference Characterization Model

We propose an analytical model to characterize the interference between Wi-Fi and

LTE, while considering the Wi-Fi sensing mechanism (clear channel assessment (CCA))

and scheduled and persistent packet transmission at LTE. To illustrate, we focus on a

co-channel deployment involving a single W-iFi and a single LTE cell, which involves

disseminating the interaction of both technologies in detail and establish a building

block to study a complex co-channel deployment of multiple Wi-Fis/LTEs.

In a downlink deployment scenario, a single client and a full buffer (saturated traffic

condition) is assumed at each AP under no MIMO. Transmit powers are denoted as

Pi, i ∈ {w, l} where w and l are indices to denote Wi-Fi and LTE links, respectively.

We note that the maximum transmission power of an LTE small cell is comparable to

that of the Wi-Fi, and thus is consistent with regulations of unlicensed bands.

The power received from a transmitter j at a receiver i is given by PjGij where

Gij ≥ 0 represents a channel gain which is inversely proportional to dγij where dij is the

distance between i and j and γ is the path loss exponent. Gij may also include antenna

gain, cable loss, wall loss, and other factors. Signal-to-Interference-plus-Noise (SINR)

on the link i given as

Si =
PiGii

PjGij +Ni
, i, j ∈ {w, l}, i 6= j (5.1)

where Ni is noise power for receiver i. Here, in the case of a single Wi-Fi and LTE, if i

represents the Wi-Fi link, then j is the LTE link, and vice versa.

The throughput, Ri, i ∈ {w, l}, can be represented as a function of Si as

Ri = αiB log2(1 + βiSi), i ∈ {w, l}, (5.2)

where B is a channel bandwidth; βi is a factor associated with the modulation scheme.

1Throughput the paper, LTE home-eNB (HeNB) is also referred as access point (AP) for the purpose
of convenience
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For LTE, αl is a bandwidth efficiency due to factors adjacent channel leakage ratio and

practical filter, cyclic prefix, pilot assisted channel estimation, signaling overhead, etc.

For Wi-Fi, αw is the bandwidth efficiency of CSMA/CA, which comes from the Markov

chain analysis of CSMA/CA [14] with

ηE =
TE

E[S]
, ηS =

TS
E[S]

, ηC =
TC

E[S]
, (5.3)

where E[S] is the expected time per Wi-Fi packet transmission; TE , TS , TC are the

average times per E[S] that the channel is empty due to random backoff, or busy due

to the successful transmission or packet collision (in case of multiple Wi-Fis in the

CSMA range), respectively. αw is mainly associated with ηS .

In our analysis, {αi, βi} is approximated so that - (1) for LTE, Rl matches with

throughput achieved under variable channel quality index (CQI), and (2) for Wi-Fi,

Rw matches throughput achieved under Biachi’s CSMA/CA model.

Characterization of Wi-Fi Throughput

Assuming λc is CCA threshold to detect channel as busy or not, if channel energy at the

Wi-Fi node is higher than λc, Wi-Fi would hold back the data transmission, otherwise

it transmit at a data rate based on the SINR of the link. Wi-Fi throughput with and

without LTE is given as
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Model 1: Wi-Fi Throughput Characterization

Data: Pw: Wi-Fi Tx power; Gw: channel gain of Wi-Fi link; Pl: LTE Tx

power; Gwl: channel gain(LTE AP, Wi-Fi UE); N0: noise power;

Ec: channel energy at the Wi-Fi (LTE interference + N0).

Parameter: λC : Wi-Fi CCA threshold

Output : Rw: Wi-Fi throughput

if No LTE then

Rw = αwB log2

(
1 + βw

PwGw
N0

)
.

else When LTE is present

if Ec > λC then

No Wi-Fi transmission with Rw = 0

else

Rw = αwB log2

(
1 + βw

PwGw
PlGwl +N0

)
.

end

end

Characterization of LTE Throughput

Due to CSMA/CA, Wi-Fi is active for an average ηS fraction of time (Eq. (5.3)). As-

suming that LTE can instantaneously update its transmission rate based on the Wi-Fi

interference, its throughput can be modeled as follows-
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Model 2: LTE Throughput Characterization

Data: Pl: LTE Tx power; Gl: channel gain of LTE link; Pw: Wi-Fi Tx

power; Glw: channel gain(Wi-Fi AP,LTE UE); N0: noise power;

Ec: channel energy at Wi-Fi (LTE interference + N0);

Parameter: λC : Wi-Fi CCA threshold

Output : Rl: LTE throughput

if No Wi-Fi then

RlnoW
= αlB log2

(
1 + βl

PlGl
N0

)
.

else When Wi-Fi is present

if Ec > λC then

No Wi-Fi transmission/interference

Rl = RlnoW
.

else

Rl = αlB log2

(
1 + βl

PlGl
PlGlw +N0

)
.

Using (5.3) and ηC = 0 (a single Wi-Fi)

Rl = ηERlnoW
+ ηSRl

end

end

5.2.2 Experimental Validation

In this section, we experimentally validate proposed interference characterization mod-

els using experiments involving the ORBIT testbed and USRP radio platforms available

at WINLAB [92, 93]. An 802.11g Wi-Fi link is set up using Atheros AR928X wireless

network adapters [94] and an AP implementation with hostapd [95]. For LTE, we use

OpenAirInterface, an open-source software implementation, which is fully compliant
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Figure 5.2: Experimental scenario to evaluate the throughput performance of Wi-Fi w1 in the
presence of interference (LTE/other Wi-Fi/white noise) when both w1 and interference operated
on the same channel in 2.4 GHz
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Figure 5.3: Comparative results analytical model and experiments to show the effect of LTE on
the throughput of Wi-Fi 802.11g when distance between LTE eNB and Wi-Fi link is varied.

with 3GPP LTE standard (release 8.6) and set in transmission mode 1 (SISO) [96].

Currently, OpenAirInterface is in the development mode for USRP based platforms

with limited working LTE operation parameters.

In our experiment, depicted as the scenario shown in figure 5.2, we study the effect

of interference on the Wi-Fi link w1. For link w1, the distance between the AP and

client is fixed at 0.25 m (very close so that the maximum throughput is guaranteed

when interference is present. Experimentally, we observe maximum throughput as 22.2

Mbps). The distance between the interfering AP and Wi-Fi AP is varied in the range

of 1 to 20 m. The throughput of w1 is evaluated under three sources of interference -

LTE and Wi-Fi, when both w1 and the interference AP is operated on the same channel
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Figure 5.4: Comparative results analytical model and experiments to show the effect of LTE
on the throughput of Wi-Fi 802.11g when distance between LTE HeNB (AP) and Wi-Fi link is
varied.

in the 2.4 GHz spectrum band. These experiments are carried in the 20 m-by-20 m

ORBIT room in WINLAB, which has an indoor Line-of-Sight (LoS) environment. For

each source of interference, Wi-Fi throughput is averaged over 15 sets of experiments

with variable source locations and trajectories between interference and w1.

In the first experiment, we perform a comparison study to evaluate the effect of

LTE interference on w1, observed by experiments and computed by interference char-

acterization model. In this case, LTE signal is lightly loaded on 5 MHz of bandwidth

mainly consist of control signals. Thus, the impact of such LTE signal over the Wi-Fi

band is equivalent to the low power LTE transmission. Thus, we incorporate these

LTE parameters in our analytical model. As shown in figure 5.3, we observe that both

experimental and analytical values match the trend very closely, though with some

discrepancies. These discrepancies are mainly due to the fixed indoor experiment en-

vironment and lack of a large number of experimental data sets. Additionally, we note

that even with the LTE control signal (without any scheduled LTE data transmission),

performance of Wi-Fi gets impacted drastically.

In the next set of experiments, we study the throughput of a single Wi-Fi link in

the presence of different sources of interference - (1) Wi-Fi, (2) LTE operating at 5

MHz, and (3) LTE operating at 10 MHz, evaluating each case individually. For this

part, full-band occupied LTE is considered with the maximum power transmission of
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Table 5.1: Network parameters of Wi-Fi/LTE deployment

Parameter Value Parameter Value

Scenario Downlink Tx power 20 dBm

Spectrum band 2.4 GHz Channel bandwidth 20 MHz

Traffic model Full buffer via saturated UDP flows

AP antenna height 10 m User antenna height 1 m

Path loss model 36.7log10(d[m]) + 22.7 + 26log10(frq [GHz])

Noise Floor -101 dBm, (-174 cBm thermal noise/Hz)

Channel No shadow/Rayleigh fading

Wi-Fi 802.11n: SISO

LTE FDD, Tx mode-1 (SISO)

100 mW. As shown in figure 5.4, when the Wi-Fi link operates in the presence of other

Wi-Fi links, they share channel according to the CSMA/CA protocol and throughput

is reduced approximately by half. In the both the cases of LTE operating at 5 and 10

MHz, due to lack of coordination, Wi-Fi throughput gets impacted by maximum upto

90% compared to no interference Wi-Fi throughput and 20− 80% compared to Wi-Fi

thorughput in the presence of other Wi-Fi link. These results indicate significant inter-

system interference in the baseline case without any coordination between systems.

5.2.3 Motivational Example

We extend our interference model to complex scenarios involving co-channel deployment

of a single link Wi-Fi and LTE for the detailed performance evaluation. As shown in

figure 5.5, UEi, associated APi and interfering APj , i, j ∈ {w, l}, i 6= j, are deployed in

a horizontal alignment. The distance, dA, between UEi and APi is varied between 0 and

100 m. At each value of dA, the distance between UEi and APj is varied in the range

of −100 to 100 m. Assuming UEi is located at the origin (0, 0), if APj is located on the

negative X-axis then the distance is denoted as −dI , otherwise as +dI , where dI is an

Euclidean norm ‖UEi,APj‖. In the shared band operation of Wi-Fi and LTE, due to

the CCA sensing mechanism at the Wi-Fi node, the distance between Wi-Fi and LTE

APs (under no shadow fading effect in this study) decides the transmission or shutting

off of Wi-Fi. Thus, the above distance convention is adopted to embed the effect of

distance between APi and APj . Simulation parameters for this set of simulations are
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Figure 5.5: Experimental scenario to evaluate the throughput performance of Wi-Fi w1 in the
presence of interference (LTE/other Wi-Fi/white noise) when both w1 and interference operated
on the same channel in 2.4 GHz

given in Table 5.1.

Figure 5.6 shows the Wi-Fi performance in the presence of LTE interference. As

shown in figure 5.6(a), the Wi-Fi throughput is drastically deteriorated in the co-channel

LTE operation, leading to zero throughput for 80% of the cases and an average 91% of

throughput degradation compared to standalone operation of Wi-Fi. Such degradation

is explained by figure 5.6(b). Region CCA busy shows the shutting off of the Wi-Fi

AP due to the CCA mechanism, where high energy is sensed in the Wi-Fi band. This

region corresponds to cases when Wi-Fi and LTE APs are within ∼ 20m of each other.

In the low SINR region, the Wi-Fi link does not satisfy the minimum SINR requirement

for data transmission, thus the Wi-Fi throughput is zero. High SINR depicts the data

transmission region that satisfies SINR and CCA requirements and throughput is varied

based on variable data rate/SINR.

On the other hand, figure 5.7 depicts the LTE throughput in the presence of Wi-Fi

interference. LTE throughput is observed to be zero in the low SINR regions, which is

45% of the overall area and the average throughput degradation is 65% compared to the

standalone LTE operation. Under identical network parameters, overall performance

degradation for LTE is much lower compared to that of Wi-Fi in the previous example.

The reasoning for such a behavior discrepancy is explained with respect to figure 5.7(b)

and the Wi-Fi CCA mechanism. In the CCA busy region, Wi-Fi operation is shut

off and LTE operates as if no Wi-Fi is present. In both LTE and the previous Wi-Fi

examples, low SINR represents the hidden node problem where two APs do not detect
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(b) Wi-Fi performance sections- High
SINR: non-zero throughput, Low SINR:

SINR below minimum SINR
requirement, CCA busy: shutting off of
Wi-Fi due to channel is sensed as busy

Figure 5.6: Wi-Fi performance as a function of distance(Wi-Fi AP, associated Wi-Fi UE) dA
and distance(Interfering LTE AP, Wi-Fi UE) dI

each other’s presence and data transmission at an UE suffers greatly.

5.3 System Model

As seen in the previous section, when two (or more) APs of different Wi-Fi and LTE

networks are deployed in the same spectrum band, APs can cause severe interference

to one another. In order to alleviate inter-network interference, we propose joint co-

ordination based on (1) power, and (2) time division channel access optimization. We

assume that both LTE and Wi-Fi share a single spectrum channel and operate on the

same amount of bandwidth. We also note that clients associated to one AP cannot join

other Wi-Fi or LTE APs. This is a typical scenario when multiple autonomous opera-

tors deploy APs in the shared band. With the help of the proposed SDN architecture,

power level and time division channel access parameters are forwarded to each network

based on the throughput requirement at each UE. To the best of our knowledge, such

an optimization framework has not yet received much attention for the coordination

between Wi-Fi and LTE networks.

We consider a system with N Wi-Fi and M LTE networks. W and L denote the
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(b) LTE performance sections- High
SINR: non-zero throughput, Low SINR:

SINR below minimum SINR
requirement, CCA busy: shutting off of
Wi-Fi due to channel is sensed as busy

Figure 5.7: LTE performance as a function of distance(LTE AP, associated LTE UE) dA and
distance(Interfering Wi-Fi AP, LTE UE) dI

sets of Wi-Fi and LTE links, respectively. We maintain all assumptions, definitions

and notations as described in Section 5.2.1. For notational simplicity, we redefine

Ri = αiB log2(1 + βiSi) as Ri = αi log2(1 + βiSi), where constant parameter B is

absorbed with αi. Additional notation are summarized in Table 5.2.

In order to account for the co-channel deployment of multiple Wi-Fi networks, we

assume that time is shared equally when multiple Wi-Fi APs are within CSMA range

due to the Wi-Fi MAC layer. We denote the set of Wi-Fi APs within the CSMA range

of APi, ∀i as Ma
i and those outside of carrier sense but within interference range as

M b
i . When APi shares the channel with |Ma

i | other APs, its share of the channel access

time get reduced to approximately 1/(1 + |Ma
i |). Furthermore, M b

i signifies a set of

potential hidden nodes for APi, ∀i. To capture the effect of hidden node interference

from APs in the interference range, parameter ζ is introduced which lowers the channel

access time and thus, the throughput. Average reduction in channel access time at APi

is 1/(1 + ζ|M b
i |) where ζ falls in the range [0.2, 0.6] [15]. Therefore, the effective Wi-Fi

throughput can be written as
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Table 5.2: Definition of notations

Notation Definition

w, l indices for Wi-Fi and LTE network, respectively

W the set of Wi-Fi links

L the set of LTE links

P ij Transmission power of j-th AP of i,∈ {w, l}
Gij Channel gain between nodes i and j

Rij Throughput at j-th link of i,∈ {w, l}
Sij SINR at j-th link of i,∈ {w, l}
B Channel Bandwidth

N0 Noise level

αi, βi Efficiency parameters of network i ∈ {w, l}
Ma
i Set of Wi-Fi APs in the CSMA range of AP i

M b
i Set of Wi-Fi APs in the interference range of AP i

ζ Hidden node interference parameter

η Fraction of channel access time for network i, i ∈ {w, l} when
j, j ∈ {w, l}, j 6= i, access channel for 1− η fraction of time

Rwi = aibiα
w log2(1 + βwSwi ), i ∈W,

with ai =
1

1 + |Ma
i |

and bi =
1

1 + ζ|M b
i |
.

(5.4)

SINR of Wi-Fi link, i,∀i, in the presence of LTE and no LTE is described as

Swi =


Pwi Gii
N0

, if no LTE;

Pwi Gii∑
j∈L P

l
jGij +N0

, if LTE,
(5.5)

where the term
∑

j∈L P
l
jGij is the interference from all LTE networks at a Wi-Fi

link i.

The throughput definition of the LTE link i,∀i remains the same as in Section 5.2.1:

Rli = αl log2(1 + βlSi).
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The SINR of the LTE link, i,∀i, in the presence of Wi-Fi and no Wi-Fi is described as

Sli =


P liGii∑

j∈L,j 6=i P
l
jGij +N0

, if no Wi-Fi;

P liGii∑
j∈L,j 6=i P

l
jGij +

∑
k∈W akP

w
k Gik +N0

, if Wi-Fi,

(5.6)

where terms
∑

j∈L,j 6=i P
l
jGij and

∑
k∈W akP

w
k Gik signifies the interference contribu-

tion from other LTE links and Wi-Fi links. For the k-th Wi-Fi link, ∀k, the interference

is reduced by a factor ak to capture the fact that the k-th Wi-Fi is active approximately

for only ak fraction of time due to the CSMA/CA protocol at Wi-Fi.

For a given model, inter-network coordination is employed to assure a minimum

throughput requirement, thus the guaranteed availability of the requested service at

each UE. For this purpose, we have implemented our optimization in two stages as

described in following subsections.

5.4 Coordination via Joint Optimization

5.4.1 Joint Power Control Optimization

Here, the objective is to optimize the set of transmission power Pi, i ∈ {W,L} at Wi-Fi

and LTE APs, which maximizes the aggregated Wi-Fi+LTE throughput. Convention-

ally, LTE supports the power control in the cellular network. By default, commercially

available Wi-Fi APs/routers are set to maximum level [97]. But adaptive power selec-

tion capability is incorporated in available 802.11a/g/n Wi-Fi drivers, even though it is

not invoked very often. Under the SDN architecture, transmission power level can be

made programmable to control the influence of interference from any AP at neighboring

radio devices based on the spectrum parameters [98].

For the maximization of aggregated throughput, we propose a geometric program-

ming (GP) based power control [99]. For the problem formulation, throughput, given

by Eq. 5.2, can approximated as

Ri = αi log2(βiSi), i ∈ {W,L}. (5.7)
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This equation is valid when βiSi is much higher than 1. In our case, this approximation

is reasonable considering minimum SINR requirements for data transmission at both

Wi-Fi and LTE. The aggregate throughput of the WiFi+LTE network is

R =
∑
i∈W

aibiαw log2(βwSi) +
∑
j∈L

αl log2(βlSj)

= log2

(∏
i∈W

(βwSi)
aibiαw

)∏
j∈L

(βlSi)
αl

 . (5.8)

In the coordinated framework, it is assumed that Wi-Fi parameters ai and bi are

updated periodically. Thus, these are considered as constant parameters in the for-

mulation. Also, αi, βi, i ∈ {w, l} are constant in the network. Therefore, aggregate

throughput maximization is equivalent to maximization of a product of SINR at both

Wi-Fi and LTE links. Power control optimization formulation is given by:

maximize

(∏
i∈W

(βwSi)
aibiαw

)∏
j∈L

(βlSi)
αl


subject to Ri ≥ Ri,min, i ∈ W,

Ri ≥ Ri,min, i ∈ L,∑
k∈Mb

i

PkGik +
∑
j∈L

PjGij +N0 < λc, i ∈W,

0 < Pi ≤ Pmax, i ∈ W,

0 < Pi ≤ Pmax, i ∈ L.

(5.9)

Here, the first and second constraints are equivalent to Si ≥ Si,min, ∀i which ensures

that SINR at each link achieves a minimum SINR requirement, thus leading to non-zero

throughput at the UE. The third constraint assures that channel energy at a WiFi (LTE

interference + interference from Wi-Fis in the interference zone + noise power) is below

the clear channel assessment threshold λc, thus Wi-Fi is not shut off. The fourth and

fifth constraints follow the transmission power limits at each link. Unlike past power

control optimization formulations for cellular networks, Wi-Fi-LTE coexistence involves

meeting the SINR requirement at a Wi-Fi UE and, additionally, the CCA threshold at
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a Wi-Fi AP.

For multiple Wi-Fi and LTE links, to ensure the feasibility of the problem where

all constrains are not satisfied, notably for Wi-Fi links, we relax the minimum data

requirement constraint for LTE links. In our case, we reduce the minimum data re-

quirement to zero. This is equivalent to shutting off certain LTE links which cause

undue interference to neighboring Wi-Fi devices.

5.4.2 Joint Time Division Channel Access Optimization

The relaxation of minimum throughput constraint in the joint power control optimiza-

tion leads to throughput deprivation at some LTE links. Thus, joint power control is

not sufficient when system demands to have non-zero throughput at each UE. In such

cases, we propose a time division channel access optimization framework where network

of each RAT take turns to access the channel. Assuming network i, i ∈ {w, l} access the

channel for η, eta ∈ [0, 1], fraction of time, network j, j ∈ {w, l}, j 6= i, holds back the

transmission and thus no interference occurs at i from j. For remaining 1− η fraction

of time, j access the channel without any interference from i. This proposed approach

can be seen as a subset of power assignment problem, where power levels at APs of

network i, i ∈ {w, l}, is set to zero in their respective time slots. The implementation

of the protocol is out of scope of this paper.

In this approach, our objective is to optimize η, the time division of channel access,

such that it maximizes the minimum throughput across both Wi-Fi and LTE networks.

We propose the optimization in two steps -
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Power control optimization across network of same RAT

Based on the GP-formulation, the transmission power of the APs across the same

network i, i ∈ {w, l}, is optimized for Wi-Fi and LTE, respectively, as

maximize
∑
i∈W

Ri

subject to Ri ≥ Ri,min, i ∈ W

0 ≤ Pi ≤ Pmax, i ∈ W,∑
k∈Mb

i

PkGik +N0 < λc, i ∈ W.

(5.10)

and

maximize
∑
i∈L

Ri

subject to Ri ≥ Ri,min, i ∈ L

0 ≤ Pi ≤ Pmax, i ∈ L.

(5.11)

Here, the objective function is equivalent to maximizing the product of SINRs at the net-

works i, i ∈ {w, l}. The first and second constraints ensure that we meet the minimum

SINR and transmission power limits requirements at all links of i. In this formulation,

SINR at Wi-Fi and LTE respectively given as

Si =
PiGii
N0

, i ∈ W,

Si =
PiGii∑

j∈L,j 6=i PjGij +N0
, i ∈ L.

which are first cases in equations (5.5) and (5.6), respectively.

Joint time division channel access optimization

This is the joint optimization across both Wi-Fi and LTE networks which is formulated

using max-min fairness optimization as given below

maximize min (ηRi∈W , (1− η)Rj∈L)

subject to 0 ≤ η ≤ 1.

(5.12)
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Here, throughput values at all Wi-Fi and LTE nodes are considered as a constant, which

is the output of the previous step. The Time division channel access parameter η is

optimized so that it maximizes the minimum throughput across all UEs.

5.5 Evaluation of Joint Coordination

5.5.1 Single Link Co-channel Deployment

We begin with the motivational example of co-channel deployment of one Wi-Fi and one

LTE links, as described in § 5.2.3. Fig. 5.8 shows the heatmap of improved throughput

of Wi-Fi link, when joint Wi-Fi and LTE coordination is provided in comparison with

the throughput with no coordination as shown in Fig. 5.6 . Similarly, Fig. 5.9 shows

the heatmap of improved throughput of LTE link, when joint coordination is provided

in comparison with the throughput with no coordination, as shown in Fig. 5.7.

For both the figures 5.8 and 5.9, in their respective scenarios, though joint power

control improves the overall throughput for most of topological scenarios (see Fig. (a)

of 5.8 and 5.9), it is not an adequate solution for topological combination marked by

infeasible region as given in Fig. (b) of 5.8 and 5.9. The infeasible region signifies the

failure to attain the CCA threshold at Wi-Fi AP and link SINR requirement when

the UE and interfering AP are very close to each other. When we apply time division

channel access optimization for a given scenario, we do not observe any infeasible region,

in fact optimization achieves almost equal and fair throughput at both Wi-Fi and LTE

links, as shown in Fig. (c) of 5.8 and 5.9. On the downside, this optimization does not

consider cases when Wi-Fi and LTE links can operate simultaneously without causing

severe interference to each other. In such cases, throughput at both Wi-Fi and LTE is

degraded.

Fig. 5.10 summarizes the performance of Wi-Fi and LTE links in terms of 10th

percentile and mean throughput. We note that the 10th percentile throughput of both

Wi-Fi and LTE is increased to 15− 20 Mbps for time division coordination compared

to ∼ zero throughput for no and power coordination. We observe 200% and 350% Wi-

Fi mean throughput gains due to power and time division channel access, respectively,
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compared to no coordination. For LTE, throughput gains for both of these coordination

is ∼ 25− 30%. It appears that time division channel access coordination does not offer

any additional advantage to LTE in comparison with power coordination. But it brings

the throughput fairness between Wi-Fi and LTE which is required for the co-existence

in the shared band.

5.5.2 Multiple Links Co-channel Deployment

Multiple overlapping Wi-Fi and LTE links are randomly deployed in 200-by-200 sq.

meter area which depicts the typical deployment in residential or urban hotspot. The

number of APs of each Wi-Fi and LTE networks are varied between 2 to 10 where

number of Wi-Fi and LTE links are assumed to be equal. For the simplicity purpose,

we assume that only single client is connected at each AP and their association is

predefined. The given formulation can be extended for multiple client scenarios. In the

simulations, the carrier sense and interference range for Wi-Fi devices are set to 150

meters and 210 meters, respectively. The hidden node interference parameter is set to

0.25.

Figures 5.11(a) and 5.11(a) show the percentile and mean throughput values of

Wi-Fi and LTE links, respectively, for when number of links for each Wi-Fi and LTE

networks is set at N = {2, 5, 10}. The throughput performance is averaged over 10

different deployment topologies of Wi-Fi and LTE links. From Fig. 5.11(a), it is clear

that 10 percentile Wi-Fi UEs get throughput starved due to LTE interference with

no coordination. This is consistent with results from single link simulations. With

coordination, both joint power control and time division channel access, we achieve a

large improvement in the 10th percentile throughput. Joint power control improves

mean Wi-Fi throughput by 15-20% for all N . On the other hand, time division channel

access achieves throughput gain (40-60%) only at higher values of N = {5, 10}.

Throughput performance of LTE, on the other hand, deteriorates in the presence

of coordination compared to when no coordination is provided. This comes from the

fact that, in case of no coordination, LTE causes undue impact at Wi-Fi nodes causing

them to hold off data transmission, while LTE experiences no Wi-Fi interference. Joint
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coordination between Wi-Fi and LTE networks brings the notion of fairness in the

system and allocates spectrum resources to otherwise degraded Wi-Fi links. In the joint

power control optimization, though certain LTE links (maximum 1 link for N = 10)

have to be dropped from network with zero throughput, but overall mean throughput

is typically 150 to 400% greater than Wi-Fi throughput.

We observe that for small numbers of Wi-Fi links, joint time division channel access

degrades the performance of both Wi-Fi and LTE. But as the number of links grows,

coordinated optimization results in allocation of orthogonal resources (e.g. separate

channels) giving greater benefit than full sharing of the same spectrum space, as is the

case for power control optimization.

This study investigates inter-system interference in shared spectrum scenarios with

both Wi-Fi and LTE operating in the same band. An analytical model has been devel-

oped for evaluation of the performance and the model has been partially verified with

experimental data. The results show that significant performance degradation results

from uncoordinated operation of Wi-Fi and LTE in the same band. To address this

problem, we further presented an architecture for coordination between heterogeneous

networks, with a specific focus on LTE-U and Wi-Fi, to cooperate and coexist in the

same area. This framework is used to exchange information between the two networks

for a logically centralized optimization approach that improves the aggregate through-

put of the network. Our results show that, with joint power control and time division

multiplexing, the aggregate throughput of each of the networks becomes comparable,

thus realizing fair access to the spectrum. In future work, we plan to extend our ana-

lytical model and optimization framework to study realistic user applications for which

full buffer traffic conditions cannot be assumed. We further plan to extend the opti-

mization framework to exploit the frequency diversity for joint coordination of Wi-Fi

and LTE.
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Figure 5.8: Wi-Fi performance under joint Wi-Fi and LTE coordination (dA: dist(Wi-Fi AP,
associated UE), dI : dist(Interfering LTE AP, Wi-Fi UE))
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Figure 5.9: LTE performance under joint Wi-Fi and LTE coordination (dA: dist(LTE AP,
associated UE), dI : dist(Interfering Wi-Fi AP, LTE UE))
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Figure 5.10: 10 percentile and mean LTE throughput for a single link Wi-Fi and LTE co-channel
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Figure 5.11: Multi-link throughput performance under power control and time devision channel
access optimization. N = no. of LTE links = no. of Wi-Fi links.
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Chapter 6

Conclusion

In summary, the objective of the thesis is to support dynamic spectrum management

to coordinate multiple operators and radio access technologies (RATs) network and

develop underlying models and algorithms for coexistence characterization, spectrum

usage and network coordination for high density small cell deployment.

We begun with exploring the challenge of using mobile wireless LAN hotspots to

provide cellular-to-Wi-Fi tethering when there is a background fabric of fixed wireless

networks that could potentially introduce interference degradation. By examining the

specific case of a mobile Wi-Fi hotspot deployed next to a dense collection of fixed Wi-

Fi networks, we observed large degradation in throughput at mobile hotspot because

of dynamic change in interference pattern around the hotspot due to its mobility. Its

throughput is improved with the application of proposed adaptive channel assignment

mechanism along with a consideration of its mobility speed. The results of our investi-

gation served as valuable lessons that can be extrapolated to exist in the more general

scenario involving multiple RATs and multiple operators in which undue interference

arises because of the lack of coordination between different wireless systems. This jus-

tified the need for improvements in the management and coordination for distributively

deployed wireless systems. In order for such new spectrum coordination architectures

to be successful, they must utilize a toolbox of algorithms and models that can appro-

priately inform the various decision making processes associated with coordination, and

thus later parts of the thesis were focused on developing tools that support decision

processes associated spectrum coordination.

Next, while investigating radio channel simulator toolbox, we studied a wireless

channel where each multipath response can be described by a set of mean-squared
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amplitude components and relative delays. Moreover, the number of taps needed to

characterize any link depends on the product of bandwidth W and RMS delay spread

τrms of the channel. To capture the behavior of all possible links of multi-nodes network

can become prohibitive to implement when the underlying communication bandwidth

is of several hundred MHz. Thus, in an effort to reduce hardware emulation com-

plexity, we factored and proposed channel modeling for two cases: (1) emulation of

source-to-receiver channel with 3-tap channel approximation which matches the power

delay profile (PDP) of the ‘true’ channel, (2) emulation of pairwise interference be-

tween nodes where the required number of taps for each interference link is derived

to be 2Wτrms while maintaining the cumulative distribution function (CDF) of total

interference power, taken over the fading. Our results show that loss in accuracy due

to these approximation methods is significantly low. We further show that we achieve

the improvement of 50% in reduction in required taps. For large values of Wτrms, these

approximations lead to even more reduction in number of taps and, thus, further limit

the cost and complexity of hardware emulators. Our analysis is made for the case of

an exponential PDP on each link. Further work can test the approach for other PDP

shapes, e.g., channels with sparse multipath, and for unequal conditions (PDP and

average power) among the links.

In the next part, we explored the challenge of creating a database of geographical

radio maps which could serve as a building block to applications such as spectrum

policing, network planning and management. We observed that the construction of a

radio map based on interpolation from a sparsely deployed set of distributed sensors is a

promising technique for monitoring spectrum usage. Two currently available weighted-

sum methods, inverse distance weighting (IDW) and natural neighbor (NaN), have an

important ‘robustness’ attribute in addition to not requiring knowledge of the spatial

correlation function: They also do not require knowledge of the emitter location, or

even knowledge of how many emitters are active; for each method, the operation is

independent of this information. In the case of a single emitter of known location,

the stochastic methods (SM) proposed here can estimate path loss parameters to gain

an advantage, and the result has been shown to be lower RMS errors in estimating
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radio power. Notably, the most practical approach, SM-2, has low error in comparison

with NaN and IDW when D/Xc ranges between 0 and 1 where D is the inter-sensor

spacing and Xc is the shadow-fading correlation distance. Also, using SM-2, RMS error

is robust to the emitter location and other conditions. For the most part, however,

either IDW or NaN can be used as backup interpolation methods whenever the single-

emitter location, or number of emitters, is unknown. The opportunities suggested by

this observation are worthy of further study.

In the last part, we investigated inter-system interference in shared spectrum scenar-

ios by exploring the specific case of Wi-Fi and LTE coexistence in emerging unlicensed

frequency bands. We developed an analytical model for the performance evaluation

along with consideration of distinct MAC layer features of both the technologies. The

interference model has been partially verified via experimental evaluations using USRP-

based SDR platforms on the ORBIT testbed available at WINLAB. The results showed

the significant performance degradation due to the uncoordinated operation of Wi-Fi

and LTE in the shared band. To address this problem, we proposed optimization based

logically centralized coordination algorithms across Wi-Fi and LTE systems - (1) power

control at both Wi-Fi and LTE nodes which maximize aggregate throughput across

all clients in the network considering throughput requirement at each link, and (2)a

time division channel access which provides channel access to each RAT individually

and brings fairness between networks of both RATs. We deduced that as the number

of links grows, coordinated optimization results in allocation of orthogonal resources

(e.g. separate channels) giving greater benefit than full sharing of the same spectrum

space, as is the case for power control optimization. In future work, we plan to extend

our analytical model and optimization framework to study realistic user applications

for which full buffer traffic conditions cannot be assumed. We further plan to extend

the optimization framework to exploit the frequency diversity for joint coordination of

Wi-Fi and LTE.
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