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by Francis Seuffert

Dissertation Director: Eric Carlen

The main result of this dissertation is an extension of a stability estimate of the Sobolev

Inequality established by Bianchi and Egnell in [BiEg]. Bianchi and Egnell’s Stability

Estimate answers the question raised by H. Brezis and E. H. Lieb in [BrLi]: “Is there

a natural way to bound ‖∇ϕ‖22 − C2
N‖ϕ‖22N

N−2

from below in terms of the ‘distance’ of

ϕ from the manifold of optimizers in the Sobolev Inequality?” Establishing stability

estimates - also known as quantitative versions of sharp inequalities - of other forms

of the Sobolev Inequality, as well as other inequalities, is an active topic. See [CiFu],

[DoTo], and [FiMa], for stability estimates involving Sobolev inequalities and [CaFi],

[DoTo], and [FuMa] for stability estimates on other inequalities. In this dissertation, we

extend Bianchi and Egnell’s Stability Estimate to a Sobolev Inequality for “continuous

dimensions.” Bakry, Gentil, and Ledoux have recently proved a sharp extension of the

Sobolev Inequality for functions on R+ × Rn, which can be considered as an extension

to “continuous dimensions.” V. H. Nguyen determined all cases of equality. The disser-

tation extends the Bianchi-Egnell stability analysis for the Sobolev Inequality to this

“continuous dimensional” generalization.

The secondary result of this dissertation is a sketch of the proof of an extension

ii



of a stability estimate of a single case of a sharp Gagliardo-Nirenberg inequality to a

whole family of Gagliardo-Nirenberg inequalities, whose sharp constants and extremals

were calculated by Del Pino and Dolbeault in [DeDo]. The original stability estimate

for the Gagliardo-Nirenberg inequality was stated and proved by E. Carlen and A.

Figalli in [CaFi]. The proof for its extension to the entire class of sharp Gagliardo-

Nirenberg inequalities of Del Pino and Dolbeault is a direct application of the extension

of the Bianchi-Egnell Stability Estimate to Bakry, Gentil, and Ledoux’s extension of

the Sobolev Inequality to continuous dimensions.
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Chapter 1

Introduction: Functional Inequalities and Stability

Estimates

Functional inequalities have been used in a variety of ways in the study of PDEs. In

this dissertation, we will state and prove an extension of a stability estimate on a sharp

Sobolev Inequality on continuous dimensions and then explain how one could use this

result to prove a stability estimate on a family of sharp Gagliardo-Nirenberg inequal-

ities. In this introduction, we will go into considerable detail of the historical context

concerning the stability estimates of interest. We begin the a description of the work

of the dissertation in subsection 1.4 on page 18. We will begin the introduction with

discussion of the Sobolev Inequality, which is of particular interest in this dissertation

and to the author.

1.1 The Sobolev Inequality: Early History

The Sobolev Inequality has been a pivotal inequality in the study of PDEs. We state

the sharp form of the Sobolev Inequality below:

THEOREM 1.1.1. Let N ≥ 3 and Ḣ1(RN ) be the completion of compactly supported

functions under the gradient square norm, ‖∇ · ‖2. Then,

‖ϕ‖2∗ ≤ CN‖∇ϕ‖2 , ∀ϕ ∈ Ḣ1(RN ) , (1.1)

where 2∗ = 2N
N−2 and CN is a sharp constant. There is equality if and only if ϕ is a

constant multiple of some

Ft,x0(x) = k̂t
N−2

2 (1 + t|x− x0|2)
N−2

2 , (1.2)

for t > 0, x0 ∈ RN , and k̂ a constant such that ‖∇F1,0‖2 = 1. Consequently,

CN = ‖F1,0‖2∗/‖∇F1,0‖2 .
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The history of this inequality with its classification of extremals and the calculation of

its sharp constant is a bit complicated. Part of the reason for this is that the inequality

and its properties have not always been deduced with an eye to application. Instead,

the Sobolev Inequality and many of its developments have been proven as objects of

interest in themselves, and applications were deduced later. We recount some of this

history in the following.

The proof of Theorem 1.1.1 is usually credited to S.L. Sobolev in his 1938 paper,

[So], which does not classify extremals or provide a formula for a sharp constant. The

Sobolev Inequality was essentially first proved by G.A. Bliss in 1930. To be more pre-

cise, a change of variables to the inequality that Bliss derives in [Bl] yields the Sobolev

Inequality for radial nondecreasing nonnegative functions. Bliss’s result includes for-

mulas for the extremals centered at the origin and the sharp constant of the Sobolev

Inequality. If Bliss had knowledge of symmetric decreasing rearrangements, a technique

that was used many times later in the analysis of the Sobolev Inequality, he could have

used it to prove the Sobolev Inequality with classification of extremals and a formula

for the sharp constant. Bliss, however, proved the Sobolev Inequality as a calculus of

variations result, without any applications to PDEs in mind. Indeed, Bliss’s results got

little attention. In fact, Bliss’s paper only received a handful of citations up until 1976,

when G. Talenti published a paper on the sharp constant of the Sobolev Inequality and

classified its extremals.

PDE applications of the Sobolev Inequality did not appear until after Sobolev’s 1938

paper, [So]. Moreover, Sobolev’s paper was not cited in papers until the early 1950s.

Early applications of the Sobolev Inequality to PDEs did not make use of the sharp

constant or extremals of the inequality, suggesting that Bliss’s work was not generally

known. For example, in 1959, S. Agmon published a paper deducing regularity results

for solutions of elliptic operators with zero Dirichlet data on balls and hemispheres of

balls using the Sobolev Inequality without reference to the sharp constant or extremals,

see [Ag] for detail. See also [La], [Fr], and [Bro] for more applications of the Sobolev

Inequality to PDEs without use of the sharp constant or extremals.

Without application of symmetric decreasing rearrangement to Bliss’s result, and
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possibly due to a general lack of knowledge of Bliss’s work, the sharp constant and

extremals for the Sobolev Inequality for N ≥ 3 was not known for 38 years following

Sobolev’s proof of the Sobolev Inequality. We discuss some of the major developments

leading to the calculation of sharp constants and classification of extremals, and their

applications in the next section.

1.2 Search for the Sharp Sobolev Constant, the Extremals, and Some

of Applications The Sharp Constant and Extremals

In this section, we chronicle some of the developments leading to the calculation of

sharp constants and classification of extremals for the Sobolev Inequality and some

of their applications. There have been ground breaking results employing the sharp

constant and the extremals. And interestingly, even though Bliss had essentially laid

the groundwork for finding the sharp constants and the extremals, it took a while

for Mathematicians to calculate the sharp constant and classify the extremals of the

Sobolev Inequality. T. Aubin and G. Talenti classified the sharp constants and the

extremals of the Sobolev Inequality in 1976, see [Au] and [Ta] for detail. However,

estimates of the sharp constant had been used in applications well before this. To

our knowledge, the first application of the Sobolev Inequality with an explicit constant

is by H. Fujita and then shortly after by Fujita and T. Kato. In his 1961 paper,

[Fuj], Fujita used the Sobolev Inequality with an explicit constant to prove existence

of weak steady-state solutions of the Navier-Stokes equation provided the boundary

data satisfy an explicit smallness condition. In their 1964 paper, [FuKa], Fujita and

Kato used the Sobolev Inequality with an explicit constant to prove global existence in

time of solutions of the Navier-Stokes equation with suitably small initial conditions.

In both papers, the explicit constant in the Sobolev Inequality was used to compute

explicit smallness conditions which would guarantee the existence of solutions. In his

1961 paper, Fujita derived an upper bound for the sharp Sobolev constant for N = 3

using elementary arguments that we present here in the following.

The Sobolev constant that Fujita derived is given in the following
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LEMMA 1.2.1. Let C3 denote the sharp constant of the Sobolev Inequality for N = 3.

Then

C3 ≤ (4/π)1/3 . (1.3)

Proof. We begin by recalling Hardy’s Inequality: Let ϕ ∈ C∞0 (R3) and set ϕ̂(x) =

ϕ(x)/|x− y| for some y ∈ R3. Then

‖ϕ̂‖2 ≤ 2‖∇ϕ‖2 . (1.4)

Having recalled Hardy’s inequality, we can now prove Lemma 1.2.1. Let ϕ ∈ C∞0 (R3).

Let ψ = ϕ4. We have the formula

ψ(x) =
1

4π

∫
R3

(
∇y

1
|x− y|

)
· ∇yψ(y)dy

Thus,

ϕ4(x) =
1
π

∫
R3

xi − yi
|x− y|

ϕ3(y)
∂

∂y
ϕ(y)dy . (1.5)

Multiplying (1.5) on both sides by ϕ2(x) and integrating over R3 with respect to x, and

then changing order of integration and applying (1.4), we obtain

‖ϕ‖66 ≤
4
π
‖∇ϕ‖22

∫
R3

|ϕ3(y)||∇ϕ(y)|dy , which by Schwartz’s Inequality

≤ 4
π
‖∇ϕ‖32‖ϕ‖36 .

The first major development in the direction of calculating precise constants and

extremals is a 1971 paper by R. Rosen, [Ro], in which it is shown that the sharp constant

for N = 3 is no bigger than
41/3

31/2π1/2
. (1.6)

Actually, the constant given by (1.6) is the sharp Sobolev constant for N = 3. Indeed,

Rosen claims to show that (1.6) is the sharp constant for class C0 piecewise C2 functions

in Ḣ1(R3). However, his proof only demonstrates that this is the best constant that is

achieved in the Sobolev Inequality for N = 3 for class C0 piecewise C2 functions, but

Rosen’s proof does not disprove the possibility that the best constant in the Sobolev
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Inequality is not achieved. If Rosen knew that equality in the Sobolev Inequality is

achieved, then his proof would have been complete. But, he does not state or prove this

fact, and to our knowledge, existence of extremals in the Sobolev Inequality is absent

from literature up to this point in history. Nevertheless, Rosen actually computes the

extremals of the Sobolev Inequality and uses them to calculate (1.6), which is the sharp

constant for the Sobolev Inequality, but fails to prove that these are the extremals and

the sharp constant.

Rosen approaches the problem by examining the functional given by

R(ϕ) = ‖∇ϕ‖62/‖ϕ‖66 . (1.7)

for functions of class C0 piecewise C2. In particular, Rosen deduces that if ϕ̂ is a critical

point of this functional, ϕ̂ would satisfy the following PDE:

∆ϕ̂+
‖∇ϕ̂‖22
‖ϕ̂‖66

ϕ̂5 = 0 . (1.8)

Performing a second order Taylor expansion of R with remainder about a solution of

(1.8), ϕ̂, Rosen obtains

F (ϕ̂+ ψ) = F (ϕ)
[
1 + 3‖∇ϕ̂‖−2

2

∫
|∇ω|2 − 5

‖∇ϕ̂‖22
‖ϕ̂‖66

ϕ̂4ω2dx+O(ω3)
]
, (1.9)

where ω is the projection of ψ onto the orthogonal space of ϕ̂5 in L2. Thus, ϕ̂ is a local

minimizer of R if

I(ω) ≡
∫
|∇ω|2 − 5

‖∇ϕ̂‖22
‖ϕ̂‖66

ϕ̂4ω2dx (1.10)

is nonnegative for all ω orthogonal in L2 to ϕ̂5. Rosen concludes that if for a given

solution to (1.8), ϕ̂, if the eigenvalue problem(
−∆− 5

‖∇ϕ̂‖22
‖ϕ̂‖66

)
ωn = λnωn , and

∫
ωnϕ̂

5dx = 0 , (1.11)

only admits nonnegative values, then (1.10) will be nonnegative. He concludes by

arguing that the only solutions, ϕ̂, of (1.8) such that the resulting eigenvalue problem

(1.11) admits no negative eigenvalues are the extremals of the Sobolev Inequality. This

means that solutions to (1.8) other than the Sobolev extremals are not local minima

for the functional R. Thus, the only critical points of the functional R that are of class
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C0 and piecewise C2 (recall that Rosen restricts himself to this class) that are in fact

a minimum of R are the extremals of the Sobolev Inequality. Using this information,

Rosen concludes by computing the sharp Sobolev constant. He states that this constant

is “the minimum value” for the Sobolev constant for ϕ “of class C0 piecewise C2.” It

is, of course, by density the Sharp Sobolev constant for all of Ḣ1(R3).

In a paper published in 1976, [Au], T. Aubin computed the sharp constant for the

Sobolev Inequality and classified its extremals. Slightly later in 1976, G. Talenti also

published a paper calculating the sharp constant and classifying the extremals. Aubin’s

work is set in a geometric investigation of the isoperimetric inequality, whereas Talenti’s

proof is deduced in a purely analytic argument. In fact, the first step of Talenti’s

proof is to take the symmetric decreasing rearrangement of an arbitrary function in

Ḣ1(RN ), show that taking these rearrangements holds the L2∗ norm of the function

constant while potentially lowering the gradient square norm, and then exhibiting the

extremals of the Sobolev Inequality for radial (and in fact all) functions. The nature of

the settings and proofs of Aubin and Talenti respectively have greatly influenced how

many citations each author received. At this time, Aubin’s paper has received about

700 citations, while Talenti’s has received about 1,400. That said, Aubin’s work led to

very important results on a major problem in Geometry, the Yamabe Conjecture. We

take some time to recount some of this application of the sharp constant and extremals

of the Sobolev Inequality here.

The Sobolev Inequality in its sharp form with extremals was applied in the study of

the Yamabe problem, which is summarized as follows: “Given a compact Riemannian

manifold (M, g) of dimension N ≥ 3, find a metric conformal to g with constant scalar

curvature.” Solving the Yamabe problem is equivalent to solving a nonlinear eigenvalue

problem. The Sobolev Inequality has been applied to the analysis of this eigenvalue

problem. We will take a moment to explain this connection. Given a Riemannian

metric g, g̃ is conformal to g if there is some smooth positive function ϕ such that

g̃ = ϕ2∗−1g. Thus, there is a metric, g̃ = ϕ2∗−1g, for some smooth positive scalar ϕ
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with constant scalar curvature, λ, if and only if ϕ satisfies the following PDE:(
4
N − 1
N − 2

∆ + S

)
ϕ = λϕ2∗−1 , (1.12)

where S is the scalar curvature of g and ∆ is the Laplacian with respect to g. (1.12) is

the Euler-Lagrange equation for

Q(g̃) =

∫
M S̃dVg̃(∫

M dVg̃
)(N−2)/N

, (1.13)

where S̃ is the scalar curvature of g̃ and g̃ varies over metrics conformally equivalent to

g. Note that

Q(g̃) = Q(ϕ2∗−1) = Qg(ϕ) ,

where

Qg̃(ϕ) = E(ϕ)/‖ϕ‖22∗ ,

for

E(ϕ) =
∫
M

4
N − 1
N − 2

|∇ϕ|2 + Sϕ2dVg , and ‖ϕ‖2∗ =
(∫

M
|ϕ|2∗

)1/2∗

.

where ∇ is the covariant derivative with respect to g. Solving for the Euler Lagrange

equation of (1.13), we deduce that ϕ is a critical point for Q if and only if it satisfies

(1.12) with λ = E(ϕ)/‖ϕ‖2∗2∗ . Having provided this background, we can begin to draw

the connection between the Yamabe problem and the Sharp Sobolev Inequality.

The Yamabe invariant, λ(M), for (M, g) is given by

λ(M) = inf{Q(g̃) : g̃ is conformal to g}

= inf{Qg(ϕ) : ϕ is a smooth, positive function on M} . (1.14)

The Yamabe invariant is a crucial quantity in the study of the Yamabe problem. The

work of Yamabe, Trudinger, and Aubin led to the following

THEOREM 1.2.2. The Yamabe problem can be solved on any compact manifold M

with λ(M) < λ(SN ), where SN is the sphere with its standard metric.

It turns out that the Yamabe invariant for the sphere SN with the standard metric is

a constant multiple of the sharp constant in the Sobolev Inequality. Aubin was able
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to use the extremals of the Sobolev Inequality to prove that λ(M) ≤ λ(SN ) for all

compact manifolds. The essence of Aubin’s proof is to show that for a fixed ball in

RN , the infimum of the ratio ‖∇ϕ‖2/‖ϕ‖2∗ is the sharp constant, because one can take

a Sobolev extremal, and dilate the function so as to squeeze the mass of the function

into the ball. This description is vague and imprecise. We will flesh it out in the next

subsection in a non-geometric setting, as it is used again by a work by H. Brezis and L.

Nirenberg that we will explain, see the outline of the proof of Theorem 1.3.1 provided

on pages seven and eight for detail. Relating this squeezing argument to achieve the

infimum, we conclude that λ(M) ≤ λ(SN ) for all compact M .

As shown above, there has been a lot of interplay between PDEs and the sharp

Sobolev Inequality and its extremals. The extremals have been used to analyze PDEs,

while differential equations have been used to help determine the sharp constant of the

Sobolev Inequality and its extremals. Also, as briefly alluded above, the application of

symmetric decreasing rearrangement to functions has been very useful in determining

the sharp constant and extremals of the Sobolev Inequality. We will now recount a 1983

argument by E. Lieb, [Li] that uses rearrangements and analysis of ODEs to calculate

the sharp constant in the Sobolev Inequality and one of its extremals.

Lieb actually proves extremals and calculates the sharp constant for a generalization

of the Sobolev Inequality, but modifying this proof to deal exclusively with the Sobolev

Inequality is enlightening enough and allows us to keep notation simple. Before preced-

ing, we make the following convention: SD will denote the class of symmetric decreasing

functions. Lieb proves the following:

THEOREM 1.2.3. Let N ≥ 3, then an extremal of the Sobolev Inequality, F ∈ SD,

exists and is given by

F (x) =(1 + |x|2)−
N−2

2 , and (1.15)

CN =[πN(N − 2)]−1/2[Γ(N)/Γ(N/2)]1/N . (1.16)

Proof. In the course of this proof, Lieb restricts himself to ϕ ∈ H1(RN ) = Ḣ1(RN ) ∩

L2(RN ), but is still able to deduce the extremal F as given above - for N ∈ {3, 4},

F /∈ H1(RN ). If ϕ : RN → R is a function, let ϕ∗ denote the symmetric decreasing
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rearrangement of ϕ. To be more precise, ϕ∗ is the unique decreasing nonnegative

function such that

|{x ∈ RN : ϕ∗(x) ≥ k}| = |{x ∈ RN : |ϕ(x)| ≥ k}| , ∀k > 0 ,

where | · | applied to a set denotes Lebesgue measure. The first step of Lieb’s proof is

to observe that we can focus our attention on functions ϕ ∈ SD, because

‖∇ϕ∗‖2 ≤ ‖∇ϕ‖2 , and ‖ϕ∗‖p = ‖ϕ‖p , for 1 ≤ p ≤ ∞.

Next, Lieb makes a clever substitution of variables, which allows him to examine the

problem of identifying an extremal in H1(RN ), for N ≥ 3, to a new extremal problem

in H1(R). In particular, if we take ϕ(r) to be a the radial representative of ϕ ∈ SD

and make the following change of variables:

Υ
(
N − 2

2
r

)
= e

N−2
2
rϕ(er) . (1.17)

Under these change of variables,(
2ωN
N − 2

)1/2∗

‖Υ‖2∗ = ‖ϕ‖2∗ , and
(
N − 2

2
ωN

)1/2

‖Υ′ −Υ‖2 = ‖∇ϕ‖2 , (1.18)

where ωN is the area of the (N − 1)-sphere. Since, ϕ ∈ L2 ∩ SD,

∞ >‖ϕ‖22

=ωN
∫ ∞

0
ϕrN−1dr

≥ωN
∫ R

0
ϕrN−1dr

≥ωNRNϕ(R)2

=⇒ 0 ≤ ϕ(r) ≤ Cr−
N
2 . (1.19)

for some C > 0. Thus, Υ(r) ≤ Ce−
2

N−2
r.

If we make the further assumption that ϕ ∈ L∞, then Υ(r) ≤ Ce−|r|/(N−2), which

in turn implies that
∫

Υ′Υ = 0, and thus

‖ϕ‖22∗
‖∇ϕ‖22

= ω
−1+2/2∗

N

(
N − 2

2

)−1−2/2∗ ‖Υ‖22∗
‖Υ′‖22 + ‖Υ‖22

=: ω−1+2/2∗

N

(
N − 2

2

)−1−2/2∗

T (Υ) .

(1.20)

Since L∞ is dense on Ḣ1(RN ), the identity, (1.20), reduces the proof of Theorem 1.2.3

to the proof of the following
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THEOREM 1.2.4. Let

M2∗ = sup{T (Υ) : Υ ∈ H1(R) \ {0}} .

Then M2∗ is finite and achieved by

Υ =const. cosh−
N−2

2

(
2

N − 2
r

)
, and (1.21)

M2∗ =

[
(N − 1)Γ(N − 2)
N−2

2 Γ
(
N−2

2

)2
]1−2/2∗ (

N − 2
8

)2/2∗ 2
N
. (1.22)

Proof. By the properties of rearrangements, T (Υ∗) ≥ T (Υ), so we may assume Υ ∈ SD.

Thus, Υ ∈ L∞, as Υ(r)→ 0 as r → −∞ and

Υ(r)2 = 2
∫ r

−∞
Υ′(ρ)Υ(ρ)dρ ≤ 2‖Υ′‖2‖Υ‖2 . (1.23)

Let (Υi) be a maximizing sequence for T , with ‖Υi‖22+‖Υ′i‖22 = 1. A similar argument to

the one used to deduce (1.19) allows us to conclude that Υi(r) ≤ C|r|−1/2. Combining

this with (1.23), we conclude that

Υi(r) ≤ h(r) ≡ min(C,C|r|−1/2) ∈ L2∗ ,

because 2∗ > 2. Combining ‖Υi‖22 +‖Υ′‖22 = 1 and (1.23), we deduce that 0 ≤ Υi ≤
√

2

for all i. Thus, by the Helly Selection Principle, we may assume Υi → Υ ∈ SD

pointwise. And so, by the Dominated Convergence Theorem, we know that ‖Υ‖2∗ =

M2∗ . We can also assume that Υi ⇀ G and Υ′i ⇀ G′ in L2. Since Υi → Υ pointwise,

Υ = G. Thus,

1 = lim inf ‖Υ′i‖22 + ‖Υi‖22 ≥ ‖Υ′‖22 + ‖Υ‖22 .

Combining this with the fact that ‖Υ‖2∗ = M2∗ , we conclude that T (Υ) = M2∗ .

In order to find a maximizing element, Υ ∈ SD such that ‖Υ‖2∗ = M2∗ and ‖Υ‖22 +

‖Υ′‖22 = 1, Lieb observes that such an element would be a critical point of T and

consequently satisfy the ODE:

Υ′′ = Υ−Υ2∗−1/M2∗ , (1.24)

in the distributional sense. By standard ODE methods, there is only one solution to

(1.24) that vanishes as |r| → ∞. This solution is (1.21) with appropriate constant on

the right hand side of (1.21).
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Having proved Theorem 1.2.4, we conclude Theorem 1.2.3.

1.3 A Bridge from the Sharp Sobolev Inequality to the Sobolev In-

equality Stability Estimate

In 1983 H. Brezis and L. Nirenberg wrote a paper, [BrNi], chronicling their investigation

of positive solutions of nonlinear elliptic equations involving critical Sobolev exponents.

In the process of this investigation, they proved (as a corollary of their main results) an

improved Sobolev Inequality. This inequality was derived by Brezis and Nirenberg in

an effort to solve the following nonlinear elliptic PDE with critical Sobolev exponent:

−∆ϕ =ϕ2∗−1 + f(x, ϕ) , on Ω

ϕ >0 , on Ω

ϕ =0 , on ∂Ω , (1.25)

for Ω ⊆ RN a bounded domain with N ≥ 3, f(x, 0) = 0, and f(x, ϕ) a lower-order

perturbation of ϕ2∗−1 in the sense limu→∞ f(x, ϕ)/ϕ2∗−1 = 0. Solutions of (1.25) are

critical points of the functional

Φ(u) =
1
2

∫
|∇ϕ|2dx− 1

2∗

∫
ϕ2∗dx−

∫
F̃ (x, ϕ)dx (1.26)

where F̃ (x, ϕ) =
∫ ϕ

0 f(x, t)dt. Brezis and Nirenberg study this problem in stages. They

begin by studying (1.25) f(x, ϕ) = λϕ for N > 4 and N = 3 respectively (these

cases have different proofs). They then turn their attention to (1.25) with general lower

order perturbations f(x, ϕ). We will spend some time explaining Brezis and Nirenberg’s

analysis of (1.25) with f(x, ϕ) = λϕ, as this work illustrates some applications of the

Sobolev Inequality and is extremals. A happy byproduct of this work is an improved

Sobolev Inequality that opens the way to some radical improvements on the Sobolev

Inequality.

Before getting into the details of of Brezis and Nirenberg’s analysis for (1.25) with

f(x, ϕ) = λϕ, we will give a general overview of their results. First, we rewrite (1.25)
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in this context:

−∆ϕ =ϕ2∗−1 + λϕ , on Ω

ϕ >0 , on Ω

ϕ =0 , on ∂Ω . (1.27)

The results of their analysis on (1.27) are the following two theorems:

THEOREM 1.3.1. Let λ1 be the lowest eigenvalue of −∆ with zero Dirichlet condition

on a bounded domain Ω ⊆ RN with N ≥ 4. Then for every λ ∈ (0, λ1), there exists a

solution of (1.27).

THEOREM 1.3.2. Assume Ω ⊆ R3 is a ball and let λ1 be the lowest eigenvalue of

−∆ with zero Dirichlet condition on Ω. There exists a solution of (1.27) if and only if

λ ∈ (1
4λ1, λ1)

It is easy to show that (1.27) has a solution only if λ < λ1. To see this, let ψ1 > 0

be an eigenvector of −∆ with zero Dirichlet condition on Ω and eigenvalue λ1, and let

u be a solution of (1.27) for some λ. Then,

λ

∫
ϕψ1 =

∫
(−∆ϕ− ϕ2∗−1)ψ1 , which by integration by parts

=λ1

∫
ϕψ1 −

∫
ϕ2∗−1ψ1

<λ1

∫
ϕψ1

=⇒ λ > λ1 .

By Pohozaev’s Identity, Brezis and Nirenberg show that (1.27) does not have a solution

if λ ≤ 0. Although this proof is not difficult, we skip over it in favor of the parts of

their paper relating to the Sobolev Inequality and its extremals.

We will only outline the proof of Theorem 1.3.1, i.e. the case when N ≥ 4 because

the proof for Theorem 1.3.2 is similar, but more subtle and not necessary to recount for

our purposes. We begin demonstrating the connection of Brezis and Nirenberg’s work

to the Sobolev Inequality by outlining their proof of Theorem 1.3.1. The heart of their

proof is to show that

kλ := inf
ϕ∈H1

0 ,‖ϕ‖2∗=1
{‖∇ϕ‖22 − λ‖ϕ‖22∗} (1.28)
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is achieved by some ϕ ∈ H1
0 (Ω) for λ > 0 and that kλ > 0 when 0 < λ < λ1 - H1

0 (Ω)

is the closure of compactly supported C∞ functions under the gradient square norm.

Note that k0 = C−2
N . Critical points in H1

0 (we will often write H1
0 a shorthand for

H1
0 (Ω) of the functional

Ψ(ϕ) = ‖∇ϕ‖22 − λ‖ϕ‖22 , (1.29)

restricted to the sphere ‖ϕ‖2∗ = 1 satisfy the PDE

−∆ϕ− λϕ = kλϕ
2∗−1 . (1.30)

Note that we may assume a minimizer ϕ of (1.30) is nonnegative. If such a minimizer

ϕ is not nonnegative, we simply take |ϕ| to obtain a nonnegative minimizer. Since

ϕ satisfies (1.30), ϕ̃ = C
−2/(2∗−1)
N ϕ will satisfy (1.27); note that ϕ̃ > 0 by the strong

maximum principle. This proves existence of solutions of (1.27) for 0 < λ < λ1,

provided we can show that the infimum kλ is achieved by Ψ for ϕ such that ‖ϕ‖2∗ = 1.

We explain the proof of this fact in the following paragraphs.

The proof that the desired infimum is achieved hinges on two things. First, Brezis

and Nirenberg prove that kλ < C−2
N for λ > 0. Second, they prove that the infimum,

(1.28), is achieved when kλ < C−2
N .

The proof that kλ < C−2
N for λ > 0 was inspired by Aubin’s argument in the context

of the Yamabe conjecture. The idea of Brezis and Nirenberg’s proof is to multiply

extremals of the Sobolev Inequality on RN by a nonnegative cutoff function in Ω and

then vary a corresponding parameter to show that some quantity, Qλ, given by

Qλ(ϕ) =
‖∇ϕ‖22 − λ‖ϕ‖22

‖ϕ‖22∗

will be less than C−2
N . To be precise, assume 0 ∈ Ω and fix some nonnegative smooth

cutoff function ψ such that ψ ≡ 1 in a neighborhood of 0. Then let

ϕε(x) = ψ(x)/(ε+ |x|2)
N−2

2 , ε > 0 .

Letting ε→ 0 effectively “squeezes” the mass of the optimizer into a neighborhood near

0, so that

‖∇ϕε‖22/‖ϕε‖22∗ → C−2
N ,
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and ‖ϕε‖22 is large enough relative to ‖∇ϕε‖22 so that

Qλ(ϕ) =
‖∇ϕε‖22 − λ‖ϕε‖22

‖ϕε‖22∗
< C−2

N ,

for some small ε.

The proof that the infimum is achieved for kλ < C−2
N follows from a functional

analysis argument. We take a moment to explain it here:

LEMMA 1.3.3 (Lieb). If kλ < C−2
N , the infimum, (1.28), is achieved.

Proof. Let (ϕi) be a minimizing sequence:

‖ϕi‖2∗ =1 (1.31)

‖∇ϕi‖22 − λ‖ϕi‖22 =kλ + o(1) . (1.32)

Extract a subsequence (still denoted (ϕi)) such that

ϕi ⇀ϕ , in H1
0 (“⇀” denotes weak convergence) ,

ϕi →ϕ , in L2 ,

ϕi →ϕ , almost everywhere on Ω ,

with ‖ϕ‖2∗ ≤ 1. Set ψi = ϕi − ϕ, such that

ψi ⇀0 , in H1
0 ,

ψi →0 , a.e. on Ω .

Note that ‖∇ϕi‖2 ≥ C−2
N . Combining this with (1.32), we conclude that

λ‖ϕ‖22 ≥ C−2
N − kλ > 0 .

Thus, ϕ 6≡ 0. Using (1.32) and the fact that ϕi → ϕ in L2, we conclude that

‖∇ϕ‖22 + ‖∇ψi‖22 − λ‖ϕ‖22 = kλ + o(1) . (1.33)

On the other hand, applying the Brezis-Lieb Lemma (since ‖ψi‖2∗ is bounded and

ψi → 0 a.e.)

1 = ‖ϕ+ ψi‖2
∗

2∗ = ‖ϕ‖2∗2∗ + ‖ψi‖2
∗

2∗ + o(1) .
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Thus,

1 ≤ ‖ϕ‖22∗ + ‖ψi‖22∗ + o(1) , which by the Sobolev Inequality

≤ ‖ϕ‖22∗ + C2
N‖∇ψi‖22∗ + o(1) . (1.34)

We claim that

‖∇ϕ‖22 − λ‖ϕ‖22 ≤ kλ‖ϕ‖22∗ , (1.35)

which would conclude the proof of Lemma 1.3.3. We prove (1.35) in two cases:

1. kλ > 0 (i.e. 0 < λ < λ1)

2. kλ ≤ 0 (i.e. λ ≥ λ1)

In case 1., (1.34) implies that

kλ ≤ kλ‖ϕ‖22∗ + kλC
2
N‖∇ψi‖22 + o(1) . (1.36)

Combining (1.33) and (1.36), we conclude (1.35).

In case 2., we have kλ ≤ kλ‖ϕ‖22∗ , since ‖ϕ‖2∗ ≤ 1. We deduce again (1.35) from

(1.33).

Having proved Theorem 1.3.2, Brezis and Nirenberg use this result to prove the

following improvement on the Sobolev Inequality:

COROLLARY 1.3.4. Assume Ω ⊆ R3 is a bounded domain. Then, there exists λ∗,

0 < λ∗ < λ1, such that

‖∇ϕ‖22 ≥ C−2
3 ‖ϕ‖

2
6 + λ∗‖ϕ‖22 , ∀ϕ ∈ H1

0 (Ω) . (1.37)

We may take λ∗ = 1
4(3|Ω|/4π)−2/3, where | · | denotes Lebesgue measure. This value is

sharp when Ω is a ball.

Proof. Let Ω∗ be a ball such that |Ω∗| = |Ω| and ϕ∗ denote the symmetric decreasing

rearrangement of ϕ. It is known (see [Li] or [Ta]) that

ϕ ∈ H1
0 (Ω) =⇒ ϕ∗ ∈ H1

0 (Ω∗) , and

‖∇ϕ∗‖2L2(Ω∗) ≤ ‖∇ϕ‖
2
L2(Ω) . (1.38)
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On the other hand, for all ϕ∗ ∈ H1
0 (Ω∗),

‖∇ϕ∗‖2L2(Ω∗) ≥ C
−2
3 ‖ϕ

∗‖2L6(Ω∗) +
1
4
λ1(Ω∗)‖ϕ∗‖L2(Ω∗) . (1.39)

This is because there is no solution of 1.27 for λ = 1
4λ1(Ω∗), see Theorem 1.3.2. That

is, if (1.39) were false, then kλ < C−2
3 for λ = 1

4λ1(Ω∗), which by Lemma 1.3.3 implies

that 1.27 has a solution for λ = 1
4λ1(Ω∗), contradicting Theorem 1.3.2. The value of

λ∗ = 1
4(3|Ω|/4π)−2/3 follows from the fact that λ1(Ω∗) = π2/R2, where R is the radius

of Ω∗. Combining (1.38), (1.39), and the fact that ‖ϕ∗‖Lq(Ω∗) = ‖ϕ‖Lq(Ω) or all q, we

obtain (1.37).

Brezis and Nirenberg observed that (1.37) cannot be extended to N ≥ 4 with the

extra term in the Sobolev Inequality being a constant multiple of ‖ϕ‖22. However, they

deduce the following inequality:

‖∇ϕ‖22 ≥ C−2
N ‖ϕ‖

2
2∗ + λp(Ω)‖ϕ‖2p , ∀ϕ ∈ H1

0 (Ω) , (1.40)

for Ω ⊆ RN a bounded domain, 1 ≤ p < 2∗/2, with λp(Ω) a constant depending only

on p, N , and Ω and λp(Ω) → 0 as p → 2∗/2. In the following year, 1984, Brezis and

E. Lieb proved some further improvements upon the Sobolev Inequality for bounded

domains. They also posed an important question in the direction of improving the

Sobolev Inequality: “Is there a natural way to bound C2
N‖∇ϕ‖22−‖ϕ‖22∗ from below in

terms of the ‘distance’ of ϕ from the set of [extremals given by (1.2)].”

1.4 Motivation for Our Main Results: Deriving Gagliardo-Nirenberg

Stability Estimates from Sobolev Stability Estimates

In 1990, G. Bianchi and H. Egnell came up with a strong positive answer to Brezis and

Lieb’s question, in the form of the following stability estimate:

C2
N‖∇ϕ‖22 − ‖ϕ‖22∗ ≥ αd(ϕ,M)2 , ∀ϕ ∈ Ḣ1(RN ) , (1.41)

for some positive constant α > 0, all N ≥ 3, and where d(·,M) is the distance functional

given by

d(ϕ,M) = inf
c∈R,t>0,x0∈RN

‖∇(ϕ− cFt,x0)‖2 . (1.42)
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As mentioned above, (1.41) is a stability estimate, which is an inequality that bounds

the difference in terms of a sharp inequality from below by the distance of a given

function from the extremals of the sharp inequality. All of the work in this dissertation is

focused on proving an extension of Bianchi and Egnell’s stability estimate to continuous

dimensions and applying this result to deduce a further stability estimate on a family

of sharp Gagliardo-Nirenberg inequalities whose sharp constant and extremals were

deduced by Del Pino and Dolbeault.

An open problem open problem associated with the Bianchi-Egnell Stability Esti-

mate is the calculation of an explicit constant α that satisfies (1.41). In the original

stability estimate of Bianchi and Egnell, there is no explicit constant given in the in-

equality

C2
N‖∇ϕ‖22 − ‖ϕ‖22∗ ≥ αd(ϕ,M)2 . (1.43)

All we know is that there is some α > 0 for which the above is true. This is because

the process of obtaining the stability estimate involves finding a local stability estimate

and then applying concentration compactness to prove that (1.43) must hold for some

α > 0. Our extension of the Bianchi-Egnell Stability Estimate to continuous dimensions

suffers from the same problem. However, following a similar process to the proof of the

original Bianchi-Egnell Stability Estimate, we prove a local Bianchi-Egnell Stbaility

Estimate, that is in fact more quantitative in nature than Bianchi and Egnell’s original

local stability estimate. This is because in our proof of our local stability estimate,

we use an argument that gets explicit bounds on the remainder of the second order

Taylor expansion of the difference of terms in the Sobolev Inequality. Obtaining an

explicit constant in our extension of the Bianchi-Egnell Stability Estimate to continuous

dimensions would be useful for applications, because it would yield an explicit constant

for the full class of sharp Gagliardo-Nirenberg inequalities of Del Pino and Dolbeault.

E. Carlen and A. Figalli used a special case of this stability estimate to solve a Keller-

Segal Equation. If we had an explicit constant for the stability estimate for the full

class of Gagliardo-Nirenberg inequalities of Del Pino and Dolbeault, it could be useful

for more PDE applications.

In a recent paper, E. Carlen and A. Figalli applied the Bianchi-Egnell Stability
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Estimate to prove a stability estimate for a Gagliardo-Nirenberg inequality and used this

result to help solve a Keller-Segal equation. The GN (Gagliardo-Nirenberg) inequality

for which Carlen and Figalli prove their stability estimate is a special case of a family

of sharp GN inequalities classified by Del Pino and Dolbeault. A natural question is

whether one could generalize this stability estimate to the complete family of sharp

GN inequalities of Del Pino and Dolbeault. Much of the work in this dissertation is

oriented toward solving this problem.

We will present Carlen and Figalli’s stability estimate. But, before doing so, we

lay some foundation. We begin by stating Del Pino and Dolbeault’s statement of the

family of sharp GN inequalities: Let u ∈ Ḣ1(Rn) for n ≥ 2. Then for 1 ≤ s ≤ n/(n−2)

(if n = 2, 1 ≤ s <∞)

‖u‖2s ≤ An,s‖∇u‖γ2‖u‖
1−γ
s+1 , γ =

n(s− 1)
s[2n− (1 + s)(n− 2)]

. (1.44)

An,s is a sharp constant given by

An,s =
‖v‖2s

‖∇v‖γ2‖v‖
1−γ
s+1

, where v(x) = (1 + |x|2)−1/(s+1) . (1.45)

The extremals of (1.44) are the constant multiples of

vλ,x0(x) = (1 + λ2|x− x0|2)−1/2 . (1.46)

Carlen and Figalli proved a stability estimate for (1.44) in the special case when n = 2

and s = 3. Note that A2,3 = π−1/6. When n = 2 and s = 3, let δGN [·] denote the

difference of terms in (1.44) given by

δGN [u] = ‖∇u‖2‖u‖24 − π1/2‖u‖36 . (1.47)

Carlen and Figalli’s stability estimate is summarized in the following:

THEOREM 1.4.1. Let u ∈ Ḣ1(R2) be a nonnegative function such that ‖u‖4 = ‖v‖4.

Then there exist universal constants K1, δ1 > 0 such that whenever δGN ≤ δ1,

inf
λ>0,x0∈R2

‖u6 − λ2vλ,x0‖1 ≤ K1δGN [u]1/2 . (1.48)
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As mentioned before, one would like to generalize the stability estimate of Theorem

1.4.1 to all possible n and s for Del Pino and Dolbeault’s family of sharp GN inequalities.

To do this via the techniques used by Carlen and Figalli in the proof of Theorem 1.4.1

requires some ingenuity and the extension of Bianchi and Egnell’s stability estimate

to a continuous dimension setting. To understand why, one must examine the main

mechanism in the derivation of Theorem 1.4.1.

The heart of Carlen and Figalli’s stability estimate is a link between the Sobolev

Inequality and the GN inequalities. This link is recounted in a monograph of D. Bakry, I.

Gentil, and M. Ledoux, [BaGe], and was communicated by Bakry to Carlen and Figalli.

We will explain the link in the context of Carlen and Figalli’s stability estimate, use this

link to explain how the Bianchi-Egnell Stability Estimate is connected to Carlen and

Figalli’s stability estimate, and then give a brief explanation to why the generalization of

Carlen and Figalli’s estimate requires a continuous dimension extension of the Bianchi-

Egnell Stability Estimate.

The heart of Carlen and Figalli’s proof of Theorem 1.4.1 is that for ϕ given by

ϕ = (u−2(y) + |z|2)−1 , y, z ∈ R2 , (1.49)

we have that
√

3
(
C2

4‖∇ϕ‖22 − ‖ϕ‖24
)

= δGN [u] . (1.50)

Applying the Bianchi-Egnell Stability Estimate, we deduce that

δGN [u] ≥C0 inf
c∈R,t>0,x0∈R4

‖∇(ϕ− cFt,x0)‖22, which by the Sobolev Inequality

≥C1 inf
c∈R,t>0,x0∈R4

‖ϕ− cFt,x0‖24 , (1.51)

for some x0 ∈ R4 and positive constants C0 and C1. It takes some work to show that

we we can deduce Theorem 1.4.1 from (1.51) and we delay these details until the body

of the the dissertation. However, we can now explain why these techniques require the

extension of the Bianchi-Egnell Stability Estimate to continuous dimensions.

The fact that Carlen and Figalli could apply the Bianchi-Egnell Stability Estimate

to deduce Theorem 1.4.1 with n = 2 and s = 3 is a happy coincidence. (1.50) is obtained

by carefully constructing ϕ(y, z) out of a given u(y) ∈ Ḣ1(R2) such that we obtain the
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relationship given by (1.50). Note that the dimension, n = 2, for u(y) corresponds

to the y-variable in ϕ(y, z). The fact that the left hand side of (1.50) corresponds to

δGN [u] for s = 3 is a result of the other variable of ϕ(y, z), z, being in two dimensions.

If we try to generalize the relationship in (1.50) to a given u(y) ∈ Ḣ1(RN ) for some

carefully chosen ϕ(y, z), for a generalized notion of δGN over all n ≥ 2 and 1 ≤ s ≤ n
n−2

(or < ∞ if n = 2), we would run into serious limitations if we restrict ourselves to

ϕ(y, z) with z in integer dimensions, i.e. if z is in Rm with m an integer. To be a little

more precise, for a given u(y) ∈ Ḣ1(RN ) and ϕ(y, z) constructed in a similar fashion to

the ϕ in (1.49), we get a relationship like (1.50) - a constant multiple of the difference

in terms of the Sobolev Inequality applied to ϕ equals the difference in terms in a GN

inequality applied to u. The problem is that the value of s that this equality is valid for

depends upon the number of dimensions the z-variable of ϕ(y, z) is in. In fact, the only

way to obtain this generalized (1.50) for all n ≥ 2 and 1 ≤ s ≤ n
n−2 (or <∞ if n = 2),

is to consider ϕ(y, z) with the z-variable in continuous dimensions. Consequently, to

deduce a stability estimate for the full class of sharp GN inequalities of Del Pino and

Dolbeault using Carlen and Figalli’s methods, we also need to derive a Bianchi-Egnell

stability estimate for ϕ(y, z) with z a continuous dimension variable - we will make this

precise in the body of the dissertation.

1.5 Outline of the Body of the Dissertation

Chapter 2: In this chapter we state and prove the main result of the dissertation. This

result is a an extension of the Bianchi-Egnell Stability Estimate to continuous dimen-

sions.

Subsection 2.1: This is the introduction for chapter two. We introduce the immedi-

ate background to the extension of the Bianchi-Egnell Stability Estimate to continuous

dimensions. We also state our main result and a Rellich-Kondrachov type theorem for

functions in continuous dimensions. We then outline a proof of the Bianchi-Egnell Sta-

bility Estimate using our methods, and then outline the proof of our extension of the

Bianchi-Egnell Stability Estimate. We conclude with some examples of applications of

he Bianchi-Egnell Stability Estimate.
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Subsection 2.2: We present and prove a proposition concerning the second order

Taylor Expansion of ‖f + εψ‖2p at ε = 0 for p > 2 and estimate the remainder. This

general proposition is useful for our immediate goal of extending the Bianchi-Egnell Sta-

bility Estimate, but is also of general interest, as it provides an especially quantitative

way to deal with the remainder terms of the calculus of variation argument.

Subsection 2.3: We state a local Bianchi-Egnell Stability Estimate in the continuous

dimension setting and outline its proof.

Subsections 2.4 and 2.5: We prove some properties of an operator obtained from the

second order coefficient of the Taylor expansion of some ‖∇(f + εψ)‖22 − ‖f + εψ‖22∗ .

Subsection 2.6: We conclude the proof of the Local Bianchi-Egnell Stability Estimate

in continuous dimensions.

Subsection 2.7: We make a concentration compactness argument for a sequence of

functions that minimize the continuous dimension extension of the Sobolev Inequality.

We provide this argument, because no such known argument exists for functions in

continuous dimensions.

Subsection 2.8: We prove our Rellich-Kondrachov type theorem for functions on

continuous dimensions. Such theorems, to our knowledge, are not currently present in

the works other than [Se].

Chapter 3: In this chapter, we state and outline a proof of a stability estimate for a

family of sharp Gagliardo-Nirenberg inequalities discovered by Del Pino and Dolbeault.

Subsection 3.1: We give some of the background to our Gagliardo-Nirenberg Stabil-

ity Estimate and state our result.

Subsection 3.2: We outline a key calculation that provides a bridge from the Sobolev

Inequality to the Gagliardo-Nirenberg inequalities of Del Pino and Dolbeault.

Subsection 3.3: We provide an outline of the proof of some special cases of the stabil-

ity estimate for the sharp Gagliardo-Nirenberg inequalities of Del Pino and Dolbeault

using the Sobolev Inequality and the Bianchi-Egnell Stability Estimate. We also explain

why the extension to continuous dimensions of the Bianchi-Egnell Stability Estimate

proved in chapter 2 is necessary to prove the Gagliardo-Nirenberg Stability Estimate
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for the whole family of sharp inequalities of Del Pino and Dolbeault, as opposed to just

some special cases.

Subsection 3.4: We provide a sketch of the proof of the stability estimate for the full

family of sharp Gagliardo-Nirenberg inequalities of Del Pino and Dolbeault. We use

the extension of the Bianchi-Egnell Stability Estimate to continuous dimensions in this

sketch.
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Chapter 2

An Extension of the Bianchi-Egnell Stability Estimate to

Bakry, Gentil, and Ledoux’s Generalization of the Sobolev

Inequality to Continuous Dimensions

2.1 Introduction

This chapter extends a stability estimate of the Sobolev Inequality established by

Bianchi and Egnell in [BiEg]. Bianchi and Egnell’s Stability Estimate answers the

question raised by H. Brezis and E. H. Lieb in [BrLi]: “Is there a natural way to bound

‖∇ϕ‖22 − C2
N‖ϕ‖22N

N−2

from below in terms of the ‘distance’ of ϕ from the manifold of

optimizers in the Sobolev Inequality?” Establishing stability estimates - also known as

quantitative versions of sharp inequalities - of other forms of the Sobolev Inequality,

as well as other inequalities, is an active topic. See [CiFu], [DoTo], and [FiMa], for

stability estimates involving Sobolev inequalities and [CaFi], [DoTo], and [FuMa] for

stability estimates on other inequalities. In this section, we extend Bianchi and Egnell’s

Stability Estimate to a Sobolev Inequality for “continuous dimensions.” Bakry, Gentil,

and Ledoux have recently proved a sharp extension of the Sobolev Inequality for func-

tions on R+×Rn, which can be considered as an extension to “continuous dimensions.”

V. H. Nguyen determined all cases of equality. The dissertation extends the Bianchi-

Egnell stability analysis for the Sobolev Inequality to this “continuous dimensional”

generalization.
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2.1.1 The Sharp Sobolev Inequality

Let Ḣ1(RN ) be the the completion of the space of smooth real-valued functions with

compact support under the norm

‖ϕ‖Ḣ1 := ‖∇ϕ‖2 =
(∫

RN
|∇ϕ|2dx

)1/2

,

where for 1 ≤ p <∞, (and 2 in particular) ‖ϕ‖p denotes the Lp norm of ϕ, ‖ϕ‖p =
(∫

RN
|ϕ|pdx

)1/p

.

Define

2∗ :=
2N
N − 2

. (2.1)

The Sobolev Inequality provides a lower bound for ‖ϕ‖Ḣ1 in terms of ‖ϕ‖2∗ .

THEOREM 2.1.1 (Sharp Sobolev Inequality). Let N ≥ 3 be an integer. Then, for

all ϕ ∈ Ḣ1(RN ) \ {0},
‖ϕ‖2∗
‖ϕ‖Ḣ1

≤ ‖F1,0‖2∗
‖F1,0‖Ḣ1

=: CN , (2.2)

where

Ft,x0(x) := k̂

(
t

1 + t2|x− x0|2

)N−2
2

, (2.3)

for t > 0, x0 ∈ RN , and k̂ > 0 a constant such that ‖F1,0‖Ḣ1 = 1. There is equality if

and only if ϕ = zFt,x0 for some t > 0, x0 ∈ RN , and some z ∈ R \ {0}.

Theorem 2.1.1 in this sharp form, including specification of the cases of equality, was

proved by Talenti in [Ta]. The result is also true for complex-valued functions, the only

difference being that equality holds for ϕ = zFt,0 with z ∈ C \ {0}, but for the moment

we will restrict our attention to real-valued functions. For another reference on the

Sobolev Inequality, see [FrLi].

The fact that the conformal group of RN has an action on functions on RN that

is simultaneously isometric in the L2∗ and Ḣ1 norms determines the sharp constants

and optimizers of the inequality. There is a way of using competing symmetries to help

deduce the full class of extremals of the Sobolev Inequality for functions on RN for

N ≥ 3. This is done as part of a more general setting in a paper by Carlen and Loss,

see [CaLo]. Lieb also has a paper, see [Li], in which the Sobolev Inequality is derived

and its extremals are deduced via an ODE. In our paper, we deal with a more general



25

setting of the Sobolev Inequality on continuous dimension; we will introduce this in a

more precise fashion shortly. The techniques of Carlen and Loss, as well as Lieb, do not

appear to have straightforward adaptations to our settings. The conformal subgroup of

RN that is invariant on ‖ · ‖2∗ and ‖ · ‖Ḣ1 is generated by the following three operations

(inversion) ϕ(x) 7→ |x|−N+2ϕ(x/|x|)

(dilation) ϕ(x) 7→ σ
N−2

2 ϕ(σx), σ ∈ R+

(translation) ϕ(x) 7→ ϕ(x− x0), x0 ∈ RN .

The extremal functions, M := {zFt,x0 |z ∈ R, t ∈ R+, x0 ∈ RN}, of (2.2) comprise an

(N + 2)-dimensional manifold in Ḣ1(RN ). We can obtain M by taking the union of

the orbits of zF1,0 for all z ∈ R under the action of conformal group. In fact, M is the

union of the orbits of zF1,0 for all z ∈ R under the subgroup generated by translations

and dilations alone.

2.1.2 Bianchi and Egnell’s Stability Estimate

A question raised by Brezis and Lieb concerns approximate optimizers of the Sobolev

inequality. Suppose for some small ε > 0,

‖ϕ‖2∗
‖∇ϕ‖2

≥ (1− ε)CN .

Does it then follow that ϕ is close, in some metric, to a Sobolev optimizer? A theorem of

Bianchi and Egnell gives a strong positive answer to this question. Define the distance

between M and a function ϕ ∈ Ḣ1(RN ) as

δ(ϕ,M) := inf
h∈M
‖∇(ϕ− h)‖2 = inf

z,t,x0

‖∇(ϕ− zFt,x0)‖2 . (2.4)

Bianchi and Egnell’s answer to Brezis and Lieb’s question is summarized in the following

THEOREM 2.1.2 (Bianchi-Egnell Stability Estimate). There is a positive constant,

α, depending only on the dimension, N , so that

C2
N‖∇ϕ‖22 − ‖ϕ‖22∗ ≥ αδ(ϕ,M)2 , (2.5)

∀ϕ ∈ Ḣ1(RN ). Furthermore, the result is sharp in the sense that it is no longer true if

δ(ϕ,M)2 in (1.5) is replaced with δ(ϕ,M)β‖∇ϕ‖2−β2 , where β < 2.
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Recently, Bakry, Gentil, and Ledoux proved a sharp extension of the Sobolev in-

equality to “fractional dimensions,” and showed how it relates to certain optimal

Gagliardo-Nirenberg inequalities. V. H. Nguyen has determined all of the extremals

in the version of the inequality for real-valued functions. The goal of the present paper

is to prove an analogue of Theorem 2.1.2 for this extended Sobolev inequality. Actu-

ally, the case we treat is more general, because we generalize Nguyen’s classification

of extremals from real-valued functions to complex-valued functions. We then prove

the analogue of Theorem 2.1.2 for this generalization of Bakry, Gentil, and Ledoux’s

Theorem with classification of extremals for complex-valued functions. This is notable,

because Bianchi and Egnell prove their stability estimate for real-valued functions only,

while our stability estimate is for complex-valued functions. This is one of the aspects

that make our proof more intricate than Bianchi and Egnell’s, but it is hardly the most

notable or the most difficult aspect to deal with. Some of the steps in the proof of

our extension of the Bianchi-Egnell Stability Estimate are a fairly direct adaptation of

steps in Bianchi and Egnell’s proof. Others are not. To help highlight these differences,

we outline a proof of Theorem 2.1.2 based upon the steps of the proof to our extension

of the Bianchi-Egnell Stability Estimate. This outline is provided in subsection 2.1.5.

In the outline, we point out where our approach differs from Bianchi and Egnell’s, and

in particular, which parts require new arguments.

2.1.3 Bakry, Gentil, and Ledoux’s Extension of the Sharp Sobolev

Inequality with Nguyen’s Classification of Extremals

One can generalize the Sharp Sobolev Inequality to continuous dimension, N > 2. We

can define functions on noninteger dimensions by generalizing the notion of radial func-

tions. To be precise, the Lp-norm of a radial function, ϕ, on N -dimensional Euclidean

space is given by

‖ϕ‖p =
(∫

R+

|ϕ(ρ)|pωNρN−1dρ
)1/p

,

where ωN is the area of the unit (N − 1)-sphere given by

ωN :=
2πN/2

Γ(N2 )
. (2.6)
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We use this definition to generalize the notion of the area of a unit (N − 1)-sphere for

N > 0, possibly noninteger. In order to include the case where N is not an integer, we

provide the following definition of Γ(·):

Γ(t) =
∫ ∞

0
xt−1e−xdx .

The Lp-norm of the gradient in radial coordinates is given by

‖ϕ‖Ẇ 1,p := ‖∇ϕ‖p =
(∫

R+

|ϕ′(ρ)|pωNρN−1dρ
)
.

Allowing N to take noninteger values larger than 2 gives a generalization of the norms

‖ · ‖p and ‖ · ‖Ẇ 1,p for noninteger dimensions. In this setting, the analogue of Ḣ1(RN )

from subsection 2.1.1 will be denoted Ẇ 1,p(R+, ωNρ
N−1dρ). ϕ : [0,∞) → C is in

Ẇ 1,p(R+, ωNρ
N−1dρ) if and only if ‖ϕ‖Ẇ 1,p <∞ and ϕ is eventually zero in the sense

that the measure of {|ϕ(ρ)| > ε} is finite for all ε > 0 with respect to the measure

induced by ωNρ
N−1dρ. Having established the appropriate ideas and notation, we

state

THEOREM 2.1.3 (Sharp Sobolev Inequality for Radial Functions). Let N > 2, not

necessarily an integer, and p < N . Then, for all ϕ ∈ Ẇ 1,p(R+, ωNρ
N−1dρ) \ {0}

‖ϕ‖p∗
‖ϕ‖Ẇ 1,p

≤ ‖F1‖p∗
‖F1‖Ẇ 1,p

=: CN , (2.7)

where

p∗ =
pN

N − p
,

and

Ft(ρ) := k̂

(
t

1 + t
p
p−1 ρ

p
p−1

)N−p
p

, (2.8)

for t > 0 and k̂ > 0 a constant such that ‖F1‖Ẇ 1,p = 1. There is equality if and only if

ϕ = zFt for some t > 0 and some non-zero z ∈ C.

G.A. Bliss proved this in 1930, see [Bl]. In order to deduce Theorem 2.1.3 from Bliss’s

theorem, one has to make the substitution of variables given by

x = ρ
−N−p
p−1 ,



28

and set

m = p , and n = p∗ ,

where m and n are parameters, and x is the variable as per Theorem 1 of [Bl]. Actually,

Bliss only proves Theorem 2.1.3 for nonnegative real-valued functions in Ẇ 1,p. But,

since replacing ϕ by |ϕ| preserves the Lp-norm and cannot decrease the Ẇ 1,p-norm,

Theorem 2.1.3 must hold for functions with both positive and negative values. Once

we have this result, it is easy to generalize to complex-valued functions, as seen in an

argument given after the statement of Theorem 2.1.4.

Bakry, Gentil, and Ledoux proved an extension of the Sobolev Inequality in p. 322-

323 of [2]. This extension is for “cylindrically symmetric” functions on Euclidean space

of m + n dimensions, where one of m and n is not necessarily an integer. In this

paper, we will take m to be the number that is not necessarily an integer. Our moti-

vation for considering the extension of the Sobolev Inequality to such functions is to

extend the Bianchi-Egnell Stability Estimate of the Sobolev Inequality to cylindrically

symmetric functions in continuous dimensions. This in turn allows us to generalize a

stability estimate, proved by Carlen and Figalli (see Theorem 1.2 of [CaFi]), for a sharp

Gagliardo-Nirenberg inequality, to a family of sharp Gagliardo-Nirenberg inequalities

established by Del Pino and Dolbeault in [DeDo]. The continuous variable (i.e. nonin-

teger dimension) in the extension of the Bianchi-Egnell Stability Estimate is necessary

for this generalization of the Carlen-Figalli Stability Estimate. The extension of the

Bianchi-Egnell Stability Estimate, which we state in detail later in this introduction,

is proved in this chapter. The generalization of the Carlen-Figalli Stability Estimate,

which was one of the original goals of our research, will be sketched in chapter 3.

To state Bakry, Gentil, and Ledoux’s extension of the Sharp Sobolev Inequality,

we define the appropriate norms and spaces. First, we establish some properties of

cylindrically symmetric functions. Let ϕ : [0,∞)×Rn → C be a cylindrically symmetric

function. What we mean when we say that ϕ is a cylindrically symmetric function is

that if we write ϕ as ϕ(ρ, x), where ρ is a variable with values in [0,∞) and x is the

standard n-tuple on n Cartesian coordinates, that the ρ variable acts as a radial variable

in m-dimensions while the x variable represents the other n-dimensions on which ϕ acts.
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If m is an integer, then ϕ would also have a representation as a function on Rm+n. For

example,

ϕ(ρ, x) = (1 + ρ2 + |x|)−1

as a cylindrically symmetric function for m = 2 and n = 2 has the representation as a

function on R4 given by

ϕ(x1, x2, x3, x4) =
(

1 + x2
1 + x2

2 +
√
x2

3 + x2
4

)−1

,

where x1 and x2 correspond to the ρ-variable of ϕ(ρ, x) and x3 and x4 correspond to

the x-variable of ϕ(ρ, x). However, we want m to also possibly be noninteger. Note,

that the value of m is not provided when we give the equation for ϕ. In this paper, the

value of m will be determined by the dimensions over which our norms are integrated.

To be more precise, the m dimensions of Euclidean space are encoded in the measure

of integration corresponding to the ρ variable. This measure is ωmρm−1dρ, where ωm

is a generalized notion of the area of the unit (m− 1)-sphere given by (2.6) - note that

this formula is valid for m > 0. In this case, the Lp-norm of ϕ is given by

‖ϕ‖p =
(∫

Rn

∫
R+

|ϕ(ρ, x)|pωmρm−1dρdx
)1/p

.

Note that when m is an integer and ϕ̃ : Rm+n → C is given by ϕ̃(x̃, x) = ϕ(|x̃|, x), then

‖ϕ‖p =
(∫

Rn

∫
Rm
|ϕ̃(x̃, x)|pdx̃dx

)1/p

.

The extension of the gradient square norm, i.e. ‖∇ · ‖2, is given by

‖ϕ‖Ḣ1 := ‖∇ρ,xϕ‖2 =
(∫

Rn

∫
R+

(|ϕρ|2 + |∇xϕ|2)ωmρm−1dρdx
)1/2

,

where the subscript ρ indicates a partial derivative with respect to ρ. Note that when

m is an integer

‖ϕ‖Ḣ1 =
(∫

Rn

∫
Rm
|∇x,x̃ϕ̃(x̃, x)|2dx̃dx

)1/2

.

Let Λ be the measure on R+ × Rn induced by ωmρm−1dρdx. Accordingly, dΛ is given

by

dΛ = ωmρ
m−1dρdx , (2.9)
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and for measureable K ⊆ R+ × Rn,

Λ(K) =
∫
K
ωmρ

m−1dρdx . (2.10)

Then, the space, Ḣ1
C(R+×Rn, ωmρ

m−1dρdx), of complex-valued cylindrically symmetric

functions with finite gradient-square norm in continuous dimension will be defined as

follows: ϕ ∈ Ḣ1
C(R+ × Rn, ωmρ

m−1dρdx) if and only if

1. ϕ is a complex-valued cylindrically symmetric function with a distributional gra-

dient,

2. ‖∇ϕ‖2 <∞, and

3. ϕ is eventually zero in the sense that

Λ({(ρ, x) ∈ R+ × Rn
∣∣|ϕ(ρ, x)| > ε}) <∞ ,

for all ε > 0.

As a general rule, we will refer to Ḣ1
C(R+ × Rn, ωmρ

m−1dρdx) as Ḣ1
C. The subspace

of real-valued functions in Ḣ1
C will be denoted by Ḣ1. It will often be useful for us to

think of Ḣ1
C as the direct sum of two copies of Ḣ1. Also, in this setting, we define

2∗ :=
2(m+ n)
m+ n− 2

and γ :=
m+ n− 2

2
. (2.11)

Having established this background, we can state Bakry, Gentil, and Ledoux’s general-

ization of the Sobolev Inequality to continuous dimensions with Nguyen’s classification

of extremals (for reference, see [BaGe] and [Ng]):

THEOREM 2.1.4 (Sobolev Inequality Extension). Let m + n > 2, n an integer,

m > 0 possibly noninteger. Then, for all ϕ ∈ Ḣ1
C(R+ × Rn, ωmρ

m−1dρdx)

‖ϕ‖2∗
‖ϕ‖Ḣ1

≤ ‖F1,0‖2∗
‖F1,0‖Ḣ1

=: Cm,n , (2.12)

where

zFt,x0(ρ, x) := k̂ztγ(1 + t2ρ2 + t2|x− x0|2)−γ , (2.13)

for x0 ∈ Rn, t ∈ R+, z ∈ C, and k̂ > 0 a number such that ‖F1,0‖Ḣ1 = 1. (2.12) gives

equality if and only if ϕ = zFt,x0 for some t > 0, x0 ∈ Rn, and nonzero z ∈ C. The
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extremal functions characterized by (2.13) comprise an (n + 3)-dimensional manifold,

M ⊆ Ḣ1
C(R+ × Rn, ωmρ

m−1dρdx).

Bakry, Gentil, and Ledoux derived (2.12). Nguyen classified the extremals for the

statement of this theorem for real-valued functions only. However, once one has the

Sobolev Inequality with the classification of extremals for real-valued functions, the

generalization to complex-valued functions is easy to deduce. To see this, consider

ϕ ∈ Ḣ1
C and let

ϕ(ρ, x) = R(ρ, x)eiΘ(ρ,x) ,

where R and Θ are real-valued. Then

Cm,n‖∇ϕ‖Ḣ1 = Cm,n(‖∇ρ,xR‖22 + ‖R∇ρ,xΘ‖22)1/2

≥ Cm,n‖∇ρ,xR‖2 which by the Sobolev Inequality for real-valued functions

≥ ‖R‖2∗

= ‖ϕ‖2∗ ,

i.e. the Sobolev inequality with sharp constant. Moreover, the extremals for complex-

valued functions are derived by taking the extremals in the real-valued case and mul-

tiplying them by all possible complex numbers. We deduce this by observing that

the complex-valued Sobolev Inequality deduced above cannot achieve equality unless

R∇ρ,xΘ is zero almost everywhere and R is an extremal.

Bakry, Gentil, and Ledoux derive the generalization of the Sharp Sobolev Inequality

by relating a Sobolev Inequality on Sn+1 to (R+ ×Rn, ωmρ
m−1dρdx) via stereographic

projection, see p. 322-323 of [BaGe] for detail. Bakry’s proof is an application of an ab-

stract curvature-dimension condition. Nguyen provides a proof of Theorem 2.1.4 from

a mass-transport approach. Nguyen’s approach, unlike Bakry’s, provides a full classifi-

cation of extremals (for the Sobolev Theorem Extension for real-valued functions).
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2.1.4 The Main Theorem

The main theorem that we prove in this paper is a Bianchi-Egnell Stability Estimate

for Theorem 2.1.4. The extremals of Theorem 2.1.4 are given by

zFt,x0(ρ, x) = k̂z

(
t

1 + t2ρ2 + t2|x− x0|2

)γ
,

for x0 ∈ Rn, t ∈ R+, z ∈ C \ {0}, and k̂ > 0 a number such that ‖F1,0‖Ḣ1 = 1.

These extremal functions comprise an (n + 3)-dimensional manifold, M ⊆ Ḣ1
C(R+ ×

Rn, ωmρ
m−1dρdx). The distance, δ(ϕ,M), between this manifold and a function ϕ ∈

Ḣ1
C(R+ × Rn, ωmρ

m−1dρdx) will also be given by (2.4).

The stability estimate we prove here is

THEOREM 2.1.5 (Bianchi-Egnell Extension). There is a positive constant, α, de-

pending only on the parameters, m and n, m > 0 and n ≥ 2 an integer, so that

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ ≥ αδ(ϕ,M)2 , (2.14)

∀ϕ ∈ Ḣ1
C. Furthermore, the result is sharp in the sense that it is no longer true if

δ(ϕ,M)2 in (2.14) is replaced with δ(ϕ,M)β‖ϕ‖2−β
H1 , where β < 2.

A notable theorem that we prove in order to prove Theorem 2.1.5 is the following local

compactness theorem:

THEOREM 2.1.6. Let K ⊆ [0,∞) × Rn satisfy the cone property in Rn+1, K ⊆

{(ρ, x) ∈ [0,∞) × Rn|ρ1 < ρ < ρ2} for some 0 < ρ1 < ρ2 < ∞, and Λ(K) < ∞,

where Λ denotes the measure on R+ × Rn defined by (2.10). If (ϕj) is bounded in

Ḣ1
C and U is an open subset of K, then for 1 ≤ p < max

{
2∗, 2n+2

n−1

}
, there is some

ϕ ∈ Ḣ1
C and some subsequence, (ϕjk), such that ϕjk → ϕ in LpC(U, ωmρm−1dρdx), where

LpC(U, ωmρm−1dρdx) denotes the space of complex-valued functions on the weighted

space (U, ωmρm−1dρdx).

The proof of Theorem 2.1.6 is not too hard and is provided in the final subsection of

this chapter.
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2.1.5 Outline of a Proof of the Bianchi-Egnell Stability Estimate

In this subsection, we outline a proof of Theorem 2.1.2 based upon the techniques we

used to prove Theorem 2.1.5. In this outline, we highlight the differences between

proving our Bianchi-Egnell Extension and Bianchi and Egnell’s proof of the original

Bianchi-Egnell Stability Estimate. There are two key steps to proving Theorem 2.1.2.

These key steps in our proof are the same key steps that Bianchi and Egnell’s proof

are based upon. However, the details for establishing them are quite different at times.

The first step is a Local Bianchi-Egnell Stability Theorem: If ϕ ∈ Ḣ1(RN ) is such that

‖∇ϕ‖2 = 1 and δ(ϕ,M) ≤ 1
2 , then

C2
N‖∇ϕ‖22 − ‖ϕ‖22∗ ≥ αNδ(ϕ,M)2 − κNδ(ϕ,M)βN , (2.15)

where κN and βN are calculable constants, with βN > 2 and αN being the smallest

positive eigenvalue of a linear operator with nonnegative discrete spectrum. This al-

lows us to prove Theorem 2.1.2 in a local sense. The second step is a Concentration

Compactness argument by which we show that if Theorem 2.1.2 is not true “outside”

our local region then the Local Bianchi-Egnell Stability Theorem would not be true.

Step 1 - Prove the Local Bianchi-Egnell Stability Theorem:

Part A: Taylor Expand ‖ϕ‖22∗. Since δ(ϕ,M) ≤ 1
2 < 1 = ‖ϕ‖Ḣ1 , there is some

F ∈M such that

δ(ϕ,M) = ‖ϕ− F‖Ḣ1 .

In fact,

ϕ = F + δ(ϕ,M)ψ ,

for some ψ ∈ Ḣ1 such that ‖ψ‖Ḣ1 = 1 and ψ ⊥Ḣ1 F . Taylor expanding ‖F + εψ‖22∗

about ε = 0 to the second degree, estimating the remainder, and setting ε = δ(ϕ,M),

we get that

‖ϕ‖22∗ = ‖F + δ(ϕ,M)ψ‖22∗ ≤ ‖F‖22∗ + 〈ψ, Sψ〉Ḣ1δ(ϕ,M)2 + κNδ(ϕ,M)βN ,

where S : Ḣ1 → Ḣ1 is a linear operator, and κN and βN are calculable constants. Our

explicit calculation of the term κNδ(ϕ,M)βN , which is a bound on the remainder term
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of the second order Taylor expansion, is an improvement upon Bianchi and Egnell’s

proof. They use the Brezis-Lieb Lemma to conclude that the remainder term in the

second order Taylor expansion is o(δ(ϕ,M)2).

Part B: Use the Taylor Expansion of ‖ϕ‖22∗ to Deduce the Local Bianchi-Egnell Sta-

bility Theorem. Using the last calculation above, and the facts that ‖F‖2∗ = CN‖F‖Ḣ1

and ψ ⊥Ḣ1 F , we conclude that

C2
N‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ ≥ 〈ψ, (C2

NI − S)ψ〉Ḣ1δ(ϕ,M)2 − κNδ(ϕ,M)βN .

Next, we assume the following facts: C2
NI − S : Ḣ1 → Ḣ1 has nonnegative, discrete

spectrum whose nullspace is spanned by F and d
dtF (t is the parameter in the class

of Sobolev optimizers corresponding to dilation - refer to (2.3) if necessary) and has a

gap at 0. In Bianchi and Egnell’s proof, they prove the analogous facts by calculating

a few of the lowest eigenvalues and some of the corresponding eigenfunctions of their

operator. For Bianchi and Egnell, this is done through separation of variables and

analysis of the resulting ODEs. Proving the desired properties of the analogue to

C2
NI − S in our paper turns out to be more difficult, because the resulting PDE does

not separate nicely. So, we delay the proof of these properties of the operator a little

bit. Assuming the desired properties, we conclude (2.15), with αN being the smallest

positive eigenvalue of C2
NI − S : Ḣ1 → Ḣ1. Parts C and D are devoted to proving the

desired properties of the spectrum and nullspace of C2
NI − S : Ḣ1 → Ḣ1.

Part C: Show That S : Ḣ1 → Ḣ1 Is a Compact Self-Adjoint Operator. Proving

self-adjointness is easy. Proving compactness for the analogue of S : Ḣ1 → Ḣ1 in

our Bianchi-Egnell Extension is difficult, see subsection 2.4 for the precise argument.

The heart of the argument for proving compactness in our setting is comparing a part

of S to a similar operator for which eigenvalue and eigenfunction analysis is easier to

carry out. The comparison to the closely related operator is illuminated by a change

of coordinates. The change of coordinates in the current setting would be made by

representing ϕ in terms of its radial and spherical parts and then making a logarithmic
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substitution, i.e.

ϕ(x) = ϕ(r, ζ), r ∈ [0,∞) and ζ ∈ SN−1

= r−
N−2

2 ϕ(ln r, ζ) . (2.16)

We would work with the representative of ϕ given by ϕ(u, ζ), u = ln r, as these coordi-

nates make some of our calculations simpler. Bianchi and Egnell only need to make the

change from Euclidean coordinates, i.e. x ∈ RN , to radial and spherical coordinates,

i.e. (ρ, ζ) ∈ R+×SN−1, to carry out the analysis of the second order operator that they

obtain from their Taylor expansion.

Part D: Show that C2
NI − S : Ḣ1 → Ḣ1 is Positive and Its Nullspace is Spanned

by F and d
dtF . Establishing positivity of C2

NI − S : Ḣ1 → Ḣ1 and showing that F

and d
dtF are in its nullspace is not hard. In our proof, showing that the analogue of

C2
NI − S does not have any element in its nullspace that is not a linear combination

of F and d
dtF is not easy. We reduce the 0-eigenvalue problem to an ODE by showing

that any element in the nullspace of C2
NI − S that is orthogonal to F in Ḣ1 must

satisfy an ODE. We then show that constant multiples of d
dtF are the only solutions off

this ODE with finite energy, and consequently the only solutions in Ḣ1. We conclude

by spending some time showing that elements in the nullspace of our analogue to

C2
NI − S : Ḣ1 → Ḣ1 must be independent of the variables other than u (keep in mind

we are in logarithmic coordinates like those defined in (2.16)). See subsection 2.5 for

this argument, in particular, see Proposition 2.5.3 for the ODE argument.

Step 2 - Use Concentration Compactness to conclude the Bianchi-Egnell Stability Estimate:

The local theorem whose proof we just outlined in fact gives Bianchi and Egnell’s

Stability Theorem in a region around M . We, as well as Bianchi and Egnell, use

a Concentration Compactness argument to show that some stability estimate must

hold outside this local region also. However, in Bianchi and Egnell’s case, since they

are working in RN , they are able to cite this step as a straightforward application of

Concentration Compactness as presented by P.L. Lions or M. Struwe. In our proof

of the analogue of their stability theorem, the variables and space we work in prevent

such a straightforward application. Our treatment of the Concentration Compactness
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argument in continuous dimensions may be useful, as the argument is delicate and to

our knowledge is absent in the current literature.

2.1.6 Outline of Proof of Theorem 2.1.5

In this subsection, we outline the proof of Theorem 2.1.5. Each section of the proof is

named, with its name given in italics, and then described.

A Second Order Taylor Expansion of ‖f + εψ‖2p at ε = 0 and an Estimate of the

Remainder: In this section, we improve upon the traditional strategy of bounding the

remainder of a second order Taylor expansion of the square of the p-norm of a function.

In particular, we Taylor expand ‖f + εψ‖2p around ε = 0 to the second degree for

2 < p < ∞ and f real-valued and calculate a precise bound for the remainder term.

The previously established strategy for dealing with the remainder term is to apply the

Brezis-Lieb Lemma to conclude that the remainder is o(ε2).

Statement of a Local Bianchi-Egnell Extension and Outline of Proof: In this section,

we restrict our attention to ϕ ∈ Ḣ1
C in a neighborhood of M , the manifold of extremals

of the extended Sobolev Inequality. We state a Bianchi-Egnell Stability Estimate in

this local setting and then outline its proof. We begin by showing that

ϕ = F + δ(ϕ,M)ψ ,

for some F ∈ M and then reducing the proof to the case where F is real-valued. Ap-

plying the Taylor Expansion result of the previous section and making some additional

arguments, we deduce

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ = C2

m,n‖F + δ(ϕ,M)ψ‖2
Ḣ1 − ‖F + δ(ϕ,M)ψ‖22∗

≥
〈
(C2

m,nI − St)ψ,ψ
〉
Ḣ1

C
δ(ϕ,M)2 − κ2∗δ(ϕ,M)β2∗ ,

for some calculable constants κ2∗ > 0 and β2∗ > 2, and linear operator St : Ḣ1
C →

Ḣ1
C. We then assert that St : Ḣ1

C → Ḣ1
C is a compact self-adjoint operator and

that C2
m,nI − St : Ḣ1

C → Ḣ1
C is a positive operator whose nullspace is spanned by

{(F, 0), ( d
dtF, 0), (0, F )} - we use the convention that for ϕ ∈ Ḣ1

C, ϕ = (ξ, η) ∈ Ḣ1 ⊕ Ḣ1

- and is orthogonal in Ḣ1
C to ψ. Assuming these facts - their proof is delayed to the
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next two sections - we deduce that〈
(C2

m,nI − St)ψ,ψ
〉
Ḣ1

C
≥ αm,n ,

where αm,n is the smallest positive eigenvalue of C2
m,nI − St : Ḣ1

C → Ḣ1
C. Combining

the last two inequalities above, we conclude that

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ ≥ αm,nδ(ϕ,M)2 − κ2∗δ(ϕ,M)β2∗ ,

yielding a Local Bianchi-Egnell Stability Estimate when δ(ϕ,M) is sufficiently small.

St : Ḣ1
C → Ḣ1

C is a Self-Adjoint, Compact Operator: Self-adjointness follows easily.

Compactness does not. The gist of the argument is to show that some closely related

positive operator is compact and use this fact to show that S : Ḣ1
C → Ḣ1

C is compact.

To do this, we use the kernel of the closely related positive operator to show that some

positive even power of this operator is trace class. Hence, by a comparison argument,

the original operator will be compact. There is a change to logarithmic variables done

in this section, like the one suggested in the paragraph with heading “Part C ” in

subsection 2.4. This change of variables is essential in helping us figure out the precise

form of the closely related operator that we use to prove compactness. The argument

presented in this section is somewhat lengthy and delicate.

The Nullspace of C2
m,nI − St : Ḣ1

C → Ḣ1
C: Here we demonstrate that C2

m,nI − St :

Ḣ1
C → Ḣ1

C is positive, its nullspace is spanned by {(F, 0), ( d
dtF, 0), (0, F )}, and that all

elements in its nullspace are orthogonal in Ḣ1
C to ψ. This concludes the proof of the

local Bianchi-Egnell Stability Estimate.

Proof of Theorem 2.1.5: Here, we use Concentration Compactness to show that if

the Bianchi-Egnell Stability Estimate Extension is not true, then the Local Bianchi-

Egnell Stability Estimate that we proved earlier would be untrue. This, of course, is

a contradiction. Hence, we conclude the main theorem of this paper. However, Con-

centration Compactness theorems for cylindrically symmetric functions in continuous

dimension are, to our knowledge, absent from literature. Moreover, it was not clear to

us that there is an easy way to take preexisting arguments for functions defined on sub-

sets of RN to deduce a Concentration Compactness result for cylindrically symmetric

functions on continuous dimensions. Thus, we have the next section.
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Concentration Compactness: We begin by showing that for (ϕj) ⊆ Ḣ1
C such that

‖ϕj‖2∗ = 1 for all j, and C2
m,n‖ϕj‖2Ḣ1 − ‖ϕj‖22∗ → 0, that dilating the functions appro-

priately, i.e. taking (ϕσjj ), where

ϕσ(ρ, x) := σγϕ(σρ, σx), σ > 0 ,

for appropriate σj gives us a subsequence such that

Λ({|ϕσjkjk (x)| > ε, ρ ≤ 4}) > C , (2.17)

for some C > 0 and ε > 0 and where Λ denotes the measure defined in (2.10). We

then apply an analogue of a Concentration Compactness Theorem proved by Lieb to

conclude that a translated subsequence of (ϕ
σjk
jk

(x)) converges weakly in Ḣ1
C to a nonzero

element ϕ. The tricky part of proving concentration compactness in this section is

proving (2.17). The gist of the argument proving (2.17) is to show that if we dilate

the functions in our sequence appropriately and then take their symmetric decreasing

rearrangements, then some subsequence of the modified sequence will satisfy the p, q, r-

Theorem on a subregion of an annulus. What makes this complicated in our case is

that we are working with cylindrically symmetric functions in continuous dimensions.

Using some straightforward functional analysis arguments, we conclude that ϕ ∈ M

and ‖ϕ‖2∗ = 1. Noteworthy of these arguments is the use of a Local Compactness

Theorem on cylindrically symmetric functions on continuous dimension. This Theorem

substitutes for the Rellich-Kondrachov Theorem and can be thought of as a weaker

version of the Rellich-Kondrachov Theorem for cylindrically symmetric functions on

continuous dimensions. The precise statement of our Local Compactness Theorem is

Theorem 2.1.6 in subsection 2.1.4.

Proof of Local Compactness Theorem: Here we prove Theorem 2.1.6.

2.1.7 Applications of Bianchi and Egnell’s Stability Analysis and Our

Bianchi-Egnell Stability Estimate

We begin this subsection with a discussion of what motivated us to pose and prove

the Bianchi-Egnell Extension, Theorem 2.1.5. Bakry, Gentil, and Ledoux showed that
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their extension of the Sobolev Inequality implies a sharp family of Gagliardo-Nirenberg

inequalities that had only recently been proven by Del Pino and Dolbeault, see [DeDo].

Carlen and Figalli explored this connection and used Bakry, Gentil, and Ledoux’s tech-

niques to establish a stability estimate for a single case in this family of sharp Gagliardo-

Nirenberg inequalities. An essential step to obtaining this stability estimate, is a direct

application of the Bianchi-Egnell Stability Estimate. Carlen and Figalli’s use of the

Bianchi-Egnell Stability Estimate in establishing a stability estimate of the Gagliardo-

Nirenberg inequality, raises the question as to whether or not one can generalize their

stability estimate to the entire family of Gagliardo-Nirenberg inequalities classified by

Del Pino and Dolbaeault. The answer to this question is yes, but using Carlen and

Figalli’s techniques requires the Bianchi-Egnell Stability Estimate that we prove in this

paper. The Bianchi-Egnell Stability Estimate on integer dimensions is not sufficient,

because there is an integration step that links the Sobolev Inequality to these sharp

Gagliardo-Nirenberg inequalities. This integration step induces a correlation between

the dimension of the Sobolev Inequality and a parameter in the Gagliardo-Nirenberg

inequalities of Del Pino and Dolbeault. In order to deduce a stability estimate for the

Gagliardo-Nirenberg inequalities corresponding to all possible values of this paremeter,

one needs a Sobolev Inequality and a Bianchi-Egnell Stability Estimate for cylindri-

cally symmetric functions on continuous dimensions. Thus, we set out to prove the

Bianchi-Egnell Stability Estimate Extension in this paper, in order to develop this nec-

essary piece of machinery in proving a stability estimate for the full class of sharp

Gagliardo-Nirenberg inequalities of Del Pino and Dolbeault. We will use our Bianchi-

Egnell Stability Estimate Extension in a future paper to prove a stability estimate for

the full family of Gagliardo-Nirenberg inequalities classified by Del Pino and Dolbeault

in [DeDo].

The techniques used to prove the stability estimate of Bianchi and Egnell have

been used in solving many partial differential equations, see [AdYa], [MuPi], and [Sm]

for some examples. The Gagliardo-Nirenberg stability estimate of Carlen and Figalli,

which is a direct application of the Bianchi-Egnell Stability Estimate, was also used to

solve a Keller-Segel equation, see [CaFi].
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2.2 A Second Order Taylor Expansion of ‖f + εψ‖2
p at ε = 0 and an

Estimate of the Remainder

In this subsection, we will Taylor expand ‖f + εψ‖2p at ε = 0 to the second degree and

estimate the remainder term. This may seem like a simple enough process, but this

expansion lies at the heart of Theorem 2.1.5. Moreover, our estimate is an improvement

upon the conventional method of dealing with the remainder term. The conventional

method is to apply the Brezis-Lieb Lemma to conclude that the remainder term is

o(ε2). We show that the remainder is bounded by κp|ε|βp with κp > 0, βp > 2 calculable

constants.

Although the stability estimate that we prove in our paper is for complex-valued

functions, we will reduce our calculations to real-valued functions. To this end, we

treat LpC, complex-valued Lp functions, as the direct sum of two copies of the space of

real-valued Lp functions. To be more precise, we let LpC = Lp ⊕ Lp, where Lp denotes

the space of real-valued Lp functions. When representing elements in LpC as a direct

sum, the first coordinate will represent the real part of the function and the second

coordinate will represent the imaginary part; i.e., if ψ ∈ LpC, then ψ = (ξ, η) for some

ξ, η ∈ Lp. The calculation of the Taylor Expansion is summarized in the following

THEOREM 2.2.1. Let Pψ : [−1, 1]→ R be given by

Pψ(ε) = ‖f + εψ‖2p , (2.18)

for ψ ∈ LpC, real-valued f ∈ LpC, ‖ψ‖p = ‖f‖p = 1, and 2 < p < ∞. Let ψ = (ξ, η).

Then, ∣∣Pψ(ε)− 1− 2〈f |f |p−2, ξ〉L2ε− 〈Lf,pψ,ψ〉L2⊕L2ε2
∣∣ ≤ κp|ε|βp , (2.19)

where Lf,p = LRef,p ⊕ LImf,p is given by

LRef,pξ = −(p− 2)
(∫

f |f |p−2ξ

)
f |f |p−2 + (p− 1)|f |p−2ξ (2.20)

LImf,pη = |f |p−2η , (2.21)
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and

βp =


3 if p ≥ 4

1 + p
2 if 2 < p ≤ 4

(2.22)

κp =


4
3(5p2 − 12p+ 7) if p ≥ 4

16(p−1)
p(p+2)

[
4(p− 2) +

(
3p
p−2

) p
2
−1
]

if 2 < p ≤ 4 .
(2.23)

Proof. The proof of Theorem 2.2.1 breaks into three parts. The first is the Taylor

Expansion summarized in

LEMMA 2.2.2. Given the assumptions of Theorem 2.2.1,

Pψ(ε) = 1 + 2〈f |f |p−2, ξ〉L2ε+ 〈Lf,pψ,ψ〉L2⊕L2ε2 +
∫ ε

0

∫ s

0
P ′′ψ(y)−P ′′ψ(0)dyds . (2.24)

Proof. Taylor expanding Pψ to the second order with remainder yields

Pψ(ε) = Pψ(0) + P ′ψ(0)ε+
1
2
P ′′ψ(0)ε2 +

∫ ε

0

∫ s

0
P ′′ψ(y)− P ′′ψ(0)dyds . (2.25)

A straightforward calculation shows that

Pψ(0) = 1 , P ′ψ(0) = 2〈f |f |p−2 , ξ〉L2 ,
1
2
P ′′ψ(0) = 〈Lf,pψ,ψ〉L2⊕L2 . (2.26)

Combining (2.25) and (2.26) yields (2.24).

The expansion above is a straightforward calculation. Much of the work from here

on out is devoted to identifying the behavior of the individual terms in (2.19) as applied

to our particular setup. We begin this process by getting an estimate on the remainder

term of the right hand side of (2.19). This is a bit subtle. Our proof hinges on a piece

of machinery developed by Carlen, Frank, and Lieb in [CaFr]. This machinery is the

duality map, Dp, on functions from LpC to the unit sphere in Lp
′

C (we take the convention

that 1
p′ := 1− 1

p) given by

Dp(g) = ‖g‖1−pp |g|p−2g .

As a consequence of uniform convexity of LpC for 1 < p < ∞, Carlen, Lieb, and Frank

deduce Holder continuity of the duality map, see Lemma 3.3 of [CaFr] for detail. This

Holder continuity is crucial in bounding the remainder term in (2.19). We set up the
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application of this Holder continuity of the duality map in the second part of the proof

of Theorem 2.2.1 summarized by

LEMMA 2.2.3. Given the assumptions of Theorem 2.2.1,

∣∣P ′′ψ(y)− P ′′ψ(0)
∣∣ ≤ 4(p−2)

∥∥∥Dp(f (y))−Dp(f)
∥∥∥
p′

+2(p−1)
∥∥∥D p

2
([f (y)]2)−D p

2
(f2)

∥∥∥
( p2 )′

,

(2.27)

for f (y) := f + yψ.

Proof. We begin with the inequality

1
2(p− 2)

∣∣P ′′ψ(y)− P ′′ψ(0)
∣∣ ≤ ∣∣∣∣∣‖f (y)‖2−2p

p

(∫
|f (y)|p−2[(f + yξ)ξ + yη2]

)2

−
(∫
|f |p−2fξ

)2
∣∣∣∣∣

+
∣∣∣∣‖f (y)‖2−pp

(∫
|f (y)|p−4[(f + yξ)ξ + yη2]2

)
−
(∫
|f |p−4f2ξ2

)∣∣∣∣
+ (p− 2)−1

∣∣∣∣‖f (y)‖2−pp

(∫
|f (y)|p−2|ψ|2

)
−
(∫
|f |p−2|ψ|2

)∣∣∣∣
=:A1 +A2 +A3 . (2.28)

We bound A1, A2, and A3 below:

A1 =

∣∣∣∣∣‖f (y)‖2−2p
p

(∫
|f (y)|p−2[(f + yξ)ξ + yη2]

)2

−
(∫
|f |p−2fξ

)2
∣∣∣∣∣

using the fact that a2 − b2 = (a− b)(a+ b) and elementary properties of complex numbers

≤
∣∣∣∣(∫ Dp(f (y))ψ

)
+
(∫
Dp(f)ψ

)∣∣∣∣ · ∣∣∣∣(∫ Dp(f (y))ψ
)
−
(∫
Dp(f)ψ

)∣∣∣∣
≤

(
‖|f (y)|p−1‖p′
‖f (y)‖p−1

p

+ 1

)(∫
[Dp(f (y))−Dp(f)]ψ

)
≤ 2‖Dp(f (y))−Dp(f)‖p′ , and (2.29)

A2 =
∣∣∣∣‖f (y)‖2−pp

(∫
|f (y)|p−4[(f + yξ)ξ + yη2]2

)
−
(∫
|f |p−4f2ξ2

)∣∣∣∣
≤
∫ ∣∣∣‖f (y)‖2−pp |f (y)|p−4[(f + yξ)ξ + yη2]2 − |f |p−4f2ξ2

∣∣∣
using the fact that a2 − b2 = (a− b)(a+ b) and elementary properties of complex numbers

≤
∫ ∣∣∣D p

2
([f (y)]2)−D p

2
(f2)

∣∣∣ |ψ2| , which by Holder’s Inequality

≤ ‖D p
2
([f (y)]2)−D p

2
(f2)‖( p

2
)′ . (2.30)
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And, a process similar to the one used to bound A2 shows that

A3 ≤ (p− 2)−1
∥∥∥D p

2
([f (y)]2)−D p

2
(f2)

∥∥∥
( p2 )′

. (2.31)

Combining (2.28)-(2.31), we conclude (2.27).

In the third part of the proof of Theorem 2.2.1, we estimate the right hand side of

(2.27) via Holder continuity of the duality map, Dp. For completeness, we state this

Holder continuity property below:

LEMMA 2.2.4 (Holder Continuity of the Duality Map). Let f, g ∈ Lp(X,µ) for X a

measure space and µ its measure. Then

‖Dp(f)−Dp(g)‖p′ ≤ 4(p− 1)
‖f − g‖p
‖f‖p + ‖g‖p

, for p ≥ 2 (2.32)

‖Dp(f)−Dp(g)‖p′ ≤ 2
(
p′
‖f − g‖p
‖f‖p + ‖g‖p

)p−1

, for 1 < p ≤ 2 . (2.33)

Applying Lemma 2.2.4 to the right hand side of (2.27) yields

∣∣P ′′ψ(y)− P ′′ψ(0)
∣∣ ≤


16(p− 1)(p− 2) ‖yψ‖p

‖f (y)‖p+1
+ 8(p− 1)2

‖2fyψ+y2ψ2‖ p
2

‖[f (y)]2‖+‖f2‖ p
2

if p
2 ≥ 2

16(p− 1)(p− 2) ‖yψ‖p
‖f (y)‖p+1

+ 4(p− 1)
[(p

2

)′ ‖2fyψ+y2ψ2‖ p
2

‖[f (y)]2‖+‖f2‖ p
2

] p
2
−1

if 1 < p
2 ≤ 2

which by the Holder and triangle inequalities, and because y ∈ [−1, 1]

≤


5(9p2 − 12p+ 7)|y| if p

2 ≥ 2

4(p− 1)
[
4(p− 2) +

(
3p
p−2

) p
2
−1
]
|y|

p
2
−1 if 1 < p ≤ 2 .

Thus,

∣∣∣∣∫ ε

0

∫ s

0
P ′′ψ(y)− P ′′ψ(0)dyds

∣∣∣∣ ≤


5(8p2 − 12p+ 7)
∫ |ε|

0

∫ s
0 ydyds if p

2 ≥ 2

4(p− 1)
[
4(p− 2) +

(
3p
p−2

) p
2
−1
] ∫ |ε|

0

∫ s
0 y

p
2
−1dyds if 1 < p

2 ≤ 2

≤ κp|ε|βp . (2.34)

Combining (2.34) with Lemma 2.2.2 we conclude Theorem 2.2.1.

2.3 Statement of a Local Bianchi-Egnell Extension and Outline of

Proof

In this subsection, we state and outline the proof of the following



44

THEOREM 2.3.1 (Local Bianchi-Egnell Extension). Let ϕ ∈ Ḣ1
C(R+×Rn, ωmρ

m−1dρdx)

be such that

‖ϕ‖Ḣ1 = 1, and δ(ϕ,M) ≤ 1
2
. (2.35)

Then

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ ≥ αm,nδ(ϕ,M)2 −

κ2∗C
2
m,n

4 · 3
β2∗
2
−1
δ(ϕ,M)β2∗ , (2.36)

where αm,n is the smallest positive eigenvalue of the operator C2
m,nI − A−1LF1,0,2∗ :

Ḣ1
C → Ḣ1

C for Lf,p as defined in subsection 2.2 and

A = −∆x −
∂2

∂ρ2
− m− 1

ρ

∂

∂ρ
.

This gives a local version of a Bianchi-Egnell stability estimate for ϕ ∈ Ḣ1
C such that

‖ϕ‖Ḣ1 = 1, provided

δ(ϕ,M) ≤ min

{(
αm,n
2κ2∗

)1/(β2∗−2)

,
1
2

}
. (2.37)

We begin with the proof of the last sentence of Theorem 2.3.1

Proof. Let ϕ ∈ Ḣ1
C obey (2.37). Then,

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ ≥ αm,nδ(ϕ,M)2 − κ2∗δ(ϕ,M)β2∗

= δ(ϕ,M)2
[
αm,n − κ2∗δ(ϕ,M)β2∗−2

]
≥ αm,n

2
δ(ϕ,M)2, by (2.37).

The inequality we deduced above is in fact a Bianchi-Egnell stability estimate as char-

acterized by (2.14) with α in (2.14) equal αm,n
2 .

With the last sentence out of the way, we only need to show that (2.35) implies (2.36).

Once we have proved Theorem 2.3.1, we will be able to use it and a Concentration

Compactness argument to prove Theorem 2.1.5. About half of the work in this paper is

devoted to proving Theorem 2.3.1 - or rather the following reduction of Theorem 2.3.1:

LEMMA 2.3.2. Let ϕ ∈ Ḣ1
C obey (2.35) and be such that

δ(ϕ,M) = ‖ϕ− zFt,0‖Ḣ1, for some z ∈ R and t ∈ R+ . (2.38)

Then (2.36) holds for ϕ.
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It is important to note that we stipulated that z ∈ R, not C, because this is half of the

reduction. The other half of the reduction is that a minimizing element of ϕ is zFt,0 as

opposed to a more general zFt,x0 .

In order to prove Theorem 2.3.1, we would like to use Theorem 2.2.1. This requires

ϕ to be in the form f + δ(ϕ,M)ψ. ϕ is in fact in such a form due to

LEMMA 2.3.3. Let ϕ ∈ Ḣ1
C be such that

δ(ϕ,M) < ‖ϕ‖Ḣ1 . (2.39)

Then, ∃zFt,x0 ∈M such that

δ(ϕ,M) = ‖ϕ− zFt,x0‖Ḣ1 . (2.40)

Proof. M can be viewed as a continuous imbedding of C × R+ × Rn into Ḣ1
C by the

map

(z, t, x0) 7→ zFt,x0 .

Thus, the existence of an element zFt,x0 satisfying (2.40) is a consequence of the conti-

nuity of the map from C× R+ × R to R given by

(z, t, x0) 7→ ‖ϕ− zFt,x0‖Ḣ1

and the fact that (2.39) implies that any such minimizing triple (z, t, x0) must occur on

a set away from the origin and infinity in C × R+ × Rn. Thus, a minimizing element

zFt,x0 exists by lower semicontinuity on bounded sets in Euclidean space. This is an

adaptation of a proof to an analogous statement in [BiEg], see Lemma 1 in [BiEg] for

more detail.

Applying Lemma 2.3.3, we conclude that ϕ obeying the assumptions of Theorem

2.3.1 has the form

ϕ = zFt,x0 + δ(ϕ,M)ψ ,

for some ψ ∈ Ḣ1
C such that ‖ψ‖Ḣ1 = 1. If we multiply ϕ by z/|z| and translate (0, x0)

to the origin - both operations are invariant on ‖ · ‖Ḣ1 , ‖ · ‖2∗ , δ(·,M) - then we end up

with some ϕ̃ = |z|Ft,0 + δ(ϕ̃,M)ψ whose relevant norms and distances are the same as
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ϕ. Thus, if (2.36) holds for functions obeying (2.35) and (2.38), then they hold for all

functions obeying (2.35), i.e. Theorem 2.3.1 is a corollary of Lemma 2.3.2.

Now that we have shown that Theorem 2.3.1 is a corollary of Lemma 2.3.2, we will

use Theorem 2.2.1 to begin to prove Lemma 2.3.2. To be precise, we will prove the

following

LEMMA 2.3.4. Let ϕ ∈ Ḣ1
C satisfy the assumptions of Lemma 2.3.2. Then

C2
m,n‖ϕ‖2Ḣ1−‖ϕ‖22∗ ≥

〈
(C2

m,nI −A−1LC−1
m,nFt,0,2∗

)ψ,ψ
〉
Ḣ1

C

δ(ϕ,M)2−
κ2∗C

2
m,n

4 · 3
β2∗
2
−1
δ(ϕ,M)β2∗ ,

(2.41)

where ψ ∈ Ḣ1
C is such that

ϕ = zFt,0 + δ(ϕ,M)ψ, and ‖ψ‖Ḣ1 = 1 . (2.42)

Proof. ϕ satisfies (2.42) and ψ ⊥Ḣ1
C
Ft,0 as a result of (2.38). Consistent with the

notation of subsection 2.2, we let ψ = (ξ, η) ∈ Ḣ1 ⊕ Ḣ1. Applying Theorem 2.2.1 to

‖ϕ‖22∗ yields

‖ϕ‖22∗ =z2C2
m,n

∥∥∥∥ Ft,0Cm,n
+
δ(ϕ,M)‖ψ‖2∗

zCm,n
· ψ

‖ψ‖2∗

∥∥∥∥2

2∗

≤z2C2
m,n + 2zC2−2∗

m,n 〈Ft,0|Ft,0|2
∗−2, ξ〉L2δ(ϕ,M) +

〈
LC−1

m,nFt,0,2∗
ψ,ψ

〉
L2⊕L2

δ(ϕ,M)2

+
κ2∗‖ψ‖β2∗

2∗

(zCm,n)β2∗−2
δ(ϕ,M)β2∗ . (2.43)

We claim that the coefficient of first order in the right hand side of (2.43) equals zero.

To see this, we consider the function Rψ : R→ R given by

Rψ(ε) =
‖Ft,0 + εψ‖22∗
‖Ft,0 + εψ‖2

Ḣ1

.

Since Ft,0 is an extremal of the Sobolev Inequality

0 = R′ψ(0) = 2‖Ft,0‖2−2∗

2∗

〈
Ft,0|Ft,0|2

∗−2, ξ
〉
L2
− 2‖Ft,0‖22∗ 〈Ft,0, ξ〉Ḣ1

=⇒
〈
Ft,0|Ft,0|2

∗−2, ξ
〉
L2

= ‖Ft,0‖2
∗

2∗ 〈Ft,0, ξ〉Ḣ1 = 0, as ψ ⊥Ḣ1
C
Ft,0 . (2.44)
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Thus, by (2.43), (2.44), and the fact that ψ ⊥Ḣ1
C
Ft,0

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ ≥C2

m,n

[
‖zFt,0‖2Ḣ1 + ‖ψ‖2

Ḣ1δ(ϕ,M)2
]

−

[
C2
m,nz

2 +
〈
LC−1

m,nFt,0,2∗
ψ,ψ

〉
L2⊕L2

δ(ϕ,M)2 +
κ2∗‖ψ‖β2∗

2∗

(zCm,n)β2∗−2
δ(ϕ,M)β2∗

]

and since 〈Aϕ1, ϕ2〉L2⊕L2 = 〈ϕ1, ϕ2〉Ḣ1
C

for all ϕ1, ϕ2 ∈ Ḣ1
C

=
〈

(C2
m,nI −A−1LC−1

m,nFt,0,2∗
)ψ,ψ

〉
Ḣ1

C

δ(ϕ,M)2 − κ2∗‖ψ‖β2∗
2∗

(zCm,n)β2∗−2
δ(ϕ,M)β2∗ .

(2.45)

(2.35), (2.42), and the Sobolev Inequality imply

|z| ≥
√

3
2

, and ‖ψ‖2∗ ≤ Cm,n/2 . (2.46)

(2.45) and (2.46) allow us to conclude (2.41).

Having proved that under the assumptions of Lemma 2.3.2 that (2.41) holds, we

only need to show that〈(
C2
m,nI −A−1LC−1

m,nFt,0,0

)
ψ,ψ

〉
Ḣ1

C

≥ αm,n , (2.47)

in order to prove Lemma 2.3.2, which in turn proves Theorem 2.3.1. In order to simplify

notation, we let

St = A−1LC−1
m,nFt,0,2∗

.

We prove (2.47) by proving the following

THEOREM 2.3.5. C2
m,nI − St : Ḣ1

C → Ḣ1
C has a nonnegative, bounded, discrete

spectrum, whose eigenvalues are independent of the value of the parameter t. This

spectrum has at most one accumulation point, which if it exists, is at C2
m,n. Let λi,

i = 0, 1, 2, . . . , (with this list possibly finite) denote the eigenvalues of C2
m,nI − St :

Ḣ1
C → Ḣ1

C whose value are less than C2
m,n, with λi listed in increasing order. Then,

λ0 = 0 and its corresponding eigenspace is spanned by {(Ft,0, 0), ( d
dtFt,0, 0), (0, Ft,0)}.

Finally, {(Ft,0, 0), ( d
dtFt,0, 0), (0, Ft,0)} ⊥Ḣ1 ψ.

We split the proof of Theorem 2.3.5 into the proof of two smaller theorems and a brief

argument establishing independence of eigenvalues from the value of the parameter t.

We state these theorems below
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THEOREM 2.3.6. St : Ḣ1
C → Ḣ1

C is a self-adjoint compact operator.

THEOREM 2.3.7. C2
m,nI − St : Ḣ1

C → Ḣ1
C is a positive operator, its nullspace is

spanned by {(Ft,0, 0), ( d
dtFt,0, 0), (0, Ft,0)}, and ψ ⊥Ḣ1

C
{(Ft,0, 0), ( d

dtFt,0, 0), (0, Ft,0)}.

Once we have proved theorems 2.3.6 and 2.3.7, all of Theorem 2.3.5, except for the

independence of eigenvalues from the value of t, follows via Fredholm Theory. The

proofs of theorems 2.3.6 and 2.3.7 are somewhat difficult and are presented in sections

four and five respectively. We prove the independence of eigenvalues of C2
m,nI − St :

Ḣ1
C → Ḣ1

C from the value of t here; a change of coordinates makes this proof more readily

apparent. We obtain the appropriate coordinate system through several changes. First

we change to (w, θ, ζ)-coordinates, (w, θ, ζ) ∈ [0,∞)× [0, π/2]× Sn−1, where

ϕ(w, θ, ζ) = ϕ(ρ, x), for ρ = w cos θ, x = (w sin θ, ζ) . (2.48)

And then, we change to (u, θ, ζ)-coordinates, (u, θ, ζ) ∈ R× [0, π/2]× Sn−1, given by

ϕ(u, θ, ζ) = wγϕ(w, θ, ζ), for u = lnw and γ given by (2.11) . (2.49)

In (u, θ, ζ)-coordinates

Ft,0(u, θ, ζ) = k02−γ cosh−γ(u+ ln t) . (2.50)

Thus, Ft,0 and Ft′,0 are related by a translation of in u-coordinates by ln t′ − ln t.

This fact combined with the explicit formula of L as per Theorem 2.2.1 and that

C2
m,nI − St = C2

m,nI − A−1LC−1
m,nFt,0,0

allows us to conclude that the eigenvalues of

C2
m,nI − St : Ḣ1

C → Ḣ1
C are independent of t. Combining this with Theorem 2.3.5, we

conclude (2.47) with αm,n = λ1, which is the definition of αm,n as per Theorem 2.3.1.

Thus, we have shown Lemma 2.3.2, which in turn proves Theorem 2.3.1.

2.4 St : Ḣ1
C → Ḣ1

C is a Self-Adjoint, Compact Operator

In this section, we prove Theorem 2.3.6. We begin with the following

LEMMA 2.4.1. St : Ḣ1
C → Ḣ1

C is self-adjoint.



49

Proof. Let ϕ1, ϕ2 ∈ Ḣ1
C. Then,

〈ϕ1, Stϕ2〉Ḣ1
C

=
〈
ϕ1, A

−1LC−1
m,nFt,0,2∗

ϕ2

〉
Ḣ1

C

=
〈
ϕ1,LC−1

m,nFt,0,2∗
ϕ2

〉
L2⊕L2

.

It is clear from the explicit form of LC−1
m,nFt,0,2∗

provided in Theorem 2.2.1 that LC−1
m,nFt,0,2∗

:

L2 ⊕ L2 → L2 ⊕ L2 is self-adjoint. Thus, St : Ḣ1
C → Ḣ1

C is self-adjoint.

Next, we prove the following

LEMMA 2.4.2. St : Ḣ1
C → Ḣ1

C is compact.

Proof. This proof is quite involved. We use this paragraph to outline the proof and

then carry out the proof in mini-sections headed by phrases in italics. First, we reduce

proving compactness of St : Ḣ1
C → Ḣ1

C to proving compactness of A−1LIm
C−1
m,nFt,0,2∗

:

Ḣ1 → Ḣ1 (we will omit the subscripts C−1
m,nFt,0, 2

∗ henceforth). Next, we use the fact

that A1/2 : Ḣ1 → L2, the square root of A, is an isometry to reduce proving compactness

of A−1LIm : Ḣ1 → Ḣ1 to proving compactness of A−1/2LImA−1/2 : L2 → L2. This

follows due to commutativity of the following diagram

Ḣ1 A−1LIm→ Ḣ1

↓A1/2 ↑A−1/2

L2 A−1/2LImA−1/2

→ L2 .

(2.51)

This reduction is crucial, because it reduces the proof of compactness over Ḣ1 to L2,

where verification of compactness is much easier to do directly. Next, we change co-

ordinates and reduce showing compactness of A−1/2LImA−1/2 : L2 → L2 to a closely

related operator, (LIm)1/2Â−1(LIm)1/2 : L2 → L2. The change of coordinates preced-

ing this reduction is also crucial, because it helps illuminate the route that we take

to verify compactness of A−1/2LImA−1/2 : L2 → L2. At this point, we have reduced

the compactness problem to a more manageable situation. We proceed by endeavoring

to show that (LIm)1/2Â−1(LIm)1/2 : L2 → L2 has arbitrarily good finite rank approx-

imation in the operator norm. In particular, we calculate the Green’s function of Â

and use this calculation to show that the trace of [(LIm)1/2Â−1(LIm)1/2]d is finite for

some suitably large even value of d, i.e. [(LIm)1/2Â−1(LIm)1/2]d is trace class. Since
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[(LIm)1/2Â−1(LIm)1/2]d : L2 → L2 is trace class, it is compact and its eigenvalues con-

verge to zero. By standard spectral theory, the eigenvalues of [(LIm)1/2Â−1(LIm)1/2]d

are the d-th power of the eigenvalues of (LIm)1/2Â−1(LIm)1/2. Thus, the eigenvalues of

(LIm)1/2Â−1(LIm)1/2 also converge to zero, which implies that (LIm)1/2Â−1(LIm)1/2 :

L2 → L2 has arbitrarily good finite rank approximation in the operator norm. Thus,

to show that (LIm)1/2Â−1(LIm)1/2 : L2 → L2 is compact, we only need to show that

[(LIm)1/2Â−1(LIm)1/2]d is trace class. One should note that in the course of the proof,

we show that d > n+1
2 is sufficient, and it does not appear that [(LIm)1/2Â−1(LIm)1/2]d

is necessarily trace class for smaller d.

Mini-Section 1: Compactness of St : Ḣ1
C → Ḣ1

C is implied by compactness of A−1LIm :

Ḣ1 → Ḣ1. Note that

St = A−1L = A−1LRe ⊕A−1LIm ,

as per Theorem 2.2.1. Thus, to show that St : Ḣ1
C → Ḣ1

C is compact, it suffices to show

that A−1LRe, A−1LIm : Ḣ1 → Ḣ1 are compact. Also,

A−1LReξ = A−1

[
−(2∗ − 2)C2−2·2∗

m,n

(∫
F 2∗−1
t,0 ξ

)
F 2∗−1
t,0

]
+A−1

[
C2−2∗
m,n F 2∗−2

t,0 (2∗ − 1)ξ
]

=: Pξ + (2∗ − 1)A−1LImξ . (2.52)

Note that the calculations used to obtain (2.44) could also be used to show that

〈
F 2∗−1
t,0 , ξ

〉
L2

= ‖Ft,0‖2
∗

2∗ 〈AFt,0, ξ〉L2 , ∀ξ ∈ Ḣ1 .

Since F is of class C∞, this implies that

F 2∗−1
t,0 = C2∗

m,nAFt,0, because ‖F‖2∗ = Cm,n . (2.53)

This in turn implies that

Pξ = −(2∗ − 2)C2∗
m,n 〈Ft,0, ξ〉Ḣ1 Ft,0 . (2.54)

Thus, P : Ḣ1 → Ḣ1 is a projection operator onto Ft,0, which implies that P : Ḣ1 → Ḣ1

is compact. Combining this fact with (2.52), we only need to show that A−1LIm :

Ḣ1 → Ḣ1 is compact in order to conclude that St : Ḣ1
C → Ḣ1

C is compact.
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Mini-Section 2: Compactness of A−1LIm : Ḣ1 → Ḣ1 is implied by compactness

of (LIm)1/2Â−1(LIm)1/2 : Ḣ1 → Ḣ1. We already explained in the above via the

commutative diagram, (2.51), that A−1LIm : Ḣ1 → Ḣ1 is compact if and only if

A−1/2LImA−1/2 : L2 → L2 is compact. This reduces the problem of proving com-

pactness of an operator from Ḣ1 to Ḣ1 to an operator from L2 to L2, making direct

verification of compactness easier. However, the explicit form of A−1/2LImA−1/2 does

not seem to suggest any easy way to verify the desired compactness. But, changing

from (ρ, x)-coordinates to (u, v, ζ)-coordinates, (u, v, ζ) ∈ R × [−1, 1] × Sn−1, provides

a set of coordinates for which this verification is easier. We obtain (u, v, ζ)-coordinates

by making a change of variables from (u, θ, ζ)-coordinates (see (2.48) and (2.49) for

reference) with respect to the angular coordinate, θ, given by

v = 2 cos2 θ − 1 .

In these coordinates, A has the explicit form (γ is as defined in (2.11))

A = γ2I − ∂2

∂u2
− 4(1− v2)

∂2

∂v2
− 4

(
m− n

2
− m+ n

2
v

)
∂

∂v
− 2
v + 1

∆Sn−1(ζ) . (2.55)

(2.55) is almost a nice formula of A for which we can write the Green’s function of A

and use this to prove the desired compactness. However, the last term in the right hand

side of (2.55) is nonlinear and makes figuring out the Green’s function of A difficult.

Thus, we use the closely related operator Â given by

Â = γ2I − ∂2

∂u2
− 4(1− v2)

∂2

∂v2
− 4

(
m− n

2
− m+ n

2
v

)
∂

∂v
−∆Sn−1(ζ) , (2.56)

to help us show the desired compactness. More precisely, we show that A−1/2LImA−1/2 :

L2 → L2 is compact by showing that (LIm)1/2Â−1(LIm)1/2 : L2 → L2 is compact. This

last reduction is justified as follows: if (LIm)1/2Â−1(LIm)1/2 : L2 → L2 is compact,

then (LIm)1/2A−1(LIm)1/2 : L2 → L2 is compact. This is because

A ≥ Â ≥ 0 =⇒ (LIm)1/2Â−1(LIm)1/2 ≥ (LIm)1/2A−1(LIm)1/2 ≥ 0 .

Next, let

B := A−1/2(LIm)1/2 .
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If (LIm)1/2A−1(LIm)1/2 : L2 → L2 is compact, then

B∗B = (LIm)1/2A−1(LIm)1/2 : L2 → L2 is compact

=⇒ B,B∗ : L2 → L2 are bounded

=⇒ BLImA−1(LIm)1/2B∗ = (A−1/2LImA−1/2)2 : L2 → L2 is compact

=⇒ A−1/2LImA−1/2 : L2 → L2 is compact .

Thus, compactness of (LIm)1/2Â−1(LIm)1/2 : L2 → L2 implies compactness ofA−1/2LImA−1/2 :

L2 → L2.

Mini-Section 3: Calculating the Green’s function of Â. We can write Â as

Â = U + V +W ,

where

U = γ2I − ∂2

∂u2

V = −4(1− v2)
∂2

∂v2
− 4[α̂− β̂ − (α̂+ β̂ + 2)v]

∂

∂v
, and

W = −∆Sn−1(ζ) ,

for α̂ = m−2
2 and β̂ = n−2

2 . We can build the Green’s function for Â out of the

eigenfunctions and eigenvalues of U , V , and W . The eigenfunctions of U are qk(u) :=

e−iku, with corresponding eigenvalues γ2 + k2. The eigenfunctions of V are the Jacobi

Polynomials, pα̂,β̂j (v), with corresponding eigenvalues σj = 4j(j + m+n
2 − 1); for more

detail, see p. 60 of [Sz]. The eigenfunctions of W are the spherical harmonics of Sn−1.

We will let gl(ζ) denote the spherical harmonics, arranged in such a fashion that their

corresponding eigenvalues, τl, for W are nonincreasing (all of the eigenvalues will be

nonnegative). Thus, the Green’s function of Â is

G(u, v, ζ|ũ, ṽ, ζ̃) =
∑
j,l≥0

∫
R

1
γ2 + k2 + τl + σj

qk(u)pα̂,β̂j (v)gl(ζ)q̄k(ũ)p̄α̂,β̂j (ṽ)ḡl(ζ̃)dk

=
∑
j,l≥0

π(γ2 + τl + σj)−1/2e−|u−ũ|
√
γ2+τl+σjpα̂,β̂j (v)gl(ζ)p̄α̂,β̂j (ṽ)ḡl(ζ̃) .

(2.57)
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Using the Green’s function above, we will show that (LIm)1/2Â−1/2(LIm)1/2 : L2 → L2

is compact.

Mini-Section 4: (LIm)1/2Â−1/2(LIm)1/2 : L2 → L2 has arbitrarily good finite rank

approximation in the operator norm. We will show that (LIm)1/2Â−1/2(LIm)1/2 : L2 →

L2 is compact by showing that for d > n+1
2 ,

Tr
[
((LIm)1/2Â−1(LIm)1/2)d

]
<∞ , (2.58)

i.e. ((LIm)1/2Â−1(LIm)1/2)d is trace class. At the end of the first paragraph of the

proof of Lemma 2.4.2, we showed that if we prove (2.58), then we can conclude that

(LIm)1/2Â−1/2(LIm)1/2 : L2 → L2 has arbitrarily good finite rank approximation in the

operator norm, and so is compact. Thus, to show that (LIm)1/2Â−1(LIm)1/2 : L2 → L2

is compact, we only need to prove (2.58).

In order to prove (2.58), we derive the kernel for ((LIm)1/2Â−1(LIm)1/2)d. Using

(2.57), we calculate that the kernel for (LIm)1/2Â−1(LIm)1/2 is

K(u, v, ζ|ũ, ṽ, ζ̃) = F̂ (u)F̂ (ũ)
∑
j,l

π

ξj,l
e−|u−v|ξj,lpα,βj (v)p̄α,βj (ṽ)gl(ζ)ḡl(ζ̃) ,

where F̂ = (C−1
m,nFt,0)(2∗−2)/2 and ξj,l =

√
γ2 + τl + σj . Using this, we calculate the

kernel, Kd, for ((LIm)1/2Â−1(LIm)1/2)d. Before doing so, we make the following con-

vention to simplify notation: ∫
· dΛ(u, v, ζ)

denotes the integral over R× [−1, 1]× Sn−1 with dΛ(u, v, ζ) representing dΛ as defined

in (2.9) corresponding to the change of coordinates from (ρ, x) to (u, v, ζ). Thus,

Kd(u1, v1, ζ1|ud+1, vd+1, ζd+1)

=
∫ ∫

· · ·
∫ d∏

i=1

K(ui, vi, ζi|ui+1, vi+1, ζi+1)dΛ(u2, v2, ζ2)dΛ(u3, v3, ζ3) · · · dΛ(ud, vd, ζd)

= F̂ (u1)F̂ (ud+1)
∑
j,l≥0

πd

ξdj,l
pα̂,β̂j (v1)p̄α̂,β̂j (vd+1)gl(ζ1)ḡ(ζd+1)

∫ ∫
· · ·
∫ d∏

i=2

F̂ 2(ui)|pα̂,β̂j (vi)|2|gl(ζi)|2
d∏
a=1

e−ξj,l|ua+1−ua|dΛ(u2, v2, ζ2)dΛ(u3, v3, ζ3) · · · dΛ(ud, vd, ζd)

= F̂ (u1)F̂ (ud+1)
∑
j,l≥0

πd

ξdj,l
pα̂,β̂j (v1)p̄α̂,β̂j (vd+1)gl(ζ1)ḡ(ζd+1)

∫
Rd−1

d∏
i=2

F̂ 2(ui)
d∏
a=1

e−ξj,l|ua+1−ua|du2du3 · · · dud .



54

Thus,

Tr
[
((LIm)1/2Â−1(LIm)1/2)d

]
= ‖Kd(u1, v1, ζ1|u1, v1, ζ1)‖1

=
∫ ∫

Rd−1

∑
j,l≥0

πd

ξdj,l
|pα̂,β̂j (v1)|2|gl(ζ1)|2F̂ 2(u1)

d∏
i=1

F̂ 2(ui)

(
d−1∏
a=1

e−ξj,l|ua+1−u1|

)
e−ξj,l|u1−ud|du2du3 · · · duddΛ(u1, v1, ζ1)

=
∑
j,l≥0

πd

ξdj,l

∫
Rd

(
d∏
i=1

F̂ 2(ui)

)
e−ξj,l|u1−ud|

d−1∏
a=1

e−ξj,l|ua+1−ua|du1du2 · · · dud .

(2.59)

We can apply the Generalized Young’s Inequality to each of the integrals in the right

hand side of (2.59). The version of the Generalized Young’s Inequality we use in this

setting is

Generalized Young’s Inequality: Let Ri be a real 1× d matrix and hi : R→ R be a

function for i = 1, 2, . . . , 2d. Also, let p1, p2, . . . , p2d be such that

2d∑
i=1

1
pi

= d .

Then, ∫
Rd

2d∏
i=1

hi(Ri · ~u)du1du2 · · · dud ≤ Ĉd,p1,p2,...,p2d
2d∏
i=1

‖hi‖Lpi (R) ,

for some finite constant Ĉd,p1,p2,...,p2d provided for any J ⊆ {1, 2, . . . , 2d} such that

card(J) ≤ d has the property that

dim(spani∈J{Ri}) ≥
∑
i∈J

1
pi
. (2.60)

In order to apply the Generalized Young’s Inequality to (2.59), we prove

LEMMA 2.4.3. The expression on the right hand side of (2.59) satisfies the conditions

of the Generalized Young’s Inequality as stated above. In particular, (2.60) is satisfied.
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Proof. In each integral in the sum of the right hand side of (2.59), we can take

pi = 2 for i = 1, 2, . . . , 2d;

Ri = êi for i = 1, . . . , d;

hi(u) = F̂ 2(u) for i = 1, . . . , d;

Ri = êi−d+1 − êi−d for i = d+ 1, . . . , 2d− 1;

R2d = ê1 − êd and

hi(u) = e−ξj,l|u| for i = d+ 1, . . . , 2d .

Since pi = 2, (2.60) reduces to showing that

dim(spani∈J{Ri}) ≥
card(J)

2
. (2.61)

If at least Card(J)/2 of the elements in J are a subset of {1, . . . , d}, then the corre-

sponding Ri = ê1 and (2.61) is satisfied. Next, we observe that any proper subset

of

{Rd+1 = ê2 − ê1, Rd+2 = ê3 − ê2, . . . , R2d−1 = êd = êd−1, R2d = ê1 − êd}

is linearly independent. Thus, in the case where at least card(J)/2 of the elements in

J are a subset of {d + 1, . . . , 2d}, the corresponding Ri will be linearly independent,

unless J = {d + 1, . . . , 2d}, in which case their span will have d − 1 dimensions, while

card(J) = d, where d ≥ 2. In both these cases, (2.61) is satisfied.

Applying the Generalized Young’s Inequality to (2.59), we get that

Tr
[
((LIm)1/2Â−1(LIm)1/2)d

]
≤Ĉd,2,2,...,2

∑
j,l

πd

ξdj,l
‖F̂ 2‖dL2(R)‖e

−ξj,l‖dL2(R)

=Ĉd,2,2,...,2πd‖F̂ 2‖dL2(R)

∑
j,l

(γ2 + τl + σj)−d (2.62)

Since the eigenvalues of the spherical harmonics on Sn−1 are τl = l(l + n − 2) with

corresponding multiplicity
(
n+l−1

l

)
−
(
n+l−2
l−1

)
, see [St] for reference, and σj = 4j(j +
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m+n
2 − 1), the right hand side of (2.62) equals

Ĉd
∑
j,l≥0

(
n+l−1

l

)
−
(
n+l−2
l−1

)
[γ2 + 4j(j + m+n

2 − 1) + l(l + n− 2)]d
=Ĉd

∑
0≤j,l<n−1

(
n+l−1

l

)
−
(
n+l−2
l−1

)
[γ2 + 4j(j + m+n

2 − 1) + l(l + n− 2)]d

+ Ĉd
∑

j,l≥n−1

(
n+l−1

l

)
−
(
n+l−2
l−1

)
[γ2 + 4j(j + m+n

2 − 1) + l(l + n− 2)]d
,

(2.63)

where Ĉd = Ĉd,2,2,...,2π
d‖F̂ 2‖d

L2(Rd)
. Now,(

n+ l − 1
l

)
−
(
n+ l − 2
l − 1

)
=

1
(n− 1)!

[(n+ l − 1)(n+ l − 2) · · · (l + 1)− (n+ l − 2)(n+ l − 3) · · · l], which for l ≥ n− 1

≤ (2l)n−1 .

Thus, if d > n+1
2 ,

∑
j,l≥n−1

(
n+l−1

l

)
−
(
n+l−2
l−1

)
[γ2 + 4j(j + m+n

2 − 1) + l(l + n− 2)]d
≤ 2n−1

∑
j,l≥n−1

ln−1

[γ2 + j2 + l2]d

≤ 2n−1
∑

j,l≥n−1

1

[γ2 + j2 + l2](d−
n−1

2 )

< ∞ .

We can conclude by the above that (2.63) is finite when d > n+1
2 . Hence, (2.58) holds

for d > n+1
2 . Thus, (LIm)1/2Â−1(LIm)1/2 : L2 → L2, and ultimately St : Ḣ1

C → Ḣ1
C, is

compact.

Combining lemmas 2.4.1 and 2.4.2 we conclude Theorem 2.3.6.

2.5 The Nullspace of C2
m,nI − St : Ḣ1

C → Ḣ1
C

In this section, we prove Theorem 2.3.7. We will use (u, θ, ζ)-coordinates (see (2.48)

and (2.49) for reference). To simplify notation, we will often omit the subscripts t, 0

from Ft,0, t from St, and the subscripts C−1
m,nFt,0, 2

∗ from the operators LC−1
m,nFt,0,2∗

,

LRe
C−1
m,nFt,0,2∗

, and LIm
C−1
m,nFt,0,2∗

. Also to simplify notation, Null(C2
m,nI − S) will denote

the nullspace of C2
m,nI − S : Ḣ1

C → Ḣ1
C.
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We prove Theorem 2.3.7 in a series of three lemmas. In the first lemma, we show that

{(F, 0), ( d
dtF, 0), (0, F )} ⊆ Null(C2

m,nI−S) and C2
m,nI−S : Ḣ1

C → Ḣ1
C is positive. In the

second lemma, we show that no element of Null(C2
m,nI − S) is linearly independent of

{(F, 0), ( d
dtF, 0), (0, F )}. Proving this lemma is a bit tricky. The proof breaks into four

steps, each of which is headed by a phrase in italics. In the first step, we reduce the proof

of the lemma to showing that the space of zeroes of C2
m,nA−LRe in {F}⊥Ḣ1 , functions in

Ḣ1 perpendicular to F , is spanned by d
dtF . In the second step, we show that the zeroes

of C2
m,nA−LRe in {F}⊥Ḣ1 that are independent of θ and ζ are constant multiples of dF

dt .

The proof of this fact boils down to showing that any zero of C2
m,nA−LRe that is linearly

independent of dF
dt would have infinite energy. The precise proof of this fact is clever,

and perhaps the most interesting proof in this section. In the third and fourth steps, we

show that zeroes of C2
m,nA−LRe in {F}⊥Ḣ1 are independent of θ and ζ. We conclude

the section with the third lemma, in which we show that ψ ⊥Ḣ1
C

Null(C2
m,nI − S).

We begin with the following

LEMMA 2.5.1. {(F, 0), ( d
dtF, 0), (0, F )} ⊆ Null(C2

m,nI−S) and C2
m,nI−S : Ḣ1

C → Ḣ1
C

is a positive operator.

Proof. We begin by observing that

0 =
d2

dε2

∣∣
ε=0

‖F + εF‖22∗
‖F + εF‖2

Ḣ1

=
d2

dε2

∣∣
ε=0
‖F + εF‖22∗ − 2C2

m,n

= 2
(
〈LF, F 〉L2⊕L2 − C2

m,n

)
= 2

〈
(S − C2

m,nI)F, F
〉
Ḣ1

C
. (2.64)

Thus, (F, 0) ∈ Null(C2
m,nI−S). A similar calculation shows that (0, F ) ∈ Null(C2

m,nI−

S). In a similar manner, differentiating ‖Ft+ε,0‖22∗/‖Ft+ε,0‖2Ḣ1 to the second order and

evaluating at ε = 0 shows that ( d
dtF, 0) ∈ Null(C2

m,nI − S).
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Let ψ̃ ∈ Ḣ1
C be such that ‖ψ̃‖Ḣ1 = 1 and ψ̃ ⊥Ḣ1

C
F , and ε ∈ [−1, 1], then

0 ≤C2
m,n‖F + εψ̃‖2

Ḣ1 − ‖F + εψ̃‖22∗ , which by Theorem 2.2.1 and the fact that ψ̃ ⊥Ḣ1
C
F

≤C2
m,n

(
‖F‖2

Ḣ1 + ε2‖ψ̃‖2
Ḣ1

)
−

(
‖F‖22∗ + 〈Sψ̃, ψ̃〉ḢC

ε2 −
κ2∗C

2
m,n

4 · 3
β2∗
2
−1
εβ2∗

)

=
〈

(C2
m,nI − S)ψ̃, ψ̃

〉
Ḣ1

C

ε2 +
κ2∗C

2
m,n

4 · 2
β2∗
2
−1
|ε|β2∗

=⇒
〈

(C2
m,nI − S)ψ̃, ψ̃

〉
Ḣ1

C

≥ −
κ2∗C

2
m,n

4 · 2
β2∗
2
−1
|ε|β2∗−2, ∀ε ∈ [−1, 1]. And, since β2∗ > 2, this

=⇒
〈

(C2
m,nI − S)ψ̃, ψ̃

〉
Ḣ1

C

≥ 0, for ψ̃ ⊥Ḣ1
C
F . (2.65)

Combining (2.65) with the fact that (F, 0) ∈ Null(C2
m,nI − S) concludes the proof of

Lemma 2.5.1.

At this point, we have proved that {(F, 0), ( d
dtF, 0), (0, F )} ⊆ Null(C2

m,nI − S). So,

to prove that {(F, 0), ( d
dtF, 0), (0, F )} spans Null(C2

m,nI − S), we show the following

LEMMA 2.5.2. No element in Null(C2
m,nI−S) is linearly independent of {(F, 0), ( d

dtF, 0), (0, F )}.

Proof. Step 1: Reduce the proof to showing that the space of zeroes of C2
m,nA− LRe in

{F}⊥Ḣ1 is spanned by d
dtF . We begin by proving

C2
m,nI −A−1LIm > 0 on {F}⊥Ḣ1 , (2.66)

where

{F}⊥Ḣ1 :=
{
ξ ∈ Ḣ1

∣∣ξ ⊥Ḣ1 F
}
.

Combining (2.52) and (2.54) yields

A−1LRe = (2∗ − 1)A−1LIm on {F}⊥Ḣ1 .

Thus,

C2
m,nI −A−1LIm =

2∗ − 2
2∗ − 1

C2
m,nI +

1
2∗ − 1

(C2
m,nI −A−1LRe) on {F}⊥Ḣ1 .

This combined with the fact that C2
m,nI − S : Ḣ1

C → Ḣ1
C is positive (and so C2

m,nI −

A−1LRe : Ḣ1 → Ḣ1 is positive), allows us to conclude (2.66). Thus, if ϕ = (ξ, η) is in



59

Null(C2
m,nI − S) with ξ, η ∈ {F}⊥Ḣ1 , then it is of the form (ξ, 0) for some ξ ∈ {F}⊥Ḣ1 .

Note that
dF
dt

=
1
t

∂F

∂u
, (2.67)

and integration by parts in the u-variable shows that ∂F
∂u ⊥Ḣ1 F . Thus, dF

dt ∈ {F}
⊥Ḣ1 .

And so, if we can show that

(C2
m,nA− LRe)ξ = 0 and ξ ∈ {F}⊥Ḣ1 =⇒ ξ = c

dF
dt

, for some c ∈ R , (2.68)

then we have proved Lemma 2.5.2. We could try to prove (2.68) by thinking of

(C2
m,nA− LRe)ξ = 0 (2.69)

as a differential equation and trying to find all of its solutions. However, this would be

tricky, as A does not separate nicely. Also, not all solutions of (2.69) are in Ḣ1. So we

would need to identify which solutions of (2.69) are in Ḣ1. What we do instead is show

that any solution of (2.69) dependent upon the u-variable only and linearly independent

of d
dtF must have infinite energy. And then, we show that solutions of (2.69) must be

independent of the θ and ζ variables.

Step 2: The zeroes of C2
m,nA−LRe that are linearly independent of d

dtF have infinite

energy. The zeroes of C2
m,nA− LRe in {F}⊥Ḣ1 are independent of θ and ζ, and so are

radial - we delay the proof of this fact to steps three and four. Hence, if (C2
m,nA −

LRe)ξ = 0 for some ξ ∈ {F}⊥Ḣ1 , then

Xξ := C2
m,n(γ2ξ − ∂2

∂u2
ξ)− (2∗ − 1)C2−2∗

m,n F 2∗−2ξ = 0 , (2.70)

where ξ is independent of θ and ζ. Since the functions satisfying (2.70) are radial, when

solving (2.70), we will treat X as if it were a differential operator on R in the variable

u. However, we will be interested in whether or not these solutions are in Ḣ1. Thus,

to verify (2.68), we prove the following

PROPOSITION 2.5.3. Consider (2.70) as a differential equation in the variable u

only. Let φ̃ be a solution of (2.70) that is linearly independent of d
dtF . Then, φ given

by φ(u, θ, ζ) = φ̃(u) is not in Ḣ1, because

‖φ‖Ḣ1 =∞ . (2.71)
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Proof. In the following, since we are working with functions on R in the u variable, we

will take F as such a function since it is independent of θ and ζ. By (2.67), it suffices

to show that Proposition 2.5.3 holds if we replace dF
dt with ∂F

∂u . Using ∂F
∂u instead of dF

dt

makes some of our calculations in this proof easier. Thus, we will prove Proposition

2.5.3 for ∂F
∂u instead of dF

dt . We write Fu, Fuu, Fuuu, etc. to denote u derivatives of F .

Considering solutions of (2.70), we may view linear independence with respect to Fu in

terms of the initial conditions ξ̃(0), ξ̃′(0). To be more precise, we will consider (2.70)

with initial conditions

ξ̃(0) = α̃, ξ̃′(0) = β̃ , (2.72)

where α̃ and β̃ are constants. Since (2.70) is a second order linear equation with

continuous coefficients, (2.70) combined with (2.72) determines a unique solution. Fu

is the solution of (2.70) satisfying (2.72) with α̃ = 0 and β̃ = Fuu(0) 6= 0. All solutions

of (2.70) that are linearly independent of Fu satisfy (2.72) with some α̃ 6= 0. If such

a solution, call it φ̃, were to have the property that φ given by φ(u, θ, ζ) = φ̃(u), is in

Ḣ1, then ˜̃
ξ = c1Fu + c2φ̃ for appropriate c1, c2 ∈ R would satisfy (2.70) and (2.72) for

α̃ = 1 and β̃ = 0. Moreover, since Fu, φ̃ ∈ Ḣ1, ξ given by ξ(u, θ, ζ) = ˜̃
ξ(u), would be

an element of Ḣ1. We will prove Proposition 2.5.3 by showing that ξ is not in Ḣ1.

Observe that,

0 =
∫ u0

0

[
(2∗ − 1)C−2∗

m,nF
2∗−2 − γ2

] ˜̃
ξFu − ˜̃

ξ
[
(2∗ − 1)C−2∗

m,nF
2∗−2 − γ2

]
Fudu, since Fu and ˜̃

ξ satisfy (2.70)

=
∫ u0

0
− ˜̃
ξ′′Fu + ˜̃

ξFuuudu

= − ˜̃
ξ′Fu|u0

0 + ˜̃
ξFuu|u0

0 −
∫ u0

0
− ˜̃
ξ′Fuu + ˜̃

ξ′Fuudu

= − ˜̃
ξ′(u0)Fu(u0) + ˜̃

ξ′(0)Fu(0) + ˜̃
ξ(u0)Fuu(u0)− ˜̃

ξ(0)Fuu(0) .

Recall that ˜̃
ξ′(0) = Fu(0) = 0 and ˜̃

ξ(0) = 1. Thus, by the above, we have that

˜̃
ξ(u0)Fuu(u0)− ˜̃

ξ′(u0)Fu(u0) = ˜̃
ξ(0)Fuu(0) = Fuu(0) 6= 0 .

Next, fix some ε > 0. Since Fu(u), Fuu(u) → 0 uniformly as |u| → ∞ (refer to (2.50)
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for the formula of F ), there is some δ such that for |u| > δ

|Fuu(0)| = | ˜̃ξ(u)Fuu(u)− ˜̃
ξ′(u)Fu(u)|

≤ | ˜̃ξ(u)Fuu(u)|+ | ˜̃ξ′(u)Fu(u)|, which by Cauchy-Schwarz

≤ (| ˜̃ξ(u)|2 + | ˜̃ξ′(u)|2)1/2(|Fu(u)|2 + |Fuu|2)1/2

≤
√

2ε(| ˜̃ξ(u)|2 + | ˜̃ξ′(u)|2)1/2 . (2.73)

If ξ ∈ Ḣ1, then since we are in (u, θ, ζ)-coordinates

‖ξ‖2
Ḣ1 = ωm

∫
Sn−1

∫ π/2

0

∫
R
γ2|ξ|2 + |ξu|2du cosm−1 θ sinn−1 θdθdΩ(ζ) <∞ (2.74)

(Ω denotes the uniform probability norm on Sn−1). (2.73) and (2.74) imply that

Fuu(0) = 0, contradicting the fact that Fuu(0) 6= 0. Thus, ξ /∈ Ḣ1, and by the ar-

gument in the first paragraph of this proof, Proposition 2.5.3 must hold.

Since we know that ( d
dtF, 0) ∈ Null(C2

m,nI−S), Proposition 2.5.3 allows us to conclude

(2.68).

Step 3: Reduce proving that the zeroes of C2
m,nA− LRe in {F}⊥Ḣ1 are independent

of θ and ζ to proving that the zeroes of C2
m,nÂ − LRe in {F}⊥Ḣ1 are independent of θ

and ζ. Recall that Â (refer to (2.56) for reference) is an operator that is closely related

to A such that Â ≤ A in L2. Thus,

C2
m,nÂ− LRe ≤ C2

m,nA− LRe in L2 .

If we can show that 〈
ξ, (C2

m,nÂ− LRe)ξ
〉
L2
≥ 0, for ξ ∈ {F}⊥Ḣ1 , (2.75)

then we only need to show that the zeroes of C2
m,nÂ−L in {F}⊥Ḣ1 are independent of

θ and ζ in order to prove that the zeroes of C2
m,nA− L in {F}⊥Ḣ1 are independent of

θ and ζ. Thus, we prove the following

PROPOSITION 2.5.4. Let Â be as defined in (2.56). Then (2.75) holds.

Proof. We begin by verifying (2.75). First we observe that in (u, θ, ζ)-coordinates

Â = γ2I − ∂2

∂u2
− ∂2

∂θ2
− ([n− 1] cot θ − [m− 1] tan θ)

∂

∂θ
−∆Sn−1(ζ) . (2.76)
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Then, we define

X := C2
m,n

(
γ2I − ∂2

∂u2

)
− (2∗ − 1)C2−2∗

m,n F 2∗−2

Y := C2
m,n

[
∂2

∂θ2
− ([n− 1] cot θ − [m− 1] tan θ)

∂

∂θ

]
, and

Z := −C2
m,n∆Sn−1(ζ) ,

so that

C2
m,nÂ− LRe = X + Y + Z , on {F}⊥Ḣ1 . (2.77)

Y and Z are positive complete operators in L2([0, π/2], cosm−1 θ sinn−1 θdθ) and L2(Sn−1, dΩ(ζ))

respectively. X is also a complete operator for L2(R,du); this is a result of standard

spectral theory. Moreover, X is positive for functions in L2(R, du) that are in {F}⊥Ḣ1

when considered as functions in L2(R× [0, π/2]× Sn−1, ωmdu cosm−1 θ sinn−1 θdθd(ζ)).

This is because if ξ ∈ {F}⊥Ḣ1 is independent of θ and ζ, then

0 ≤ 〈ξ, (C2
m,nI − S)ξ〉Ḣ1 = 〈ξ, (C2

m,nA− LRe)ξ〉L2 = 〈ξ,Xξ〉L2 .

Combining the properties of X, Y , and Z deduced above with (2.77), we conclude that

(2.75) holds.

Step 4: Show that zeroes of C2
m,nÂ − LRe in {F}⊥Ḣ1 are independent of θ and ζ.

We start by establishing independence from θ by proving the following

PROPOSITION 2.5.5. The space of eigenfunctions of Y with Neumann boundary

conditions and exactly one zero on the interval [0, π/2] is spanned by

g(θ) =
n−m
m+ n

+ cos(2θ) , (2.78)

with eigenvalue

λ = 2(m+ n)C2
m,n . (2.79)

Proof. The key to proving this proposition is rewriting the coefficient of the ∂
∂θ term of

Y in terms of cos(2θ) and sin(2θ). More precisely,

(n− 1) cot θ − (m− 1) tan θ =
n−m
sin(2θ)

+ (m+ n− 2)
cos(2θ)
sin(2θ)

.
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Thus,

C−2
m,nY g = −g′′ −

[
n−m
sin(2θ)

+ (m+ n− 2)
cos(2θ)
sin(2θ)

]
g′

= 4 cos(2θ) + 2
[
n−m
sin(2θ)

+ (m+ n− 2)
cos(2θ)
sin(2θ)

]
sin(2θ)

= 2[(n−m) + (m+ n) cos(2θ)]

= 2(m+ n)g .

The fact that there are no more linearly independent eigenfunctions of Y with exactly

one zero in [0, π/2] follows from standard Sturm-Liouville Theory.

The only eigenfunctions of Y without any zeroes satisfying the Von Neumann condi-

tions are the constant functions. Any eigenfunctions of Y satisfying the Von Neumann

conditions, excluding the constant functions and g(θ), will have eigenvalue more than

2(m+n)C2
m,n - this is also a consequence of standard Sturm-Liouville Theory. Recalling

that C2
m,nÂ − LRe = X + Y + Z on {F}⊥Ḣ1 , where X depends on u only, Y depends

on θ only, Z depends on ζ only, and that 〈ξ, (C2
m,nÂ − LRe)ξ〉L2 ≥ 0 for ξ ∈ {F}⊥Ḣ1 ,

our analysis of Y allows us to conclude that the 0-modes of C2
m,nÂ − LRe must be

independent of θ.

Next, we establish independence from ζ. The eigenvalues of Z are nonnegative and

discrete. The smallest eigenvalue is σ0 = 0 and the corresponding space of eigenfunc-

tions are the constant functions. The second smallest eigenvalue is σ1 = (n − 1)C2
m,n,

see [20] for reference. Thus, the zeroes of C2
m,nÂ−LRe in {F}⊥Ḣ1 must be independent

of ζ. This concludes step 4.

Combining the results of steps 1-4 allows us to conclude Lemma 2.5.2.

The last thing we need to prove in order to conclude Theorem 2.3.7 is that ψ ⊥Ḣ1
C

{(F, 0), ( d
dtF, 0), (0, F )}. We already showed that ψ ⊥Ḣ1

C
(F, 0) in Lemma 2.3.4. Thus,

it suffices to prove the following

LEMMA 2.5.6. ψ ⊥Ḣ1
C
{( d

dtF, 0), (0, F )}.

Proof. First we prove that ψ ⊥Ḣ1
C

( d
dtF, 0). We begin by observing that

δ(ϕ,M) = ‖ϕ− zFt,0‖Ḣ1
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implies that

0 =
d
ds

∣∣
s=t
‖ϕ− zFs,0‖2Ḣ1 . (2.80)

Exploiting (2.80), we get that (in the following subscripts denote partial derivatives)

0 =
d
ds

∣∣
s=t
‖ϕ− zFs,0‖2Ḣ1

=
d
ds

∣∣
s=t

∫
γ2|ϕ− zFs,0|2 + |(ϕ− zFs,0)u|2 + |(ϕ− zFs,0)θ|2 + csc2 θ|∇Sn−1(ϕ− zFs,0)|2dΛ

= 2
∫
γ2(−z d

dt
F ) Re(ϕ− zF ) + (−z d

dt
F )u Re[(ϕ− zF )u] + (−z d

dt
F )θ Re[(ϕ− zF )θ]

+2 csc2 θ[∇Sn−1(−z d
dt
F )] · [∇Sn−1 Re(ϕ− zF )]dΛ

= −2z2

〈
δ(ϕ,M)ψ, (

d
dt
F, 0)

〉
Ḣ1

C

,

i.e. ψ ⊥Ḣ1
C

( d
dtF, 0).

Next, we show that ψ ⊥Ḣ1
C

(0, F ). Recall that (0, F ) is an eigenfunction of St :

Ḣ1
C → Ḣ1

C, which is self-adjoint and compact. Thus, if ψ were not perpendicular to

(0, F ), then since ‖(0, F )‖Ḣ1 = 1,∥∥∥ψ − 〈ψ, (0, F )〉Ḣ1
C
(0, F )

∥∥∥
Ḣ1

< ‖ψ‖Ḣ1 = 1 . (2.81)

Letting ε = 〈ψ, (0, F )〉Ḣ1
C
, we deduce that

‖ϕ− (zF, δ(ϕ,M)εF )‖Ḣ1 = ‖δ(ϕ,M)ψ − δ(ϕ,M)ε(0, F )‖Ḣ1

= δ(ϕ,M)‖ψ − ε(0, F )‖Ḣ1 , which by (2.81)

< δ(ϕ,M) .

This contradicts the assumption (2.38) made in Lemma 2.3.2 that

δ(ϕ,M) = ‖ϕ− zF‖Ḣ1 ,

because (zF, δ(ϕ,M)εF ) ∈M . Thus, ψ ⊥Ḣ1
C

(0, F ).

Combining lemmas 2.5.1, 2.5.2, and 2.5.6 we conclude Theorem 2.3.7. Thus, we

have proven theorems 2.3.6 and 2.3.7. Combining these theorems with the outline of

the proof of Theorem 2.3.1 provided in subsection 2.3, we conclude Theorem 2.3.1.
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2.6 Proof of Theorem 2.1.5

We begin by proving the sharpness statement. Let ϕ ∈ Ḣ1
C satisfy the assumptions

of Lemma 2.3.2. Applying the results of the second order Taylor Expansion with the

remainder bound, a calculation similar to the one used to obtain (2.45) yields that

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ ≤

〈
(C2

m,nI − St)ψ,ψ
〉
Ḣ1

C
δ(ϕ,M)2 +

κ2∗C
2
m,n

4 · 3
β2∗
2
−1
δ(ϕ,M)β2∗

≤ C̃δ(ϕ,M)2, for some C̃ > 0 , (2.82)

because St : Ḣ1
C → Ḣ1

C has a bounded spectrum, δ(ϕ,M) ≤ 1, and β2∗ > 2. If the

sharpness statement at the end of Theorem 2.1.5 were false, then we could find some

α̃ > 0 such that

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ ≥ α̃δ(ϕ,M)β , (2.83)

for some β < 2 and all ϕ ∈ Ḣ1
C. However, for ϕ obeying the conditions of Lemma 2.3.2,

(2.82) and (2.83) would imply

C̃/α̃ ≥ δ(ϕ,M)−(2−β), with β < 2 ,

which is clearly a contradiction for δ(ϕ,M) sufficiently small. This proves the sharpness

statement.

The rest of the proof of Theorem 2.1.5 follows by contradiction. Assume Theorem

2.1.5 is false. Then, there is some (ϕj) ⊆ Ḣ1
C such that

C2
m,n‖ϕj‖2Ḣ1 − ‖ϕj‖22∗

δ(ϕj ,M)2
→ 0 . (2.84)

We can assume that ‖ϕj‖Ḣ1 = 1 for all j, because replacing ϕj with cϕj , c a nonzero

constant, does not change the value of the left hand side of (2.84). In this case,

(δ(ϕj ,M)) ∈ [0, 1] for all j, and some subsequence, (δ(ϕjk ,M)), converges to some

B ∈ [0, 1]. If B = 0, then (2.84) contradicts Theorem 2.3.1, specifically condition (2.36)

of Theorem 2.3.1.

Next, we show that B must equal 0. A fortiori, (2.84) implies

C2
m,n‖ϕjk‖

2
Ḣ1 − ‖ϕjk‖

2
2∗ → 0 . (2.85)
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We will use (2.85) in a Concentration Compactness argument to show that a subse-

quence, say (δ(ϕ̂kl ,M)), of (δ(ϕ̂k,M)) converges to zero, where ϕ̂k is given by

ϕ̂k(ρ, x) = σγkϕjk(σkρ, σk(x− xk)) ,

for some (σk) ⊆ R+ and (xk) ⊆ Rn. Since δ(·,M) is conformally invariant,

δ(ϕjkl ,M) = δ(ϕ̂kl ,M)→ 0 ,

from which we conclude that B must in fact be 0. Thus, we have reduced the proof of

Theorem 2.1.5 to illustrating the Concentration Compactness argument for cylindrically

symmetric functions in continuous dimension. We do this in detail in the next and final

section.

2.7 Concentration Compactness

In the following, we will assume that ‖ϕj‖2∗ = 1, instead of ‖ϕj‖Ḣ1 = 1. This does

not change any key properties. More precisely, (2.84) will still hold and we can replace

the assumption that δ(ϕjk ,M) → B 6= 0 with δ(ϕjk ,M) → B/Cm,n, which is also

nonzero. We also establish some notation. Let ϕ be a cylindrically symmetric function

and σ > 0. Then ϕσ is given by (recall by (2.11) that γ = m+n−2
2 )

ϕσ(ρ, x) = σγϕ(σρ, σx) .

In this section, we will prove

THEOREM 2.7.1. Let (ϕj) ⊆ Ḣ1
C be such that

C2
m,n‖ϕj‖2Ḣ1 − ‖ϕj‖22∗ → 0 and ‖ϕj‖2∗ = 1,∀j . (2.86)

Then there is some (σj) ⊆ R+ and (xj) ⊆ Rn such that (ϕ̂j) given by

ϕ̂j(ρ, x) = ϕ
σj
j (ρ, x+ xj) , (2.87)

has a subsequence, (ϕ̂jk), that converges strongly in Ḣ1
C to some F ∈ M such that

‖F‖2∗ = 1.
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The proof of this theorem breaks into three parts. In the first part, we prove the

following

LEMMA 2.7.2. Let (ϕj) ⊆ Ḣ1
C satisfy condition (2.86). Then, there is some (σj) ⊆

R+ such that (ϕσjj ) has a subsequence, (ϕ
σjk
jk

), and some ε, C > 0 such that

Λ({|ϕσjkjk (ρ, x)| > ε, ρ ≤ 4}) > C , (2.88)

where Λ denotes the measure defined in (2.10).

Once we have proved Lemma 2.7.2, we can apply an analogue of Lieb’s Concentration

Compactness Theorem, Theorem 8.10 on page 215 of [LiLo], to the subsequence (ϕ
σjk
jk

)

that satisfies (2.88). We state this analogue below:

THEOREM 2.7.3. Let (ϕj) be a bounded sequence of functions in Ḣ1
C. Suppose

there exist ε > 0 and R < ∞ such that Ej := {|ϕj(ρ, x)| > ε, ρ ≤ R} has measure

Λ(Ej) ≥ δ > 0 for some δ and for all j. Then, there exists (xj) ⊆ Rn such that

ϕTj (ρ, x) := ϕj(ρ, x + xj) has a subsequence that converges weakly in Ḣ1
C to a nonzero

function.

We delay the proof of this theorem to the end of this section, because it is a relatively

straightforward adaptation of Lieb’s proof of his original Concentration Compactness

Theorem. After applying Theorem 2.7.3 and relabeling indices, we deduce some (ϕ̂j),

as given in (2.87), such that some subsequence, (ϕ̂jk), converges weakly in Ḣ1
C to a

nonzero element, ϕ. The second part of the proof of Theorem 2.7.1 involves some

relatively straightforward functional analysis arguments that allow us to show that

(ϕ̂jk) converges strongly in Ḣ1
C to some ϕ ∈M such that ‖ϕ‖2∗ = 1. The third part of

the proof of Theorem 2.7.1 is the delayed proof of Theorem 2.7.3.

Part 1 of proof of Theorem 2.7.1 - Proving Lemma 2.7.2: Most of the hard work

in proving Theorem 2.7.1 is devoted to proving Lemma 2.7.2. We break the proof of

Lemma 2.7.2 into three steps, which we outline in this paragraph. In the first step, we

reduce proving Lemma 2.7.2 to proving that (2.88) holds for a modified subsequence of

(ϕj). More precisely, we take the sequence (ϕj) and dilate its elements to obtain a new
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sequence (ϕσjj ) such that the symmetric decreasing rearrangments, ϕ̃j , in the x-variable

of the ϕσjj have the property that

‖χ{(ρ2+|x|2)1/2≤1}ϕ̃j‖
2∗
2∗ = 1/2, ∀j . (2.89)

We then conclude that to prove Lemma 2.7.2, it suffices to show that (2.88) holds

for some subsequence of the modified sequence, (ϕ̃j). In the second and third steps,

we prove that (2.88) holds for a subsequence of (ϕ̃j). Actually, we show that (2.88)

holds not just for a subsequence of (ϕ̃j), but for a subsequence of (χϕ̃j), where χ is

a nicely behaved cutoff function. In the second step, we show that a subsequence of

(‖χ{1≤w≤2}ϕ̃j‖2
∗

2∗) converges to a positive constant; the result of this step is summarized

in Proposition 2.7.7. In the third step, we leverage the result of the second step to show

the ϕ̃j times one of two possible cutoff functions yields a sequence that satisfies the

p, q, r-Theorem; the result of this step is summarized in Proposition 2.7.8. From this,

we deduce that there must be some cutoff, χ ≤ 1, such that a subsequence of (χϕ̃j)

satisfies (2.88). This concludes the proof of Lemma (2.7.2).

Step 1: Reduce the proof of Lemma 2.7.2 to its analogue for a modified sequence,

(ϕ̃j). For a cylindrically symmetric function, ϕ, let ϕ∗ denote the symmetric decreasing

rearrangement of ϕ in the x-variable. To be more precise, ϕ∗ is the nonnegative function

obtained by the following: Fix ρ ∈ (0,∞). Then, ϕ∗(ρ, x) is the symmetric decreasing

function in x such that for all ε > 0

∣∣{x ∈ Rn
∣∣|ϕ∗(ρ, x)| > ε}

∣∣ =
∣∣{x ∈ Rn

∣∣|ϕ(ρ, x)| > ε}
∣∣ , (2.90)

where |·| denotes Lebesgue measure on Rn.

We will choose (σj) ⊆ R+ such that ϕ̃j := (ϕσjj )∗ satisfies (2.89). We can choose

such σj , because of

LEMMA 2.7.4. Let ϕ ∈ Ḣ1
C be a function such that

‖ϕ‖2∗ = 1 . (2.91)

Then, for any c ∈ (0, 1), there is some σ ∈ R+ such that

‖χ{(ρ2+|x|2)1/2≤1}(ϕ
σ)∗‖2∗2∗ = c . (2.92)
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Proof. We will use (w, θ, ζ)-coordinates instead of (ρ, x)-coordinates (refer to (2.48) for

reference). We prove this lemma by first showing that we can pick some σ2 > σ1 > 0

such that

‖χ{w≤1}(ϕ
σ1)∗‖2∗2∗ ≤ c/2, and (2.93)

‖χ{w≤1}(ϕ
σ2)∗‖2∗2∗ ≥ (c+ 1)/2 , (2.94)

and then proving that the map,

σ 7→ ‖χ{w≤1}(ϕ
σ)∗‖2∗ ,

is continuous. Thus, by the Intermediate Value Theorem, there is some σ ∈ R+ for

which (2.92) holds.

First, we show (2.93). By the Dominated Convergence Theorem, we can pick some

M̃ such that

EM̃ = {(w, θ, ζ) ∈ R+ × [0, π/2]× Sn−1
∣∣|ϕ(w, θ, ζ)| ≤ M̃} ,

has the property that

‖χEM̃ϕ‖
2∗
2∗ ≥ 1− c

4
. (2.95)

If we pick σ1 small enough such that

σm+n
1 M̃2∗ ≤ c

4Λ({w ≤ 1})
, (2.96)

and take EC
M̃

to be the complement of EM̃ , then

‖χ{w≤1}(ϕ
σ1)∗‖2∗2∗ = ‖χ{w≤1}([χEM̃ϕ]σ1 + [χEC

M̃
ϕ]σ2)∗‖2∗2∗ , because EM̃ ∩ E

C
M̃

= ∅

≤ ‖χ{w≤1}([χEM̃ϕ]σ1)∗‖2∗2∗ + ‖χ{w≤1}([χEC
M̃
ϕ]σ1)∗‖2∗2∗

because {(w, θ, ζ)
∣∣(χEM̃ϕ)σ1 > 0} ∩ {(w, θ, ζ)

∣∣(χEC
M̃
ϕ)σ1 > 0} = ∅

≤ Λ({w ≤ 1})‖[χEM̃ϕ]σ1‖2∗∞ + ‖χEC
M̃
ϕ‖2∗2∗ , which by (2.91), (2.95), and (2.96)

≤ c/2 .

This proves (2.93).

Next, we show (2.94). By the Dominated Convergence Theorem, there is some

R <∞ such that

‖χ{w≤R}ϕ‖2
∗

2∗ ≥ (c+ 1)/2 .
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Taking σ2 = R yields (2.94).

Finally, we will show that

σ 7→ ‖χ{w≤1}(ϕ
σ)∗‖2∗ (2.97)

is continuous. Fix some ε > 0 and σ0 ∈ R+. Take some Ψ ∈ C∞C ([0,∞)×[0, π/2]×Sn−1)

such that

‖ϕ−Ψ‖2∗ < ε/3 .

Then,

∣∣‖χ{w≤1}(ϕ
σ)∗‖2∗ − ‖χ{w≤1}(ϕ

σ0)∗‖2∗
∣∣ ≤‖(ϕσ)∗ − (ϕσ0)∗‖2∗

≤‖ϕσ − ϕσ0‖2∗

≤‖ϕσ −Ψσ‖2∗ + ‖Ψσ −Ψσ0‖2∗ + ‖Ψσ0 − ϕσ0‖2∗

=‖(ϕ−Ψ)σ‖2∗ + ‖Ψσ −Ψσ0‖2∗ + ‖(ϕ−Ψ)σ0‖2∗

<2ε/3 + ‖Ψσ −Ψσ0‖2∗ . (2.98)

Thus, we only need to show that the map given by

σ 7→ Ψσ (2.99)

is continuous at σ0 to prove continuity of the map given by (2.97). We do this by proving

sequential continuity. Let (σj) ⊆ R+ be a sequence such that σj → σ0. Then, (σj) has a

finite supremum, k1, and a positive infimum, k2. Also, since Ψ ∈ CC([0,∞)×Rn×Sn),

there is some N <∞ that bounds Ψ from above and some R <∞ such that supp(Ψ) ⊆

{w ≤ R}. Combining these facts with the definition of the dilation operation given by

Ψ 7→ Ψσ, we conclude that (Ψσj ) has a ceiling function, Ξ ∈ L2∗ , given by

Ξ(w, θ, ζ) = k
(m+n)/2∗

1 Nχ{w≤R/k2} .

Also, Ψσj → Ψσ0 pointwise, because Ψ is continuous. Combining the existence of the

L2∗ ceiling function, Ξ, for (Ψσj ) with the pointwise convergence of Ψσj to Ψσ0 , we

apply the Dominated Convergence Theorem and conclude that

lim
j→∞

‖Ψσj −Ψσ0‖2∗ = 0 .
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Thus, the map given by (2.99) is continuous. Combining this with (2.98), we conclude

that ∣∣‖χ{w≤1}(ϕ
σ)∗‖2∗ − ‖χ{w≤1}(ϕ

σ0)∗‖2∗
∣∣ < ε ,

for σ sufficiently close to σ0. Hence, the map given by (2.97) is continuous.

The definition of ϕ∗ ensures that if a subsequence of (ϕ̃j) satisfies (2.88), in the

sense that

Λ({|ϕ̃jk | > ε, ρ ≤ 4}) > C ,

for some ε, C > 0, then the corresponding subsequence, (ϕ
σjk
jk

), will satisfy (2.88). Thus,

in order to prove Lemma 2.7.2, it suffices to prove

LEMMA 2.7.5. The sequence of functions, (ϕ̃j), has a subsequence that satisfies

(2.88).

Steps two and three are devoted to proving Lemma 2.7.5. Each step contains a propo-

sition that helps us to prove Lemma 2.7.5.

Step 2: Show that a subsequence of (‖χ{1≤w≤2}ϕ̃j‖2
∗

2∗) converges to a positive con-

stant. Before stating and proving the main proposition in this step, we lay some foun-

dation. First, we collect a couple of inequalities that we will use later.

PROPOSITION 2.7.6. Let h1, h2 ∈ Lp be such that 0 < ‖h1‖p ≤ ‖h2‖p. Then

‖h1 + h2‖p ≤ ‖h1‖p + ‖h2‖p −
(p− 1)‖h1‖p

4

∥∥∥∥ h1

‖h1‖p
− h2

‖h2‖p

∥∥∥∥2

p

, if 1 < p ≤ 2 (2.100)

‖h1 + h2‖p ≤ ‖h1‖p + ‖h2‖p −
‖h1‖p
p2p−1

∥∥∥∥ h1

‖h1‖p
− h2

‖h2‖p

∥∥∥∥p
p

, if 2 ≤ p <∞ . (2.101)

Proof. If 1 < p ≤ 2, then by (3.3) of [CaFr]

‖ĥ1 + ĥ2‖p ≤ 2− p− 1
4
‖ĥ1 − ĥ2‖p . (2.102)

for ĥ1, ĥ2 ∈ Lp such that ‖ĥ1‖p = ‖ĥ2‖p = 1. Thus,

‖h1 + h2‖p ≤
∥∥∥∥‖h2‖p − ‖h1‖p

‖h2‖p
h2

∥∥∥∥
p

+
∥∥∥∥‖h1‖p
‖h2‖p

h2 + h1

∥∥∥∥
p

= ‖h2‖p − ‖h1‖p + ‖h1‖p
∥∥∥∥ h2

‖h2‖p
+

h1

‖h1‖p

∥∥∥∥
p

, which by (2.102)

≤ ‖h2‖p + ‖h1‖p −
(p− 1)‖h1‖p

4

∥∥∥∥ h1

‖h1‖p
− h2

‖h2‖p

∥∥∥∥
p

.
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The proof of (2.101) is similar to that of (2.100), except instead of using (2.102) we

use: If 2 ≤ p <∞, then by (3.4) of [CaFr],

‖ĥ1 + ĥ2‖p ≤ 2− 1
p2p−1

‖ĥ1 − ĥ2‖pp ,

for ĥ1, ĥ2 ∈ Lp such that ‖ĥ1‖p = ‖ĥ2‖p = 1.

Next, we observe that

C2
m,n‖ϕ̃j‖2Ḣ1 − ‖ϕ̃j‖22∗ → 0 and ‖ϕ̃j‖2

∗
2∗ = 1, ∀j . (2.103)

Moreover, ϕ̃j , is independent of ζ for all j, because each ϕ̃j is rearranged in x. Letting

aj = ‖χ{1<w<2}ϕ̃j‖2
∗

2∗ and bj = ‖χ{w≥2}ϕ̃j‖2
∗

2∗ ,

and passing to a subsequence, if necessary, we have that

aj → a ∈ [0, 1/2] and bj → b ∈ [0, 1/2] ,

where, due to (2.89), aj + bj = a+ b = 1/2. This brings us to the main proposition in

this step:

PROPOSITION 2.7.7. a 6= 0.

Proof. Assume a = 0. Then, b = 1/2. Let, χ1, χ2 ∈ C∞([0,∞) × [0, π/2] × Sn−1) be

such that

0 ≤ χ1, χ2 ≤ 1

χ1 and χ2 are independent of θ and ζ

χ1 = 1 for w ≤ 1 and χ1 = 0 for w ≥ 2 (2.104)

χ2 = 0 for w ≤ 1 and χ2 = 1 for w ≥ 2, and (2.105)

χ2
1 + χ2

2 = 1 . (2.106)

Then, for ϕ ∈ Ḣ1 and i = 1, 2,

‖∇w,θ,ζ(χiϕ)‖22 =
∫

[(χi)wϕ+ χiϕw]2 + w−2[χiϕθ]2 + w−2 csc2 θ|χi∇Sn−1ϕ|2dΛ

=
∫
ϕ2(χi)2

wdΛ + 2
∫
χiϕ(χi)wϕwdΛ +

∫
χ2
i (ϕ

2
w + w−2ϕ2

θ + w−2 csc2 θ|∇Sn−1ϕ|2)dΛ

≤C1‖χ{1≤w≤2}ϕ
2‖2∗/2‖χ{1≤w≤2}‖(2∗/2)′ + C2‖χ{1≤w≤2}ϕ

2‖1/22∗/2‖χ{1≤w≤2}‖
1/2
(2∗/2)′‖∇w,θ,ζϕ‖2

+ ‖χ2
i∇w,θ,ζϕ‖22, for some C1, C2 > 0 .
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The last inequality is obtained by applying Holder’s Inequality (twice to obtain the

middle term on the right hand side) and the fact that (χi)w ≤ C̃χ{1≤w≤2} for some

finite constant C̃ and for i = 1, 2. We can rewrite the inequality above as

‖∇w,θ,ζ(χiϕ)‖22 ≤ C̃1‖χ{1≤w≤2}ϕ‖22∗ + C̃2‖χ{1≤w≤2}ϕ‖2∗ + ‖χi∇w,θ,ζϕ‖22 , (2.107)

for appropriate constants C̃1 and C̃2. Let ϕi,j := χiϕ̃j . Then

‖ϕ̃j‖22∗ =‖ϕ2
1,j + ϕ2

2,j‖2∗/2, which by Proposition 2.7.6

≤


‖ϕ2

1,j‖2∗/2 + ‖ϕ2
2,j‖2∗/2 −

(2/2∗−1)‖ϕ2
2,j‖2∗/2

4

∥∥∥∥ ϕ2
1,j

‖ϕ2
1,j‖2∗/2

− ϕ2
2,j

‖ϕ2
2,j‖2∗/2

∥∥∥∥
2∗/2

if 1 < 2∗

2 ≤ 2

‖ϕ2
1,j‖2∗/2 + ‖ϕ2

2,j‖2∗/2 −
‖ϕ2

2,j‖2∗/2
(2∗/2)22/2∗−1

∥∥∥∥ ϕ2
1,j

‖ϕ2
1,j‖2∗/2

− ϕ2
2,j

‖ϕ2
2,j‖2∗/2

∥∥∥∥
2∗/2

if 2 ≤ 2∗

2 <∞

≤


‖ϕ1,j‖22∗ + ‖ϕ2,j‖22∗ −

2/2∗−1
4

(
1
4

)4/2∗ if 1 < 2∗

2 ≤ 2

‖ϕ1,j‖22∗ + ‖ϕ2,j‖22∗ − 2
2∗22∗/2−1

(
1
4

)4/2∗ if 2 ≤ 2∗

2 <∞ .

(2.108)

We deduce the last inequality, because

‖ϕ2
2,j‖2∗/2 = ‖χ2ϕ̃j‖22∗ ≥

(
1
4

)2/2∗

, for large j, by (2.105) and because bj → b = 1/2 ,

and ∥∥∥∥∥ ϕ2
1,j

‖ϕ2
1,j‖2∗/2

−
ϕ2

2,j

‖ϕ2
2,j‖2∗/2

∥∥∥∥∥
2∗/2

≥

∥∥∥∥∥ χ{w≥2}(ϕ̃j)2

‖(χ2ϕ̃j)2‖2∗/2

∥∥∥∥∥
2∗/2

, by (2.104), (2.105), and the definition of ϕi,j , i = 1, 2

≥ ‖χ{w≥2}(ϕ̃j)
2‖2∗/2 , because ‖(χ2ϕ̃j)2‖2∗/2 ≤ ‖ϕ̃j‖22∗ = 1

≥
(

1
4

)2/2∗

, for large j, because b = 1/2 .

Since

‖ϕ1,j‖22∗ , ‖ϕ2,j‖22∗ ≤ ‖ϕ̃j‖22∗ = 1 ,

we can conclude by (2.108) that there is some constant d2∗ < 1 dependent only on the
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value of 2∗ such that

‖ϕ̃j‖22∗ ≤d2∗(‖ϕ1,j‖22∗ + ‖ϕ2,j‖22∗) , which by the Sobolev Inequality

≤d2∗C
2
m,n(‖∇w,θ,ζϕ1,j‖22 + ‖∇w,θ,ζϕ2,j‖22) , which by (2.107)

≤d2∗C
2
m,n

2∑
i=1

(C̃1‖χ{1≤w≤2}ϕ̃j‖22∗ + C̃2‖χ{1≤w≤2}ϕ̃j‖2∗ + ‖χi∇w,θ,ζϕ̃j‖22)

≤d2∗C
2
m,n(ε+ ‖χ1∇w,θ,ζϕ̃j‖22 + ‖χ2∇w,θ,ζϕ̃j‖22)

for any ε > 0 and sufficiently large j, because we assumed that a = 0

=d2∗C
2
m,n(ε+ ‖ϕ̃j‖2Ḣ1) , by (2.106) . (2.109)

Since d2∗ < 1; ‖ϕ̃j‖2∗ = 1, for all j; ‖ϕ̃j‖
2
2∗

‖ϕ̃j‖2
Ḣ1
→ C2

m,n; and we can pick ε to be arbitrarily

small, (2.109) contradicts the Sobolev Inequality. Recall that we arrived at (2.109) by

assuming that a = 0. Hence, we conclude that a 6= 0.

Step 3: Show the ϕ̃j times one of two possible cutoff functions yields a sequence that

satisfies the p, q, r-Theorem. Let, χ3 ∈ C∞([0,∞)× [0, π/2]× Sn−1) be such that

0 ≤ χ3 ≤ 1 (2.110)

χ3 is independent of ζ

χ3 = 1 on {1 ≤ w ≤ 2} ∩ {0 ≤ θ ≤ π/4}

χ3 = 0 on {w ≤ 1/2} ∪ {w ≥ 4} ∪ {θ ≥ π/3} , (2.111)

and χR3 be the cutoff function given by

χR3 (w, θ, ζ) = χ3(w,
π

2
− θ, ζ) .

Next, let

ϕ3,j := χ3ϕ̃j and ϕR3,j := χR3 ϕ̃j . (2.112)

This brings us to the main proposition in this step:

PROPOSITION 2.7.8. A subsequence of either (ϕ3,j) or (ϕR3,j) satisfies the p, q, r-

Theorem with

p = 1, q = 2∗, r =
2(m+ n− δ)
m+ n− δ − 2

,

for some δ > 0.
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Proof. The definitions of ϕ3,j and ϕR3,j imply that

‖ϕ3,j‖2
∗

2∗ + ‖ϕR3,j‖2
∗

2∗ ≥ ‖χ{1<w<2}ϕ̃j‖2
∗

2∗ = aj .

Thus, passing to a subsequence, if necessary, either (‖ϕ3,j‖2∗) or (‖ϕR3,j‖2∗) is bounded

below by (a/3)1/2∗ . Whichever sequence is bounded below by (a/3)1/2∗ will satisfy the

p, q, r-Theorem. The sequence that is bounded below will satify the “q” part of the

p, q, r-Theorem as posed in the proposition (i.e. bounded below in the L2∗ norm). It

will also satisfy the “p” part as posed in the proposition (i.e. bounded above in the L1

norm). We show this below for (ϕ3,j) - the proof for (ϕR3,j) being identical.

‖ϕ3,j‖1 =‖χ3ϕ̃j‖1, which by the definition of χ3 and Holder’s Inequality

≤‖ϕ̃j‖2∗Λ({1/2 ≤ w ≤ 4})1/(2∗)′

=Λ({1/2 ≤ w ≤ 4})1/(2∗)′ . (2.113)

At this point, we only need to show the “r” part of the p, q, r-Theorem is satisfied. We

deal with the case when (‖ϕ3,j‖2∗) is bounded below by (a/3)1/2∗ and the case when

(‖ϕR3,j‖2∗) is bounded below by (a/3)1/2∗ separately.

(‖ϕ3,j‖2∗) is bounded below by (a/3)1/2∗ : We begin with the following identity and

definitions:

dΛ = ωmw
m+n−1 cosm−1 θ sinn−1 θdwdθdΩ(ζ)

dΛm/2,n := ωm/2w
m
2

+n−1 cos
m
2
−1 θ sinn−1 θdwdθdΩ(ζ)

‖ϕ‖Ḣ1;(m/2,n) :=
(∫

ϕ2
w + w−2ϕ2

θ + w−2 csc2 θ|∇Sn−1ϕ|2dΛm/2,n

)1/2

2̂∗ :=
2(m/2 + n)
m/2 + n− 2

‖ϕ‖2̂∗;(m/2,n) :=
(∫
|ϕ|2̂∗dΛm/2,n

)1/2̂∗

.
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Then,

‖ϕ3,j‖2̂∗ =
(∫
|ϕ3,j |2̂

∗
dΛ
)1/2̂∗

, which by (2.110), (2.111), and (2.112)

≤

(
4m/2ωm
ωm/2

)1/2̂∗ (∫
|ϕ3,j |2̂

∗
dΛm/2,n

)1/2̂∗

, which by the Sobolev Inequality

≤Cm/2,n

(
4m/2ωm
ωm/2

)1/2̂∗

‖ϕ3,j‖Ḣ1;(m/2,n)

=Cm/2,n

(
4m/2ωm
ωm/2

)1/2∗ (∫
[ϕ3,j ]2w + w−2[ϕ3,j ]2θ + w−2 csc2 θ|∇Sn−1ϕ3,j |2dΛm/2,n

)1/2

which by (2.110), (2.111), and (2.112)

≤Cm/2,n4(1/2̂∗+1/2)m
2

(
ωm/2

ωm

)1/2−1/2̂∗

‖ϕ3,j‖Ḣ1

<M1, ∀j ,

for some finite M1, because (‖ϕ3,j‖Ḣ1) must be bounded due to (2.103).

(‖ϕR3,j‖2∗) is bounded below by (a/3)1/2∗ : Choose some δ > 0 such that

m+ n− δ > 2 and δ < n .

Let

2̃∗ :=
2(m+ n− δ)
m+ n− δ − 2

.

In this case, it is crucial to note that since we assumed that χ3 is independent of ζ,

ϕR3,j = χR3 ϕ̃
∗
j =⇒ ϕR3,j is independent of ζ .



77

Thus,

‖ϕR3,j‖2̃∗ =

(∫
Sn−1

∫ π/2

0

∫ ∞
0
|ϕR3,j |2̃

∗
ωmw

m+n−1dw cosm−1 θ sinn−1 θdθdΩ(ζ)

)1/2∗

=

(∫ π/2

0

∫ ∞
0
|ϕR3,j |2̃

∗
ωmωnw

m+n−1dw cosm−1 θ sinn−1 θdθ

)1/2̃∗

, which by (2.110), (2.111), and (2.112)

≤
(

4δωn
ωn−δ

)1/2̃∗

Cm,n−δ

(∫ π/2

0

∫ ∞
0
|ϕR3,j |2̃

∗
ωmωn−δw

m+n−δ−1dw cosm−1 θ sinn−δ−1 θdθ

)1/2

which by the Sobolev Inequality

≤
(

4δωn
ωn−δ

)1/2̃∗

Cm,n−δ

(∫ π/2

0

∫ ∞
0

([ϕ3,j ]2w + w−2[ϕ3,j ]2θ)w
m+n−δ−1dw cosm−1 θ sinn−δ−1 θdθ

)1/2

which by (2.110), (2.111), and (2.112)

≤
(

4δωn
ωn−δ

)1/2∗ (4δωn−δ
ωn

)1/2

‖ϕR3,j‖Ḣ1

<M2, ∀j ,

for some finite M2, because (‖ϕR3,j‖Ḣ1) must be bounded due to (2.103).

We can now apply the result of Proposition 2.7.8 to prove Lemma 2.7.2.

Proof of Lemma 2.7.2. Since supp(χ3), supp (χR3 ) ⊆ {w ≤ 4} and 0 ≤ χ3 ≤ 1, Proposi-

tion 2.7.8 shows that some sequence, (Λ({|ϕ̃jk(w, θ, ζ)| > ε,w ≤ 4})), is bounded below

by a positive constant, C. Since {w ≤ 4} ⊆ {ρ ≤ 4}, Lemma 2.7.5 is true a fortiori.

Thus, by the reduction in step one, Lemma 2.7.2 holds.

At this point, we relabel indices and apply Theorem 2.7.3 - we have not proved Theorem

2.7.3 yet, but will prove it at the end of this section - to conclude that there exists

(xj) ⊆ Rn such that

ϕ̂j(ρ, x) = ϕ
σj
j (ρ, x+ xj)

has a subsequence that converges to some nonzero ϕ in Ḣ1
C. We will show that this

convergence is in fact strong convergence in Ḣ1
C and that ϕ is an extremal of the Sobolev

Inequality with L2∗ norm equal one.

Part 2 of proof of Theorem 2.7.1 - Conclusion of proof using Functional Analysis arguments:

The title of this part is self-explanatory. A notable feature of this part is an application
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of the local compactness theorem, Theorem 2.1.6. This theorem is a Rellich-Kondrachov

type Theorem for cylindrically symmetric functions in continuous dimension and any-

thing of its type is, to our knowledge, absent from literature. We prove Theorem 2.1.6

in the next and final section.

Applying Theorem 2.1.6, passing to a subsequence if necessary, we may assume that

ϕ̂j converges to ϕ almost everywhere. We now argue that ϕ̂j converges strongly in Ḣ1
C

and ϕ is an extremal of the Sobolev Inequality. Weak convergence in Ḣ1
C implies that

‖ϕ̂j‖2Ḣ1 = ‖ϕ‖2
Ḣ1 + ‖ϕ̂j − ϕ‖2Ḣ1 + o(1) . (2.114)

Next, we observe that almost everywhere convergence and the Brezis-Lieb Lemma imply

that

‖ϕ̂j‖2
∗

2∗ = ‖ϕ‖2∗2∗ + ‖ϕ̂j − ϕ‖2
∗

2∗ + o(1) . (2.115)

Combining this with the concavity of y 7→ y2/2∗ , and passing to a subsequence if

necessary, we deduce that

lim ‖ϕ̂j‖22∗ ≤ ‖ϕ‖22∗ + lim ‖ϕ̂j − ϕ‖22∗ .

Thus,

1 = lim ‖ϕ̂j‖22∗ , by assumption

≤‖ϕ‖22∗ + lim ‖ϕ̂j − ϕ‖22∗ , which by the Sobolev Inequality

≤C2
m,n(‖ϕ‖2

Ḣ1 + lim ‖ϕ̂j − ϕ‖2Ḣ1), which by (2.84) and (2.114)

=1 . (2.116)

(2.116) implies that

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ + lim(C2

m,n‖ϕ̂j − ϕ‖2Ḣ1 − ‖ϕ̂j − ϕ‖22∗) = 0 . (2.117)

The Sobolev Inequality implies that

C2
m,n‖ϕ̂j − ϕ‖2Ḣ1 − ‖ϕ̂j − ϕ‖22∗ , C2

m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ ≥ 0 .

Combining this with (2.117), we conclude that

C2
m,n‖ϕ‖2Ḣ1 − ‖ϕ‖22∗ = 0 ,
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i.e. ϕ is an extremal.

(2.116) also implies that

1 = ‖ϕ‖22∗ + lim ‖ϕ̂j − ϕ‖22∗ . (2.118)

Since y 7→ y2/2∗ is strictly concave and ϕ is nonzero, (2.115); ‖ϕj‖2∗ = 1, ∀j; and,

(2.118) allow us to conclude that ‖ϕ‖22∗ = 1. Thus, ϕ̂j converges to ϕ in norm and

weakly. These two characteristics imply that ϕ̂j converges to ϕ strongly in Ḣ1
C. This

would conclude the proof of Theorem 2.7.1, except we have not yet proved Theorem

2.7.3. We conclude this section by proving Theorem 2.7.3.

Part 3 of proof of Theorem 2.7.1 - Proof of Theorem 2.7.3:. LetBy denote the ball

of unit radius in Rn centered at y ∈ Rn. By Theorem 2.1.6 and the Banach-Alaoglu The-

orem, it suffices to prove that we can find xj and δ > 0 such that Λ
(
{ρ ≤ R+ 1, x ∈ Bxj} ∩ {|ϕj(ρ, x) ≥ ε/2}

)
≥

δ, for all j, for then
∫
{ρ≤R+1,x∈B0} |ϕ

T
j |dΛ ≥ δε/2, and so no weak limit can vanish.

Without loss of generality, we may assume ϕj ≥ 0, for all j. Thus, we henceforth

assume that Ej := {ϕj(ρ, x) > ε, ρ ≤ R} - refer back to Theorem 2.7.3 for the original

definition of Ej .

Let Ψj = χ4(ϕj − ε/2)+, where χ4 ∈ C∞([0,∞)× Rn) is such that

0 ≤ χ4 ≤ 1

χ4 = 1 for ρ ≤ R

χ4 = 0 for ρ ≥ R+ 1 .

Note that Λ(supp[(ϕj − ε/2)+]) ≤ C < ∞ for all j and some C, because (‖ϕj‖2∗) is

uniformly bounded. More precisely, if C∗ <∞ bounds (‖ϕj‖2∗) above, then

C∗ ≥
(ε

2

)2∗

Λ({ϕj ≥ ε/2}) =⇒ Λ(supp[(ϕj − ε/2)+]) ≤ C∗
(

2
ε

)2∗

=: J . (2.119)

Thus, Ψj ∈ L2, for all j. Also, Ψj ≥ ε/2 on Ej . Thus,∫
|∇ρ,xΨj |2dΛ∫
|Ψj |2dΛ

≤
2
∫
|∇ρ,xχ4|2|(ϕj − ε/2)+|2 + |χ4|2|∇ρ,x(ϕ− ε/2)+|2dΛ

δ(ε/2)2

which by Holder’s Inequality and (2.119)

≤ 2(‖∇ρ,xχ4‖∞J1/(2∗/2)′‖(ϕ− ε/2)+‖22∗ + ‖∇ρ,x(ϕ2 − ε/2)‖2)
δ(ε/2)2

=: W .
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Let G be a nonzero C∞C (Rn) function supported on B0 and let Gy(x) = G(x −

y). Define λ :=
∫

Rn |∇xG|
2dx/

∫
Rn |G|

2dx, where ∇x denotes the gradient over the x

variable.

Let Θy
j (ρ, x) = Gy(x)Ψj(ρ, x). Then,

|∇ρ,xΘy
j |

2 ≤ 2(|∇xGy|2|Ψj |2 + |Gy|2|∇ρ,xΨj |2) .

Consider

T yj :=
∫
|∇ρ,xΘy

j |
2 − 4(W + λ)|Θy

j |
2dΛ

≤2
∫
|∇xGy|2|Ψj |2 + |Gy|2|∇ρ,xΨj |2 − 2(W + λ)|Gyj |

2|Ψj |2dΛ . (2.120)

Thus,

1
2

∫
Rn
T yj dy ≤

∫
|∇xG|2dx

∫
|Ψj |2dΛ +

∫
|G|2dx

∫
|∇ρ,xΨj |2dΛ− 2(W + λ)

∫
|G|2dx

∫
|Ψj |2dΛ

<0 . (2.121)

Combining (2.120) and (2.121), we conclude that for each j there is some xj such that

‖Θxj
j ‖2 > 0 and

‖∇ρ,xΘxj
j ‖2/‖Θ

xj
j ‖2 < 2(W + λ) . (2.122)

We will use this fact to prove that (Λ(supp(Θxj
j ))) is uniformly bounded below by a

positive constant.

Let ϕ ∈ Ḣ1
C be such that Λ(supp(ϕ)) <∞. Then

‖ϕ‖22 ≤Λ(supp (ϕ))1/(2∗/2)′‖ϕ‖22∗

≤Cm,nΛ(supp(ϕ))1/(2∗/2)′‖∇ρ,xϕ‖22

=⇒ ‖∇ρ,xϕ‖22/‖ϕ‖22 ≥ C−1
m,nΛ(supp(ϕ))−1/(2∗/2)′ . (2.123)

(2.122) and (2.123) imply that Λ(supp(Θxj
j )) ≥ δ > 0, for all j, for some δ. Combining

this with the fact that supp(Θxj
j ) ⊆ {ρ ≤ R + 1, x ∈ Bxj}, we conclude that Λ({ρ ≤

R+ 1, x ∈ Bxj} ∩ {ϕj(ρ, x) ≥ ε/2}) ≥ δ, for all j.



81

2.8 Proof of Rellich-Kondrachov Type Theorem

In the following, we prove Theorem 2.1.6. We restate this theorem below:

Theorem 2.1.6. Let K ⊆ [0,∞)×Rn satisfy the cone property in Rn+1, K ⊆ {(ρ, x) ∈

[0,∞)×Rn|ρ1 < ρ < ρ2} for some 0 < ρ1 < ρ2 <∞, and Λ(K) <∞, where Λ denotes

the measure on R+ × Rn defined by (2.10). If (ϕj) is bounded in Ḣ1
C and U is an

open subset of K, then for 1 ≤ p < max
{

2∗, 2n+2
n−1

}
, there is some ϕ ∈ Ḣ1

C and some

subsequence, (ϕjk), such that ϕjk → ϕ in LpC(U, ωmρm−1dρdx).

Proof. First, we note that, taking a subsequence if necessary, ϕj ⇀ ϕ in Ḣ1
C for some ϕ.

Next, we show that (ϕj) is bounded in H1(K). To this end, we show that LqC(V,dρdx)

and LqC(V, ωmρm−1dρdx) are equivalent norms for 1 ≤ q <∞, when

V ⊆ {(ρ, x) ∈ [0,∞)× Rn
∣∣ρ1 < ρ < ρ2} , (2.124)

because (2.124) implies that

ω−1/q
m ρ

−(m−1)/q
2 ‖·‖Lq(V,ωmρm−1dρdx) ≤ ‖·‖Lq(V,dρdx) ≤ ω−1/q

m ρ
−(m−1)/q
1 ρ

−(m−1)/q
1 ‖·‖Lq(V,ωmρm−1dρdx) .

Thus,

‖∇ϕj‖L2(K,dρdx) ≤ ω−1/2
m ρ

−(m−1)/2
2 ‖∇ϕj‖L2(K,ωmρm−1dρdx) , (2.125)

and

‖ϕj‖L2(K,dρdx) ≤ω−1/2
m ρ

−(m−1)/2
2 ‖ϕj‖L2(K,ωmρm−1dρdx)

≤ω−1/2
m ρ

−(m−1)/2
2 Λ(K)1/(m+n)‖ϕj‖2L2∗ (K,ωmρm−1dρdx)

, which by Theorem 2.1.4

≤ω−1/2
m ρ

−(m−1)/2
2 Λ(K)1/(m+n)C2

m,n‖∇ϕj‖2L2(K,ωmρm−1dρdx) . (2.126)

Combining (2.125) and (2.126), we conclude that (ϕj) is bounded H1(K). Applying

the Rellich-Kondrachov Theorem, we conclude that if 1 ≤ p < 2n+2
n−1 , then there is some

Ψ ∈ H1(K) and some subsequence, (ϕjk), such that for U ⊆ K, U open,

ϕjk → Ψ in Lp(U,dρdx) .

Since ‖ · ‖Lp(U,dρdx) and ‖ · ‖Lp(U,ωmρm−1dρdx) are equivalent norms, we conclude that

ϕjk → Ψ in LpC(U, ωmρm−1dρdx). Since ϕj ⇀ ϕ in Ḣ1
C, we conclude that Ψ = ϕ.
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We conclude by showing that if 2n+2
n−1 < 2∗, then for 2n+2

n−1 ≤ p < 2∗, there is some

(ϕjk) such that ϕjk → ϕ in LpC(U, ωmρm−1dρdx). By the Holder Inequality,

‖ϕj − ϕ‖pp ≤ ‖ϕj − ϕ‖α(p−q) r
r−1
‖ϕj − ϕ‖βqr (2.127)

for some α, β > 0, 1 < q < p, and 1 < r <∞. If we choose q and r such that

qr = 2∗ ,

then

(p− q) r

r − 1
= (p− q) 2∗/q

(2∗/q)− 1
. (2.128)

Note that

q < p < 2∗ =⇒ 2∗/q
(2∗/q)− 1

<
2∗/p

(2∗/p)− 1
<∞ . (2.129)

Combining (2.128) and (2.129), we conclude that if q is close enough to p, then

(p− q) r

r − 1
< p . (2.130)

Choosing a value for q for which (2.130) holds and (p− q) q
q−1 ≥ 1, and a corresponding

subsequence, (ϕjk), such that ϕjk → ϕ in L
(p−q) r

r−1

C (U, ωmρm−1dρdx), (2.127) yields

lim
k→∞

‖ϕjk − ϕ‖
p
p ≤ lim

k→∞
‖ϕjk − ϕ‖

α
(p−q) r

r−1
‖ϕjk − ϕ‖

β
2∗

and since ϕj is bounded in Ḣ1
C and ϕjk → ϕ in L

(p−q) r
r−1

C (U, ωmρm−1dρdx)

= 0 .
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Chapter 3

A Stability Result for the Del Pino and Dolbeault’s

Family of Sharp Gagliardo-Nirenberg Inequalities

3.1 Main Result

In this chapter, we use the stability estimate, Theorem 2.1.5, on Bakry, Gentil, and

Ledoux’s continuous dimension extension of the Sobolev Inequality to derive a stability

estimate for a class of sharp GN (Gagliardo-Nirenberg) inequalities - the sharp constants

and extremals of these inequalities were made explicit in [DeDo] by Del Pino and

Dolbeault. More precisely, we establish a stability estimate for the one parameter

family of GN inequalities for functions in Ḣ1(Rn), n ≥ 2, and parameter 1 ≤ s ≤ n
n−2

(if n = 2, 1 ≤ s <∞) given by

‖u‖2s ≤ An,s‖∇u‖µ2‖u‖
1−µ
s+1 , µ =

n(s− 1)
s[2n− (s+ 1)(n− 2)]

, (3.1)

where An,s is a sharp constant depending on n and s. This family of sharp inequalities is

one of only two GN inequalities for which the sharp constant and extremals are known,

the other being the Nash Inequality. One should note that in (3.1) when s = 1, µ = 0,

and (3.1) is a trivial inequality; and when s = n
n−2 , µ = 1, and (3.1) is the Sobolev

Inequality. Also, µ varies continuously between 0 and 1 as s varies between 1 and n
n−2

(or ∞ if n = 2).

Roughly speaking, the stability estimate tells us how far away a given function is

from the manifold of optimizers for the GN (Gagliardo-Nirenberg) inequalities in terms

of its GN deficit, denoted δGN [u], which is given by

δGN [u] := A4s/2∗
n,s ‖∇u‖

µ4s/2∗

2 ‖u‖(1−µ)4s/2∗

s+1 − ‖u‖4s/2
∗

2s . (3.2)

The complete set of extremals of the one-parameter set of GN inequalities given in (3.2)
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is the constant multiples of the functions given by

vλ,x0(x) = λ
n
2s (1 + λ2|x− x0|2)−1/(s−1) , λ > 0 , x0 ∈ Rn . (3.3)

These extremals differ from the extremals in the Sobolev Inequality only in their ex-

ponent, suggesting a potentially deep link between the two inequalities. Indeed, there

is a deep link that we will make precise in the following subsections. It is this link

that allows us to obtain a stability estimate for the GN inequalities from the stability

estimate on the continuous dimension Sobolev Inequality. For convenience, we define

the following function:

v(x) := v1,0(x) . (3.4)

Note that the above implies that

An,s =
‖v‖2s

‖∇v‖µ2‖v‖
1−µ
s+1

. (3.5)

The precise statement of the stability estimate that we prove for (3.1) is

THEOREM 3.1.1. Let u ∈ Ḣ1(Rn) be a nonnegative function such that ‖u‖2s =

‖v‖2s. Then there exist positive constants K1 := K1(n, s) and δ1 := δ1(n, s), depending

upon n and s, such that whenever δGN [u] ≤ δ1,

inf
λ>0,x0∈Rn

‖u2s − v2s
λ,x0
‖1 ≤ K1δGN [u]1/2 . (3.6)

Remark 3.1.2. Note that in (3.6), the GN deficit, δGN [u]1/2, bounds the L1 distance

of u2s, provided ‖u‖2s = ‖v‖2s, from v2s
λ,x0

for all λ > 0, x0 ∈ Rn. This is weaker than

the Bianchi-Egnell Stability Estimate, where the Sobolev Deficit, which we define as

δSob[ϕ] := C2
N‖∇ϕ‖22 − ‖ϕ‖22∗ ,

bounds the distance of ϕ from the manifold of extremals in the Sobolev Inequality with

respect to the gradient square norm. The Bianchi-Egnell Stability Estimate is stronger

in the sense that we can obtain a bound on the L1 distance of ϕ2∗ from ĉFt,x0 for

all t > 0, x0 ∈ Rn, from the Bianchi-Egnell Stability Estimate provided ĉ and ϕ are
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nonnegative and ‖ϕ‖2∗ = ‖ĉFt,x0‖2∗ = 1. We demonstrate this below:

δSob[ϕ]1/2 ≥ α inf
t>0,x0∈Rn

‖ϕ− ĉFt,x0‖Ḣ1 , by the Bianchi-Egnell Stability Estimate

≥ C−1
N α inf

t>0,x0∈Rn
‖ϕ− ĉFt,x0‖2∗ , by the Sobolev Inequality

≥ 2−(2∗−1)C−1
N α inf

t>0,x0∈Rn
‖ϕ2∗ − (ĉFt,x0)2∗‖1 ,

by an application of the Mean Value Theorem and Holder’s Inequality and because

we assumed that ϕ and ĉ are nonnegative and ‖ϕ‖2∗ = ‖ĉFt,x0‖2∗ = 1. Although the

stability estimate for the GN inequalities of Del Pino and Dolbeault is weaker than the

Bianchi-Egnell Stability Estimate, it is still appropriate for applications. In fact, the

type of bound provided by Theorem 3.1.1 is exactly what was needed in its original

application by Carlen and Figalli in [CaFi] in which they proved the special case of

Theorem 3.1.1 for n = 2 and s = 3 in order to solve a Keller-Segal equation. This is

because in this application, Carlen and Figalli needed stability on u2s as a measure.

Theorem 3.1.1 is a generalization of Carlen and Figalli’s Theorem 1.2 in [CaFi],

which is the special case of Theorem 3.1.1 for n = 2 and s = 3. In the next subsection,

we will state and prove a special case of Theorem 3.1.1 that corresponds to the cases of

Theorem 3.1.1 that can be proved using the Sobolev Inequality and the Bianchi-Egnell

Stability Estimate for integer dimensions only. This will illustrate the connection be-

tween the Sobolev Inequality and the GN inequalities as well as their stability estimates.

Once we establish these connections, we can better explain the need for Theorem 2.1.5

in proving Theorem 3.1.1 - indeed, we explain this in detail in subsection 3.3.

3.2 Deriving the Sharp GN Inequalitis of Del Pino and Dolbeault from

the Sobolev Inequality and its Continuous Dimension Extension

The key to our method of deriving a stability estimate on a sharp GN inequality is

a striking observation connecting the Sobolev Inequality to the GN inequalities. Let

ϕ : Rm+n → R be given by

ϕ(y, z) = [f(y) + |z|2]−(m+n−2)/2 , (3.7)
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for f ≥ 0. Then

|∇y,zϕ|2 =
(
m+ n− 2

2

)2

[f + |z|2]−(m+n)(|∇yf |2 + 4|z|2) , and

|ϕ|2∗ = [f + |z|2]−(m+n) .

Thus, the integrated Sobolev Inequality takes the form(∫
Rn
f−

m+2n
2 dy

)
≤ c1

∫
Rn
f−

m+2n
2 |∇yf |2dy + c2

∫
Rn
f−

m+2n−2
2 dy , (3.8)

for constants c1 and c2 depending upon m and n. Since we obtained (3.8) by inte-

grating the Sobolev Inequality applied to (3.7) in the z-variable, (3.8) yields equality if

f(y) = 1 + |y|2, because this f makes ϕ given by (3.7) into an extremal for the Sobolev

Inequality. Replacing f with u−
4

m+n−2 , (3.8) becomes

‖u‖4s/2
∗

2s ≤ c3‖∇u‖22 + c4‖u‖s+1
s+1 , (3.9)

for further constants c3 and c4, and s given by

s =
m+ 2n

m+ 2n− 4
.

If we replace u with uλ given by

uλ(y) = λn/2su(λy) ,

in (3.9) and then optimize with respect to λ, we find that for u such that

‖∇u‖22
‖u‖s+1

s+1

=
‖∇v‖22
‖v‖s+1

s+1

(3.9) becomes (3.1), because

c3‖∇u‖22 + c4‖u‖s+1
s+1 = A4s/2∗

n,s ‖∇u‖
4s/2∗µ
2 ‖∇u‖4s/2

∗(1−µ)
s+1 .

3.3 GN Stability Estimate Using the Integer Dimension Sobolev In-

equality and Bianchi-Egnell Stability Estimate

In this subsection, we will outline the proof of the cases of Theorem 3.1.1 using the

integer dimension Sobolev Inequality and Bianchi-Egnell Stability Estimate. We begin
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by observing that by restricting ourselves to the Sobolev Inequality and the Bianchi-

Egnell Stability Estimate on integer dimensions, we can only prove Theorem 3.1.1 for

s given by (3.11) for m ∈ N.

Remark 3.3.1. The restriction m ∈ N is a consequence of our applying the Sobolev In-

equality and the Bianchi-Egnell Stability Estimate for integer dimensions. The identity,

(3.11), and the restriction m ∈ N imply that if we only relied on the Sobolev Inequality

and the Bianchi-Egnell Stability Estimate for integer dimensions, that we would only

be able to prove Theorem 3.1.1, for some rational values of s. This would leave us

well short of the full range of values of s in Del Pino and Dolbeault’s family of sharp

GN inequalities. Employing Bakry, Gentil, and Ledoux’s generalization of the Sobolev

Inequality and proving the Bianchi-Egnell Stability Estimate given by Theorem 2.1.5

lets us employ all values of m > 0 and consequently prove Theorem 3.1.1 for the full

range of values for s, i.e. 1 ≤ s ≤ n
n−2 when n > 2 or 1 ≤ s ≤ ∞ when n = 2.

The heart of the proof of is the link between the Sobolev Inequality and the GN

Inequality summarized in the following

PROPOSITION 3.3.2. Let m ∈ N. Also, let u ∈ Ḣ1(Rn) be a nonnegative function

such that
‖u‖s+1

s+1

‖∇u‖22
=
‖v‖s+1

s+1

‖∇v‖22
, (3.10)

where

s =
m+ 2n

m+ 2n− 4
. (3.11)

Let ϕu : Rm+n → R be given by

ϕu(y, z) = [wu(y) + |z|2]−
m+n−2

2 , (3.12)

where

wu(y) = u−
4

m+2n−4 (y) , and y ∈ Rn, z ∈ Rm . (3.13)

Then

C̃−1
1 (C2

m+n‖∇ϕu‖22 − ‖ϕu‖22∗) = A4s/2∗
n,s ‖∇u‖

µ4s/2∗

2 ‖u‖(1−µ)4s/2∗

s+1 − ‖u‖4s/2
∗

2s = δGN [u] ,

(3.14)
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where

C̃1 =
(∫

Rm
[1 + |ζ|2]−(m+n)dζ

)2/2∗

. (3.15)

Remark 3.3.3. Note that (3.14) asserts that

C−1
1 δSob[ϕu] = δGN [u] ,

where δSob[·] is the difference of terms in the Sobolev Inequality given by

δSob[ϕ] = C2
N‖∇ϕ‖22 − ‖ϕ‖22∗ .

The reason Proposition 3.3.2 is the key to proving Theorem 3.1.1 for m ∈ N is that

we can use (3.14) and leverage the Bianchi-Egnell Stability Estimate to get a stability

estimate for the GN inequalities with m ∈ N. Obtaining Theorem 3.1.1 for all possible

values of s is a direct application of Theorem 2.1.5, which is the main result of chapter

2, because once we obtain the analogue of Proposition 3.3.2 for ϕu in continuous di-

mensions, we can apply Theorem 2.1.5 to obtain a stability estimate for the full class

of sharp GN inequalituies of Del Pino and Dolbeault.

Proof. We begin by observing that (recall that γ = m+n−2
2 )

γ−2‖∇ϕu‖22

=
∫

Rn

∫
Rm
|∇ywu(y)|2[wu(y) + |z|2]−(m+n)dzdy +

∫
Rn

∫
Rm

4|z|2[wu(y) + |z|2]−(m+n)dzdy

taking ζ = w1/2
u z

=
∫

Rn
|∇ywu|2w

−m+2n
2

u dy
∫

Rm
[1 + |ζ|2]−(m+n)dζ +

∫
Rn

4w
−m+2n−2

2
u dy

∫
Rm
|ζ|2[1 + |ζ|2]−(m+n)dζ

which by (3.13)

=
(

4
m+ 2n− 4

)∫
Rn
|∇yu|2dy

∫
Rm

[1 + |ζ|2]−(m+n)dζ + 4
∫

Rn
u

2(m+2n−2)
m+2n−4 dy

∫
Rm
|ζ|2[1 + |ζ|2]−(m+n)dζ

(3.16)

and

‖ϕu‖22∗ =
(∫

Rn

∫
Rm

[wu(y) + |z|2]−(m+n)dzdy
)2/2∗

, taking ζ = w1/2
u z

=
(∫

Rn
w−(m+2n)/2
u dy

∫
Rm

[1 + |ζ|2]−(m+n)dζ
)2/2∗

, which by (3.13)

=
(∫

Rn
u

2(m+2n)
m+2n−4 dy

∫
Rm

[1 + |ζ|2]−(m+n)dζ
)2/2∗

. (3.17)
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We will use (3.16) and (3.17) to derive the GN deficit with
(
‖∇u‖µ2‖u‖

1−µ
s+1

)4s/2∗

coming

from (3.16) and (3.10), and ‖u‖4s/2
∗

2s coming from (3.17).

Combining (3.16) and (3.17), we have that

C2
m,n‖∇ϕu‖22 − ‖ϕu‖22∗ = C̃1(C̃2‖∇u‖22 + C̃3‖u‖s+1

s+1 − ‖u‖
4s/2∗

2s ) , (3.18)

where

C̃1 =
(∫

Rm
[1 + |ζ|2]−(m+n)

)2/2∗

C̃2 =C2
m,nγ

2

(
4

m+ 2n− 4

)2

C̃
2∗/2−1
1

C̃3 =4C2
m,nγ

2

(
4

m+ 2n− 4

)2

C̃−1
1

∫
Rm
|ζ|2[1 + |ζ|2]−(m+n)dζ .

If we take u = v, then ϕu = Fk̂−1,0, and (3.18) gives

C̃1(C̃2‖∇v‖22 + C̃3‖v‖s+1
s+1 − ‖v‖

4s/2∗

2s ) =C2
m,n‖Fk̂−1,0‖

2
Ḣ1 − ‖Fk̂−1,0‖

2
2∗

=0

=C̃1(A4s/2∗
n,s ‖∇v‖

µ4s/2∗

2 ‖v‖(1−µ)4s/2∗

s+1 − ‖v‖4s/2
∗

2s )

Thus,

C̃2‖∇v‖22 + C̃3‖v‖s+1
s+1 = A4s/2∗

n,s ‖∇v‖
µ4s/2∗

2 ‖v‖(1−µ)4s/2∗

s+1 − ‖v‖4s/2
∗

2s . (3.19)

We claim that (3.19) holds if we replace v with u, provided u satisfies (3.10). We verify

this claim by observing that (3.19) is equivalent to

C̃2 + C̃3
‖v‖s+1

s+1

‖∇v‖22
= A4s/2∗

n,s

(‖v‖s+1
s+1)(1−µ)4s/2∗(s+1)

(‖∇v‖22)1−µ2s/2∗
, (3.20)

and that
(1− µ)4s
2∗(s+ 1)

= 1− µ2s
2∗

=
m

m+ n
, (3.21)

which can be verified directly by writing µ, s and 2∗ in terms of their formulas (3.1),

(3.11), and (2.11). (3.21) implies that the exponents in the numerator and denominator

of the right hand side of (3.20) are the same. Hence, if u obeys (3.10), then (3.20) holds

if we replace v with u. This verifies our claim, because (3.19) is equivalent to (3.20).
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The results of the last paragraph allow us to conclude that if u satisfies (3.10), then

C2
m,n‖∇ϕu‖22 − ‖ϕu‖22∗ =C̃1(C̃2‖∇u‖22 + C̃3‖u‖s+1

s+1 − ‖u‖
4s/2∗

2s )

=C̃1(A4s/2∗
n,s ‖∇u‖

µ4s/2∗

2 ‖u‖(1−µ)4s/2∗

s+1 − ‖u‖4s/2
∗

2s ) ,

which is equivalent to (3.14).

Having proved Proposition 3.3.2, we apply the Bianchi-Egnell Stability Estimate and

the Sobolev Inequality to help deduce Theorem 3.1.1 for s as per (3.11) and m ∈ N. To

be more precise, by Proposition 3.3.2, we have for all nonnegative u ∈ Ḣ1(Rn) obeying

(3.10) and ϕu given by (3.12)

δGN [u] =C̃−1
1

(
C2
m,n‖∇ϕu‖22 − ‖ϕu‖22∗

)
, which by the Bianchi-Egnell Stability Estimate

≥C inf
c∈R,t>0,x0∈Rm+n

‖∇(ϕu − cFt,x0)‖2 , which by the Sobolev Inequality

≥C ′ inf
c∈R,t>0,x0∈Rm+n

‖ϕu − cFt,x0‖2∗ , (3.22)

for some C,C ′ > 0. The remainder of the argument is to show that if δGN [u] ≤ δ1 for

some appropriately small δ1 > 0 and for some y0 ∈ Rn, then

K1‖ϕu − cFt,x0‖2∗ ≥ ‖u2s − v2s(· − y0)‖1 , which for some appropriate λ > 0

= ‖u2s − λnv2s(λ · −y0)‖1 , (3.23)

which proves Theorem 3.1.1 for s as per (3.11) and m ∈ N. We skip the details used

to deduce (3.23) in favor of concentrating on the arguments for deducing Proposition

3.3.2 and (3.22), because these are the arguments we need to understand in order to

understand the necessity of deriving the continuous dimension extension of the Bianchi-

Egnell Stability Estimate in proving Theorem 3.1.1. Having set the stage, we explain

this necessity in the next subsection.

3.4 Application of Continuous Dimension Extensions of the Sobolev

Inequality and the Bianchi-Egnell Stability Estimate in Proving

Theorem 3.1.1

In this subsection, we outline the proof of Theorem 3.1.1. This outline will generally

parallel the outline of the proof outlined in the previous subsection - the differences
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in the outlines should hopefully clarify the necessity and application of Bakry, Gentil,

and Ledoux’s extension of the Sobolev Inequality and the associated stability estimate,

Theorem 2.1.5.

Like the proof in the previous subsection, the key to the proof of Theorem 3.1.1 is

PROPOSITION 3.4.1. Proposition 3.3.2 holds with the following changes:

1. We introduce continuous dimensions by taking

m > 0 ,

2. ϕu : Rn × R+ → R is given by

ϕu(y, ρ) = [wu(y) + ρ2]−
m+n−2

2 , (3.24)

3. and

C̃1 =
(∫

R+

[1 + θ2]−(m+n)ωmθ
m−1dθ

)2/2∗

.

Remark 3.4.2. Note that the above is a continuous dimension generalization of Propo-

sition 3.3.2, in the sense that if m is an integer, ϕu(y, ρ) in Proposition 3.4.1 is simply

the representative of ϕu(y, z) with z written in radial coordinates. On the same note,

C̃1 in Proposition 3.4.1 is the same as C̃1 given by (3.15), indeed, the integrand in

the formula for C̃1 in Proposition 3.4.1 is simply the radial version of the integrand

in (3.15). Moreover, the equality given by (3.14) in the continuous dimension setting,

m > 0, equates the difference in terms of Bakry, Gentil, and Ledoux’s extension of

the Sobolev Inequality to continuous dimensions to the GN deficit. This is the first

place in the proof of Theorem 3.1.1 in which the use of continuous dimension functional

inequalities occurs.

Having proved Proposition 3.4.1, we apply the extension to continuous dimensions of

the Bianchi-Egnell Stability Estimate, Theorem 2.1.5, and Bakry, Gentil, and Ledoux’s

continuous dimension extension of the Sobolev Inequality to help deduce Theorem 3.1.1.

To be more precise, by Proposition 3.4.1, we have for all nonnegative u ∈ Ḣ1(Rn)
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obeying (3.10) and ϕu given by (3.24)

δGN [u] =C̃−1
1

(
C2
m,n‖∇ϕu‖22 − ‖ϕu‖22∗

)
, which by Theorem 2.1.5

≥C inf
c∈R,t>0,x0∈Rn

‖∇(ϕu − cFt,x0)‖2 , which by Bakry, Gentil, and Ledoux’s Theorem

≥C ′ inf
c∈R,t>0,x0∈Rn

‖ϕu − cFt,x0‖2∗ ,

for some C,C ′ > 0. Just like in the proof in the previous subsection, the remainder of

the argument is to show that if δGN [u] ≤ δ1 for some appropriately small δ1 > 0 and

for some y0 ∈ Rn, then

K1‖ϕu − cFt,x0‖2∗ ≥ ‖u2s − v2s(· − y0)‖1 , which for some appropriate λ > 0

= ‖u2s − λnv2s(λ · −y0)‖1 ,

which proves Theorem 3.1.1. This last part of the proof is independent of Bakry, Gentil,

and Ledoux’s extension of the Sobolev Inequality and Theorem 2.1.5.



93

References

[AdYa] P. F. Adimurthi and S. L. Yadava, Interaction between the geometry
of the boundary and positive solutions of a semilinear Neumann prob-
lem with critical nonlinearity. Journal of Functional Analysis 113 No. 2
(1993), 318-350.

[Ag] S. Agmon, The Lp approach to the Dirichlet problem. Part I: regular-
ity theorems. Annali della Scuola Normale Superiore di Pisa-Classe di
Scienze 13, No. 4 (1959), 405-448.

[Au] T. Aubin, Problemes isoprimtriques et espaces de Sobolev. Journal of
differential geometry 11, No. 4 (1976), 573-598.

[BaGe] D. Bakry, I. Gentil, and M. Ledoux, Analysis and Geometry of Markov
Diffusion Operators Analysis and geometry of Markov diffusion opera-
tors. Grundlehren der Math. Wiss. 348, Springer, Cham (2014).

[BiEg] G. Bianchi and H. Egnell, A Note on the Sobolev Inequality. J. Funct.
Anal. 100 (1991), 18-24.

[Bl] G. A. Bliss, An integral inequality. J. London Math. Soc. 1, No. 1 (1930),
40-46.

[BrLi] H. Brezis and E. H. Lieb. Sobolev inequalities with remainder terms.
Journal of functional analysis 62, No. 1 (1985), 73-86.

[BrNi] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equa-
tions involving critical Sobolev exponents. Communications on Pure and
Applied Mathematics 36, No. 4 (1983), 437-477.

[Bro] F. E. Browder, On the regularity properties of solutions of elliptic differ-
ential equations. Communications on Pure and Applied Mathematics 9,
No. 3 (1956), 351-361.

[CaFi] E. A. Carlen and A. Figalli, Stability for a GNS inequality and the Log-
HLS inequality, with application to the critical mass Keller-Segel equa-
tion. Duke Math. J., 162 No. 3 (2013), 579-625.

[CaFr] E. A. Carlen, R. L. Frank., E. H. Lieb, Stability estimates for the lowest
eigenvalue of a Schrodinger operator. Geometric and Functional Analysis
24, Issue 1, (2014), 63-84.

[CaLo] E. A. Carlen and M. Loss, Extremals of functionals with competing sym-
metries. 88, Issue 2, 1990, 437-456.



94

[CiFu] A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli, The Sharp Sobolev
Inequality in quantitative form. J. Eur. Math. Soc. 11, No. 5 (2009),
1105-1139.

[DeDo] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg
inequalities and applications to nonlinear diffusions. Journal de Math-
matiques Pures et Appliques 81, No. 9 (2002), 847-875.

[DoTo] J. Dolbeault and G. Toscani, Stability Results for Logarithmic Sobolev
and Gagliardo-Nirenberg Inequalities. International Mathematics Re-
search Notices (2015), rnv131.

[FiMa] A. Figalli, F. Maggi, and A. Pratelli, Sharp stability theorems for the
anisotropic Sobolev and log-Sobolev inequalities on functions of bounded
variation. Advances in Mathematics 242 (2013), 80-101.

[Fr] K. O. Friedrichs, On the differentiability of the solutions of linear elliptic
differential equations. Communications on Pure and Applied Mathemat-
ics 6, No. 3 (1953), 299-326.

[FrLi] R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on
the Heisenberg group. Ann. of Math. 176 (2012), No. 1, 349 - 381.

[Fuj] H. Fujita, On the existence and regularity of the steady-state solutions of
the Navier-Stokes equation. Journal of the Faculty of Science, University
of Tokyo. Sect. 1, Mathematics, astronomy, physics, chemistry 9, No. 1
(1961), 59-102.

[FuKa] H. Fujita and Tosio Kato, On the Navier-Stokes initial value problem. I.
Archive for rational mechanics and analysis 16, No. 4 (1964), 269-315.

[FuMa] N. Fusco, F. Maggi, and A. Pratelli, Stability estimates for certain Faber-
Krahn, isocapacitary and Cheeger inequalities. Annali della Scuola Nor-
male Superiore di Pisa-Classe di Scienze-Serie IV 8, No. 1 (2009), 51.

[La] P. D. Lax, On Cauchy’s problem for hyperbolic equations and the dif-
ferentiability of solutions of elliptic equations. Communications on Pure
and Applied Mathematics 8, No. 4 (1955), 615-633.

[Li] E. H. Lieb, Sharp Constants in the Hardy-Littlewood-Sobolev and re-
lated inequalities. The Annals of Mathematics, Second Series, 118, No.
2 (1983), 349-374

[LiLo] E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Math-
ematics, American Mathematical Society, Providence, RI, second ed.,
2001.

[MuPi] M. Musso and A. Pistoia, Multispike solutions for a nonlinear ellip-
tic problem involving the critical Sobolev exponent. Indiana University
Mathematics Journal 51, 3 (2002), 541-579.



95

[Ng] V. H. Nguyen, Sharp weighted Sobolev and Gagliardo-Nirenberg inequal-
ities on half spaces via mass transport and consequences. Proc. London
Math. Soc. 111 (2015), 127-148.

[Ro] G. Rosen, Minimum Value for c in the Sobolev Inequality ‖φ3‖/‖∇φ‖3.
SIAM Journal on Applied Mathematics 21, No. 1 (1971), 30-32.

[Se] F. Seuffert, Extension of the Bianchi-Egnell Stability Estimate of the
Sobolev Inequality to Cylindrically Symmetric Functions in Continuous
Dimensions. arXiv:1512.06121v1, 2015.

[Sm] D. Smets, Nonlinear Schrodinger equations with Hardy potential and crit-
ical nonlinearities. Transactions of the American Mathematical Society
357, No. 7 (2005), 2909-2938.

[So] S. L. Sobolev, On a theorem of functional analysis. Mat. Sbornik 4
(1938), 471-497.

[St] E. M. Stein, Singular integrals and differentiability properties of func-
tions. Vol. 2. Princeton University Press, 1970.

[Sz] G. Szego, Orthogonal Polynomials. Vol. 23. American Mathematical
Soc., 1939.

[Ta] G. Talenti, Best constants in Sobolev Inequality. Ann. Mat. Pura Appl.
110 (1976), 353-372.


