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ABSTRACT OF THE THESIS

Identification of overcomplete dictionaries and their

application in distributed classification problems

by Zahra Shakeri

Thesis Director: Prof. Waheed U. Bajwa

The work presented in this thesis aims to study the conditions essential for reliable

dictionary recovery based on the maximal response criterion and exploit the application

of dictionary learning in classification of distributed data.

The first part of this thesis revisits the problem of recovery of an overcomplete

dictionary in a local neighborhood from training samples using the so-called maximal

response criterion. While it is known in the literature that the maximal response crite-

rion can be used for asymptotic exact recovery of a dictionary in a local neighborhood,

those results do not allow for linear (in the ambient dimension) scaling of sparsity lev-

els in signal representations. The first contribution in this work is introducing a new

condition for the sparse representation of signals and leveraging a new proof technique

to establish that maximal response criterion can in fact handle linear sparsity (mod-

ulo a logarithmic factor) of signal representations. While the focus of this work is

on asymptotic exact recovery, the same ideas can be used in a straightforward man-

ner to strengthen the original maximal response criterion-based results involving noisy

observations and finite number of training samples.

The second part of this thesis addresses the problem of collaborative training of non-

linear classifiers using big, distributed training data. The proposed supervised learning
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strategy corresponds to data-driven joint learning of a nonlinear transformation that

maps the (training) data to a higher-dimensional feature space and a ridge regression

based linear classifier in the feature space. The key aspect of this work, which distin-

guishes it from related prior work, is that it assumes:

• The training data are distributed across a number of interconnected sites.

• Sizes of the local training data as well as privacy concerns prohibit exchange of

individual training samples between sites.

The main contribution is formulation of an algorithm, termed cloud D-KSVD, that

reliably, efficiently and collaboratively learns both the nonlinear map and the linear

classifier under these constraints. In order to demonstrate the effectiveness of cloud D-

KSVD, a number of numerical experiments on the MNIST dataset are also reported.
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Chapter 1

Introduction

Sparsity-based data processing has gained significant attention in recent years due to the

explosion of data. In 2014 alone, the amount of information stored worldwide exceeded 5

ZetaBytes [1]. This number is expected to grow rapidly in the next years, hence, there is

an increased demand for approaches to store and process big data. Dictionary learning

[2, 3] is a powerful tool to obtain sparse representations of signals in computational

harmonic analysis. Specifically, the task of dictionary learning corresponds to obtaining

an overcomplete basis D ∈ Rm×p, p� m, such that each sample in the training data is

well approximated by no more than S � m columns (atoms) of D. Such a dictionary,

which is a linear map from FS = {x ∈ Rp : ‖x‖0 ≤ S} to Rm, in turn (under suitable

conditions on D and S) induces a nonlinear map ΦD from the input space Rm to the

feature space FS as follows:

ΦD(y) = arg min
x∈FS

‖y −Dx‖2. (1.1)

In the literature, evaluation of nonlinear maps of the form (1.1) for a given y ∈ Rm is

termed sparse coding [3]. These sparse representations can then be used in a variety of

applications, such as denoising [4, 5], classification [6–8], and compressed sensing [9].

The existing literature on dictionary learning ranges from designing dictionary learn-

ing algorithms to analyzing the performance of these algorithms. The proposed algo-

rithms are used to obtain dictionaries suitable for specific tasks such as data represen-

tation and data classification, or deal with specific data such as distributed data or

online data. In this thesis, we touch upon both aspects of dictionary learning.

While initial focus in the literature has been on developing efficient algorithms for

dictionary learning, it is important to also understand the performance of such algo-

rithms theoretically. To this end, our focus in Chapter 2 is on dictionary identifiability,
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i.e. recovering the reference dictionary from generated observations, for a relatively-

new maximization criterion proposed in [10, 11] for dictionary learning. The proposed

criterion not only leads to an efficient computational algorithm for dictionary learning,

but it is also shown in [10] that this new criterion results in provable local recovery

of an m× p dictionary from training signals. Sample complexity results for dictionary

learning under both noiseless and noisy settings are also provided in [10]. The com-

mon thread underlying these results is a decay constraint on sparse representations of

the signals, which is a crucial element in the arguments used throughout [10]. Un-

fortunately, even in the best setting, the decay condition stated in [10] dictates that

if the training signals have S-sparse representations in the dictionary then one must

have S = O(
√
m). Nonetheless, it is suggested in [10] that it may be possible to break

this “square-root bottleneck” using different proof techniques (although no formal ar-

guments are provided).

In Chapter 2, we revisit the maximization criterion of [10] for dictionary learning

and obtain an alternative decay condition on the coefficients of the sparse representa-

tions that is less restrictive than the one obtained in [10]. Specifically, the new decay

condition allows us to break the square-root bottleneck in the sense it can allow for

asymptotic exact recovery of the true dictionary even if the sparse representations of

the signals satisfy S = O( m
log p). Similar to [10], our focus here is on local analysis,

i.e., there exists a neighborhood around the true dictionary in which only the true dic-

tionary maximizes the objective function. Our new condition also results in a larger

neighborhood compared to the one given in [10]. Our proofs rely on a new measure

of dictionary coherence studied in [12, 13] as well as the method of bounded differences

[14] and a complex variant of Azuma’s inequality [15]. Our proof techniques can be

used in a straightforward manner to improve the results reported in [10] for both noisy

and finite sample settings.

There has been some prior works that focus on the theoretical guarantees of dic-

tionary learning algorithms and required sample complexity for reliable recovery of the

true underlying dictionary. Among these works, [16, 17] focus on recovery of square

dictionaries, while [10, 11, 18–25] study overcomplete dictionaries. In some works such
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as [17–22], global identification results for several algorithms are obtained under var-

ious assumptions on noise and the objective function. On the other hand, [16, 23]

study local identifiability for objective functions without the presence of noise, while in

[10, 11, 24, 25] local identifiability results are obtained for algorithms such as K-SVD

[3], ITKM [10, 11], and SPAMS [26]. To the best of our knowledge, our work is the first

work in the literature that formally shows S ≈ O(m) is sufficient for reliable dictionary

recovery.

Classification is one of the most important information processing tasks. There

exists an extensive body of literature on training classifiers from labeled data, but much

of that work assumes the training data to be available at a centralized location [27, 28].

On the other hand, many disciplines in the world today—ranging from search engines to

medical informatics—are increasingly faced with scenarios in which the training data are

geographically distributed across different interconnected locations (sites). While each

one of the sites in this setting can rely only on its local data for supervised learning, such

an approach can be suboptimal due to issues ranging from noisy local data and labels to

local class imbalance. At the same time, it might be infeasible in many of these cases to

gather all the distributed data at a centralized location for supervised learning due to

the massive nature of these data and/or privacy concerns. The challenge in this setting

then is design of a collaborative supervised learning framework in which individual sites

collaborate with each other to approach centralized classification performance without

exchange of individual training samples between the sites.

In Chapter 3, we undertake this challenge and develop a framework that collabora-

tively learns a nonlinear classifier at individual sites from the distributed training data.

Our collaborative supervised learning strategy in this regard corresponds to data-driven

collaborative and joint learning of a nonlinear transformation that maps (training) data

in the input space Rm to a higher-dimensional feature space and a ridge regression based

linear classifier in the feature space. In order to learn the nonlinear mapping, we resort

to the framework of dictionary learning. We use the dictionary learning terminology to

formally describe the goal of Chapter 3 as follows: collaborative exploitation of labeled

training data distributed across sites for joint learning of a dictionary D (equivalently,
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the nonlinear map ΦD : Rm → FS) and a linear classification rule in FS.

We develop a collaborative supervised learning framework for joint dictionary learn-

ing and linear classification rule from distributed training data. Our development in

this regard leverages the centralized framework of [8] for joint dictionary and classifier

learning, termed discriminative K-SVD (D-KSVD), and the collaborative framework of

[29] for reconstructive dictionary learning from distributed data, termed cloud K-SVD.

We accordingly term the framework developed in this work as cloud D-KSVD. The

second main contribution of Chapter 3 is that it evaluates the performance of cloud

D-KSVD by carrying out a series of numerical experiments on the MNIST dataset of

handwritten digits [30]. The results of these experiments confirm that collaborative su-

pervised learning is superior to local supervised learning, especially in the presence of

class imbalance at (some of the) individual sites. These experiments also demonstrate

that the classification performance of our proposed framework not only comes very

close to that of centralized supervised learning, but is also better than the classification

performance of a collaborative framework based on cloud K-SVD alone.

In terms of connections to prior work, a number of dictionary learning based clas-

sifiers have been developed in the literature in recent years [7, 8, 26, 31–35]. Some of

these works are based on reconstructive dictionary learning [26, 31], while others are

based on discriminative dictionary learning [7, 8, 32–35]. To the best of our knowledge,

however, all of these works assume the (labeled or unlabeled) training data to be avail-

able at a centralized location. Recently, the collaborative framework of cloud K-SVD

was proposed in [29] for reconstructive dictionary learning. In this regard, our work

can be viewed as a demonstration of the usefulness of some of the principles underlying

cloud K-SVD for collaborative discriminative dictionary learning.

While our focus in Chapter 3 has been on combining the ideas in cloud K-SVD

and D-KSVD due to the superior classification performance of D-KSVD in a central-

ized setting, it is plausible that the D-KSVD part of our collaborative framework can

be replaced with some of the other (centralized) discriminative dictionary learning ap-

proaches in the literature.

Outside the realm of dictionary learning, distributed classification has been studied
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in the literature in various guises. Some of the earliest interest in this topic arose in

the context of distributed sensor networks [36–40]. But the distributed classification

problems studied in works like [36–39] primarily focus on fusion of distributed data for

classification, rather than collaborative training of classifiers at individual sites from

distributed data. Similarly, the focus in works like [40] is on collaborative decision

making, rather than collaborative training, using related (but different) distributed

measurements of the same object. In recent years, there has also been an interest in

parallelizing supervised learning algorithms [41–44]. Such works, however, are based on

the premise that training (labeled) data is initially available at a centralized location.

In terms of the distribution of labeled training data, our work is most closely re-

lated to [45–56]. In [45, 46], the authors collaboratively learn kernel-linear least-squares

regression estimators from training data, which can in principle also be used for classi-

fication. In [47–56], the focus is on the collaborative training of (linear and/or kernel)

support vector machines (SVMs). Although works [47, 48] require the sites to be con-

nected in either a fully connected [47] or a ring [48] topology, other works [49–56] can

deal with more general topologies. The fundamental difference between these works

and our work is that we are interested in collaborative learning of both a nonlinear

map and a classifier. In the context of kernel SVM training, this would be akin to joint,

collaborative learning of a kernel and an SVM. To the best of our knowledge, however,

none of the earlier works address such a problem.

1.1 Notational Convention

Bold upper-case and lower-case letters are used to denote matrices and vectors, respec-

tively. Lower-case letters denote scalars. We denote the `0, `1, and `2 norm of the

vector v by ‖v‖0 (number of non-zero elements of v), ‖v‖1, and ‖v‖2, respectively and

‖X‖F denotes the Frobenius norm of matrix X. The k-th column of X is denoted by

xk and vi denotes the i-th element of v. XI is the matrix consisting of columns of

X with indices I. ej denotes the j-th column of the identity matrix. Furthermore,

v1 � v2 denotes the pointwise product of v1 and v2. We write [K] for {1, . . . ,K}. For
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two matrices A and B of the same dimensions m× p, we define their distance to be

d(A,B) = max
i∈[p]
‖ai − bi‖2. (1.2)

For any matrix X ∈ Rm×p consisting of unit-norm columns, we denote the worst-case

coherence as

µ = max
i,j∈[p]
i 6=j

|〈xi,xj〉|, (1.3)

where 〈xi,xj〉 denotes the inner product of xi and xj . Also, we define the average

coherence of X as

ν =
1

p− 1
max
i∈[p]

∣∣ ∑
j∈[p]
j 6=i

〈xi,xj〉
∣∣ (1.4)

We use f(ε) = O(g(ε)) if limε→0 f(ε)/g(ε) = c <∞ for some constant c.

1.2 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2 we analyze the performance

of dictionaries learned using the so-called maximal response criterion. By introducing a

condition for the coefficient vector, we provide conditions for which the true dictionary

maximizes the objective function, in a local neighborhood. The implications of the

conditions are discussed in section 2.3.

In Chapter 3 we study the problem of learning a nonlinear classifier from distributed

training data. We assume the training data is distributed among connected sites and

the sites collaboratively learn a dictionary and a linear classifier, without exchanging

raw data points. We demonstrate the effectiveness of the proposed scheme in numerical

experiments in section 3.3.
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Chapter 2

Maximal Response-Based Local Identification of

Overcomplete Dictionaries

In this chapter, we address the problem of dictionary identifiability. Considering the

response maximization criterion proposed in [10] for dictionary learning, we obtain

conditions on the sparse representation of signals and the underling dictionary to ensure

reliable recovery of the dictionary. We formulate the problem in the next section.

2.1 System Model

In dictionary learning, we assume an observation y ∈ Rm is generated via

y = D0x + n, (2.1)

where D0 ∈ Rm×p is a fixed dictionary, x ∈ Rp is the signal coefficient vector, and n ∈

Rm is the underlying noise vector. Given a signal matrix Y consisting of observations

yk, k ∈ [N ], the goal is to find a representative dictionary, D, and a coefficient matrix

X consisting of signal coefficient vectors xk, k ∈ [N ], such that the representation error

is minimized. In other words,

(D∗,X∗) = arg min
D∈D,X∈X

‖Y −DX‖2F . (2.2)

The dictionary class D is defined by

D , {D′ ∈ Rm×p, ‖d′j‖2 = 1 : j ∈ [p], rank (D′) = m ≤ p}. (2.3)

We also assume the non-zero singular values of D ∈ D are in the interval [
√
A,
√
B].

We assume the coefficient vector is sparse, i.e.

X , {X′ ∈ Rp×N , ‖x′j‖0 ≤ S : j ∈ [N ]}, (2.4)
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where S denotes the sparsity of the coefficient vector and S � m.

Similar to [10], to minimize (2.2), we use the response maximization criterion

max
D∈D

∑
k∈[N ]

max
|I|=S

‖D∗Iyk‖1, (2.5)

which maximizes the `1 norm of the S largest responses. We can interpret (2.5) as the

generalization of the K-means objective function [10]. The asymptotic version of (2.5)

can be stated as

max
D∈D

Ey

(
max
|I|=S

‖D∗Iy‖1
)
. (2.6)

In [10], local identifiability results are obtained using the response maximization cri-

terion for dictionaries generated from randomly sparse signal coefficients in the presence

of noise.

We now introduce the signal coefficient model. We consider a sequence c ∈ Rp

satisfying

c1 ≥ c2 ≥ · · · ≥ cp ≥ 0, ‖c‖2 = 1. (2.7)

We construct the signal coefficient vectors using the relation

x = σ �Pc, (2.8)

where P ∈ Rp×p is a random permutation matrix and σ ∈ Rp is a sign vector with

elements taking values ±1 randomly. In this case, the coefficient vector x is equal to

σ �Pc with probability 1
2pp! , for permutation matrix P and the sign vector σ. While

there is no sparsity assumption on x, additional constraints on the decay of the elements

of c can be made to prove identifiablity results for the underlying dictionary.

2.2 Asymptotic Identifiability Results

In this section, we provide a variation of Proposition 6 in [10]. While this case is the

most basic setting where noise is not present, the proof technique can be used in all

theorems in [10] to improve the results stated in there.
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Theorem 1. Consider observations generated via (2.1) with noise variance σ = 0, let

D ∈ D be a dictionary with worst-case coherence µ and average coherence ν, where

ν ≤ µ
√

log p
p holds and let x be the signal coefficient generated according to (2.8). If c

satisfies

cS > cS+1 + 26µ
√

log p, (2.9)

then there is a local maximum of (2.6) at D with high probability. Moreover, for

any perturbation of the true dictionary, D̃ = (d̃1, . . . , d̃p) with d(D, D̃) ≤ ε, we have

Ey
(

max|I|=S ‖D̃∗Iy‖21
)
< Ey

(
max|I|=S ‖D∗Iy‖21

)
with high probability as soon as

ε ≤ cS − cS+1 − 26µ
√

log p

1 + 3

√
log

(
25p2S

√
B

(cS−cS+1−26µ
√

log p)(
∑

i∈[S] ci)

) . (2.10)

Outline of Proof: The proof of the theorem follows from steps taken in [10]:

• We show that for a fixed permutation, the maximal response is obtained by DIs ,

where Is denotes the indices of the coefficient vector elements corresponding to

{ci}i∈[S]. To this end, we introduce the decaying condition in (2.9), which is less

restrictive than the decaying condition in [10] for the decay of elements of c.

• The rest of the proof is similar to the proof of Proposition 6 in [10]. (2.6) is

computed for ε-perturbations of the original dictionary, i.e. d(D, D̃) ≤ ε, and

it is shown that for small perturbations of the original dictionary and most sign

sequences, the maximal response is obtained by D̃Is . Using arguments on the loss

of D̃ over the typical sign sequence of all permutations compared to the maximal

gain over approximately atypical sign sequences, it is shown that D maximizes

(2.6) locally.

We introduce a lemma essential to prove Theorem 1.

Lemma 1. Consider observations generated according to (2.1) with noise variance

σ = 0, where the dictionary D ∈ D has worst-case coherence µ and average coherence

ν, and let the coefficient vector be generated according to (2.8). Then, for any i ∈ [p],
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any t > 0, and any p satisfying
√
p ≤ t/ν, we have

P
(∣∣∣∣ ∑

j∈[p]
j 6=i

xj〈di,dj〉
∣∣∣∣ > t

)
≤ 4 exp

(
−

(t− ν√p)2

144µ2

)
. (2.11)

2.3 Discussion

The condition ν ≤ µ
√

log p
p in Theorem 1 is implied by conditions p

log p ≤ m and ν ≤ µ√
m

and according to [12], there exist dictionaries that satisfy ν ≤ µ√
m

.

To analyze our result and compare it to the analogous result in [10], we study the

basic setting where c is S-sparse and {ci}Si=1 = 1√
S

, resulting in ‖c‖1 =
√
S. According

to the decay condition in [10], cS > cS+1 + 2µ‖c‖1, we have recovery of the true dictio-

nary as long as S < 1
2µ . From the Welch bound [57], this translates to sparsity levels of

order O(
√
m). With the new decay condition cS > cS+1 + 26µ

√
log p, we can recover

the true dictionary as long as sparsity levels are of order O( m
log p). Hence, we are able to

overcome the fundamental limitations of [10] where, regardless of the dictionary, there

is a square-root bottleneck for S, whereas, we get close to a linear scaling. Although we

have only studied the noiseless asymptotic case, the decay condition for the coefficient

vector can also be used in noisy and finite sample settings.

2.4 Appendix

Lemma 2 (The Complex Azuma’s Inequality [12]). Assuming the probability space

(Ω,F ,P), let M̃1, . . . , M̃n be a complex-valued martingale difference sequence on (Ω,F ,P)

with |M̃i| ≤ ci for i ∈ [n]. Then for any t > 0,

P
(∣∣∣∣ ∑

i∈[n]

M̃i

∣∣∣∣ ≥ t) ≤ 4 exp

(
− t2

4
∑

i∈[n] c
2
i

)
. (2.12)

2.4.1 Proof of Lemma 1

The proof of the lemma follows similar steps as Lemma 3 in [12]. Assuming the per-

mutation matrix P ∈ Rp×p:

P = [eπ(1), eπ(2), . . . , eπ(p)]
T , (2.13)
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the measurement vector y can be stated as

y = D(σ �Pc) = DΠ(σ � c), (2.14)

where Π = {π(i)}pi=1 and DΠ is the column-wise permuted version of D. We now

introduce the method of bounded differences (MOBD) [14] that uses Azuma’s inequality

for bounded martingale difference sequences (BMDS). For a fixed index i, conditioned

on the event Ai′ = {π(i) = i′} and the sign vector σ, writing the coefficient vector

elements as xj = σjcπ(j), j ∈ [p], we get

P
(∣∣∣∣ ∑

j∈[p]
j 6=i′

σjcπ(j)〈dπ(i),dj〉
∣∣∣∣ > t

∣∣Ai′ ,σ) = P
(∣∣∣∣ ∑

j∈[p]
j 6=i

σπ−1(j)cj〈di′ ,dπ(j)〉
∣∣∣∣ > t

∣∣Ai′ ,σ).
(2.15)

To obtain an upper bound for (2.15), we define a random (p−1)-tuple Π−i = {π(k)}pk=1, k 6=

i and construct a Doob Martingale (M0,M1, . . . ,Mp−1):

M0 = E
[∑
j∈[p]
j 6=i

σπ−1(j)cj〈di′ ,dπ(j)〉
∣∣Ai′ ,σ], and

M` = E
[∑
j∈[p]
j 6=i

σπ−1(j)cj〈di′ ,dπ(j)〉
∣∣{π−ik }`k=1,Ai′ , σ

]
, (2.16)

for ` ∈ [p− 1], where {π−ik }
`
k=1 denotes the first ` elements of

∏−i. Similar to [12], we

can bound |M0| by

|M0| =
∣∣∣∣E[∑

j∈[p]
j 6=i

σπ−1(j)cj〈di′ ,dπ(j)〉
∣∣Ai′ ,σ]∣∣∣∣

≤
∑
j∈[p]
j 6=i

∣∣σπ−1(j)cjE
[
〈di′ ,dπ(j)〉

∣∣Ai′ ,σ]∣∣
≤
∑
j∈[p]
j 6=i

cj

∣∣∣∣ ∑
q∈[p]
q 6=i′

1

p− 1
〈di′ ,dq〉

∣∣∣∣
≤ ν‖c‖1

≤ ν√p‖c‖2

= ν
√
p. (2.17)
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To utilize Azuma’s Inequality, we have to construct a BMDS from (M0, . . . ,Mp−1).

Defining M̃` = M` −M`−1 for ` ∈ [p− 1], it is necessary to find the upper bound |M̃`|.

According to [58], we have |M̃`| ≤ supr,s[M`(r)−M`(s)] where M`(r) is defined as

M`(r) , E
[∑
j∈[p]
j 6=i

σπ−1(j)cj〈di′ ,dπ(j)〉
∣∣{π−ik }`−1

k=1, π
−i
` = r,Ai′ ,σ

]
, (2.18)

for ` ∈ [p− 1]. To find an upper bound for |M`(r)−M`(s)|, we have

|M`(r)−M`(s)| =
∣∣∣∣ ∑
j∈[p]
j 6=i

σπ−1(j)cj
(
E
[
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = r,Ai′ ,σ

]

− E
[
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = s,Ai′ ,σ

])∣∣∣∣
≤
∑
j∈[p]
j 6=i

cj

∣∣∣∣E [〈di′ ,dπ(j)〉
∣∣{π−ik }`−1

k=1, π
−i
` = r,Ai′ ,σ

]

− E
[
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = s,Ai′ ,σ

] ∣∣∣∣
=
∑
j≤`+1
j 6=i

cj |d`,j |+
∑
j>`+1
j 6=i

cj |d`,j |, (2.19)

where

dl,j , E
[
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = r,Ai′ ,σ

]
− E

[
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = s,Ai′ ,σ

]
.

(2.20)

We consider various cases to upper bound (2.19). For the case where ` 6∈ [p − 3], Π is

deterministic. In this case, if i ≤ `,

∑
j∈[`+1]
j 6=i

cj |d`,j | = c`+1|〈di′ ,dr〉 − 〈di′ ,ds〉|

≤ 2µc`+1. (2.21)

Similarly, if i > `,
∑

j∈[`+1]
j 6=i

cj |d`,j | ≤ 2µc`.

If ` ∈ [p − 3], for any j > ` + 1, j 6= i, π(j) has a uniform distribution over

[p] − {{π−ik }
`−1
k=1, π

−i
` = r,Ai′} and [p] − {{π−ik }

`−1
k=1, π

−i
` = s,Ai′} , conditioned on
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{{π−ik }
`−1
k=1, π

−i
` = r,Ai′} and {{π−ik }

`−1
k=1, π

−i
` = s,Ai′}, respectively and we have

|d`,j | =
1

p− `− 1
|〈di′ ,dr〉 − 〈di′ ,ds〉|

≤ 2µ

p− `− 1
. (2.22)

If ` ∈ [p− 3], for any j ≤ `+ 1, we study three cases for i. If i < `,
∑

j∈[`+1]
j 6=i

cj |d`,j | ≤

2µc`+1. If i = `,
∑

j∈[`+1]
j 6=i

cj |d`,j | ≤ 2µc` and if i > `+ 1,

∑
j∈[`+1]
j 6=i

cj |d`,j | ≤ 2µ(c` +
c`+1

p− `− 1
). (2.23)

Denoting d` ,
∑

j∈[p]
j 6=i

cj |d`,j |, we have supr,s[M`(r)−M`(s)] ≤ 2µd`, where

d` =


c` + c`+1 +

1

p− `− 1

∑p
j=`+2 cj , ` ∈ [p− 3],

c` ` 6∈ [p− 3].

(2.24)

To use the complex Azuma’s inequality, it is necessary to upper bound
∑

`∈[p−1] d
2
` :∑

`∈[p−1]

d2
` =

∑
`∈[p−3]

(
c` + c`+1 +

1

p− `− 1

p∑
j=`+2

cj
)2

+

p−1∑
`=p−2

c2
`

=
∑

`∈[p−3]

(
c2
` + c2

`+1 + 2c`c`+1 +
2(c` + c`+1)

p− `− 1

p∑
j=`+2

cj +
( 1

p− `− 1

p∑
j=`+2

cj
)2)

+ c2
p−2 + c2

p−1. (2.25)

Since c is non-negative and non-increasing, 2c`c`+1 ≤ 2c` and we can write

p−3∑
`=1

c2
` + c2

`+1 + 2c`c`+1 ≤ 4‖c‖22 − c2
p−2 − c2

p−1. (2.26)

Denoting ‖c‖−n1 , ‖c‖1 −
∑

i∈[n] ci, which has p − n elements, we have ‖c‖−n1 ≤ (p −

n)cn+1. Therefore,∑
`∈[p−3]

2(c` + c`+1)

p− `− 1

p∑
j=`+2

cj =
∑

`∈[p−3]

2(c` + c`+1)‖c‖−(`+1)
1

p− `− 1

≤
∑

`∈[p−3]

4c`(p− `− 1)c`+2

p− `− 1

=
∑

`∈[p−3]

4c`c`+2

≤ 4‖c‖22. (2.27)
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Similarly, we have

∑
`∈[p−3]

(
1

p− `− 1

p∑
j=`+2

cj

)2

=
∑

`∈[p−3]

(
‖c‖−(`+1)

1

p− `− 1

)2

≤
∑

`∈[p−3]

c2
`+2

≤ ‖c‖22. (2.28)

Adding the upper bounds in (2.26), (2.27), and (2.28) for (2.25) results in

∑
`∈[p−1]

d2
` ≤ 9‖c‖22. (2.29)

We have established that (M̃1, . . . , M̃p−1) is a BDMS with |M̃`| ≤ 2µd` for ` ∈ [p− 1].

We have

P
(∣∣∣∣ ∑

j∈[p]
j 6=i

σπ−1(j)cj〈di′ ,dπ(j)〉
∣∣∣∣ > t

∣∣Ai′ ,σ)

(a)

≤ P
(
|Mp−1 −M0| > t‖c‖2 − ν

√
p‖c‖2

∣∣Ai′ ,σ)
= P

(∣∣∣∣ ∑
i∈[p−1]

M̃i

∣∣∣∣ > t‖c‖2 − ν
√
p‖c‖2

∣∣Ai′ ,σ)
(b)

≤ 4 exp

(
−

(t− ν√p)2‖c‖22
16µ2

∑p−1
`=1 d`

)

≤ 4 exp

(
−

(t− ν√p)2

144µ2

)
, (2.30)

where (a) follows from (2.17) and (b) follows from the complex Azuma’s inequality for

BDMS in Lemma 2. Taking the union bound over all events Ai′ and sign sequences,

we have

P
(∣∣∣∣ ∑

j∈[p]
j 6=i

σπ−1(j)cj〈di′ ,dπ(j)〉
∣∣∣∣ > t

)

≤
∑
j∈[p]

∑
i′∈[p]

P
(∣∣∣∣ ∑

j∈[p]
j 6=i

σπ−1(j)cj〈di′ ,dπ(j)〉
∣∣∣∣ > t‖c‖2

∣∣Ai′ ,σ)P(Ai′)P(σj)

≤ 4 exp

(
−

(t− ν√p)2

144µ2

)
, (2.31)

where i′ can be replaced with any i ∈ [p], i 6= i′ and the inequality holds for all i.



15

2.4.2 Proof of Theorem 1

The objective function in (2.6) can be restated as

Ey
(

max
|I|=S

‖D∗Iy‖1
)

= EπEσ
(

max
|I|=S

‖D∗IDx‖1
)

= EπEσ
(

max
|I|=S

∑
i∈I
|〈di,Dx〉|

)
. (2.32)

We now show that the maximum of (2.32) is obtained via I = Is, where Is =

π−1({1, 2, . . . , S}).

Selecting t = 13µ
√

log p, as long as the condition ν ≤ µ
√

log p
p is satisfied, we have

t − ν√p ≥ 0 and exp
(
− (t−ν√p)2

144µ2

)
≤ p−1. Therefore, with high probability, for any

i ∈ Is, we have

|〈di,Dcπ,σ〉| =
∣∣σicπ(i) +

∑
j∈[p]
j 6=i

σjcπ(j)〈di,dj〉
∣∣

(c)

≥ cS −
∣∣ ∑
j∈[p]
j 6=i

σjcπ(j)〈di,dj〉
∣∣

(d)

≥ cS − 13µ
√

log p, (2.33)

where (c) follows from the triangle inequality and (d) follows from substituting ε =

13µ
√

log p in (2.11). Similarly, for all i 6∈ Is, we have

|〈di,Dcπ,σ〉| =
∣∣σici +

∑
j∈[p]
j 6=i

σjcπ(j)〈di,dj〉
∣∣

≤ cS+1 +
∣∣ ∑
j∈[p]
j 6=i

σjcπ(j)〈di,dj〉
∣∣

≤ cS+1 + 13µ
√

log p, (2.34)

with high probability. Thus, the condition cS > cS+1 + 26µ
√

log p ensures that the

maximum of the objective function is attained at Is. The next steps follow similarly
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from [10]. We can write (2.32) as

Ey
(

max
|I|=S

‖D∗Iy‖1
)

= EπEσ
(
‖D∗IsDx‖1

)
= EπEσ

(∑
i∈Is

∣∣cπ(i) + σi
∑
j∈[p]
j 6=i

σjcπ(j)〈di,dj〉
∣∣)

= c1 + · · ·+ cS . (2.35)

Now, we compute the expectation for the perturbation dictionary D̃ with the distance

d(D, D̃) = ε from the original dictionary D. It is clear that ‖di − d̃i‖2 = εi and

maxi εi = ε. We can state d̃i as

d̃i = αidi + βizi, i ∈ [p], (2.36)

where αi ,
(
1− ε2i

2

)
, βi ,

(
ε2i −

ε4i
4

) 1
2 , and zi satisfies 〈di, zi〉 = 0, ‖zi‖2 = 1. Hence,

Ey
(

max
|I|=S

‖D̃∗Iy‖1
)

= EπEσ

(
max
|I|=S

∑
i∈I
|〈d̃i,Dcπ,σ〉|

)
. (2.37)

We show that for perturbed dictionary D̃ and most sign sequences, the maximum of

(2.37) is also attained by Is. For all i ∈ Is we have

|〈d̃i,Dcπ,σ〉|
(e)

≥ αi(cS − 13µ
√

log p)− βi|〈zi,Dcπ,σ〉|, (2.38)

where (e) follows from (2.33). For all i 6∈ Is we have

|〈d̃i,Dcπ,σ〉|
(f)

≤ αi(cS+1 + 13µ
√

log p) + βi|〈zi,Dcπ,σ〉|, (2.39)

where (f) follows from (2.34). Using Hoeffding’s inequality, we get

P (βi|〈zi,Dcπ,σ〉| ≥ t) ≤ 2 exp

(
− t2

2ε2i

)
. (2.40)

Therefore, except with probability 2 exp
(
− t2

2ε2i

)
, we have

|〈d̃i,Dcπ,σ〉| ≥ αi(cS − 13µ
√

log p)− t,∀i ∈ Is,

|〈d̃i,Dcπ,σ〉| ≤ αi(cS+1 + 13µ
√

log p) + t,∀i 6∈ Is. (2.41)

Setting t , 1
2(cS − cS+1 − 26µ

√
log p− ε2

2 ), we ensure that

max
|I|=S

∑
i∈I
|〈d̃i,Dcπ,σ〉| =

∑
i∈Is

|〈d̃i,Dcπ,σ〉|. (2.42)
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The next step is to compute the expectation of (2.42) over σ. For this purpose, for

each permutation π, we define two sets. One set is the set of all sign sequences that

results in βi|〈zi,Dcπ,σ〉| ≥ t, while the second set is the set of all sign sequences that

results in βi|〈zi,Dcπ,σ〉| < t. Following similar steps as [10], we get

Eσ

(∑
i∈Is

|〈d̃i,Dcπ,σ〉|

)
= Eσ

(∑
i∈Is

∣∣αicπ(i) + σi〈αidi + βizi,
∑
j∈[p]
j 6=i

σjcπ(j)dj〉
∣∣)

=
∑
i∈Is

αicπ(i) (2.43)

and the form of the objective function for the perturbed dictionary becomes

Ey

(
max
|I|=S

‖D̃∗Iy‖1
)

≤ 4εS
√
B
∑
i∈[p]
εi 6=0

exp

(
−

(cS − cS+1 − 26µ
√

log p− ε2

2 )2

8ε2i

)
+
c1 + · · ·+ cS

p

∑
i∈[p]

αi.

(2.44)

To ensure Ey

(
max|I|=S ‖D∗Iy‖1

)
> Ey

(
max|I|=S ‖D̃∗Iy‖1

)
, the following condition

arises:

ε >
8Sp2

√
B

c1 + · · ·+ cS
exp

(
−

(cS − cS+1 − 26µ
√

log p− ε2

2 )2

8ε2i

)
, (2.45)

which is ensured by (2.10).
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Chapter 3

Dictionary Learning Based Nonlinear Classifier Training

from Distributed Data

In this Chapter, dictionary learning is employed to design a non-linear classifier from

distributed training data. We consider a distributed setting where training data is

distributed among sites. Our goal is for the sites to collaboratively learn a joint dictio-

nary that transforms the data to a higher dimension and a linear classifier to classify

transformed data. We formulate the problem formally in the next section.

3.1 Problem Formulation

Consider a collection of K interconnected sites. We express this collection through

an undirected, connected graph G = (V, E), where V = [K] and E = {(i, j) ∈ V ×

V : sites i and j are connected}. Each of these K sites is interested in classifying p-

dimensional data into one of L possible classes. In order to facilitate this classification

task, we assume each site i has access to Ni labeled training samples {(yji , `
j
i )}

Ni
j=1,

where yji ∈ Rm denotes a training sample, `ji ∈ L denotes the label of yji , and L = [L].

Given these N =
∑

i∈V Ni labeled training samples distributed across different sites,

we are interested in collaboratively and jointly learning a nonlinear (feature) map ΦD

and a linear classifier C such that (ideally) C(ΦD(x)) = `x for any sample x ∈ Rp that

belongs to class `x ∈ L. Note that the composition C ◦ ΦD : Rm → L in this case is a

nonlinear classifier in the input space.

In order to solve this problem, we resort to the framework of discriminative dictio-

nary learning in which the nonlinear map ΦD is induced by a dictionary D ∈ Rm×p

according to (1.1). We motivate that framework by collecting the training samples

{yji }
Ni
j=1 into a matrix Yi ∈ Rm×Ni and writing Y = [Y1,Y2, . . . ,YK ]. In addition, we
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associate with each label `ji a label unit-vector hji = e
`ji
∈ RL, where e

`ji
denotes the

`ji -th column of the L × L identity basis. Then, collecting the label vectors {hji}
Ni
j=1

into a matrix Hi ∈ RL×Ni and writing H = [H1,H2, . . . ,HK ], the problem of joint

learning of a dictionary D ∈ Rm×p and a linear classifier C can be posed in terms of

the following optimization problem [8]:

(D∗,W∗,X∗) = arg min
D,W,X∈X

‖Y −DX‖2F + γ‖H−WX‖2F + β‖W‖2F , (3.1)

where

X , {X′ ∈ Rp×N , ‖x′j‖0 ≤ S : j ∈ [N ]}. (3.2)

Here, X ∈ Rp×N denotes the coefficient matrix, W ∈ RL×p denotes the classifica-

tion matrix, and the final classification rule C is defined in terms of the matrix W

as C(ΦD(x)) = arg max`∈L |[WΦD(x)]`|. Note that the regularization parameters γ

and β in (3.1) control the discriminative power and the complexity of the classifier,

respectively.

While (3.1) is a non-convex problem, [8] provides a solution to this problem under

the rubric of discriminative K-SVD (D-KSVD). But the D-KSVD framework, which

relies on the K-SVD algorithm of [3] for dictionary learning, assumes (Y,H) to be

available at one location. In contrast, our goal is to collaboratively solve (3.1) at each

individual site when the training data is split across K sites (see Fig. 3.1) and sites

do now want to gather all the distributed data at a centralized location for supervised

learning due to the massive size of these data or privacy concerns. Given the nature of

this problem, we can in fact only learn K different dictionary–classifier pairs (D̃i,W̃i),

one pair at each site, but our goal is to ensure that the classification performances of

these pairs remain close to each other.

3.2 Proposed Collaborative Framework

In this section, we present our approach to collaborative learning of (D̃i,W̃i) at each

individual site from distributed training data. We term our proposed approach cloud

D-KSVD, which is based on the centralized D-KSVD solution to (3.1) proposed in [8].
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Figure 3.1: An illustration of the distribution of labeled training data across sites.

Before discussing cloud D-KSVD, however, we first provide a brief review of (central-

ized) D-KSVD for discriminative dictionary learning.

3.2.1 Centralized D-KSVD

The key to the D-KSVD solution of [8] is transformation of the discriminative dictionary

learning problem (3.1) into the classical reconstructive dictionary learning problem [3].

Specifically, notice that (3.1) can be rewritten in the following form:

(D∗,W∗,X∗) = arg min
D,W,X∈X

∥∥∥∥∥∥
 Y

√
γH

−
 D

√
γW

X

∥∥∥∥∥∥
2

F

+ β‖W‖2F . (3.3)

Next, define Ŷ ∈ R(m+L)×N ,
[
YT √

γHT
]T

as “training data” and D̂ ∈ R(m+L)×p ,[
DT √

γWT
]T

as “reconstructive dictionary”. β‖W‖2F term in (3.3) can be removed

as D̂ is normalized column-wise. In other words, [8] promotes the use of the following

optimization program as a surrogate for (3.3):

(D̂∗,X∗) = arg min
D̂,X∈X

‖Ŷ − D̂X‖2F . (3.4)
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Training Algorithm

The formulation in (3.4) reduces the problem of learning (D,W) from the training data

to that of learning a reconstructive dictionary D̂ from Ŷ. In the D-KSVD formulation,

(3.4) is solved using the K-SVD dictionary learning algorithm [3]. This involves initial-

ization with some D̂(0), followed by an alternate-minimization procedure that alternates

between solving (3.4) first for X by fixing D̂ and then for D̂ by fixing X. Specifically,

assuming K-SVD has started iteration t > 0, it estimates X(t) by carrying out sparse

coding as follows:

X(t) = arg min
X∈X

‖Ŷ − D̂(t−1)X‖2F . (3.5)

Note that (3.5) can be efficiently solved using a number of greedy or optimization-based

algorithms [3].

Next, K-SVD estimates D̂(t) by carrying out dictionary update as:

D̂(t) = arg min
D

‖Ŷ −DX(t−1)‖2F . (3.6)

The main novelty of K-SVD lies in the manner it efficiently solves (3.6). To this end, K-

SVD fixes all but the k-th column d̂
(t)
k , k ∈ [p], of D̂(t) and then (dropping the iteration

count for ease of notation) defines the representation error matrix Ek = Ŷ−
∑

j 6=k d̂jx
j
T ,

where xjT denotes the j-th row of X(t). Next, it obtains a column submatrix ER
k of the

matrix Ek by retaining those columns of Ek whose indices match the indices of the

samples in Ŷ that utilize d̂
(t)
k . For this purpose, ωk is defined as

ωk = {i|i ∈ [p],xkT (i) 6= 0} (3.7)

and Ωk is defined to be a matrix of size N × |ωk| with ones on the (ωk(i), i) entries

and zeros elsewhere. Then, xkR = xkTΩk denotes the row vector consisting of only non-

zero entries of xkT and YR
k = YΩk denotes a matrix consisting of samples that utilize

column dk. Similarly, ER
k = EkΩk denotes the error columns corresponding to YR

k .

It then attempts to minimize ‖ER
k − dkx

k
R‖2F using SVD. It updates d̂

(t)
k by setting it

equal to the dominant left singular vector of ER
k . In addition, it is advocated in [3] to

simultaneously update the k-th row of X(t) at this point by setting its nonzero entries



22

equal to σ1v
T
1 , where σ1 and v1 denote the largest singular value and right singular

vector of ER
k , respectively.

Classification Algorithm

Since K-SVD is guaranteed to converge under appropriate conditions [3], the D-KSVD

algorithm obtains D̂ from (3.4). The next challenge then becomes splitting D̂ =[
DT √

γWT
]T

into a desired discriminative dictionary D̃ and a classification ma-

trix W̃. One of the main contributions of [8] is establishing this relationship between

the desired (D̃,W̃) and the (D,W) learned using (3.4). Specifically, [8] shows that

D̃ =
[

d1
‖d1‖2

d2
‖d2‖2 . . .

dp

‖dp‖2

]
, and (3.8)

W̃ =
[

w1
‖d1‖2

w2
‖d2‖2 . . .

wp

‖dp‖2

]
. (3.9)

Once the pair (D̃,W̃) is obtained, the classification proceeds as follows. Given a test

sample ỹ ∈ Rn that belongs to one of the L classes in L, we first obtain

x̃ = Φ
D̃

(ỹ) = arg min
x∈X

‖ỹ − D̃x‖22. (3.10)

Next, we define h̃ = W̃x̃ and then use the classification rule C(Φ
D̃

(ỹ)) = arg max`∈L |[h̃]`|,

where [h̃]` is the `-th entry of h̃.

3.2.2 Cloud D-KSVD

We are now ready to discuss our proposed collaborative framework for discriminative

dictionary learning. Similar to D-KSVD, we are interested in solving (3.4) for D at

each site. But the major difference is that Ŷ = [Ŷ1, Ŷ2, . . . , ŶK ] is now distributed

across K sites, where Ŷi =
[
YT
i
√
γHT

i

]T
.

Initialization

Unlike D-KSVD, initialization of D̂(0) in (3.4) is also a function of the training data at

individual sites. In cloud D-KSVD, we proceed with the initialization of the dictionary

D̂
(0)
i locally at the i-th site as follows. First, we initialize a dictionary D

(0)
i ∈ Rm×p
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and carry out local sparse coding using D
(0)
i , i.e.,

Xi = arg min
X∈Xi

‖Yi −D
(0)
i X‖2F , (3.11)

where

Xi , {X′ ∈ Rp×Ni , ‖x′j‖0 ≤ S : j ∈ [Ni]}. (3.12)

Next, we initialize a local classifier matrix W
(0)
i by solving

W
(0)
i = arg min

W
‖Hi −WXi‖2F + β‖W‖2F . (3.13)

Note that (3.13) is simply a multivariate ridge regression problem, with the closed-form

solution given by

W
(0)
i = (XiX

T
i + βI)−1XiH

T
i . (3.14)

Finally, we set the initial dictionary at the i-th site, i ∈ V, as follows: D̂
(0)
i =[

D
(0)
i

T √
γW

(0)
i

T
]T

.

Training Algorithm

After initialization, each site i ∈ V has access to D̂
(0)
i that is obtained using local data

only. Our next goal is to solve (3.4) at each site for D̂i ∈ R(m+L)×p by relying on a

collaborative variant of K-SVD that alternates between solving (3.4) first for (global)

X by fixing D̂i at each site and then for D̂i by fixing X = [X1,X2, . . . ,XK ], which will

always be partitioned across the K sites. In a recent work [29], it is proposed such a

collaborative variant using the moniker of cloud K-SVD. Specifically, assuming cloud

K-SVD has started iteration t > 0 in the network, each site only updates the sparse

representation of its local Ŷi through sparse coding as follows:

X
(t)
i = arg min

X∈Xi

‖Ŷi − D̂
(t−1)
i X‖2F . (3.15)

Next, sites focus on collaboratively updating their individual dictionary estimates

{D̂(t)
i }i∈V . In this regard, cloud K-SVD takes its cue from K-SVD and fixes all but the

k-th column d̂
(t)
i,k of D̂

(t)
i at each site. The next challenge then is defining the global,

reduced representation error matrix ER
k (we are once again dropping the iteration count
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for ease of notation), since there are K different versions of dictionaries in the network.

In order to address this challenge, cloud K-SVD first defines local representation error

matrices Ei,k = Ŷi −
∑

j 6=k d̂i,jx
j
i,T , where xji,T denotes the j-th row of X

(t)
i . It then

obtains a submatrix ER
i,k of Ei,k by retaining the columns of Ei,k whose indices match

the indices of the samples in Ŷi that utilize d̂
(t)
i,k. Finally, it defines the global, reduced

representation error matrix as ER
k =

[
ER

1,k,E
R
2,k, . . . ,E

R
K,k

]
, which is distributed across

the network. Cloud K-SVD then advocates to update d̂
(t)
i,k by setting it equal to the

dominant left singular vector u1 of ER
k . Note that u1 is also equal to the dominant

eigenvector of M = ER
k ER

k
T

=
∑

i∈VMi, where Mi denotes ER
i,kE

R
i,k
T

. One of the main

novelties of cloud K-SVD in this regard is formulation of a collaborative variant of the

classical power method [59] for estimation of the dominant eigenvector of M. This

variant, which is described and rigorously analyzed in [29], relies on a finite number

of iterations of distributed consensus averaging [60]. While more details of this part

of cloud K-SVD can be found in [29], including a discussion of the doubly-stochastic

mixing matrix needed for distributed consensus, the end result is that each site obtains

an updated d̂
(t)
i,k that can come arbitrarily close to u1. Finally, cloud K-SVD also

simultaneously updates the k-th row of X
(t)
i at this point by setting its nonzero entries

equal to d̂Ti,kE
R
i,k.

Classification Algorithm

The classification algorithm in cloud D-KSVD is identical to that in D-KSVD. Specif-

ically, each site at this point obtains a dictionary D̂i =
[
DT
i
√
γWT

i

]T
, which is

then transformed into the final pair (D̃i,W̃i) according to (3.8) and (3.9). Using this

pair, each site can then individually classify any test sample ỹ ∈ Rm according to the

procedure described in Sec. 3.2.1.

3.3 Numerical Results

In this section, we demonstrate the effectiveness of cloud D-KSVD. We use the MNIST

database [30], which consists of 70,000 28× 28 pixel images of handwritten digits. Due
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to the large number of samples in the MNIST database, dictionary learning yields

better representations of samples compared to other learning techniques such as SVD

or principle component analysis [61], as the data is represented by union of subspaces

in this method.

For simplicity, each image is down-sampled to have only 256 features. We work on

digits 0 to 4 in experiments (L = 5) and we consider a total of 10 sites. We perform

5-fold cross validation on the database by treating 1
5 of the data as test data and the

rest as training data in each fold. In the first set of experiments, we divide the training

data uniformly, between the 10 sites. We train dictionaries using centralized D-KSVD

(assuming all data is available at a single location), cloud D-KSVD, local D-KSVD

(assuming each site performs training on local training data only) and cloud K-SVD

(sites collaboratively learn purely representative dictionaries, one for each class). We

also train a linear SVM for the centralized data for comparison with cloud D-KSVD.

To initialize the discriminative dictionaries, we first perform 10 iterations of K-SVD

for the centralized and local setting and cloud K-SVD in the distributed setting. We

then initial the classifiers according to (3.14) using these initial dictionaries. Then, we

perform 50 iterations of D-KSVD for centralized and local setting and cloud D-KSVD

for distributed setting. The parameters selected in these experiments correspond to a

sparsity constraint of S = 10, γ = 0.83 and p = 500 number of dictionary columns (100

columns for each class).

For the representative dictionary, we train a separate dictionary for each data label

by performing 60 iterations of cloud K-SVD. We set S = 10 and p = 100 for each

dictionary (total of 500 atoms for 5 dictionaries). To classify a test data sample, the

coefficient vector of the test sample is obtained for each dictionary using sparse coding.

The assigned class to the sample is the index of the dictionary that best represents the

sample (has the least representation error).

The test data classification results are shown in Fig. 3.2(a) where the sites’ average

classification error is plotted along with the worst case and best case error for each

label for cloud D-KSVD, local D-KSVD and cloud K-SVD. The results demonstrate

that cloud D-KSVD outperforms local D-KSVD and has a performance close to the
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centralized D-KSVD and centralized linear SVM. Also, the classification performance

of various sites is approximately identical when using cloud D-KSVD due to the fact

that they are collaborating with one another. Note that non-linear SVM will likely

outperform linear SVM, but we do not make the comparison with non-linear SVM here

as our parameters are not optimally chosen. Finally, observing the classification error of

cloud D-KSVD and cloud K-SVD, it is evident that cloud D-KSVD outperforms cloud

K-SVD for all the class labels.

In the second set of experiments, we consider the case of the sites not having the

same number of training data. In real world applications, some sites may have access

to a smaller number of training data and there may be class imbalance in some sites

(different class sizes). We consider that 80% of the labeled data is distributed among

half of the sites, while the other 20% is distributed among the other half of the sites.

The chosen parameters are similar to the previous simulations. The classification errors

for this case are plotted in Fig. 3.2(b). It is apparent that distributed learning of the

dictionary and classifier has a great advantage over training based on locally available

data for sites with a smaller number of training data.

In the case of balanced data across sites, the normalized distance of the dictionary

learned by centralized D-KSVD, D̂C , and the one learned by cloud D-KSVD at site i,

D̂D,i, as a function of the number of dictionary learning iterations, is defined as

d(t) =
1

p

∥∥∥D̂(t)
C − D̂

(t)
D,i

∥∥∥2

F
, t = [50], i ∈ V. (3.16)

The dictionary D̂C is equivalent to p!2p other dictionaries that consist of column-wise

permuted versions of D̂C with all possible sign flips for atoms. Due to different ini-

tialization of dictionaries, the normalized distance between D̂C and D̂D,i is an upper

bound for the normalized distance between the equivalent class of D̂C and D̂D,i.

Fig. 3.3 plots this normalized distance averaged over 10 sites along with the least and

most normalized distance as a function of the number of iterations. It is evident that

the average normalized distance does not vary significantly across different iterations

and sites obtain similar dictionaries.
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(a) Balanced distributed training data

(b) Distributed training data with class imbalance

Figure 3.2: Performance summary of cloud D-KSVD. (a) and (b) compare the clas-
sification performance of cloud D-KSVD with that of centralized and local D-KSVD,
centralized linear SVM, and cloud K-SVD. The results for cloud D-KSVD, local D-
KSVD and cloud K-SVD are displayed using bars to highlight the best, worst, and
average error across sites.
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Figure 3.3: The average normalized distance along with the least and most normalized
distance between the dictionaries obtained using cloud D-KSVD and centralized D-
KSVD as a function of the number of dictionary learning iterations.
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Chapter 4

Conclusion and Future Work

In the first part of this thesis, we focused on the problem of dictionary identifiability.

Considering the maximal response criterion, we obtained conditions on the underlying

dictionary and the coefficient vector to ensure reliable recovery of the true dictionary.

Future directions of this work include extension of this proof technique to other dic-

tionary learning objective functions, developing minimax lower bounds for dictionary

learning, and analyzing dictionary identifiability for structured signals such as tensors.

In the second part, we developed a collaborative framework for learning a nonlinear

classifier from distributed data. Our framework corresponded to joint learning of a

dictionary and a linear classifier by leveraging recent results on discriminative and

collaborative dictionary learning. In order to verify the effectiveness of our approach, we

carried out numerical experiments that showed that the performance of our framework

comes very close to that of centralized methods. Further aspects of this work that

can be further explored are providing rigorous analysis for the convergence of local

dictionaries and linear classifiers and their deviations from centralized counterparts

and replacing D-KSVD part of our collaborative framework with some of the other

(centralized) discriminative dictionary learning approaches for enhanced efficiency and

performance.



30

Bibliography

[1] The magical world of hadoop, outsystems and big data - nextstep 2014. http:

//www.slideshare.net/OutSystems. Published: 06-11-2014.

[2] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T. Lee, and T. J. Se-

jnowski. Dictionary learning algorithms for sparse representation. Neural compu-

tation, 15(2):349–396, 2003.

[3] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing

overcomplete dictionaries for sparse representation. IEEE Transactions on Signal

Processing, 54(11):4311–4322, 2006.

[4] D. L. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse overcom-

plete representations in the presence of noise. IEEE Transactions on Information

Theory, 52(1):6–18, 2006.

[5] M. Elad and M. Aharon. Image denoising via sparse and redundant representations

over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736–

3745, 2006.

[6] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer

learning from unlabeled data. In Proceedings of 24th international conference on

Machine learning, pages 759–766. ACM, 2007.

[7] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. Bach. Supervised dictionary

learning. In Proceedings of Advances in Neural Information Processing Systems,

pages 1033–1040, 2009.



31

[8] Q. Zhang and B. Li. Discriminative K-SVD for dictionary learning in face recogni-

tion. In Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR 2010), pages 2691–2698, 2010.

[9] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information. IEEE Transactions

on Information Theory, 52(2):489–509, 2006.

[10] K. Schnass. Local identification of overcomplete dictionaries. arXiv preprint

arXiv:1401.6354, 2014.

[11] Karin Schnass. Convergence radius and sample complexity of itkm algorithms for

dictionary learning. arXiv preprint arXiv:1503.07027, 2015.

[12] W. U. Bajwa, R. Calderbank, and S. Jafarpour. Why gabor frames? two fun-

damental measures of coherence and their role in model selection. Journal of

Communications and Networks, 12(4):289–307, 2010.

[13] W. U. Bajwa, R. Calderbank, and D. G. Mixon. Two are better than one: Fun-

damental parameters of frame coherence. Applied and Computational Harmonic

Analysis, 33(1):58–78, July 2012.

[14] C. McDiarmid. On the method of bounded differences. Surveys in combinatorics,

141(1):148–188, 1989.

[15] K. Azuma. Weighted sums of certain dependent random variables. Tohoku Math.

J., 19(3):357–367, 1967.

[16] R. Gribonval and K. Schnass. Dictionary identification-sparse matrix-factorisation

via `1-minimisation. IEEE Transactions on Information Theory, 56(7):3523–3539,

2010.

[17] D. A. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictio-

naries. arXiv preprint arXiv:1206.5882, 2012.



32

[18] P. Georgiev, F.J. Theis, and A. Cichocki. Sparse component analysis and blind

source separation of underdetermined mixtures. IEEE Transactions on Neural

Networks, 16(4):992–996, 2005.

[19] M. Aharon, M. Elad, and A. M. Bruckstein. On the uniqueness of overcomplete

dictionaries, and a practical way to retrieve them. Linear algebra and its applica-

tions, 416(1):48–67, 2006.

[20] A. Agarwal, A. Anandkumar, P. Jain, and P. Netrapalli. Learning sparsely

used overcomplete dictionaries via alternating minimization. arXiv preprint

arXiv:1310.7991, 2013.

[21] A. Agarwal, A. Anandkumar, and P. Netrapalli. Exact recovery of sparsely used

overcomplete dictionaries. arXiv preprint arXiv:1309.1952v1, 2013.

[22] S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent and

overcomplete dictionaries. In Proceedings of 27th Conference on Learning Theory,

pages 779–806, 2014.

[23] Q. Geng, H. Wang, and J. Wright. On the local correctness of `1 minimization for

dictionary learning. arXiv preprint arXiv: 1101: 5672, 2011.

[24] K. Schnass. On the identifiability of overcomplete dictionaries via the minimisation

principle underlying K-SVD. Applied and Computational Harmonic Analysis, 37

(3):464–491, 2014.

[25] R. Gribonval, R. Jenatton, and F. Bach. Sparse and spurious: dictionary learning

with noise and outliers. IEEE Transactions on Information Theory, 61(11):6298–

6319, 2015.

[26] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization

and sparse coding. The Journal of Machine Learning Research, 11:19–60, 2010.

[27] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural and sta-

tistical classification. Ellis Horwood Series in Artificial Intelligence, Ellis Horwood,

1994.



33

[28] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning,

volume 2. Springer, 2009.

[29] H. Raja and W.U. Bajwa. Cloud K-SVD: Computing data-adaptive representations

in the cloud. In Proceedings of 51st Annual Allerton Conference on Communica-

tion, Control, and Computing, pages 1474–1481, 2013.

[30] Y. LeCun and C. Cortes. The MNIST database of handwritten digits. http:

//yann.lecun.com/exdb/mnist/, 1998.

[31] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned

dictionaries for local image analysis. In Proceedings of IEEE Conference Computer

Vision and Pattern Recognition (CVPR 2008), pages 1–8, 2008.

[32] F. Rodriguez and G. Sapiro. Sparse representations for image classification: Learn-

ing discriminative and reconstructive non-parametric dictionaries. Technical re-

port, DTIC Document, 2008. http://www.dsp.ece.rice.edu/cs/.

[33] D. Pham and S. Venkatesh. Joint learning and dictionary construction for pattern

recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVRP 2008), pages 1–8, 2008.

[34] Z. Jiang, Z. Lin, and L. S. Davis. Learning a discriminative dictionary for sparse

coding via label consistent K-SVD. In Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR 2011), pages 1697–1704, 2011.

[35] J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 34(4):791–804, 2012.

[36] A. D’Costa and A. M. Sayeed. Data versus decision fusion for classification in sensor

networks. In Proceedings of International Conference on Information fusion, 2003.

[37] A. D’Costa, V. Ramachandran, and A. M. Sayeed. Distributed classification of

Gaussian space-time sources in wireless sensor networks. IEEE Journal on Selected

Areas in Communications, 22(6):1026–1036, 2004.



34

[38] J. H. Kotecha, V. Ramachandran, and A. M. Sayeed. Distributed multitarget clas-

sification in wireless sensor networks. IEEE Journal on Selected Areas in Commu-

nications, 23(4):703–713, April 2005.

[39] E. Kokiopoulou and P. Frossard. Distributed SVM applied to image classification.

In Proceedings of IEEE International Conference on Multimedia and Expo, pages

1753–1756, July 2006.

[40] E. Kokiopoulou and P. Frossard. Distributed classification of multiple observation

sets by consensus. IEEE Transactions on Signal Processing, 59(1):104–114, Jan

2011.

[41] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik. Parallel support

vector machines: The cascade SVM. In Advances in neural information processing

systems, pages 521–528, 2004.

[42] T. Do and F. Poulet. Classifying one billion data with a new distributed SVM

algorithm. In Proceedings of International Conference on Research, Innovation

and Vision for the Future, pages 59–66, 2006.

[43] K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, H. Cui, and E. Y. Chang. Parallelizing sup-

port vector machines on distributed computers. In Advances in Neural Information

Processing Systems, pages 257–264, 2008.

[44] D. Mahajan, S. S. Keerthi, and S. Sundararajan. A distributed algorithm for

training nonlinear kernel machines. arXiv preprint arXiv:1405.4543, 2014.

[45] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed re-

gression: An efficient framework for modeling sensor network data. In Proceedings

of 3rd International Symposium on Information Processing in Sensor Networks,

pages 1–10, 2004.

[46] J. B. Predd, S. R. Kulkarni, and H. V. Poor. A collaborative training algorithm for

distributed learning. IEEE Transactions on Information Theory, 55(4):1856–1871,

April 2009.



35

[47] A. Navia-Vazquez, D. Gutierrez-Gonzalez, E. Parrado-Hernandez, and J.J.

Navarro-Abellan. Distributed support vector machines. IEEE Transactions on

Neural Networks, 17(4):1091–1097, July 2006.

[48] K. Flouri, B. Beferull-Lozano, and P. Tsakalides. Training a SVM-based classifier

in distributed sensor networks. In Proceedings of 14th European Signal Processing

Conference, pages 1–5, 2006.

[49] K. Flouri, B. Beferull-Lozano, and P. Tsakalides. Distributed consensus algorithms

for SVM training in wireless sensor networks. In Proceedings of 16th European

Signal Processing Conference, pages 25–29, 2008.

[50] K. Flouri, B. Beferull-Lozano, and P. Tsakalides. Optimal gossip algorithm for

distributed consensus SVM training in wireless sensor networks. In Proceedings of

16th International Conference on Digital Signal Processing, pages 1–6, July 2009.

[51] P. A. Forero, A. Cano, and G. B. Giannakis. Consensus-based distributed linear

support vector machines. In Proceedings of 9th ACM/IEEE International Confer-

ence on Information Processing in Sensor Networks, pages 35–46, 2010.

[52] P. A. Forero, A. Cano, and G. B. Giannakis. Consensus-based distributed support

vector machines. Journal of Machine Learning Research, 11:1663–1707, August

2010.

[53] M. R. Guarracino, A. Irpino, N. Radziukyniene, and R. Verde. Supervised classi-

fication of distributed data streams for smart grids. Energy Systems, 3(1):95–108,

2012.

[54] S. Lee and A. Nedić. DrSVM: Distributed random projection algorithms for SVMs.

In Proceedings of IEEE 51st Annual Conference on Decision and Control (CDC),

pages 5286–5291, Dec 2012.
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