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In recent years knowledge required for effective mathematics teaching has become more 

defined. A key area is the importance of teachers’ attending to student reasoning (e.g., 

Hiebert et al., 1997). There is increasing evidence that students are capable of 

constructing “proof-like” forms of reasoning to justify their solutions to tasks (e.g., Maher 

& Martino, 1996). These and other findings have been influential in shaping national policy 

by developing Standards for Practice, behaviors that students engage in while doing 

mathematics, and are best taught in the context of meaningful mathematical activity, 

including collaboration and discourse (Carpenter et al., 1989). Consequently, there is need 

for teachers to become aware of the importance of these practices and ways of attending 

to students mathematical reasoning. 

There is extensive work documenting that there is much to be gained by teachers 

studying episodes of children’s learning (e.g., Fennema, et al., 1996). There is also a 

substantial body of research in mathematics education and the learning sciences 

suggesting that creating opportunities for people to engage in generative and constructive 

ways with video has potential to support teacher learning. Research studies in teacher 
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education suggest that both pre and in-service teachers can learn to recognize student 

reasoning by engaging in collaborative problem solving and then studying videos of 

children working on the same task (Maher, 2011).   

This study describes a course model, designed to examine teacher shifts in 

knowledge related to recognizing children’s mathematical reasoning. The design-based 

research was carried out over five years in a required course for mathematics education 

graduate students. The course addresses a review and study of literature in mathematics 

education research and practice, with special attention to collaborative problem solving, 

student learning, and emphasis on building knowledge within a designed setting. The 

results showed both pre (PST) and in-service teachers (IST) grew in their ability to 

recognize children’s reasoning. Analysis of course data provided insight into how teachers 

developed knowledge about student reasoning and how beliefs shifted in the process. 

Differences were identified between how PST and IST’s situated their experience. 

Implications of the study include recommendations for PST courses and PD programs.  
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Chapter 1: Introduction 

1.1 Background of the Problem 
In recent years the knowledge required for effective mathematics teaching has become 

more defined. A key area has been the importance of teachers’ attending to student 

reasoning (Hiebert et al., 1997; Yackel and Hanna, 2003). There is increasing evidence 

that students are capable of constructing “proof-like” forms of reasoning to justify their 

solutions to problems (Maher & Martino, 1996; Maher, et al, 2010; Mueller et al, 2012; 

Yankelewitz et al., 2010), These and other findings have been influential in shaping 

national policy by developing a set of Standards for Practice (NCTM 2000, NGACBP & 

CCSO, 2010). The mathematical practices are the behaviors that students engage in while 

doing mathematics, and thus are best taught in the context of meaningful mathematical 

activity, including collaboration and discourse (Carpenter, Fennema, Peterson, Chiang, & 

Loef, 1989). Consequently, there is a need for teachers to become aware of the 

importance of these practices and ways of attending to students mathematical reasoning 

in their classrooms. 

There is extensive work documenting that there is much to be gained by teachers 

studying episodes of children’s learning (e.g., Fennema, Carpenter, Franke, Levi, Jacobs, 

& Empson, 1996). There is also a substantial body of research in mathematics education 

and the learning sciences suggesting that creating opportunities for people to engage in 

generative and constructive ways with video has potential to support teacher learning. 

Video has become an important resource in teacher preparation and professional 

development programs as it provides opportunities for teachers to: (1) gain insight into 

students’ learning and ways of reasoning (Zhang, Lundeberg, Koehler, & Eberhardt, 2011; 

Maher et al., 2010); (2) understand classroom practice (Borko, Jacobs, Eiteljorg, & 

Pittman, 2008); and (3) engage in analysis and discussion of student learning (Miller & 

Zhou, 2007). Research studies in teacher education suggest that both pre and in-service 
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teachers can learn to recognize student reasoning by engaging in collaborative problem 

solving and then studying videos of children’s reasoning when working on the same or 

similar tasks (Maher, 2011).  

Critical thinking and reasoning involves making judgments about the 

reasonableness of arguments. This includes questioning the assumptions as well as the 

connections that are made in a justification. As indicated in the Common Core State 

Standards Initiative for Mathematics, a hallmark of mathematical understanding is the 

ability to justify the correctness of an argument or the meaning behind a rule or procedure 

(NGACBP & CCSO, 2010). There remains a challenge to make pre and in-service 

teachers aware of the opportunities to create classroom situations that promote 

mathematical reasoning for their own students and to understand how that awareness 

develops. This requires both the knowledge of the variety of forms of reasoning that arise 

in students’ justifications and the judgment to recognize the validity of an argument that 

may not appear in standard form (McCrory et al., 2012).  

1.2 Robert B. Davis Institute for Learning (RBDIL) Video Collection 
 
1.2.1 History of Data Collected Through Longitudinal and Other Studies 
The Robert B. Davis Institute for Learning (RBDIL) at Rutgers University houses a 

unique longitudinal video data set that traces students learning mathematics over 

extended periods of time. A majority of the videos are situated in classroom or informal 

settings where learning conditions promote the development of reasoning, problem 

solving, and justification (Davis, Maher, & Martino, 1992; Maher & Martino, 1996; Maher, 

2009; Maher, Powell, & Uptegrove, 2010). The keystone of the video collection is the 

Rutgers-Kenilworth longitudinal study, which traced development of mathematical 

thinking and reasoning of a cohort of students from their early elementary grades 

through secondary schooling and beyond. A cross-sectional phase from an elementary 

school in Colts Neck also included a yearlong study of critical thinking and reasoning in 
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the fractions strand prior to formal instruction. The strands of tasks developed in those 

two studies were used to engage urban middle-school students with problem solving in 

an after-school setting in the Informal Mathematics Learning (IML) project. Another goal 

of IML was to engage teachers as researchers such that they could observe students’ 

problem solving and attend to students’ mathematics reasoning as they justified 

solutions to tasks (Francisco & Maher, 2011; Maher, Mueller, & Palius, 2010; Mueller & 

Maher, 2010). 

Over the past twenty-five years, the longitudinal and cross-sectional research 

studies produced more than 4,500 hours of video data, over 40 doctoral dissertations, 

numerous conference and journal publications, and a methodology for video data 

analysis (Powell, Francisco, and Maher, 2003). Videos from the RBDIL collection have 

also been used in professional development, teacher preparation, a six-part teacher 

professional development workshop through the Annenberg channel called Private 

Universe Project in Mathematics, a one-hour documentary entitled Surprises in Mind, 

and in design research on teacher learning about students’ mathematical reasoning 

(Maher, 2011; Maher et al., 2014). 

1.2.2 The Video Mosaic Collaborative (VMC) 
The VMC, a NSF-funded (Award #DRL-0822204) online video repository, currently 

stores approximately 400 video clips and also raw videos from the RBDIL video 

collection showing student reasoning across a variety of content strands such as 

counting, combinatorics, algebra, and fractions. The videos come from diverse 

population of students from urban, working class, and suburban communities and span 

from elementary through secondary. The repository is available for public use at 

http://www.videomosaic.org. Videos and related metadata in the collection illustrate: (1) 

the development process of sense making in mathematics as students engage in tasks 
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from different mathematical strands; and (2) the conditions of the learning environment 

that promote growth in students’ reasoning and understanding of mathematical content.  

Clips ingested into the VMC are prepared with extensive metadata, which include 

new ontologies for representations, strands of mathematical problems, and 

mathematical tools (e.g., calculator). The students present in the video can be traced 

according to content strands, grade levels, and as individuals. One can also observe the 

strategies, heuristics, and forms of reasoning that students use to build and justify 

solutions to problems. The metadata appear as hyperlinks, which provide an alternate 

means to search for resources that share certain attributes. One benefit of this searching 

capacity is the ability to find all the videos of particular students, who can be followed 

from elementary through secondary school as they work on various problem-solving 

tasks.  

1.2.3 The RUAnalytic Tool 
The RUAnalytic tool (http://rucore.libraries.rutgers.edu/analytic) allows a user to select 

portions of video to define events, annotate each segment, and link them together as a 

multimedia narrative supported by other resources (Figure 1.1). For example, the tool 

enables the user to annotate video segments selected from existing clips on the VMC 

and assemble them for a specific reason, such as the development of a lesson plan; the 

creation of a tool for professional development that traces students’ learning and 

illustrates their reasoning; or to identify examples of the variety of representations and 

strategies exhibited by students in their problem solving. Once published, the analytics 

can be shared, and further analyzed.  An example VMCAnalytic by Muteb Alqahtani can 

be found at http://hdl.rutgers.edu/1782.1/Analytic.an.i.41 and is shown in Figure 1.1. In 

this VMCAnalytic, Alqahtani studies a group of students as they build an understanding 

of Pascal’s Identity during the Night Session, an after-school, evening problem solving 

dealing with the Addition Rule of Pascal’s Identity. 
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(http://hdl.rutgers.edu/1782.1/rucore00000001201.Video.000065130). The purpose is to 

show how the students make use of their previous knowledge from problem solving of 

the Towers and Pizza problems (Appendix B) to build the concept of Pascal’s Identity. 

We see the students make use of a variety of representations and finally apply the 

formal, symbolic notation to represent their understanding. The video appears on the top 

with the VMCAnalytic authors’ text on the right of it. Below the video there is a timeline of 

events that play one after another. When one event is finished playing, the next one 

event automatically plays and the text to the right is updated. The overall description of 

the analytic is always visible beneath the timeline. A complete list of VMCAnalytics that 

are currently published can be found on the VMC at: http://www.rbdil.org/analytics.  

As has been demonstrated by researchers in the learning sciences, collaborative 

design with computer tools can foster productive collaborative learning processes 

(Hmelo, et al., 2001; Kafai, Ching, & Marshall, 1997; Kolodner, et al., 2003; Zahn, Pea, 

Hesse, & Rosen, 2010). For example, Zahn et al. (2010) demonstrated that new ideas 

are generated through critical reflection as learners have opportunity to consider their 

ideas both within and across video clips that they select. In the process of selecting and 

annotating video clips, learners may initiate discussions about what is important as well 

as what choices might enable comparisons among different segments, or even different 

videos. Because of the generative activities required in the video editing tasks, learners 

can develop initial ideas for comments and then have opportunities, both individually and 

collectively, to reflect on the ideas proposed and the video clips selected relative to their 

task goals.  Assessment of a student’s VMCAnalytic can provide instructors with insight 

into a student’s learning and whether the intended learning outcomes were met. 

Technology provides a high potential for assessing the process of learning. It also 

provides an opportunity for monitoring growth in learning (Pellegrino & Quellmalz, 2010). 

The VMCAnalytic as an assessment tool has great promise to achieve monitoring 
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student learning and measuring learning outcomes. 

 

Figure 1.1: Pascal's Identity, a VMCAnalytic created by Muteb Alqahtani 
 
1.3 Research Questions and Contributions to the Field 
The purpose of this study is to trace the attention to student reasoning of pre and in-

service teachers enrolled in a graduate level mathematics-education course at a large 

northeastern University. Using a mixture of qualitative and quantitative methods, the 

development of teachers’ growth in recognizing student reasoning from video, as they 

engage in a carefully designed intervention will be described. The following questions 

will guide the research: 

1) a) How, if at all, did the participants’ beliefs about teaching and learning change 

from pre-test to post-test and across individual belief items? b) How, if at all, did 

the participants grow from pre-test to post-test on a Reasoning Assessment?  

2) What do pre and in-service teachers attend to when discussing videos of 

students working on open-ended problem solving tasks that they themselves 

have worked on? 
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3) How can a cyber-enabled video annotation tool be used as an assessment tool 

to gain insight into the creators’ knowledge of students reasoning? 
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Chapter 2: Theories of Learning 
Mathematical reasoning involves exploration, collaboration, and communication. The 

research proposed is influenced by two main learning theories: constructivist and socio-

cultural theories of cognition. Following the advice of Sfard (2001), while the two learning 

theories may appear to be too different to use together, I believe that learning is complex 

enough that one may be more appropriate to explain a situation. Both learning theories 

have advantages and disadvantages for learning, which will be described in this section. 

These theories themselves are not guidelines how to teach, but they do have 

implications for teaching. This study is also grounded in the idea that teachers require 

certain levels of content and pedagogical knowledge to be able to recognize students 

reasoning. 

2.1 Constructivism 
Constructivist ideas have been known since the 1600s from the writings of Vico and 

Kant, though learning theories regarding a constructivist approach are sometimes 

attributed to Piaget from his work during the mid-1900s (Piaget 1964; 1968; 1975). 

Constructivism has been and still is influential as a theoretical perspective on learning for 

research in mathematical reasoning (Davis & Maher, 1990) and national policy (NCTM, 

1989; 2000; NGACBP & CCSO, 2010). There are various interpretations of 

constructivism (Moll, 2000). The view for this study builds from the work of Piaget 

(1964). In the Piagetian view, as learners interpret new knowledge, they restructure and 

reorganize their knowledge when they process new knowledge (Hatano, 1996). A 

notable contribution to mathematics education through constructivist learning theories is 

the research conducted on cognitive obstacles (Confrey, 1990). Studies have shown that 

cognitive obstacles in mathematics are consistent across various scenarios, are 

expected as a part of learning, and may arise from individualized or rote instruction 

(Erlwanger, 1975; Schoenfeld, 1988). This research has had influence on teacher 
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training to focus on attending to cognitive obstacles that students may encounter in 

learning. Having teachers an understanding of students’ reasoning offers teachers an 

opportunity to diagnose a students’ error, as well as avoid instances where cognitive 

obstacles appear to be masked by the correct numerical solutions that students produce 

(Nesher, 1987). The idea of cognitive obstacles is important for mathematical reasoning 

and the design of the course. By focusing on a students’ reasoning process and not 

solely the answer, teachers can attend to diagnosing the process of student learning and 

work with the students in attending to their cognitive obstacles.  

2.2 Socio-cultural Theories of Cognition 
 

For some theorists, social influences are viewed as secondary, although most agree that 

these influences may still support and constrain an individual’s learning experience 

(Sfard, 2001). Socio-cultural theories of cognition focus on a learner’s participation in 

social practices, roles, and how that participation interacts with an individual’s learning 

process. Vygotsky (1978) posited that the restructuring that occurs in constructivism is 

not only internal, but is also related to the social influences, such as the communication 

between students or the teacher and the student. For this research, a socio-cultural 

framework is important since the design for of the course centered on the building and 

sharing of ideas during in-class problem solving and online. Their online discussions 

were driven by attention to the variety of approaches to the problem-solving tasks as 

well as to the questions posed by this researcher and the course instructor about 

content, pedagogy, and attention to student learning from video.  

 
2.3 Content and Pedagogical Knowledge 
Recent research has focused on the type of knowledge a teacher must possess to 

successfully lead an inquiry-oriented mathematics classroom. Studies have shown there 

are different types of knowledge that influence a teacher’s ability to lead these type of 
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discussions, the main two being subject matter knowledge (Ball et. al, 2008) and 

pedagogical content knowledge, (Schulman, 1986). The idea of pedagogical content 

knowledge was first proposed by Shulman (1986) in the AERA Presidential Address as 

including: 

For the most regularly taught topics in one’s subject area, the most useful forms of 
representation of those ideas, the most powerful analogies, illustrations, examples, 
explanations, and demonstrations - in a word, the ways of representing and formulating 
the subject that makes it comprehensible to others. Since there are no single most 
powerful forms of representation, the teacher must have at hand a veritable 
armamentarium of alternative forms of representation, some of which derive from 
research whereas others originate in the wisdom of practice. . . Pedagogical content 
knowledge also includes an understanding of what makes the learning of specific topics 
easy or difficult; the conceptions and preconceptions that students of different ages and 
backgrounds bring with them to the learning of those most frequently taught topics and 
lessons (page 9). 
 

Pedagogical content knowledge hints at there being more to teaching than just 

understanding the content involved. One has to also be aware of all the issues students 

face while learning a concept as well as multiple ways to represent the same concept.  

Subject matter knowledge is broken down into three subdomains; specialized 

content knowledge, common content knowledge, and horizon content knowledge. 

Specialized content knowledge (SCK) evolved from mathematical knowledge for 

teaching and does not deal with actually knowing the content you are teaching and 

instead deals with the mathematical knowledge that a teacher must have in order to 

participate in successful teaching. Knowledge that would fall into this domain includes 

understanding what a student is saying, being able to evaluate the correctness of a 

student’s statement, and trying understanding how students reached a solution by 

following their logic (Hill et al., 2008). For successful guidance of inquiry-oriented 

classrooms, this knowledge is essential.  

Since Schulman coined the idea of pedagogical content knowledge, it has 

evolved considerably. Recently, Ball et. al (2008) have broken pedagogical content 

knowledge into three sub-domains; knowledge of content and students, knowledge of 
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content and teaching, and knowledge of content and curriculum. Knowledge of content 

and students deals with anticipating potential difficulties that students will face and how 

to address them. When adding two fractions a common error that pops up is that 

students will add across the numerator and the denominator and achieve an incorrect 

answers (e. g. 1 / 3 + 2 / 4 = 3 / 7). A teacher with good knowledge of content and 

students’ learning could anticipate this obstacle beforehand and design activities where 

they could determine if students hold this misconception and be prepared to to address 

the issue if it should arise . An example might be involving adding two fractions whose 

sum is close to one, such as 7 / 8 + 1 / 19. If a student has a misconception about 

adding numerators and denominators when adding fractions, their sum of of 8 / 27 would 

offer an opportunity to question the reasonableness of the answer. Knowledge of content 

and students’ cognitive obstacles goes beyond just realizing that a student has an 

incorrect answer, but involves planning in advance when the obstacle is encountered 

and being able to diagnose and help a student realize faulty reasoning through 

questioning.  

The final part of pedagogical content knowledge is an individual’s knowledge of 

content and curriculum and how that knowledge is used to decide whtn and how to 

incorporate mathematical concepts into the lessons. This sub-domain deals with 

understanding how to best use their own resources as well as those provided by their 

district, as well as identifying and avoiding the negatives of their implementation. 

Chapter 3: Literature Review 

3.1 Mathematical Reasoning and Justification 
Research on the knowledge for teaching mathematics identify that knowledge of 

students’ mathematical reasoning is essential (Ball, 2003) and so much so, that there is 

a relationship between following how a student builds his/her knowledge and the 

student’s performance in mathematics (Rowan et al., 1997). An important early finding in 
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research into mathematical reasoning is that in a natural way, children – even young 

children – show evidence of understanding the idea of mathematical proof (Maher & 

Martino, 1998; 1996; Maher & Davis, 1995). In justifying their solutions to problems, 

children provide convincing arguments that take the form of proof by cases, induction, 

contradiction, and upper and lower bound. Their justifications are driven by an effort to 

make sense of the problem situation, notice patterns, and pose theories (Mueller, 

Yankelewitz & Maher 2011; Maher & Martino, 2000). Their solutions are refined through 

discussions as they negotiate meaning with classmates and structure their investigations 

(Weber, Maher, Powell & Lee, 2008; Maher, 2005). Students’ ability to provide 

convincing mathematical justifications can help them to understand mathematical proof 

as a resource to validate mathematical statements (Yackel and Hanna, 2003). 

Research conducted in classrooms and informal after-school settings – in urban, 

suburban and working class environments – show that middle-school aged children rely 

on their sense making and reasoning to provide convincing arguments (Mueller & 

Maher, 2010a; 2010b; 2009; Mueller, Yankelewitz & Maher, 2011). Detailed 

development of students’ proof making in solving strands of combinatorics tasks, from 

the early years through high school, is described in Maher, Powell & Uptegrove, 2010. 

Some of the tasks in a strand in fractions have been shown to elicit certain forms of 

reasoning (Yankelewitz, Mueller & Maher, 2010). Across all ages and contexts, formal 

and informal, certain tasks tend to elicit certain forms of reasoning when students are 

required to provide a justification for their solutions (Yankelewitz, Mueller & Maher, 2010; 

Francisco & Maher, 2005). 

3.2 Video in Teacher Preparation and Professional Development 
Research on video use in mathematics education has demonstrated that there is much 

to be gained by studying video episodes of children’s learning (Borko, Koellner, & 

Jacobs, 2010; Cobb, Wood & Yackel, 1990; Fennema, Carpenter, Franke, Levi, Jacobs 
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& Empson, 1996; Jacobs, Borko, & Koellner, 2009; Maher, Landis & Palius, 2010; 

Maher, Palius & Mueller, 2010; Maher, 2011; Tirosh, 2000). Video recordings allow us to 

study the subtleties of student behavior. Careful study of videos enables us to trace 

student cognitive growth in a social setting, and gain insight into how social processes 

influence personal cognitive development. Videos also have served as a powerful tool 

for tracing the students’ development of mathematical ideas over time (Davis, Maher & 

Martino, 1992). Videos from longitudinal studies are particularly valuable for research on 

cognition because they make it possible to follow the same students for several years, 

learning, in detail, different mathematical content (Maher, 2005; Maher, Powell & 

Uptegrove, 2010; Schoenfeld, Smith & Arcavi, 1993). Along with the benefits of studying 

video to trace student learning is the potential of video to impact teacher learning and 

classroom practices through its use in pre- and in-service teacher education.  

Researchers in mathematics teacher education have utilized a range of different 

pedagogical approaches to using video for learning, which have included lesson study, 

video clubs, and problem-solving cycles (e.g., Alston, Basu, Morris & Pedrick, 2011; 

Borko et al., 2008; Maher, Landis & Palius, 2010; Sherin & Han, 2004; Van Es, 2009). 

Studies have shown that teachers’ use of video for learning about their own classroom 

practices can be insightful and motivating to improve instruction (Sherin & Han, 2004). 

Studying videos of one’s practice allow teachers to think about contextual knowledge 

related to their own teaching (Goldman, 2007). For example, teachers tend to identify 

events that are important to them, link those events to their prior knowledge, and use 

them to evaluate a situation (van Es and Sherin, 2008). In research with pre-service 

teachers, studying videos provided learning opportunities to see certain teaching 

practices in action when they were not necessarily visible based on certain field 

placements (Philip et al., 2007). Further, it is key that selected video episodes align well 

with the instructional goals of the teacher education context (Seidel, Stürmer, Blomberg, 
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Kobarg & Schwindt, 2011; Zhang, Lundeberg, Koehler & Eberhardt, 2011).  Design 

research studies in teacher education suggest that both pre and in-service teachers can 

learn to recognize student reasoning by studying videos of children engaged in justifying 

their solutions to problems (Maher et al, 2014; Maher, 2011). Studies using video-based 

interventions in professional development have shown accompanying growth in 

teachers’ recognition of student reasoning was significant change in teacher beliefs 

about student learning (Maher, Palius & Mueller, 2010; Maher, Landis & Palius, 2010). 

Video clubs have been useful in getting viewers over time to focus on student 

mathematical thinking and to build trust to promote honest self-reflection (Sherin and van 

Es, 2009). 
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Chapter 4: Study Setting and Intervention 

4.1 Description of the Course 
The setting for this study was five iterations of a fifteen week graduate-level introductory 

mathematics education course at a large Northeastern university (Appendix A) offered in 

the fall semester and co-taught by myself and my adviser. The enrolled student 

population is diverse with a mix of pre and in-service teachers that having varying 

experience from novice to veteran. It is offered at least once a year, is a required course 

for master's and doctoral students in mathematics education degree programs, and the 

enrollment is typically 15-20 students. The frequency of the course offering makes 

possible design revisions during the study. Due to the timing of the course in the fall 

semester, the pre-service teachers’ did not have any type of field experience in a 

mathematics classroom.  

The course was designed to introduce pre and in-service teachers to the field of 

mathematics education through a variety of activities that blend in-person, on-campus 

sessions with interactions done asynchronously online through eCollege, a course 

management system.  The on-campus activities had the teachers working in small 

groups on mathematical problem-solving tasks, with consideration of how K-12 students 

might engage with those tasks as they build solutions to tasks. The online course work 

included reading assignments that introduced participants to theoretical perspectives of 

learning and research in mathematics education, with guidelines for engaging in 

reflection and discussion of those readings and consideration of their relevance to 

teaching practices. Other online course work included studying video clips of children 

engaged in math problem solving and talking about their mathematical ideas. Through 

reflection and online discussion the videos will be connected to the readings and hands-

on problem solving. The emphasis of the course was on the mathematics, children’s 

learning, and conditions of the learning environment. As a final course project, the 
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teachers worked with video in a variety of contexts. After each iteration of the course I 

met with the other instructor to discuss changing we would make in the following 

iteration to improve the course. 

4.2 Course Participants 
Throughout the five iterations 86 teachers participated in the intervention. The first 

iteration had 21 teachers, 16 in the second, 14 in the third, 17 in the fourth, and 18 in the 

fifth. Tables 4.1 and 4.2 break down the teachers by year, program type, and whether 

they are a pre or in-service teacher. 

Table 4.1  

Breakdown of teachers by program type. 

Iteration EdM EdD PhD Post-Bac Total 

1 8 3 2 8 21 

2 10 2 4 0 16 

3 6 4 2 2 14 

4 11 1 3 2 17 

5 13 1 1 3 18 

Total 48 11 12 15 86 

Percent 55.81% 12.79% 13.95% 17.44% 100% 
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Table 4.2 

Breakdown of pre-service and in-service teachers by each iteration. 

Iteration Pre-Service In-Service Total 

1 10 11 21 

2 4 12 16 

3 6 8 14 

4 5 12 17 

5 5 13 18 

Total 30 56 86 

Percent 34.88% 65.12% 100% 

 

4.3 Data Collected 
Two assessments, a Belief and a Reasoning Assessment, were administered to all 

teachers in the class; one before the class began and one at the end. The pre 

assessments took place before any material was taught in the class. If a teacher did not 

complete the assessment prior to the first class, they would take the assessment at the 

beginning while the rest of the class introduced themselves and talked about what they 

taught. The post assessments were taken during the last week of the course after all the 

interventions were finished. Both assessments were taken electronically through Sakai, 

a content management system. Analysis of the data of both assessments are discussed 

in Chapter 5. The teachers also participated in problem solving in-class, discussions 

online (Prompts in Appendix H), evaluated student work (Appendix D), completed a final 
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project for the course (Appendix J), and wrote a reflection paper (Appendix I). All the 

material the teachers produced for the course is also part of the analysis.  

4.3.1 Problem solving. 
In-class the teachers worked on a set of cognitively challenging mathematical tasks that 

are open-ended in the sense that there are multiple points of entry in terms of where a 

learner might begin in working towards a solution, as well as having multiple directions in 

which the learner might go with strategies and heuristics. The tasks have been tested in 

a variety of authentic learning environments with learners across a broad range of ages, 

through longitudinal and cross-sectional research with K-12 students. Synthesizing 

across these contexts, research has shown that particular tasks tend to elicit certain 

forms of mathematical reasoning (Yankelewitz, Mueller, & Maher, 2010).  

 There were ten tasks that were worked on in every iteration are found in Table 

4.3 and the wording of the tasks can be found in Appendix B. In the fourth iteration, the 

teachers worked on a probability task that was related to the Towers task called Guess 

My Tower. In the fifth iteration, this was replaced with a different task that focused on the 

law of large numbers entitled Schoolopoly. 

Table 4.3 

The problem solving tasks worked on during each iteration. Full statement of the tasks 
can be found in Appendix B. 

  Problem Solving Task It. 1 It. 2 It. 3 It. 4 It. 5 

Shirts and Pants x x x x x 

Towers 4-Tall selecting from 2 colors x x x x x 

Towers N-Tall selecting from 2 colors x x x x x 

Guess my tower    x  
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2-Topping pizzas (Halves) x x x x x 

4-Topping pizzas (Halves) x x x x x 

4-Topping pizzas (Whole) x x x x x 

Ankur’s challenge x x x x x 

Taxicab x x x x x 

World series problem x x x x x 

Problem of points x x x x x 

Schoolopoly    x  

 

4.3.2 Belief assessment. 
The Belief assessment (Appendix E) contains thirty-four statements about learning and 

teaching mathematics. The assessment includes items that address what mathematical 

ideas teachers believe students are capable of doing, what teacher actions in the 

mathematics classroom evoke learning, and how mathematics should be taught for 

understanding. Each statement was graded by the teachers on a five-point Likert scale, 

ranging from strongly disagree to strongly agree. For analysis, the scale was collapsed 

combining strongly disagree with disagree and strongly agree with agree.  An example 

assessment item reads “Only the most talented students can learn math with 

understanding” (Question 29).  

4.3.3 Reasoning assessment. 
In the Reasoning assessment, the teachers watched an edited video of 4th grade 

students discussing their solutions to the Towers task (Appendix F). In the beginning of 

the video, students are in a classroom working, in pairs, on solving how many unique 
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towers they could build 5-tall selecting from 2-colors. After several minutes, the video 

shifts to an interview with four students who are discussing their earlier solutions to 

towers of varying heights while selecting from two colors. Throughout the video the 

students make various arguments to support their solution such as: an inductive 

argument, building towers by building one and then building its opposite (where if the 

two colors are maroon and yellow, maroon would be the opposite of yellow), using 

numerical reasoning patterns (e.g., doubling, additive), an argument by contradiction, 

and two forms of a case argument. The teachers received a prompt that asked them to 

write an open-ended response and describe: (1) each example of reasoning that a child 

in the video puts forth, (2) whether or not the reasoning forms a valid argument, (3) 

whether or not the argument is convincing, and (4) why or why not they find the 

argument convincing. 

4.3.4 Student work modules. 
Several of the cycles contained modules with pieces of students’ solution from the task 

they worked on. The student work was chosen to illustrate the variety of representations 

and arguments produced by the students. The teachers were asked to review the 

students’ representations and work and specifically address: (1) the correctness of the 

solution provided, (2) description of the strategy used, (3) the validity of the reasoning, 

and (4) whether or not they find the solution convincing and, if so, why. If they did not 

find the solution convincing, they were asked to indicate from studying the student work 

what pedagogical moves they might take to help the student develop a convincing 

argument. 

Table 4.4 

Student work modules for each iteration. 

Problem Solving Task It. 1 It. 2 It. 3 It. 4 It. 5 
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Towers 4-tall selecting from two colors  x x x x 

Pizza problem with halves (2 and 4 toppings)  x x x x 

Ankur’s Challenge  x x x x 

Taxicab    x x 

Problem of Points     x 

World Series     x 

 

4.3.5 Online discussions. 
During the cycles of intervention, the teachers watched and discussed videos, discussed 

assigned readings, reflected on guest speakers, analyze samples of student written 

work, and continued the class discussion about problem solving online using eCollege. 

The videos and student work were stored on the VMC repository. Discussion prompts 

were provided and can be found in Appendix H. The teachers were randomly grouped 

online with 3-4 other people with four groups each semester. Occasionally, ideas from 

one group were posed to the entire class for discussion. The expectation was that the 

teachers posted an initial response to the prompts halfway through the week and then 

respond to at least two other people before the week was over. The discussion text was 

extracted from the course website as PDF files and imported into Dedoose for analysis. 

4.3.6 VMCAnalytic project. 
The final project for the course varied throughout the study, as the new technology 

became refined and more videos became available on the VMC. In the first iteration, the 

teachers worked in small groups with raw unedited videos of students working on 

counting and combinatorics tasks (Towers and Pizza, See Appendix B.2, B.3, and B.4) 
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in an urban after-school informal mathematics project. Each group produced an overall 

description of what went on in the video and partitioned the video into smaller clips that 

highlighted students’ reasoning as they worked on the tasks. The partitioned clips were 

presented to the class along with their reasoning for choosing the clips.  

During the second iteration the groups once again work with full raw video, but in 

addition to partitioning the videos to highlight student reasoning, they needed to use the 

videos to plan a professional development workshop. The groups were given 60 minutes 

to deliver their workshop to the rest of the class, as well as submit a paper that outlines 

their workshop.  

In the final three iterations of the course, the RUanalytic tool was used by the 

teachers to construct a VMCAnalytic to highlight a mathematical concept of interest to 

them. Examples topics included highlighting examples of teacher questioning, student 

collaboration and argumentation, illustrating examples of successful student learning, 

and student reasoning. The teachers were able to work alone or with a partner on their 

project. In the first year using the RUanalytic tool, the teachers could use any videos 

they wanted which are hosted on the VMC repository. In the fourth and fifth iteration, the 

teachers started building their VMCAnalytics using videos that were assigned to watch 

during the intervention cycles and then they could use other videos on the repository to 

complete their project. This change was done in response to a preliminary analysis that 

suggested VMCAnalytic creators who worked with videos they were familiar with tended 

to produce better VMCAnalytics based on a developed rubric (Hmelo-Silver, Maher, 

Palius, & Sigley, 2014). 

4.3.7 Reflection paper. 
At the end of the course the teachers were asked to write a 2-3 page reflection paper 

about their experience in the course, attending to activities such as readings, in-class 
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problem solving, the videos they studied, and online discussions. The full reflection 

paper prompt is in Appendix I. 

4.4 Teacher Learning about Mathematical Reasoning (TLMR) Instructional Model 
For the study an instructional model, Teacher Learning about Mathematical Reasoning 

(TLMR), was developed. TLMR was designed for teachers to: (a) build knowledge of the 

various forms of mathematical reasoning the students naturally make use of in their 

justifying solutions to tasks by engaging in the tasks themselves, (b) attend to the 

development of students’ mathematical reasoning from studying videos and student 

written work to the tasks they worked on, and (c) learn about the conditions and teacher 

moves the facilitate student justifications of task solutions. The teachers underwent six 

cycles of this over a fifteen week period with each cycle last approximately two weeks. 

Each cycle is explained in detail in this section. 

4.4.1 Cycle 1: Introduction to counting and combinatorics. 
The goal for the first cycle was to engage the teachers in open-ended problem solving 

where they need to form arguments and justify them to their group and the entire class. 

This cycle lasted two weeks with the problem solving occurring in the first week.  

4.4.1.1 Cycle 1: The Shirts and Pants and Towers series of tasks. 
The task the teachers engage in had them constructing towers of varying heights 

(Appendix B.2) selecting from 2 colors using Unifix cubes (Figure 4.1). They first had to 

build towers for 4-tall selecting from 2 colors, justify their solution, and then conjecture 

about 3-tall selecting from 2 colors. After checking their conjecture they then had to 

figure out for n-tall selecting from 2 colors. The common strategies that used were 

opposites (where if the two colors selected are blue and yellow, the blue would be 

“opposite” of the yellow; Figure 4.2), a case argument based on how many of each color 

were in the tower (Figure 4.3), and an inductive argument where they start with towers 1-

tall selecting from 2 colors and show that you could either add a blue or yellow to the top 

of each one (Figure 4.4).  
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Figure 4.1: Two colors of Unifix cubes. 

 

Figure 4.2: An example of "opposite" Towers where yellow is the "opposite" of blue. 

 

Figure 4.3: A Case Argument for Towers 4-Tall selecting from two colors. The cases are 
arranged into all yellow and no blue, three yellow and one blue, two yellow and two blue, 

one yellow and three blue, and all blue. 

 

Figure 4.4: An argument by induction for why the amount of Towers double in the 
Towers problems selecting from two colors. 
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4.4.1.2 Cycle 1: The videos. 
The teachers were assigned four videos of students reasoning about combinatorics 

tasks over three weeks. All the videos featured students working on a task, discussing 

their solution to their group or an interviewer, and justifying and responding to questions 

about their solution. During the first week, they watched a group of three students work 

on the Shirts and Pants (Appendix B.1) task. The students first initially worked on the 

task in second grade and produced two answers; 5 and 6. The incorrect answer of 5 was 

due to the suggestion that one outfit shouldn’t be counted because it didn’t match. When 

two of the students (Stephanie and Dana) revisited the task in third grade they quickly 

solved it to produce an answer of 6. In the second week they watched a series of videos 

of students working on the Towers task of varying heights selecting from 2 colors. In the 

first, Stephanie and Dana from the Shirts and Pants video, are justifying their solution to 

towers 4, 3, and 5 tall. The second is an interview with Stephanie where she explains 

her thought process as she solved the Towers task. The last clip was an interview with a 

student, Meredith, who solved the 4-tall selecting from 2 colors Towers task and then 

was asked to make a conjecture for how many towers there would be 3-tall selecting 

from 2 colors. She at first claims there would be the same amount, but when building 

them she changes her answer to 8 because when you pull the top off you will create 

duplicates.  

Table 4.5 

Videos used during Cycle 1 by each iteration. 

Video Clip Title It. 1 It. 2 It. 3 It. 4 It. 5 

Shirts and Pants (PUP Math version) x x x x x 

Stephanie and Dana work on Towers x x x x x 
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Stephanie towers interview x x x x x 

Meredith removes the top cube x x x x x 

 

4.4.1.3 Cycle 1: The readings. 
Readings for the first cycle were selected to highlight the benefits of attending to 

students mathematical reasoning instead of just focusing on the answer. The first week 

had the teachers reading an article about a student named Benny who was involved in 

an individualized type of instruction called IPI (Erlwanger, 1973). While Benny was able 

to achieve 85% mastery on the content based on test scores, when the author talked to 

Benny the conversations revealed that he did not understand what he was doing and 

instead was randomly applying rules he had invented that occasionally worked. This 

paper was paired with an article from Skemp (1976) about the difference between 

relational and instrumental understanding. In later years, the teachers also read an 

article about Khan Academy which touted a student as brilliant for being able to 

complete approximately 650 inverse trigonometry problems in the fifth grade, but there 

was no indication that the student actually understood the material. In the second part of 

the cycle, the readings focused on the reasoning of the students that were portrayed in 

the videos they watched.  

Table 4.6 

Readings used during Cycle 1 by each iteration. 

Paper author(s) and year It. 1 It. 2 It. 3 It. 4 It. 5 

Erlwanger (1973) x x x x x 

Skemp (1976)    x x 
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Maher (2010) x x x x x 

Maher & Uptegrove (2010) x x x x x 

Maher (2009) x x x x x 

Maher & Yankelewitz (2010) x x x   

Maher, Sran, & Yankelewitz (2010a) x x x   

Maher, Sran, & Yankelewitz (2010b)  x x   

Maher & Martino (1992) x x    

Maher & Weber (2010) x x    

 

4.4.1.4 Cycle 1: Student work module. 
The teachers were presented with four pieces of student work from the Towers 4-tall 

selecting from two colors task. All the examples of the work had the correct solution of 

16 towers, but their reasoning varied from incorrect to partially correct to fully correct. 

The examples were specifically chosen to see if the teachers are starting to pay 

attention to the reasoning provided by the students in their work instead of just looking to 

see if they achieved the correct answer.  

4.4.1.5 Cycle 1: Online discussions. 
The discussions in this cycle focused around the teacher’s own problem solving in 

relation to that of the students in the video, discuss elements of the students in the 

videos problem solving, eliciting their beliefs about what is important for students to be 

able to do in the mathematics classroom, and to make connections among the ideas 

presented in the Skemp (1976) paper with what they are reading about Benny and Khan 

Academy.  
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4.4.2 Cycle 2: Making pizzas. 
The goals for this cycle were to have the teachers continue engage in mathematical 

reasoning with open-ended problem solving tasks, have them realize the limitations 

offered by some argument types, focus on mathematical notation, and have them start to 

attend to the structure of mathematical tasks.  

4.4.2.1 Cycle 2: The tasks. 
During this cycle, the teachers worked on three variations of pizza task: Pizza with 

Halves, selecting from 2 toppings (Appendix B.4); Whole Pizzas, selecting from 4 

toppings (Appendix B.3); Pizzas with Halves, selecting from 4 toppings (Appendix B.4). 

The whole pizza task has a similar structure to the Towers task from the previous cycle 

and the solution can be expressed as 2^n where n is the number of toppings. The two in 

the formula relates to the choice of the topping being on or off of the pizza. A common 

strategy used by the teachers on the whole pizza task involved creating cases (Figure 

4.5) where they categorized the pizzas based on the number of toppings with 0 toppings 

being an all cheese pizza.  The strategies used for the half pizza task varied based on 

the number of toppings. When working with two toppings, the teachers used various 

arguments based on cases to produce an answer of 10. Some chose to separate the 

cases into pizzas without halves and pizzas with halves, based on the number of 

toppings used, the total number of toppings on the pizza including cheese as a topping, 

and grouping them by whole, half, and mixed (Figure 4.6). Those strategies tended to be 

inefficient when working on the 4-toppings with halves due to there being 136 

combinations. Some teachers did solve the task by making a relationship between the 

whole pizzas and halves by drawing lines connecting one combination to another where 

each end of the line represented half of the pizza (Figure 4.7). 

 
 



29 
 

 

Figure 4.5: A Cases Argument for whole pizzas selecting from four toppings. 

 

Figure 4.6: Three different case arguments for making pizzas with halves and selecting 
from two toppings. 
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Figure 4.7: A recursive solution to the pizza with halves selecting from 4 toppings 
problem. 

4.4.2.2 Cycle 2: The videos. 
After working on the task, the teachers were then assigned to study three video clips 

online. The first video, http://dx.doi.org/doi:10.7282/T3HM57PQ, followed twelve fifth-

grade students across two class periods as they worked on the Pizza task with Halves 

selecting from two toppings. The second video, 

http://dx.doi.org/doi:10.7282/T3HM57PQ, focused on the same students from the 

previous video as they worked on the Whole Pizza task with 4 toppings and the Pizza 

task with Halves selecting from four toppings. The third clip, 

http://dx.doi.org/doi:10.7282/T3VX0FRD, was a task-based interview with a fourth grade 

student named Brandon. It shows Brandon explaining his solution to the Whole Pizza 

task with four toppings. After explaining his solution, Brandon is asked whether this task 

reminded him of any other tasks that he had worked on and he remarked that it 

reminded him of the Towers task. After resolving the Towers 4-tall selecting from 2 

colors task, Brandon makes a connection between the similarity in structure of the two 

tasks, recognizing that the two choices for a pizza topping (represented by a 1 or 0) for 
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being on or off the pizza is similar to the two choices for the color of a particular block of 

the tower (e.g., red or yellow). 

Table 4.7 

Videos used during Cycle 2 by each iteration. 

Video Clip Title It. 1 It. 2 It. 3 It. 4 It. 5 

Brandon interview (PUP Math) x x x x x 

Pizza – 2 toppings with halves (PUP Math) x x x x x 

Pizza – 4 toppings whole and with halves (PUP Math) x x x x x 

 

4.4.2.3 Cycle 2: The readings. 
The first reading gave background to the Brandon interview that they watched (Maher 

and Martino, 1998). It situated the Brandon video as a part of a longer study and 

included details that preceded the interview as well a textual analysis of Brandon’s 

problem solving. The second reading dealt with the topic of isomorphisms in 

mathematics education (Greer and Harel, 1998). This paper made reference to Brandon 

as an example of a nine-year old student having an insight in recognizing an 

isomorphism similar to the mathematician Poincare.  

Table 4.8  

Readings used during Cycle 2 by each iteration. 

Paper author(s) and year It. 1 It. 2 It. 3 It. 4 It. 5 

Maher & Martino (1998) x x x x x 

Greer & Harel (1998)    x x 

 
 



32 
 

Maher & Martino (1996) x x x x x 

Maher, Sran, & Yankelewitz (2010c) x x x   

 

4.4.2.4 Cycle 2: Student work module. 
The student work module for this cycle contained four pieces of student solutions from 

the Pizza with Halves task selecting from two toppings. These were chosen to illustrate 

the variety of representations and case arguments produced by the students.  

4.4.2.5 Cycle 2: Online discussions. 
For this module, the guiding questions focused on the notation that Brandon used in his 

problem solving. Teachers were asked to discuss how, if at all, Brandon’s choice of 

notation was helpful to him in recognizing the relationship between the Pizza and 

Towers selecting from 2 colors tasks. They were also asked to discuss the forms of 

reasoning displayed by Brandon in the video, and the role of isomorphisms in 

mathematical cognition. Finally, they were asked to compare their own problem solving 

with that of the students in the videos.  

4.4.3 Cycle 3: Extension of the Towers task. 
The goal of this cycle was to re-visit the Towers task solving task from the first cycle by 

engaging in an extension of the task. The extension to the task was posed by a student 

named Ankur and one of the topics for discussion is about having students pose 

problems. While the task is not isomorphic to the original Towers selecting from 2 colors 

task, the problem solving strategies used (e.g., case argument) may be modified to fit 

this task. This cycle lasted two weeks.  

4.4.3.1 Cycle 3: Ankur’s Challenge task. 
The new Towers task was named Ankur’s challenge after the student who created the 

task and involves building towers 4-tall selecting from 3-colors with the restriction that 

one of each color must appear in each tower. One way of solving the task is to split the 
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task into three cases (assuming the 3 colors are black, yellow, and blue), all the towers 

4-tall with; (a) 2 blue, 1 yellow, and 1 black, (b) 2 yellow, 1 blue, and 1 black, and (c) 2 

black, 1 yellow, and 1 blue. The task would be solved for one of the cases yielding an 

answer of 12 which can then be multiplied by 3 to obtain an answer of 36, since the 

number of towers in case (a) is equivalent to the number in (b) and (c) (Figure 4.8). 

 

 

Figure 4.8: A solution to Ankur's Challenge where the towers are grouped in cases of 
two of one color and one of the other two colors. 
 

4.4.3.2  Cycle 3: The videos. 
There is one video in this cycle entitled Romina’s Proof to Ankur’s Challenge which was 

used in every iteration of the study. In the video, Romina is working on Ankur’s 

Challenge with several of her classmates (including Ankur). She provides a solution 

where she focuses on one color, say blue, and constructs six towers containing two 

blue. For the other spaces in the tower, she writes “xo” vertically indicating that one of 

two colors can go there (Figure 4.9). She then concludes that for each of the six with two 
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of one color you can have “an o and an x and a x and an o, so you have to multiply each 

of these six by two” which gives her twelve towers for two of just one color. Those twelve 

would then “be multiplied by three for the three different colors and you get 36”.  

 

Figure 4.9: A screenshot from the video Romina's Proof to Ankur's Challenge where she 
shows her solution to the task. 

 

4.4.3.3 Cycle 3: The readings. 
The first week of readings explored the connection between mathematical reasoning and 

formal mathematical proof and how explaining and justifying contribute to learning 

mathematics. The second week has them explore deeper about what does it mean to 

understand something and consider how far can they actually go with working on a task 

like Towers. 

Table 4.9 

Readings used during Cycle 3 by each iteration. 

Paper author(s) and year It. 1 It. 2 It. 3 It. 4 It. 5 

Maher & Muter (2010) x x x x x 

Yackel & Hanna (2003) x x x x x 

Davis (1992) x x x x x 
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Speiser (2010) x x x   

Maher (1998)  x    

 

 

4.4.3.4 Cycle 3: Student work module. 
Three pieces of student work were analyzed by the teachers of students solving the 

Ankur’s challenge task. All three of the pieces of work take a strategy that was used to 

solve the Towers task from the first cycle and try to adapt them to fit the new parameters 

of the task. Two of the approaches are successful and the third produces an incorrect 

solution. 

4.4.3.5 Cycle 3: Online discussions. 
In addition to discussing their own problem solving, the discussion for this module had 

them consider the differences between mathematical reasoning and what constitutes a 

mathematical proof. The teachers also compared the idea of mathematical 

understanding presented by Davis (1992) with that of the idea proposed by Skemp 

(1976) and how understanding of a mathematical concept can take on multiple 

meanings.  

4.4.4 Cycle 4: Taxicab geometry. 
The Taxicab task (Appendix B.8) is another combinatorics task which is isomorphic to 

the Towers and Whole Pizza tasks. The task is presented differently in that one must 

work with a rectangular grid in considering how to move between two points. The goal of 

this two-week cycle is to continue the problem solving and start to watch longer un-

edited videos to prepare for their final project where they will work with longer video.  

4.4.4.1 Cycle 4: The task. 
The statement of the task has the teachers determine the number of different shortest 

paths from a static Taxi Stand and three endpoints on a rectangular grid. First, the 
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teachers need to realize that to obtain the shortest path, they can only go two directions 

on the grid (down and to the right). The two options for moving make the task similar to 

Towers selecting from 2 colors and Pizza without Halves since in all of them you have 

two choices (down and to the right, yellow or blue, topping on or off). Once they 

determine that they can only go two directions, they can use that knowledge to find the 

total number of shortest routes, usually by tracing the paths on the grids which ends up 

being harder as each endpoint is farther away from the Taxi Stand. A solution can be 

found by considering how many ways one can get to the point directly above and to the 

left. Adding those two sums gives you the total number of ways to get to the point since 

you are limited to only traveling down and to the right. Using this method one can work 

their way from the Taxi Stand to every point on the rectangular grid revealing Pascal’s 

Triangle (Figure 4.10). 

 

Figure 4.10: Sample solution to the Taxicab problem which reveals Pascal's Triangle. 
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4.4.4.2  Cycle 4: The videos. 
In the previous cycles, all the videos were carefully edited and most contained some sort 

of voice over to situate the problem solving. In this cycle instead the teachers worked 

with long, un-edited video clips of high school students working on the Taxicab task. This 

was done to get the teachers used to working with longer videos which they will use for 

their final project in the course as well as to see what reasoning they can extract from 

the video which has a lot more going on in it. The video was not available in the first 

iteration, so it was only used in the other four.  

Table 4.10 

Videos used during Cycle 4 by each iteration. 

Video Clip Title It. 1 It. 2 It. 3 It. 4 It. 5 

Taxicab problem, clip 1 of 5: The shortest distance 

between two points. 

 

x x x x 

Taxicab problem, clip 2 of 5: Investigating the number 

of shortest paths 

 

x x x x 

Taxicab problem, clip 3 of 5: It's Pascal's triangle! But 

Why? 

 

x x x x 

Taxicab Problem, Clip 4 of 5: Explaining the Taxicab 

and Towers Isomorphism 

 

x x x x 

Taxicab problem, clip 5 of 5: Extending the taxicab 

correspondence to pizza with toppings and binary 

notation 

 

x x x x 
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4.4.4.3 Cycle 4: The readings. 
A chapter by Powell (2010) based on his dissertation was used to help the teachers 

situate the Taxicab problem solving session they watched in the video. In the chapter, 

Powell describes how the session came about, the problem solving strategies of the 

students, and how the Taxicab task tied into the bigger picture for the students.  

4.4.4.4 Cycle 4: Student work module. 
Three examples of student work were used for the Taxicab module. All the solutions 

were correct, but had different arguments for how they arrived at their answer. One 

contained a written narrative by a student for how they solved the task where he made 

connection between lining people up against a wall and the paths the taxi could take. 

The second student work was a tree diagram used by a student to solve simpler cases 

of the task which they then tried to generalize. The final piece of student work was 

pictures of red and yellow towers where the red was moving downward and the yellow 

was moving to the right. The number of shortest paths were expressed as towers of 

certain heights (e.g., to reach point A on the Taxicab grid one had to move 5 spaces, 4 

down and 1 to the right, therefore their solution was the number of towers 5 tall 

containing 4 red and 1 yellow).  

4.4.4.5 Cycle 4: Online discussion. 
As in previous weeks, the discussion revolved around the teachers comparing their own 

problem solving to that of the children in the videos.  

4.4.5 Cycle 5: Introduction to probability. 
The goal of this cycle was to have the teachers consider ideas in probability building off 

of the skills they developed in solving combinatorics tasks. Both the World Series 

(Appendix B.6) and the Problem of Points (Appendix B.7) have the problem solver 

generating a list of combinations, but the difference is that the probability of these events 
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happening are not equally weighted, so they need to be adjusted based on how likely 

they are.  

4.4.5.1 Cycle 5: The World Series and Problem of Points tasks. 
In the World Series task, the teachers had to consider how likely it is that a best of seven 

series of games between two evenly matched teams (i.e., both have a 50% chance to 

win each game) would end in 4, 5, 6, and 7 games. An example of the series ending in 4 

games would be Team A winning all four or Team B winning all four which is 2 ways. 

How likely that is to happen needs to be considered though and is 1/2*1/2*1/2*1/2 or 

1/16th. Therefore, there is a 2/16th chance that the World Series would end in four 

games. This idea can be repeated by figuring out how many ways the game would end 

in 5, 6, or 7 games and then multiply that by the probability of that event occurring (e.g., 

0.5^5 for 5 games). A common incorrect solution that is produced is a result of treating 

all the events equally likely. There are 2 ways for the Series to end in 4 games, 8 for 5 

games, 20 for 6 games, and 40 for 7 games. All those combinations are added up to 

produce a sample space of 70 and then the probabilities end up being 2/70 for 4 games, 

8/70 for 5, 20/70 for 6, and 40/70 for 7.  

 The Problem of Points is a famous task that was posed by Chevalier de Mere to 

Blaire Pascal and was the first example of the concept of expected value (Katz, 1993). 

The structure is very similar to the World Series task in that the number of combinations 

need to be weighted differently based on the probability that they occur. The difference 

is that instead of both players starting from 0, one player has 8 points and the other has 

7, and they are playing the first to 10 points. This would be similar to figuring out the 

solution to the World Series task where one team already has a 1-0 lead. An extra step 

is involved in solving the Problem of Points has the problem solver using the probability 

to calculate how 100 francs should be divided among the two players, which is each 

player’s expected value based on the situation when the game ended.  
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Figure 4.11: A correct solution to the World Series problem. 
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Figure 4.12: A common incorrect solution to the World Series problem where the events 
are treated as equally likely. 
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Figure 4.13: A sample correct solution to the Problem of Points. 
 

4.4.5.2 Cycle 5: The videos. 
The teachers watched an edited video of five students working on the World Series task 

over three sessions. Four students produced the correct answer and one had the 

common incorrect solution. Between the first and second session, a group of graduate 
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students who solved the task themselves and produced the common incorrect solution, 

wrote the students a letter explaining why they are wrong. The students investigated the 

graduate students claim and found out that the graduate students were wrong and wrote 

them a letter explaining why. During the process of writing the letter, the student who 

produced the incorrect solution changed his mind and realized why his solution is 

incorrect.  

4.4.5.3 Cycle 5: The readings. 
There was only one reading for this cycle and it was a series of letters that were written 

by Pascal and Fermat (1654) where they discussed the Problem of Points that the 

teachers worked on. In the later iterations, they also looked at the letters between the 

group from the video they watched and the graduate students who incorrectly said that 

the students were wrong.  

4.4.5.4 Cycle 5: Student work module. 
Two examples of student work from the World Series and three examples of the 

Problem of Points were used. The World Series work contain one example of a student 

using the entire sample space of 128 to solve each part of the task and the other 

incorrectly treats the events with the same probability of occurring. The three Problem of 

Point examples highlight various incorrect strategies that students may use to reason 

about the task.  

4.4.5.5 Cycle 5: Online discussion. 
Questions for this cycle had the teachers consider the connection between 

combinatorics and probability, to consider an extension of the task where the teams are 

not evenly matched (e.g., Team A is 60% to win and Team B is 40%), to discuss about 

why the probability of winning 6 and 7 games is the same, and the relationship of this 

task with previous ones they have worked on.  
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4.4.6 Cycle 6: Reflecting.  
This cycle contained no new problem solving component, but was designed to have the 

teachers reflect on what they did in the previous cycles in two ways: (a) by listening to 

and readings the reflections of the students who engaged in the problem solving and 

how it shaped their mathematical thinking and (b) by tying all the mathematical ideas 

together to explore Pascal’s Triangle, Pascal’s Pyramid, Pascal’s Identity, and the 

binomial expansion. This cycle lasted from two to three weeks depending on the year.  

4.4.6.1 Cycle 6: The tasks. 
During this cycle, all the previous tasks were re-visited to make connections to 

mathematical topics such as Pascal’s Triangle (Figure 4.14). An example would be the 

Tower’s task. Each individual row corresponds to the total number of towers that one 

could build of a certain height when selecting from two colors. The row that contains 

1,4,6,4, and 1 would map to the towers 4-tall selecting from 2 colors. Each individual 

entry on that row also maps to a specific case of the towers. There are 4 towers 4-tall 

selecting from 2 colors that contain exactly one blue and three yellow as well as three 

blue and one yellow. Six towers can be built with exactly two blue and two yellow. The 

ones on the outer end correspond to towers with all yellow or all blue. When expanding 

to 3-colors instead of Pascal’s Triangle, one can map the entries of Pascal’s Pyramid to 

the towers. Pascal’s Identity can be shown through the inductive argument with towers 

(Figure 4.15). A similar argument can be produced for the pizza without halves task and 

taxicab. These ideas were explored by the class in a full class discussion environment.  
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Figure 4.14: The first five rows of Pascal's Triangle. 

 

 

Figure 4.15: The relationship of Pascal's Triangle to the Towers tasks. 

4.4.6.2 Cycle 6: The videos. 
The first video, entitled the Night Session, focused on a group of 11th grade students as 

they worked to map their solutions to the towers and pizza tasks to the formal notation 
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that is found in textbooks. While constructing the formal notation, the students start 

connecting the variables in the equation to what type of tower or pizza that would be. Not 

only were the students able to successfully produced Pascal’s Identity and the formula 

for the binomial coefficient (n choose k), but they were able to make sense of it by giving 

examples of what the formula would mean in relation to towers and pizzas.  

The second group of videos contained the voices of some of the students they 

watched throughout the semester as they discussed their experiences in working on 

open-ended problem solving tasks. One of the videos followed a single student, Romina, 

throughout the years, piecing together video of her working in the classroom on tasks 

and interviews that occurred 11th grade, sophomore year of college, and three times 

after she had graduated college where she reflected on her problem solving experience 

and how it has impacted her life. The second video contains comments from eight 

students about their experiences interspersed between footage of them graduating from 

high school. 

Table 4.11 

Videos used during Cycle 6 by each iteration. 

Video Clip Title It. 1 It. 2 It. 3 It. 4 It. 5 

Night Session (PUP Math) x x x x x 

Students reflecting on their experience x x x x x 

Romina's Story x x x x x 

  

4.4.6.3 Cycle 6: The readings. 
The papers focused on providing insights on how to go about promoting mathematical 

reasoning in the classroom by using examples from the longitudinal study. A paper 
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added in later iterations (Francisco, 2013) supplemented the video of the Kenilworth 

students reflecting on their experience by situating it in the literature and providing more 

examples.  

Table 4.12 

Readings used during Cycle 6 by each iteration. 

Paper author(s) and year It. 1 It. 2 It. 3 It. 4 It. 5 

Uptegrove (2010) x x x x x 

Maher (2005) x x x   

Maher & Speiser (1997) x x x   

Francisco & Maher (2005) x x x x x 

Francisco (2013)    x x 

 

4.4.6.4 Cycle 6: Student work module. 
This cycle contained no student work module. 

4.4.6.5 Cycle 6: Online discussion. 
For the final cycle, the discussion focused on the conditions in the mathematics 

classroom that might be required into make mathematics a meaningful subject for all 

students all through high school. The goal was to tie together the teachers experiences 

and how it has shaped their thinking and compare it with the reflections provided by the 

students in the videos and the readings.  
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Chapter 5: Studying the Change in Beliefs and Attending to Reasoning 
All teachers in the study took two assessments as a pretest before the course started 

and as a posttest after they engaged in the six cycles. All the teachers in the study took 

the pretest before engaging in any course activities. Three students did not finish the 

course and thus did not take the post test. These students were not included in the 

analyses. 

The first assessment, a Beliefs Assessment, consisted of a series of statements 

about learning and teaching mathematics that called for a rating on a 5-point Likert scale 

from strongly disagree to strongly agree. The second assessment, a Reasoning 

Assessment, required the teachers to watch a ten minute video of 9-10 year old students 

sharing their justifications of their solution to the 3-tall Towers task, first selecting from 

two colors, and then of varying heights. In an open-ended response the teachers were 

asked to note any reasoning they observed from the students’ arguments in the video 

and whether or not they found that reasoning convincing. Both assessments results are 

being compared to three separate comparison groups who contain comparable 

populations as the teachers in the study. 

5.1 The comparison group 
Four courses were identified for data collection as a comparison group. The courses 

contained similar populations (i.e., majority in-service with some pre-service teachers) as 

the teachers in the study. Two of the comparison groups participated in the same course 

a different semester; the other group of were from a course that focused on high-school 

mathematics learning. During the comparison groups courses, the teachers in the class 

worked on open-ended problem solving tasks and the focus was on students’ 

mathematical reasoning. What differed was the set of tasks and videos that were used 

as well as the course structure. The teachers in the comparison group did not take the 
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course where the study was conducted at any point in their program (i.e., no teacher 

was involved in both the comparison and experimental group at any time).  

5.2 Beliefs Assessment 
Before the semester started, the teachers in the course received an invitation to take the 

Beliefs Assessment using a course management system, Sakai. They were presented 

with thirty-four questions about mathematics teaching and learning which they had to 

rate on a 5-point Likert scale from strongly disagree to strongly agree (Appendix E). The 

statements were created to align with what the 2000 NCTM Standards considered as 

what is required for effective mathematics teaching and were either aligned or not 

aligned with the Standards. For analysis, a subset of the questions relevant to the study 

was chosen for tracking their beliefs. The questions and their intended response appear 

in Table 5.1.  

Table 5.1 

Belief assessment questions used in the study and their alignment to the NCTM 
Standards. 

Belief Question 

Alignment with 

Standards Answer 

Learners generally understand more mathematics than their teachers 

or parents expect. Disagree 

It’s helpful to encourage student-to-student talking during math 

activities. Agree 

Math is primarily about learning the procedures. Disagree 
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Students will get confused if you show them more than one way to 

solve a problem. Disagree 

All students are capable of working on complex math tasks. Agree 

If students learn math concepts before they learn the procedures, 

they are more likely to understand the concepts. Agree 

Manipulatives should only be used with students who don’t learn 

from the textbook. Disagree 

Young children must master math facts before starting to solve 

problems. Disagree 

Learners generally have more flexible solution strategies than their 

teachers or parents expect. Agree 

Manipulatives cannot be used to justify a solution to a problem. Disagree 

Learners can solve problems in novel ways before being taught to 

solve such problems. Agree 

Understanding math concepts is more powerful than memorizing 

procedures. Agree 

If students learn math concepts before procedures, they are more 

likely to understand the procedures when they learn them. Agree 

 
 



51 
 

Collaborative learning is effective only for those students who 

actually talk during group work. Disagree 

Only the most talented students can learn math with understanding. Disagree 

The idea that students are responsible for their own learning does 

not work in practice. Disagree 

Teachers need to adjust math instruction to accommodate a range of 

student abilities. Agree 

 
5.2.1 Belief assessment scoring methodology. 
For analysis based on the relatively small sample size, the 5-point Likert scale was 

collapsed to merge strongly disagree with disagree and strongly agree with agree 

making the scale agree (A), undecided (U), and disagree (D). For analysis purposes 

each agree and disagree beliefs response is labeled as high (H) or low (L) depending on 

whether the frequency of the response is the desired response (H) or not (L). For 

example, consider the question “Only the most talented students can learn math with 

understanding”. For that question, the Standards aligned response would be “disagree”. 

If a teacher selected disagree, that response would be coded as H since it is in line with 

a recommendation from the Standards. A selection of undecided would be coded as U 

and “agree” would be L.  

Based on the responses to the Beliefs Assessment, seventeen pre and post 

beliefs were assigned to each teacher with one of nine possible pre and post transitions. 

A transition of H->H would signify that on the pretest the teacher belief was aligned for 

the specific question and also on the posttest. There are nine possible transitions from 

pre to post, namely:  H->H, H->U, H->L, U->H, U->U, U->L, L->H, L->U, L->L. 
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The analysis focused on the transition from pre to post test for each individual 

question (in contrast to analyzing all the questions as a whole data set, on average). 

This approach was chosen since multiple learning topics in mathematics education 

composed the assessment and attention could be given to each topic.. By conducting a 

question by question analysis, topics that could be identified with greater influence could 

be identified as a consequence of the TLMR intervention model.  

5.2.2 Question by question analysis. 
The analyses examined the transition from pre to post assessment for each question for 

each teacher. The data were analyzed to examine if the teachers moved towards beliefs 

that were aligned with the Standards from pre to post-tests. The rationale for the 

analysis is to determine which beliefs, if any, were impacted by the TLMR model. Each 

question was analyzed using a Wilcoxon rank-sum test, a nonparametric alternative to 

the t-test. A shift is described as significant when a p-value < 0.05. The effect sizes were 

calculated using an estimator suggested by Grissom and Kim (2012) which takes the U 

statistic generated by the test and then divide it by the product of the two sample sizes 

which will estimate that a score randomly drawn from one population will be greater than 

the other. This methodology was chosen over using Cohen’s d due to the smaller 

sample size and non-normality of the data.  

Initially, differences between each iteration of the data were examined. With no a 

significant difference in both pre-test scores and shifts between all five iterations, the 

data was lumped together giving a sample size of 86 with 30 pre-service teachers (PST) 

and 56 in-service teachers (IST). A similar result was found for the three control groups 

that were combined to produce a sample size of 42 with 17 PSTs and 25 ISTs. 

5.2.2.1 Belief assessment: Experimental pre to post scores. 
A first analysis was to study a shift in beliefs from the experimental cohort from pre to 

post assessments. The hypothesis underlying this analysis is that due to the 
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intervention, the teachers’ beliefs would remain aligned to the Standards if they were 

already aligned and if they were not by the end of the intervention would be more closely 

aligned. The results for each question are found in Table 5.2. The analysis indicates that 

out of the 17 questions, teacher responses of 13 of the questions showed significant 

positive shifts from pre to post assessments. Two of the questions that did not meet the 

criteria were questions that were about the use of manipulatives in problem solving. The 

other two were pedagogical strategies related to showing multiple strategies to students 

and adjusting instruction to meet the range of student abilities.  

Table 5.2 

Shift in beliefs from pre to post towards alignment with the NCTM Standards for the 
experimental group. 

Belief Question p-value Effect Size 

Q1 - Learners generally understand more mathematics than 

their teachers or parents expect 6.18E-07 

0.71 

Q4 - It’s helpful to encourage student-to-student talking during 

math activities. 0.0071 

0.51 

Q5 - Math is primarily about learning the procedures. 3.01E-03 0.43 

Q6 - Students will get confused if you show them more than 

one way to solve a problem. 0.512 

0.48 

Q7 - All students are capable of working on complex math 

tasks. 0.0024 

0.56 
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Q9 - If students learn math concepts before they learn the 

procedures, they are more likely to understand the concepts. 0.0046 

0.59 

Q10 - Manipulatives should only be used with students who 

don’t learn from the textbook. 0.1236 

0.512 

Q11 - Young children must master math facts before starting 

to solve problems. 0.0057 

0.398 

Q15 - Learners generally have more flexible solution 

strategies than their teachers or parents expect. 0.0335 

0.573 

Q17 - Manipulatives cannot be used to justify a solution to a 

problem. 0.064 

0.473 

Q18 - Learners can solve problems in novel ways before 

being taught to solve such problems. 0.0482 

0.517 

Q19 - Understanding math concepts is more powerful than 

memorizing procedures. 0.0182 

0.523 

Q21 - If students learn math concepts before procedures, 

they are more likely to understand the procedures when they 

learn them. 0.03363 

0.528 

Q23 - Collaborative learning is effective only for those 

students who actually talk during group work. 0.0017 

0.419 
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Q29 - Only the most talented students can learn math with 

understanding. 0.0018 

0.494 

Q30 - The idea that students are responsible for their own 

learning does not work in practice. 0.04608 

0.444 

Q31 - Teachers need to adjust math instruction to 

accommodate a range of student abilities. 0.3122 

0.48702 

 

5.2.2.2 Comparing shifts between the experimental and comparison groups. 
Next, positive shifts between the experimental and comparison group were examined. 

Since results were very similar for both groups on their pre-test values and the 

experimental group showed significant shifts, it was decided to compare the post-test 

values between the two groups. The p-values for each question appear in Table 5.3. All 

the mathematical ideas addressed in these questions were introduced in both the 

comparison and experimental group. However, responses to 11 of the 17 questions on 

the post-test results were significantly different. The experimental group shifted in 

responses to key topics such as Q1, Q4, Q11, and Q19 which are highly emphasized in 

the Standards. 

Table 5.3 

Table of p-values for individual belief questions comparing the experimental group to the 
comparison groups shift in beliefs. 

Belief Question p-value Effect Size 

Q1 - Learners generally understand more mathematics than their 

teachers or parents expect 0.0007 

           

0.639 
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Q4 - It’s helpful to encourage student-to-student talking during 

math activities. 0.0026 

          

0.565 

Q5 - Math is primarily about learning the procedures. 0.0528 0.441 

Q6 - Students will get confused if you show them more than one 

way to solve a problem. 0.0087 

          

0.399 

Q7 - All students are capable of working on complex math tasks. 0.0067 0.608 

Q9 - If students learn math concepts before they learn the 

procedures, they are more likely to understand the concepts. 0.0164 

          

0.592 

Q10 - Manipulatives should only be used with students who don’t 

learn from the textbook. 0.1007 

          

0.453 

Q11 - Young children must master math facts before starting to 

solve problems. 

4.36E-

08 

           

0.245 

Q15 - Learners generally have more flexible solution strategies 

than their teachers or parents expect. 0.0002 

          

0.635 

Q17 - Manipulatives cannot be used to justify a solution to a 

problem. 0.0922 

0.446 

Q18 - Learners can solve problems in novel ways before being 

taught to solve such problems. 0.1783 

          

0.529 
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Q19 - Understanding math concepts is more powerful than 

memorizing procedures. 

0.0011

6 

            

0.59 

Q21 - If students learn math concepts before procedures, they 

are more likely to understand the procedures when they learn 

them. 0.0243 

            

0.53 

Q23 - Collaborative learning is effective only for those students 

who actually talk during group work. 

0.0266

7 

          

0.427 

Q29 - Only the most talented students can learn math with 

understanding. 0.0434 

          

0.476 

Q30 - The idea that students are responsible for their own 

learning does not work in practice. 0.0776 

          

0.423 

Q31 - Teachers need to adjust math instruction to accommodate 

a range of student abilities. 0.6112 

          

0.516 

 

5.2.2.3 Comparing pre-service to in-service teachers’ shift in beliefs 
The questions that did not show significant positive shift from pre to post when 

comparing the experimental group to the comparison were more aligned with 

pedagogical techniques than theories about how students learn or what they are capable 

of learning. As a result, it was decided to compare the results of the pre-service teachers 

with that of the in-service teachers to see if identified differences might explain some of 

the results. Table 5.4 contains the p-values of comparing the two populations. Two of the 

questions that were aligned with pedagogical techniques (Q10 and Q31), and were not 
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significant when looking at the whole experimental population, were significantly different 

between the two populations with the ISTs having more responses aligned with the 

Standards. Several other questions that had some pedagogical elements underlying the 

learning theory (e.g., Q4 about student-to-student talking compared to theory about 

collaboration) also were significantly different with the ISTs showing greater positive 

shifts. 

Table 5.4 

Shift in beliefs from pre to post towards alignment with the NCTM standards in the 
beliefs assessment comparing pre-service teachers to in-service teachers. 

Belief Question p-value Effect Size 

Q1 - Learners generally understand more mathematics than 

their teachers or parents expect 0.7821 

0.489 

Q4 - It’s helpful to encourage student-to-student talking 

during math activities. 0.0496 

0.517 

Q5 - Math is primarily about learning the procedures. 0.0458 0.563 

Q6 - Students will get confused if you show them more than 

one way to solve a problem. 0.1637 

0.555 

Q7 - All students are capable of working on complex math 

tasks. 0.9831 

0.501 

Q9 - If students learn math concepts before they learn the 

procedures, they are more likely to understand the concepts. 0.5126 

0.526 
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Q10 - Manipulatives should only be used with students who 

don’t learn from the textbook. 0.0113 

0.426 

Q11 - Young children must master math facts before starting 

to solve problems. 0.5785 

0.526 

Q15 - Learners generally have more flexible solution 

strategies than their teachers or parents expect. 0.2554 

0.464 

Q17 - Manipulatives cannot be used to justify a solution to a 

problem. 0.3927 

0.471 

Q18 - Learners can solve problems in novel ways before 

being taught to solve such problems. 0.9432 

0.498 

Q19 - Understanding math concepts is more powerful than 

memorizing procedures. 0.9773 

0.499 

Q21 - If students learn math concepts before procedures, 

they are more likely to understand the procedures when they 

learn them. 0.5097 

0.482 

Q23 - Collaborative learning is effective only for those 

students who actually talk during group work. 0.8361 

0.492 

Q29 - Only the most talented students can learn math with 

understanding. 0.0399 

0.5 
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Q30 - The idea that students are responsible for their own 

learning does not work in practice. 0.3984 

0.542 

Q31 - Teachers need to adjust math instruction to 

accommodate a range of student abilities. 0.045 

0.561 

 

 
 

5.2.2.4 Individual questions that show the greatest shifts  
Overall, across all the analysis questions that focused on what students are capable of 

learning (Q1, Q7, Q15, Q29, Q30) and the what students are capable of in mathematics 

(Q5, Q9, Q11, Q19, Q21) showed significant change for all the teachers who 

participated in the TLMR model. Questions that were more pedagogically based such, 

as the use of manipulatives in learning mathematics (Q10, Q17) and accommodating 

instruction for multiple student abilities (Q31) did not show significant change.  

5.3 The Reasoning Assessment 
Similar to the Beliefs Assessment, the teachers also completed the Reasoning 

Assessment for the pre and posttest; the pretest took place before the semester started 

using the online Sakai site. In the Reasoning Assessment, the teachers watched an 

edited video of 4th grade students discussing their solutions to the Towers task 

(Appendix F). In the beginning of the video, students are in a classroom working, in 

pairs, on solving how many unique towers they could build 5-tall selecting from 2-colors. 

After several minutes, the video shifts to an interview with four students who are 

discussing their earlier solutions to towers of varying heights while selecting from two 

colors. Throughout the video the students make various arguments to support their 

solution such as: an inductive argument, an argument by contradiction, and two forms of 

a case argument. The teachers received a prompt that asked them to write an open-
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ended response and describe: (1) each example of reasoning that a child in the video 

puts forth, (2) whether or not the reasoning forms a valid argument, (3) whether or not 

the argument is convincing, and (4) why or why not they find the argument convincing. 

5.3.1 Scoring methodology. 
Each open ended response was scored independently by a group of three graduate 

students using a rubric that is found in Appendix F. Initially, the group worked with 

responses from a pilot study for training and to establish reliability. Once a reliability 

greater than 90% was obtained, 25% of the total data were graded by this researcher. 

The other two scorers would double score about 20% of the data scored by this 

researcher (5% of the total data) with some overlap between the other two scorers. The 

scorers met to compare reliability between and among each other. This process was 

repeated three more times until 100% of the data was scored. This approach was taken 

to ensure that reliability was obtained multiple times (in contrast to establishing reliability 

on a small subset of the data and then scoring the rest independently). It was judged to 

be a more robust way to approach the analysis, with every cycle of scoring producing 

inter-rater reliability greater than 90%.  

 For the analysis, the focus was on the complete description for four of the 

argument types: cases, the alternate cases, induction, and contradiction. Each argument 

had multiple features to it and the data were coded for whether or not teachers did not 

notice any of the argument, parts of the argument, or the complete argument. All the 

arguments are related to the Towers problem selecting from two colors with varying 

heights. A positive shift in recognizing an argument would be defined as noticing more 

features of an argument on the post-test than the pre-test. For example, the inductive 

argument has three parts to it; (a) realizing that there are two options for Towers 

selecting from two colors, (b) for a tower of a certain height, all the possible towers there 

could have one of those two colors added to it so the total would double as the height 
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increases by one, and (c) something that refers to being able to generalize the argument 

such as this pattern holds and as a result for Towers n-tall selecting from two colors 

would be represented by 2^n. A teacher may notice just parts (a) and (b) in their pre-test. 

If teachers noticed (c) on the post-test, it was coded as growth.  

 Similar to the Belief Assessment data, the pre-test scores between the 

comparison and experimental group were similar at the onset.  The growth between 

iterations was not significantly different except for the contradiction argument between 

two of the iterations (the third and fourth, p = 0.048). As a result, the data from all five 

iterations were combined into one experimental group since it was determined sensible 

to compare the experimental and comparison since they both started with similar scores. 

The same subgroups (Experimental Pre vs. Experimental Post, Comparison Post vs. 

Experimental Post, PST Post vs IST Post, IST Pre vs IST Post, PST Pre vs. PST Post) 

analyzed for the Belief Assessment are also analyzed for the Reasoning.  

5.3.2 The cases argument. 
In the video, the cases argument was proposed by several of the students. A complete 

arguments includes mentioning the following things: (a) Using all blue or no red cubes to 

build one tower, (b) one blue cubes and two red cubes resulting in three unique towers, 

(c) two red cubes and one cube resulting in three unique towers, and (d) Using all red or 

no blue cubes to build one tower. A teacher might notice either nothing (missing), one to 

three parts of the argument (partial), or all four features of the argument (complete).  

5.3.2.1 Growth in attending to the cases argument. 
The results of the analysis appear in Table 5.5. When comparing the experimental and 

comparison groups post-test scores, the experimental group grew significantly in their 

attending to the cases argument. The group that participated in the TLMR intervention 

model also grew significantly, while the comparison group did not. The ISTs also grew 

much more compared to the PST.  
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Table 5.5 

Growth in attending to the cases argument in the assessment across multiple sub-
populations.  

Teacher Population p-value Effect Size 

Experimental Post vs Comparison Post 1.99E-08 0.248 

Experimental Pre vs. Experimental Post 1.31E-05 0.351 

IST Post vs PST Post 0.002 0.441 

PST Pre vs. Post 0.0178 0.29 

IST Pre vs. Post 0.0005 0.39 

 

 

5.3.2.2 Percent with the complete cases argument. 
About 77% of the teachers in the experimental group attended to the complete cases 

argument on the post-test compared to only 47% on the pre-test. One common theme 

between both the experimental and comparison groups is fewer numbers of teachers 

attending to only part of the argument. The majority (> 90%) either missed the argument 

completely or explained the complete argument. 

Table 5.6 

Percent of experimental and comparison teachers who noticed none, parts of, or the 
complete cases argument on the pre and post-test. 

Teacher Population % Missing % Partial % Complete 

Experimental Pre-Test 50 2.3 47.7 
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Experimental Post-Test 21.6 1.1 77.3 

Comparison Pre-Test 61.2 6.1 32.7 

Comparison Post-Test 57.1 8.2 34.7 

 

5.3.3 The alternate cases argument. 
This argument is similar to the cases argument in 5.3.2, but includes noticing an 

additional feature that was proposed by a student named Stephanie in the video. When 

constructing towers with two blue and one red cube, she separated the case into sub 

groups: -one where the blues were “stuck together” (i.e., BBR, RBB) and “stuck apart” or 

“took apart” (i.e., BRB). Since there is overlap with argument 5.3.2, for analysis here, it 

was decided to only examine whether or not teachers noticed this one feature since the 

growth for (a) through (d) in 5.3.2 would be covered by that analysis. There is only one 

feature to this argument, so either it is missing or complete.  

 

5.3.3.1 Growth in attending to the alternate cases argument. 
The results of the analysis appear in Table 5.7. When comparing the experimental and 

comparison group post test scores, the experimental group grew significantly in their 

attending to the alternate cases argument. The group who participates in the TLMR 

model intervention also grew significantly, while the comparison group did not. The ISTs 

also grew much more compared to the PST.  

Table 5.7 

Growth in attending to the alternate cases argument in the assessment across multiple 
sub-populations.  
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Teacher Population p-value Effect Size 

Experimental Post vs Comparison Post 6.22E-07 0.277 

Experimental Post vs. Experimental Post 4.37E-07 0.32 

IST Post vs PST Post 0.0385 0.455 

PST Pre vs. Post 0.0024 0.26 

IST Pre vs. Post 9.49E-05 0.355 

 

 

5.3.3.2 Percentage with complete alternate cases argument. 
Two-thirds of the experimental teachers attended to the alternate cases argument on the 

post-test compared to only 30% on the pre-test. The comparison group showed a slight 

increase from 14% to 22%.  

Table 5.8 

Percent of experimental and comparison teachers who noticed none or the complete 
alternate cases argument on the pre and post-test. 

Teacher Population % Missing % Complete 

Experimental Pre-Test 69.3 30.7 

Experimental Post-Test 3.3 6.7 

Comparison Pre-Test 85.7 14.3 
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Comparison Post-Test 77.6 22.4 

 
5.3.4 The argument by induction. 
The inductive argument was proposed by a student named Milin in the video. The three 

features coded for were: (a) realizing that there are two options for Towers selecting 

from two colors, (b) for a tower of a certain height, all the possible towers there could 

have one of those two colors added to it so the total would double as the height 

increases by one, and (c) something that refers to being able to generalize the argument 

such as this pattern holds and as a result for Towers n-tall selecting from two colors 

would be represented by 2^n. Since there are three features to this argument, it can 

either be missing, partial, or complete.  

5.3.4.1 Growth in attending to the argument by induction. 
The results of the analysis appear in Table 5.9. When comparing the experimental and 

comparison group post test scores, the experimental group grew significantly in their 

attending to the inductive argument. The group who participated in the TLMR 

intervention model also grew significantly, while the comparison group did not. The ISTs 

also grew much more compared to the PST.  

Table 5.9 

Growth in attending to the inductive argument in the assessment across multiple sub-
populations.  

Teacher Population p-value Effect Size 

Experimental Post vs Comparison Post 0.0002 0.324 

Experimental Post vs. Experimental Post 8.00E-07 0.317 

IST Post vs PST Post 0.0283 0.437 
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PST Pre vs. Post 0.019 0.344 

IST Pre vs. Post 5.21E-05 0.297 

 

 

5.3.4.2 Percentage with complete argument by induction. 
Only 22.7% of the experimental teachers attended to the full complete argument on the 

post-test, whereas there was a slight increase in attending to parts of the argument. Both 

the experimental and comparison referenced parts (a) and (b) with their partial 

descriptions, but did not include the generalization part.  

Table 5.10 

Percent of experimental and comparison teachers who noticed none, parts of, or the 
complete inductive argument on the pre and post-test. 

Teacher Population % Missing % Partial % Complete 

Experimental Pre-Test 55.7 37.5 6.8 

Experimental Post-Test 23.9 53.4 22.7 

Comparison Pre-Test 55.1 40.8 4.1 

Comparison Post-Test 53.1 36.7 10.2 

 

 

5.3.5 The argument by contradiction. 
The argument by contradiction was proposed by Stephanie when she was explaining her 

cases argument to another student named Jeff. When explaining her towers for one blue 
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with two reds, she moves the blue throughout the towers in an elevator pattern (Figure 

5.1). After her explanation, she claims that she can’t put a blue cube in another position 

since that would result in a tower 4 cubes high, contradicting a given condition that 

towers were to be 3-tall. Hence, the three towers she built were the only ones she could 

build three tall with one blue and two reds. There is only one feature to this argument, so 

either it is missing or complete.  

 

Figure 5.1: Stephanie's elevator pattern showing all the Towers 3-tall selecting from two 
colors with exactly one blue. 

 

5.3.5.1 Growth in attending to the argument by contradiction. 
The results of the analysis appear in Table 5.11. When comparing the experimental and 

comparison group post test scores, the experimental group grew significantly in their 

attending to the argument by contradiction. The group who participates in the TLMR 

model also grew significantly, while the comparison group did not. The ISTs also grew 

much more compared to the PST, but less so compared to the other argument types.  

Table 5.11 

Growth in attending to the argument by contradiction in the assessment across multiple 
sub-populations.  

Teacher Population p-value Effect Size 
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Experimental Post vs Comparison Post 0.0114 0.402 

Experimental Post vs. Experimental Post 1.24E-05 0.364 

IST Post vs PST Post 0.0484 0.537 

PST Pre vs. Post 0.0662 0.38 

IST Pre vs. Post 0.0001 0.355 

  

5.3.5.2 Percentage with the complete argument by contradiction. 
While the experimental group grew significantly in attending to the argument by 

contradiction, only 31.8% of the teachers picked up on the argument on the post-test. 

Not one comparison teacher who was missing the argument on the pre-test picked it up 

on the post-test.  

Table 5.12 

Percent of experimental and comparison teachers who noticed none or the complete 
argument by contradiction on the pre and post-test. 

Teacher Population % Missing % Complete 

Experimental Pre-Test 95.5 4.5 

Experimental Post-Test 68.2 31.8 

Comparison Pre-Test 87.8 12.2 

Comparison Post-Test 87.8 12.2 
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Chapter 6: Tracing the Shifts in Reasoning and Beliefs 
In addition to the pre and post assessments that were analyzed in Chapter 5, the 

teachers participated in weekly online discussions and produced a final project that 

involved annotating video. These data were analyzed to gain insight into how their 

attending to student reasoning changed throughout the semester. Also it was of interest 

to identify common behaviors among the teachers who performed better on the pre and 

post-tests. Understanding what the successful teachers attended to during their 

discussions might provide guidelines for orchestrating productive discussions online to 

encourage teachers to attend to student reasoning. 

6.1 Online Discussions 

During the cycles of intervention, teachers watched and discussed videos, discussed 

assigned readings, reflected on presentations of guest speakers, analyzed samples of 

student written work, and continued the online class discussion about problem solving 

using eCollege. They had access to videos and student work that were stored on the 

VMC repository. Discussion prompts were provided for the online component and these 

questions can be found in Appendix H. For each course iteration, the teachers were 

randomly assigned to small groups of three to four members to encourage discussions 

online. There were four discussion groups each semester. Occasionally, ideas from one 

group were posed to the other groups for whole class discussions. The expectation was 

that teachers posted an initial response to the prompts halfway through the week and 

then respond to at least two other people before the week was over. The discussion text 

was extracted from the course website as PDF files for analysis. Each cycle generated 

approximately 160 pages of text. With 6 cycles each semester, each iteration produced 

between 900 and 1000 pages of text to analyze. The modules that were related to 

student work are not a part of this analysis.  
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6.1.1 Methodology. 
For each cycle, a random iteration was chosen for the initial analysis (e.g., Cycle 1 was 

taken from Iteration 2, Cycle 2 from Iteration 4). The data were open coded by three 

graduate students and then discussed when needed to resolve differences. After the 

discussions, a set of codes were developed which were then used to code the entire 

data set. The codes were grouped into three categories; codes related to the videos, 

codes related to the readings, and a general code about mathematics education. The 

data were split among the three coders with 20% overlap. Again, coders met regularly to 

discuss their results and compare their results to the overlapped data.  Two running 

totals were kept - the frequency of a code appearing and the percentage of teachers 

during that cycle who mentioned the code. Since the teachers made multiple posts and 

the posts could contain multiple instances of a code, the frequency of a code appearing 

could exceed the number of teachers in the class. A second tally of the percentage of 

teachers who mentioned the code was maintained in the event a teacher mentioned a 

code multiple times. It was important to avoid skewing the results by making it appear as 

if many of the teachers were talking about a subject when they actually were not. 

6.1.1.1 Codes related to the videos. 
Eight codes emerged related to videos heading. Three of the codes had to do with 

relating what the teacher saw on the video to either their own problem solving, a teacher 

in the class’s problem solving, or to a student from a previous video they had watched in 

the class. Examples of these codes were along the lines of “The strategy Brandon used 

in the video is similar to the way I thought about the problem with the Tower colors being 

analogous to the pizza topping being on or off”. The relationship could be positive (such 

as described previously) or negative (e.g., My strategy was more efficient than the 

strategy used by the students). Two of the codes were based on whether or not the 

teacher compared what went on in the readings to what they saw in the video (e.g., In 
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the reading they talked about the benefits of peer to peer questioning and you could see 

examples of that when Milin asked Stephanie about her answer) and relating the video 

to some sort of teaching practice (e.g., The questions asked by the researcher were 

open-ended which allowed Stephanie to explain her reasoning fully). 

         A second group of codes had to do with the problem solving exhibited by the 

students in the videos they watched. The discussions were coded to look for 

acknowledgement of the reasoning displayed by the students and the representations 

they used. For the reasoning code, the teachers could either identify the reasoning 

correctly (e.g., Stephanie separated her argument into multiple cases - those with 0 blue 

and 3 red, 1 blue and 2 red, 2 blue stuck together and 1 red, 2 blue stuck apart and 1 

red, and 3 red and 0 blue) or incorrectly (e.g., When Jeff was calculating the number of 

wins for the World Series he took the total number of combinations and divided them by 

each other). The teachers who also made faulty inferences or who incorrectly interpreted 

student behaviors by making claims that were false (e.g. attributing to students 

statements that were not made) were also coded at incorrect. Codes were also applied 

when the teachers mentioned a representation constructed by the students. Examples of 

representations were use of certain notations, drawings, or tables. 

6.1.1.2 Codes related to the readings. 
Similar to the video codes, the reading codes contained three that related something in 

the readings to either the teachers own, others’ in the class, or students’ from the videos 

problem solving. The other two codes were relating the readings to something that 

occurred in the video or to the practice of teaching (e.g., The article talked about the 

studnts [sic] difficulty in producing proofs, and when I teach I have the same issues in 

my classroom). 
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6.1.1.3 General codes. 
Only one code fell under this category and that had to do with referring to arguments and 

justifications as a social activity. The reason this code was separated from the video and 

reading categories is that when coding the data it was hard to discern whether or not the 

teacher was referring to the social aspect as a result of watching the video, reading the 

papers, previously held beliefs, or engaging in the problem solving themselves. An 

example would be “The need for justification is what leads students to think deeper 

about a topic and fully understand the specific problem. Being able to explain and justify 

their solutions and convince others of their solution is a very powerful tool and perhaps is 

where the most learning takes place. Conceptual learning and understanding arises 

when there is reason to support it. This is what made Romina’s proof so convincing.”. 

While this post referenced the video of Romina’s Proof to Ankur’s Challenge there is no 

indication that the video was the cause for the thought or whether the teacher had the 

thought and used the video to support the argument. Originally, when tying this code to 

either video or the readings, it produced a lot of variability among the coders. The idea of 

referring to arguments and justifications as a social activity is an important concept for 

mathematical reasoning and to not lose the code, it was kept but just not in relation to 

the video or readings and instead stood on its own. 

  

6.1.2 Coding an example online cycle. 
This section will describe one cycle of data from one iteration. The data in this cycle took 

place in the fifth week of the course during the first iteration and lasted two weeks. 

During the in-class problem solving, the teachers worked in small groups on the Ankur’s 

Challenge (Appendix B.X) task. After presenting their solutions to the class and 

discussing them, their follow-up assignment was to study a video, Romina’s Proof to 

Ankur’s Challenge, of five 10th grade students who worked on the same problem-solving 
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activity. In addition to the video, they were to read a paper by Erna Yackel and Gila 

Hanna (2003) about the importance of Reasoning and Proof. Specifically, the posted 

assignment was: 

  

This week's assignment for online work involves a video and three readings, with 

threaded discussion, that follows class work on problem solving for the Ankur's 

Challenge task.  The following are intended to guide discussion in your small groups: 

(1)  Describe Romina’s strategy for solving the “Ankur’s challenge” problem. 

(2)  In your opinion, is this solution a convincing one?  Why or why not? 

(3)  According to the Yackel & Hanna chapter, both von Glaserfeld and Thompson 

equate reasoning with learning (p. 227).  From this perspective, in what ways do 

explaining and justifying contribute to learning mathematics? 

  

Pooling the data analyzed across the four groups of teachers, a total of 71 posts 

were made in the discussion threads. Individual posts tended to be rich in the scope of 

commentary that the teacher offered in their respective group’s discussion thread. That 

is, a single post often commented on more than one aspect of teacher reflection on 

problem solving within context of the study. An example of the code “referred to 

arguments/justifications as a social activity” was a post by Mike (all names are 

pseudonyms) that said “I think asking the students to convince their peers is what makes 

this study special, the solution is not very important. When trying to convince someone 

the students really deepen their understanding as Beth says reformulate, reorganize, 

rethink, and restate their argument.” By considering the video episode in its broader 

context of the research study from which it came, Mike is noticing how certain features of 

the learning environment, namely peer evaluation of arguments, contribute to learning 

mathematics with understanding. A post by a student, Tom, that was coded for both 
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correctly mentioning the reasoning of a student in the video and acknowledging 

representations they used read “I agree with you that “explanation and justification help 

the student rethink about his/her ideas and push him to make sense of their findings 

before making them public”. This is why Romina was successful in her proof. Every time 

she explained herself, she was able to make more sense of it and therefore justify her 

findings better. At first, she had 2’s next to each of the 6 towers and then got confused 

herself why they put them there, then erased them and rewrote her solution in a more 

clear, convincing way. If Romina did not have to explain herself and justify her solution, 

she may have never came up with the nice, elegant solution that she did”. All the posts 

were coded based on the scheme described in 6.1.1. 

Table 6.1 summarizes the codes for the cycle. For this cycle, a major point of 

discussion was the video of Romina’s Proof to Ankur’s Challenge where 52 of the 71 

posts contained at least one reference to the video. Though the reading was mentioned 

11 times in 71 posts, only one teacher posted about the connection between the reading 

and their own problem solving. The same student then made a connection between what 

Romina did in the video to the reading, as well as how to teach proof in the classroom. 

Another common theme in the discussions was this idea of learning as a social activity. 

This can be seen in the excerpt of Tom’s post above where he talks about how 

explaining and justifying and how it made Romina successful in her proof. Eighty-four 

percent of the teachers across the four groups mentioned this topic at least once in their 

postings. 
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Table 6.1 

Distribution of codes from a sample online discussion cycle.  

Theme of reflective commentary Frequency 

% of participants who 

mentioned topic 

Mentioned video at all 52 100% 

Related video(s) to own problem solving 23 95.2% 

Related video(s) to others' (in-class) 

problem solving 14 57.1% 

Related video(s) to others' (students from 

videos) problem solving 9 42.85% 

Mentioned (correctly) the reasoning of a 

student from video 17 61.9% 

Mentioned (incorrectly) the reasoning of a 

student from video 1 4.7% 

Acknowledged the representations used by 

a student in a video 6 23.8% 

Related video(s) to the practice of teaching 16 57.1% 
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Mentioned reading at all 11 23.8% 

Related reading(s) to own problem solving 1 4.7% 

Related reading(s) to others' (in-class) 

problem solving 0 0% 

Related reading(s) to others' (students from 

videos) problem solving 1 4.7% 

Related idea from reading(s) to video(s) 1 4.7% 

Related idea from reading(s) to the practice 

of teaching 2 4.7% 

Referred to arguments / justification as a 

social activity 21 85.7% 

 

6.1.3 Online discussion analysis. 
Three types of analysis were conducted on the online discussion data. The first analysis 

compared the type of posts the teachers made across each cycle during each iteration. 

The second analysis compared the ratio of posts about video to posts about the reading 

and posts about the classroom environment. The third analysis looked at the growth of 

attending to representations across each iteration. 
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6.1.3.1 Comparing types of posts across cycles. 
Figures 6.1 – 6.5 look at the distribution of codes for each cycle separated by each 

iteration. Several themes emerged across all the iterations. 

Note: On Figure 6.1 – 6.5 the legend across the X-axis from left to right reads: Related 

video(s) to own problem solving, Related video(s) to others’ (in-class) problem solving, 

Related video(s) to others’ (students from other videos) problem solving, Mentioned 

(correctly) the reasoning of a student from the video(s), Mentioned incorrectly the 

reasoning of a student from the video(s), Acknowledged the representations used by a 

student in the video(s), Related video(s) to the practice of teaching, Related reading(s) 

to own problem solving, Related reading(s) to others’ (in-class) problem solving, Related 

reading(s) to others’ (students from videos) problem solving, Related idea from 

reading(s) to video(s), Related idea from reading(s) to the practice of teaching, Referred 

to arguments / justification as a social activity.  

 

 

Figure 6.1: Distribution of codes by cycle for Iteration 1. 
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Figure 6.2: Distribution of codes by cycle for Iteration 2. 

 

Figure 6.3: Distribution of codes by cycle for Iteration 3. 
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Figure 6.4: Distribution of codes by cycle for Iteration 4. 

 

Figure 6.5: Distribution of codes by cycle for Iteration 5. 
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6.1.3.1.1 Relating video(s) to problem solving. 
Across all iterations, there is steady growth between the number of references to relating 

video(s) to own and others’ (both in-class and students from videos) problem solving 

from cycle 1 to 4. There was a decrease during cycle 5 which was about probability. The 

videos in cycle 6 had little to do with problem solving and were more about reflecting, so 

the drop in reference to videos there makes sense since there was no problem solving 

component to the cycle.  

 

6.1.3.1.2 Increase in attending to correct reasoning and decrease in incorrect 
reasoning. 

Similar to the results about relating video(s) to problem solving, attending to the correct 

reasoning of the students in the video increased from cycle 1 to 4 while attending to 

incorrect reasoning decreased. The probability cycle showed a reverse in the trends as 

fewer posts noted the correct reasoning displayed in the video and there was an 

increase in attending to incorrect reasoning.  

 

6.1.3.1.3 Lack of posts relating readings. 
Across all cycles, the teachers’ posts about the readings rarely tied into theirs and 

others’ problem solving. Few made a connection between the readings and what they 

watched in the videos or the practice of teaching. There is evidence that the teachers 

read the papers as they did post about them, but the posts tended to be summaries of 

what they read instead of relating it to other ideas. Although less common, some 

teachers also posted summaries of the videos without attending to any of the topics. 

 

6.1.3.1.4 Classroom environment. 
Throughout each cycle and iteration there was an increase in the number of posts that 

referenced the idea that mathematical reasoning and justification are best suited in an 

environment that promotes collaboration among students. During the last cycle, which 
 

 



82 
 

was a reflection cycle, the majority of posts focused on this concept as the teachers 

attended to the features of the classroom that were similar across all the videos they 

watched throughout the semester.  

 

6.1.3.1.5 Relation to practice. 
In two of the cycles (3 and 6) the teachers related the videos more often to the practice 

of teaching. Neither cycle had many teachers relating the ideas presented in the 

readings to their practice. Not captured in the figures above is the difference between 

PST and ISTs who tie the video to practice. This topic is explored in section 6.1.4.  

 

6.1.3.2 Ratio of posts about video to other types of posts 
This analysis looked at the percentage of the posts which were about videos, readings, 

and other topics (i.e., the classroom environment). Figures 6.6 – 6.10 show that across 

all cycles and iterations, the majority of the posts referred to the videos. The first cycle 

contained the most posts the referred the readings, but the amount stayed relatively low 

throughout each cycle. During the last cycle there was an increase in the amount of 

posts that attended to the learning environment.  
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Figure 6.6: Comparison of percent of posts about videos, readings, and other (i.e., 
argument and justifications as a social activity) by cycle for Iteration 1. 

 

Figure 6.7: Comparison of percent of posts about videos, readings, and other (i.e., 
argument and justifications as a social activity) by cycle for Iteration 2. 

 
 



84 
 

 

Figure 6.8: Comparison of percent of posts about videos, readings, and other (i.e., 
argument and justifications as a social activity) by cycle for Iteration 3. 

 

Figure 6.9: Comparison of percent of posts about videos, readings, and other (i.e., 
argument and justifications as a social activity) by cycle for Iteration 4. 
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Figure 6.10: Comparison of percent of posts about videos, readings, and other (i.e., 
argument and justifications as a social activity) by cycle for Iteration 5. 

6.1.3.3 Growth of attending to representations. 
During the second Iteration, student work modules started to be included into the TLMR 

model. During Iteration 2 and 3 there were three modules of student work, a fourth 

module was added in Iteration 4, and a fifth and sixth were added during Iteration 5. In 

the intervention, the first student work module was always introduced during Cycle 2.  

 Figure 6.11 maps the frequency of the teachers attending to the representations 

the students created in the videos during their online discussion (Note: This analysis 

does not include their discussion inside the student work module; these posts only 

reference the general discussion). In cycle 1, there is not much change between each 

iteration. In the other five cycles, there is not much change between Iteration 1 and 2 

(when there was no student work module). However, between iterations 2, 3, 4, and 5 

there is a significant change in the amount of discussion about the representations the 

students created in the videos. For example, in Iteration 1 during cycle 3 there were only 

six mentions about the student representations, but in Iteration 5 there were 22. Cycle 6 

saw a big shift from only 4 posts mentioning representations during Iteration 1 compared 

to 29 in Iteration 5.  
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Figure 6.11: Change of acknowledging representations in each cycle by each iteration. 

 

6.2 VMCAnalytic Topics 
During the third, fourth, and fifth years of the study, the teachers used a video 

annotation tool, the RUanalytic, to construct multimedia narratives using the videos on 

the Video Mosaic website. The assignment required that they edit and annotate video 

clips to use as evidence to highlight a topic they wanted to explore. Sample topics were 

tracing a student’s understanding of a mathematical topic over several problem sessions 

and focusing on the questions a teacher/researcher asks when facilitating a problem-

solving session.  

The teachers participated in training sessions to learn how to use the tool; they 

were provided text and video tutorials that covered the technical aspects of using the 

tool. As a component of the intervention, they also watched several VMCAnalytics which 

were published (i.e., peer reviewed and ingested into the VMC repository as permanent 

objects that could be shared). They also had several opportunities throughout the 

intervention to present their preliminary work to other teachers and the instructors to 

receive feedback. The teachers were grouped with two others from the class to work on 
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their project; they were given responsibility for providing feedback to each other using 

the commenting feature of the tool.  

 

6.2.1 Methodology. 
A feature of the RUanalytic tool is the capability to export all the text into a word 

document (Figure 6.12). All the teachers who participated in iterations three, four, or five 

had their analytics exported and coded for analysis by a team of three coders. Forty-

three VMCAnalytics were produced in the three iterations.  

Each VMCAnalytic has two parts; (a) an overall description where the teacher 

sets up their argument and describes what their VMCAnalytic is about and (b) a series of 

events that contain segments of a video clip and text that is displayed alongside the clip 

while it is playing. Initially, the text from both (a) and (b) was coded openly and 

discussed among the coders. The codes were then categorized into two groups, one 

that focused on the students and their thinking and the other that attended to 

teacher/researcher pedagogical moves.  Examples of codes that were categorized as 

focusing on the student included topics such as the following: tracing a student’s 

problem solving behavior for a particular task over several sessions; identifying the 

representations that were used by the students; following the strategies or reasoning 

used by a student while working on a problem; diagnosing the difficulty students had 

with a particular math topic; and making connections between what the students were 

doing and relevant literature. Examples of topics that were categorized under classroom 

environment are included the following:  attention to teacher questioning; promoting 

positive affect in students; and teacher/researcher pedagogical moves.  

In addition to incorporating their own text for the overall description and event 

descriptions and choosing the video clips for each event, the teachers were asked to 

identify a purpose for their VMCAnalytic. To do this, they were asked to choose from a 
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list of topics that were provided and select at least one from the list to describe the 

purpose of their analytic The topic choices were: (1) effective teaching, (2) homework 

activity, (3) lesson activity, (4) professional development activity, (5) sudent 

collaboration, (6) student elaboration, (7) student engagement, (8) student model 

building, (9) seasoning, and (10) representations. Along with the two other coders, 

concensus of the meaning of these terms evolved. Then, a secondary analysis on the 

VMCAnalytics was conducted in order to determine if the identified topics matched the 

content of the final analytics. 
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Figure 6.12: Example of an exported VMCAnalytic. 

6.2.2 Analysis of focus of VMCAnalytics 
Based on the coding of teachers’ overall description, each of the VMCAnalytics was 

grouped as either focusing on the student or focusing on the classroom environment. 

Overall, 25 out of the 43 (58.13%) VMCAnalytics were categorized as focusing on the 

students; 18 out of the 43 (41.87%) were categorized as focusing on the classroom 
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environment. Table 6.2 shows a breakdown by iteration and shows that in iterations 3 

and 5, there was a 2:1 ratio of focus on students compared to classroom environment 

whereas Iteration 4 was nearly even. 

Table 6.2 

Codes applied to teacher generated VMCAnalytics by each category.  

Iteration Focus on Students Focus on Classroom Environment 

3 8 4 

4 6 7 

5 12 6 

 

Based on the differences observed in Chapter 5 between PSTs and ISTs, it was 

decided to partition the data into those two groups to look for any differences. The 

results are found below in Table 6.3. Of the 25 VMCAnalytics that focused on students, 

22 (88%) of them came from ISTs and only 3 (12%) were from PSTs. Out of the 30 ISTs 

who created a VMCAnalytic in the last three iterations, 73.3% of them focused on the 

student, and 26.7% focused on the classroom environment. Of the 13 PSTs, only 3 

(23.07%) focused on the students and the other ten focused on the classroom 

environment (76.93%). 

Table 6.3 

Codes applied to teacher generated VMCAnalytics by each category comparing pre-
service teachers to in-service teachers. 
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Sub-population Focus on Students Focus on Classroom Environment 

PST 3 10 

IST 22 8 

Overall 25 18 

 

6.2.3 Analysis comparing their intended outcomes to what they showed. 
The teachers were able to add up to ten tags to identify the purpose of the VMCAnalytic. 

All forty-three teachers added at least one tag, with most teachers adding three. Table 

6.4 shows the breakdown of the tags applied. These are separated into either PST of 

IST groups. For both PSTs and IST, the most common tags they used were effective 

teaching, student elaboration, and reasoning. 

Table 6.4 

Topics selected by the teacher for what their VMCAnalytics showed. 

Topics PST IST Total 

Effective Teaching 6 10 16 

Homework Activity 0 0 0 

Lesson Activity 1 4 5 

Professional Development Activity 4 6 10 

Student collaboration 4 6 10 

Student elaboration 6 7 13 
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Student engagement 3 5 8 

Student model building 3 5 8 

Reasoning 8 10 18 

Representations 2 5 7 

 

Each VMCAnalytic was blindly coded using the categories described above 

along with an interpretation within that category. This researcher and the two other 

coders achieved IRR > 90% and came to agreement about the codes in which there was 

initial disagreement. These codes were then compared to what the teachers claimed to 

be the purpose of their VMCAnalytic.  

 Table 6.5 shows the results of the comparison. A difference between this 

researcher’s coding and the tags applied by the teachers appears with regards to PSTs 

coding of the reasoning purpose. Eight of the PSTs said the purpose of their analytic 

was to highlight student reasoning. However, of those eight teachers, only two actually 

referred to reasoning as a topic, whereas for ISTs 9 of the 10 that claimed to show 

student reasoning produced VMCanalytics that actually displayed student reasoning. For 

the ISTs, 10 teachers claimed that the purpose of their VMCAnalytic was to show 

effective teaching. However, only 3 teachers mentioned teaching at all. . 

Table 6.5 

Topics selected by the teacher for what their VMCAnalytics showed compared to what 
was coded by the author.  

Topic PST My coding PST IST My coding IST 
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Effective Teaching 6 5 10 3 

Homework Activity 0 0 0 0 

Lesson Activity 1 1 4 4 

Professional Development Activity 4 2 6 5 

Student collaboration 4 2 6 6 

Student elaboration 6 3 7 6 

Student engagement 3 3 5 5 

Student model building 3 3 5 5 

Reasoning 8 2 10 9 

Representations 2 2 5 5 
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Chapter 7: Discussion 

7.1 Introduction 
Five iterations of a graduate level mathematics education course taken by in-service 

(IST) and pre-service teachers (PST) were examined to study what teachers learned 

while undergoing an intervention model that was designed to promote their attending to 

student reasoning. Several themes emerged tracing how the teachers attended to 

student reasoning. Also studied were differences in recognizing student reasoning 

between subsets of teachers. This chapter will summarize the findings presented in the 

previous chapters. 

7.2 Validation of the Teacher Learning about Mathematical Reasoning (TLMR) 
Model 

A major finding of the study is the validation of the TLMR model where teachers’ 

engaged in open-ended problem solving, discussed their solutions, watched videos of 

students engaging in the same or similar tasks, and read about related work. When the 

results were analyzed in contrast to a comparable population, the teachers who engaged 

with the TLMR showed a significant positive shift in attending to videos of student 

reasoning and a shift in their beliefs towards what is outlined in the NCTM Standards. 

This shift was observed for both ISTs and PSTs. Considering the current environment of 

mathematics education with emphasis on the new Common Core Standards and the 

associated assessments that focus on mathematical reasoning, the results are 

important.  

 While there was some shift in teachers attending to the argument by 

contradiction from the pre-test to the post-test, it was only a small percentage of the 

teachers who recognized the argument by contradiction. Several studies (e.g., 

Thompson, 1996) have showed that students struggle with the idea of argument by 

contradiction with some not recognizing it as a valid form of arguing.  Others dismiss the 
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argument preferring to focus on more direct forms of argument. Future research is 

needed to understand why only about one third of the teachers’ attended to this 

argument compared to more than 70% for the other argument forms and also what 

intervention may help teachers attend to this valid   form of reasoning. One might 

speculate that the lack of understanding might be explained by different emphasis in 

curriculum, with less attention to logic and the equivalence of a statement and its 

contrapositive. 

7.3 Videos as Anchors for Discussions about Students Mathematical Reasoning 
For the online discussions, teachers had three sources they could draw upon: their own 

experiences, the videos, and the readings. Across all cycles and iterations, discussion 

about a video in which the teachers had to construct their own interpretation of events 

drove the discussion although textual resources were provided that explained topics in 

detail. Providing the teachers the opportunity to engage in the same problem solving as 

the students they observed on videos, and reflect on their own problem solving led to 

discussions that provided some insight into what the teachers were thinking as 

compared to the discussions about the readings which tended to focus on a summary of 

the main ideas of the reading without insight into ideas that the teachers may hold. Using 

the combination of problem solving with studying video provided an opportunity for 

teachers to engage and reflect with the ideas in new ways that were not available with 

only textual resources.  

7.4 Student Work and the Connection with Referencing Representations 
While during the first iteration of the study the teachers were attending to students 

reasoning in the videos, their posts were mainly referring to the verbal reasoning from 

the students as they talked with each other. Instances where the student representations 

were described tended to attribute wrong ideas to the students or misrepresent their 

representations. In the practice of teaching it is important for teachers to attend to both 
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the verbal and written reasoning of children. Also, the PSTs may not have had much 

opportunity to attend to student written work, while the ISTs regularly are expected to 

evaluate homework and tests.  

 After the first iteration, student work modules were introduced into the TLMR 

model. After participating in the modules, the teachers started to correctly reference the 

representations created by the students in the video more often and the variety of 

representations became a focal point for the discussion. The references to the 

representations did not take away from referencing the students’ verbal explanations. 

Instead, the teachers were now noticing both forms of reasoning and comparing and 

contrasting them with each other. Other studies on teacher noticing have only focused 

on video captured from a teacher’s own classroom (e.g., Sherin & van Es, 2009), video 

from a video repository (e.g., Maher et. al, 2014), or examining student work with writing 

assignments without using video (Warshauer, Strickland, Namakshi, Hickman, & 

Bhattacharyya, 2015). The results from this study show that it is possible for PSTs and 

ISTs to attend to student reasoning in both written and verbal form while making 

connections between them.  

7.5 Difficulty with Probability 
The fifth cycle of the intervention introduced the topic of probability through two problem 

tasks, the World Series problem and the Problem of Points. Previous to this cycle there 

was a steady increase in identifying the correct reasoning of the students in the videos 

and discussion about the students problem solving relative to their own and others. All 

the problems in the previous cycle were in the counting and combinatorics domain. 

However, during this cycle there was a consistent drop across each iteration with 

regards to those topics as well as an increase in faulty reasoning by the teachers in the 

study even after class discussions took place.  
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 While there is a relationship between the topics of combinatorics and probability, 

the jump from one to the other caused issues. There is extensive literature that shows 

both children and adults struggle with probability (e.g., Fischbein, 1975). In the fifth 

Iteration a simpler probability problem was added before the World Series problem to 

see if that would be helpful, but the differences were no significant. Future research is 

needed to understand the difficulties that students face as they connect the ideas in 

combinatorics and probability and how, if at all, the TLMR can help bridge the gap.  

7.6 Recommendations for PST training and PD Programs 
While both the PSTs and ISTs grew in attending to student reasoning, there were 

differences between the two populations. Comparing the two populations, the ISTs 

shifted more towards the beliefs expressed in the Standards and attended to more forms 

of reasoning than the PSTs. It should be emphasized that the PSTs in this study had 

little to no classroom experience. They did not, for example, participate in a practicum 

experience where they would observe a classroom for a set amount of hours per 

semester, and it was not a requirement for the course that they have a classroom 

experience. 

One possible explanation for the difference may be explained through their 

discussion posts. When discussing the students reasoning from the videos, the PSTs 

tended to give the credit to the learning environment instead of the reasoning of the 

student. When referencing the reasoning of a student, their discussion tended to be 

framed on how the teacher [note: In the videos the facilitators were researchers and not 

teachers, but both ISTs and PSTs tended to refer to them as teachers] promoted student 

reasoning through questioning or how the design of the tasks elicited the reasoning. This 

trend re-appeared in the topics the PSTs chose for the VMCAnalytic project as they 

overwhelmingly chose to construct narratives that were about features of the classroom 
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environment to highlight what they considered “good” teaching. While the PSTs claimed 

that their VMCAnalytics highlighted student reasoning, very few actually did.  

ISTs also attended to the features of the learning environment, but they also 

attributed agency to the student in developing their reasoning. Their posts and 

VMCAnalytics tended to reflect more of an interplay between the two whereas the PSTs 

also tended to look at it more like a script that you follow to get students to reason. This 

view is consistent with those expressed by Flores (2009) in that PSTs tend to first 

approach teaching through the eyes of the teacher and try to mimic teaching styles. 

Perspectives chosen by the PSTs seem to reflect their imminent concerns about 

pedagogy with transitioning to the new role of classroom teacher, whereas ISTs have 

the foundation of their prior experiences to focus on the details of students' learning as a 

primary aspect of pedagogy. 

Going forward, when working with PSTs and the TLMR model, the activities 

should be embedded in some sort of practicum or classroom experience for the PSTs. 

By giving them the opportunity to try the same or similar tasks with actual children and 

share their experiences with other PSTs and ISTs, they may be able to see the interplay 

between the environment and the students instead of just focusing on one of these 

factors. If possible, pairing the PSTs with ISTs in the same class would be ideal since 

they both will have a common experience going through the TLMR to discuss about and 

help each other make sense of their experiences instead of putting the PST into a more 

traditional type classroom which may cause confusion due to lack of support from the 

teacher.  

7.7 Limitations 
This study contributes to the literature about mathematical reasoning in a positive way. It 

reveals design practices that build pre and in-service teachers’ own reasoning as well as 

recognizing the growth of reasoning in students.  It is reasonable to expect significant 
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growth with certain conditions in place (e.g., duration of project, access to rich tools and 

relevant videos, opportunities to collaborate and exchange ideas). Knowledge about 

student reasoning can be used to help better equip teachers to teach mathematics as 

outlined in the mathematical Standards for Practice. The study revealed potential 

benefits of using video in teacher preparation and professional development with support 

from the resources available on the VMC. Studying participant use of the VMCAnalytic 

provides another assessment tool that can uncover their understanding of how students 

learn. Further, the study offered important new knowledge to modify course design so 

that student learning is optimized. 

  The results of this study may be generalizable for other students in a similar 

course setting. However, it is not expected that the results would generalize to teachers 

in courses whose designs are not comparable. Another limitation is the idea of 

scalability. The instructors of the course have experience working with teachers and the 

TLMR model. Future studies are needed to determine whether the model can be used 

by other instructors with the same success rate. However, these limitations are 

outweighed by the insight gained into the development of teachers recognizing and 

critiquing students’ reasoning and may guide future design and interventions.  

7.8 Future Studies 
7.8.1 Reasoning as a general skill. 
A future study can focus on determining whether learning to attend to student reasoning 

is embedded in a specific mathematical context or whether a teacher develop  general 

knolwdge across content domains in attending to reasoning skill. This study took place 

predominantly within the context of counting and combinatorics tasks.. It would be 

interesting to explore whether the knowledge the teachers gained transfer successfully 

to studying reasoning in another domain, such as fractions and rational numbers without 

directly experiencing working on the tasks and studying videos of students’ reasoning 
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about these tasks. Introducing the probability module in cycle 5 provided mixed results. 

Might that be due to the difficulty in learning probability ideas, or understanding 

probabilistic reasoning, or because the teachers did not have the knowledge to transfer 

to a new domain?  

7.8.2 Classroom applications. 
While both PSTs and ISTs grew in their ability to notice student reasoning, there needs 

to be work to understand how they take that knowledge to the classroom when they plan 

and enact their own lessons with their students. Developing the skill of attending to 

reasoning is crucial, but teachers also need to know how to engage with the student 

reasoning and use the reasoning in the lessons they teach. Future studies are 

suggested that follow teachers implementing of lessons in their own classrooms. 
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Appendix A: Example Class Syllabus 

Introduction to Mathematics Education, Fall 2010 (15:254:540  Sec. 01) 

HYBRID COURSE (Index # 01143) 

On-Campus Meeting Dates: 9/13, 9/20, 10/4, 10/18, 11/1, 11/8, 12/13, 12/20 

Mondays, 4:50-7:30, GSE Room 30 

Graduate School of Education, 10 Seminary Place 

Professor Carolyn A. Maher  

 

Chapter 8: CONTACT INFO 

Instructor Carolyn Maher 

Assistant Instructor Marjory Palius 

Course Web Support Robert Sigley 

  

OFFICE HOURS 

Mondays (on-campus dates only), 3:30-4:30 and by appointment 

 

OBJECTIVES 
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This course is designed to introduce participants to the field of mathematics 

education through a variety of activities that blend in-person, on-campus sessions 

with interactions done asynchronously online through a course web site.  The on-

campus activities will be to work in small groups on mathematical problem-solving 

tasks, with consideration of how K-12 students might engage with those tasks as 

they build solutions to problems. The online course work will include reading 

assignments that introduce participants to theoretical perspectives on learning and 

research in math education, with guidelines for engaging in reflection and discussion 

of those readings and considerations of their relevance to teaching practices. Other 

online course work will include studying video clips of children engaged in math 

problem solving and talking about their mathematical ideas; through reflection and 

online discussion the videos will be connected to the readings and hands-on problem 

solving.  Emphasis will be on the mathematics, children’s learning, and conditions of 

the learning environment. We will focus on the content strand of counting and 

combinatorics, from early years through high school, and consider implications 

drawn from research for instruction in light of NCTM Standards. 

 

This course also is designed as a site for examining how teachers can learn about 

students’ mathematical reasoning through studying videos that feature children doing 

thoughtful mathematics. Part of that process entails first engaging as a learner with 

cognitively challenging tasks by working with a partner or small group, and then 

attentively viewing videos of students who engage with those same tasks. You will 

complete assessments (pre and post) for measuring the impact of course activities in 

the focal mathematical strand on what you notice and how you describe what you 

observe in an example video and on beliefs about learning and teaching math. You 
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will be given a consent form about whether your assessments can be among those 

analyzed for ongoing research. Completing the assessments is not optional; it is a 

course requirement. 

 

COURSE REQUIREMENTS 

 

You are invited to be an active participant in the class through small group work in 

the classroom and though web-based discussions, projects, lectures and writing.  

Successful completion of the course requires that you engage in all activities and 

submit all assignments.  You are required to: 

 

1.  Complete all pre- and post-assessments. 

 

2. Attend all on-campus sessions and lectures.   

 

3. Actively participate in online discussions as you engage with assignments 

(readings and videos) and respond to guiding questions as posted on the 

eCompanion course website. You are required to make at least one original posting 

and respond to at least two group member postings per week. 

 

4.  Be knowledgeable of all the assigned readings and video clip viewings. 
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5. Prepare a teaching philosophy statement.  Note that this is a GSE requirement 

for the Introduction to Mathematics Education course.  More information will be 

provided to you with ePortfolio instructions, requirements, and rubric for evaluating 

your statement.  It will be due by November 15. This is a personal philosophy of 

teaching, which should include the following elements: 

a. Age group for which you are considering this personal statement of teaching 

b. What you think the purposes of schooling should be 

c. Your position on the questions or problems central to your discipline 

d. How students learn 

e. How you will teach 

f. Why and how you will respond to differences in ability, interest and 

background of your students 

 

6.   Complete an Individual / Group Research Project. You will work within small 

groups to do research about students learning mathematics using videos from the 

Davis Institute’s collection that were collected during the Informal Mathematics 

Learning study with urban middle school students. Each group member will transcribe 

about 20-25 minutes of video, and then partner with another group member to verify 

each other’s transcript. In this manner the groups will produce a verified transcript for 

the whole session to analyze collaboratively. Together, you will study the video and 

transcript to describe the emergence of particular mathematical ideas and ways of 

reasoning that are expressed by students as they engage in problem solving tasks 

that you will have done for yourselves in this course. You will be supported in your 

analysis, which will identify clips of video that illustrate how mathematical ideas and 

reasoning emerge during the session. Your group also will prepare short descriptions 
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of the video clips that you identify. PowerPoint™ presentations of findings will be 

presented to the entire class.  Also you will provide an individual final report of your 

analysis of the session that should draw from the group’s collaborative work. Formats 

for the presentations will be provided.  

 

7.   Complete a short (1-2 pages) reflection paper about your work in this course.  

This will be the final assignment and due on December 20. You should reflect on your 

knowledge of the mathematics, research on how students learn, and implications for 

teaching with regard to NCTM Standards. You may review your postings on the 

course web site and notes from problem solving and sharing of solutions as you 

develop your reflective assessment, which should be about one to two pages in 

length. 

 

You will be evaluated on your work products for individual / group research project, 

reflection paper, and teaching philosophy statement, as well as your participation in 

person and on line. 

 

COURSE OUTLINE AND ASSIGNMENTS 

9/8/201

0 

ONLINE 

ASSIGN

MENT  

Assignments – pre-assessments, readings, and 

respond online to guiding questions: Complete pre-

assessments using the eCompanion course web site. 

These assessments must be completed prior to the on-

campus class session on Sept. 13.  
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After completing the assessments, the reading 

assignment is: 

(1) Erlwanger, S. H. (1973). Benny’s Conception of 

Rules and Answers in IPI Mathematics. The Journal of 

Children’s Mathematical Behavior 1(2), 7-26.  

9/13/20

10 

ON-

CAMPU

S 

Class Activities: Introduction to the course; Engage in 

problem-solving task from early grades counting strand 

with problem extensions and focused discussion about 

representations; Review syllabus and discuss course 

requirements.  

Assignments – readings, videos and respond online 

to guiding questions: 

(1) Maher, C. A. & Martino, A. M. (1992).  Teachers 

building on students' thinking.  Arithmetic Teacher, 

39(7), 32-37. 

(2) Maher, C. A. & Weber, K. (2010). Representation 

Systems and Constructing Conceptual Understanding. 

Special Issue of the Mediterranean Journal for Research 

in Mathematics Education 9(1), 91-106. 

(3) Combinatorics book (Maher, Powell & Uptegrove, 

Eds.)*, chapters 1 & 2 

(4) Videos:  Clips to be posted on course web site 

(Shirts/Pants, Grades 2 & 3) 
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9/20/20

10 

ON-

CAMPU

S 

Class Activities:  Engage in task for building towers 

5/4/3/n-tall; Extend problem solving to “Guess My 

Tower” task; Discuss heuristics and problem solving for 

early tasks in counting strand, and ideas from assigned 

readings.  Introduce Projects 

Assignments – readings, videos and respond online 

to guiding questions: 

(1) Maher, C. A. & Martino, A. M. (1996).  The 

development of the idea of mathematical proof: A 5-year 

case study.  In F. Lester (Ed.), Journal for Research in 

Mathematics Education, 27 (2), 194-214.  

(2) Maher, C. A. (2009).  Children’s reasoning:  

Discovering the idea of mathematical proof.  In M. 

Blanton, D. Stylianou and E. Knuth (Eds.), Teaching and 

learning proof across the K-16 curriculum (pp. 120-132). 

New Jersey: Taylor Francis - Routledge. 

(3) Combinatorics book, Chapters 3, 4 and 5 

(4) Videos:  Building towers clips from grades 4 & 5; 

Interview with Meredith; Manjit’s clips 

9/27/20

10 

ONLINE 

ASSIGN

MENT 

Online Activities: Respond to the guiding questions to 

be posted online for engagement in threaded discussion 

about the various towers problem-solving tasks and 

related videos and readings. 

Assigned readings: 
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(1) JRME Monograph #4**, Introduction and Chapters 1 

and 2 

 

10/4/20

10 

ON-

CAMPU

S 

Class Activities: Engage in a pizza problem task: 

pizzas with halves, selecting from 4 toppings; pizzas, 

selecting from 4 toppings; pizzas, selecting from n-

toppings. Share how solutions were found and examine 

representations used in problem solving; Consider 

whether justifications offered are convincing and why / 

why not; Watch Brandon video and share observations / 

impressions; Discuss readings; Support for projects: 

status of transcription and verification 

Assignments – readings, videos and respond online 

to guiding questions: 

(1) Maher, C. A. & Martino, A. (1998).  “Brandon’s Proof 

and Isomorphism”. In C. A. Maher, Can teachers help 

children make convincing arguments?  A glimpse into 

the process. Rio de Janeiro, Brazil: Universidade Santa 

Ursula. 

(2) Combinatorics book, Chapters 6 

(3) Videos: PUP-Math Pizza clips 

10/11/2

010 

Online Activities:  Respond to the guiding questions to 

be posted online; Consider video clips viewed thus far 

and what they indicate about students’ learning of 
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ONLINE 

ASSIGN

MENT 

mathematics and the conditions of the learning 

environment; Share ideas and themes raised in the 

assigned readings. 

Assigned Readings: (1) Davis, R. B. (1992). 

Understanding ‘understanding’ (1992). The Journal of 

Mathematical Behavior, 11, 225-241. (2) JRME 

Monograph #4, Chapters 3 and 5 

10/18/2

010 

ON-

CAMPU

S 

Class Activities: Introduce “Ankur’s Challenge” as 

problem-solving task; 

Support for Projects: Discuss expectations for research 

projects in greater detail, specifically identification of 

clips based on where critical events occur. 

Assignments – readings, videos and respond online 

to guiding questions: 

(1) Combinatorics book, Chapter 8  

(2) Yackel, E. & Hanna, G. (2003). Reasoning and proof. 

In J. Kilpatrick, G. W. Martin, and D. Schifter, (Eds.), A 

Research Companion to Principles and Standards for 

School Mathematics (pp. 227-236). Reston, VA: National 

Council of Teachers of Mathematics. House E. 1980. 

Evaluating with validity. Sage Press, Beverly Hills. 

(3) Videos:  PUP-Math Romina’s proof 
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10/25/2

010 

ONLINE 

ASSIGN

MENT 

Online Activities: Respond to the guiding questions to 

be posted online for engagement in threaded discussion 

about ideas from recent problem solving activities and 

related videos and readings, with focus on reasoning 

and proof in mathematics.   

Assigned Readings: (1) Tsamir, P., Tirosh, D., Dreyfus, 

T., Barkai, R. & Tabach, M. (2009). Should proofs be 

minimal? Ms T’s evaluation of secondary students’ 

proofs. The Journal of Mathematical Behavior 28, 58-67.  

11/1/20

10 

ON-

CAMPU

S 

 

 

Class Activities: Engage in exploration of binomial 

expansion; Discuss readings. 

Guest Lecture: Professor Gunnar Gjone, What is 

Quality in Mathematics Teacher Education?- and How 

Can We Improve It? 

Assignments – readings, videos and respond online 

to guiding questions: 

(1) Maher, C. A. & Speiser, R. (1997).  How far can you 

go with block towers?  Stephanie's Intellectual 

Development. The Journal of Mathematical Behavior, 

16(2), 125-132.  

(2) Combinatorics book, Chapter 7 

(3) Videos: Clips from Eman’s dissertation research or 

?? 
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11/8/20

10 

ON-

CAMPU

S 

Class Activities: Exploration of Pascal’s Triangle; 

Investigation of meaning behind symbolic notation – 

Why does the addition rule work?  Discussion of 

readings.  Engage in the Taxicab Problem and share 

ideas that emerge from the task.  

Provide support for projects: preparation of descriptions 

for the groups’ selected video clips and their relation to 

input forms for placing clips into the VMC 

Assignments – readings, videos and respond online 

to guiding questions: 

(1) Combinatorics book, Chapters 12 and 13 

(2) Videos: Night Session clips and Taxicab clips 

11/15/2

010 

 

ONLINE 

ASSIGN

MENT 

Online Activities: Respond to the guiding questions to 

be posted online for engagement in threaded discussion 

about ideas from recent problem solving activities and 

related videos and readings, 

Guidelines to be posted for preparing for presentations 

in December 

Teaching Philosophy Statement DUE – Submit via 

Sakai per instructions 

Assignments – readings, videos and respond online 

to guiding questions: 
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(1) Maher, C. A. (2005).  How students structure their 

investigations and learn mathematics: Insights from a 

long-term study. The Journal of Mathematical Behavior, 

24(1) 1-14. 

(2) Francisco, J. M. & Maher, C. A. (2005). Conditions 

for promoting reasoning in problem solving: Insights 

from a longitudinal study. Special Issue: Mathematical 

problem solving: What we know and where we are going 

(Guest Editors: Cai, J, Mamona-Downs, J. & Weber, K.) 

The Journal of Mathematical Behavior, 24(3-4), 361-372. 

(3) Videos: clips from KW student interviews reflecting 

on their experiences 

11/29/2

010 

ONLINE 

ASSIGN

MENT 

Online Activities: Respond to the guiding questions to 

be posted online for engagement in threaded discussion 

about the STRAND of counting-combinatorics tasks and 

their impact on students in the KW longitudinal study, 

with focus on epistemology and the relationship to KW 

students’ reflections on their experiences. 

Assignments: Continue work on research projects. Do 

the post-assessments, which should be completed by 

end of November.  

12/6/20

10 

Online Activities: Complete post-assessments using 

the eCompanion course web site.  After these have 

been submitted, you may begin work on the reflective 
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ONLINE 

ASSIGN

MENT 

assessment. Work with your group to finalize 

presentations for research project reports.  

12/13/2

010 

ON-

CAMPU

S 

Class Activity: Research Project Reports 

  

12/20/2

010 

ON-

CAMPU

S 

Class Activity: Research Project Reports 

Reflection Paper DUE 

 

Notes about reading assignments: 

Assigned readings will be made available through the eCompanion site for this 

course. 

 

* Maher, C. A., Powell, A. B. & Uptegrove, E. (Eds.), (in press). Combinatorics and 

reasoning: Representing, justifying and building isomorphisms. Springer Publishers. 

Readings from the above-listed book are being made available, however the book is 

still in press and must not be cited. 
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The JRME Monograph #4 is: 

** Davis, R. B., Maher, C. A. & Noddings, N. (Eds.). (1990).  Constructivist views on 

the teaching and learning of mathematics: Journal for Research in Mathematics 

Education, Monograph No. 4.  Reston, VA: National Council of Teachers of 

Mathematics. 

 

As a general guideline for engaging in online discussions, we offer a few words 

on “Netiquete.”  This is drawn from Palloff, R. M., & Pratt, K. (1999). Building 

learning communities in cyberspace. San Francisco: Jossey-Bass, p. 101.  

 

• Check the discussion frequently and respond appropriately and on the subject 

• Focus on one subject per message and use pertinent, informative, and not-

too-long subject titles 

• Capitalize words only to highlight a point or for titles. Capitalizing otherwise is 

generally viewed as SHOUTING 

• Be professional and careful with your online interaction 

• Cite all quotes, references, and sources 

• When posting a long message, it is generally considered courteous to warn 

readers at the beginning of the message that is a lengthy post 

• It is inappropriate to forward someone else’s message(s) without their 

permission 
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• Use humor carefully. The absence of face-to-face cues can cause humor to be 

misinterpreted as criticism or flaming (angry, antagonistic criticism). Feel free to use 

emoticons such as :-) or ;-) to let others know that you’re being humorou
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Appendix B: Statement of Problems 

 B.1 Shirts and Pants 

Stephen has a white shirt, a blue shirt, and a yellow shirt. He has a pair of blue pants 

and a pair of white pants. How many different outfits can he make? 

 B.2 The Towers Problem 

You have two colors of Unifix cubes available with which to build towers. Make as many 

different looking towers as is possible, each exactly four cubes high selecting from 

those two colors. Find a way to convince yourself and others that you have found all 

possible towers four cubes high and that you have no duplicates. The problem can be 

expanded later to looking at towers of height: 5, 3, n and to more colors (e.g., 3 - yellow, 

red, and blue). 

 B.3 A Four-Topping Pizza Problem 

A pizza shop offers a basic cheese pizza with tomato sauce (no halves). A customer 

can then select from the following toppings to add to the whole basic pizza: peppers, 

sausage, mushrooms, and pepperoni. How many different choices for pizza does a 

customer have? List all the possible different selections. Find a way to convince each 

other that you have accounted for all possibilities. 

B.4 A Pizza Problem with Halves (Two or four toppings) 

A local pizza shop has asked us to help them keep track of certain pizza sales. Their 

standard ”plain” pizza contains cheese. On this cheese pizza, one or two toppings can 

be added to either half of the plain pie or the whole pie. How many possible choices for 

pizza do customers have if they can select from two different toppings (sausage and 

pepperoni) that could be placed on either the whole cheese pizza or half a cheese 
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pizza? List all the possible different selections. Find a way to convince each other that 

you have accounted for all possibilities. This problem can be expanded to using four 

toppings. 

 B.5 Ankur’s Challenge (Towers problem) 

Find as many towers as possible that are 4-cubes tall if you can select from three colors 

and there must be at least one of each color in each tower. Show that you have found 

all the possibilities. 

 B.6 The World Series Problem 

In a World Series, two teams play each other in at least four and at most seven games. 

The first team to win four games is the winner of the World Series. Assuming that the 

teams are equally matched, what is the probability that a World Series will be won: (a) 

in four games? (b) In five games? (c) In six games? (d) In seven games? 

 B.7 The Problem of Points 

Pascal and Fermat are sitting in a cafe in Paris and decide to play a game of flipping a 

coin. If the coin comes up heads, Fermat gets a point. If it comes up tails, Pascal gets 

a point. The first to get ten points wins. They each ante up fifty francs, making the total 

pot worth one hundred francs. They are, of course, playing ”winner takes all.” But then 

a strange thing happens. Fermat is winning, 8 points to 7, when he receives an urgent 

message that his child is sick and he must rush to his home in Toulouse. The carriage 

man who delivered the message offers to take him, but only if they leave immediately. 

Of course, Pascal understands, but later, in correspondence, the problem arises: how 

should the 100 Francs be divided? Justify your solution. 
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 B.8 The Taxicab Problem 

A taxi driver is given a specific territory of a town, represented by the grid in the diagram 

below. All trips originate at the taxi stand, the point in the top left corner of the grid. One 

very slow night, the driver is dispatched only three times; each time, she picks up 

passengers at one of the intersections indicated by the other points on the grid. To pass 

the time, she considers all the possible routes she could have taken to each pick-up 

point and wonders if she could have chosen a shorter route. What is the shortest route 

from the taxi stand to each point? How do you know it is the shortest? Is there more 

than one shortest route to each point? If not, why not? If so, how many? Justify your 

answers. 
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Appendix D – Student Work Assessment 

 

For each module the teachers were asked to comment on: 

a) correctness of their solution. 

b) insight into their strategy 

c) validity of their reasoning 

d) whether or not you find the solution convincing? 

If you do NOT find the solution convincing, indicate what aspect of their work you 

might ask them to say more about to help them move forward in developing a 

convincing argument? 
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Towers Selecting From Two Colors Module 

 

1) Student work by Tony, a 3rd grader, in response to the two-color towers 

problem. 
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2) Student work by Kelly, a 3rd grader, in response to the two-color towers 

problem
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3) Student work by Jaime, a 7th grader, in response to the two-color towers 

problem
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4) Student work by Cathy, a 6th grader, on the two-color towers problem
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Pizza Student Work Module 

1)  
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2)  
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3) 
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4)  
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Ankur’s Challenge Student Work Module 

1)  

 

 

2) 
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3) 
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Taxicab Student Work Module 

 

1) I assumed that the taxi stand was at point (0,0) on the grid (imagine the paper 

was turned 90 degrees counterclockwise). And therefore the blue point is (4,1), the 

green point is (5, 5) and the red point is (3,4). Since we don’t know distance, I am going 

to call each distance along one grid square, one unit. 

 

The shortest route between any two points is a straight line. However, we will assume 

that the taxi has to go on streets along the grid paths. Therefore, the shortest distance to 

each point is to move the minimum in each direction, x and y (down and right on paper if 

held upright), to get to the point. We can prove it for the blue point. 

 

For the blue point, we know the shortest distance as a bird flies would be the square root 

of 17. This is calculated using the Pythagorean Theorem with a right triangle of base 

lengths 4 and 1. However, if the taxi driver is moving along grid lines, she must move a 

distance in whole units (integers) as each pickup point is at an intersection of grid lines. 

The next greatest integer after the square root of 17 is 5. Therefore, 5 is the absolute 

minimum distance she could travel, we need to see if that can be achieved. 

 

Sure enough, this can be achieved by moving 4 units to the right and 1 unit up. So we 

know that the shortest distance is 5 units. And she is only going to want to go 4 times to 

the right and 1 unit up. Any more would be a waste of time and be longer. 

 

However, the next question is how many ways can she move 4 units to the right and 1 
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unit up? There is no restriction to the order of her moving in each direction. She has to 

move 5 units, but there are 5 different ways for her to get there. She could move UP at 

five different times. Either UP first, after going R once, after going R twice, going R three 

times or going all four rights. 

In order: URRRR, RURRR, RRURR, RRRUR or RRRRU. 5 ways. 

 

Another way to think of this is how many ways could we re-arrange the letters URRRR? 

While it may be easy to write them out like above, it gets harder as we move to the 

green and red dots. So it will be easier to get a general solution first. 

 

So first lets think about how many ways we can write out five terms where order matters. 

For instance if we had 5 people, how many ways could they line up against a wall? 

There are 5 people that could be selected for the first spot, after choosing one, there are 

only 4 for the second, then 3 for the third spot, 2 left for the fourth spot and only 1 for the 

last spot. So 5*4*3*2*1 or 5! ways of lining them up (120). So there are 120 ways or re-

arranging 5 items. This doesn’t equate with our answer of 5. Why? Because we can’t 

see all the repeated orders. 

 

We cannot distinguish between the different R’s when we re-arrange them. So imagine 

that for the five people that line up, four were identical male clones and one female. We 

may be selecting clone 1 then clone 2 or clone 2 and then clone 1 for the first two spots. 

However, an observer wouldn’t be able to tell the difference between the two 

arrangements. So in this list of 120 arrangements, we would have U R R R R and 

another U R R R R where the R’s moved. We just can’t tell the difference (and don’t 

want to care). 
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So how many ways were those 4 R’s rearranged? That’s the same method as above 

with the five people lining up. Its 4*3*2*1 or 4! (24). So every time we see the four Rs, 

there are actually really 24 different ways they were arranged that we cannot distinguish. 

We don’t want them counted and therefore that must be divided from our 5!. The U can 

only be written one way (1!), but I am including it to help us for the next two points. 

 

So our answer of number of routes to the blue point is 5! / (4! * 1!). or 120/24 = 5. 

 

Using this general solution, I think we can find the number of ways of getting to the red 

point (3, 4) which is 7 units from the stand by using 7! / (4! * 3!) or 35. We are really 

saying to get to the red point we need to go R R R U U U U in some order. The 7! / (4! * 

3!) is the number of distinguishable orders of writing that out. 

 

For the green point I got 252 different ways to go the distance of 10 units. 
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2)  
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3)  
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World Series Problem Student Work Module 

1)  
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2)  
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Problem of Points Student Work Module 

 

1) There will be at most 7 flips of the coin. so 100/7 equals 14 with a remainder of 2. For 

each flip of the coin the winner gets 14 francs. So in this case the person with 2 I think 

that was fermat, he gets 28 francs. Pascal who had one win gets 14. That leaves a 

difference of 58 francs left in the pot. Divide that evenly among them so that Fermat gets 

a total of 57 francs and pascal gets a total of 43 francs.  

 

2) We already know that the first 3 coin tosses were 2 heads and 1 tail (not necessarily 

in that order). In order to figure out who has a greater probability of winning, we need to 

look at the different ways for each player to win and the probability that each case 

happens. Fermat needs 2 more heads to come up before 3 tails do, in order to win. So, 

the different ways for Fermat to win will have 2 heads and 0, 1, or 2 tails. Also, a heads 

must be the last flip because it will end the game. These are the possible options for the 

remaining flips that will result in the Fermat winning: 

0 tails: HH 

1 tail: HTH, THH 

2 tails: HTTH, THTH, TTHH 

We can figure out the probabilities of each of these cases because we know that the 

probability that a head or a tail will occur is ½. 

P(HH)= (½)(½) = ¼ 

P(HTH)= (½)(½)(½) = 1/8 

P(THH)= (½)(½)(½) = 1/8 
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P(HTTH)= (½)(½)(½)(½) = 1/16 

P(THTH)= (½)(½)(½)(½) = 1/16 

P(TTHH)= (½)(½)(½)(½) = 1/16 

By adding these probabilities, we find that the probability that Fermat will win the game is 

11/16. In order for Pascal to win, he needs 3 tails to come up before 2 heads do. So, the 

different ways for Pascal to win will have 3 tails and 0 or 1 heads. Also, a tails must be 

the last flip, ending the game. Here are Pascal’s winning possibilites: 

0 heads: TTT 

1 head: HTTT, THTT, TTHT 

The probabilities are calculated the same way as before: 

P(TTT)= (½)(½)(½) = 1/8 

P(HTTT) = (½)(½)(½)(½) = 1/16 

P(THTT) = (½)(½)(½)(½) = 1/16 

P(TTHT) = (½)(½)(½)(½) = 1/16 

Adding up these probabilities, we see that Pascal’s chance of winning the game is 5/16. 

So, Fermat should get 11/16 of the francs, which is 68.75 francs. Perhaps he is a 

generous friend, giving Pascal the benefit of the doubt and can round down to 68 francs. 

Then, Pascal should receive 32 francs ( a little more than 5/16 of the francs). If Fermat is 

greedy, he’ll round up to 69 francs, giving Pascal 31 francs.  

 

3) I thought the best way to divide up the 100 francs would be to find the probabilities of 

Fermat and Pascal winning and use those results to divide the francs. I hope this is the 

proper strategy.  

 

Since Fermat is ahead two points to one, we need to calculate how many ways there are 
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for Fermat to win (had they continued playing). Since they have tossed the coin three 

times, and there is a maximum of 7 tosses before a winner is declared, there is a 

maximum of four possible coin flips left. There are three possibilities of the outcomes 

thus far: HHT, HTH, THH (since Fermat gets a point for heads, H, and Pascal gets a 

point for tails, T). 

 

Since there are four new coin tosses that could happen if they continued the game, let’s 

calculate the probability that either Fermat or Pascal would win. Fermat needs to get two 

more heads to win. Since there are four spaces to fill, that means that Pascal could get 

two tails. To find the number of ways to arrange the heads and tails we would do 

4!/(2!*2!) = 6.  Therefore there are six ways to rearrange the four possible positions left 

to play for Fermat to win. 

 

Since there are three scenarios: HHT, HTH, and THH, we can add the six ways that 

Fermat could win to either of these three possibilities (HHT, HTH, THH). Thus, we have 

3 * 6 = 18 possible ways for Fermat to win. 

 

Now let’s calculate the probability that Pascal were to win. Since he is down one to two, 

he needs three tails in order to win. There are only four positions left to play (if they had 

continued to play), and one of those positions would have to be a H by Fermat. Since 

there are again four spaces to fill, three of them must be tails and one must be heads, 

we have 4!/(3!1!) = 4.  Therefore there are four ways to rearrange the four possible 

positions left to play for Pascal to win. 

 

Since there are three scenarios, we can add the four ways that Pascal could win to 

either of these three possibilities. Thus we have 3 * 4 = 12 possible ways for Pascal to 
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win. 

 

Since there are 18 ways for Fermat to win, and 12 ways for Pascal to win, there are 30 

possible ways for either of them to win. Taking the probability for Fermat to win, would 

be 18/30 = 3/5 and the probability for Pascal to win, would be 12/30 = 2/5. 

 

With these probabilities, we can divide up the 100 francs. 100* (3/5) = 60 and 100*(2/5) 

= 40.  60 + 40 = 100 francs, so all francs are accounted for. 
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Appendix E: Belief Assessment 

      

1. Learners generally understand more mathematics than their teachers or parents 

expect.  

  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

  

  

2. Teachers should make sure that students know the correct procedure for solving 

a problem.  

  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

  

  

3. Calculators can help students learn math facts.  

  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  
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4. It’s helpful to encourage student-to-student talking during math activities.  

  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

  

  

5. Math is primarily about learning the procedures.  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

 Students will get confused if you show them more than one way to solve a problem.  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

 All students are capable of working on complex math tasks.  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

 Math is primarily about identifying patterns.  

  1  2  3  4  5 

 Strongly Agree            Strongly Disagree  

  

  

6. If students learn math concepts before they learn the procedures, they are more 

likely to understand the concepts.  
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  1  2  3  4  5 

 Strongly Agree            Strongly Disagree  

 Manipulatives should only be used with students who don’t learn from the textbook.  

  1  2  3  4  5 

 Strongly Agree            Strongly Disagree  

7. Young children must master math facts before starting to solve problems.  

1  2  3  4  5 

 Strongly Agree            Strongly Disagree  

 Teachers should show students multiple ways of solving a problem.  

  1  2  3  4  5  

Strongly Agree            Strongly Disagree  

8. Only really smart students are capable of working on complex math tasks.  

  1  2  3  4  5 

 Strongly Agree            Strongly Disagree   

9. Calculators should be introduced only after students learn math facts.  

 1  2  3  4  5  

 Strongly Agree            Strongly Disagree  

10. Learners generally have more flexible solution strategies than their teachers or 

parents expect.  

 1  2  3  4  5  

 Strongly Agree            Strongly Disagree  

11. Math is primarily about communication.  

 1  2  3  4  5  
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 Strongly Agree            Strongly Disagree  

12. Manipulatives cannot be used to justify a solution to a problem.  

1  2  3  4  5  

 Strongly Agree            Strongly Disagree  

13. Learners can solve problems in novel ways before being taught to solve such 

problems.  

1  2  3  4  5   

 Strongly Agree            Strongly Disagree  

14. Understanding math concepts is more powerful than memorizing procedures.  

1  2  3  4  5   

 Strongly Agree            Strongly Disagree  

15. Diagrams are not to be accepted as justifications for procedures.  

1  2  3  4  5  

 Strongly Agree            Strongly Disagree  

  

16. If students learn math concepts before procedures, they are more likely to 

understand the procedures when they learn them.  

1  2  3  4  5  

 Strongly Agree            Strongly Disagree  

17. Students are able to tell when their teacher does not like mathematics.  

  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

18. Collaborative learning is effective only for those students who actually talk during 

group work.  
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              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

19. Students should be corrected by the teacher if their answers are incorrect.  

  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

20. Mixed ability groups are effective organizations for stronger students to help 

slower learners.  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

21. Collaborative groups work best if students are grouped according to like abilities.  

  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

22. Conflicts in learning arise if teachers facilitate multiple solutions.  

  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

23. Learning a step-by-step approach is helpful for slow learners.  

  

              1    2    3    4    5  

 Strongly Agree            Strongly Disagree  

24. Only the most talented students can learn math with understanding.  
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1  2  3  4  5  

 Strongly Agree            Strongly Disagree  

25. The idea that students are responsible for their own learning does not work in 

practice.  

1  2  3  4  5  

 Strongly Agree            Strongly Disagree  

26. Teachers need to adjust math instruction to accommodate a range of student 

abilities.  

1  2  3  4  5  

 Strongly Agree            Strongly Disagree  

  

27. Teacher questioning of students’ solutions tends to undermine students’ 

confidence.  

  

1  2  3  4  5  

 Strongly Agree            Strongly Disagree  

  

28. Teachers should intervene as little as possible when students are working on 

open-ended mathematics problems.  

  

1  2  3  4  5  

 Strongly Agree            Strongly Disagree  
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29. Students should not be penalized for making a computational error when they 

use the correct procedures for solving a problem.  

  

1  2  3  4  5  

 Strongly Agree            Strongly Disagree  
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Appendix F: Reasoning Assessment 

 

Title:    Gang of Four  

  

Context:   This episode is an assessment interview with four 4th grade students, 

Milin, Michelle, Jeff and Stephanie, for building all possible different towers of a 

particular height when selecting from two colors of unifix cubes. The children, 

working in pairs, had built towers four and five cubes tall during class sessions. 

Each of the children was subsequently interviewed individually and asked to 

describe how he or she had approached the tasks and to justify any solutions 

that had been constructed. In this group interview, the students are sharing their 

ideas about the towers problems, explaining and justifying their solutions to 

each other. While they consider towers of various heights during the session, 

they specifically reason about towers that are three cubes tall. Although unifix 

cubes were available, the children chose not to use them during the interview. 

The segment begins with short clips from the 4th grade classroom session to 

provide a background context of the students’ building and organizing their 

towers with unifix cubes.  

  

  

After viewing the video of the children explaining and justifying their approaches 

to the problems, please describe as completely as you can: (1) each example 

of reasoning that a child puts forth; (2) whether or not the reasoning forms a 

valid argument; (3) whether or not the argument is convincing; and (4) why or 
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why not you are convinced. Give evidence from the interview to support any 

claims that you make. You may refer to the attached transcript as needed.   

  

Each response will be evaluated according to the following criteria:  

• Recognition of children’s arguments  

• Your assessment of the validity or not of children’s reasoning  

• Evidence to support your claims  

• Whether the warrants you give are partial or complete  

  

Video is located at:  

  

Part 1 - https://www.youtube.com/v/_nlgGLDxMWQ  

  

Part 2 - http://www.youtube.com/v/GeCSMI7xOcE  
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Appendix G: Reasoning Grading Rubric 

 

Instructions for completing the on-line Rubric for scoring a participant response 

to the Gang of Four assessment video:  

  

Enter the ID number where indicated on the video assessment form. As 

you scroll through the rubric, mark the appropriate box to indicate the 

presence or absence of each item in the rubric relative to the 

participant’s description of the children’s activity in the video.  

  

A. The first section of the rubric deals with items referring to the 

mathematical ideas in the task that may be identified by participants and 

includes the following four categories: Problem Tasks, Representations, 

Mathematical Reasoning and Arguments.     

  

B. The second section of the rubric deals with whether or not the 

participant considered the student(s)’ reasoning and arguments to be 

convincing. As each response is scored, a list gets generated of those items 

identified by the scorer in the first section as reasoning that was noted by the 

participant. For each of these items, the scorer notes whether the participant 

indicated that he/she found the reasoning to be convincing or not convincing.   

  

Note that a participant’s remarks about a child’s reasoning, argument or 

behavior should only be scored as “convincing” or “not convincing” if 
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the participant specifically indicates that to be the case somewhere in 

the response.  

  

Scoring Holistically 

Study participants watch a video clip from the “Gang of Four” interview with 

researcher and four 4th graders: Milin, Michelle, Jeff and Stephanie.  In an 

open-ended format, participants respond to a prompt that asks them to 

describe as completely as they can: (1) each example of reasoning that a 

child puts forth; (2) whether or not the reasoning forms a valid argument; (3) 

whether or not the argument is convincing; and (4) why or why not you are 

convinced. They are asked to give evidence from the interview to support any 

claims that they make; and they are provided with copy of transcript for the 

video clip.  

  

Always begin scoring of an assessment by reading the participant’s 

response in its entirety to get a sense of its scope.  Then review it again 

more carefully to look for written evidence that support scoring of particular 

rubric items. Because the response format is totally open ended, the 

participant has freedom to express response in any desired organization. The 

entire response must be considered, since a participant may respond to one 

part of the assessment instructions in detail and not repeat this detail in 

response to the other parts. Indication of convincingness may occur in any 

portion of the participant’s response to the assessment.  
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Note that the scoring focus is on mathematical reasoning, and of less 

importance is the language used to express that reasoning.  A sophisticated 

response may name argument type and discuss it only in general form. Other 

responses may use very informal language. What someone says in his or her 

response matters more than how it is expressed. Examples can be helpful. 

Thus, we will use a Wiki to post illustrative (but not exhaustive) examples from 

participant response data that was scored in previous efforts.  

  

Scorer’s Guide to use in responding to the rubric concerning Problem Tasks, 

Mathematical Representations, Reasoning and Arguments (Questions 1 through 8):  

  

The following is a list of Problem Tasks, Representations, Mathematical 

Reasoning and Arguments referred to by the children during the video.  Items 

have been identified by the research team from studying the transcript as well as 

the video.    

  

1. Problem Tasks identified   

a. Towers of height 3-cubes with two colors  

b. Towers of height 2-cubes with two colors  

c. Towers of height 4-cubes with two colors  

d. Towers of height 5-cubes with two colors  

e. Towers of height 10-cubes with two colors  

f. Towers of any height (height “n”) with two colors  
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Examples:  

• a. Towers of height 1-cube with two colors  

”how many patterns they could make from towers of 1 block, 2 blocks, 3 blocks, 

etc.”   

“Since there can only be 2 towers for tower of 1”  

• b. Towers of height 2-cubes with two colors  

”how many patterns they could make from towers of 1 block, 2 blocks, 3 blocks, 

etc.”   

“…and for towers of 2, they saw that…”  

• c. Towers of height 3-cubes with two colors  

”how many patterns they could make from towers of 1 block, 2 blocks, 3 blocks, 

etc.”  

“So for 3 high, build towers of all red…”  

• d. Towers of height 4-cubes with two colors  

“…worked together to figure out how many different four and five block 

combinations a person can make using two different colored unifix cubes.”  

“It also led Michelle to the incorrect conclusion that there are 12 towers with a 

height of four blocks.”  

• e. Towers of height 5-cubes with two colors  

“…worked together to figure out how many different four and five block 

combinations a person can make using two different colored unifix cubes.”  

“Jeff was able to use the pattern ‘times 2’ to justify the towers of 5 question…”  

• f. Towers of height 10-cubes with two colors  

“led Stephanie to finally say a ten block tower had 1,024…”  

“…at the end, Stephanie ‘figured it out…’ towers of 10 = 1,024.”  
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• g. Towers of any height (height “n”) with two colors  

“They realized that for every one tower of blocks of n height…”  

“In his own words, he explained why the pattern requires you to multiply 2 as n 

increases by 1.”  

  

2. Representations constructed or referenced  

a. Descriptions (verbal) of towers and how they are built  

“First she starts with a solid red tower, 2 red blocks. Then does the towers that 

have one blue so blue/red/red, red/blue/red, red/red/blue  

  

“…example of reasoning was making opposites. …the student used all of one 

color (blue) and then all of the other color (red). Next they went onto the top 

color different than the rest (red, blue, blue) and the opposite of that (blue, red, 

red)”   

b. Diagrams or charts of towers  

“She also used a diagram to support her answer.”   

“Once they start drawing the patterns down it was easier to see what they were 

saying.”   

  

c. Numbers or letters used as symbols to represent cubes or towers  

“Stephanie lists arrangements like r/r/r r/b/b etc.”  

  

  

 
 



168 
 

3. Numerical Reasoning Patterns identified   

Patterns mentioned by a participant may include only parts of the patterns 

listed below, but the scorer may be able to infer which pattern is being 

mentioned. a. Additive (2, 4, 6, 8 …..)  

  

b. Doubling or “times two” (2, 4, 8, 16 …)   

“…you just multiply by two.”  

“They continue to link the numbers of new towers to two times the previous 

number.”  

  

c. Base squared (1, 4, 9, 16, 25 ….)  

d. Alternative or combined  (2, 4, 8, 12 … ) EXAMPLE (MFP): WHEN 

PARTICIPANT MENTIONS AT LEAST 8 AND 12, THEN CHECK 3d.   

“It also leads Michelle to the incorrect conclusion that there are 12 towers with a 

height of four blocks.” “Michelle: ‘for this three high you would have eight towers 

and four high, you would have twelve towers and then you keep doing it like 

that…’.”  

  

  

4. Spatial Reasoning Patterns identified   

a. The term “pattern” referring to arrangement of colored cubes within a 

tower.  

“Showed pattern.”   
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“She followed a pattern while constructing her diagram: no blues (3 red), one 

blue…”   

  

b. Opposites (two towers with corresponding positions having alternate 

colors)  

  

“Jeff says that ‘everything is opposites’. He is using the pattern of switching 

colors.”  

“Jeff: ‘They’re all opposites’.”  

  

c. Identifying towers, or groups of towers, by the “pattern” of how colored 

cubes are placed (e.g., a “staircase” pattern of a single cube of one color in 

consecutively lower – or higher – positions in each tower; or towers with patterns 

of alternating colored cubes; or more than one cube of one color together in 

consecutively lower or higher positions).   

  

“She then puts 1 blue cube at the top of the 2 red blocks and moves the blue’s 

position ‘down the stairs.’ Next, Step shows all possibilities with 2 blues…”   

“They also argued it would be easier to (when drawing or building these towers) 

go by the order of how many blocks of each color they are using.”   

  

5. Other Reasoning Features noted   

• a.  Direct Answers (unexplained answers for number of towers for certain 

heights)  
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NOTE (MFP): 5a is only for those direct answers that do not connect to patterns 

(3 and 4) or other reasoning (6, 7, and 8).   

“Stephanie ‘figured it out…’ towers of 10 = 1,024.”  

  

b. Guessing    

Milin says this is guessing.”  

  

c. Randomly building towers and checking for duplicates  

“Finally a student randomly picked combinations until they thought they had 

exhausted all of them.”  

  

6. Inductive Argument (note that a participant may refer to it as recursive or 

including recursion). This argument may be expressed with reference to towers of 

a specific height, as in features (a) and (b) below. It also may be expressed in 

general form, as in features (c) and (d) below.  

a. When building towers selecting from two colors, there are exactly two 

unique towers of height one. With a single position in the tower, the one cube can 

be (say) either red or blue.  

  

“Since there can be only 2 towers for tower of 1…”   

  

   “…because you know the most basic number of towers for one height which is 

two…”   
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b. For the two unique towers, one cube in height, cubes of one of the colors 

can be placed on top of each tower producing two unique towers, 2 cubes high. 

Cubes of the other color can be placed on top of a duplicate pair of towers one 

cube high producing two more unique towers. The resulting four towers, 2 cubes 

high, will contain no duplicates since the two unique pairs differ from each other 

in the top cube.  

  

“…and for towers of 2, they saw that they can add either a blue or a red to each 

of the two towers. So blue + red and blue + blue possible for the first one and red 

+ blue and red + red possible for the second one, so they got 4 towers of 2.”  

   

c. Towers of any height, “n”, when selecting from two colors, can be 

generated similarly by taking all the towers with height, “n-1” – that are known to 

be unique with no duplicates because they were generated recursively from 

towers one cube high. Cubes of one of the colors (say, red) can be placed on top 

of each of the towers, producing unique towers “n” cubes high.  Cubes of the 

other color (say, blue) can be placed on top of a duplicate set of towers, “n-1” 

cubes high, producing a second set of unique towers, “n” cubes high.    

  

“Milin’s argument of adding ‘one more color for each one.’ He then clarifies it is 

actually two colors, blue or red which gives two towers per each tower of the 

previous height.”  
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d. The resulting total set of towers, “n” cubes high, will contain no duplicates 

since the two generated sets (each of which contained no duplicates) differ from 

each other in the top cube.  This resulting set of towers, “n” cubes high, will 

always include two times the number of towers as the “n-1” high set.  

  

“…you could add 1 of each color to the one end for a total of two more 

combinations. Which would double your answer. So each time you add one more 

block to the tower, your total number of different combinations doubles.”  

  

  

7. Stephanie’s cases argument for towers 3 cubes high selecting from two 

colors (blue and red) results in a set of 8 unique towers.  A complete argument 

includes the following cases with the justification for each case. Note that written 

responses by study participants may well be fragmentary and use much less 

precise language than the following. Also note that an argument can only be 

considering a cases argument, rather than the use of a pattern, if the participant 

clearly defines one or more of the cases; in other words, what it is a case of:   

  

a. All blue cubes or no red cubes resulting in only one tower.   

Justification – Any other 3 cube high tower that is all blue would be a duplicate of 

this one.   

  

“Stephanie’s use of patterns ‘one blue, two blues’ continuing to three blues.”   
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 Justification “..starting with all one color…”  

  

  

b. One blue cube and two red cubes resulting in three unique (different) 

towers.  Justification - No more towers can be created with one blue cube and 

two red cubes because there are only three positions in the tower for the blue 

cube to occupy. Another position – allowing another tower – would result in a 

tower 4 cubes high.  

  

“Then does the towers that have one blue so blue/red/red, red/blue/red, 

red/red/blue.”  

  

Justification “…and then putting in one of the other color in as many different 

places as possible.”  

  

c. Two blue cubes stuck together and one red cube resulting in two unique 

towers. Justification – No more towers can be created of two blue cubes “stuck 

together” and one red cube in the third position because the two together must be 

in positions one and two or two and three of the three possible positions in the 

tower.  

“She says that she is doing it with the blues stuck together.”   

  

 
 



174 
 

Justification  “Once that option was exhausted, the students went on to two of the 

other color stuck together as in many different places as possible.”   

  

d. No blue cubes or all red cubes results in one tower.   

Justification – Any other 3 cube high tower that is all red would be a duplicate of 

this one and there can be no more single color towers because there are only two 

colors.  

“First she starts with a solid red tower, 3 red blocks.”   

Justification “Once this was exhausted the student went to three of the other 

color.”   

  

e. Two blue “stuck apart” or separated by one red cube results in one tower.  

  Justification - No more towers can be created by two blue cubes “stuck 

apart” or separated by the red cube, because, with only three positions, position 2 

is the only one that can be considered “in-between” the other two.  

  

“ …until she got caught up in the issue of whether the 2-blue blocks were stuck 

together or apart.”  

Justification “Finally, the student split up the two of the other color to make her 

final variation.”   

  

8. An alternate cases argument for towers 3 cubes high selecting from two 

colors (blue and red) proposed by several of the children. Several of the cases 

overlap completely with the ones articulated by Stephanie and those should be 
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scored in Item 7. Only the portion of cases argument that is different from 

Stephanie’s is to be scored in Item 8.   

  

f. One red cube and two blue cubes resulting in three unique (different) towers.  

Justification - No more towers can be created with one red cube and two blue 

cubes because there are only three positions in the tower for the red cube to 

occupy. Another position – allowing another tower – would result in a tower 4 

cubes high.   

* Participants may describe argument 8f. as better (preferred, more elegant, etc.) 

than the way Stephanie organized her cases, which bifurcated 8f. into 7c. and 7e.   

  

“So for 3 high, build towers of all red, one red…”  

Justification “There’s red… blue/red/red and you can’t make any more in 

this, so you go on to the next one…”  

  

Scorer’s Guide to use in responding to the rubric concerning whether or not the 

participant considered the student(s)’ mathematical reasoning and arguments to be 

convincing or not convincing (Questions 9 through 12):  

  

9. For Question 9, the online rubric is programmed to generate a list 

including each of the items that the scorer marked positively for Questions 2 

through 8.  For each of these items, the scorer is to note whether the participant 

indicated that this particular mathematical reasoning and/or argument by one or 

more of the children was convincing. The absence of a positive (convincing) 
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response for any item does not necessarily mean that the participant considered 

this particular item to be NOT convincing.   

10. The scorer will only mark Question 10 positively if the participant indicates 

that the children’s mathematical reasoning was convincing but gives no specific 

details about which item of reasoning or piece of an argument was convincing.  

11. For Question 11, the scorer will consider an identical list of the items 

marked as present in the participant’s description in Questions 2 through 8. 

However, this time the scorer will only mark an item as present if the participant 

specifically indicates that it was NOT convincing.  

12. The scorer will only mark Question 12 as present if the participant 

indicates that the children’s mathematical reasoning was NOT convincing but 

gives no specific details about which item of reasoning or piece of an argument 

was convincing.  
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Appendix H: Discussion Prompts 

 

Cycle 1 

Week 1: 

We have a few assignments for the week. You are reading three articles: (1) from 

Skemp about relational and instrumental understanding; (2) from Erlwanger about a 

student named 

Benny, and (3) a chapter from Maher on the background of the longitudinal study. As 

you read these articles think about connections, if any, between/among them. 

Also, consider the following questions from each paper to guide your group 

discussion. 

 

Maher: Longitudinal study chapter: 

 

Consider the historical context of the study.  What, if anything, do you find striking? Are 

there aspects of the study that are relevant/plausible today? If so, what might they be? 

Skemp: Relational/instrumental understanding  

 

-Give  an example of “rule without reason”? and provide a rationale. 

 

Erlwanger: Benny article 

 

(a) In IPI, a proficiency level for students of 85% was established for all tests to monitor 

and diagnose student progress. While this seems like a reasonable goal, provide some 
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explanations as to how the tracking of Benny’s progress  failed. 

 

(b) Benny relied on recognizing patterns to solve problems.  Discuss the pros and cons 

of this approach. How, if at all, is Benny’s approach different than the patterns approach 

used by the students in the Gang of Four video? 

 

(c) Generalizations are an important objective in mathematical learning. It appeared that 

Benny liked to generalize.  Provide some explanations as to  why it did not work for 

Benny. 

 

(d) Discuss the pros and cons of instructional programs such as IPI and the 

restrictions/advantages, if any, for teachers. 

 

(e) How do you think Benny's mathematics thinking might have been different if he were 

involved in a classroom environment similar to the one during the longitudinal study? 

Week 2: 

 

1) For the videos you watched last week - What mathematical ideas were 

students building? How did they represent the ideas? What did you 

notice about how they worked together? 

 

 

2) Meredith was eight years old when working on building towers. 
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(a) Describe what evidence, if any, is there of knowledge building. 

 

(b) Describe the researcher’s intervention and how, if at all, you 

might have intervened otherwise. 

 

 

3) Discuss how an examination of students' representations might 

provide insight into their conceptual understanding. 

 

 

4) What understanding might be gleaned from Stephanie, Dana and 

Michael's representations in solving the outfit problem you watched 

last week? What about from the towers videos? 

Cycle 2 

Week 1: 

For this week we will read two articles about the concept of an isomorphism. There are 

also two videos: one about a student named Brandon and one of the Kenilworth 

students working on the pizza w/2 toppings with halves. For the video and readings, 

please discuss in your groups: 

 

1. Discuss the notation that Brandon used. In what ways was it helpful in relating his 

solution of the pizza problem (selecting from 4 toppings) to the 4-tall towers problem 

(selecting from two colors)? 
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2. Greer and Harel discuss the role of isomorphisms in mathematical cognition. What is 

an isomorphism? How is it related to mathematical cognition? 

 

3. Does Brandon control for variables in justifying his solution? If yes, describe. Do you 

notice any other forms of reasoning used by Brandon? 

 

4. Contrast your engagement in pizza problem solving with that of the children in the 

video. 

Week 2: 

1) Meredith and Jackie were eight years old when working on building towers.  

 

(a) Describe what evidence, if any, is there of knowledge building. 

(b) Describe the researcher’s intervention and how, if at all, you might have intervened 

otherwise. 

 

2) Discuss the complexity of organizing instruction so that ideas might travel in a 

classroom. Draw from your participation in Monday’s class as well as what you see in 

the video of students working on pizza problems last week. 

 

 

3) Discuss the interplay of concrete experience in building mathematical knowledge. 
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            (a) Describe merits/obstacles 

            (b) Give examples 

  

4) Maher claims that sense making and reasoning in problem solving come naturally to 

students. How, if at all, does this claim fit your experience in learning and teaching. 

Cycle 3 

Week 1: 

This week's assignment for online work involves a video and three readings, with 

threaded discussion, that follows class work on problem solving for the Ankur's 

Challange task.  The following are intended to guide discussion in your small groups: 

(1)  Describe Romina’s strategy for solving the “Ankur’s challenge” problem. 

 

(2)  In your opinion, is this solution a convincing one?  Why or why not? 

 

(3)  According to the Yackel & Hanna chapter, both von Glaserfeld and Thompson 

equate reasoning with learning (p. 227).  From this perspective, in what ways do 

explaining and justifying contribute to learning mathematics? 

Week 2: 

Read the article "Understanding Understanding" and respond to the following question: 
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As a goal in mathematical learning, the idea of “understanding” is widely accepted. Both 

Skemp and Davis offer their views about what it means to “understand”.  In this week’s 

reading, Davis further challenges us to understand ‘understanding’. Discuss 

a. How “understanding” of a mathematical concept can take on multiple meanings, and 

b. The complexity of understanding 'understanding' from Davis’ view. 

Cycle 4 

Week 1: 

For the Taxicab materials - comment on the problem solving strategies of the students. 

What did you like/dislike about their problem solving? Compare what went on in the 

videos to your own problem solving from class. 

 

For the Pedemonte paper: 

 

One of the ideas in the paper is that students produce incorrect proofs because they are 

not able to transform the structure of argumentation into deductive structure for proof. a) 

what do you think its hard for people to do this, b) do you notice this in your students, c) 

do you notice this in yourself? 

 

The results in the paper are limited to the domain of geometry - is it possible to extend 

the results to other mathematical domains? Why or why not? 

Cycle 5 
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For this week, please post your World Series solution to your group. Discuss others 

solutions. Also read CH12 from the combinatorics books and watch the Night Session 

video. Comment on: 

 

a.  How the students attribute meaning to the symbols; and 

b.  How they develop the "addition rule" for Pascal's triangle 

8.1  

Cycle 6 

 

Week 1: 

 

Week 2: 

Read and discuss:  Conditions for promoting reasoning in problem solving: Insights from 

a longitudinal study 

Consider, in your discussion of this chapter what relationships, if any, there might be 

between problem solving and mathematical reasoning. 
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Appendix I: Reflection Prompt 

 

Reflection Paper 

 

Introduction to Mathematics Education 15:254:540:01 

 

In your reflection about your experiences in the course this past semester, discuss 

 

1.  The role of understanding in the following contexts: 

 

 (a) your own mathematical learning, 

 

 (b) the mathematical learning of students, and 

 

 (c) implications, if any, for your own teaching. 

 

2. Discuss the value of content and format of the course, with particular attention to the 

following with at least two specific examples for each: 

 

(a) problem tasks 

 

(b) collaborative problem solving 

 

 (c) readings 
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(d) video viewing (cite at least two) 

 

 (f) online discussion 

 

(g) what you learned by making an Analytic 

 

(h) evaluating student work 

 

3.  We welcome suggestions for course improvement and would like you to comment on 

the balance among the following: in person meetings, laboratory work, online 

opportunities for discussion, guest speaker, as well as the time allocations for the 

various assignments, including the final Analytic project. What might you suggest be 

modified for subsequent course offerings? 

 

4. We invite other comments and feedback. In particular, if this course were not required, 

would you recommend it for others to take? Why or why not? 

 

5. Do you think the course could be offered in a fully on line format?  Why or why not? 

 

Submit your reflection as a word document in the dropbox 
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Appendix J: Videos Used In the Study 

 

Cycle 1: 

Meredith Removes the Top Cube [video]. Retrieved from 

https://www.youtube.com/watch?v=iqW05xcKHCA 

PUP Math Shirts and Pants [video]. Retrieved 

from http://dx.doi.org/doi:10.7282/T3MC8Z77 

Stephanie Grade 3 Towers interview excerpts [video]. Retrieved 

from http://dx.doi.org/doi:10.7282/T3FJ2F7X 

Stephanie problem solving excerpts from the four and three-tall towers problem [video]. 

Retrieved from http://dx.doi.org/doi:10.7282/T39S1PGR 

 

Cycle 2: 

PUP Math Brandon interview [video]. Retrieved 

from http://dx.doi.org/doi:10.7282/T3VX0FRD 

PUP Math Pizza, Clip 1 of 2: Pizza halves with two toppings [video]. Retrieved from 

http://dx.doi.org/doi:10.7282/T3HM57PQ 

PUP Math pizza, Clip 2 of 2: Whole and Half Pizzas with Four Toppings [video]. 

Retrieved from http://dx.doi.org/doi:10.7282/T3NC60FW 

 

Cycle 3: 
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PUP Math Romina's proof to Ankur's challenge [video]. Retrieved 

from http://dx.doi.org/doi:10.7282/T30P0Z85 

 

Cycle 4: 

Taxicab problem, clip 1 of 5: the shortest distance between two points. [video]. Retrieved 

from http://dx.doi.org/doi:10.7282/T39W0FBQ 

Taxicab problem, clip 2 of 5: investigating the number of shortest paths. [video]. 

Retrieved from http://dx.doi.org/doi:10.7282/T3FJ2GNQ 

Taxicab problem, clip 3 of 5: It's Pascal's triangle! But Why? [video]. Retrieved from 

http://dx.doi.org/doi:10.7282/T3K937CF 

Taxicab Problem, Clip 4 of 5: Explaining the Taxicab and Towers Isomorphism [video]. 

Retrieved from http://dx.doi.org/doi:10.7282/T3Q2402Q 

Taxicab problem, clip 5 of 5: extending the taxicab correspondence to pizza with 

toppings and binary notation [video]. Retrieved 

from http://dx.doi.org/doi:10.7282/T3TT4QSB 

 

Cycle 5: 

PUP Math World series [video]. Retrieved from http://dx.doi.org/doi:10.7282/T3CV4H0V 

 

Cycle 6: 

PUP Math Night session [video]. Retrieved 

from http://dx.doi.org/doi:10.7282/T34F1Q0W 
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Romina’s Story [video]. Retrieved from http://rbdil.org/rominasstory.html 

Students Reflecting on Their Experience [video]. Retrieved from 

https://www.youtube.com/watch?v=UTGiDp_Q6RE 
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