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A key challenge in machine learning is to automatically extract relevant feature representations

of data for a given task. This becomes especially formidable task for structured data like im-

ages, which are often highly structured and complex. In this thesis, we propose frameworks for

supervised feature learning for structured and unstructured data, via dependency maximization.

In the first part of this dissertation we look at the problem of learning kernels for structured

prediction. We present a novel framework called Twin Kernel Learning which proposes the idea

of polynomial expansions of kernels, to learn kernels over structured data so as to maximize

a dependency criterion called Hilbert-Schmidt Independence criterion (HSIC). We also give

an efficient, matrix-decomposition based algorithm for learning these expansions and use it to

learn covariance kernels of Twin Gaussian Processes. We demonstrate state-of-the-art empirical

results on several synthetic and real-world datasets.

In the second part of this work, we present a novel framework for supervised dimensionality

reduction based on a dependency criterion called Distance Correlation. Our framework is based

on learning low-dimensional features which maximize squared sum of Distance Correlations

of low dimensional features, with both, the response, and the covariates. We propose a novel

algorithm to maximize our proposed objective, and also show superior empirical results over

state-of-the-art on multiple datasets.
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Chapter 1

Introduction

1.1 Overview

Approximately 2.4 billion people spent time on the internet everyday in 2013 [10]. It was

estimated that every minute, 2.4 million posts were shared on Facebook R©, 4 million search

queries made on Google R©, 48 hours of video uploaded to YouTube R©, 277,000 tweets posted on

Twitter R©, 216,000 photos shared on Instagram R© and 416,667 messages sent on Whatsapp R©.

People have become web content creators. All of this generated data is highly complex, struc-

tured, and their scale is in thousands of exabytes. Synergistically, with rapid progress in com-

puting and storage, and in machine learning models and algorithms, it has become a major

challenge to find a way to transform this massive and complex, yet noisy data, coming from a

variety of sources, into meaningful and useful representations. This is a required step to further

extract knowledge and perform useful tasks. In this dissertation our goal is to address this spe-

cific problem of learning meaningful and useful representations of data, in context of machine

learning.

(a) Bayesian Models
(b) Matrix Factoriza-
tion (c) Neural Networks

x

(d) Kernel Methods

Figure 1.1: Different classes of machine learning models.

The goal of machine learning is to model empirical dependencies among multiple latent

and observed variables given a set of observed input-output data instances (xi, yi). These
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dependencies may be deterministic or probabilistic, and can be used to predict unobserved

outputs y given observed input x. As a illustrative example, in the task of categorizing web

videos with text, available from content sharing sites like YouTube R©, input x is videos with

text, and output y could be discrete categories such as entertainment, music, news and politics,

science and technology among others. Figure 1.1 shows several different classes of models that

are used to model these complex dependencies.

In this modeling process a common workflow that is used looks as follows:

Data + Model + Algorithm =⇒ Prediction/Inference.

In the above workflow, design of model and algorithm depend on available data, and are tightly

coupled with each other. Moreover, it is known that having a task relevant feature representation

of data usually leads better performance using simpler algorithms. For models such as Neural

Networks [11] and kernel methods [12] algorithms such as back-propagation and automatic

kernel learning, respectively, have proven to be useful for feature learning. So an alternate

common approach is that of first, choose a problem specific model, then use a general purpose

algorithm to learn features, and then finally using a simple algorithm during prediction.

(Data + Model + General Purpose Algorithm)︸ ︷︷ ︸
learn features

+ Simple Algorithm =⇒ Prediction/Inference

In case of kernel methods, the general purpose algorithm would correspond automatic learning

of kernel from data, which later is used in conjunction with a kernel method for prediction. In

this dissertation, we focus on this second approach of learning features by maximizing statisti-

cal dependency between input and output. We propose two frameworks for supervised feature

learning; first, for learning kernels for structured data, and second, to learn low-dimensional

features for dimensionality reduction.

1.2 Feature Learning via Dependency Maximization

A natural objective for supervised feature learning is to maximize statistical dependency be-

tween input and output distributions. In this thesis, we utilize two equivalent measures of

dependency described below.
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1. RKHS embedding distance between joint distributionP (x, y) and product of its marginals

P (x)P (y). This is also called Hilbert-Schmidt Independence criterion (HSIC) [13].

HSIC(P (x, y),K,G) := ‖Mxy‖2HS

where k, g are characteristic kernels and Mxy : = Ex,y [(k(x, ·)− µx)⊗ (g(y, ·)− µy)].

2. Distance Correlation of [14] which is a non-linear extension of Pearson correlation which

is defined in terms of characteristic functions fx, fy, and fx,y of random variables x, and

y. It is derived by normalization of Distance Covariance which is defined as

ν2(x,y) =

∫

Rd+m
|fx,y(t, s)− fx(t)fy(s)|2w(t, s)dtds.

where w(t, s) is a suitably defined weight function. Distance Correlation is then defined

as

ρ2(x,y) =





ν2(x,y)√
ν2(x,x)ν2(y,y)

, ν2(x,x)ν2(y,y) > 0.

0, ν2(x,x)ν2(y,y) = 0.

HSIC and Distance Covariance are closely related and infact equivalent some cases as shown

in section 2.6.4. In sections below we briefly describe our two proposed frameworks.

1.2.1 Kernel Learning for Structured Prediction

Due to complex nature of internet data, and presence of structure within each input (e.g. video)

and output (eg. category), a new flavor of models called structured prediction models have

been developed in machine learning [15], and also in Computer Vision [16]. For these machine

learning models, the inputs and outputs could be simple vectors, or structured objects such as

images, videos, text, or graphs. In a web videos catagorization example, input would be the

conventional representation of audio-visual features, the associated text metadata (like title,

textual description), and even the intricate social network of the related videos. Output in this

case would be a set of multiple labels with an associated hierarchy within these labels.

In the kernel methods approach of learning [17], we abstractly define representation space,

say Z, characterized by its kernel function k(xi, xj), which intuitively measures similarity
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between argument instances xi and xj , which also helps in scaling up the learning problem by

making it independent of the dimension of input data. Hence learning a ’good’ representation

for your data turns into an equivalent problem of learning a ’good’ kernel function. This kernel

function is so that it to takes advantage of the problem prediction task and uses all available

information in your data.

Structured prediction models handle this data by choosing a kernel function for input in-

stance pairs (xi, xj), and also for output instance pairs (yi, yj). More importantly they implic-

itly represent these input-output data instances jointly in a abstract feature space as a vector and

this representation is critical for good performance of in a learning task.

In first part of this dissertation, we focus on learning these joint kernel feature spaces which

are data and task-specific. We present a novel framework for automated kernel learning for

the problem of structured prediction called Twin Kernel Learning [18, 19]. In this framework,

we propose a effective and efficient algorithm for learning of kernel-space feature spaces, and

demonstrate its efficacy on real world datasets by learning the covariance kernel of Structured

Twin Gaussian Processes [20].

1.2.2 Supervised Dimensionality Reduction

Rapid developments of imaging technology, microarray data analysis, computer vision, neu-

roimaging, hyperspectral data analysis and many other applications call for the analysis of

high-dimensional data. Supervised dimensionality reduction problem is concerned with find-

ing a low-dimensional feature representation of data such that, this representation can be used

effectively in a supervised learning task. Such representations help in provide a meaningful

interpretation and visualization of data, and also helps to reduce sample complexity of learning

algorithm.

In second part of this dissertation, we propose a framework for supervised dimensionality

reduction for learning low-dimensional features that maximize a recently proposed dependency

measure called distance correlation [21]. We also demonstrate state-of-the art results on many

real world datasets [22].
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Chapter	2
Background	

Chapter	3	
Polynomial	Kernel	Transformations

Chapter	4
Learning	Polynomial	Kernel	Transformations

Chapter	5
Supervised	 Dimensionality	Reduction	
via	Distance	Correlation	Maximization

Chapter	6
Conclusion

Figure 1.2: Thesis outline.

1.3 Thesis Outline

This thesis is organized into six chapters. Figure 1.2 shows lineage of the chapters. Main

contents of each chapter are summarized below:

Chapter 2. Background In this chapter, we provide relevant background required for de-

velopment of rest of the thesis. We start by describing the general problem of supervised learn-

ing and structured prediction. We then describe kernel methods for supervised learning using

Support Vector Machines and Support Vector regression as a prototypical examples. We also

describe positive definite kernel functions and their properties. Later we describe reproducing

kernel Hilbert spaces which play an important role in kernel methods and also in kernel-based

dependency measures. Then we describe the kernel functions for learning with example ker-

nels, and describe universal and characteristic kernels which are important from the perspective

of dependency measures and consistency of learning algorithms. We then describe the general

framework of kernel methods for structured prediction with Kernel Dependency Estimation and
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Twin Gaussian Processes as examples. In the last part of this chapter we propose two depen-

dency measures Hilbert Schmidt Independence Criterion and Distance Correlation that we use

in our work and discuss connections between them.

Chapter 3. Polynomial Kernel Transformations In this chapter, we propose polynomi-

als expansion of kernels of radial and shift-invariant kernels which we refer to as Schoenberg

transformations and Gegenbaur transformations, respectively. These arise from the seminal

result of Schoenberg [23] and can be thought of as learning polynomial combination of input

features in a high dimensional reproducing kernel Hilbert space (RKHS).

Chapter 4. Learning Polynomial Kernel Transformations In this chapter, we pro-

pose a framework for learning kernels for structured prediction. This framework learns two

kernels one on input and the other on output such that, dependency between input and out-

put kernel features is maximized. We use Hilbert-Schmidt Independence Criterion (HSIC) as

a dependency to measure this. We give an efficient matrix decomposition-based algorithm to

learn these transformations, and demonstrate state-of-the-art results on several synthetic and

real-world datasets.

Chapter 5. Supervised Dimensionality Reduction via Distance Correlation Maxi-

mization In this chapter, we propose a novel framework for supervised dimensionality reduc-

tion based on a nonlinear dependency criterion called Statistical Distance Correlation, [14]. Our

proposed formulation is based on learning a low-dimensional feature representation z, which

maximizes the squared sum of Distance Correlations between low dimensional features z and

response y, and also between features z and covariates x. We propose a novel algorithm to

optimize our proposed objective using the Generalized Minimization Maximization method of

Parizi et al. [24]. We show superior empirical results on multiple datasets proving the effective-

ness of our proposed approach over several relevant state-of-the-art supervised dimensionality

reduction methods.
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Chapter 6. Conclusion In this chapter, we summarize the main results in this thesis.

We also discuss some future directions for our approach of using nonlinear dependency mea-

sures like Hilbert Schmidt Independence Criterion (HSIC) and Distance Correlation (dCorr) for

learning kernels for structured data, and learning features low dimensional features for struc-

tured data.

1.4 Thesis Contributions

This thesis makes conceptual and algorithmic contributions to the field of Machine Learning

and Computer Vision. The contributions described in this dissertation are:

1. Propose polynomials expansion of kernel functions.

2. A framework for learning kernels for structured prediction.

3. Propose a Laplacian version of Distance Correlation.

4. A framework for supervised dimensionality reduction using Distance Correlation.

These contributions have been presented in the following papers of the author.

1. C. Tonde, A. Elgammal, Simultaneous Twin Kernel Learning using Polynomial Trans-

formations for Structured Prediction, IEEE Conference on Computer Vision and Pattern

Recognition, 2014.

2. C. Tonde, A. Elgammal, Learning Polynomial Kernels Transformations for Structured

Prediction, arxiv:1601.01411 (cs.LG), 2016.

3. P. Vepakomma1, C. Tonde1, Supervised Dimensionality reduction via Distance Correla-

tion Maximization, arXiv:1601.00236 (cs.LG), 2016.

1.5 Notation

The notation we use in this thesis is as follows: To denote a particular (structured) object from

a set of objects we use lower case letter x for the object, and calligraphic uppercase letter X for

1Authors contributed equally.
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the set so that x ∈ X . We denote real vectors as lower case bold letters x ∈ Rd where d ∈ N is

the dimension of the space. In this thesis we mainly deal with vectorial data but many the results

can be applied to vectors in Hilbert space indicated by uppercase calligraphic letters K, G and

F . We group together several vectors together to form a setX = {x1,x2, . . . ,xm}. For scalars

we use lower case letters like y ∈ R, and for matrices we use upper case bold letters X ∈ Rm×d.

We indicate the (i, j)th element of a matrix X as [X]i,j . We stack together vectors get matrix

X = [x1,x2, . . .xm]T , or equivalently, stack scalars to get vectors as y = [y1, y2, . . . , ym].

In addition, we use 1m and 0m to indicate the all ones and all zeros vector in Rm, respec-

tively. Matrix Jm indicates the centering matrix Jm = I − 1
m1m1Tm, such that X̂ = JmX is

column-centered (column sum zero) matrix, X̂ = JmX is row-centered (row sum zero) matrix,

and X̃ = JmXJp is a double-centered (row and column sum zero) matrix. We represent the

Laplacian of a weighted adjacency matrix W (with self loops) is as L = D −W where D

is a diagonal degree matrix with diagonal elements [D]i,i =
∑

j [W]i,j , and zero off-diagonal

entries [25].

Furthermore, we denote spectral radius or maximum eigenvalue of a matrix M as λmax(M),

ith eigenvalue by λi(M), and ith generalized eigenvalue Ax = λiBx by λi(A,B). Moreover,

λmax(M) (λmax(A,B)) and λmax(M) (λmin(A,B)), respectively, as maximum and mini-

mum eigenvalues (generalized eigenvalues) of matrix M (A and B). We use the usual partial

ordering for symmetric matrices: A � B meaning A − B is positive semidefinite; similarly

for the relationships �,≺,�. The norm ‖·‖ will be either the Euclidean norm for vectors or

the norm that it induces for matrices, unless otherwise specified.
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Chapter 2

Background

2.1 Supervised Learning Problem

In supervised learning the goal is to predict an output target, y∗ ∈ Y , given an input object

x∗ ∈ X , given training data {(x1, y1), (x2, y2), . . . (xn, yn)} ⊆ X×Y , independent identically

distributed (i.i.d.) samples from joint distribution P (x, y). To do so we estimate a function

f : X → Y from a setH so as to minimize regularized empirical risk

L(h) =
m∑

i=1

V (yi, h(xi))

︸ ︷︷ ︸
Loss part

+ Ω(||h||2)︸ ︷︷ ︸
regularization

(2.1)

The loss part of above risk measures discrepancy between predicted label by function h and

training data. The regularization part penalizes the estimated function h for being arbitrarily

complex so as to achieve no loss on the training data. Regularization leads to a simpler function

h that achieves smaller risk, but possibly non-zero risk on the seen training data and better

generalization on unseen test data.

Some traditional examples of supervised learning like binary classification, where target is

discrete yi ∈ {+1,−1}with a 0-1 loss or hinge loss (e.g. handwritten digit recognition), or uni-

variate regression where target is scalar y ∈ R with squared or exponential loss (e.g. 2D object

pose estimation from images). There are pros and cons of each of these loss functions which

are described in detail in Bartlett et al. [26]. The regularization term control the complexity of

the estimated function h and is also required as the problem is ill-posed [27, 28].
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2.2 Structured Prediction Problem

In machine learning a vast majority of prediction problems have complex output as opposed to

simple ones like binary/multi-class classification or regression. These complex output problems

have a target that contain several variables dependent on each other that need to be predicted

simultaneously. These problems are referred to as structured prediction or structured learning

problems. Examples include the following problems.

• Human 3D-pose reconstruction (Figure 2.1a): given an image or sequence of images,

predict 3D x, y, z positions of joint locations of human skeleton.

• Language syntactic parsing (Figure 2.1b): given a input sentence, build a parse tree

whose leaves are words of the sentence and whose structure obeys grammar rules.

• Protein 3D-structure prediction (Figure 2.1c): given a string of amino acid sequences,

predict its 3D-structure.

(a) Human 3D-pose predic-
tion.

(b) Language syntactic pars-
ing.

(c) Protein 3D-structure pre-
diction.

In kernel methods for structured prediction a feature function Φ(x, y) is defined jointly over

input x ∈ X and output y ∈ Y . For example, in part of speech tagging, an element of vector

Φ(x, y) could be the number of times the word ”the” appears as a determiner and the next word

is a noun. The goal is to learn a weight vector w such that during testing for a new test example

x∗ we find the best prediction such that

y∗ = arg max
y∈Y

wTΦ(x, y) (2.2)
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The above arg max problem is intractable in the general case, but tractable under certain

case [15, 29].

2.3 Kernel Methods

Vapnik [27, 30] proposed a structural risk minimization (SRM) framework to minimize the

empirical risk in Equation 2.1. This framework introduced the use of positive definite kernel

functions in solving learning problems. It also gave necessary and sufficient conditions for

consistency of any learning process, and generalization bounds in terms of VC-dimension of

the hypothesis class H. In sections below we give two seminal algorithms born out above

framework that performs SRM for binary classification and regression.

2.3.1 Support Vector Machines

The seminal work of Cortes and Vapnik [31] intro-

x

Figure 2.2: Support Vector Machine

duced Support Vector Machines (SVM). A hard mar-

gin linear SVM for classification is as follows. Given

training data (x1, y1), (x2, y2) . . . , (xn, yn) with xi ∈

Rd and yi ∈ {−1,+1}. Define a hyperplane f(x) =

xTβ + β0 where β is a unit vector ‖β‖2 = 1, and a

classification rule is given by G(x) = sign[f(x)].

The optimization problem then turn out to be

minimize
1

2
‖β‖2

subject to yi(x
T
i β + β0) ≥ 1, i = 1, 2, . . . , N. (2.3)

The above formulation works only for the separable case as shown in Figure 2.2 and a solution

exists on when the two classes can be separated into two classes by a hyperplane. In case of

non-separable data as shown in Figure 2.4, a relaxed version of SVM called soft-margin SVM

is used with appropriate slack variables. This optimization problem with slack variables is as
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follows.

minimize
1

2
‖β‖2 + C

N∑

i=1

ξi

subject to yi(x
T
i β + β0) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , n. (2.4)

The above formulation allows you to do classification in presence of non-separable data which

could be due to problem structure or presence of noise and outliers. The dual problem of the

soft-margin formulation is as follows.

maximize
N∑

i=1

αi −
1

2
yiyjαiαj 〈xi,xj〉

subject to 0 ≤ αi ≤ C,
∑

i

yiαi = 0, i = 1, 2, . . . , n. (2.5)

After computing the solution α∗, the discriminant function is give as,

f(x) = β∗Tx + b∗ =
N∑

i=1

yiα
∗
i 〈xi,xj〉+ b∗

The SVM problem can be solved in dual or primal form with complexity O(dn2 + n3) or

O(nd2 + d3), respectively. The formulation used depends on the scale of the problem. For low

dimensional datasets the primal form is preferable, and for high dimensional data the dual for

is preferred. So the resulting complexity is O(max(n, d),min(n, d)2) [32].

2.3.2 Support Vector Regression

The idea of Support Vector Machine can also be generalized to solve the regression problem

with a scalar response y ∈ R. The linear regression model is as follows

f(xT ) = xTβ + β0
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To estimate β, we solve the minimization problem,

L(β, β0) =

N∑

i=1

V (yi − f(xi)) +
λ

2
‖β‖2

where

Vε(r) =





0 if |r| < ε

|r| − ε otherwise

The minimizers of L, are solution of the form,

β̂ =
N∑

i=1

(α̂∗i − αi)xi, f̂(x) =
N∑

i=1

(α̂∗i − αi) 〈x,xi〉+ β0

where

min
αi,α∗i

ε

N∑

i=1

(α∗i + αi)−
N∑

i=1

yi(α
∗
i − αi) +

1

2

N∑

i,j=1

(α∗i − αi)(α∗j − αj) 〈xi,xj〉

subject to,

0 ≤ αi, α∗i ≤
1

λ
,

N∑

i=1

(α∗i − αi) = 0,

αiα
∗
i = 0, i = 1, 2, . . . , n. (2.6)

Due to constraints most of (α∗i − αi) values are zero, and the associated data points are

called support vectors. Similar to the classification case the solution depends only on the inner

products 〈xi,xj〉 between data points. We can generalize this algorithm to more general spaces

called reproducing kernel Hilbert spaces (RKHS) where inner products are well defined. This

is called as the kernel trick which is further explained in subsection 2.3.3 below.

2.3.3 Kernel Trick

For binary classification with classes which are not separable, data-points can be mapped to

higher dimensional feature space Φ: X → H, so as to obtain linear separability (Figure 2.4).
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This is be done by replacing inner product between data-points a 〈xi,xj〉 with a positive def-

inite function k(xi,xj) representing inner product between higher dimensional feature spaces

k(xi,xj) = 〈Φ(xi),Φ(xj)〉. This positive definite kernel function implicitly represents data

points xi as points Φ(xi) feature spaceH, named as reproducing kernel Hilbert space (RKHS).

We formally defined them in section 2.3.5.

2.3.4 Positive-Definite Kernels

Positive definite kernel functions used as a kernel are defined as follows:

Definition 1. A symmetric function k : X × X → R is called positive definite (pd) (resp.

conditionally pd) if, for any n ∈ N and choice of α1, . . . , αn ∈ R (resp. with
∑n

j αj = 0) and

x1, . . . , xn ∈ X we have

n∑

i,j=1

αiαjk(xi, xj) ≥ 0. (2.7)

Furthermore, k is said to be strictly pd (resp. conditionally strictly pd) if, for mutually

distinct x1, . . . xn ∈ X , equality in 2.7 only holds for α1 = . . . = αn = 0.

Positive-definite kernel functions also have the following properties for any x, y ∈ X ,

• (conjugate symmetry) k(x, y) = k(y, x)

• (bilinearity) k(c1x+ c2y, z) = c1k(x, z) + c2k(y, z) for any c1, c2 ∈ R.

• (positive definiteness) k(x, x) ≥ 0, and k(x, x) = 0 if and only if x = 0

• (Cauchy-Schwarz inequality) k(x, y)2 ≤ k(x, x)k(y, y)

Moreover, positive definite kernel functions have the following closure properties:

Theorem 2. [33] For kernels k, k1, k2, . . . and so on, defined onX×X , whereX is a nonempty

set:

1. If k1 and k2 are positive definite then for any c1, c2 ≥ 0 c1k1 + c2k2 is positive definite.

2. if limn→∞ kn(x, x′) = k(x, x′) exists, then k(x, x′) is positive definite. Hence, including

all above facts the set of positive definite kernels form a convex cone.
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3. The point-wise product of kernels k1k2 is positive definite.

4. If k1 and k2 are kernels defined on Xi ×Xi where Xi are nonempty set. Then the tensor

product k1 ⊗ k2 and direct sum k1 ⊕ k2 are positive definite kernels on (X1 × X2) ×

(X1 ×X2).

These closure properties allow us to derive new kernel functions in sophisticated ways. For

example, a polynomial function of the form

φ(t) =

∞∑

i=0

αit
i αi ≥ 0

when applied to a kernel functions also gives us a kernel function as the operations only involve

point-wise product, positive scaling and addition of kernels. Furthermore, if look at Taylor

series expansion of the exponential function φ(t) = et

φ(t) = et = 1 +
t

1
+
t2

2!
+
t3

3!
+ . . . , (2.8)

We observe that αi = 1
i! . Hence φ(t) = et when applied to a positive definite kernel results in

a positive definite kernel.

2.3.5 Reproducing Kernel Hilbert Spaces

Definition 3. Reproducing kernel Hilbert Spaces [34] LetX be a arbitrary set andH a Hilbert

space of functions on X . Lx(f) is a linear functional that evaluates any function f at x, i.e.

Lx : f 7→ f(x) ∀f ∈ H. Then H is a reproducing kernel Hilbert space, if for all x ∈ X Lx is

a bounded operator onH, that is, there exists some M > 0 such that

Lx(f) := f(x) ≤M ‖f‖H ∀f ∈ H.

For bounded linear functionals as above we also the following to be true.

Theorem 4. Riesz representation theorem [35] If L is a bounded linear functional on a Hilbert
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spaceH then there exists some g ∈ H such that for every f ∈ H we have

L(f) = 〈f, g〉H .

Moreover, ‖T‖ = ‖g‖ (here ‖L‖ denotes the operator norm of L, while ||g|| is the Hilbert

space norm of g.

From this the following simplified definition of reproducing kernel Hilbert space follows.

Definition 5. Reproducing kernel Hilbert Spaces [34] k(·, ·) is a reproducing kernel of a

Hilbert spaceH if f ∈ H, f(x) = 〈k(x, ·), f(·)〉.

Figure 2.4: High dimensional feature mapping.

So a RKHS is a Hilbert space of functions

with all evaluation functionals (L) that are

bounded and linear. Equivalently, a RKHS is

a Hilbert space H with a reproducing kernel

whose span is dense in H. From a another

view, the Moore-Aronszajn theorem below

guarantees existence of a feature space E for

any chosen positive definite kernel function

k.

Theorem 6. Moore-Aronszajn-Theorem [34] Suppose k(·, ·) is a symmetric, positive definite

kernel on a set E. Then there is a unique Hilbert space of functions on E for which k(·, ·) is a

reproducing kernel.

RKHS theory also gives a representation of kernel in terms of eigenfunctions and nonneg-

ative eigenvalues of the corresponding integral operator Tk, which is compact, positive and

self-adjoint [33].

Theorem 7. [35] Suppose k(·, ·) is a continuous symmetric non-negative definite kernel. Then

there is an orthonormal basis {ei}i of L2[a, b] consisting of eigenfunctions of Tk such that the
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Different Views on RKHS

L. Rosasco RKHS

Figure 2.5: Equivalence between RKHS, kernels, linear functionals and integral operators.

corresponding sequence of eigenvalues {λi}i is nonnegative. The eigenfunctions correspond-

ing to non-zero eigenvalues are continuous on [a, b] and k(·, ·) has the representation

k(s, t) =
∞∑

j=1

λjej(s)ej(t)

where the convergence is absolute and uniform and Tk is the integral operator,

[Tk ◦ φ](x) =

∫ b

a
k(x, s)φ(s)ds

and, φ ∈ L2[a, b].

To summarize the above three perspectives of RKHS spaces (Figure 2.5). The following

notions are equivalent:

• k(xi,xj) represents an inner product and k(xi,xj) = 〈Φ(xi),Φ(yj)〉.

• Matrix [K]i,j = k(xi,xj) is a Gram matrix, such that zTKz ≥ 0,∀z ∈ Rn.

• {Φ(xi)}ni=1 form the basis of a unique Hilbert Space (RKHS).

This gives us a comprehensive theory of kernel feature spaces and allows use to define

feature spaces by either defining positive definite kernel functions or positive definite Gram

matrices.
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2.4 Kernel Methods for Learning

In practice when kernel methods are used, we choose a positive definite kernel function k(·, ·).

This implicitly maps input x ∈ X into a high dimensional RKHS space (Section 2.3.5) for

some Φ: X → H. The objective is then to define a problem-specific loss function of the form

below.

L(h) =

m∑

i=1

V (yi, h(xi))

︸ ︷︷ ︸
Loss part

+ Ω(||h||2)︸ ︷︷ ︸
regularization

(2.9)

A general form for the solution of equation 2.9 is then given by the representer theorem below.

Theorem 8. Representer Theorem [36, 37] If we letH be defined by, k(·, ·) then V : X × Y ×

H → R be an arbitrary loss functional Ω : [0,∞] → R+ be a non-decreasing function each

minimizer of h ∈ H of Eqn 2.9 admits a representation of the form,

h(x) =

m∑

i=1

αik(xi,x) (2.10)

If loss function V is convex, as is the case for SVM (Section 2.3.1) and SVR (Section 2.3.2),

then L(h) is convex, giving us a globally optimal solution. The choice of algorithm used to

minimize equation 2.9 depends on the structure of the loss function used.

Choice	of	kernel Learning
Algorithm

(x1,y1),	
(x2,y2)
…	
(xm,ym)

h(x)

Figure 2.6: Kernel methods in machine learning.

The strategy for using kernel methods looks as follows (Figure 2.6):

1. Choose a suitable kernel function k (Section 2.4.1).

2. Define a suitable problem-specific loss function (Equation 2.9) over training data.
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3. Minimize loss equation 2.9 using an appropriate optimization algorithm.

Kernels play two key roles in learning; first, they provide a basis for expansion of the learned

funtion (Theorem 8), and second, kernels encode similarity between objects. In many domain

specific tasks, hand-crafted kernels which incorporates prior knowledge are used, or else, fixed

kernels with parameters chosen heuristically or by cross validation. Performance of learning

algorithm critically depends on the choice of the kernel function and parameters used.

2.4.1 Examples of Kernels

Kernels can also be defined over various domains such as strings, graphs and probability distri-

butions [12, 38, 39]. The choice of the kernel typically depends on the particular domain and

prior knowledge about the prediction task. A few examples of kernels used in the literature are

described below.

Kernel Expression

Linear 〈x,x′〉

Gaussian e

(
− ||x−x′||2

σ2

)

Polynomial
(

1 + <x,x′>
σ

)d

Exponential exp (σ 〈x,x′〉)

Spectral Mixture kSM (τ) =

Q∑

q=1

wq cos
(
2πτTµq

) P∏

p=1

exp
(
−2π2τ2

p v
(p)
q

)

Table 2.1: Examples of kernel functions.

2.4.2 Universal and Characteristic Kernels

Universal kernels were introduced in the context of achieving Bayes risk in kernel-based classi-

fication and regression methods [40]. It is also know that universality is required for consistency

of kernel-based algorithms [41, 42, 43]. They are defined as follows:

Definition 9. Universal Kernels, [44]: A continuous positive definite kernel k defined on X

is called universal if the RKHS, H induced by k is dense in C(X) with respect to uniform
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norm, that is, for every function g ∈ C(X) and all ε > 0, there exists an f ∈ H such that

‖f − g‖u ≤ ε.

The definition above says if a learning algorithm is consistent, that is, for any target function

f∗ the kernel based learning algorithm is able to converge to an appropriate f in H, then

whether whether f approximates any f∗ depends on how rich RKHS H is. So if kernel k is

dense in C(X), then RKHS H is rich enough to approximate any continuous function from

C(X). Such a RKHS is called as universal RKHS and the kernel is called a universal kernel.

Moreover,

Theorem 10. [44] Assume,

φ(t) =

∞∑

i=0

αit
i

with αi ≥ 0 and φ(t) is convergent for all t. Let k be a positive definite kernel on X . Then

k′(x, x′) = φ(k(x, x′)) for all x, x′ ∈ X is universal if all {αi|i ∈ Z+} are positive.

The above statement gives us conditions for universality of a kernel k′ in terms of Taylor

series coefficients of the applied function φ.

Characteristic kernels have been used for injective embedding of distributions in RKHS

spaces. They provide a one-to-one mapping between distributions and vectors in RKHS spaces.

This allows us to measure dependency between two distributions by measuring distance be-

tween their corresponding RKHS vector representations. For characteristic kernels two distri-

butions are equal if and only if their RKHS vectors coincide (Section 2.6.1). They are defined

as follows:

Definition 11. Characteristic Kernels, [45]: A bounded measurable kernel, k is said to be

characteristic if the map p 7→
∫
x∈X k(·, x)dp(x) is injective, where p(x) is a probability mea-

sure on X .

It was shown by Gretton et al. [46] that, if a kernel is universal then it is characteristic, but

the converse is not true.
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2.5 Kernel Methods for Structured Prediction

In supervised structured prediction the goal is to learn a prediction function f : X → Y , from an

input domain X to an output domain Y . As an example, in articulated human pose estimation,

input x ∈ X would be an image of a human performing an action, and output would be the a

interdependent vector of joint positions (x, y, z). Typically, the space of functions H is fixed

and parametrized we need to estimate these parameters given set of training examples S =

{(x1, y1), (x2, x2), . . . , (xm, ym)} ⊆ X × Y , drawn i.i.d. from P (x, y). We formulate a

meaningful structured loss L : Y × Y [20, 47, 48, 49]. During prediction for a input x∗ ∈ X

we search for best possible label y∗ so that loss L(f(x∗), y) is minimized over all training data

and for all possible labels y ∈ Y

y∗ = f(x∗) = arg min
y∈Y
L(f(x∗), y)

In case of kernel methods for structured prediction [2, 15, 16, 20, 47, 48] the space of

functions H is specified by positive definite kernel functions, which further are jointly defined

on the input and output space as h((x, y), (x′, y′)). In the most common case this kernel is

factorized over input and output as k(x, x′) and g(y, y′), respectively. These individual kernels

jointly map the arguments to reproducing kernel Hilbert space (RKHS) or a kernel feature

spaces. They are denoted by K and G. It is well known that performance of kernel algorithms

critically depends on the choice of kernel functions (k(x, x′) and g(y, y′)), and learning them

is challenging.

2.5.1 Kernel Dependency Estimation

Kernel Dependency Estimation (KDE) of Weston et al. [2] was one of the earliest and general

structured prediction algorithm which could handle dependencies in both input and output. The

goal is model dependency, f(x;α) : X → Y , between input x ∈ X and output y ∈ Y , given

training data {(x1,y1), (x2,y2), . . . (xn,yn)} ⊇ X × Y , so as to minimize expected risk

R(α) =

∫

X×Y
L(y, f(y;α))dP (x,y).



22

over distribution true P (x,y). The function L(y,y′) is a loss function measuring distance

between y and y′. The choice of loss function related to the similarity function (kernel function)

used on output data. Table 2.2 shows different dependency estimation problems for different

loss functions and their corresponding output kernels.

Learning Problem L(y,y′) Kernel function g(y, y′)

Multi-class Classification

{
0 y = y′.

1 otherwise.
1
2 (1− L(y,y′))

Multi-Output Regression 〈y,y〉+ 〈y′,y′〉 − 2 〈y,y′〉 〈y,y′〉
General Dependency Estima-
tion

g(y,y) + g(y′,y′)− 2g(y,y′) g(y,y′)

Table 2.2: Structured prediction with different loss functions L(y,y′), and their corresponding
output kernels g(y, y′).

The prediction algorithm proceeds in steps as follows,

1. Output decomposition: Given kernel matrix G perform kernel principal component

analysis on double-centered matrix G̃ = JnGJn to obtain low dimensional feature

vector ŷ = [〈v1, g(y, ·)〉 , 〈v2, g(y, ·)〉 , . . . , 〈vp, g(y, ·)〉]T where v1,v2, . . .vp are the

principal component vectors.

2. Map learning: Learn p independent maps fi : X → 〈vi, k(y, ·)〉 using kernel ridge

regression such that

fi(x) =
n∑

j=1

βijk(x,xj), βi = (K + γI)−1ŷi,

and ŷi = [〈vi, g(y1, ·)〉 , 〈vi, g(y2, ·)〉 , . . . , 〈vi, g(yn, ·)〉]T .

3. Pre-image problem: For a new test example x∗, we have to solve the minimization

problem.

y = arg min
y∈Y

∥∥[f1(x), f2(x), . . . , fp(x)]T − ŷ
∥∥2

It is to be noted that, for the case of vectorial input, and one dimensional output with linear

kernel, KDE is equivalent to ridge regression [50]. Also, for classification the above method is

related to kernel Fisher Discriminant Analysis [50].
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2.5.2 Twin Gaussian Processes

Twin Gaussian Processes (TGP) of Bo and Sminchisescu [20] are a recent and popular form

of structured prediction methods, which model input-output domains using Gaussian processes

with covariance functions, represented by K and G. These covariance matrices encode prior

knowledge about the underlying process that is being modeled. In TGP choice of the auxiliary

evaluation function is typically some form of information measure, e.g. KL-Divergence or

HSIC, which are known to be special cases of Bregman divergences [51]. KL-Divergence is

an asymmetric measure of information, while HSIC is symmetric in its arguments. We refer

to these two versions of Twin Gaussian Processes corresponding to each of these measures of

information as, TGP with KL-Divergence or simply TGP, and TGP with HSIC.

TGP with KL-Divergence: In this version of TGP, we minimize the KL-divergence be-

tween the kernels, K and G, given the training data X × Y , and a test example x∗. The

prediction function for TGP is give by

y∗ = arg min
y
DKL(GY ∪y||KX∪x∗) (2.11)

TGP with HSIC: For this version of TGP with HSIC criteria, the prediction function max-

imizes the HSIC between the kernels K and G given the training data, and test example x∗.

The prediction function is as follows

y∗ = arg max
y
HSIC(GY ∪y,KX∪x∗) (2.12)

2.6 Dependency Measures

Below we describe three measures nonlinear measures of dependency for structured data and

also describe relations between them.

2.6.1 Hilbert Schmidt Independence Criterion

To measure cross-correlation or dependence between structured input and output data in kernel

feature Gretton et al. [13] proposed Hilbert Schmidt Independence criterion (HSIC). Given
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i.i.d. sampled input-output data {(x1, y1), (x2, y2), . . . , (xm, ym)} ∼ P (x, y) HSIC measures

the dependence between random variables x and y.

Definition 12. If we have two RKHS’s K and G, then a measure of statistical dependence

between X and Y is given by the norm of the cross-covariance operator Mxy : G → K, which

is defined as,

Mxy := Ex,y [(k(x, ·)− µx)⊗ (g(y, ·)− µy)] (2.13)

= Ex,y [(k(x, ·)⊗ g(y, ·))]− µx ⊗ µy (2.14)

and it’s measure is given by the Hilbert-Schmidt norm of Mxy which is,

HSIC(pxy,K,G) := ||Mxy||2HS (2.15)

So the larger the above norm, the higher the statistical dependence between x and y. The

advantages of using HSIC for measuring statistical dependence, as stated in Gretton et al. [13]

are as follows: first, it has good uniform convergence guarantees; second, it has low bias even in

high dimensions; and third a number of algorithms can be viewed as maximizing HSIC subject

to constraints on the labels/outputs.

Empirically, in terms of kernel matrices it is defined as,

Definition 13. Let Z := {(x1, y1), . . . (xm, ym)} ⊆ X × Y be a series of m independent

observations drawn from pxy. An unbiased estimator of HSIC(Z,K,G) is given by,

HSIC(Z,K,G) = (m− 1)−2trace(KHGH) (2.16)

where K,H,G ∈ Rm×m, [K]i,j := k(xi, xj), [G]i,j := g(yi, yj) and [H]i,j := δij −m−1

For well defined (bounded) and normalized1 kernels, K and G. We haveHSIC(Z,K,G) ∈

[0, 1]. For the ease of discussion we denote HSIC(Z,K,G) by HSIC(K,G).

1Normalized kernel matrix corresponds to feature normalization in kernel feature space, and is obtained by pre
and post-multiplying the by matrix D−

1
2 where D is a diagonal matrix with [D]i,i = [K]i,i, D−

1
2KD−

1
2 .
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2.6.2 Maximum Mean Discrepancy

Gretton et al. [52] propose a kernel distance between distributions which can be used way

of measuring statistical dependency between random variables. It is measured as the maxi-

mum difference between the expectation over functions in the unit ball of a reproducing kernel

Hilbert space (RKHS), it is called maximum mean discrepancy (MMD). It is defined as follows:

Definition 14. Mean Maximum Discrepancy Gretton et al. [52] Let F be a class of functions

f : X → R in a unit ball of a universal RKHS, and let p and q be distributions over random

variables x and y. We define the maximum mean discrepancy (MMD) as

MMD(p, q;F) : = sup
f∈F

[Ex [f(x)]−Ey [f(y)]] .

For measurable and bounded kernel k(·, ·) we have

MMD2(p, q;F) = Ex,x′
[
k(x,x′)

]
− 2Ex,y [k(x,y)] + Ey,y′

[
k(y,y′)

]

For characteristic kernel like Gaussian and Laplace kernelsMMD(p, q;F) = 0 if and only

if p = q and it is also a metric on distributions.

An empirical estimate of mean maximum discrepancy is given by

Definition 15. Sample Mean Maximum Discrepancy Gretton et al. [52] Given observations

X = {x1,x2, . . . ,xm} and Y = {y1,y2, . . . ,yn} independently and identically distributed

(i.i.d.) from p and q, respectively. We define the sample maximum mean discrepancy (MMD) as

MMD(p, q;F) : = sup
f∈F

[
1

m

m∑

i=1

f(xi)−
1

n

n∑

i=1

f(yi)

]
.

The biased estimate of MMD in terms of kernel is given by

MMD2
b (X,Y ;F) =

1

m2

m∑

i=1

m∑

j=1

k(xi,xj)

+
1

n2

n∑

i=1

n∑

j=1

k(yi,yj)−
2

mn

m∑

i=1

n∑

j=1

k(xi,yj)
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To test for statistical independence between random variables x and y, let px, py and pz

be distributions over X , Y and Z = X × Y , respectively. If K and G correspond to RKHS’s

defined using characteristic kernels on X and Y , respectively, then from Sejdinovic et al. [53]

we have

MMD2
b (pz, pxpy;F) = HSIC(pz,K,G).

Hence random variables x and y are independent if and only if MMD2
b (pz, pxpy;F) =

HSIC(pz,K,G) = 0.

2.6.3 Statistical Distance Correlation

Sufficient Component Analysis
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Table 1. Mean of Frobenius-norm error (with standard deviations in brackets) and mean CPU time over 100 trials.
Computation time is normalized so that LSDR is one. LSDR was repeated 5 times with random initialization and the
transformation matrix with the minimum CV score was chosen as the final solution. ‘SCA(0)’ indicates the performance
of the initial transformation matrix obtained by the method described in Section 3.3. The best method in terms of the
mean Frobenius-norm and comparable methods according to the t-test at the significance level 1% are specified by bold
face.

Datasets d m SCA(0) SCA LSDR KDR SIR SAVE pHd
Data1 4 1 .089(.042) .048(.031) .056 (.021) .048(.019) .257 (.168) .339 (.218) .593 (.210)
Data2 10 1 .078(.019) .007(.002) .039 (.023) .024 (.007) .431 (.281) .348 (.206) .443 (.222)
Data3 4 2 .065(.035) .018(.010) .090 (.069) .029(.119) .362 (.182) .343 (.213) .437 (.231)
Data4 5 1 .118(.046) .042(.030) .151 (.296) .118 (.238) .421 (.268) .356 (.197) .591 (.205)

Time 0.03 0.49 1.0 0.96 <0.01 <0.01 <0.01

optimal transformation matrix. Note that the above
error measure takes its value in [0, 1].

We use the following four datasets (see Figure 1):

(a) Data1:

Y = X2 + 0.5E,

where (X1, . . . , X4)
⊤ ∼ U([−1 1]4) and E ∼

N(0, 1). Here, U(S) denotes the uniform distri-
bution on S, and N(µ,Σ) is the Gaussian distri-
bution with mean µ and variance Σ.

(b) Data2:

Y = (X3)
2 + 0.1E,

where (X1, . . . , X10)
⊤ ∼ N(010, I10) and E ∼

N(0, 1).

(c) Data3:

Y =
(X1)

2 + X2

0.5 + (X2 + 1.5)2
+ (1 + X2)

2 + 0.1E,

where (X1, . . . , X4)
⊤ ∼ N(04, I4) and E ∼

N(0, 1).

(d) Data4:

Y |X2 ∼

⎧
⎨
⎩

N(0, 0.2) if X2 ≤ |1/6|
0.5N(1, 0.2) otherwise
+0.5N(−1, 0.2),

where (X1, . . . , X5)
⊤ ∼ U([−0.5 0.5]5) and E ∼

N(0, 1).

The performance of each method is summarized in Ta-
ble 1, which depicts the mean and standard deviation
of the Frobenius-norm error over 100 trials when the
number of samples is n = 1000. As can be observed,
the proposed SCA overall performs well. ‘SCA(0)’ in
the table indicates the performance of the initial trans-
formation matrix obtained by the method described
in Section 3.3. The result shows that SCA(0) gives
a reasonably good transformation matrix with a tiny
computational cost. Note that KDR and LSDR have
high standard deviation for Data3 and Data4, meaning
that KDR and LSDR sometimes perform poorly.

5.2. Multi-label Classification for Real-world
Datasets

Finally, we evaluate the performance of the proposed
method in real-world multi-label classification prob-
lems.

5.2.1. Setup

Below, we compare SCA, Multi-label Dimensionality
reduction via Dependence Maximization (MDDM)4

(Zhang & Zhou, 2010), Canonical Correlation Anal-

4
http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/annex/MDDM.htm
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(d) non-linear

Figure 2.7: Synthetic data with linear (Fig-
ure 2.7a) and non-linear (Figures 2.7b to 2.7c)
correlations from Yamada et al. [8].

Pearson correlation measures linear correla-

tion between random variables (Figure 2.7a)

but fails to measure non-linear dependencies

between variables as shown in Figures 2.7b,

2.7c and 2.7d. Distance Correlation intro-

duced by Szekely et al. [54] and Székely

et al. [55], Székely and Rizzo [56, 57] is

a measure nonlinear dependencies between

random vectors of arbitrary dimensions, and

is zero if and only if random variables x

and y are independent. We describe below

α-distance covariance which is an extended

version of standard distance covariance for

α = 1.

Definition 16. Distance Covariance [14], α-dCov: Distance covariance between random vari-

ables x ∈ Rd and y ∈ Rm with finite first moments is a nonnegative number given by

ν2(x,y) =

∫

Rd+m
|fx,y(t, s)− fx(t)fy(s)|2w(t, s)dtds
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where fx, fy are characteristic functions of x,y, fx,y is the joint characteristic function,

and w(t, s) is a weight function defined as w(t, s) = (C(p, α)C(q, α)|t|α+p
p |s|α+q

q )−1 with

C(d, α) = 2πd/2Γ(1−α/2)
α2αΓ((α+d)/2) .

From above definition of distance covariance, we have the following expression for Dis-

tance Correlation.

Definition 17. Distance Correlation [14] (α-dCorr): The squared Distance Correlation be-

tween random variables x ∈ Rd and y ∈ Rm with finite first moments is a nonnegative number

defined as

ρ2(x,y) =





ν2(x,y)√
ν2(x,x)ν2(y,y)

, ν2(x,x)ν2(y,y) > 0.

0, ν2(x,x)ν2(y,y) = 0.

Distance Correlation defined above has the following interesting properties; 1) ρ2(x,x)

is defined for arbitrary dimensions of x and y, 2) ρ2(x,y) = 0 if and only if x and y are

independent, and 3) ρ2(x,y) satisfies the relation 0 ≤ ρ2(x,y) ≤ 1. In our work, we use

α-Distance Covariance with α = 2 and in the following paper for simplicity just refer to it as

Distance Correlation.

Now we define sample version of distance covariance given samples {(xk,yk)|k = 1, 2, . . . , n}

sampled i.i.d. from joint distribution of random vectors x ∈ Rd and y ∈ Rm. To do so, we

define two squared Euclidean distance matrices EX and EY, where each entry [EX]k,l =

‖xk − xl‖2 and [EY]k,l = ‖yk − yl‖2 with k, l ∈ {1, 2, . . . , n}. These squared distance

matrices are when double-centered, by making their row and column sums zero, and are de-

noted as ÊX, Q̂X, respectively. So given a double-centering matrix J = I − 1
n11T , we have

ÊX = JEXJ and ÊY = JEYJ. Hence the sample distance correlation (for α = 2) is defined

as follows.

Definition 18. Sample Distance Correlation [14]: Given i.i.d samplesX×Y = {(xk,yk)|k =

1, 2, 3, . . . , n} and corresponding double centered Euclidean distance matrices ÊX and ÊY the

squared sample distance correlation is defined as,

ν̂2(X,Y) =
1

n2

n∑

k,l=1

[ÊX]k,l[ÊY]k,l,
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and equivalently sample distance correlation is given by

ρ̂2(X,Y) =





ν̂2(X,Y)√
ν̂2(X,X)ν̂2(Y,Y)

, ν̂2(X,X)ν̂2(Y,Y) > 0.

0, ν̂2(X,X)ν̂2(Y,Y) = 0.

.

2.6.4 Relation between HSIC and Distance Correlation

Sejdinovic et al. [53] showed that RKHS based dependency measure (HSIC) are a formal ex-

tension of Distance Covariance measure when they are restricted to translation invariant kernels

(distance inducing kernels).

Definition 19. Let (X, dX) and (Y, dY ) semimetric spaces of negative type (i.e. dx and dy are

distances induced by a positive semidefinite kernel), and let X ∼ Px and Y ∼ Py
2, having

joint distributions Pxy. The generalized covariance of x and y is

ν2
dx,dy(x,y) = ExyEx′y′dx(x,x′)dy(y,y′) + ExEx′dx(x,x′)EyEy′dy(y,y′)

− 2Exy

[
Ex′dx(x,x′)Ey′dy(y,y′)

]
.

The above definition of distance covariance above is a generalization of distance covariance

to general metric spaces we know that distance covariance is an instance of the Hilbert Schmidt

Independence Criterion (HSIC).

Theorem 20. [53] Let (X, dX) and (Y, dY ) semimetric spaces of negative type (i.e. dx and dy

are distances induced by a positive semidefinite kernel), and let X ∼ Px and Y ∼ Py
3, having

joint distributions Pxy. Let k and g be any two kernels on X and Y that generate dx and dy,

repectively, and denote

h((x,x′), (y,y′)) = k(x,x′)g(y,y′).

Then, ν2
dx,dy

(x,y) = 4HSIC(X × Y,K,G) = 4MMD2
b (pz, pxpy;H).

2Px and Py have finite 2-moment. See Sejdinovic et al. [53] definition 4.
3Px and Py have finite 2-moment. See Sejdinovic et al. [53] definition 4.
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2.7 Summary

In this chapter we have introduced the general problem of supervised learning and structured

prediction. We have also introduced several notions of dependency measures (HSIC, MMD,

and Distance Correlation) that measure nonlinear dependency for structured data. In our work,

we propose to use HSIC and Distance correlation to learn features for structured prediction

(Chapter 4) and supervised dimensionality reduction (Chapter 5).
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Chapter 3

Polynomials Kernel Transformations

3.1 Introduction

A classical result of Schoenberg [23] states that any continuous, isotropic kernel k is positive

definite, if and only if, k(x, x′) = φ(〈x, x′〉) and φ(t) is a real valued function such that

φ(t) =

∞∑

i=0

αkG
λ
k(t), t ∈ [−1, 1] (3.1)

where αk ≥ 0,
∑∞

k=0 αk ≥ 0, k ∈ Z+ and αkGλk(1) <∞. The symbol Gλk(t) stands for what

is known as ultraspherical (Gegenbaur basis) polynomials. Examples of such kernels include

Gaussian and Laplacian kernels.

Moreover, a result of Bochner [58] says that a continuous, shift-invariant kernel k is positive

definite, if and only if, it is a inverse Fourier transform of a finite non-negative probability

measure µ on Rd.

k(x− y) = φ(z) =

∫

Rd
e
√
−1〈z,s〉dµ(s), x, y, s ∈ Rd

This results allows us to represent a shift-invariant kernel uniquely as a spectral distribution in

a spectral domain. If we take the Fourier transform of equation 3.1 we have a unique repre-

sentation of positive definite kernel φ(t), and also a unique representations of positive definite

base kernels Gλk(t), k = 1, 2, . . ., in the spectral domain. Hence kernel expansion φ(t) is a

nonnegative mixture of base spectral distributions whose kernels are given by kernels Gλk(t)

with nonnegative weights αk’s.

If we look at the monomial basis instead of Gegenbaur basis a similar interpretation can be

given for dot product kernels from Smola et al. [59]. Additionally, we know that the span of
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monomials form a dense basis in L2[−1, 1] (Weirerstrass approximation theorem [60]) so any

continuous function on a [−1, 1] can be approximated uniformly on that interval by polynomials

to any degree of accuracy. Gegenbaur basis is orthonormal and provides additional benefits in

interpolation accuracy for functions with sharp changes. Thus avoiding the so called Gibbs

phenomenon [61].

3.2 Kernel Transformations

In our work, we use above expansions of kernel k′(·, ·) on features obtained from an initial

kernel k(·, ·), defined on X × X . We refer to k(·, ·) as initial kernel, and estimate φ(t) which

when applied to kernel matrix [K]i,j = 〈x, y〉 gives us a new kernel matrix [K]′i,j = φ([K]i,j .

Figure 3.1 illustrates this pictorially.

Figure 3.1: Kernel transformations

3.2.1 Monomial Transformations

In case of monomial basis functions we have the following expansion.

Theorem 21 (Schoenberg [23]). For a continuous function φ : [−1, 1] → R and k(x, y) =

φ(〈x, y〉), the kernel matrix K′ defined as K′ = φ([K]i,j) is positive definite for any positive

definite matrix K if and only if φ(·) is real entire, and of the form below

k′(〈x, y〉) = φ(t) =
∞∑

i=0

αit
i (3.2)

with αi ≥ 0 for all i ≥ 0.
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So φ(t) is an infinitely differentiable and all coefficients αj are non-negative (eg. φ(t) =

et). A benefit of this monomial expansion is that it is easy to compute and can be efficiently

evaluated in parallel.

3.2.2 Gegenbaur Transformations

We obtain Gegenbaur’s basis if we insist on having a orthonormal expansion. These expansions

are also more general, in the sense that they include a weight function w(t; γ), which controls

the size of the function space used for representation, controlled by a parameter γ > −1/2.

To formally state,

Theorem 22. [23] For a real polynomial φ : [−1, 1]→ R and for any finiteX = {x1, x2, x3, . . .}

the matrix [φ(〈xi, xj〉)]i,j is positive definite if and only if φ(t) is a nonnegative linear combi-

nation of Gegenbauer’s polynomials Gγi (t), which is,

φ(t) =
∞∑

i=0

αiG
γ
i (t) (3.3)

with αi ≥ 0, and
∑

i aiG
γ
i (1) <∞.

Definition 23. Gegenbauer’s polynomials are defined as below,

Gγ0(t) = 1, Gγ1(t) = 2γt, . . . , (3.4)

Gγi+1(t) =

(
2(γ + i)

i+ 1

)
tGγi (t)−

(
2γ + i− 1

i+ 1

)
Gγi−1(t) (3.5)

As stated earlier Gγk and Gγl are orthogonal in [−1, 1] and all polynomials are orthogonal

with respect to the weight function w(t; γ) = (1− t2)(γ−1/2) and γ > −1/2.

∫ 1

−1
Gγk(t)Gγl (t)w(t; γ)dt = 0, k 6= l. (3.6)

The weight function above defines a weighted inner product on the space of functions with a
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norm and a inner product given by

‖φ‖2 =

∫ 1

−1
w(t; γ)φ(t)φ(t)dt, (3.7)

〈φ, ψ〉 =

∫ 1

−1
w(t; γ)φ(t)ψ(t)dt (3.8)

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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γ=1.0

γ=10.0

γ=0.5

γ=1.0

γ=10.0

Figure 3.2: Weight function w(t; γ)
as a function of γ. The γ controls
behavior of the weight function at
boundaries, and controls the size of
interpolation function space.

This weight function controls the space of func-

tions over which we estimate these polynomial maps.

Figure 3.2 shows the weight function obtained by dif-

ferent γ parameter. We observe that γ value controls

the behavior of the function at the boundary points

{ 1,−1 }. Having this weight function also improves

the the quality of interpolation by avoiding the Gibbs

phenomenon as further explained in Gottlieb et al. [61]

.

To summarize given a base kernel matrix K on in-

put data, we expand target kernel K′ as a transformation φ(t) applied to K. This maps the

initial RKHS features k(x, ·) to new RKHS features k′(x, ·). These two forms of polynomial

mapping representations have been known in literature and have used for non-structured pre-

diction tasks like regression and classification.

3.3 Summary

We have proposed polynomial kernel expansions of kernels that we use to learn kernels for

structured prediction. We propose an approach that will use these expansions on both input

and output data, so as to maximize dependence between kernel feature spaces using the Hilbert

Schmidt Independence Criterion (HSIC).
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Chapter 4

Learning Polynomial Kernel Transformations for Structured
Prediction

In this chapter we propose a framework to learn kernels for the problem of structured prediction.

Outline of this chapter is as follows; first, we propose the use polynomial kernel expansions so

as to maximize statistical dependency, second, we propose an efficient matrix-decomposition

based algorithm to solve for these expansions, and third, we show state-of-the art results on

synthetic and real-world datasets by learning covariance kernels of Twin Gaussian Processes

[20] for structured prediction.

4.1 Related Work

In the seminal work of Micchelli and Pontil [62], they showed that we can parametrize a set of

kernels in F over a compact set Ω as

F =

{∫

Ω
Gω(x)dω : p ∈ P(Ω)

}
,

where P(Ω) is the set of all probability measures on Ω, G(ω) is a base kernel parametrized by

ω. To illustrate this with an example, if we set Ω ⊆ R+ and Gω(x) as multivariate Gaussian

kernel over x, with variance ω, then F corresponds to a subset of the class of radial kernels.

Most kernel learning frameworks in the past have focussed on learning a single kernel from

a family of kernels (F) defined using the above equation. Almost all of these frameworks

have focussed on problem of classification or regression. Table 4.1 illustrates previous work on

learning kernels for different choices of Ω, and base kernel Gω(x, y), over data domain X .

Some of the above approaches work iteratively, [63, 64] while others use optimization meth-

ods such as, semi-infinite programming [68], or QCQP [67]). A review paper by Suzuki and
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Kernel family and base kernel Gω(x, y) Related Work

Radial kernels (Iterative), Gω(x, y) = e−ω‖x−y‖
2

Argyriou et al. [63, 64].

Dot product kernels, Gω(x, y) = eω〈x,y〉 Argyriou et al. [63, 64].

Finite convex sum of kernels, SimpleMKL Rakotomamonjy et al. [65].

Radial kernels (Semi-infinite Programing, Infinite Kernel
Learning)

Gehler and Nowozin [66]

Shift-invariant kernels (Radial and Anisotropic), Gω(x− y) Shirazi et al. [67]

Table 4.1: Kernel learning frameworks which learn kernels as convex combination of base
kernels Gω(x, y).

Sugiyama [69] surveys many of these works on various Multiple Kernel Learning algorithms.

The relevant works which uses results on polynomial expansion of kernels has been of Smola

et al. [59] which learn dot product kernels using monomial basis {1, x, x2, . . .}, and learning

shift-invariant kernels using radial base kernels of Shirazi et al. [67], both of these have been

proposed for classification and regression.

In our work we use results on expansion of kernels for learning kernels for the problem of

structured regression. We use monomial and Gegenbaur expansions to learn a positive combi-

nation of base kernels. The Gegenbaur basis basis has an advantage of being orthonormal, and

providing a control parameter γ, that helps avoid Gibbs phenomenon on interpolation [61].

4.2 Learning Kernel Transformations

The goal in structured prediction is to predict output label y ∈ Y , given a input example x ∈ X ,

our thesis is that if output kernel feature g′(y, ·) is more correlated (dependent) with input kernel

feature k′(x, ·), then we can significantly improve the regression performance. We propose to

use HSIC for this. Also, maximizing HSIC (or equivalently Kernel Target Alignment) has been

used as an objective for learning kernels in the past [70]. These frameworks maximize the HSIC

or alignment between input and outputs, which in our case are structured objects. Cristianini

et al. [71] in their work provide generalization bounds and which confirm that maximizing

alignment (i.e HSIC) does indeed lead to better generalization.

Following on this, if we let K′ = φ(K), and G′ = ψ(G), where K and G are normalized

base kernels on input and output data. Using the empirical definition HSIC we define the
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following objective function to optimize

L(α∗,β∗) = max
α,β

HSIC(φ(K), ψ(G)) (4.1)

subject to αi ≥ 0, βj ≥ 0,∀i, j ≥ 0 (4.2)

In case of monomial basis as in section 3.2.1, we can use equation 3.2 on kernel matrices K

and G we get equations for φ : K→ K′ and ψ : G→ G′ as follows,

φ(K) =

∞∑

i=0

αiK
(i), αi ≥ 0, ∀i ≥ 0 (4.3)

φ(G) =

∞∑

j=0

βjG
(j), βj ≥ 0, ∀j ≥ 0 (4.4)

where K(i) is the kernel obtained by applying the ith polynomial basis ti to the initial kernel

matrix K (similarly Gλk(t) for Gegenbaur basis). Figure 4.1 illustrates this. Assuming our ini-

tial kernels are both bounded and normalized we also need our new kernels φ(K) and ψ(G) to

be bounded. For this purpose we impose l2-norm regularization constraint on αi’s and βj’s, that

is ‖α‖2 = 1 and ‖β‖2 = 1. These constraints are similar to the l2-norm regularization con-

straint on positive mixture coefficient’s in the Multiple Kernel Learning framework of Cortes

et al. [70]. These helps generalization to unseen test data and also avoid arbitrary increase of

optimization objective so as to maximize it.

Substituting the expansions equations 4.3 and 4.4 in equation 4.2, and simplifying the main

objective 4.2 and we get,

maximize
∞∑

i=0

∞∑

j=0

αiβjCi,j (4.5)

subject to, ‖α‖2 = 1, ‖β‖2 = 1

where the C-matrix is such that [C]i,j = HSIC(K(i),G(j)). Also, from the properties of

HSIC we know that the entries of the C-matrix is a non-negative non-negative with entries.
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Figure 4.1: Twin Kernel Learning framework.

The constructed C-matrix looks as follows,

C =

K(0) K(1) K(i) K(d2)

G(0) C1,1 C1,2
... Cd2,1

G(1) C1,1 C1,2
... Cd2,1

G(0) C2,1 C1,2
... C2,d2

G(j) . . . . . . Ci,j . . .

G(d1) Cd1,1 Cd1,2
... Cd1,d2

(4.6)

where Ci,j = HSIC(K(i),G(j)).

To further explain our intuition, every entry [C]i,j = HSIC(K(i),G(j)) represents higher

order cross-correlations among the polynomial combination of features of order i and j between

input and output, respectively. Hence by appropriately choosing coefficient’s αi and βj we are

maximizing these higher order cross-correlations in the kernel feature space. We approximate

sum to finite degrees d1 and d2 which leads us to a finite dimensional problem with deg(φ) = d1

and deg(ψ) = d2. This amounts to using all polynomial combinations of features up to degree

d1 for input and d2 for output. So higher the degree we choose more is the dependence and
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intuitively better is the prediction. The upper bound on the degree is computationally limited

by the added non-linearity in the kernel based prediction algorithm and can lead to overfitting.

So we choose these degrees empirically by cross-validation until we saturate the performance

of the prediction algorithm.

We have the following theorem regarding the solution of optimization problem 4.5,

Theorem 24. The solution (α∗,β∗) to the optimization problem in 4.5 is given by the first left

and right singular vector of the C-matrix

Proof. Using Perron-Frobenius theorem [72] for square non-negative matrices CTC and CCT ,

we claim that both CTC and CCT have Perron vectors α∗ and β∗, respectively. Both α∗ and

β∗ are the left and right singular vectors of C and also maximize Eq. 4.5.

The above theorem gives us our required solution to the problem. Hence to solve for the

unknown’s αi’s and βj’s we do Singular Value Decomposition (SVD) of the C-matrix and

choose α and β to be the first left and right singular vectors Theorem 24. The non-negativity

of the α and β vector is guaranteed due to non-negativity of the C-matrix combined with

Perron-Frobenius theoremm Chang et al. [72].

We also observe that α0 = β0 = 0, so choosing d1 = 1 corresponds to using the identity

mapping φ(t) = t on the input kernel, this corresponds to using the initial kernel only, or

equivalently, no mapping on input kernel. A similar argument also applies if we set d2 = 1,

then we have ψ(t) = t, and no mapping on output base kernel. We note that if we set d2 = 1

and d1 to be some arbitrary value greater than one, then solution α∗ is exactly where α∗i ∝

HSIC(K(i),G), which same as choosing coefficients based on kernel alignment as in Cortes

et al. [70].

We also like to point out the similarity of our proposed objective to that of Kernel Canonical

Correlation Analysis (KCCA) objective, which also uses HSIC [73]. In KCCA we find two

nonlinear mappings φ(·) ∈ K and ψ(·) ∈ G from their prespecified RKHS’s maximizing

statistical correlation. In our approach, we also looking for analytical kernel transformations

φ(·) and ψ(·) on initial kernel matrices to maximize the same objective.
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4.3 Modified Twin Gaussian Processes

We use both HSIC and KL-Divergence criteria’s of Twin Gaussian Processes (Section 2.5.2)

and compare against the degree of mapping d1 and d2. This allows us to show how each infor-

mation measure is affected as the mapping degrees d1 and d2 are increased. The relationship

we observe is straightforward and direct, allowing the choice of d1 and d2 to be made easily.

We refer to these new modified TGP’s as Higher Order TGP with KL-Divergence (HOTGP)

and Higher Order HSIC (HOHSIC) for TGP using HSIC.

Modified TGP with KL-Divergence: In this version of TGP we minimize the KL-divergence

between the transformed kernels, φ(K) and ψ(G), given the training data X × Y , and test ex-

ample x∗. The prediction function for HOTGP is,

y∗ = arg min
y
DKL((ψ(GY ∪y)||φ(KX∪x∗)) (4.7)

Modified TGP with HSIC: For this version of TGP with HSIC criteria, the prediction func-

tion maximizes the HSIC between the transformed kernels φ(K) and ψ(G) given the training

data X × Y , and test example x∗. The prediction function of HOHSIC is as follows,

y∗ = arg max
y
HSIC((ψ(GY ∪y), φ(KX∪x∗)) (4.8)

4.4 Experiments

We show empirical results using Twin Gaussian Processes with KL-Divergence and HSIC,

using both monomial and Gegenbaur transformations on two synthetic and two real-world

datasets. To measure improvement in performance over the baseline we look at empirical re-

duction in error which we call % Gain defined as,

% Gain =

(
1−

Error(mapping)

Error(no mapping)

)
× 100.
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In all of our experiments, we use the Gaussian kernels k(xi, xj) = exp(−γx||xi − xj ||2)

and g(yi, yj) = exp(−γy||yi − yj ||2) as base kernels on input and output, respectively. The

bandwidth parameters γx and γy were chosen using cross-validation using base kernel on the

original dataset. The weight parameters were chosen to be fixed values λ1 = 0.51 and λ2 =

0.52 using rough estimates from expressions in Gottlieb et al. [61] and validated on validation

set. For choice of expansion degree we increase d1 and d2 until the % Gain saturates on the

cross-validation. We then learn the kernel transformations φ(·) and ψ(·) using the proposed

approach.
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Figure 4.2: S-Shape dataset

S Shape dataset The S-shape dataset from Bishop

and Svensén [74] which is a simple 1D input/output re-

gression problem. In this dataset, 500 values of inputs

(x) are sampled uniformly in (0, 1) and then evaluated

for r = x+0.3sin(2πx)+ ε, with ε drawn from a zero

mean Gaussian noise with standard deviation σ = 0.05

(Figure 4.2). The goal here is to solve the inverse prob-

lem, which is to predict x, given r. The dataset is chal-

lenging in the sense that it is multivalued (in the middle

of the S-shape), discontinuous (at the boundary of univalued and multivalued region) and noisy

(ε = N (0, σ)). The error is metric is the mean absolute error (MAE).

4.4.1 Datasets

Synthetic Data

Poser dataset The Poser dataset contains synthetic images of human motion capture se-

quences from the Poser 7, [75]. The motion sequences includes 8 categories: walk, run, dance,

fall, prone, sit, transitions and misc. There are 1927 training examples coming from different

sequences of varying lengths and the test set is a continuous sequence of 418 time steps. The

input feature vectors are 100d silhouette shape descriptors while the output feature vectors are

54d vectors with the x, y and z rotation of joint angles. The error metric is the mean absolute

error (MAE) in mm.
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Real-world Data

Figure 4.3: USPS digits reconstruc-
tion dataset from Weston et al. [2].

USPS handwritten digits reconstruction In

USPS handwritten digit reconstruction dataset from

Weston et al. [2] (Figure 4.3), the goal is to pre-

dict 16 pixel values in the center of an image,

given the outer pixels. We use 7425 examples

for training (without labels) and 2475 examples

(roughly 1/4th for each digit) for testing. The er-

ror metric here is the reconstruction error measured using mean absolute error (MAE).

Figure 4.4: HumanEva-I dataset from
Sigal et al. [9]

HumanEva-I pose dataset The HumanEva-I

dataset from Sigal et al. [9] is a challenging dataset

that contains real motion capture sequences from three

different subjects (S1,S2,S3) performing five different

actions (Walking, Jogging, Box, Throw/Catch, Ges-

tures, Figure 4.4). We train models on all subjects and

all actions. We have input images from three different

cameras; C1,C2 and C3 and we use HoG features from

Dalal and Triggs [76] on them. The output vectors are 60d with the x, y, z joint positions in

mm. We report results using concatenated features from all three cameras (C1+C2+C2) and

also individual features from each individual camera (C1,C2 or C3).

4.4.2 Results

Synthetic Data

S-Shape data We choose bandwidth parameter to be γx = 1 and γy = 1 using cross-

validation. To illustrate effect of increasing degrees d1 and d2, we run our results on a grid of

degrees from the set {1, 2, 3, 5, 7, 11}. In figure 4.5 we plot the increase in the mapping degree

as % Gain. Figures 4.5a and 4.5b show results for using KL-Divergence as the optimization

criteria. Figures 4.5c and 4.5d show results for using HSIC as an the optimization criteria.
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(b) TGP (KL-Div) with Gegenbaur Basis
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(c) TGP (HSIC) with Monomial Basis
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(d) TGP (HSIC) with Gegenbaur Basis

Figure 4.5: % Gain for TGP with KL-Div (Figures 4.5a and 4.5b) and HSIC (Figures 4.5c and
4.5d) using both monomial and Gegenbaur basis on left and right, respectively.

We observe that for both as we increase d1 and d1, % Gain increases i.e. mean absolute error

(MAE) reduces. Also for each pair of figures, for each objective, changing from a monomial

basis to Gegenbaur basis helps improve % Gain, from 31.27% to 39.49% for KL-Div, and

22.31% to 26.06% for HSIC.

Crit. (d1, d2) MAE (w/o map) MAE (w/map) Gain %
KL-Div (1,11) 57.03 41.57 27.25%
HSIC (1,11) 48.08 38.71 19.48%
KL-Div (Gegen.) (1,11) 57.02 44.19 22.50%
HSIC (Gegen.) (1,23) 48.08 35.55 36.02%

Table 4.2: Root Mean Absolute Error for Poser dataset for two criteria’s of TGP using mono-
mials and Gegenbaur transformations.
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Poser dataset For the Poser dataset we choose bandwidth to be γx = 10 and γy = 10−5

using cross-validation. The final results are shown in Table 4.2. In this case we observe that for

both basis input degree turns out be d1 = 1, and using Gegenbaur basis gives us better results

of 57.02% at d2 = 11, when compared to monomial basis with 48.08% at d2 = 23. Here

we distinctly observe benefits of using Gegenbaur basis in terms better accuracy and better

numerical stability with a lower output degree d2.

Real-world Data

Handwritten digit reconstruction We report our results with bandwidth parameters γx =

2e10−7 and γy = 2e10−2. The mapping degrees were chosen for HOTGP were (d1, d2) =

(11, 11) and for HOHSIC were (d1, d2) = (23, 23), using cross validation on MAE criteria.

Table 4.3 shows summary of results and compares our approach with other kernel-based struc-

tured prediction methods. We observe two lowest scores to be from Twin Gaussian process

using HSIC with monomial basis, (d1, d2) = (11, 11), and KL-Divergence with Gegenbaur

basis, and (d1, d2) = (23, 23). The % Gain shows that using Gegenbaur basis leads to better

same results for lower degree over baseline with no-mapping. The best accuracy is obtained

for both objective criteria.

Additionally, we perform experiments using Recurrent Neural Networks (RNN) from Guo

et al. [77]. We randomly sampled 1100 images from the original data set, and used the first half

of the image (128 pixels) to predict the second half (128 pixels). Table 4.4 presents RMS Errors

of the RNN model which is 0.5591 and % Gain over best method (Monomial with KLDiv) is

56.77 %. We use mapping degrees of d1 = d2 = 11 in all cases.

HumanEva-I pose dataset We report results using concatenated features from all three

cameras (C1 +C2+C2), and also features from individual camera (C1,C2 and C3). We use

Gaussian kernel with γx = γy = 10−4. For KL-divergence criteria we get (d1, d2) = (1, 11)

for monomial basis, and (d1, d2) = (1, 5) for Gegenbaur basis. In case of HSIC criteria, we

get (d1, d2) = (11, 11) for both monomial and Gegenbaur basis. Table 4.5) shows complete set

of results. The % Gain for each criteria is shown in bold. We observe in both subtables that

using concatenated features (C1+C2+C3) gives us better results than using individual camera
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Method (d1, d2) MAE Method (d1, d2) MAE

NN / 0.341 KRR / 0.250
SVR / 0.250 KDE / 0.260
SOARkrr / 0.233 SOARsvr / 0.230
HSIC (1,1) 0.3399 HSIC (11,11) 0.195 (2.50%)
KL-Div (1,1) 0.2151 KL-Div (11,11) 0.211 (2.01)%
KL-Div Gegen. (1,1) 0.2101 KL-Div Gegen. (11,11) 0.19 (7.01%)
HSIC Gegen. (1,1) 0.3399 HSIC Gegen. (23,23) 0.25442 (25.14%)

Table 4.3: Comparison with others models from Bo and Sminchisescu [1] for USPS digits
reconstruction dataset. The two lowest errors are emphasized and their % Gain bolded. NN
means nearest neighbor regression, KDE means kernel dependency estimation [2] with 16d
latent space obtained by kernel principal component analysis. SOAR means Structured Output
Associative regression [1]. % Gain shows reduction in error compared to no-mapping vs. using
mapping for KL-Div and HSIC criteria with monomial and Gegenbaur basis.

TGP Baseline Monomial Gegenbaur

KLDiv 0.2596 0.2380 (8.32 %) 0.2417 (6.90 %)

HSIC 0.3172 0.2649 (16.49 %) 0.3052 (3.78 %)

Table 4.4: RMS Error for USPS digits reconstruction dataset compared with RNN from
HNSSO is 0.5591. % Gain over best method (Monomial with KLDiv) is 56.77 %. We use
mapping degrees d1 = d2 = 11 in all cases.

features.

In subtable 4.5a, we see results with monomials basis for both HSIC KL-Divergence cri-

terion. In general we observe KL-Divergence to be giving better results compared to HSIC.

The best results for this case is with features (C1+C2+C3) with KL-Divergence and % Gain of

5.080%. In subtable 4.5b for the Gegenbaur basis we observe a significant reduction in error

when using KL-divergence with % Gain of 99.95%. We show consistent improvement in per-

formance with this expansion and much better results using Gegenbaur expansion. We provide

detailed results on all subjects and actions in the appendix.
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Features Crit. w/map wo/map % Gain

HoG
(C1C2C3)

KL-Div 45.17 42.88 5.08%
HSIC 172.66 172.59 0.05%

HoG
(C1)

KL-Div 34.29 33.43 2.51%
HSIC 172.66 173.88 0.08%

HoG
(C2)

KL-Div 31.99 31.58 1.29%
HSIC 172.66 173.88 0.09%

HoG
(C3)

KL-Div 30.93 30.49 1.41 %
HSIC 172.66 172.59 0.09%

(a) Monomial transformation: KL-Div -
(d1, d2) = (1, 11), HSIC-(d1, d2) =
(11, 11)

Features Crit. w/map wo/map % Gain

HoG
(C1C2C3)

KL-Div 25.40 0.011 99.95 %
HSIC 172.66 172.29 0.25%

HoG
(C1)

KL-Div 44.42 9.63 77.46%
HSIC 172.66 172.28 0.26%

HoG
(C2)

KL-Div 44.68 12.30 71.71%
HSIC 172.66 172.27 0.26%

HoG
(C3)

KL-Div 44.35 0.01 99.97%
HSIC 172.66 172.28 0.26%

(b) Gegenbaur transformation: KL-Div-
(d1, d2) = (1, 5), HSIC-(d1, d2) =
(11, 11)

Table 4.5: Mean Absolute Error for HumanEva-I dataset for two criteria’s, KL-Div and HSIC,
with and without mapping, using both monomial and Gegenbaur transformation.

4.5 Discussion

% Gain
Criterion

S-shape Poser USPS Digits HumaEva-I
(C1+C2+C3)

HumanEva-I (C1,C2,C3)

KL-Div. 31.27 %. 6.39 % 1.97 % 5.08% (2.51%, 1.29%, 1.40%)
HSIC 22.31 %. 1.26% 2.11 % 0.05% (0.08%, 0.09%, 0.09%)

KL-Div.
(Gegen.)

39.49 %. 14.31% 14.31 % 99.95 % (77.46%,71.71% 99.97%)

HSIC
(Gegen.)

26.06 %. 7.01% 7.01 % 0.25 % (0.26%,0.26%, 0.26%)

Table 4.6: Summary of all datasets with both criteria, and using both monomial and Gegenbaur
transformations.

Table 4.6 provides a complete summary of results for all datasets. It is clear from the exper-

imental results that as we increase mapping degrees d1 and d2, we use higher order combination

of polynomial kernel features to maximize dependence between input and output, and this leads

to better regression. Reduction in prediction error as indicated by the % Gain metric. Choice of

degree is done using cross-validation and kernel parameters are selected using the kernel me-

dian trick. In S-shape dataset increase in both d1 and d2 helps until the performance saturates,

and later falls off due to numerical instability due to the added non-linearity and overfitting.

For the case of the Poser dataset (Table 4.2) and for HumanEva with KL-Divergence (Ta-

ble 4.5a and 4.5b), we see that the best performance is for d1 equal to one. This amounts
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to choosing choosing the identity mapping/no-mapping on input, φ(t) = t. As we described

in section 4.2 this amounts to choosing coefficients proportional to kernel target alignment of

Cortes et al. [70] score between initial input kernel and kernels obtained from basis expansion

of initial output kernel G.

The effect of using the two different objective criteria KL-Divergence versus HSIC, we see

that in many cases, KL-Divergence does better or as well as HSIC (Table 4.3). In terms of ease

of optimization of TGP with HSIC, it turns out to be easier criteria to optimize as there is no

explicit training step for it Bo and Sminchisescu [20]), and it is relatively easier to compute

objective than KL-Divergence.

In terms of choice of basis functions, it is clear that using Gegenbaur basis leads to better

numerical stability and often times better results. In some cases like, HumaEva with KL-

Divergence (Table 4.5b), it does lead to using lower degree values which leads to easier opti-

mization in prediction phase.

4.6 Summary

We proposed a novel method for learning kernels by using polynomial expansions in terms

of base kernels. We also empirically showed that maximizing statistical dependency (HSIC)

between input and output kernel features leads to better performance for structured prediction.

We also proposed an efficient, matrix-decomposition based algorithm to learn them and showed

state-of-the-art empirical results on several synthetic and real-world datasets by covariance

functions of Twin Gaussian Processes.
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Chapter 5

Supervised Dimensionality Reduction via Distance Correlation
Maximization

In this chapter, we focus on supervised dimensionality reduction in the regression setting, we

consider the problem of predicting a univariate response yi ∈ R from a vector of continuous

covariates xi ∈ Rp for i = 1 to n. We propose a novel formulation for supervised dimension-

ality reduction that is based on a dependency criterion called Distance Correlation of Szekely

et al. [54].

5.1 Related Work

Sliced Inverse Regression (SIR) of Li [78], Lue [79], Szretter and Yohai [80] is one of the

earliest developed supervised dimensionality reduction techniques and is a seminal work that

introduced the concept of a central subspace that we now describe. This technique aims to find

a subspace given by the column space of a p× d matrix B with d << p such that y |= X|BTX

where |= indicates statistical independence. Under mild conditions the intersection of all such

dimension reducing subspaces is itself a dimension reducing subspace, and is called the central

subspace [81]. SIR aims to estimate this central subspace. Sliced Average Variance Estima-

tion (SAVE) of Shao et al. [82] and Shao et al. [83] is another early method that can be used

to estimate the central subspace. SIR uses a sample version of the first conditional moment

E [X | Y ] to construct an estimator of this subspace and SAVE uses the sample first and sec-

ond conditional moments to estimate it. Likelihood Acquired Directions (LAD) of Cook and

Forzani [84] is a technique that obtains the maximum likelihood estimator of the central sub-

space under assumptions of conditional normality of the predictors given the response. Like

LAD, methods SIR and SAVE rely on elliptical distributional assumptions like Gaussianity of

the data.
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More recent methods that do not require any distributional assumptions on the marginal

distribution of x or on the conditional distribution of y. The authors of Gradient Based Kernel

Dimension Reduction (gKDR), Fukumizu and Leng [85], use an equivalent formulation of the

conditional independence relation y |= X|BTX using conditional cross-covariance operators

and aim to find a B that maximizes the mutual information I(BTX,y). In this work, the

authors estimate the conditional cross-covariance operators by using Gaussian kernels. gKDR

instead uses kernels only to provide equivalent characterizations of conditional independence

using sample estimators of cross-covariance operators.

Sufficient Component Analysis (SCA) of Yamada et al. [86] is another technique where

the B is also learnt using a dependence criterion. SCA aims to maximize the least-squares

mutual information given by SMI(Z, Y ) = 1
2

∫ ∫
(
pzy(z,y)
pz(z)py(y) −1)2dzdy between the projected

features Z = BTX and the response. This is done under orthonormal constraints over B,

and the optimal solution is found by approximating pzy(z,y)
pz(z)py(y) using method of density ratio

estimation [87, 88], and also an analytical closed form solution for the minima is obtained. In

the work of Suzuki and Sugiyama [89] (LSDR), the authors optimize this objective using a

natural gradient based iterative solution on the Steifel manifold Smd (R) via a line search along

the geodesic in the direction of the natural gradient [90, 91].

Furthermore, other works of Li et al. [92], Kong et al. [93], Berrendero et al. [94] have

used Distance Correlation as a criterion for feature selection in a regression setting, but in our

work we show benefits using Distance Correlation as a criterion for supervised dimensionality

reduction.

5.2 Laplacian Formulation of Sample Distance Correlation

In this section, we propose a Laplacian formulation of sample distance covariance, and sample

distance correlation, which we later use to propose our objective used for supervised dimen-

sionality reduction (SDR).

A graph Laplacian version of sample distance correlation can be obtained as follows,

Lemma 25. Given matrices of squared Euclidean distances EX and EY, and Laplacians LX

and LY formed over adjacency matrics ÊX and ÊY, the square of sample distance correlation
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ρ̂2(X,Y) is given by

ρ̂2(X,Y) =
Tr
(
XTLYX

)
√

Tr (YTLYY) Tr (XTLXX)
. (5.1)

Proof. Given matrices ÊX, ÊY, and column centered matrices X̃, Ỹ, from result of Torgerson

[95] we have that ÊX = −2X̃X̃T and ÊY = −2ỸỸT . In the problem of multidimensional

scaling (MDS) [96], we know for a given adjacency matrix say W and a Laplacian matrix L,

Tr
(
XTLX

)
=

1

2

∑

i,j

[W]ij [EX]i,j . (5.2)

Now for the Laplacian L = LX and adjacency matrix W = ÊY we can represent Tr
(
XTLYX

)

in terms of ÊY as follows,

Tr
(
XTLYX

)
=

1

2

n∑

i,j=1

[ÊY]i,j [EX]i,j .

From the fact [EX]i,j = (〈x̃i, x̃i〉+ 〈x̃j , x̃j〉 − 2 〈x̃i, x̃j〉), and also ÊX = −2X̃X̃T we get

Tr
(
XTLYX

)
= −1

4

n∑

i,j=1

[ÊY]i,j([ÊX]i,i + [ÊX]j,j − 2[ÊX]i,j)

=
1

2

∑

i,j

[ÊX]i,j [ÊY]i,j −
1

4

n∑

j

[ÊX]j,j

n∑

i

[ÊY]i,j −
1

4

n∑

i

[ÊX ]i,i

n∑

j

[ÊY]i,j

Since ÊX and ÊY are double centered matrices
∑n

i=1[ÊY]i,j =
∑n

j=1[ÊY]i,j = 0 it follows

that

Tr
(
XTLYX

)
=

1

2

∑

i,j

[ÊX]i,j [ÊY]i,j .

It also follows that

ν̂2(X,Y) =
1

n2

n∑

i,j=1

[ÊY]i,j [EX]i,j =
2

n2
Tr
(
XTLYX

)



50

Similarly, we can express the sample distance covariance using Laplacians LX and LY as

ν̂2(X,Y) =

(
2

n2

)
Tr
(
XTLYX

)
=

(
2

n2

)
Tr
(
YTLXY

)
.

The sample distance variances can be expressed as ν̂2(X,X) =
(

2
n2

)
Tr
(
XTLXX

)
and

ν̂2(Y,Y) =
(

2
n2

)
Tr
(
YTLYY

)
substituting back into expression of sample distance cor-

relation above we get Equation 5.1.

5.3 Framework

5.3.1 Problem Formulation

The goal in supervised dimensionality reduction (SDR) is to learn a low dimensional repre-

sentation Z ∈ Rn×p of input features X ∈ Rn×d, so as to predict the respone vector y ∈ R

from Z. The intuition being that Z captures all information relevant to predict y. Also, during

testing, for out-of-sample prediction, for a new data point x∗, we estimate z∗ assuming that it

is predictable from x∗. In our proposed formulation, we use aforementioned Laplacian based

sample distance correlation to measure dependencies between variables. We propose maximize

dependencies between the low dimensional features Z and response vector y, and also low di-

mensional features Z with input features X. Our objective is to maximize the sum of squares

of these two sample distance correlations which is given by,

f(Z) = ρ̂2(X,Z) + ρ̂2(Z,y) (5.3)

f(Z) =
Tr
(
ZTLXZ

)
√

Tr (XTLXX) Tr (ZTLZZ)
+

Tr
(
ZTLyZ

)
√

Tr (yTLyy) Tr (ZTLZZ)
. (5.4)

On simplification we get the following optimization problem which we refer to as Problem

(P).

max
Z

f(Z) =
Tr
(
ZTSX,yZ

)
√

Tr (ZTLZZ)
Problem (P)

where kX = 1√
Tr(XTLXX)

, kY = 1√
Tr(yTLyy)

are constants, and SX,y = kXLX + kY Ly.
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5.3.2 Algorithm

xk xk+1

Q

P
L (xk+1)

L (xk)

L(x0)

x0

Figure 5.1: Generalized MM algo-
rithm.

In the proposed problem (Problem (P)), we observe that

numerator of our objective is convex while denominator

is non-convex due the presence of a square root and a

nonlinear Laplacian term LZ on Z. Hence, this makes

direct optimization of this objective practically infeasi-

ble. So to optimize Problem (P), we present a surro-

gate objective Problem (Q) which lower bounds our pro-

posed original objective. We maximize this lower bound

with respect to Z and show that optimizing this surrogate objective Problem (Q) (lower bound),

also maximizes the proposed objective in Problem (P). We do so by utlizing the Generalized

Minorization-Maximization (G-MM) framework of Parizi et al. [24].

The G-MM framework of Parizi et al. [24] is an extension of the well known MM frame-

work of Lange et al. [97] (Figure 5.1). It removes the equality constraint between both objec-

tives at every iteration Zk, except at initialization step Z0. This allows the use a broader class

of surrogates that avoid maximization iterations being trapped at sharp local maxima, and also

makes the problem less sensitive to problem initializations.

The surrogate lower bound objective is as follows,

max
Z

g(Z,M) =
Tr
(
ZTSX,yZ

)

Tr (ZTLMZ)
Problem (Q)

where M ∈ Rn×d belongs to the set of column-centered matrices.

The surrogate problem (Problem (Q)) is convex in both its numerator and denominator for

a fixed auxiliary variable M. Theorem 26 provides the required justification that under cer-

tain conditions, maximizing the surrogate Problem (Q) also maximizes the proposed objective

Problem (P) .

An outline of the strategy for optimization is as follows:

a) Initialize: Initialize Z0 =
[
cJd,0

T
(n−d)×d

]T
, a column-centered matrix where c = 1

4
√

2(d−1)
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and Jd ∈ Rd×d is a centering matrix. This is motivated by statement 1) in proof of Theo-

rem 26.

b) Optimize: Maximize the surrogate lower bound Zk+1 = arg max g(Z,Zk) (Section 5.4).

c) Rescaling: Rescale Zk+1 ← κZk+1 such that Tr
(
Zk+1LZk+1

Zk+1

)
is greater than one.

This is motivated by proof of statement 3) of Theorem 26, and also the fact that g(Z,M) =

g(κZ,M) and f(Z) = f(κZ) for any scalar κ.

d) Repeat step b and c above until convergence.

Theorem 26. Under above strategy, maximizing the surrogate Problem Q also maximizes

Problem P.

Proof. For convergence it is enough for us to show the following, [24]:

1. f(Z0) = g(Z0,Z0) for Z0 =
[
cJd,0

T
(n−d)×d

]T
and c = 1

4
√

2(d−1)
,

2. g(Zk+1,Zk) ≥ g(Zk,Zk) and,

3. f(Zk+1) ≥ g(Zk+1,Zk)

To prove statement 1, for Z0 =
[
cJd,0

T
(n−d)×d

]T
, we observe that Z0 column-centered, LZ0 =

2Z0Z
T
0 and ZT0 Z0 = c2Jd. Hence we get Tr

(
ZT0 Z0LZ0Z0

)
= c4Tr (2Jd) = c42(d− 1) = 1.

This proves the required statement f(Z0) = g(Z0,Z0) = Tr
(
ZT0 LZ0Z

T
0

)
.

Statement 2 follows from the optimization Zk+1 = arg max g(Z,Zk). To prove state-

ment 3 we have to show that

Tr
(
ZTk+1SX,yZk+1

)
√

Tr
(
ZTk+1LZk+1

Zk+1

) ≥
Tr
(
ZTk+1SX,yZk+1

)

Tr
(
ZTk+1LZkZk+1

) .

Since numerators on both sides are equal, it is enough for us to show that

√
Tr
(
ZTk+1LZk+1

Zk+1

)
≤ Tr

(
ZTk+1LZkZk+1

)
.

Now from Lemma 33 we have Tr
(
ZTk+1LZk+1

Zk+1

)
≤ Tr

(
ZTk+1LZkZk+1

)
. It follows from

the rescaling step (step c) of the optimization strategy that the left hand side Tr
(
Zt+1LZt+1Zt+1

)
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is always greater that one, and so taking square root of it implies
√

Tr
(
Zt+1LZt+1Zt+1

)
≤

Tr
(
ZTt+1LZtZt+1

)
.

We summarize all of the above steps in Algorithm 5.3.1 below and section 5.4 further

describes optimization algorithm to solve Problem (Q) required by it.

Algorithm 5.3.1 DISCOMAX

Require: Initialize Z0 =
[
cJd,0

T
(n−d)×d

]T
, a column-centered matrix where c = 1

4
√

2(d−1)
,

k ← 0
Ensure: Z∗ = arg maxZ f(Z)

1: repeat
2: Solve,

Zk+1 = arg max
Z

g(Z,Zk) Problem (Q)

3: Rescale Zk+1 ← κZk+1 such that Tr
(
ZTk+1LZk+1

Zk+1

)
≥ 1

4: k = k + 1
5: until ‖Zk+1 − Zk‖2 < ε
6: Z∗ = Zk+1

7: return Z∗

5.4 Optimization

In this section, we propose a framework for optimizing the surrogate objective g(Z,M), re-

ferred to as Problem (Q), for a fixed M = Zk. We observe that for a given value of M,

g(Z,M) is a ratio of two convex functions. To solve this, we convert this maximization prob-

lem to an equivalent minimization problem h(Z,M), by taking its reciprocal [98]. This allows

us to utilize the Quadratic Fractional Programming Problem (QFPP) framework of Dinkelbach

[99] and Zhang [100] to minimize h(Z,M). We refer to this new minimization problem as

Problem (R). It is stated below.

min
Z

h(Z,M) =
Tr
(
ZTLMZ

)

Tr (ZTSX,yZ)
Problem (R) (5.5)

where M = Zk.

In his seminal work Dinkelbach [99] and later Zhang [100] proposed a novel framework

to solve constrained QFP problems by converting it to an equivalent parametric optimization
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problem, by introducing a scalar parameter α ∈ R. We utilize this equivalence proposed to

defined new parametric problem, Problem (S). The solution involves a search over the scalar

parameter α while repeatedly solving Problem (S) to get the required solution Zk+1. This

search process continues until values of α converge.

In a nutshell, Dinkelbach [99] and Zhang [100] frameworks suggest the following optimiza-

tions are equivalent:

Problem (R)

minimize
z∈Rd

h(z) = f1(z)
f2(z)

⇐⇒
Problem (S)

minimize
z∈Rd

H(z;α∗) = f1(z)− α∗f2(z)

for some α∗ ∈ R

where fi(z) := zTi Aiz − 2biz + ci with A1,A2 ∈ Rn×n, b1,b2 ∈ Rn, and c1, c2 ∈ R. A1

and A2 are symmetric with f2(x) > 0 over some z ∈ Z .

To see the equivalence of h(Z,M) in Problem (R) to h(z) above we observe that: A1 =

In ⊗ LM, A2 = In ⊗ SX,y, ci = c2 = 0, and b1 = b2 = 0. Also, due to positive definiteness

of Ai, fi(z) is positive1, and f(zi) > 0. Using this setup for h(Z,M) we get,2

min
Z

h(Z,M) =
vec (Z)T (In ⊗ LM)vec (Z)

vec (Z)T (In ⊗ SX,y)vec (Z)
(5.6)

In subsection 5.4.1 we propose a Golden Section Search [101] based algorithm (Algo-

rithm 5.4.1) which utilizes concavity property of H(Z;α) with respect to α to locate the

best α∗. During this search we repeatedly solve Problem (S) starting with an intial interval

0 = αl ≤ α ≤ αu = λmin(LM,SX,y) for a fixed M, then at each step shorten the search

interval by moving upper and lower limits closer to each other. We continue until conver-

gence to α∗. The choice of the upper limit of αu = λmin(LM,SX,y) is motivated by proof of

Lemma 31.

To solve Problem (S) for a given α, we propose an iterative algorithm in subsection 5.4.2

(Algorithm 5.4.2). It uses the classical Majorization-Minimization framework of Lange [102].

1If Ai is semi-definite then we regularize by adding Ai + εI so that Ai � 0.
2⊗ indicates kronecker product. vec (Z) denotes column vectorization of matrix Z.
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5.4.1 Golden Section Search

Dinkelbach [99] and Zhang [100] showed the following properties of the objective3 H(α) with

respect to α, for a fixed Z.

Theorem 27. Let G : R→ R be defined as

G(α) = min
Z
H(Z;α) = min

Z

{
Tr
(
ZTLMZ

)
− αTr

(
ZTSX,yZ

)}

as derived from Problem (S), then following statements hold true.

1. G is continuous at any α ∈ R.

2. G is concave over α ∈ R.

3. G(α) = 0, has a unique solution α∗.

Algorithm 5.4.1 exploits the concavity property of G(α) to perform a Golden Section

Search over α. Subsection 5.4.2 provides an iterative Majorization-Minimization algorithm

(Algorithm 5.4.2) to solve this minimization problem Problem (S).

5.4.2 Distance Correlation Maximization

Algorithm 5.4.2 gives a iterative fixed point algorithm which solves Problem (S). Theorem 28

provides a fixed point iterate used to minimize H(Z, α) with respect to Z for a given α. The

fixed point iterate4 Zt+1 = HZt minimizes Problem (S) and a monotonic convergence is

assured by the Majorization-Minimization result of Lange [102]. Theorem 28 below derives

the fixed point iterate used in Algorithm 5.4.2.

Theorem 28. For a fixed γ2 (Lemma 30), some α (Lemma 31) and

H =
(
γ2DX − αSX,y

)†
(γ2DX − LM)

3For a fixed Z and variable argument α we denote H(Z;α) as H(α).
4We use the subscript t to indicate fixed point iteration of Zt.
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the iterate Zt = HZt−1 monotonically minimizes the objective,

F (Z;α) = Tr
(
ZTLMZ

)
− αTr

(
ZTSX,yZ

)
(5.7)

Proof. From Lemma 30 we know that, (γ2DX − LM) � 0. Hence the following would hold

true for any real matrix N,

Tr
(
(Z−N)T (γ2DX − LM)(Z−N)

)
≥ 0

Rearranging the terms we get the following inequality over Tr
(
ZTLMZ

)
,

Tr
(
ZTLMZ

)
+ Tr

(
NT (γ2DX − LM)Z

)
−Tr

(
NT (γ2DX − LM)N

)

≤ Tr
(
ZTγ2DXZ

)
−Tr

(
ZT (γ2(DX − LM)N

)

Tr
(
ZTLMZ

)
≤ Tr

(
ZTγ2DXZ

)
− 2Tr

(
ZT (γ2DX − LM)N

)
+ Tr

(
NT (γ2DX − LM)N

)

= l(Z,N)

If N = Z then l(Z,Z) = Tr
(
ZTLMZ

)
. Hence l(Z,N) majorizes Tr

(
ZTLMZ

)
. It also

follows that the surrogate function l(Z,N)−αTr
(
ZTSX,yZ

)
majorizes our desired objective

function H(Z;α). To optimize this surrogate loss we equate its gradient to zero and rearrange

the terms to obtain

(γ2DX − αSX,y)Z = (γ2DX − LM)N

Z = (γ2DX − αSX,y)†(γ2DX − LM)N,

which gives us the update equation Zt+1 = HZt where H is given by,

H = (γ2DX − αSX,y)†(γ2DX − LM). (5.8)

Hence it follows from framework of Lange [102] that above update equation monotonically

minimizes H(Z;α).
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Algorithm 5.4.2 summarizes the steps of an iterative Majorization-Minimization approach

to solve Problem (S).

Algorithm 5.4.1 Golden Section Search for α ∈ [αl, αu] for a fixed M = Zk.

Require: ε, η = 1+
√

5
2 , αl = 0, SX,y,LX, Ly, M = Zk.

Ensure: Zk+1 = arg minZ g(Z,Zk+1)
1: DX ← diag(LX)
2: LM ← 2MTM
3: αu ← λmax(LM,SX,y) (Lemma 30)
4: β ← αu + η(αl − αu)
5: δ ← αl + η(αu − αl)
6: repeat
7: H(β)← minimize

Z∈Rd

(
Tr
(
ZTLMZ

)
− βTr

(
ZTSX,yZ

))
(Problem (S))

8: H(δ)← minimize
Z∈Rd

(
Tr
(
ZTLMZ

)
− δTr

(
ZTSX,yZ

))
(Problem (S))

9: if (H(β) > H(δ)) then
10: αu ← δ, δ ← β
11: β ← αu + η(αl − αu)
12: else
13: αl ← β, β ← δ
14: δ ← αl + η(αu − αl)
15: end if
16: until (|αu − αl| < ε)
17: α∗ ← αu+αu

2
18: Zk+1 ← arg minZ∈Rd

(
Tr
(
ZTLMZ

)
− α∗Tr

(
ZTSX,yZ

))
(Problem (S))

19: return α∗, Zk+1
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Algorithm 5.4.2 Distance Correlation Maximization for a given α

Require: γ2 (Theorem 30), α, M = Zk, SX,y, LM, DX

Ensure: H(Z;α) = minimize
Z∈Rd

(
Tr
(
ZTLMZ

)
− αTr

(
ZTSX,yZ

))

1: t← 0
2: Zt = Zk
3: H(Zt;α)←

(
Tr
(
ZTt LMZt

)
− αTr

(
ZTt SX,yZt

))

4: H =
(
γ2DX − αSX,y

)† (
γ2DX − LM

)

5: repeat
6: Zt+1 = HZt
7: H(Zt+1;α)←

(
Tr
(
ZTt LMZt

)
− αTr

(
ZTt SX,yZt

))

8: t← t+ 1
9: until (|H(Zt+1;α)−H(Zt;α)| < ε) or (t ≥ Tmax)

10: F (α)← H(Zt;α)
11: Z∗ ← Zt
12: return F (α),Z∗

5.5 Experiments

In this section we present experimental results that compare our proposed method with several

state-of-the-art supervised dimensionality reduction techniques on a regression task.

5.5.1 Methodology

𝒙∗ 𝒚∗𝒛∗
𝜓 𝒛∗ → 𝒚∗

𝜙( 𝒙∗ → 𝑧(∗
⋮

𝜙+ 𝒙∗ → 𝑧+∗
⋮

𝜙, 𝒙∗ → 𝑧,∗

𝜙+ 𝒙∗ → 𝑧+∗, 𝑖 = 1,2,… , 𝑑

Figure 5.2: Out-of-sample prediction

Methodology we use for our experiments is as follows:

(i) We run our proposed algorithm on the train-

ing set XTrain to learn low-dimensional features

ZTrain.

(ii) We learn the map ψ : z 7→ y using Support Vec-

tor Regression on ZTrain and YTrain.

(iii) We learn mappings φi : x 7→ zi, i = 1 to d for

each dimension of z using Support Vector Re-

gression on XTrain and ZTrain.

During testing/out-of-sample phase, given a test input x∗, we use maps φi : x 7→ zi for i = 1

to d and generate z∗. We then utilize maps ψ : z 7→ y on z∗ to get the predicted response y∗.

Figure 5.2 illustrates the testing phase of our methodology.
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5.5.2 Datasets

In our results we report the Root Mean Squared (RMS) errors on five datasets from the UCI-

Machine Learning Repository [103] in Tables 5.1 to 5.5. We use the following datasets in our

experiments.

(a) Boston Housing [3]: This dataset contains information collected by the U.S Census Ser-

vice concerning housing in the area of Boston Mass. This dataset has been used extensively

throughout the vast regression literature to benchmark algorithms. The response variable

to be predicted is the median value of owner-occupied homes.

(b) Relative Location of Computed Tomography (CT) Slices [4]: This dataset consists of

385 features extracted from computed tomography (CT) images. Each CT slice is described

by two histograms in polar space that are concatenated to form the final feature vector. The

response variable to be predicted is the relative location of an image on the axial axis. The

ground truth of responses in this dataset was constructed by manually annotating up to 10

distinct landmarks in each CT Volume with a known location. This response takes values

in the range [0, 180] where 0 denotes the top of the head and 180 denotes the the soles of

the feet.

(c) BlogFeedback [5]: This dataset originates from a set of raw HTML documents of blog

posts that were crawled and processed. The task associated with this data is to predict the

number of comments in the upcoming 24 hours. In order to simulate this situation, the

dataset was curated by choosing a base time (in the past) and selecting the blog posts that

were published at most 72 hours before the selected base date/time. Then a set of 281

features of the selected blog posts were computed from the information that was available

at the basetime. The target is to predict the number of comments that the blog post received

in the next 24 hours, relative to the basetime. In the training data, the base times were in

the years 2010 and 2011. In the test data the base times were in February and March 2012.

(d) Geographical Origin of Music [6]: Instances in this dataset contain audio features ex-

tracted from 1059 wave files covering 33 countries/areas. The task associated with the data

is to predict the geographical origin of music. The program MARSYAS was used to extract
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68 audio features from the wave files. These were appended with 48 chromatic attributes

that describe the notes of the scale bringing the total number of features to 116.

(e) UJI Indoor Localization [7]: The UJIIndoorLoc is a Multi-Building Multi-Floor indoor

localization database that relies on WLAN/WiFi fingerprinting technology. Automatic user

localization consists of estimating the position of the user (latitude, longitude and altitude)

by using an electronic device, usually a mobile phone. The task is to predict the actual lon-

gitude and latitude. The database consists of 19937 training/reference records and 1111

validation/test records. The 529 features contain the WiFi fingerprint, the coordinates

where it was taken, and other useful information. Given that this paper focusses on the

setting of univariate responses, we only aim to predict the ’Longitude’.

5.5.3 Results

We perform five-fold cross validation on each of these datasets and report the average Root

Mean Square (RMS) error on the hold-out test sets. Tables 5.1 to 5.5 present the cross-validated

RMS error of our proposed method (DisCoMax), and six other supervised dimensionality re-

duction techniques namely; LSDR [89], gKDR [85], SCA [86], LAD [84], SAVE [82] and [83]

and SIR [78].

In case of DisCoMax, we use the methodology described in sub-section 5.5.1. For other

methods we used in our evaluation, these techniques generate explicit maps to obtain the low-

dimensional representations. As in the case of the methodology for DisCoMax, we use these

Method/dimension 3 5 7 9 11

DisCoMax 0.1559 0.1493 0.1327 0.1311 0.1297
LSDR [89] 0.1978 0.1963 0.1892 0.1886 0.1873
gKDR [85] 0.1997 0.1813 0.1762 0.1738 0.1719
SCA [86] 0.1875 0.1796 0.1708 0.1637 0.1602
LAD [84] 0.2019 0.1964 0.1932 0.1917 0.1903
SAVE [82] 0.2045 0.1983 0.1967 0.1952 0.1947
SIR [78] 0.2261 0.2193 0.2086 0.2076 0.2068

Table 5.1: Boston Housing [3]: U.S Census Service concerning housing in the area of Boston
Mass to predict median value of owner-occupied homes. Baseline results of SVR RMS error
of 0.1719.
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Method/d 3 5 7 9 11

DisCoMax 19.19 18.67 18.14 17.94 17.81
LSDR [89] 23.63 22.31 22.09 21.93 21.82
gKDR [85] 24.06 23.39 22.76 22.52 22.50
SCA [86] 23.17 24.96 24.21 23.34 23.06
LAD [84] 26.74 25.57 24.39 24.26 24.20
SAVE [82] 28.18 27.82 27.62 27.53 27.50
SIR [78] 29.92 29.46 29.18 28.86 28.63

Table 5.2: Geographical Origin of Music [4]: Input contains audio features extracted from
1059 wave files covering 33 countries/areas. The task associated with this data is to predict
geographical origin of music.

Method/d 3 5 7 9 11

DisCoMax 25.82 24.69 24.33 23.90 23.62
LSDR [89] 30.36 28.16 27.39 27.24 27.18
gKDR [85] 29.72 27.62 27.29 26.91 26.81
SCA [86] 28.53 27.31 26.60 26.32 26.30
LAD [84] 30.42 30.39 30.20 30.04 29.99
SAVE [82] 31.93 31.27 30.72 30.53 30.31
SIR [78] 33.63 32.65 31.39 31.16 30.83

Table 5.3: BlogFeedback [5]: Data contains features computed from raw HTML documents
of blog posts. The task associated with this data is to predict the number of comments in the
upcoming 24 hours.

Method/d 3 5 7 9 11

DisCoMax 12.29 11.11 10.19 9.73 9.66
LSDR [89] 14.38 13.14 12.87 12.73 12.69
gKDR [85] 13.65 12.86 12.67 12.35 12.05
SCA [86] 14.19 13.64 12.94 12.12 11.73
LAD [84] 17.70 17.62 17.34 17.15 16.89
SAVE [82] 19.32 18.74 18.62 17.76 17.21
SIR [78] 21.53 21.23 20.97 20.77 20.64

Table 5.4: Relative location of CT slices [6]: Dataset consists of 385 features extracted from
CT images. Features are concatenation of two histograms in polar space. The response variable
is relative location of an image on the axial axis.
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Method/d 3 5 7 9 11

DisCoMax 12.28 11.10 10.19 9.73 9.65
LSDR [89] 14.38 13.14 12.86 12.73 12.69
gKDR [85] 13.65 12.86 12.67 12.34 12.05
SCA [86] 14.18 13.63 12.94 12.12 11.73
LAD [84] 17.69 17.62 17.34 17.15 16.89
SAVE [82] 19.32 18.74 18.61 17.75 17.20
SIR [78] 21.53 21.23 20.97 20.77 20.63

Table 5.5: UJI Indoor Localization [7]: Multi-Building Multi-Floor indoor localization
database. Task is to predict the actual longitude and latitude. The 529 attributes contain WiFi
fingerprints and coordinates of where they were taken. Database consists of around 20k train-
ing/reference records and 11k validation/test records.

explicit maps and Support Vector Regression (with a RBF kernel) to generate cross-validated

RMS errors on the responses.

We fix folds across the seven techniques presented within each of the tables (Tables 5.1

to 5.5). We also compute RMS errors for increasing dimensions d = 3, 5, 7, 9 and 11. We

note the significant improvement in the predictive performance (smaller error) of DisCoMax

learnt features across for all cases with different dimensionality, and also gradual increase per-

formance (smaller error) as we increase dimensionality learnt features.

For baseline comparison purposes, in case of the Boston Housing dataset, we observe a

RMS error of 0.1719 using Support Vector Regression without any dimensionality reduction

(d = 13). This when compared to DisCoMax RMS errors which ranged between 0.1559

(d = 3) and 0.1297 (d = 11) always did worse. We bold errors for DisCoMax for cases where

errors were significantly better when compared with their corresponding standard deviations

taken into account.

5.6 Discussion

In this section, we discuss effects of choice of α in the optimization of Problem (S) (Algo-

rithm 5.4.2). We also empirically show optimization of Problem (P) using Algorithm 5.3.1,

which optimizes a lower bound in Problem (Q). We use the Boston Housing dataset for our

analysis.

Figures 5.3a and 5.3b show gradual increase in sample distance correlations ρ̂(X,Zt)
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Figure 5.3: Effect of α values on growth of proposed objective in Algorithm 5.4.2. Figures
show slower (faster) growth of distance correlations for smaller (larger) α.

(Blue) and ρ̂(Zt,y) (Red) with respect the number of fixed point t for two different choices

of α = 6 × 104 and α = 70 × 104. We clearly observe that the choice of α has a strong

effect on rate of increase/decrease of individual distance correlations ρ̂2(X,Zt) and ρ̂2(Zt,y)

as iterations progress. This is because the α value positively weighs the term Tr
(
ZTSX,yZ

)

over Tr
(
ZTLMZ

)
in Problem (S). Figure 5.3c shows the rate of change of objective function

f(Z) with respect to the fixed point iterations t for two choices of α. The figure clearly shows

the slower (faster) rate of increase of f(Z) for smaller (larger) α.

Figure 5.4a and 5.4b repectively show the overall growth of distance correlations (ρ̂(X,Z),

ρ̂(Z,y)) and f(Z), with respect to the fixed point iterations (t), for α∗ = 800 × 104. We

periodically observe a sharp increases in f(Z) and distance correlations after each DisCoMax

subproblem of 220 fixed point iterations. The figures show four such G-MM iterations of

Algorithm 5.3.1. These sharp increases are due to the resubstitution of M = Zk in Step 2 of

Algorithm 5.3.1. This clearly shows us that we are able to maximized are original proposed

objective in Problem (P).
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Figure 5.4: Overall gradual increase in f(Z) (Figure 5.4a) and distance correlations (Fig-
ure 5.4b) for α∗ = 800× 104. Plots show increase in both for each DisCoMax subproblem of
(Algorithm 5.4.2) and four outer G-MM iterations of Algorithm 5.3.1.

5.7 Summary

In this chapter we proposed a novel framework to perform supervised dimensionality reduc-

tion. Our framework aims to maximize the dependency measure of called statistical distance

correlation. We also proposed a novel algorithm to optimize our proposed objective using the

Generalized Minorization-Maximization approach of Parizi et al. [24]. Finally, we showed su-

perior empirical performance of our method on several regression problems in comparison to

existing state-of-the-art methods.
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Chapter 6

Conclusion

In this dissertation, we proposed two frameworks for learning feature representation by maxi-

mizing nonlinear dependency measures for structured data.

In the first framework, we propose a novel method for learning kernels by using polynomial

expansions in terms of base kernels. We proposed a novel objective of maximizing dependency

between input and outputs measured by Hilbert Schmidt Independence Criterion. We use this

objective to learn these polynomial expansions and show that maximizing dependence between

input and output kernel features leads to better performance for structured prediction.

Moreover, the algorithm we propose is an efficient matrix-decomposition based algorithm

to learn these kernel transformations. We use Twin Gaussian Processes as a prototypical struc-

tured prediction example, and using it show state-of-the-art empirical results on several syn-

thetic and real-world datasets.

In the second framework, we use a dependency measure which is a special case of Hilbert

Schmidt Independence Criterion to perform supervised dimensionality reduction. Our frame-

work maximizes a statistical measure of dependence called Distance Correlation of Székely

et al. [14]. Our formulation is based on learning a low-dimensional feature representation z,

which maximizes the squared sum of Distance Correlations between low dimensional features

z and response y, and also between features z and covariates x.

Furthermore, we propose a novel algorithm to optimize our proposed objective using the

Generalized Minorization-Maximization approach of Parizi et al. [24]. Finally, we show a

superior empirical performance of our method on several regression problems in comparison

to existing state-of-the-art methods.
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Future Work In case of first framework, it is worth investigating the following; 1) automated

learning of kernel expansion parameters like degree (d1, d2) and γ, by using distributional priors

on them and optimizing for log-likelihood, 2) extending this framework to multiple kernels for

multi-modal and/or multi-task prediction, and 3) joint learning of kernels along with prediction.

In case of second framework, it is possible to easily extend it to handle structured objects,

as Distance Correlation is also applicable to general metric spaces with a known distance met-

ric [53]. Our proposed framework is practically applicable on relatively small datasets, as it

involves repeatedly solving multiple optimization subproblems. Hence it is worth scaling this

approach so that it is tractable for larger size datasets. In this framework we currently tackle

the out-of-sample issue by learning multiple SVR’s, i.e. one for each dimension of low dimen-

sional feature z, so extending it to learn explicit out-of-sample mappings from x to z is also

desirable.
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Appendices

Appendix A

Learning Polynomial Kernel Transformations for Structured
Prediction

A.1 Mathematical Results

Theorem 29 (Perron-Frobenius [72]). For An×n ≥ 0, with spectral radius r = ρ(A), the

following statements are true.

1. r ∈ σ(A) and r > 0

2. r is unique and it the spectral radius of A

3. Az = rz for some z ∈∆n = {x|x ≥ 0 with x 6= 0}

4. There is unique vector defined by

Ap = rp,p > 0, and ‖p‖1 = 1, (A.1)

is called Perron vector of A, and there are no other nonnegative vectors except for posi-

tive multiples of p, regardless of eigenvalue.
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A.2 Kernel Gradients

For data points X = {x1, x2, . . . xm} and test data point x.

∂φ(K(x1, x))

∂x(d)
=
∂φ(t)

∂t
|t=K(x1,x)

∂K(x1, x)

∂x(d)

∂φ(t)

∂t
=

d1∑

i=0

αiH
γ
i (t)

Hγ
0 (t) = 0, Hγ

1 (t) = 2γ, (A.2)

Hγ
i+1(t) =

(
2(γ + i)

i+ 1

)
(tHγ

i (t) +Gγi (t))−
(

2γ + i− 1

i+ 1

)
Hγ
i−1(t) (A.3)

∂φ(K(X,x))

∂x(d)
=




∂φ(t)
∂t |t=K(x1,x)

∂K(x1,x)

∂x(d)

∂φ(t)
∂t |t=K(x2,x)

∂K(x2,x)

∂x(d)

...
∂φ(t)
∂t |t=K(xm,x)

∂K(xm,x)

∂x(d)




RBF kernel

K(xi, xj) = e−γ‖xi−xj‖
2

∂K(X,x)

∂x(d)
=




−2γ(−x(d)
1 + x(d))K(x, x1)

−2γ(−x(d)
2 + x(d))K(x, x2)

...

−2γ(−x(d)
m + x(d))K(x, xm)




∂K(x1, x)

∂x(d)
= −2γ(−x(d)

1 + x(d))K(x, x1)

Linear kernel

K(xi, xj) = γ 〈xi, xj〉
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∂K(X,x)

∂x(d)
=




γx
(d)
1 )

γx
(d)
2

...

γx
(d)
m




Spectral kernel x ∈ RD and τk = |x− xk| ∈ R

k(τ) =

D∏

d=1

exp
(
−2π2τ2

dσ
2
d

)
cos (2πµdτd) (A.4)

• The inverse means 1/µd represent the component periods

• The inverse standard deviations 1/
√
σd represent length scales

∂k(τ)

∂xk
= exp

(
−2π2

(
D∑

d=1

τ2
dσ

2
d

))


(−4π2σ2

kτk)
D∏

d=1

cos (2πµdτd)− 2πµkτk sin (2πµkτk)
D∏

d=1,d 6=k
cos (2πµdτd)


 (A.5)

∂k(τ)

∂xk
= (2πτk) exp

(
−2π2

(
D∑

d=1

τ2
dσ

2
d

))


(2πσ2

k)
D∏

d=1

cos (2πµdτd) + µk sin (2πµkτk)
D∏

d=1,d 6=k
cos (2πµdτd)


 (A.6)

Spectral mixture kernel Mixture of Q spectral kernels.

k(τ) =

Q∑

i=1

wi

D∏

d=1

exp
(
−2π2τ2

dσ
2
d

)
cos (2πµdτd) (A.7)

A.3 Additional Experimental Results
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Crit. / Mean Abs. Er (no mapping) (mapping) Gain %

KL-Div (11,11) 0.2151 0.21078 2.008 %

HSIC (11,11) 0.3399 0.19536 2.5007 %

KL-Div (Gegen.) (11,11) 0.2101 0.19536 7.0096 %

HSIC (Gegen.) (23,23) 0.3399 0.25442 25.1441% %

Table A.1: Mean Absolute Error for USPS Handwritten digits dataset for two criteria’s with
and without mapping.
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Table A.4: Evaluation using HoG features on HumanEva-I. Positive % Gain for each subject is
shown in bold, and in red otherwise. Columns HSIC and HOHSIC indicate the mean absolute
error while the % Gain column indicates the percentage reduction on error.
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Table A.5: Evaluation using HoG features on HumanEva-I. Positive % Gain for each subject
is shown in bold, and in red otherwise. Columns TGP and HOTGP (Gegen-(1,5)) indicate the
mean absolute error while the % Gain column indicates the percentage reduction on error.
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Appendix B

Supervised Dimensionality Reduction via Distance Correlation
Maximization

B.1 Spectral Radius of Fixed-Point Iterate T (Zt)

To prove Lemma 33, required for proving convergence in Theorem 26, we need to show that

the spectral radius λmax(H) < 1. We show this in Theorem 32 and proceed to prove it by first

by proving two required lemmas below.

Lemma 30. For any choice of γ2 > λmax(DX,LM) and P : =
(
γ2DX − LM

)
, we have

P � 0.

Proof. To show zT (γ2DX − LM)z ≥ 0 for all z, we require that γ2 ≥ zTLMz
zTDXz

for all z. This

is always true for all values of γ2 ≥ λmax(DX,LM).

Lemma 31. If 0 = αl ≤ α ≤ αu = λmin(LM,SX,y) and Q : = (LM − αSX,y), then we

have Q � 0.

Proof. To show zT (LM−αSX,y)z ≥ 0 for all z, we require that α ≤ zTLMz
zTSX,yz

for all z. This is

always true if all values of α ≤ minZ
zTLMz
zTSX,yz

= λmin(LM,SX,y) which is true by our choice

of α.

We now utilize the above to results to prove λmax(H) ≤ 1 about the fixed point iterate

Zt+1 = HZt.

Theorem 32. For the update equation Zt+1 = HZt with

H =
(
γ2DX − αSX,y

)† (
γ2DX − LM

)
,

we have λmax(H) ≤ 1.
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Proof. The update equation looks as follows

Zt+1 =
(
γ2DX − αSX,y

)† (
γ2DX − LM

)
Zt.

For sake of simplicity assume P =
(
γ2DX − LM

)
and Q = (LM − αSX,y).

Zt+1 = (P + Q)−1 PZt

Using the Woodbury matrix identity (A+UBV)−1 = A−1−A−1U(B−1+VA−1U)−1VA−1,

and setting U = I and V = I, we get, (A + B)−1 = A−1 −A−1(B−1 + A−1)−1A−1. Ap-

plying this to the previous equation we get

Zt+1 = (P−1 −P−1(P−1 + Q−1)−1P−1)PZt = I−P−1(P−1 + Q−1)−1Zt

= I−P−1
(
(P−1 + Q−1)−1Q−1

)
QZt

Using the positive definite identity (P−1 +BTQ−1B)−1BTQ−1 = PBT (BPBT +Q)−1 for

B = I we get, (P−1 + Q−1)−1Q−1 = P(P + Q)−1, which simplifies the term in the brackets

as,

Zt+1 = I−P−1
(
P(P + Q)−1

)
QZt = I− (P + Q)−1QZt

If we compare the above equation with a the general update equation from Zhang et al. [104],

which is of the form

T (Zt+1) = Zt − β(Zt)B(Zt)
−1∇f(Zt)

where∇f(Zt) is the gradient of the objective function f(Z) we get,

β(Zt) =
1

2
, B(Zt) = P + Q, ∇f(Zt) = 2QZt

Now from Theorem 30 we conclude that B(Z) � 0, We also check the following condition
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from Zhang et al. [104] that

0 � ∇2f(Z) � 2B

β
.

or equivalently, as in our case 0 � 2Q � 4(Q + P), which is indeed true. Hence it follows

that λmax(T ′(Z)) ≤ 1 which implies λmax(H) ≤ 1.

We now proceed to show that at end of every (t+ 1) fixed point iterations we have

Tr
(
ZTt+1LZt+1Zt+1

)
≤ Tr (Zt+1LZ0Zt+1).

Lemma 33. For fixed point iteration Zt+1 = HZt for optimization of Zk+1 = arg maxZ g(Z,Zk),

we have, Tr
(
ZTk+1LZk+1

Zk+1

)
≤ Tr (Zk+1LZkZk+1).

Proof. Laplacian for a weighted adjacency matrix W (with self loops) is defined as L = D−

W where D is a diagonal degree matrix with diagonal elements [D]i,i =
∑

j [W]i,j and zero

off-diagonal entries [25]. For adjacency matrix ÊZ we have ÊZ = JEZJ = −2Z̃Z̃T [95].

We have Laplacian as LZ = DZ − ÊZ with DZ = 0. This gives us for Zt+1 the Laplacian

LZt+1 = 2Zt+1Z
T
t+1. It also follows from the fact that since we choose our intialization Z0 as

column-centered matrix, and Zt+1 = HZt are also successively column-centered for all t > 0.

Hence, LZt+1 = 2Ẑt+1Ẑ
T
t+1. Now substituting Zt+1 = HZt in Laplacian equation LZt+1 we

get,

LZt+1 = 2(HZt)(HZt)
T = 2HZtZ

T
t HT = HLZtH

T . (B.1)

Substituting above equation into right hand side of the statement to be proved gives us,

Tr
(
ZTt+1LZt+1Zt+1

)
= Tr

(
ZTt+1HLZtH

TZt+1

)
.

Substituting eigen decomposition of H = QΛQT where Λ is a diagonal eigenvalues matrix
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with values less than one (Theorem 32) we get,

Tr
(
Zt+1LZt+1Zt+1

)
= Tr

(
ZTt+1(QΛQT )LZt(Q

TΛQ)Zt+1

)
.

For Λ = I (identity matrix) gives us,

Tr
(
Zt+1LZt+1Zt+1

)
≤ Tr

(
ZTt+1(QIQT )LZt(Q

T IQ)Zt+1

)
≤ Tr

(
ZTt+1LZtZt+1

)
.

Repeating the above process until t = 0 we get Tr
(
Zt+1LZt+1Zt+1

)
≤ Tr

(
ZTt+1LZ0Zt+1

)
.

Now, for the initialisation Zt = Zk at t = 0, and given that Zk+1 = arg maxZ g(Z,Zk) we

have,

Tr
(
Zk+1LZk+1

Zk+1

)
≤ Tr

(
ZTk+1LZkZk+1

)
.

Lemma 33 above allows us to show the following corollary:

Corollary 34. For fixed point iteration Zt+1 = HZt optimization of Zk+1 = arg maxZ g(Z,Zk),

we have Tr
(
Zk+1LZk+1

Zk+1

)
≤ Tr

(
ZTkLZkZk

)
.

Proof. From Lemma 33 we have

Tr
(
Zk+1LZk+1

Zk+1

)
≤ Tr

(
ZTk+1LZkZk+1

)
≤ Tr

(
ZTkHTLZkHZk

)

Following approach similar to proof of Lemma 33 above by substituting eigen decomposition

of H = QΛQT into equation above we get,

Tr
(
Zk+1LZk+1

Zk+1

)
≤ Tr

(
ZTk ((QT IQ)T )LZk(QT IQ)Zk

)
≤ Tr

(
ZTkLZkZk

)
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