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Since the Fourier coefficients of an automorphic form along the nilpotent radical of

parabolic subgroup are expressed in terms of Whittaker functions, a better under-

standing of their growth in every direction would be useful in the study of automorphic

forms. Bump and Huntley (1995) used an integral formula which was found by Vino-

gradov, Takhtadzhyan (1978), and Stade (1988) to obtain precise information of the

spherical Whittaker functions M(ν1,ν2)(y1, y2) as both y1 and y2 →∞. To (1995) used

a method similar to the characteristic method in the theory of differential equations

to compute the leading exponents of asymptotic expansions of a basis of Whittaker

functions in the positive Weyl chamber for a split semi-simple Lie group over R, which,

in particular, yields a solution to Zuckerman’s conjecture for SL(3,R). Templier (2015)

has recently used an integral representation by Givental to show To’s result: the expo-

nential growth of M(ν1,ν2)(y1, y2) for y1, y2 ≥ 1 as either or both y1, y2 → ∞. In this

thesis I use a new formula which was derived by Ishii and Stade (2007) to obtain the

asymptotic expansions of M(ν1,ν2)(t,
1

tp
) and M(ν1,ν2)(

1

tp
, t) as t→∞ where 2 ≤ p ∈ 1

2Z,

then successfully prove an analog of the Multiplicity One Theorem in these directions,

namely that in certain circumstances the moderate growth condition in the theory of

automorphic forms is automatic.
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Introduction

Classical automorphic forms are functions on the upper half plane: holomorphic forms

with weight, commonly known as modular forms, and the real-analytic forms described

by Maass. The forms in my thesis which are generalized on GL(3) are precise analogs

of the Maass forms on GL(2).

Let G = SL(2,R), Γ = SL(2,Z), and X ⊂ G be the group of upper triangular,

unipotent matrices

X =
{
nx = ( 1 x

1 ) : x ∈ R
}
. (1)

Also let Y ⊂ G be the group of diagonal matrices with positive entries:

Y =
{
ay =

(
y1/2

y−1/2

)
: y > 0

}
. (2)

Now consider the homogeneous space H = SL(2,R)/SO(2,R), where SO(2,R) is the

rotation group. By the Iwasawa decomposition, every z ∈ H has a unique representation

z = nx ay (mod SO(2,R)) with nx ∈ X, ay ∈ Y .

Let g be the Lie algebra of G and U(g) the universal enveloping algebra of g. The

center of U(g) is a polynomial ring in one generator:

∆ = −y2
( ∂2

∂x2
+

∂2

∂y2

)
. (3)

Definition 0.1 An automorphic form for SL(2,Z) of type ν ∈ C is a smooth

function φ : H → C satisfying:

1. φ(γ τ) = φ(τ) for all γ ∈ SL(2,Z), τ ∈ H.

2. ∆φ = ν(1− ν)φ.

3. There exists a constant N such that φ(iy) = O(yN ) for y sufficiently large.
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Since the element ( 1 1
0 1 ) is in SL(2,Z) it follows that an automorphic form is a periodic

function of x and must have a Fourier expansion of type

φ(z) =
∑
m∈Z

Am(y)e2πimx (4)

Define Wm(z) = Am(y)e2πimx, then Wm(z) is a Whittaker function.

Definition 0.2 A Whittaker function of type ν ∈ C associated to an additive

character χ : R → S1 is a smooth nonzero function W : H → C which satisfies the

following conditions

∆W (z) = ν(1− ν)W (z), (5)

W
(

( 1 x
1 ) z

)
= χ(x)W (z). (6)

These Whittaker functions can be classified into three major types according to type

ν and additive character χ = e2πimx. They are W (z) = ayν + by1−ν if m = 0;

e2πimx(ae−2πmy+be2πmy) if ν = 0, 1; e2πimx
√

2π |m| y
(
aKν− 1

2
(2π |m| y)+bIν− 1

2
(2π |m| y)

)
ifm 6= 0, ν 6= 0, 1, where a, b ∈ C. Understanding their asymptotic expansions as y →∞

leads to the multiplicity one theorem for GL(2,R). Especially, only K-Bessel functions

appear on the Fourier expansions of moderate growth automorphic eigenfunctions on

SL(2,Z)\SL(2,R)/SO(2,R).

Theorem 0.3 For fixed x > 0, |Iν(x)| is strictly decreasing with respect to Re (ν) = σ

in the right half plane. |Iν(x)| is strictly decreasing with respect to Im (ν) = t < 0, and

|Iν(x)| is strictly increasing with respect to t > 0.

A proof is given in chapter 1.

We have the analog for GL(3). Let G = SL(3,R), Γ = SL(3,Z), and X ⊂ G be the

group of upper triangular, unipotent matrices.

X =
{
nx =

(
1 x1 x3

1 x2
1

)
: xi ∈ R

}
(7)

Also let Y ⊂ G be the subgroup

Y =

{
ay =

 y
2/3
1 y

1/3
2

y
−1/3
1 y

1/3
2

y
−1/3
1 y

−2/3
2

 : y1, y2 > 0

}
. (8)
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Now consider the homogeneous space H3 = G/SO(3,R), where SO(3,R) is the rotation

group. By the Iwasawa decomposition, every z ∈ H3 has a unique representation

z = nxay (mod SO(3,R)) with nx ∈ X, ay ∈ Y .

Let g be the Lie algebra of G and U(g) the universal enveloping algebra of g. The

center of U(g) is a polynomial ring in two generators [3]:

∆1 =y 2
1

∂2

∂y 2
1

+ y 2
2

∂2

∂y 2
2

− y1y2
∂2

∂y1∂y2
+ y 2

1

∂2

∂x 2
1

+ y 2
2

∂2

∂x 2
2

+ y 2
2 (x 2

1 + y 2
1 )

∂2

∂x 2
3

+ 2y 2
2 x1

∂2

∂x2∂x3
,

∆2 =− y 2
2 y1

∂3

∂y 2
2 ∂y1

+ y2y
2
1

∂3

∂y2∂y 2
1

− y 3
2 y

2
1

∂3

∂x 2
3 ∂y2

+ y2y
2
1

∂3

∂x 2
1 ∂y2

− 2y 2
2 y1x1

∂3

∂x2∂x3∂y1

+ (−x 2
1 + y 2

1 )y 2
2 y1

∂3

∂x 2
3 ∂y1

− y 2
2 y1

∂3

∂x 2
2 ∂y1

+ 2y 2
2 y

2
1

∂3

∂x2∂x1∂x3
+ 2y 2

2 y1x1
∂3

∂x1∂x 2
3

+ y 2
2

∂2

∂y 2
2

− y 2
1

∂2

∂y 2
1

+ 2y 2
2 x1

∂2

∂x2x3
+ (x 2

1 + y 2
1 )y 2

2

∂2

∂x 2
3

+ y 2
2

∂2

∂x 2
2

− y 2
1

∂2

∂x 2
1

.

Definition 0.4 An automorphic form for SL(3,Z) of type (ν1, ν2) ∈ C2 is a

smooth function F : H → C satisfying:

1. F (γg) = F (g) for all γ ∈ SL(3,Z), g ∈ H,

2. ∆iF (g) = µi(ν1, ν2)F (g) where i = 1, 2,

3. There exists a constant n1, n2 such that

F

( y
2/3
1 y

1/3
2

y
−1/3
1 y

1/3
2

y
−1/3
1 y

−2/3
2

)yn1
1 yn2

2

is bounded on the subset of H determined by the inequalities y1, y2 > 1.

The theory of automorphic forms on GL(3) was greatly advanced by the work of

Jacquet, Piatetski-Shapiro and Shalika, who proved the Fourier expansion of the form

F (g) =
∑
k∈Z

[P k,0,0F ](g) +
∞∑
`= 1

∑
γ∈Γ

(2)
∞ \Γ(2)

∑
k∈Z

[P k,0,`F ] (( γ 1 ) g)

=
∑
`∈Z

[P 0,0,`F ](g) +

∞∑
k= 1

∑
γ∈Γ

(2)
∞ \Γ(2)

∑
`∈Z

[P k,0,`F ]
((

1
γ

)
g
)
,

(9)
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where Γ(2) = SL(2,Z), Γ
(2)
∞ is its subgroup of unit upper triangular matrices, and the

coefficients P k,0,`F are defined by

[P k,0,`F ](g) :=

∫
(Z\R)3

F
((

1 x z
0 1 y
0 0 1

)
g
)
e−2πi(kx+`y) dx dy dz . (10)

[P k,0,`F ](g) is therefore a Whittaker function.

Definition 0.5 A Whittaker function of type (ν1, ν2) associated to an additive

character χ : R2 → S1 is a smooth nonzero function W : H3 → C which satisfies the

following conditions

∆iW (g) = µi(ν1, ν2)W (g) for i = 1, 2; (11)

W
((

1 x1 x3
1 x2

1

)
g
)

= χ(x)W (g). (12)

These Whittaker functions can be classified into three major types according to type

(ν1, ν2) and the additive character χ. They include:

• Polynomials y2ν1+ν2
1 yν1+2ν2

2

• Decaying functions y
ν1
2

+ν2+ 1
2

1 yν1+2ν2
2 K 3ν1−1

2

(2πy1), y2ν1+ν2
1 y

ν1+
ν2
2

+ 1
2

2 K 3ν2−1
2

(2πy2),

W(ν1,ν2)(y1, y2) =
4π2y

1+
ν1
2
− ν2

2
1

y
−1+

ν1
2
− ν2

2
2

∫ ∞
0

K 3ν1+3ν2−2
2

(2πy1

√
1 + x)K 3ν1+3ν2−2

2

(2πy2

√
1 + x−1)x

3ν1−3ν2
4

dx

x

• Non-decaying functions y
ν1
2

+ν2+ 1
2

1 yν1+2ν2
2 I 3ν1−1

2

(2πy1), y2ν1+ν2
1 y

ν1+
ν2
2

+ 1
2

2 I 3ν2−1
2

(2πy2),

M(ν1,ν2)(y1, y2) =
∞∑

k1,k2=0

Γ(k1 + k2 + 3ν1+3ν2
2 )(πy1)2k1+2ν1+ν2(πy2)2k2+ν1+2ν2

k1!k2!Γ(k1 + 3ν1+1
2 )Γ(k2 + 3ν2+1

2 )Γ(k1 + 3ν1+3ν2
2 )Γ(k2 + 3ν1+3ν2

2 )

Since the Fourier coefficients of an automorphic form along the nilpotent radical of

parabolic subgroup are expressed in terms of Whittaker functions, a better understand-

ing of their growth in every direction would be useful in the study of automorphic forms.

Bump and Huntley (1995) used an integral formula which was found by Vinogradov,

Takhtadzhyan (1978), and Stade (1988) to obtain precise information of the spherical

Whittaker functions M(ν1,ν2)(y1, y2) as both y1 and y2 →∞. To (1995) used a method

similar to the characteristic method in the theory of differential equations to compute
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the leading exponents of asymptotic expansions of a basis of Whittaker functions in the

positive Weyl chamber for a split semi-simple Lie group over R, which, in particular,

yields a solution to Zuckerman’s conjecture for SL(3,R). Templier (2015) has recently

used an integral representation by Givental to show To’s result: the exponential growth

of M(ν1,ν2)(y1, y2) for y1, y2 ≥ 1 as either or both y1, y2 →∞. I use a new formula which

was derived by Ishii and Stade (2007)

M(a1,a2,a3)(y1, y2) = Cy1y2

∞∑
k=0

(πy1)k−
a1
2 (πy2)k+

a3
2

k! Γ(k + a3−a1
2 + 1)

I
k+

a3−a2
2

(2πy1) I
k+

a2−a1
2

(2πy2)

(13)

where C = Γ(a3−a22 +1) Γ(a3−a12 +1) Γ(a2−a12 +1), then obtain the asymptotic expansion

of M(a1,a2,a3)(t,
1

tp
) as t→∞, where 2 ≤ p ∈ 1

2Z in Chapter 2. Note that the relation

of M(ν1,ν2)(y1, y2) and M(a1,a2,a3)(y1, y2) is defined by (2.20).

Theorem 0.6 Let p ≥ 2 and p ∈ 1

2
Z. For any (a1, a2, a3) ∈ C3, the asymptotics ofM-

Whittaker functions M(a1,a2,a3)(t,
1
tp ) and M(a1,a2,a3)(

1
tp , t) for SL(3,Z) with t → +∞

are

M(a1,a2,a3)(t,
1

tp
) ∼

π−
3a1
2
−1Γ(a3−a22 + 1)

2

e2πt

t(p−
1
2

)(1−a1)
(14)

M(a1,a2,a3)(
1

tp
, t) ∼

π
3a3
2
−1Γ(a2−a12 + 1)

2

e2πt

t(p−
1
2

)(a3+1)

If ν1, ν2 6=
1

3
and ν1 +ν2 6=

2

3
then {Mωk(ν1,ν2)(y1, y2)}6k=1 is a basis for Whittaker space

on SL(3,R), where ωk(ν1, ν2) is the Weyl group action on C2 (Bump, 1984, Page 24).

Based on the previous asymptotic expansions, I proved the following multiplicity one

theorem in the directions (
1

tp
, t) and (t,

1

tp
), where t→ +∞.

Theorem 0.7 (Coroot Multiplicity One) Assume 2 ≤ p ∈ 1

2
Z, ν1, ν2 6=

1

3
, and

ν1 + ν2 6=
2

3
. The unique combination (up to constants)

∑6
k=1 αkMωk(ν1,ν2) which is

not of exponential growth at (t, 1
tp ) and ( 1

tp , t) as t → ∞ is α0 = α4 = α5 = 1 and

α1 = α2 = α3 = −1.

Moreover, the only non-growing combination of M-Whittaker functions Mωk(ν1,ν2) is the

W-Whittaker function:

Mω0(ν1,ν2)−Mω1(ν1,ν2)−Mω2(ν1,ν2)−Mω3(ν1,ν2) +Mω4(ν1,ν2) +Mω5(ν1,ν2) = W(ν1,ν2) (15)
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The coroot multiplicity one theorem is the key to understand the growth of Fourier co-

efficients of automorphic eigenfunction on SL(3,R). It leads to my joint work with

Stephen Miller [13] addressing the absence of non-decaying Whittaker functions in

the Piatetski-Shapiro/Shalika Fourier expansion of automorphic forms on SL(3, R).

This confirms part of a conjecture of Miatello and Wallach, who assert the moderate

growth condition is automatically satisfied for automorphic eigenfunctions on semi-

simple groups of split rank greater than 1. In particular, the condition (3) in the

definition 0.4 is redundant.

Our first result in the joint paper shows that the presence of a non-decaying Whittaker

function implies that the terms in (9) are not bounded:

Theorem. [13] Let F ∈ C∞(SL(3,Z)\SL(3,R)/SO(3,R)) be an eigenfunction of the

full ring of bi-invariant differential operators on SL(3,R) which does not satisfy the

moderate growth. Suppose that some [P k,0,`F ](g) does not have moderate growth. Then

one of the two Fourier expansions in (9) must contain unbounded large terms, and in

particular is not absolutely convergent.

Moreover, an absolutely convergent Fourier expansion containing only decaying Whit-

taker functions must have moderate growth, it implies the following strengthening:

Corollary. [13] The Miatello-Wallach conjecture is true for eigenfunctions

F ∈ C∞(SL(3,Z)\SL(3,R)/SO(3,R)) of the full ring of bi-invariant differential oper-

ators on SL(3,R) for which

[P k,0,`F ]
(

( γ 1 ) g
)

and [P k,0,`F ]
( (

1
γ

)
g
)

for k ∈ Z, ` > 0, γ ∈ Γ(2)
∞ \Γ(2)

are bounded for any fixed g ∈ SL(3,R).

Finally, we show there are no analogs of eigenfunctions on SL(2,Z)\SL(2,R)/SO(2,R)

that have both exponential growth and growing Whittaker functions. Put differently,

an exponential bound is sufficient to rule out non-decaying Whittaker functions.

Theorem. [13] Let F ∈ C∞(SL(3,Z)\SL(3,R)/SO(3,R)) be an eigenfunction of the

full ring of bi-invariant differential operators on SL(3,R), and assume that∣∣∣∣∣F
((

1 x z
0 1 y
0 0 1

)( a1 0 0
0 a2 0
0 0 a3

))∣∣∣∣∣ ≤ C exp(K(
a1

a2
+
a2

a3
)) , a1 ≥

√
3

2
a2 ≥

3

4
a3 , (16)
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for some positive constants C and K. Then F ’s Fourier expansion cannot contain

non-decaying Whittaker functions.



8

Chapter 1

MODIFIED BESSEL FUNCTIONS

Let us consider the second-order modified Bessel differential equation

x2y′′(x) + xy′(x)− (x2 + ν2)y(x) = 0. (1.1)

Its two linearly independent solutions are called modified Bessel functions of the first

and second kinds of order ν, denoted by Iν and Kν , respectively. It is well known that

the modified Bessel function of the first kind Iν can be represented as the infinite series:

Iν(x) =
(x

2

)ν ∞∑
k=0

1

k! Γ(ν + k + 1)

(x
2

)2k
(1.2)

where x ∈ C, since this series converges absolutely everywhere by the ratio test. Note

that for fixed x 6= 0, Iν(x) is an entire function of ν. Moreover, Iν(x) is real and positive

when ν > 0 and x > 0. The asymptotic expansions of Iν(x) as x→∞ is

Iν(x) ∼ ex√
2πx

[
1 +

1− 4ν2

8x
+

(12 − 4ν2)(32 − 4ν2)

2! (8x)2
+ · · ·

]
(arg x <

π

2
) (1.3)

The modified Bessel function of the second kind Kν is defined by

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin νπ
(1.4)

where the right hand side of this equation is replaced by its limiting value if ν is an

integer or zero. The asymptotic expansions of Kν(x) as x→∞ is

Kν(x) ∼ πe−x√
2πx

[
1 +

1− 4ν2

8x
+

(12 − 4ν2)(32 − 4ν2)

2! (8x)2
+ · · ·

]
(arg x <

π

2
) (1.5)

Many inequalities and monotonicity properties for the functions Iν and Kν and their

several combinations have been deduced by many authors, motivated by various prob-

lems that arise in wave mechanics, fluid mechanics, electrical engineering, quantum

billiards, biophysics, mathematical physics, finite elasticity, probability and statistics,
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special relativity, etc.

Reudink [12] in 1968 established the inequality
∂

∂ν
Iν(x) < 0 for all x, ν > 0.

Lemma 1.1 [12] For any x > 0 and ν > 0, we have
∂

∂ν
Iν(x) < 0.

Proof. The modified Bessel function Kν(x) has the integral representation

Kν(x) =

∫ ∞
0

e−x cosh(t) cosh(νt) dt, (1.6)

and its derivative with respect to ν

∂

∂ν
Kν(x) =

∫ ∞
0

e−x cosh(t) sinh(νt) t dt (1.7)

is positive when x and ν are positive.

Consider the following integral

Iν(x)Kν(x) =
2

π2

∫ ∞
0

λ sinh(πλ)

λ2 + ν2
K2
iλ(x) dλ where Re(ν) > 0. (1.8)

Differentiate the above formula with respect to ν to obtain an expression for
∂

∂ν
Iν(x),

∂

∂ν
Iν(x) = − 1

Kν(x)

[
Iν(x)

∂Kν(x)

∂ν
+

4ν

π2

∫ ∞
0

λ sinh(πλ)

(λ2 + ν2)2
K2
iλ(x) dλ

]
. (1.9)

Using (1.6), we obtain that Kiλ(x) is real when λ is real and x > 0; hence for ν > 0,

the integral ∫ ∞
0

λ sinh(πλ)

(λ2 + ν2)2
K2
iλ(x) dλ ≥ 0. (1.10)

Therefore, since Kν(x),
∂

∂ν
Kν(x), Iν(x) are positive for ν > 0 and x > 0, it follows

immediately that

∂

∂ν
Iν(x) < 0.

�

Lemma 1.2 [20] For Re(µ+ ν) > −1, we have

Iµ(x) Iν(x) =
2

π

∫ π/2

0
Iµ+ν(2x cos θ) cos(µ− ν)θ dθ (1.11)
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Proof. The coefficient of
(x

2

)µ+ν+2m
in the product of the two absolutely convergent

series

Iµ(x) Iν(x) =

∞∑
k=0

(x/2)µ+2k

k! Γ(µ+ k + 1)
×
∞∑
l=0

(x/2)ν+2l

l! Γ(ν + l + 1)
(1.12)

is

m∑
k=0

1

k! Γ(ν + k + 1) (m− k)! Γ(µ+m− k + 1)

=
(−1)m

m! Γ(µ+m+ 1) Γ(ν +m+ 1)

m∑
k=0

Cmk (−ν −m)m−k (−µ−m)k

=
(−1)m (−µ− ν − 2m)m

m! Γ(µ+m+ 1) Γ(ν +m+ 1)

=
(µ+ ν +m+ 1)m

m! Γ(µ+m+ 1) Γ(ν +m+ 1)

Vandermonde’s theorem is used to sum the finite series: (a+ b)n =
∑n

j=0C
n
j (a)n−j(b)j

where (a)n =
Γ(a+ 1)

Γ(a+ 1− n)
.

Hence, for all values of µ and ν,

Iµ(x) Iν(x) =
∞∑
m=0

(x2 )µ+ν+2m(µ+ ν +m+ 1)m

m! Γ(µ+m+ 1) Γ(ν +m+ 1)
(1.13)

Applying formula∫ π/2

0
cosµ+ν+2m θ cos(µ− ν)θ dθ =

π Γ(µ+ ν + 2m+ 1)

2µ+ν+2m+1 Γ(µ+m+ 1) Γ(ν +m+ 1)
(1.14)

to (1.13) , provided that Re(µ+ ν) > −1, we obtain

Iµ(x)Iν(x) =
2

π

∞∑
m=0

∫ π/2

0

xµ+ν+2m cosµ+ν+2m θ

m! Γ(µ+ ν +m+ 1)
cos(µ− ν)θ dθ

=
2

π

∫ π/2

0
Iµ+ν(2x cos θ) cos(µ− ν)θ dθ.

�

Lemma 1.1 now can be extended to the case when ν is in the right half plane to compute

the asymptotic expansion of M-Whittaker functions in the next chapter.

Theorem 1.1 For fixed x > 0, |Iν(x)| is strictly decreasing with respect to Re (ν) = σ

in the right half plane. |Iν(x)| is strictly decreasing with respect to Im (ν) = t < 0, and

|Iν(x)| is strictly increasing with respect to t > 0.
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Proof. Apply Lemma 1.2 with noting that Iσ+it(x) = Iσ−it(x) for arbitrary x, σ, t > 0,

we have

|Iσ+it(x)|2 = Iσ+it(x)Iσ−it(x) =
2

π

∫ π/2

0
I2σ(2x cos θ) cosh(2tθ) dθ. (1.15)

Differentiate the above formula with respect to σ then use Lemma 1.1

d

dσ
|Iσ+it(x)|2 =

2

π

∫ π/2

0

∂I2σ(2x cos θ)

∂σ
cosh(2tθ) dθ < 0, (1.16)

Differentiate (1.15) with respect to t

d

dt
|Iσ+it(x)|2 =

2

π

∫ π/2

0
I2σ(2x cos θ) sinh(2tθ) 2θ dθ < 0 if t < 0,

d

dt
|Iσ+it(x)|2 =

2

π

∫ π/2

0
I2σ(2x cos θ) sinh(2tθ) 2θ dθ > 0 if t > 0.

�

Corollary 1.2 For any x > 0 and Re (ν) > 0, we have |Iν+1(x)| < |Iν(x)|.

Corollary 1.3 For any x > 0 and Re (ν) = σ > 0, both Iν(x) and
∂

∂ν
Iν(x) are

nonzero.
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Chapter 2

WHITTAKER FUNCTIONS FOR SL(3,R)

Let G = SL(3,R), Γ = SL(3,Z), and X ⊂ G be the group of upper triangular,

unipotent matrices,

X =
{
nx =

(
1 x1 x3

1 x2
1

)
: xi ∈ R

}
. (2.1)

Also let Y ⊂ G be the subgroup,

Y =

{
ay =

 y
2/3
1 y

1/3
2

y
−1/3
1 y

1/3
2

y
−1/3
1 y

−2/3
2

 : y1, y2 > 0

}
. (2.2)

We have y1(ay) =
y

2/3
1 y

1/3
2

y
−1/3
1 y

1/3
2

, y2(ay) =
y
−1/3
1 y

1/3
2

y
−1/3
1 y

−2/3
2

are roots of SL(3,R).

Now consider the homogeneous space

H3 = SL(3,R)/SO(3,R)

(the “generalized upper half-plane”), where SO(3,R) is the rotation group. By the

Iwasawa decomposition, every z ∈ H3 has a unique representation

z ≡ nxay (mod SO(3,R))

with x ∈ X, y ∈ Y . That is,

z =
(

1 x1 x3
1 x2

1

) y
2/3
1 y

1/3
2

y
−1/3
1 y

1/3
2

y
−1/3
1 y

−2/3
2

 =


y

2/3
1 y

1/3
2 y

−1/3
1 y

1/3
2 x1 y

−1/3
1 y

−2/3
2 x3

y
−1/3
1 y

1/3
2 y

−1/3
1 y

−2/3
2 x2

y
−1/3
1 y

−2/3
2

 .

(2.3)

We have an action of G on H3 by left matrix multiplication. A function on H3 will

always be identified with the corresponding function on G obtained by composition

with the canonical map G→ H3.



13

We will need the following facts about Lie algebras. Let g be the Lie algebra of G. If

A ∈ g, then A acts on C∞(G) by

(Af)(u) = d
dtf(u · exp(tA)) |t=0 (2.4)

(u ∈ G, f ∈ C∞(G) ). Also let U(g) be the universal enveloping algebra of g; U(g) may

be identified with the ring of differential operators on G generated by all A ∈ g. It may

be shown that the center of U(g) acts as an algebra D of differential operators on H3.

Then D is commutative; in fact, we have that D is a polynomial ring in 2 generators.

Moreover, D commutes with the action of G on H3. That is, if d ∈ D and f ∈ C∞(H3),

then

d(f ◦ γ)(z) = (df ◦ γ)(z) (2.5)

for all z ∈ H3, γ ∈ G. Bump showed that the algebra D of GL(3,R)–invariant differen-

tial operators on H3 has generators ([3], page 33, 34)

∆1 =y 2
1

∂2

∂y 2
1

+ y 2
2

∂2

∂y 2
2

− y1y2
∂2

∂y1∂y2
+ y 2

1

∂2

∂x 2
1

+ y 2
2

∂2

∂x 2
2

+ y 2
2 (x 2

1 + y 2
1 )

∂2

∂x 2
3

+ 2y 2
2 x1

∂2

∂x2∂x3
,

∆2 =− y 2
2 y1

∂3

∂y 2
2 ∂y1

+ y2y
2
1

∂3

∂y2∂y 2
1

− y 3
2 y

2
1

∂3

∂x 2
3 ∂y2

+ y2y
2
1

∂3

∂x 2
1 ∂y2

− 2y 2
2 y1x1

∂3

∂x2∂x3∂y1

+ (−x 2
1 + y 2

1 )y 2
2 y1

∂3

∂x 2
3 ∂y1

− y 2
2 y1

∂3

∂x 2
2 ∂y1

+ 2y 2
2 y

2
1

∂3

∂x2∂x1∂x3
+ 2y 2

2 y1x1
∂3

∂x1∂x 2
3

+ y 2
2

∂2

∂y 2
2

− y 2
1

∂2

∂y 2
1

+ 2y 2
2 x1

∂2

∂x2x3
+ (x 2

1 + y 2
1 )y 2

2

∂2

∂x 2
3

+ y 2
2

∂2

∂x 2
2

− y 2
1

∂2

∂x 2
1

.

Let ν = (ν1, ν2) ∈ C2 (and z ≡ xy as above), we define

Hν : H3 → C

by

Hν(z) = H(ν1,ν2)(z) = y ν1+2ν2
1 y 2ν1+ν2

2 . (2.6)

It may be shown that Hν is an eigenfunction of D ([3], page 33, 34). That is,

∆1Hν = µν(∆1)Hν ,

∆2Hν = µν(∆2)Hν .
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Let us identify the Weyl group W of GL(3,R) with the set of matrices {ωi | i =

0, 1, . . . 5}, where

ω0 =


1

1

1

 , ω1 =


−1

−1

−1

 ,

ω2 =


−1

−1

−1

 , ω3 =


−1

−1

−1

 ,

ω4 =


1

1

1

 , ω5 =


1

1

1

 .

We define an action of W on C2 by requiring, for each ω ∈ W, that

H(ν1− 1
3
, ν2− 1

3
)(y) = H(µ1− 1

3
, µ2− 1

3
)(ωy) (2.7)

if (µ1, µ2) = ω(ν1, ν2). One then computes that ([3], page 20)

ω0(ν1, ν2) = (ν1, ν2),

ω1(ν1, ν2) = (
2

3
− ν2,

2

3
− ν1),

ω2(ν1, ν2) = (ν1 + ν2 −
1

3
,
2

3
− ν2),

ω3(ν1, ν2) = (
2

3
− ν1, ν1 + ν2 −

1

3
),

ω4(ν1, ν2) = (1− ν1 − ν2, ν1),

ω5(ν1, ν2) = (ν2, 1− ν1 − ν2).

(2.8)

It is convenient to introduce the three auxiliary parameters ([3], page 20)

a1 = −ν1 − 2ν2 + 1,

a2 = −ν1 + ν2,

a3 = 2ν1 + ν2 − 1,

(2.9)

note that a1 + a2 + a3 = 0. Further,

Hν(z) = y 1−a1
1 y 1+a3

2 .
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The action of W on C2 then permutes the indeterminates a1, a2, a3 ([15], page 703):

ω0(a1, a2, a3) = (a1, a2, a3),

ω1(a1, a2, a3) = (a3, a2, a1),

ω2(a1, a2, a3) = (a2, a1, a3),

ω3(a1, a2, a3) = (a1, a3, a2),

ω4(a1, a2, a3) = (a2, a3, a1),

ω5(a1, a2, a3) = (a3, a1, a2).

(2.10)

If we let

µ1 = −1− a1a2 − a2a3 − a1a3,

µ2 = −a1a2a3,

(2.11)

then one may show that µ1 = µν(∆1) and µ2 = µν(∆2); that is,

∆1Hν = µ1Hν ,

∆2Hν = µ2Hν .

We now wish to discuss GL(3,R)-Whittaker functions.

Definition 2.1 A Whittaker function of type (ν1, ν2) associated to an additive

character ψ : R2 → S1 is a smooth nonzero function W : H3 → C which satisfies the

following three conditions

• ∆1W (g) = µ1W (g),

• ∆2W (g) = µ2W (g),

• W
((

1 x1 x3
1 x2

1

)
g
)

= ψ(x1, x2)W (g).

A Whittaker function W (z) of type ν associated to an additive character ψ(x1, x2) can

always be written in the formula

W (z) = ψ(x1, x2) aν(y),

where aν(y) is a function of y only.
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Case ψ(x1, x2) = 1

Since
∂aν(y)

∂xi
= 0, the function aν(y) must then satisfy

[
y 2

1

∂2

∂y 2
1

+ y 2
2

∂2

∂y 2
2

− y1y2
∂2

∂y1y2

]
aν(y) = µ1aν(y);[

−y 2
1 y2

∂3

∂y 2
1 ∂y2

+ y1y
2
2

∂3

∂y1∂y 2
2

+ y 2
1

∂2

∂y 2
1

− y 2
2

∂2

∂y 2
2

]
aν(y) = µ2aν(y).

(2.12)

Fixing λ = (a1, a2, a3), the space of solutions to the differential equations (2.12) is

generated by the six functions Hωi(a1,a2,a3)(y1, y2), where ωi ∈ W defined by

Hω0(a1,a2,a3)(y1, y2) = y1−a1
1 y1+a3

2 ,

Hω1(a1,a2,a3)(y1, y2) = y1−a3
1 y1+a1

2 ,

Hω2(a1,a2,a3)(y1, y2) = y1−a1
1 y1+a2

2 ,

Hω3(a1,a2,a3)(y1, y2) = y1−a2
1 y1+a3

2 ,

Hω4(a1,a2,a3)(y1, y2) = y1−a3
1 y1+a2

2 ,

Hω5(a1,a2,a3)(y1, y2) = y1−a2
1 y1+a1

2 .

(2.13)

Case ψ(x1, x2) = e2πix1

Since
∂aν(y)

∂xi
= 0, the function aν(y) must then satisfy

[
y 2

1

∂2

∂y 2
1

+ y 2
2

∂2

∂y 2
2

− y1y2
∂2

∂y1y2
− 4π2 y 2

1

]
aν(y) = µ1aν(y);[

−y 2
1 y2

∂3

∂y 2
1 ∂y2

+ y1y
2
2

∂3

∂y1∂y 2
2

+ 4π2y 2
1 y2

∂

∂y2

+y 2
1

∂2

∂y 2
1

− y 2
2

∂2

∂y 2
2

− 4π2y 2
1

]
aν(y) = µ2aν(y).

(2.14)
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Fixing λ = (a1, a2, a3), the space of solutions to the differential equations (2.14) is

generated by the six functions defined by

Mα1
degen, λ(y1, y2) = y

1−a1
2

1 y1−a1
2 Ia3−a2

2

(2πy1),

Wα1
degen, λ(y1, y2) = y

1−a1
2

1 y1−a1
2 Ka3−a2

2

(2πy1),

Mα1

degen, (123)λ(y1, y2) = y
1−a2

2
1 y1−a2

2 Ia1−a3
2

(2πy1),

Wα1

degen, (123)λ(y1, y2) = y
1−a2

2
1 y1−a2

2 Ka1−a3
2

(2πy1),

Mα1

degen, (321)λ(y1, y2) = y
1−a3

2
1 y1−a3

2 Ia2−a1
2

(2πy1),

Wα1

degen, (321)λ(y1, y2) = y
1−a3

2
1 y1−a3

2 Ka2−a1
2

(2πy1).

(2.15)

Case ψ(x1, x2) = e2πix2

Since
∂aν(y)

∂xi
= 0, the function aν(y) must then satisfy

[
y 2

1

∂2

∂y 2
1

+ y 2
2

∂2

∂y 2
2

− y1y2
∂2

∂y1y2
− 4π2 y 2

2

]
aν(y) = µ1aν(y);[

−y 2
1 y2

∂3

∂y 2
1 ∂y2

+ y1y
2
2

∂3

∂y1∂y 2
2

− 4π2y 2
2 y1

∂

∂y1

+y 2
1

∂2

∂y 2
1

− y 2
2

∂2

∂y 2
2

+ 4π2y 2
2

]
aν(y) = µ2aν(y).

(2.16)

Fixing λ = (a1, a2, a3), the space of solutions to the differential equations (2.16) is

generated by the six functions defined by

Mα2
degen, λ(y1, y2) = y1+a3

1 y
1+

a3
2

2 Ia2−a1
2

(2πy2),

Wα2
degen, λ(y1, y2) = y1+a3

1 y
1+

a3
2

2 Ka2−a1
2

(2πy2),

Mα2

degen, (123)λ(y1, y2) = y1+a2
1 y

1+
a2
2

2 Ia1−a3
2

(2πy2),

Wα2

degen, (123)λ(y1, y2) = y1+a2
1 y

1+
a2
2

2 Ka1−a3
2

(2πy2),

Mα2

degen, (321)λ(y1, y2) = y1+a1
1 y

1+
a1
2

2 Ia3−a2
2

(2πy2),

Wα2

degen, (321)λ(y1, y2) = y1+a1
1 y

1+
a1
2

2 Ka3−a2
2

(2πy2).

(2.17)
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Case ψ(x1, x2) = e2πi(x1+x2)

The function aν(y) must then satisfy[
y 2

1

∂2

∂y 2
1

+ y 2
2

∂2

∂y 2
2

− y1y2
∂2

∂y1y2
− 4π2(y 2

1 + y 2
2 )

]
aν(y) = µ1aν(y);[

−y 2
1 y2

∂3

∂y 2
1 ∂y2

+ y1y
2
2

∂3

∂y1∂y 2
2

+ 4π2y 2
1 y2

∂

∂y2
− 4π2y1y

2
2

∂

∂y1

+y 2
1

∂2

∂y 2
1

− y 2
2

∂2

∂y 2
2

− 4π2y 2
1 + 4π2y 2

2

]
aν(y) = µ2aν(y).

(2.18)

Theorem 2.2 [3] Assume ν1 6= 1
3 , ν2 6= 1

3 , and ν1 +ν2 6= 2
3 the space Sν of solutions to

the differential equations (2.18) is generated by the six linearly independent functions

Mωi(ν1,ν2)(y1, y2), where ωi ∈ W defined by

Mω0(ν1,ν2)(y1, y2) =
∞∑

k1,k2=0

Γ(k1 + k2 + 3ν1+3ν2
2 ) (πy1)2k1+ν1+2ν2 (πy2)2k2+2ν1+ν2

k1! k2! Γ(k1 + 3ν1+1
2 ) Γ(k2 + 3ν2+1

2 ) Γ(k1 + 3ν1+3ν2
2 ) Γ(k2 + 3ν1+3ν2

2 )

(2.19)

and Mωi(ν1,ν2)(y1, y2) is obtained from M(ν1,ν2)(y1, y2) by letting W act on (ν1, ν2).

Proof. [3], p. 24 �

Using three auxiliary parameters a1, a2, a3, we define

M(a1,a2,a3)(y1, y2) =
Γ(a3−a22 + 1)Γ(a3−a12 + 1)Γ(a2−a12 + 1)

π2
M(ν1,ν2)(y1, y2). (2.20)

Theorem 2.3 [9] The above function M(a1,a2,a3)(y1, y2) can be written as follow

M(a1,a2,a3)(y1, y2) = Cy1y2

∞∑
k=0

(πy1)k−
a1
2 (πy2)k+

a3
2

k! Γ(k + a3−a1
2 + 1)

I
k+

a3−a2
2

(2πy1) I
k+

a2−a1
2

(2πy2)

(2.21)

where C = Γ(a3−a22 + 1) Γ(a3−a12 + 1) Γ(a2−a12 + 1).

Proof. [9], (22), p. 298 �

An asymptotic expansion of a finite sum is the sum of asymptotic expansion. How-

ever, an asymptotic expansion of an infinite sum in general is not the sum of infinite

asymptotic expansions. It does hold with some additional uniformity assumptions of

the following lemma.
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Lemma 2.1 (Infinite sum of asymptotic expansions) Let p be a positive real num-

ber. Assume that for every k ∈ N, functions fk(t) satisfy the following two conditions:

• fk(t) ∼
∑∞

l=k

akl
tl

as t→∞ where akl ∈ C,

• |fk+1(t)| ≤ |fk(t)|
tp

for every t > 0.

Then
∞∑
k=0

fk(t) ∼
∞∑
k=0

∑k
m=0 amk
tk

as t→∞.

Proof. I need to prove for each N ∈ N,

lim
t→∞

tN

( ∞∑
k=0

fk(t)−
N∑
k=0

∑k
m=0 amk
tk

)
= 0

Fix an arbitrary ε > 0. Since fk(t) ∼
∑∞

l=k

akl
tl

as t → ∞ for each 0 ≤ k ≤ N there is

Tk such that for all t ≥ Tk,

|tN
(
fk(t)−

N∑
l=k

akl
tl

)
| < ε

2k+1
. (2.22)

Since fN+1(t) ∼
∑∞

l=N+1

a(N+1)l

tl
there is TN+1 such that for all t ≥ TN+1,

|tNfN+1(t)| < ε

2N+2
. (2.23)

The inequality |fk+1(t)| ≤ |fk(t)|
tp

show that for each l ≥ 2, and t ≥ max(TN+1, 2
1/p),

|tNfN+l(t)| < |tNfN+1(t)
1

tp(l−1)
| ≤ ε

2N+l+1
. (2.24)

Summing them together, we have for all t ≥ max(T0, · · · , TN+1, 2
1/p),

|tN
( ∞∑
k=0

fk(t)−
N∑
k=0

∑k
m=0 amk
tk

)
| < ε. (2.25)

The lemma, therefore, is proved. �

Theorem 2.4 Let p ≥ 2 and p ∈ 1

2
Z. For any (a1, a2, a3) ∈ C3, the asymptotic

expansion of M-Whittaker functions M(a1,a2,a3)(t,
1
tp ) for SL(3,Z) with t→ +∞ is

M(a1,a2,a3)(t,
1

tp
) ∼

π−
3a1
2
−1Γ(a3−a22 + 1)

2

e2πt

t(p−
1
2

)(1−a1)

·

(
1 +

1− (a3 − a2)2

16π t
+

[1− (a3 − a2)2] [9− (a3 − a2)2]

512π2 t2
+ · · ·

)
.

(2.26)
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Proof. By (2.21), we obtain

M(a1,a2,a3)(t,
1

tp
) = C

1

tp−1

∞∑
k=0

π2k+
a3−a1

2 I
k+

a3−a2
2

(2πt) I
k+

a2−a1
2

(
2π

tp
)

k! Γ(k + a3−a1
2 + 1) t(p−1)k+

pa3
2

+
a1
2

(2.27)

Denote

θk(t) := C
1

tp−1

π2k+
a3−a1

2 I
k+

a3−a2
2

(2πt) I
k+

a2−a1
2

(
2π

tp
)

k! Γ(k + a3−a1
2 + 1) t(p−1)k+

pa3
2

+
a1
2

(2.28)

The asymptotic series expansion of θk(t) is

θk(t) ∼
C

t(p−1)k+
pa3
2

+
a1
2

+p−1

π2k+
a3−a1

2

k! Γ(k + a3−a1
2 + 1)

[ ∞∑
m=0

( π
tp

)2m+k+
a2−a1

2

m! Γ(m+ 1 + k + a2−a1
2 )

]

· e
2πt

2π
√
t

(
1 +

1− (2k + a3 − a2)2

16πt
+

[1− (2k + a3 − a2)2] [9− (2k + a3 − a2)2]

512π2t2
+ · · ·

)

∼ Cπ3k+
3a3+3a2

2
−1 e2πt

2.k! Γ(k + a3−a1
2 + 1)t(p−

1
2

)(2k+a3+a2+1)

(
1

Γ(k + a2−a1
2 + 1)

+

+
1− (2k + a3 − a2)2

16π Γ(k + a2−a1
2 + 1)

1

t
+

[1− (2k + a3 − a2)2] [9− (2k + a3 − a2)2]

512π2 Γ(k + a2−a1
2 + 1)

1

t2
+ · · ·

)

Theorem 1.1 established

|Iν+1(t)| < |Iν(t)| where Re(ν) > 0 and t > 0.

For k very large, we have

|θk+1(t)| = | C
tp−1

π2k+
a3−a1

2
+2

k!Γ(k + a3−a1
2 + 2)

I
k+

a3−a2
2

+1
(2πt)I

k+
a2−a1

2
+1

(
2π

tp
)

t(p−1)(k+1)+
pa3
2

+
a1
2

|

<
π2

|(k + 1)(k + a3−a1
2 + 1)|

|θk(t)|
tp−1

Apply Lemma 2.1, we get

M(a1,a2,a3)(t,
1

tp
) ∼

π−
3a1
2
−1 Γ(a3−a22 + 1)

2

e2πt

t(p−
1
2

)(−a1+1)

·

(
1 +

1− (a3 − a2)2

16π

1

t
+

[1− (a3 − a2)2] [9− (a3 − a2)2]

512π2

1

t2
+ · · ·

)
.

�

Similarity, we have
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Theorem 2.5 Let p ≥ 2 and p ∈ 1

2
Z. For any (a1, a2, a3) ∈ C3, the asymptotic

expansion of M-Whittaker functions M(a1,a2,a3)(
1
tp , t) for SL(3,Z) with t→ +∞ is

M(a1,a2,a3)(
1

tp
, t) ∼

π
3a3
2
−1Γ(a2−a12 + 1)

2

e2πt

t(p−
1
2

)(a3+1)

·

(
1 +

1− (a2 − a1)2

16π

1

t
+

[1− (a2 − a1)2][9− (a2 − a1)2]

512π2

1

t2
+ · · ·

)
.

Proof. By (2.21), we obtain

M(a1,a2,a3)(
1

tp
, t) = C

1

tp−1

∞∑
k=0

π2k+
a3−a1

2

k! Γ(k + a3−a1
2 + 1)

I
k+

a3−a2
2

(
2π

tp
) I
k+

a2−a1
2

(2πt)

t(p−1)k− pa1
2
−a3

2

.

(2.29)

Denote

θk(t) :=
C

tp−1

π2k+
a3−a1

2

k! Γ(k + a3−a1
2 + 1)

I
k+

a3−a2
2

(
2π

tp
) I
k+

a2−a1
2

(2πt)

t(p−1)k− pa1
2
−a3

2

. (2.30)

The asymptotic series expansion of θk(t) is

θk(t) ∼
C

t(p−1)k− pa1
2
−a3

2
+p−1

π2k+
a3−a1

2

k! Γ(k + a3−a1
2 + 1)

[ ∞∑
m=0

( π
tp

)2m+k+
a3−a2

2

m! Γ(m+ 1 + k + a3−a2
2 )

]

· e
2πt

2π
√
t

(
1 +

1− (2k + a2 − a1)2

16π t
+

[1− (2k + a2 − a1)2] [9− (2k + a2 − a1)2]

512π2 t2
+ · · ·

)

∼ C π3k+
3a3
2
−1 e2πt

2.k! Γ(k + a3−a1
2 + 1)t(p−

1
2

)(2k+a3+1)

(
1

Γ(k + a3−a2
2 + 1)

+

+
1− (k + a2 − a1)2

16π Γ(k + a3−a2
2 + 1)

1

t
+

[1− (2k + a2 − a1)2] [9− (2k + a2 − a1)2]

512π2 Γ(k + a3−a2
2 + 1)

1

t2
+ · · ·

)

Theorem 1.1 established

|Iν+1(t)| < |Iν(t)| where Re(ν) > 0 and x > 0.

For k very large, we have

|θk+1(t)| = | C
tp−1

π2k+
a3−a1

2
+2

k! Γ(k + a3−a1
2 + 2)

I
k+

a3−a2
2

+1
(2πt) I

k+
a2−a1

2
+1

(
2π

tp
)

t(p−1)(k+1)− pa1
2
−a3

2

|

<
π2

|(k + 1)(k + a3−a1
2 + 1)|

|θk(t)|
tp−1
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Apply Lemma 2.1, we get

M(a1,a2,a3)(
1

tp
, t) ∼

π
3a3
2
−1Γ(a2−a12 + 1)

2

e2πt

t(p−
1
2

)(a3+1)

·

(
1 +

1− (a2 − a1)2

16π

1

t
+

[1− (a2 − a1)2] [9− (a2 − a1)2]

512π2

1

t2
+ · · ·

)
.

�

We now wish to find a GL(3,Z)-Whittaker function

W(ν1,ν2)(z) = e(x1 + x2)W(ν1,ν2)(y1, y2)

that grows at most polynomially in the yi
′s. Bump shows that the function we are

looking for may be given by

Wλ(y1, y2) =
1

4

1

(2πi)2

∫ σ1+i∞

σ1−i∞

∫ σ2+i∞

σ2−i∞
V(ν1,ν2)(s1, s2) (πy1)1−s1(πy2)1−s2 ds1 ds2

(2.31)

(σi = Re(si) ), where

Vλ(s1, s2) =
Γ( s1+a1

2 ) Γ( s1+a2
2 ) Γ( s1+a3

2 ) Γ( s2−a12 ) Γ( s2−a22 ) Γ( s2−a32 )

Γ( s1+s2
2 )

.

Vinogradov-Takhtajan [19] and Stade [16] proved the integral formula

Wλ(y1, y2) = 4 y
1−a2/2
1 y

1+a2/2
2 ×∫ ∞

0
K(a1−a3)/2(2πy1

√
1 + x)K(a1−a3)/2(2πy2

√
1 + x−1)x−3a2/4 dx

x
(2.32)

It follows from this integral and the inequalities |Kν(x)| ≤ KRe(ν)(x), KRe(ν)(x) > 0

that

|Wλ(y1, y2)| ≤ WRe(λ)(y1, y2) (2.33)

where the righthand side is in fact positive.

Lemma 2.2 [4] There exists an integer N (depending on λ) such that

|Wλ(y1, y2) | � (y1y2)−N e−π(y1+y2) (2.34)

for any y1, y2 > 0, where the implied constant depends only on λ.
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Proof. I am explaining the proof in [13].

Since the terms outside the integral in (2.32) can be absorbed into the constant and

polynomial factors, it suffices to estimate the integral

V =

∫ ∞
0

K(a1−a3)/2(2πy1

√
1 + x)K(a1−a3)/2(2πy2

√
1 + x−1)x−3a2/4−1 dx , (2.35)

Note that formula (1.5) shows that euKν(u) is bounded for large u, and formula (1.4)

shows that Kν(u) is bounded by |u|−q for some q > 0 as u→ 0.

We now split the range of integration into three pieces: 0 < x < 1/2, 1/2 ≤ x ≤ 2, and

2 < x <∞.

V2 =

∫ 2

1/2
K(a1−a3)/2(2πy1

√
1 + x)K(a1−a3)/2(2πy2

√
1 + x−1)x−3a2/4−1 dx ,

�
∫ 2

1/2

e−2πy1
√

1+x

√
y1

e−2πy2
√

1+x−1

√
y2

x−3a2/4−1 dx � e−2π(y1+y2) (y1y2)−1/2

(2.36)

V3 =

∫ ∞
2

K(a1−a3)/2(2πy1

√
1 + x)K(a1−a3)/2(2πy2

√
1 + x−1)x−3a2/4−1 dx ,

�
∫ ∞

2

e−2πy1
√

1+x

√
y1

e−2πy2
√

1+x−1

√
y2

x−3a2/4−1 dx

� (y1y2)−1/2

∫ ∞
2

e−2πy1
√

1+x e−2πy2 x−3a2/4−1 dx now let x = u2 + 2u

= e−2π(y1+y2) (y1y2)−1/2

∫ ∞
√

3−1
e−2πy1u (u2 + 2u)−3a2/4−1 (2u+ 2)du

� e−2π(y1+y2) (y1y2)−1/2

∫ ∞
√

3−1
e−2πy1u u−3a2/2 du � e−2π(y1+y2) (y1y2)−N

(2.37)

for some N and an implied constant depends only on λ.

Similarity,

V1 =

∫ 1/2

0
K(a1−a3)/2(2πy1

√
1 + x)K(a1−a3)/2(2πy2

√
1 + x−1)x−3a2/4−1 dx ,

=

∫ ∞
2

K(a1−a3)/2(2πy1

√
1 + x−1)K(a1−a3)/2(2πy2

√
1 + x)x3a2/4−1 dx

� e−2π(y1+y2) (y1y2)−N

(2.38)

Sum up these estimates, the lemma therefore is proved. �

Theorem 2.6 (Coroot Multiplicity One) Assume p ≥ 2, p ∈ 1

2
Z, ν1, ν2 6=

1

3
, and

ν1 + ν2 6=
2

3
. The unique combination (up to constants) S =

∑5
k=0 αkMωk(ν1,ν2) which
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is not of exponential growth at (t, 1
tp ) and ( 1

tp , t) as t → ∞ is α0 = α4 = α5 = 1 and

α1 = α2 = α3 = −1.

Moreover, the only non-growing combination of M-Whittaker functions Mωk(ν1,ν2) is the

W-Whittaker function:

Mω0(ν1,ν2) −Mω1(ν1,ν2) −Mω2(ν1,ν2) −Mω3(ν1,ν2) +Mω4(ν1,ν2) +Mω5(ν1,ν2) = W(ν1,ν2).

Proof. By (2.20) and Theorem 2.4, we have:

Mω0(ν1,ν2)(t,
1

tp
) ∼ π−

a1
2
−1

2 Γ(a3−a12 + 1) Γ(a2−a12 + 1)

e2πt

t(p−
1
2

)(−a1+1)

Mω2(ν1,ν2)(t,
1

tp
) ∼ π−

a1
2
−1

2 Γ(a3−a12 + 1) Γ(a2−a12 + 1)

e2πt

t(p−
1
2

)(−a1+1)

Mω1(ν1,ν2)(t,
1

tp
) ∼ π−

a3
2
−1

2 Γ(a1−a32 + 1) Γ(a2−a32 + 1)

e2πt

t(p−
1
2

)(−a3+1)

Mω4(ν1,ν2)(t,
1

tp
) ∼ π−

a3
2
−1

2 Γ(a1−a32 + 1) Γ(a2−a32 + 1)

e2πt

t(p−
1
2

)(−a3+1)

Mω3(ν1,ν2)(t,
1

tp
) ∼ π−

a2
2
−1

2 Γ(a3−a22 + 1) Γ(a1−a22 + 1)

e2πt

t(p−
1
2

)(−a2+1)

Mω5(ν1,ν2)(t,
1

tp
) ∼ π−

a2
2
−1

2 Γ(a3−a22 + 1) Γ(a1−a22 + 1)

e2πt

t(p−
1
2

)(−a2+1)

By the asumption, ν1, ν2 6=
1

3
, and ν1+ν2 6=

2

3
, we have a1, a2, a3 are distinct. Therefore,

M-Whittaker functions Mω0(ν1,ν2)(t,
1
tp ), Mω1(ν1,ν2)(t,

1
tp ), Mω2(ν1,ν2)(t,

1
tp ) do not have

the same asymptotics. As t→∞ if

5∑
k=0

αkMωk(ν1,ν2)](t,
1

tp
) ∼ 0 (2.39)

then α0 = −α2, α1 = −α4, α3 = −α5.

Similarity,

Mω0(ν1,ν2)(
1

tp
, t) ∼ π

3a3
2

+1

2 Γ(a3−a22 + 1) Γ(a3−a12 + 1)

e2πt

t(p−
1
2

)(a3+1)

Mω3(ν1,ν2)(
1

tp
, t) ∼ π

3a3
2

+1

2 Γ(a3−a22 + 1) Γ(a3−a12 + 1)

e2πt

t(p−
1
2

)(a3+1)

Mω2(ν1,ν2)(
1

tp
, t) ∼ π

3a2
2

+1

2 Γ(a2−a32 + 1) Γ(a2−a12 + 1)

e2πt

t(p−
1
2

)(a2+1)
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Mω4(ν1,ν2)(
1

tp
, t) ∼ π

3a2
2

+1

2 Γ(a2−a32 + 1) Γ(a2−a12 + 1)

e2πt

t(p−
1
2

)(a2+1)

Mω1(ν1,ν2)(
1

tp
, t) ∼ π

3a1
2

+1

2 Γ(a1−a32 + 1) Γ(a1−a22 + 1)

e2πt

t(p−
1
2

)(a1+1)

Mω5(ν1,ν2)(
1

tp
, t) ∼ π

3a1
2

+1

2 Γ(a1−a32 + 1) Γ(a1−a22 + 1)

e2πt

t(p−
1
2

)(a1+1)

Since a1, a2, a3 are distinct, Mω0(ν1,ν2)(t,
1
tp ), Mω1(ν1,ν2)(t,

1
tp ), Mω3(ν1,ν2)(t,

1
tp ) do not

have the same asymptotics. As t→∞ if

5∑
k=0

αkMωk(ν1,ν2)](t,
1

tp
) ∼ 0 (2.40)

then α0 = −α3, α2 = −α4, α1 = −α5.

Therefore, up to constants α0 = α4 = α5 = 1 and α1 = α2 = α3 = −1. �
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