ESTIMATES ON NON-DECAYING WHITTAKER
FUNCTIONS

BY TIEN DUY TRINH

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of
Stephen Miller

and approved by

New Brunswick, New Jersey

MAY, 2016



ABSTRACT OF THE DISSERTATION

ESTIMATES ON NON-DECAYING WHITTAKER
FUNCTIONS

by TIEN DUY TRINH
Dissertation Director: Stephen Miller

Since the Fourier coefficients of an automorphic form along the nilpotent radical of
parabolic subgroup are expressed in terms of Whittaker functions, a better under-
standing of their growth in every direction would be useful in the study of automorphic
forms. Bump and Huntley (1995) used an integral formula which was found by Vino-
gradov, Takhtadzhyan (1978), and Stade (1988) to obtain precise information of the
spherical Whittaker functions M, ,,)(y1,%2) as both y; and y2 — oco. To (1995) used
a method similar to the characteristic method in the theory of differential equations
to compute the leading exponents of asymptotic expansions of a basis of Whittaker
functions in the positive Weyl chamber for a split semi-simple Lie group over R, which,
in particular, yields a solution to Zuckerman’s conjecture for SL(3,R). Templier (2015)
has recently used an integral representation by Givental to show To’s result: the expo-
nential growth of M, ,,)(y1,92) for y1,y2 > 1 as either or both y1,y2 — co. In this
thesis I use a new formula which was derived by Ishii and Stade (2007) to obtain the
asymptotic expansions of M, ,.,)(t, tlp) and M(,jlm)(tlp, t)ast — oo where 2 < p € %Z,
then successfully prove an analog of the Multiplicity One Theorem in these directions,
namely that in certain circumstances the moderate growth condition in the theory of

automorphic forms is automatic.

i



Acknowledgements

I would like to thank Prof. Stephen Miller deeply for guiding me during the years. His
friendly guidance, expert advice, and contributions have been invaluable throughout
all stages of the work. I have been extremely lucky to have a supervisor who cared so
much about my work, and who responded to my questions and queries so promptly.

Special thanks are due to my wife, Trang Nguyen, for her continued support and
encouragement. Many thanks to my mother, father, and brother who experienced all
of the ups and downs of my research.

My sincere thanks to Vietnam Education Foundation, Department of Mathemat-
ics at Rutgers University for their financial supports and providing me with excellent
working conditions.

I would like to thank Stephen Miller, Henryk Iwaniec, Jerrold Tunnell, Edmund
Karasiewicz, Brandon Bate, Zhuohui Zhang, Sjuvon Chung, Patrick Devlin for the
time and help given throughout. Without their participation, this research would not
have been possible.

There are many other friends who have encouraged me throughout this thesis, and
although I cannot list all their names, I would like to issue a general 'thank you’ to
all of them nonetheless. In addition, I would like to thank Eric Stade for his work in

reviewing this thesis.

i



Dedication

To Trang Nguyen and my son

iv



Table of Contents

Abstract . . . . . . . .. e ii
Acknowledgements . . . . . .. .. ... ... iii
Dedication . . . . . . . . .. e iv
1. MODIFIED BESSEL FUNCTIONS . ... ... ... ... ....... 8
2. WHITTAKER FUNCTIONS FOR SL(3,R) . . . . . .. ... ... ... 12



Introduction

Classical automorphic forms are functions on the upper half plane: holomorphic forms
with weight, commonly known as modular forms, and the real-analytic forms described
by Maass. The forms in my thesis which are generalized on GL(3) are precise analogs
of the Maass forms on GL(2).

Let G = SL(2,R), I' = SL(2,Z), and X C G be the group of upper triangular,
unipotent matrices

X:{nz:(lf)iweR}- (1)

Also let Y C G be the group of diagonal matrices with positive entries:

Y:{ay: <y1/2 y_1/2> :y>0}. (2)

Now consider the homogeneous space H = SL(2,R)/SO(2,R), where SO(2,R) is the
rotation group. By the Iwasawa decomposition, every z € H has a unique representation
z = ngay (mod SO(2,R)) with n, € X, ay €Y.

Let g be the Lie algebra of G and U(g) the universal enveloping algebra of g. The

center of U(g) is a polynomial ring in one generator:

A:y2(;;+§;). (3)

Definition 0.1 An automorphic form for SL(2,7Z) of type v € C is a smooth

function ¢ : H — C satisfying:
1. ¢(yT) = ¢(7) for ally € SL(2,Z), T € H.
2. Ap=v(l —v)op.

3. There exists a constant N such that ¢(iy) = O(y") for y sufficiently large.



Since the element (§1) is in SL(2,Z) it follows that an automorphic form is a periodic
function of z and must have a Fourier expansion of type
b(z) = 3 Am(y)ermime (4)
meZ

Define Wy, (2) = Ay, (y)e?™ ™, then W,,(2) is a Whittaker function.

Definition 0.2 A Whittaker function of type v € C associated to an additive
character x : R — S' is a smooth nonzero function W : H — C which satisfies the

following conditions

AW (z) =v(l —v)IW(z), (5)
w((11)2) = x@W (). (6)

These Whittaker functions can be classified into three major types according to type
v and additive character x = €2™*. They are W(z) = ay” + by'™" if m = 0;
e2™iMme (qe=2TmY 4 pe2mMY) if y = 0, 1; ezmmxm(al(y_% (27 |m)| y)+b[l,_% (27 |m)| y))
ifm #£ 0,v # 0,1, where a,b € C. Understanding their asymptotic expansions as y — oo
leads to the multiplicity one theorem for GL(2,R). Especially, only K-Bessel functions

appear on the Fourier expansions of moderate growth automorphic eigenfunctions on

SL(2,Z)\SL(2,R)/SO(2,R).

Theorem 0.3 For fired x > 0, |I,(x)| is strictly decreasing with respect to Re (v) = o
in the right half plane. |I,(x)| is strictly decreasing with respect to Im (v) =t < 0, and

|1, (z)| is strictly increasing with respect to t > 0.

A proof is given in chapter 1.
We have the analog for GL(3). Let G = SL(3,R), I' = SL(3,Z), and X C G be the

group of upper triangular, unipotent matrices.

12, 3

X:{nQC:( 1x12>:xi€R} (7)

Also let Y C G be the subgroup

2/3 1/3
yl/ yz/

Y = {ay: yp Py :yl,y2>0}. (8)

—-1/3 —-2/3
yl/yz/



Now consider the homogeneous space H? = G/SO(3,R), where SO(3,R) is the rotation
group. By the Iwasawa decomposition, every z € H3 has a unique representation
z = nzay (mod SO(3,R)) with n, € X, a, €Y.

Let g be the Lie algebra of G and U(g) the universal enveloping algebra of g. The

center of U(g) is a polynomial ring in two generators [3]:

2 2 2 2 2 2 2
T A A R T AT S NCANP Y P
6y12 8y22 8y18y2 8 2 (9 2 8 2 8%23%3
83 83 63 63 03
Ay = — 20— 2 2 O 5,2 o
2 Y3 U1 DyZoy YU s D20y 2 —ysyl Or 23 + Y21 0220y, Y2 Y171 02202301

o3 o3 o3 o3

2, 2y 2 2 2,,2 2
+(—z2+ LA LAY ) S AR YW .
(—2{ +yi)ya 9220, Y2 Y1 22y, Y291 Ox20x1013 Y2171 Ox1023

82 82 82 (92 82 (92
2 2 2 2 2\,,2 2 2

+ Yo —5 — — + 2y 01— + (7 + =+

2 ang U1 8y12 Yo lax2x3 ( 1 hn )yQ 9$32 Yo 9:82 — Y 9%1

Definition 0.4 An automorphic form for SL(3,7Z) of type (vi,12) € C? is a

smooth function F : H — C satisfying:
1. F(yg) = F(g) for ally € SL(3,Z), g € H,
2. AF(g) = pi(vi, 1) F(g) wherei=1,2,

3. There exists a constant ni,ns such that

2/3 1/3
Y1 Y
—1/3 1/3 ny, n2
F( ur Py )yl Y2
—1/3 —2/3
Y Yo

is bounded on the subset of H determined by the inequalities yi,ys > 1.

The theory of automorphic forms on GL(3) was greatly advanced by the work of
Jacquet, Piatetski-Shapiro and Shalika, who proved the Fourier expansion of the form

Flo = SIPOFIg) + > Y PR (7))

keZ (=1 EF(Q)\F(2) keZ

— Z[POOEF Z Z ZPkOIZF ) )

Lel k=1 Erg\r(z Lel




where T(?) = SL(2,7), Fg) is its subgroup of unit upper triangular matrices, and the

coefficients P*O-{F are defined by

lzz —2mi(kx
[PROLE](g) = /(Z\R)3 F ((8 i 31/) g) e~ 2wk ) gy dy .z (10)
[P*O0LF](g) is therefore a Whittaker function.

Definition 0.5 A Whittaker function of type (v1,v2) associated to an additive
character x : R? — S! is a smooth nonzero function W : H® — C which satisfies the

following conditions
AW (g) = pi(vi,v2)W(g) fori=1,2; (11)

w((75) ) = x@Wis). (12)

These Whittaker functions can be classified into three major types according to type

(v1,12) and the additive character x. They include:

e Polynomials 32" 241 +22

. . Atvp+i n+2+34
e Decaying functions y,> ' 2y51+2”2K3u171 (27y1), yf”ﬁ”?yz1 22 Kauy-1(2mys),
2

2

47r2y1+u71*%2 00 8v1—3vy dx
W) (y1:92) = _1_1%17_%2 /0 Kav o2 (2my1 VL + 2) Konvavy—2 (2mysV/ 1+ o=tz —=
Y2

%

. . +r2t3
e Non-decaying functions y, 2y T2 g, (

ni+2+3
2V1+U2Z/2 SR EPE N

27Ty1)7 Y 27@2)7

[e) P(kl + kig + 31/1;31/2 )(ﬂ.yl)2k1+2y1+u2 (ﬂ_y2)2k2+ul+2ug

Ml/ v ) =
(v1, 2)(y1 y2) klkZQZO kllkglr(kl + 3V12+1)F(k2 + 3V22+1)F(k1 + 31/1;3V2)1"(k.2 + 3V1‘53V2)

Since the Fourier coefficients of an automorphic form along the nilpotent radical of
parabolic subgroup are expressed in terms of Whittaker functions, a better understand-
ing of their growth in every direction would be useful in the study of automorphic forms.
Bump and Huntley (1995) used an integral formula which was found by Vinogradov,
Takhtadzhyan (1978), and Stade (1988) to obtain precise information of the spherical
Whittaker functions M, ,,)(y1,y2) as both y1 and ya — oo. To (1995) used a method

similar to the characteristic method in the theory of differential equations to compute



the leading exponents of asymptotic expansions of a basis of Whittaker functions in the
positive Weyl chamber for a split semi-simple Lie group over R, which, in particular,
yields a solution to Zuckerman’s conjecture for SL(3,R). Templier (2015) has recently
used an integral representation by Givental to show To’s result: the exponential growth
of My, 1,)(y1,y2) for y1,y2 > 1 as either or both y1,ya — oo. T use a new formula which
was derived by Ishii and Stade (2007)

)i+ 3

ﬂ-yl 2 7Ty2
M(al,a2,a3) (yl, y2 = Cy1y2 Z

T k—i— as—ay a1 +1) IH@(QWM)IH%(QWW)

(13)

where C' = I'(%5%2 +1) ['(“5% +1) I'(“25% 4 1), then obtain the asymptotic expansion
1

of Ma;.a9,a5)(ts t—p) as t — oo, where 2 < p € %Z in Chapter 2. Note that the relation

of M(Vl,yg)(yla yQ) and M(al,ag,ag)(yla y2) is defined by (220)

1
Theorem 0.6 Letp > 2 andp € §Z. For any (a1, az,a3) € C3, the asymptotics of M-
Whittaker functions M q, a5.05)(t, ) and M(a17a27a3)(tlp,t) for SL(3,Z) with t — +00

are 30,
1 77_7_11"(“35’12 +1) e2mt
Mzt 75) ~ 2 Hp-$)(1-ar) 14)
M 1 W%—lr(azgal +1) e2mt
(@raza) (o 1) ~ 2 #(p=5)(as+1)

If 1,19 7é — and v1 + 1 7é - then { M. (01 ,00) (W15 Yy2)}%_; is a basis for Whittaker space
on SL(3, R), where wy(v1, VQ) is the Weyl group action on C? (Bump, 1984, Page 24).
Based on the previous asymptotic expansions, I proved the following multiplicity one

1 1
theorem in the directions (t—p7 t) and (t, t—p), where t — +00.

1 1
Theorem 0.7 (Coroot Multiplicity One) Assume 2 < p € fZ, v,V # 3 and

2
v + vy # 3 The unique combination (up to constants) 22:1 My, (v, ) which is

not of exponential growth at (t, %) and (%,t) ast — 00 is ap = ay = a5 = 1 and
Oélz()éQ:Oég:—l.

Moreover, the only non-growing combination of M-Whittaker functions M, ) is the

wi (V1,02

W-Whittaker function:

M,

wo(vi,v2) Mwl(V17V2) - MW2(V1,V2) - MW3(V17V2) + Mw4(V1,V2) +M,, 5(v1,v2) — W(V17V2) (15)



The coroot multiplicity one theorem is the key to understand the growth of Fourier co-
efficients of automorphic eigenfunction on SL(3,R). It leads to my joint work with
Stephen Miller [13] addressing the absence of non-decaying Whittaker functions in
the Piatetski-Shapiro/Shalika Fourier expansion of automorphic forms on SL(3, R).
This confirms part of a conjecture of Miatello and Wallach, who assert the moderate
growth condition is automatically satisfied for automorphic eigenfunctions on semi-
simple groups of split rank greater than 1. In particular, the condition (3) in the
definition 0.4 is redundant.

Our first result in the joint paper shows that the presence of a non-decaying Whittaker
function implies that the terms in (9) are not bounded:

Theorem. [13] Let F' € C*(SL(3,Z)\SL(3,R)/SO(3,R)) be an eigenfunction of the
full ring of bi-invariant differential operators on SL(3,R) which does not satisfy the
moderate growth. Suppose that some [P*OF](g) does not have moderate growth. Then
one of the two Fourier expansions in (9) must contain unbounded large terms, and in
particular is not absolutely convergent.

Moreover, an absolutely convergent Fourier expansion containing only decaying Whit-
taker functions must have moderate growth, it implies the following strengthening:
Corollary. [13] The Miatello- Wallach conjecture is true for eigenfunctions

F € C*(SL(3,Z)\SL(3,R)/SO(3,R)) of the full ring of bi-invariant differential oper-
ators on SL(3,R) for which

[Pk,O,ZF]<(“/ 1)g> and [Pk,o,eF]<(1 7)g> fork € Z,0>0,yv e T\I?

are bounded for any fived g € SL(3,R).

Finally, we show there are no analogs of eigenfunctions on SL(2,Z)\SL(2,R)/SO(2,R)
that have both exponential growth and growing Whittaker functions. Put differently,
an exponential bound is sufficient to rule out non-decaying Whittaker functions.
Theorem. [13] Let F € C*(SL(3,Z)\SL(3,R)/SO(3,R)) be an eigenfunction of the

full ring of bi-invariant differential operators on SL(3,R), and assume that




for some positive constants C and K. Then F'’s Fourier erpansion cannot contain

non-decaying Whittaker functions.



Chapter 1

MODIFIED BESSEL FUNCTIONS

Let us consider the second-order modified Bessel differential equation
22y () + 2y (z) — (2® + v¥)y(z) = 0. (1.1)

Its two linearly independent solutions are called modified Bessel functions of the first
and second kinds of order v, denoted by I,, and K, respectively. It is well known that

the modified Bessel function of the first kind I,, can be represented as the infinite series:

L) = (;)sz:% k:!l“(u—lkk—i—l) (g)% (1.2)

where x € C, since this series converges absolutely everywhere by the ratio test. Note
that for fixed = # 0, I, () is an entire function of v. Moreover, I, (z) is real and positive
when v > 0 and x > 0. The asymptotic expansions of I,,(z) as z — oo is

ex

V2rzx
The modified Bessel function of the second kind K, is defined by

-4 (12 - 40%)(32 — 4?)

1
+ 8x 2! (8x)?

I(z) ~

+ ] (argz < g) (1.3)

mly(x) — Ly()

2 sin v

where the right hand side of this equation is replaced by its limiting value if v is an

integer or zero. The asymptotic expansions of K, (z) as z — oo is

me " 1—42 (12— 40%)(3% — 40?) ™
K ~ 1 = 1.5
v(z) Jona + Fy + 2 (32)2 (argx < 2) (1.5)

Many inequalities and monotonicity properties for the functions I, and K, and their
several combinations have been deduced by many authors, motivated by various prob-
lems that arise in wave mechanics, fluid mechanics, electrical engineering, quantum

billiards, biophysics, mathematical physics, finite elasticity, probability and statistics,



special relativity, etc.

0
Reudink [12] in 1968 established the inequality 51 v(z) <0 for all z,v > 0.

0
Lemma 1.1 [12] For any x > 0 and v > 0, we have B—L,(:U) < 0.
v

Proof. The modified Bessel function K, (x) has the integral representation
o
K, (z) :/ e~ () cosh(vt) dt, (1.6)
0

and its derivative with respect to v

QKV(x) = / e~ osh®) ginh (t) t dt (1.7)
61/ 0

is positive when x and v are positive.

Consider the following integral

LK) = % [

s

° Asinh(7 A
)S\?Jr(:z) K3 (x)d\  where Re(v) > 0. (1.8)

Differentiate the above formula with respect to v to obtain an expression for 8—],, (z),
v

0 1 0K, (x) 4v /Oo Asinh(7A)
0

afy(x):—Ky(x)[V@) =+ mm&(x)@] (1.9)

Using (1.6), we obtain that K;)(x) is real when A is real and > 0; hence for v > 0,

the integral

* Asinh(7A)
—— K > 0. 1.1
/O (AQ + VQ)Q z)\(x) dA >0 ( 0)
0
Therefore, since K, (z), %Kl,(x),ll,(x) are positive for v > 0 and = > 0, it follows

immediately that
0

Lemma 1.2 [20] For Re(p+v) > —1, we have

w/2
L(2) L(x) = 2/0 Lsy (208 0) cos(yi — )8 d6 (1.11)

™
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putv+2m
Proof. The coefficient of ( 2) in the product of the two absolutely convergent

series .
Jp(w)lp(x)-— kﬂffoif;fjil Z,FQZ?%zfifl (1.12)
is
Z 1
prd ElT(v+k+1)(m—E!T(u+m—Fk+1)
(=n™

= C _ _ .
m T(p+m+1)T(v+m+1 Z (v = m)mg (—p =)

_ ()" (p—v—2m)y,
S mIT(p+m+1D)T(v+m+1)
B (n+v+m+1),

S mIT(p+m+1D)T(v+m+1)

Vandermonde’s theorem is used to sum the finite series: (a+b)n, = > 7_ C}(a)n—;(b);
I'(a+1)

F'la+1-—n)

Hence, for all values of p and v,

where (a), =

00 ( )M+V+2m(u+1/+m+1)m

m 0

(1.13)
Applying formula

/2 Dp+v+2m+1)
phvm g 0 do — Tl 1.14
/0 Cos cos(p — v) optv+2m+1 Flp+m+1)T(v+m+1) ( )

o (1.13) , provided that Re(u + v) > —1, we obtain

xu+u+2m COS,LH—u—i—Qm 0
L —v)0 db
ul Z/ m! T(p+v+m+1) cos(y —v)

= 2/ I+ (2x cos ) cos(pn — v)0 db.
0

™

Lemma 1.1 now can be extended to the case when v is in the right half plane to compute

the asymptotic expansion of M-Whittaker functions in the next chapter.

Theorem 1.1 For fized x > 0, |I,(x)| is strictly decreasing with respect to Re (v) = o
in the right half plane. |I,(z)| is strictly decreasing with respect to Im (v) =t <0, and

|I,(z)| is strictly increasing with respect to t > 0.
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Proof. Apply Lemma 1.2 with noting that I, (x) = I,_(z) for arbitrary x,o,t > 0,

we have

9 /2
[ Iypit(@)]? = Lyyir(x) i (z) = 77/0 I5,(2x cos0) cosh(2t0) db. (1.15)

Differentiate the above formula with respect to o then use Lemma 1.1

2 [™/2 Iy (2
d / o (2w cosB) (210 do < 0, (1.16)
0

710'1‘ 2=2=
7 Hoit(@)|” = — 5

Differentiate (1.15) with respect to ¢

2 w/2
%|Ia+it(m)|2 = 7T/ I>, (27 cos0) sinh(2t0) 260 df <0  if t <0,
0

d 92 w/2
guﬁit(x)\? == / I55 (27 cos §) sinh(2t0) 20 df >0  if t > 0.
0

Corollary 1.2 For any x > 0 and Re (v) > 0, we have |I,41(z)| < |L,(z)].

Corollary 1.3 For any x > 0 and Re (v) = o > 0, both I,(x) and aéf,,(x) are
v

nonzero.
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Chapter 2

WHITTAKER FUNCTIONS FOR SL(3,R)

Let G = SL(3,R), I' = SL(3,Z), and X C G be the group of upper triangular,

unipotent matrices,

1
X:{nx:( xf%;):xiER}. (2.1)
Also let Y C G be the subgroup,
2/3 1/3
1 2
Y=1<a,= yy Pyl3 Sy, y2 > 0. (2.2)
y1—1/3y2—2/3
y2/3y1/3 y—1/3 1/3
We have y;(ay) = %, y2(ay) = ﬁ are roots of SL(3,R).
Yo Y1 Y

1
Now consider the homogeneous space
H? = SL(3,R)/SO(3,R)

(the “generalized upper half-plane”), where SO(3,R) is the rotation group. By the

Iwasawa decomposition, every z € H3 has a unique representation
z =ngay (mod SO(3,R))

with x € X, y € Y. That is,

2/3 1/3 -1/3 1/3 —-1/3 —-2/3
yl/ yz/ Yy /3/2/ r1 Y /?J /~T3

2/3y1/3 2
1z 3 1 72
— -1/3 1/3 _ -1/3 1/3 —-1/3 —-2/3
Z—( 1902) yr s/ = Z/1/y2/ 91/3/2/332
1 —-1/3 —-2/3
Y1 Y -1/3 —2/3
U1 Yo
(2.3)

We have an action of G on H? by left matrix multiplication. A function on H? will
always be identified with the corresponding function on G obtained by composition

with the canonical map G — H3>.
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We will need the following facts about Lie algebras. Let g be the Lie algebra of G. If
A € g, then A acts on C*°(G) by

(Af)(u) = G f(u-exp(tA)) | (2.4)

(u € G, feC>®G)). Also let U(g) be the universal enveloping algebra of g; U(g) may
be identified with the ring of differential operators on G generated by all A € g. It may
be shown that the center of U(g) acts as an algebra D of differential operators on H3.
Then D is commutative; in fact, we have that D is a polynomial ring in 2 generators.
Moreover, D commutes with the action of G on H3. That is, if d € D and f € C*™(H?),

then
d(fov)(z) = (df ov)(2) (2.5)

for all z € H3,y € G. Bump showed that the algebra D of GL(3,R)-invariant differen-
tial operators on H> has generators ([3], page 33, 34)

5 O 5 O 0 5 O 5 O 2/,.2 2 O 2 o
A=yl +yi——5 — + + +yd(ad +yd) s + 2yd :
1 =4 oyf Y2 Oy gLy 0y10yo Y Ox? Y2 Ox2 y2 (71 + 1 )8;332 Y2 %1 0x20x3

83 3 3 3 83
No=—Ysyi =+l 5 — YUl e + YU g — 2y Y11 ———
QY3 Oy Y20y} 0z 30ys Oxtdys 01202301,

2 2, 2 i 2 0* 2,2 ’ 2 o
+ (=22 4 - — 42 —FF +2 (3 )
(=21 +yi)ys 9220y, Ya'y1 D220y, Y291 0x90x10x3 Y2 Ox10x2

2 2 0?2 2 2 0?2
+ 2 2 2 4 2 2y,,2 + 2 .2 .
Ys =5 dy2 “Uig, 52 +2y3 L — (= 4+ y1)ys 92 Ys 927 yi 827

Let v = (v1,1) € C? (and z = zy as above), we define
H,:H>—>C

by
Hy(z) — H(Vl,l/Q)(Z) — y11/1+21/2y221/1+1/2' (2.6)

It may be shown that H, is an eigenfunction of D ([3], page 33, 34). That is,
A1Hy, = (A1) H,y,

AQH = MV(AQ)HV.
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Let us identify the Weyl group W of GL(3,R) with the set of matrices {w;|i =
0,1,...5}, where

1 -1
wo = 1 ) w1 = -1 )
1 -1
-1 -1
W2 = -1 5 w3 = 11,

-1 -1
1 1
Wy = 1], ws =11
1 1

We define an action of W on C? by requiring, for each w € W, that

H(Vl . 1,2_;)(?;) - H(m—

-3

, [LQ—%)(wy) (27)

1
3

if (11, u2) = w(vi,v2). One then computes that ([3], page 20)

wo(v1,12) = (11, 12),

2 2

CU1(V1,V2) = (g — 2, g - Vl))
wa(v1,12) = (11 + 12 — 33 12),
(2.8)
2 1
w3 (v, v2) = (§ — v,V vy — §)’

wa(v, ) = (1 — v — o, 11),
ws(v1,19) = (V2,1 — v — 18).
It is convenient to introduce the three auxiliary parameters ([3], page 20)
a1 =—vy — 212+ 1,
az = —vi + s, (2.9)
as =2v1 + vy — 1,

note that ay + as + a3 = 0. Further,

Hy(2) =y "y, T
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The action of W on C? then permutes the indeterminates a1, as, az ([15], page 703):
wo(a1,az,a3) = (a1,az,a3),

wi (a1, az, a3) = (as,az,a1),

wa(ar, az, az) = (az, a1, as),

(2.10)
ws(a1, az,a3) = (a1, as, az),
a)4(a1,a2,a3) = (a’27a37a1)7
ws(ai,az,a3) = (a3, a,az).
If we let
p1 = —1—aias — azaz — aias,
(2.11)
H2 = —a1a2a3,

then one may show that p1 = p, (A1) and pe = p,(Ag); that is,
A1H, = H,,
AgH, = uoH,.
We now wish to discuss GL(3, R)-Whittaker functions.

Definition 2.1 A Whittaker function of type (v1,v2) associated to an additive
character ¢ : R? — S is a smooth nonzero function W : H?> — C which satisfies the

following three conditions
o MW (g) = mW(g),
o DoW(g) = p2W(g),
J W< (1 ki ilg) 9) = Y(x1,22) W(g).

A Whittaker function W (z) of type v associated to an additive character ¢ (x1, z2) can

always be written in the formula

W (z) = P(x1,22) au(y),

where a,(y) is a function of y only.
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Case ¢(x1,29) =1

Since dav(y) = 0, the function a,(y) must then satisfy
T
0? 0? 0?
[ny +YFe - ym] ay(y) = pay(y);
a?h 83/2 Y12 9,12
ok ok ok 0? (212)
|:_y12y22 + 91922 2 + y12 2 = y22 2:| az/(y) = N2au(y)'
Ay; Iy Fy10y; i 93

Fixing A = (a1, a9,a3), the space of solutions to the differential equations (2.12) is

generated by the six functions Hy, (4, a5,a5)(¥1,Y2), where w; € W defined by

i

Hwo(a1,a27a3)(y1> Y2) = yiial y%+a3’
Hw1(a1,a27a3)(y17 92) = y%iag y;ral’
1 1+
sz(a1,a2,a3)(y17y2) = “ Ya “, (2.13)
st(a17a2,a3)(y17 y2) = y%_@ y%+a37
Hw4(a1,a2,a3)(y17 y2) = y%_ag y%+a27
st(a1,a27d3)(y17 Y2) = y%*az y;ral'
Case (xy, 15) = 2™
0
Since aa,,(y) = 0, the function a,(y) must then satisfy
X
0? 0? 02 ]
2 2 2.9
Ui s tY 55—y — =41y |aw(y) = pau(y);
s+l — g — 4 e (0) = ity
o? 3 0
2 2 2 2
Yty + + Ay Ry —
[ e Ay dyo o dy10y3 5y (2.14)

+yfi22 _ 31228722 _ 471-2y12:| ay(y) = p2au(y).
ayl ay2



17

Fixing A = (a1, a9, a3), the space of solutions to the differential equations (2.14) is

generated by the six functions defined by

-4 g
MgégerL ,\(ylﬂ y2) = yl ? y; “ Ia3ga2 (27ry1)7

1—5 _
(?elgen, /\(yl’ y2) = yp ? y% “ K@ (2my1),

1-%2 1—
Mgelgen (123)A<y1a3/2) =y Zyy I@(Qﬂyl)j

e (2.15)
Wgelgen (123)/\(y1’ y2) =M% ’ yé_(lQ K% (27Ty1),
1-% 4
Mgégen 321))\(y1’y2) =y Ty I@(%?ﬂ)v
-8 4
Wgégen (321)/\(y1’y2) =y Cyp © K@(Qﬂyl)-
Case (11, 15) = e*™%2
0
Since (;V(y) = 0, the function a,(y) must then satisfy
T
82 82 82
2 2 2,2
— + - —4 - ,
|:y1 63/12 Yo 8y22 y1y28y1y2 m y2:|au(y) ,Ulau(y)
ok 03 3}
2 2 2,2
—yRyr e + Y1y g — ATy Ty ——
[ N ayray, TV oy 02 2050, (2.16)
82
tyf—s — + 47? = uoa,(y).
e = g + 472 0uly) = s (1)

Fixing A = (a1, az,a3), the space of solutions to the differential equations (2.16) is

generated by the six functions defined by

ldas 1+%
Mcolf,gen, A1, y2) = y1+a5 Yo ° Lay—as (27y2),

Wdegen /\(yl’ yQ) = yl+a3 7 Kay—ay =L (27ry2)
Mgggen, (123)/\(y1’ y2) y1+a2 v Iil—aa (27Ty2), (2 17)
. .
W(?:gen (123)A<y1’y2) yi 2y * Kaj—ay a3 (27ys2),

1+
Mﬁfgen 321)/\(3/1’ y2) =y, ? Taz—ay —az (2my2),

1 1+3
nggen (321)/\(y1ay2) =y My, ? Kaz—ay a2 (2mys).
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Case (11, x9) = e2mi(@1+e2)

The function a,(y) must then satisfy

5 0 g 07 0 2,2 2
[?Jl Dy 2 + y2 3 — Y1Yy2 D1 — A (yi +ys )] ay(y) = pau(y);
93 o3 0 0
2 2 2,2 2 2
— - 4 + 47 — —A4r —
[ i Ay dya v oy10y3 e Y2 1 oy (2.18)

0? 82
tyl = —yl—— —Any? + A7y a, (y) = poay(y).

Theorem 2.2 [3] Assume vy # %, vy # %, and v + vy # % the space S, of solutions to

the differential equations (2.18) is generated by the siz linearly independent functions

Mwi(ul,m)(yl,yz), where w; € W defined by
o0 F(kl + ko + 31/1;-31/2) (Wy1)2k1+l/1+21/2 (,/Ty2)2k2+21/1+1/2
Mwo(V1,l/2)(ylay2) = Z ke ko T (K 3vi+1 T(k 3vo+1 T(k 3v1+3v9 (L 31430,
k1,k2=0 1 h2: (1+ 2 ) (2+ 3 ) (1"‘72 ) (2+T)
(2.19)

and M, (v, 1) (Y1,y2) is obtained from M, ,.,\(y1,y2) by letting W act on (v1,1v2).

Proof. [3], p. 24 O

Using three auxiliary parameters a1, as, a3, we define

[(%292 4 (959 4 1) (%259 4 1)
2 = ; My, ) (y1,92)- (2.20)

M(al,ag,ag)(yla y2) = T

Theorem 2.3 [9] The above function My, ay.a5)(Y1,y2) can be written as follow

T ()t
M(a1,a2,a3)(y17y2 Cyly Z k! F k+ as—aj (11 +1) Ik+%(2ﬂ-yl)lk+%(2ﬂ-y2)

(2.21)
where C' = T(%5% + 1) T(25% + 1) T'(225% +1).

Proof. [9], (22), p. 298 O

An asymptotic expansion of a finite sum is the sum of asymptotic expansion. How-
ever, an asymptotic expansion of an infinite sum in general is not the sum of infinite
asymptotic expansions. It does hold with some additional uniformity assumptions of

the following lemma.
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Lemma 2.1 (Infinite sum of asymptotic expansions) Letp be a positive real num-

ber. Assume that for every k € N, functions fi(t) satisfy the following two conditions:

a
o fr(t) ~> 2k # as t — oo where ay € C,

\fk( )l

for every t > 0.

o |fr1(t)] <

Then
[e.e]
S fult) sz 0Bk et o
k=

Proof. 1 need to prove for each N € N,
oo
: N Zm 0 Amk _
ERAOOITE o B B
k=0
Fix an arbitrary € > 0. Since f(t) ~ > 2, % as t — oo for each 0 < k < N there is
Ty, such that for all t > Ty,

N
Pl (fk Z ’;) 2k+1 : (2.22)

1=k
AN+

Since fyi1(t) ~ Z£N+1 there is Ty11 such that for all ¢ > Th1,

€

Y frnra(t)] < oNTE (2.23)
t
The inequality |fry1(t)] < |fkt§] ) show that for each [ > 2, and ¢t > max(Tn+1, 21/p),
1 €
‘thN+l(t)| < ‘thNJrl(t)tp(l—l)‘ < ON+I+1° (2'24)
Summing them together, we have for all ¢t > max(To, oo T, 21/1’),
tN<ka Z m= 0 m’“) <e (2.25)
k=0

The lemma, therefore, is proved. O

1
Theorem 2.4 Let p > 2 and p € §Z' For any (a1,az,a3) € C3, the asymptotic

expansion of M-Whittaker functions Mg, a5 a5)(t, tip) for SL(3,Z) with t — 400 is

1 7Tfolr(aa—az +1) e2mt
M(al,az,ag)(ta tfP) ~ 9 2 (—1
tlp—3)(1-a1)
s 1 — (a3 — a2)” n [1 - (a3 — a2)?] [29;(613—02)2] ).
167¢ 51274t
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Proof. By (2.21), we obtain

2m
M (t [e'e) 7T2k+ 32 1 Ik+a3 ag (27Tt) Ik+a2 ay ( tp ) (2 27)
(raza3) (b 35) = O kzo RIT (K + %59 4 1) ¢(P- 1)’““”““1 '
Denote 9
'7T'2'I€"'_(132a1 Ik+a3—a2 (27Tt) Ik+a2 al( ﬂ—)

p) tP

Or(t) :==C — : pag o (2.28)
L RIT(k + %59 4 1) DRSS

The asymptotic series expansion of 0y (t) is

asz—aj
C 7T2k+ 5

Ok (t) ~ T
k(®) tP—DR+52 4+ 3 4p-1 BT (k + 2359 + 1)

2m—+k+ 22
[e’e) J—
$ () ]
LoomID(m+1+k+ %25%)

o2mt ( . 1 — (2k 4 a3 — ap)? N [1— (2k + a3 — a2)’] [9 — (2k + a3 — a2)’] +>

' 21/t 167t 512m2t2
O3k +2935292 1 omt 1 .
2.k T (k + @59 4 1)¢(p-2)@ktastaatl) \ D(k + 254 4 1)

1—(2k+a3—ag)® 1 [1—(2k+ a3 —az)? [9—(2k+a3—a2)2]l+
167 T(k 4+ 25% + 1)t 512m2 T'(k + “25% 4-1) t2

~

Theorem 1.1 established
[T, +1(t)| < |1,(t)] where Re(r) > 0 and ¢t > 0.

For k very large, we have

2T
() =TT Do Crlonge s (G)
k+1 tp—1 EIT(k + 854 a1 +2) =) (k+1)+ P53+
G 64(1)

<
|(k+1)(k + 959 +1)] tr~1

Apply Lemma 2.1, we get

3aq

1 72 L (9592 +1) e2mt
M(m,ag,ag)@aﬁ) ~ ) : (p—1)(—
tp 2)( (11+1)
1—(ag—a2)?1 [1—(az3—a2)?]]9— (a3 —a2)?] 1
N (a3 2)7+[ (as a2)][2 (a3 a2)]72+... .
167 t 5127 t

Similarity, we have
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1
Theorem 2.5 Let p > 2 and p € §Z. For any (a1,az,a3) € C3, the asymptotic

expansion of M-Whittaker functions M(al,%ag)(ip t) for SL(3,Z) with t — +o0 is

3ag

1 72 (g5 4 ) e2mt
M(a17a2,a3)(t7p’t) ~ 2 : (r—3
(- 2)(a3+1)
- 1— (a2_a1)21+ [1 — (a2—&1)2][9_ (CLQ _al)z]l_f_... .
167 t 5127’[‘2 t2

Proof. By (2.21), we obtain

2

M (l H=c Z 2k+a3 ay Ik+a3 a2(tp)1k+a2501 (27t)
(04,(12,(13) tp? - tP— 1 k[ F k 4 az—ai a1 4 1) t(p 1)k %7073
(2.29)
Denote 5
—a T
9 (t) o C 7T2k‘-|—a32 1 Ik+a3 az(tp)lk_’_%(Qﬂ't) (2 30)
P T RIT (k4 %5 4 1) oDk :

The asymptotic series expansion of 0 (t) is

2m+k4 23292
C W2k+7a3;a1 i (tfl))
FHr-LEIT(k+ B39 4+ 1) | &= mIT(m+ 1+ k+ %35%2)
m=0 2

e2mt (1 1_(2k+a2—a1)2 n [1—(2k+a2_a1)2] [9_(2k+a2_a1)2] _|_)

Or(t) ~

a

H(p— kT3

omVi 167t 51272 {2
C 7r3k+ 393 4 627rt 1
"ok Dk + @590 4 1) z)@htast1) \ T(k + 2592 + 1)+
1— (k+a2 —a1)2 1 [1— (2k:+a2 —al)g] [9— (2k+a2—a1)2]l+
167D (k+ %4592 +1) ¢ 512m2 T'(k + 3592 4-1) t2
Theorem 1.1 established
|I,41(t)] < |1,(1)] where Re(v) > 0 and x > 0.
For k very large, we have
2
o (s C T R Ik+@+1(277t> Lw%ﬂ(fp)
‘ kJrl( )’ - ’tp_l ]{'F(k + ag;al + 2) t(p—l)(k-i-l)—%—%" ‘
m 10k(2)]

<
(k4 1)(k + %859 +1)| 7!
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Apply Lemma 2.1, we get

3ag

1 WT_lF(@gal 4 1) e2mt
M(al’”’“g’)(tip’t) - 2 (p—3)(as+1)
1—(az—a1)®1  [1—(az—a1)?[9— (a2 —a1)?] 1
1 - — 4. )
+ 167 t + 51272 t2 +

We now wish to find a GL(3,Z)-Whittaker function

Wiy wa)(2) = e(@1 + 22)Wi, 1) (Y1, Y2)

that grows at most polynomially in the 1;’s. Bump shows that the function we are

looking for may be given by

o1+100 02+ZOO
WAoo = s | [ Vi (s1s2) (ma)!™* (ru)' = dsy ds
27” 01—100 09 —100
(2.31)
(05 = Re(s;) ), where

D(S52) T(e50) T(22) T(225%) T(5%) T(225%)

V)\(Sth) = S1+s
L(#5°2)

Vinogradov-Takhtajan [19] and Stade [16] proved the integral formula

1— 2 1 2
Wi(y1,92) = 4y, “2/ y2+a2/ X

> _34,/4 AT
/ K (a;-a3) 22TV + 2) Ky -aq) 22 VL + 27 27202/ == (2.32)
0

It follows from this integral and the inequalities |K,(7)| < Kgre()(®), KRe)(z) > 0

that

WA(y1,92)] < Wren) (Y1, y2) (2.33)

where the righthand side is in fact positive.
Lemma 2.2 [4] There exists an integer N (depending on \) such that
[ WAy, 92) | < (yaya) N e mte2) (2.34)

for any y1,y2 > 0, where the implied constant depends only on .
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Proof. 1T am explaining the proof in [13].
Since the terms outside the integral in (2.32) can be absorbed into the constant and

polynomial factors, it suffices to estimate the integral

V= / K (a1—ag) 22y VI + @) K0 —ag) 2 (2my2V/ 1 + 27 1) 2732/4 L dy - (2.35)
0

Note that formula (1.5) shows that e“K,(u) is bounded for large u, and formula (1.4)
shows that K, (u) is bounded by |u|~? for some ¢ > 0 as u — 0.
We now split the range of integration into three pieces: 0 < x < 1/2,1/2 <z <2, and

2 < x <oo.

2
Vo= // K(al—ag)/2(27ry1 V14 x) K(a1—a3)/2(277y2 V1+ :L‘il) gia/4-] dz
1/2

2 —27y1vV/ 1+ 727|—y2\/1+? (236)
€ € —3az/4-1 —27(y1+y2) —1/2
< xT der < e (y1y2)
12 VU VY2
o0
Vs = / K (ar-a5) 2Ty V1 +2) Koy —ag) 2 (2my2V/ 1+ 27 1) 27502/
2
< 0 g =2my1VItT o=2my2V1+z ! p302/4-1 g
2 NaT VY2
oo
< (9192)_1/2/ e 2myVITE o2y g —3a2/A-1 gy now let z = u? 4+ 2u (2.37)
2
= ) () V/2 [T (2 )/ (2 4 2)du
V3-1
< e 2m(y1ty2) (y1y2)_1/2 /OO e—2myru g =3a2/2 g o =27 (y1+y2) (y1y2)—N
V3-1

for some N and an implied constant depends only on A.
Similarity,

1/2

Vl - K(al_QS)/2(2ﬂ—yl \/m) K(al—a3)/2(2ﬂ-y2 \/HT) $—302/4—1 dl‘ ,
0
- /2 K a1-a3) 2271 V1 +071) Ky 0y o mypVTH 0) 22 e (2:38)

< e 2mWtR) (3o )N

Sum up these estimates, the lemma therefore is proved. O

1 1
Theorem 2.6 (Coroot Multiplicity One) Assumep > 2, p € §Z, v,V # 3’ and

2
v+ vy # 3" The unique combination (up to constants) S = ZZ:O My, (1) ,1,) which
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is not of exponential growth at (t, ) and (4%,t) ast — o0 is ag = ay = a5 = 1 and

oq:ag:ag:—l.
Moreover, the only non-growing combination of M-Whittaker functions M, ) is the

wi (V1,02

W-Whittaker function:

Mwo(lll,vz) - Mw1(1/1,l/2) - Mw2(l/171/2) - Mw3(1/1,l/2) + Mw4(l/1,1/2) + Mw5(1/1,l/2) = W(V1,l/2)'

Proof. By (2.20) and Theorem 2.4, we have:

ur ’ 1) a1 e2mt
wolaw2) i gp) T P (880 L 1) (@255 4 1) 4r—3)(—ar+D)

u ’ 1) L e2mt
w0 ) g (s ) T(9259 1) 4e—D)(—ar+))

1 a1 e2mt

Mw1(V1,V2)(t’ T

_ 23
1 e27rt

[(25% +1) ¢p-3)(-as+1)

Mw4(1/1,1/2)(t7 t7p) ~ 211((11;(13 +1

IS N .
& e
—

e27rt

(al 92 4+1) t(P—%)(—az-l—l)
—1

1) T
2F(a3 92 11

ng (v1,12) (t,

\—/M

tP

2
l\.’J

1 — 627rt

2
M, t,—) ~
st 35) 2F(—a35“2 - 1)r(—a12a2 +1) ¢r=3)(—eat)

tP

1
By the asumption, vy, 1o # 3’ and v1+1o # §’ we have a1, as, as are distinct. Therefore,
M-Whittaker functions M, 1.,)(t, tip), Moy, (11 00 (s tlp) My (1 0 (s tlp) do not have

the same asymptotics. As t — oo if

1
Z Oék wk (v1,v2) (t> tfP) ~0 (239)
then oy = —@g, Q] =—Q4, Q3= —Qs.
Similarity,
1 77&%"'1 627rt

M _— ~
anter) (2 1) 2D(%95% + DD (#5% + 1) 4= z)(aatD)

M (1 t) ﬂ.&%ﬂ-l e2mt
wolrnv2)lgpe ™ g p(9a58 L) (B0 4 1) 4o 5)(ast1)

3ag
M 1 ) +1 627rt

— . 1) ~
artern) (g2 1) 2T(25% + 1) [(25% + 1) 4(r—3)(az+1)




3ag
1 Tt e2mt

Mastrm (1) ~ 2T (925% + 1) T(#25% + 1) r-3)(a2+D)

M, ( . t) o ew
wi(v,v2) Yy 20 (959 1) (952 + 1) +(p—3)(a1+1)
1 Wm%Jrl 627rt

Mo (5 8) ~ 20(93% + DD(H5% + 1) -z

Since a1, as,as are distinct, Mwo(l/1,1/2)(t L), ij[(l/l,llg)(t L), M,

) P » P

have the same asymptotics. As t — oo if

5
1
Z akak(Vl,Vz)](t7 ?p) ~0
k=0

then Q)= —ag, Q9= —q4, Q= —Q5.

Therefore, up to constants ag = a4 = a5 =1 and a1 = a9 = ag = —1.

25

WS(Vl,l/z)(tv tip) do not

(2.40)
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