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ABSTRACT OF THE DISSERTATION

Modeling, Sensing, and Control of Human Bipedal

Walking with Foot Slip

by Mitja Trkov

Dissertation Advisor: Dr. Jingang Yi

Human walking is a fundamental motor skill that is developedat an early stage in

our lives. Maintaining stable walking capability demands asubstantial effort and re-

quires synchronization and coordination of many neurological, sensorimotor and mus-

culoskeletal systems. Moreover, disturbances such as footslip require even more de-

manding walking control strategies for successful balancerecovery and fall prevention.

However, it is challenging to capture and model human motionand reaction to foot

slip. Most of the existing slip-and-fall studies focus on clinical human experiments

and few use control systems approaches to analyze the slip dynamics and human re-

covery mechanisms. Further challenges arise as few real-time sensing and robotic as-

sistive technologies are currently available for reliablydetecting foot slips and assisting

human balance for slip-induced fall prevention.

The goal of this dissertation is to advance the understanding and knowledge of

slip dynamics with emphasis on four interlaced topics: (i) analyzing and modeling the
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shoe-floor interaction during foot slip, (ii) developing a novel bipedal modeling frame-

work to capture human walking locomotion with foot slip, (iii) developing a novel

linear inverted pendulum (LIP) modeling framework for balance recovery control, and

(iv) developing new wearable sensing and robotic assistivedevices for real-time de-

tection of foot slip and effective prevention of slip-induced falls. In the first part, we

present modeling of foot slip evolution and development based on a quasistatic fric-

tion force model. We present a model to obtain the normal force distribution on the

shoe-floor contact patch. In addition, we extend the previously developed beam-spring

network model and integrate it with the LuGre dynamic friction model. In the second

part of the dissertation, we present a new bipedal modeling approach, where we relax

the non-slip assumption used in the existing literature. Wedevelop a hybrid bipedal

model and the gait controllers to capture and predict human walking with foot slip.

In the third part, we present a new two-mass LIP model for human balance control

during walking and walking with foot slip. We extend the capture point based control

approach and incorporate time-varying locations of the zero moment point and the LIP

pivoting location. In the fourth part, we propose a novel real-time foot slip detection

method using only wearable inertial measurement units. Thedeveloped slip-prediction

algorithm is built on a dynamic model for bipedal walking andis also integrated with

the human locomotion constraints. A slip indicator is introduced into the algorithm

to detect the foot slip shortly after the heel-strike event.All of the above mentioned

models, control strategies and devices are validated through the extensive experiments

and simulations. In addition, we further design and fabricate a wearable robotic knee

assistive device for slip balance recovery and slip-induced fall prevention. This device

prototype serves as an enabling tool for future testing of possible robotic assistive fall

prevention strategies.
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P (x, y) A point on contact contourC.

fx, fy, fn The three-directional forces at pointP (x, y).

fn The normal load distribution function.

fnx, fny The longitudinal and the normalized lateral normal force factor.

ls The maximumx-coordinate of the front tip point ofC.

sH , sT The scaling factors for the heel and the toe log-normal forcedistribu-

tions.

LH , LT The log-normal distribution density function for the heel and toe.

µH , µT The longitudinal normal force parameter for heel and toe, representing

a mean of the variable’s natural logarithm.

xix



σH , σT The longitudinal normal force parameter for heel and toe, representing

a standard deviation of the variable’s natural logarithm.

Cx The transverse area of the normal force distribution.

nx A number of PSECR sensor units withinCx.

Sj A PSECR sensor unit withinCx locate at(x, ysj).

Fsj The normal force measurements at location(x, ysj).

C+, C− The boundary points ofCx aty+(x) andy−(x).

Pi(u) Theith-order Legendre polynomial defined on the intervalu ∈ [−1, 1].

ai The coefficients of the linear combination of a series of Legendre poly-

nomials up to the5th-order.

K A normalization factor of the transverse normal load distribution at

givenx, due to mappingy 7→ u.

u(y) A coordinate transformation variable for Legendre polynomial.

N A number of virtual cantilever beams.

h The height of the virtual cantilever beams.

c The side length of the virtual cantilever beams.

f
i
f , f i

x, f i
y The contact friction force vector and its longitudinal and transverse

components.

f
i
d, f

i
b, f

i
e The boundary, bending and elastic forces on theith beam.

δik The bending deformation of theith beam.

Lk The maximum length of the contact contour ink-axis direction

ui The position vector of the bottom tip of theith beam.

µ The coefficient of friction

xx



P The soft-solid contact patch.

a A side length of the square cross section of the beams.

F f , F b, F e The total friction, bending and elastic force applied onP.
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ξs A variable (together witḣxs) used to show the zero dynamics properties

of the system.

F e3 The external force vector for double-stance slip model.

Cf A constant for transformation of the external force vector.

Ds
ext, C

s
ext, G

s
ext, B

s
ext The matrices of the slip double-stance dynamics.

S A constant transformation matrix fromqe to qi.

vslip The slipping velocity of pointCl (along thex-axis direction) after the

heel-touch impact.

M1, J1, L1 A mass, mass moment of inertia and length of link1 of double inverted

pendulum model of slipping foot.

M2, J2, L2 A mass, mass moment of inertia and length of link2 of double inverted

pendulum model of slipping foot.

a1 The distance of a center of mass of link1 fromCl.

ds, dt Distance between IMUs on the shank and thigh.

Iti , Isi, Ih The labels of IMUs attached to the thigh, the shank, and the heel for

i = 1, 2.

q The generalized coordinates of slip dynamics.

xxv



r1,r2 The position vectors for the link1 and link2.

T , V The kinetic and potential energy of the 2-link limb.

g The gravitational constant.

Dd(ql), Cd(ql, q̇l), Gd(ql), Bd The inertia, Coriolis, gravity and input mapping ma-

trices of2-link slip dynamics.

Ed The contact constraints matrix.
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Chapter 1

Introduction

1.1 Motivation

Walking is a fundamental and energy-efficient trained humanmotor skill [1]. Walk-

ing gait is inherently unstable and balance control is constantly required to maintain

dynamically stable posture. Unexpected perturbations such as slipping, tripping and

stumbling affect dynamic stability and can cause a human to fall. Human responses

and reactions to such disturbances require complex neurological and biomechanical

processes to recover dynamic stability and prevent falls. These actions are related

to the individuals’ sensory capabilities of perturbation detection (i.e., proprioceptor,

somatosensory and vestibular sensory systems), and the musculoskeletal ability to per-

form proper responses to the disturbances.

The elderly often suffer from degraded sensory and musculoskeletal capabilities.

They are at high risk of falls due to changes in their gait patterns, lower muscular

strength and slower reaction rates. More than one third of adults older than 65 years

fall each year [2]. Falls due to slipping, tripping and stumbling is the most common

injury mechanism among elderly [3]. Moreover, falls due to slips and trips are also

present among occupational populations, such as during delivery of mail [4] and among

hospital employees [5]. Slipperiness and slipping were shown to contribute to 40-50%

of occupational slip, trip and fall (STF)-related injuries[6]. The fall-related economic

and societal costs for elders and professional workers are enormous [3]. In the US only,

the fall-related costs in the elderly were over 19 billion USdollars in 2000 and the costs
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are likely to increase in the future due to the aging population [7,8]. Fall-related injuries

for professional workers also increased by 42% from 2008 to 2012 in the US [9]. Foot

slip is one of the three major causes for falling injuries andtherefore, it is critical to

understand slip dynamics and slip detection and slip-induced fall prevention.

We currently lack theories and design tools to successfullypredict and detect foot

slip and to prevent slip-induced falls.

Slip-and-fall consists of a series of continuously rapidlychanging, whole-body hu-

man movements and it is challenging to capture and model human motion and reac-

tion to foot slips. The complexity of fully understanding the biomechanics and neuro-

musculoskeletal control in slip-and-fall lies in several aspects. First, foot slip dynam-

ics and its impacts on human walking are complicated. Human motor control and

reactions to foot slip are also complex due to the high-dimensional, redundant human

movements. It is difficult to precisely model the balance recovery strategies. Further

challenges arise as few real-time sensing and robotic assistive technologies are cur-

rently available for reliably detecting the foot slips and assisting human balance after

foot slips.

The goal of this dissertation is to address these challengeswith four intertwined

research directions as illustrated in Fig. 1.1. More specifically, the dissertation focuses

on: (i) the development of the shoe-floor interactions models for slip prediction; (ii) the

development of the analytical models to understand and characterize human balance

recovery reactive strategies, (iii) using human kinematics and kinetics measurements

to detect foot slip in real-time; and (iv) using the researchoutcomes of the first three

topics to develop a robotic assistive device for slip-induced fall prevention.
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Figure 1.1: Concept schematics of slip prediction, detection and fall prevention through
four approaches (i)-(iv) discussed in this dissertation.

1.2 Background

Slip-and-fall has been extensively studied in the past two decades. For a good review,

readers can refer to [10, 11] and references therein. Most ofthese studies focus on

human subjects and clinical experiments and few use human locomotion dynamics to

analyze the slipping mechanism. In this dissertation, we focus on foot slip dynam-

ics, sensing and prediction and prevention of slip-inducedfall. The study of slip-and-

fall prevention is related to several research topics such as slip biomechanics, bipedal

robotics, in-situ sensing of human motion and wearable robotic assistive devices. Each

of these four research topics will be discussed and covered individually in the following

chapters. We first review the related work of each topic here.
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1.2.1 Slip prediction using friction force models

Shoe-floor interactions play an important role during humanwalking and slip events.

In [10, 12, 13], required coefficient of friction (RCOF) is used to quantify the slip-

periness of the shoe-floor interactions and to determine andpredict the slips of the

interactions. The RCOF is defined as a ratio of thetotal friction force and thetotal

normal force. The measurement of slipperiness has also beendiscussed in [14] and the

devices to measure the friction between the shoe and the floorare reviewed in [15].

In [16], a quantitative description of the heel-floor contact dynamics is presented for

slip events on oily surface of varying inclination. The kinematics of the human body’s

center of mass (COM) and the center of pressure of shoe-floor contact are used to pre-

dict the RCOF in real time during walking [17, 18]. While RCOFis widely used as a

slip prediction parameter, a recent study [19] suggests that it is possible to predict slip

by only the magnitude of the shear force after heel strike.

All of the above-mentioned studies mainly consider the total friction (i.e., shear) or

the normal forces, not the force distributions on the sole-floor contact patch. Indeed,

the distribution of the three-dimensional (3D) ground reaction forces (GRF) are critical

not only for slip and fall applications but also for human gait and clinical studies. For

instance, the normal GRF and its distribution are used to predict and diagnose abnormal

gait for Parkinson disease patients [20]. The 3D foot plantar forces (i.e., normal and

shear forces) are important for studying biomechanics withclinical applications for

patients with diabetes and osteoarthritis [21,22]. However, sensing and obtaining shear

force distributions on the shoe-floor interactions is not asstraightforward as the normal

GRF [21]. Although some relationships might exist between the shear friction forces

and the normal contact forces [23], a recent study in [24] shows that the peak values

of these forces do not occur at the same location or time. A setof separately multiple

sensor arrays are desirable to obtain the complete 3D GRF andtheir distributions.

Various GRF sensors have been developed in the past several decades [21]. To
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measure the 3D GRF in a laboratory, a force plate is the most commonly used device.

However, force plates cannot be used for monitoring daily activities outside the labora-

tory and they cannot provide the force distribution, either. In recent years, wearable in-

sole pressure measurement devices were developed to obtainthe normal GRF [20,25],

or 3D GRF [23, 26–29]. Some of the sensor arrays can be used to measure and ob-

tain the normal GRF [20, 28] or 3D GRF distributions (e.g., [26]). However, none of

these GRF systems aim at measuring the sole-floor interaction forces and for slip-and-

fall studies. Moreover, although the 3D foot plantar pressures and their distributions

are related to sole-floor interactions, few studies report the interactions (e.g., friction

force distribution) between the shoe sole and the floor surface. In this dissertation,

we develop a modelling framework and analysis to obtain stick-slip interaction on the

shoe-floor contact to predict slip.

1.2.2 Dynamic friction force model for soft-solid contact

Contact modeling between soft materials and solid surfacesplays an important role

for designing and controlling robotic and mechatronic systems, ranging from robotic

grasping [30, 31], bipedal walking [32], to tire-road interactions in autonomous vehi-

cles [33], etc. High-fidelity soft-solid contact model and tactile sensing are crucial for

safe and effective control of these robot-environment interactions [34].

Contact model is highly related to robotic grasping and tactile sensing. For exam-

ple, contact mechanics are used to capture the tactile sensing principles and models

in [35]. The readers can refer to [34] for a review of tactile sensing. For soft-solid

contact with a finite area between a soft materials and the rigid surface, the contact

interaction forces are complicated [36, 37]. Besides the linear or nonlinear elastic re-

sponses, time-dependent characteristics exist in soft-solid contact [36]. To capture

these complex behaviors, a set of virtual beams are used to model the fingertip contact

and to obtain a dynamic model for sliding motion and stick-to-slip transition [37, 38].
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Virtual springs are also used to connect any two neighboringbeams to capture the elas-

tic and shear effect. The Coulomb friction characteristic is used in [37,38] to describe

the stick-to-slip transition.

Tire-road interaction is another application of the soft-solid contact problems. Un-

like the robotic fingertip contact model discussed in [37, 39, 40], the tire-road normal

contact force distribution is different due to the tire’s hollow and thin-layer structure.

The LuGre dynamic friction model uses the bristle deformation to capture the fric-

tional forces between two rigid contacts [41] and has been used to interpret and cal-

culate thetotal tire-road friction forces for a given normal force distribution [42–46].

In [33, 47, 48], a beam-spring network model is used to model the rubber deformation

and the friction force distributions on the contact patch during the stick-to-slip transi-

tion. Embedded force sensors are used to validate the modeling results. However, only

static contact is considered in [33, 47] and no sliding or dynamic motion is assumed

between the tire and the road interactions.

We propose a dynamic friction force model to capture the distributed friction force

for the general soft-solid contact patch, and apply this modeling approach to capture the

shoe sole-floor contact interaction for slip prediction. Todemonstrate the method, we

develop a computational model to obtain deformation and friction force distribution

within the soft-solid contact patch. A fingertip-like soft rubber sample is used as an

experimental example to validate the modeling framework.

1.2.3 Modeling and control of robotic and human walking and walk-

ing with foot slip

Analytical modeling approaches are commonly used to analyse the behaviour of biome-

chanical systems and processes. The biomechanics of human walking are commonly
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characterized as a bipedal dynamics model. Modeling and control of the bipedal dy-

namics model is complementary to the understanding of clinical observations and ad-

vances knowledge that is not easy or convenient to be experimentally tested and ob-

tained.

Bipedal modeling and control are extensively used in robotic walker design in the

past decades; see [49] and the references therein. Due to thefoot impact with the

ground in each strike, a hybrid dynamic model is commonly used to describe the con-

tinuous dynamics in the single- or double-stance periods with discrete-switch map-

pings to capture the foot contact impacts. Point or flat foot models are employed

in these bipedal robotic dynamics. Using the hybrid zero dynamics concept [50], a

low-dimensional normal human walking model has been presented in [51] and a state

feedback control is designed to track the gait profile parameterized by the stance phase

variable, rather than time [49].

Use of bipedal robotic dynamic models to study human locomotion is reported

recently. In [51], the bipedal model is used to study human gaits with consideration of

fixed ankle joints. Both the single- and double-stance phases are included in the model

and a hybrid zero dynamic control is designed to track the human gait profile. Although

the kinematic variables such as hip, knee and HAT (head, armsand trunk) joint angles

match the human gaits, the predicted GRFs have large discrepancies with experiments.

In [52], an optimization process is used to determine the values of the parameters of the

bipedal model to match the kinematics of human gaits. Only single-stance locomotion

is considered in the model without the HAT. The kinematics ofthe model predictions

match the human gaits and no predicted GRF results are reported. The models in [51,

52] use the circular curved foot-floor contact that has been developed in [53].

Simple linear inverted pendulum (LIP) model or its variations, such as spring-load

inverted pendulum (SLIP) model, are also used to capture human walking and running
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and humanoid robot control [54, 55]. The LIP or SLIP models are simple and are at-

tractive to describe motion relationship between COM, zeromoment point (ZMP) and

other motion variables [56]. Similar to the work in [57] for studying human balance,

the concepts of the capture point (CP) and the divergent component of motion (DCM)

are proposed for humanoid robots control in [58] and [59], respectively. The CP- or

DCM control of humanoid robots are also demonstrated in recent work [60–62].

All of the above-mentioned bipedal models are built on the assumption that the

foot-floor contact friction forces are large enough to prevent the foot from slipping and

thus, cannot be used and applied directly to study slip-and-fall walking gaits. Several

studies use modeling based approach to investigate stability and reaction controls dur-

ing foot slip. In [11], a 7-link, 9-degree-of-freedom (DOF)walking model in the sagit-

tal plane with a 16-element foot model is used to simulate thehuman reaction control

to a novel slip. In [63], a simulation model is optimized withhuman experiments and

using this model, stability results are obtained and compared with the dynamic balance

analyses by a simple invented pendulum model. The 2D musculoskeletal model in the

sagittal plane is also used in [64] to determine the impact ofthe reduced RCOF on gait

kinematics. Kinematic and muscle activity-based data-driven analysis (e.g., Lyapunov

exponents) are used to capture the walking stability [65].

In this dissertation, we develop a multi-link bipedal modeland controller to capture

human walking with foot slip. The proposed model complements the existing literature

and experiments are conducted to validate the model for normal walking and walking

with foot slip gait.

1.2.4 Foot slip detection in human walking using wearable sensors

Effective real-time slip detection and prediction is critical for developing assistive and

rehabilitation devices for preventing human slip-inducedfalls during human walking.

Many clinical studies mainly focus on data analysis of humangait parameters
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changes to predict slip initiation [66]. Findings from these studies use gait parame-

ters such as heel contact velocity and heel displacement as an indicator when balance

recovery under foot slip is possible. For example, a criteria for slip recovery is defined

as the heel velocity less than 50 cm/s and the slip distance less than 10 cm [66]. The

study in [67] instead argues that these margins are conservative and that twice of those

threshold values are recorded during successful slip recoveries. The studies in [16] re-

confirm the thresholds in [66]. The large variations of the recovery margins reported in

these publications imply the complexity of the slip dynamics.

It is suggested that slips most likely occur shortly after the heel-strike event [68].

In [69], various specific profiles of the heel slip acceleration, velocity and displace-

ment are observed and reported. A quantitative descriptionof the heel-floor contact

dynamics is presented for slip events on oily surfaces in [16]. The heel velocity and the

forward slip distance are also related to the utilized coefficient of friction at the shoe-

floor interaction [70]. Prediction of slip severity is also assessed by inspecting the

pre-slip gait parameters [71]. Unfortunately, the correlations of the pre-slip parameters

with slip predictions are not reliable and robust.

Slip biomechanics are closely related to human walking dynamics. Physical principle-

based dynamic models are widely used to design bipedal walking robotics and hu-

manoid robots [49]. Use of the bipedal dynamic models to study human locomotion

is also reported in recent years [52]. Most of these bipedal models however assume

non-slip contact conditions between the foot and the floor. In [11], a seven-link, nine-

DOF dynamic model is used to simulate the human reaction control to a novel slip. It

is difficult to use the complex simulation model in [11] to analytically capture the slip

characteristics. In [72], an analytical bipedal dynamic model is presented to character-

ize the human gaits under foot slip, but no slip detection algorithm is discussed.

In this dissertation, we present a slip detection system andalgorithm for real-time
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applications. The presented slip detection and predictionmethod uses only the wear-

able IMUs and thus, it is convenient for slip detection during personal daily activi-

ties. The slip detection algorithm not only detects but alsopredicts slip propagation

allowing to assess the severity of the slip. Such method has the advantage over the

well-established RCOF-based slip predictions because no prior measurement informa-

tion is needed. Another drawback of using RCOF is the requirement of the expensive

wearable force plates and is not practical for slip detection in human personal daily

activities. On the other hand, the inertial measurements units (IMUs) have been com-

monly used to capture the dynamic motions and posses attractive features such as low-

cost and lightweight etc. For the presented slip detection system, only the IMUs are

attached to the lower limbs. Extensive multi-subject testing was conducted to validate

the slip detection and prediction algorithm.

1.2.5 Robotic knee assistive device for slip-induced fall prevention

Currently, limited number of devices aim at slip detection and fall prevention in the

commercial market and research labs.

An active slip prevention method was reported in [73] by using an intelligent

laterally-extendable shoe to increase the base of support (BOS) during slip and there-

fore increase the dynamic stability and recovery possibility. In a same study the rela-

tionship between a ZMP and a BOS during slipping was also analysed. Fall prevention

using wearable airbags was proposed in [74,75].

Although a number of exoskeletons, humanoid robots and other assistive or or-

thotic devices have been developed, those devices are not suitable to be used as slip

prevention device since most of them were not designed to meet the requirements of

lightweight, fast response time, and high torques in a fraction of a second. The wear-

able device with the similar performance requirements as fall prevention devices are

ankle and knee perturbators reported in [76–78] or a series elastic remote knee actuator
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(SERKA) [79]. All of these devices are remotely actuated andcannot be directly used

in slip-and-fall testing. The most common slip-induced fall prevention strategies are a

repetitive slip training for healthy subjects with aim to train subjects cognitive reaction

skills to slip [80–82]. Such repetitive slip training were shown to improve humans’

motor skills for slip balance recovery for 6 months or longer[83].

It was reported that during slip occurrence, the knee and ankle joints experience the

highest torque deviation compared to normal walking torqueprofiles [84,85]. It is also

suggested that the corrective reactions to unexpected slipproduced by the knee and hip

moments are crucial towards successful slip recovery [84, 86]. Furthermore, the knee

strength, particulary extension peak and explosive strength, are reported as the most

important factor in slip recovery [87]. Based on these observations, we hypothesize

that the robotic knee assistive device could help provide additional torques to prevent

slip-induced falls during slip recovery. We design and fabricate robotic knee assistive

device with the integrated slip detection system that can provide assistance for human

subjects to prevent slip-induced falls under foot slip.

1.3 Dissertation outline and contributions

There are seven chapters in this dissertation. Chapter 1 presents the introduction and

background. In Chapter 2, we discuss the shoe sole-floor interactions and the friction

force model for slip prediction and detection. In Chapter 3,a dynamic friction force

model is presented for a general soft-solid contact application. A robotic bipedal dy-

namic model for human walking with foot slip is presented in Chapter 4. In Chapter 5,

we present a slip detection scheme using the human kinematicmeasurements obtained

from the IMU. A novel robotic assistive device for slip-induced fall prevention and a

balance recovery control are presented in Chapter 6. Conclusions of the dissertation

and discussion of the future work are presented in Chapter 7.The content of each
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chapter is described as follows.

In Chapter 2, we first present a novel model to obtain the normal load distribu-

tion within the shoe sole-floor contact area. We present a computational model for the

friction force and deformation distributions with the capabilities and attractive features

under conditions such as: (i) contact patch has irregular shape and is constantly chang-

ing with time, and (ii) the boundary force is evenly distributed across the entire contact

patch, due to the top of the rubber shoe sole being rigidly connected to the shoe. The

model predictions and experimental results show similar trend of slip propagation from

the regions with lower normal loads to the regions with the higher normal loads.

In Chapter 3, we extend the approaches in Chapter 2 and present a dynamic friction

force model for a general soft-solid contact application, such as shoe-floor interactions.

Unlike the quasistatic friction force models, the dynamic model includes frictional

force properties such as Stribeck and time-dependent effects and thus captures contact

friction dynamics and sliding motion. The proposed model iscapable of capturing the

stick-to-slip motion during the steady state behaviour andthe model predictions are

validated and demonstrated through the experimental results.

In Chapter 4, we present a 7-link robotic bipedal dynamic model to study human

walking with foot slip in a sagittal plane. We relax a non-slip condition assumption of

the stance leg at the heel strike and derive a slip dynamics model. The hybrid bipedal

dynamics model includes the single-stance and the double-stance phases for both the

non-slip [49,51,52], and foot slip cases. A hybrid zero dynamic controller using feed-

back linearization is designed to track the human gait profile using a progression vari-

able rather than time [50]. The model uses curved feet [51,52] with a radius equal to a

shoe-floor contact rolling geometry [53] that are obtained from the experimental data.

In Chapter 5, we present a slip detection and monitoring device using the lower-

limb kinematic measurements obtained from the wearable IMUs and the bipedal mod-

els developed in Chapter 4. Real-time slipping heel distance and velocity monitoring
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are based on the 2-link dynamic model with integrated sensing fusion through an EKF

design. We introduce a novel slip indicator to detect the initiation of the foot slip after

the heel strike. The slip indicator captures the physical behavior of the movement of

human COM with respect to the stance foot in a sagittal plane.The hip-heel angular

acceleration (similar to the COM-heel angular acceleration) and the heel slip accelera-

tion information are used to compute the slip indicator factor. Successful and effective

slip detection and monitoring algorithm results are validated through extensive multi-

subject experiments.

In Chapter 6, a two-mass LIP model is presented for balance recovery control of hu-

man walking with foot slip. We use a CP concept to design a balance recovery control.

Extensive experiments are conducted to validate the proposed proposed slip recovery

approach. In addition, we present a design of a novel roboticknee assistive device for

slip-induced fall prevention. The wearable device has several attractive features, such

as high torque and high angular velocity, lightweight, clutch-type mechanism and ro-

tary series elastic actuation. The demonstration of the effectiveness and functionality

of the device is out of the scope of this dissertation and remains as the future work.

The main contributions of this dissertation are described in details as follows.

1. A novel shoe sole-floor interaction modeling is proposed for human slip prediction.

Combining the proposed normal load distribution model withthe extended qua-

sistatic friction force model allows us to obtain the shoe-floor contact interactions,

such as friction force and slip distributions. The proposedmodels and computation

of the deformation distribution can be used for accurate slip prediction. Analysis

of the friction force and slip distribution of the shoe-floorinteractions is novel for

slip prediction and also complements the current understanding and knowledge of

biomechanics of slip and falls.
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2. The proposed dynamic friction force model in Chapter 3 offers a substantial advan-

tage over the quasistatic friction force model by capturingsliding contact motions.

It also includes contact friction dynamics and properties such as Stribeck and time-

dependent effects. In comparison to quasistatic model, thedynamic model offers a

simplified computation of friction force and deformation distributions. Besides the

shoe-floor interaction, such model can also be applied to other types of soft-solid

contacts in mechanical systems.

3. The simulation of human walking with foot slip is presented using the newly de-

veloped 7-link planar bipedal model and the hybrid zero dynamics controller. The

new model extends the robotic bipedal models to study human walking and suc-

cessfully predicts human gait with foot slip. Besides relaxing the assumption of

non-slip foot-floor contact, compared with the other existing work, the new model

comprehensively includes innovative features and properties such as: experimen-

tally validated foot contact shape, active ankle joints, and also dynamic model and

controller for the the double-stance phase in walking gaits, which is crucial for slip

and fall locomotion.

4. A novel real-time slip detection and monitoring system ispresented in the dis-

sertation. The slip detection system uses only the IMU measurements. The slip

detection algorithm successfully detects slip shortly after the heel strike even prior

to the humans somatosensory or proprioceptor sensory systems and also monitor

the severity and evolution of the slip. To our best knowledge, no such slip detection

system has been reported before. Attractive features such as small size, lightweight

and low cost make the slip detection system convenient and attractive to be used in

personal daily life and also for robotic assistive device for fall prevention.

5. A novel two-mass LIP model is developed and used to design the balance recovery

control for human normal walking and walking with slip gaits. CP-based walking
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control is extended to separately capture the ZMP control and the walking pivoting

point. The proposed human-inspired balance recovery control during foot slip can

be used to design a new wearable assistive device to prevent slip-and-fall.

6. Finally, we present a preliminary design of a new wearablerobotic assistive device

for slip-induced fall prevention. The device has a set of unique design features

such as a compact rotary series elastic actuator, capable ofproducing a high torque

(90 Nm) and high angular velocity(360 deg/s). With an integrated clutch mech-

anism, the device is actuated only during the presence of foot slip and otherwise

allows unconstrained motion during normal walking. Integration with the slip de-

tection and prediction algorithms, the development of the robotic knee assistive de-

vice provides an enabling tool to explore the possibility ofpreventing slip-induced

falls.



16

Chapter 2

Static Model for Shoe-Floor Interactions During Foot
Slip

2.1 Introduction

Sudden changes of coefficient of friction during walking, such as stepping on a wet or

icy floor, can cause humans to slip and fall. Pure grip or low friction coefficient be-

tween the shoes and the ground was reported to be the primary reason for slipping [88].

Therefore, the understanding and prediction of shoe-floor interactions is critical for the

control and prevention of human slips and falls.

The most widely used parameter to determine and predict the slips of the shoe-floor

interactions is RCOF [10, 12, 13], defined as a ratio of the total friction over normal

ground reaction forces. Although these studies indicate the importance of the friction

force in slip prediction, they do not clearly present the initiation and evolvement of the

slip on the shoe-floor contact patch. Slip evolution is related to the force and deforma-

tion distributions over the contact area and provides the critical understanding of the

foot slip mechanisms and dynamics.

Simultaneous measurement of shear and plantar pressure distribution under the

shoe sole or barefoot is challenging [89] because of limitedsensing capability on the

market or in research labs. Only a few customly designed transducer-array [90, 91]

or deformation-based measurement systems [24, 92] are reported to measure the shear

and plantar pressure simultaneously. In [93], foot skin partial incipient slip distribution

within the foot-floor contact area was measured during barefoot walking using optical
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based system. Most of these measurement systems have been developed for clinical

application, such as risk evaluation of diabetic ulcers [24,90,91] and none of them has

been used for foot slip prediction. Due to the challenges in obtaining shear force distri-

bution under the foot, several models were developed for predicting these forces during

barefoot walking [94, 95]. These models are based on measured plantar pressure dis-

tribution and the total ground reaction forces. Effectiveness of those model predictions

is compared to experimentally measured friction force distribution [91].

There exist devices that measure slipperiness between the shoe and the floor [15]

and also stationary and wearable force plates to measure thetotal friction forces [29].

However, to our best knowledge, no shear force prediction models are reported for the

shoe-floor interaction. The focus of this chapter is the friction force distribution on the

shoe-floor contact patch for slip prediction.

Friction force modeling was studied also in many other soft-solid contact interfaces

and applications, such as tire-road interactions [33, 44, 96] and grasping and tactile

sensing applications [37, 38]. Studies in [33, 37, 38, 97] showed that in a presence of

large shear forces at the soft-solid contact, slip gradually evolves (i.e., incipient slip)

through the whole contact area. Such observations inspiredus to investigate if a similar

approach could be used for foot slip prediction.

To capture the shoe-floor friction force and sole deformation distribution, we ex-

tend the beam-spring network model that was developed for studying tire-road interac-

tions [33, 98]. Compared to the tire-road interaction, shoe-floor interactions are much

more complex due to the irregular contact footprint and pressure distributions and the

dynamic, time-varying configurations during walking and slip-and-fall gaits.

We first build a shoe-floor sensing suite that integrates pressure-force-kinematics

measurements using wearable sensors with a stationary laser-based sole-floor contact

footprint system, as shown in Fig. 2.1(b). Two types of forcesensor systems are used

in the sensor suite: two six degree-of-freedom (6-DOF) force sensors at the forefront
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and at the heel are placed inside the shoe to measure the 3D GRFand torques and

a set of 2D pressure sensor arrays are implanted inside the soles. The details of the

6-DOF force sensor are discussed in [29] and the sole pressure sensors are similar to

the pressure-sensitive, electric conductive rubber (PSECR) sensor discussed in [47].

Extensive experiments were conducted to test and validate the modeling and analysis

framework.

The main contributions of the work in this chapter are twofold. First, for the first

time, this dissertation discusses the friction force and slip distributions of the shoe-floor

interactions during slip and fall. Most existing work use the resultant total friction and

normal forces to describe and quantify the occurrence of theslip and therefore, the

work presented here complements the understanding and knowledge of the biome-

chanical aspects in foot slip. Second, this chapter presents a novel, wearable sensing

system to capture the pressure-force-kinematics interactions between the sole and the

floor. To our best knowledge, there is no single mobile sensing system available in

the market or other research labs to measure the 3D shoe-floorcontact forces and their

distributions for studying slip and falls or other related applications.

2.2 Shoe-floor interaction sensing systems

Figure 2.1 shows the integrated kinematics/kinetics distribution sensing suite for shoe-

floor interactions. The sensing suite consists of multiple modality sensor systems: (1)

the optical markers for indoor motion capture system (8 Bonita cameras from Vicon

Inc.) and small wireless inertial measurement units (from Motion Sense Inc.) to obtain

the kinematic information of the limb. The IMU consists of a tri-axial gyroscope, a tri-

axial accelerometer and magnetometers to measure the threeattitude angles. (2) Two

six degree-of-freedom (6-DOF) force/torque sensors (model SS-1 from INSENCO Co.,

Ltd) that are located inside the shoe to measure the total 3D forces and torques at the
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Figure 2.1: (a) The slip and fall experimental setup with various sensor suites. (b)
Instrumented shoe kinematics/kinetics/forces distribution sensing suite.

forefoot and hindfoot contacts. These 6-DOF force sensors are thin (12 mm thick for

the forefoot sensor and 17 mm thick for the hindfoot sensor) and can be embedded un-

derneath insoles (Fig. 2.1). The force and torque measurements are transmitted through

wireless Ethernet protocol to the host computer. (3) A pressure-sensitive, electric con-

ductive rubber (PSECR) sensor array (of 32 independent sensor units) is embedded

inside the sole rubber layer to measure the shoe-floor contact pressure distribution.

The PSECR sensors are customly designed and fabricated. These flexible sensors are

packaged within a thin-film layer and embedded into a molded urethane rubber layer

(5mm thick). The thin rubber layer is then glued to the bottomof a regular sport shoe.
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Figure 2.2: (a) Laser-based contour footprint setup. Validation results of the laser-
based contour measurements by a (b) spherical regular object and (c) concave irregular
object. (d) The outcomes of the contact contour and sole surface dots (blue squares)
and landmarks (red diamonds) detection on a snapshot duringnormal human walking
gait.

To measure the deformation of the shoe-floor contact and to calculate the local slip

distribution, six laser line generators and a camera systemare used to obtain the shoe-

floor contact contour. Figure 2.2(a) shows the shoe-floor contact contour measurement

system. Six laser line generators are spread out and placed at various directions to pre-

cisely aim at the shoe sole surface right above the floor surface. These lasers are used

to form a closed contour on the sole bottom surface, see Fig. 2.2(b)-(d). A high-speed

camera (Prosilica GX1050C color camera,1024 × 1024 pixels, 112 fps) is mounted

underneath the transparent acrylic floor surface. A reflective mirror is used to increase

the optical distance between the camera and the footprint. The size of the square im-

aged area is 350×350mm and the resolution is 0.3mm/pixel. The error due to the
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distortion of the lens is around 0.07mm. To validate the laser-based contour measure-

ments, Figures 2.2(b) and 2.2(c) show two testing results for a regular shape object (a

rubber hemisphere) and an irregular shape object (concave rubber toy), respectively.

The comparisons between the laser-based contour measurements and the finger-paint

contour in the figure confirm the non-intrusive approach to obtain the contact contour.

Figure 2.2(d) shows a typical laser-based shoe-floor contour measurement during nor-

mal human walking gait.

Using a 3D printer, we fabricated a thin solid layer (the thickness of 0.5mm) with

a set of black dots and transparent surrounding material. This thin solid layer is then

glued to the bottom of the shoe; see Fig. 2.1. Two types of black dot arrays are used:

one set of square-shape dots with a size of 3 mm are used for calculating the deforma-

tion and then slip distribution, and a set of 25 diamond-shape dots with a size of 6 mm

are used as the landmarks to localize the small dots in the image processing algorithms.

To obtain the contact contour and to compute the deformationand slip distributions,

we designed and implemented a vision-based processing algorithms similar to the one

in [47]. Figure 2.2(d) shows the detected small dots (blue square marks) and landmarks

(red diamond marks) of a footprint snapshot during human walking gait.

The data collection among the optical motion capture, the forces and the force

distributions, and the vision-based contact contour measurements are synchronized

through the analog signal triggering connections among CompactRIO, the Vicon com-

puter and the data acquisition computer. The sampling frequency for all the sensors is

100 Hz.

2.3 Shoe sole-floor contact forces models

The sole-floor friction forces heavily depend on the normal force distribution between

the shoe and the floor. The flexible PSECR sensor array measures the normal forces

at various locations. In this sections, we first present a model for the sole-floor normal
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pressure distribution for the given PSECR sensor measurements and then a computa-

tional model for the friction forces calculation.

2.3.1 Normal contact forces model

Figure 2.3 illustrates the configuration for the contact forces modeling. The shoe-floor

contact patch is denoted asC. A sole-floor contact frameB(x, y, z) is attached toC with

the origin at the rear tip locationC1 with they-axis tangent toC and thex-axis pointing

forward. Thex-axis intersectsC at pointC2; see Fig. 2.3. We denote the left portion

Ĉ1C+C2 of contourC as functiony+(x) and right portionĈ1C−C2 as functiony−(x).

For pointP (x, y) onC, we denote the three-directional forces asfx(x, y), fy(x, y) and

fn(x, y), respectively.

Transverse force dist.

Contact area

Toe log−normal force dist.

Longitudinal force dist.

Heel log−normal force dist.

C

B
C1

C2

C+

C
−

P (x, y)x

yz
y+(x)

y−(x)

LH
LT

fn(x, 0)

fx
fy

fn

ls

Figure 2.3: A schematic of the shoe-floor contact and force distributions.

We take a decomposition approach to obtain the model forfn(x, y). The form of

fn(x, y) is expressed as the product of the longitudinal normal loadfnx(x) and the

lateral force factorfny(x, y). For any0 ≤ x ≤ ls, y−(x) ≤ y ≤ y+(x), wherels is the

maximumx-coordinate of the front tip point ofC, we obtain

fn(x, y) = fnx(x)fny(x, y). (2.1)

The form offnx(x) consists of the contributions from the heel (H) part and the toe (T)
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part, which are constructed as the sum of two log-normal probability density distribution-

like pressure functions, namely,

fnx(x) = [sHLH(x;µH , σH) + sTLT (ls − x;µT , σT )] , (2.2)

whereLi(x;µi, σi) = 1
xiσi

√
2π

exp
(

− (lnxi−µi)
2

2σ2
i

)

, i = H, T , is the log-normal distri-

bution density function. CoefficientssH and sT are the scaling factors for the heel

and toe log-normal force distributions, respectively. Thenormalized lateral force fac-

tor fny(x, y) is constructed by using the Legendre polynomials. In the following, we

first discuss how to determinefny(x, y) and then present how to determine the model

parameters forfnx(x).

C
Cx

C1

C2

C+ C
−

ls

x

x

y

y+(x) y
−
(x)

S3S1 S2

(a)

Actual force
distribution

C+ C−

z

y

y+(x) y−(x)

Snx
S1 S2

Fs1

Fs2

Fsnx

E1

E2

Enx

(b)

Figure 2.4: Schematic of the lateral force distribution calculation. (a) Flexible PSECR
sensor array and calculation configuration. (b) Cross-section view of the normal force
measurements along sectionCx.

For a givenx, factorfny(x, y) models the normal force distribution on a transverse

areaCx, shown as the shaded area in Fig. 2.4(a). WithinCx, there arenx PSECR sensor

units, denoted asSj and located at(x, ysj), with normal force measurements asFsj,

j = 1, · · · , nx, respectively. For example, in Fig. 2.4(a),nx = 3. We denote the

boundary points ofCx with y+(x) andy−(x) asC+ andC−, respectively. To construct
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the shape of the actual normal force along they-axis with finite measurements as shown

in Fig. 2.4(b), we considerfny(x, y) as a linear combination of a series of Legendre

polynomials up to the5th-order, namely,

fny(x, y) =

5∑

i=0

aiPi(u), u(y) = −1 + 2
y(x)− y−(x)
y+(x)− y−(x)

, (2.3)

whereai are the coefficients that will be determined later in this section andPi(u),

u ∈ [−1, 1], are theith-order Legendre polynomial [99]. The use of the5th-order

Legendre polynomials in (2.3) is primarily due to its sufficiency to approximate the

shape of the normal force. Note that the mappingy 7→ u changes the variable from

y−(x) ≤ y ≤ y+(x) to −1 ≤ u ≤ 1 for a givenx. From the property of Legendre

polynomials, from (2.3) we immediately obtain

∫ y+(x)

y
−
(x)

fny(x, y)dy =
y+(x)− y−(x)

2

∫ 1

−1

5∑

i=0

aiPi(u)du =
a0
K
, (2.4)

whereK = 1
y+(x)−y

−
(x)

.

We construct an algorithm to estimate coefficientsai, i = 0, · · · , 5. As shown

in Fig. 2.4(b), for the given sensor measurementsFsj , j = 1, · · · , nx, we normalize

Fsjs by the total areaCx of polygonC+E1E2Enx
C− and factorK, and then these

normalized forces are equal to the values given by (2.3) at(x, ysj), namely,

fj =
Fsj

SxK
=

5∑

i=0

aiPi(uj), uj = u(ysj), j = 1, · · · , nx. (2.5)

For boundary pointsC+ andC−, the normal forces are both zero and we obtain0 =

∑5
i=0 aiPi(1) =

∑5
i=0 aiPi(−1). Sincefny(x, y) is a normalized force factor, in the

above integral equation (2.4), we assigna0 = 1 to simplify the calculation. The above

relationships for known forces at sensors locations give usa total of(nx+2) equations

to obtain coefficientsai, i = 1, · · · , 5. Notice that for the flexible PSECR sensor arrays

as shown in Fig. 2.4(a),nx = 1, 2, 3, or 4. Comparing with the sampling rate for the

flexible force sensor array, the shape of the lateral normal force distributions change
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slowly over time in stance. Therefore, the estimates of parametersai can be obtained

through a least square method by using the PSECR flexible sensor measurements.

For the longitudinal normal force load parametersµi andσi, i = H, T , we take the

x-coordinate at the maximum peak value of normal force forµH (µT ) and calculateµT

(µH) by relationshipµH + µT = ls. We treatσH = σT as a constant during the entire

stance and estimate its value by the PSECR flexible sensor measurements. The values

for scaling factorssH andsT are estimated directly from the smart shoe sensor outputs

of the 6-DOF force plates under the heel and forefoot.

The use of the Legendre polynomial-based approximation forfny(x, y) and the log-

normal distribution function forfnx(x) have several advantages. The main advantage

for the fny(x, y) model is that for any givenx, the integration offny(x, y) over y is

always equal to 1. This is due to the properties of the Legendre polynomials and their

properties whena0 = 1. Therefore, the higher-order Legendre coefficientsais can

be tuned online to capture models for various transverse pressure distributions for dif-

ferent gait patterns (such as supination or pronation) without changing the total force

values. Moreover, the integration ofLi(x;µi, σi) over a large range ofx is also ap-

proximated to 1 and thus, the scaling factorssH andsT are exactly approximated as

the normal forces measured by the heel and toe smart shoe sensors, respectively. Be-

sides a compact form with a few model parameters, the log-normal distribution offers

the advantage of specifying the location of the peak and the width of the peak for the

pressure distribution along thex-axis. This property is directly used to tune the model

parameters with measurements from the distributed flexiblePSECR sensors and the

smart shoe’s 6-DOF heel and toe sensors.

2.3.2 Friction contact forces model

Since it is difficult to obtain a closed-form formulation, wetake a computational ap-

proach to obtain the slip and friction force distributions between the sole and the floor
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surface. Similar to the approach described in [33], a beam-spring network approach

is used to compute the local deformation and the friction force distributions simulta-

neously. There are several differences compared to the previous modeling approach

in [33]. The first difference is that the contact area has irregular shape and its size is

constantly changing with time. Another difference with [33] is that the boundary force

is no longer distributed across the boundary of the contact patch such as in tire-road

interaction, but it is uniformly distributed across the entire contact due to the solid shoe

sole configuration.

Figure 2.5 illustrates the beam-spring network modeling approach. The shoe-floor

contact patchC is partitioned intoN virtual cantilever beams and each of them has

a height ofh (sole layer thickness) and a square cross-section with dimensionc × c,

wherec is the side length. Virtual linear springs connect each pairof neighboring

beams. We assume that for each beam, elongation and compression are ignored and

only the bending deformation is considered.
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Figure 2.5: A schematic of the hybrid beam-spring network model to capture the shoe
sole-floor stick-slip interaction.

Since we focus on studying the initiation of the sole slip, stick-to-slip transition
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between the shoe and the floor is of the interests here. Our assumption is that the

boundary friction force is evenly distributed across the entire contact patch, due to the

beams being rigidly connected to the rigid top surface. Thus, the dynamic motions of

the beams are negligible. For theith beam,i = 1, · · · , N , the following force balance

relationship is obtained.

f
i
f + f

i
b + f

i
e + f

i
d = 0, (2.6)

wheref if = [f i
x f

i
y]

T is the contact friction force,f id is the evenly distributed boundary

friction force applied at the top of all of the beams,f
i
b is the bending force that cap-

tures the shear deformation, andf ie is the resultant net elastic force from the connected

springs; see Fig. 2.5. The resultant elastic forcef
i
e is calculated as

f
i
e =

∑

j∈Ni

f
ij
e =

∑

j∈Ni

ke∆uij = Eh
∑

j∈Ni

∆uij , (2.7)

wheref ije = ke∆uij is the spring (elastic) force between theith beam with its neigh-

boring jth beam,ke = Eh is the spring stiffness coefficient, andNi is the index set

of all the neighboring beams of theith beam. Spring deformation is calculated as

∆uij = (uj −ui) (1− ‖uj0 − ui0‖/‖uj − ui‖) between theith andjth beams, where

ui anduj are the position vectors for theith andjth beams, respectively, andui0 and

uj0 are respectively the original position vectors of theith andjth beams without de-

formation.

The virtual cantilever beams are bent under friction force.The tip bending defor-

mationδik of theith beam along thek-axis is approximated by

δik =
f i
n

fave
n

3µFz

16Lk

2− ν
G

[
1− (1− ψk)

2/3
]
, k = x, y, (2.8)

whereµ is the friction coefficient,Lk is the maximum length of the contact contour

in k-axis direction,f i
n is the local normal pressure at theith beam’s location,fave

n is

the average normal pressure ofC, ψk = Fk

µFz
is the ratio of the total friction force in the

k-axis direction with the total normal forceFz times friction coefficientµ. The bending



28

force of theith beam is obtained as

f
i
b = kbδ

i =
3EI

(h)3
δi, (2.9)

whereδi = [δix δ
i
y]

T is the tip deflection vector of theith beam andkb = 3EI
(h)3

is the

bending stiffness of the beam. Compared to the definition of the bending deformation

δik in [33] in our algorithmLk represents the maximum length of the contact contour in

k-axis direction.

The Coulomb friction model is adopted to computef
i
f . If |f ib + f

i
e| < µf i

z, where

f i
z = f i

nc
2 is the normal force at the tip of theith beam, the beam is stuck and has no

movement. In this case,f if balances the resultant force off
i

b
, f i

d
andf i

e
. If |f ib+f

i
d+f

i
e| ≥

µf i
z, |f if | = µf i

z cannot fully sustain the resultant off ib, f
i

d
andf ie. The beam will slip

until the force equilibrium holds again at the new location.f
i
b is assumed to be saturated

when theith beam slips.

To compute the summation of forces on the contact patch we consider the fact that

the spring forcesf ies are internal forces and their summation is zeroFe =
∑N

i=1 f
i
e = 0.

Therefore the total bending forceFb and friction forceFf are defined as

Fb =

N∑

i=1

f
i
b and Ff =

N∑

i=1

f
i
f , (2.10)

By adding together allN equations of 2.6 and using the above definition the total

boundary forceFd =
∑N

i f
i
d is obtained as

Fd = −Fb − Ff . (2.11)

With the above formulation, a computational algorithm is used to obtain defor-

mation distributionu and friction forceff on C simultaneously. For completeness of

the modeling description, we present the Algorithm 1 used inour calculation that is

modified from the original in [33].
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Algorithm 1: Shoe-floor stick-slip evolution numerical calculation forslip
prediction.
1 Initialize: Set normal forcef i

z and original positionui for all N beams. Define
A ∈ RN and setA(i) = 1, Ff ← 0, f ib ← 0, f ie ← 0, f if ← 0, i = 1, · · · , N ;

2 while A 6= 0 do
3 Ff ← Ff +∆Ff ;
4 Updatef ib andFb by (2.9) and (2.10);
5 Fd ← −Ff − Fb, updatef id = Fd/N ;
6 Set iteration error indicatorErr ← 1;
7 while Err > Ethresh do
8 Err ← 0;
9 for i = 1 toN do

10 FindNi and updatef ie by (2.7);
11 if A(i) = 1 then
12 if ‖f ie + f

i
b + f

i
d‖ < µf i

z then
13 f

i
f ← −f ie − f

i
b − f

i
d, ∆u

i ← 0;
else

14 A(i)← 0, go to Line 9;
end

else

15 f
i
f ← µf i

z
f
i
e+f

i
b
+f

i
d

‖f ie+f i
b
+f i

d‖ , ∆u
i ← η

6Eh
(f ie + f

i
b + f

i
d − f

i
f );

end
16 u

i ← u
i + ∆u

i, Err ← max(Err, ‖∆u
i‖);

end
end

end

2.4 Experimental results

2.4.1 Experiments

We conducted human subject testing for both the normal humanwalking and slip and

fall walking. Both types of the experiments were conducted on the walking platform as

shown in Fig. 2.1. A healthy young man was recruited to conduct the experiments. In

the first test, the subject was asked to walk with his normal gait on the platform. In the

second test, the subject was asked to repeat the test by walking on the platform with

a reduced coefficient of friction at the acrylic plate. To achieve this sudden reduction
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of coefficient of friction, a cloth was permanently placed onthe platform surface at the

position of one step ahead of the actual step on the acrylic plate and liquid soap was

applied in a certain experiment runs, while the subject was distracted by giving him

a unique tasks (such as lifting legs or similar) when facing away from the platform.

There was no indication of learning or changes in the gait by the subject. The subject

was informed that there is a possibility of foot slippage andfall. The subject was asked

to walk on the platform to become familiar with the testing environment before actual

experiments were conducted. Before conducting any experiments, the subject was

informed with the consent form of the testing protocol approved by the Institutional

Review Board (IRB) at Rutgers University.

The subject wore a special shoe with the smart shoes sensors inside and with the

flexible force sensors embedded inside the sole. The smart shoe sensors provide the

3D total forces and the evolution of plantar sole-floor pressure distribution is obtained

by using the flexible PSECR force sensors as shown in Fig. 2.1(b). Each individual

flexible force sensor was calibrated by using a computer controlled linear stage to load

each sensor up to 25 lbs with increments of 5 lbs. Force valueswere measured us-

ing a 6-DOF force/torque sensor (from JR3 Inc.). An embeddedsystem (CompactRIO

from National Instruments Inc.) was used to collect the dataand control the motor. Fig-

ure 2.6(b) shows the performance of three calibrated sensors and these sensors measure

the actual normal pressure forces accurately. The reading from the flexible force sen-

sors was fitted using third order polynomial to match the actual normal force within

5%.

2.4.2 Normal walking gait results

The evolution of the contact footprint during the subject’snormal walking gait is shown

in Fig. 2.8. A sequence of the contact evolution for the left foot from 10% to 90%

stances at non-equal intervals are shown in the figure, wherestance (S) is defined as a
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Figure 2.6: (a) Experimental setup for calibrating the flexible force sensor array. (b)
Flexible force sensor measurement results.

(a) (b) (c)

(d) (e)

Figure 2.7: Pressure distribution with the contact contourand COP calculated from
the smart shoes and the flexible force sensors at (a) 10% of thestance, (b) 25% of the
stance, (c) 50% of the stance, (d) 75% of the stance and (e) 90%of the stance during
normal human walking gait.

portion of the gait of a single step beginning with the heel strike (0%) and ending with

the toe-off (100%). The pressure distribution obtained from the flexible force sensors

and the contact contour during same time instances are presented in Fig. 2.7.

To demonstrate the validity of the normal force model, we compare the calculated

center of pressure (COP) trajectory during the normal walking gait with the COP cal-

culations by the flexible PSECR arrays and the smart shoe sensors. Figure 2.9 shows
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(a) (b) (c)

(d) (e)

Figure 2.8: Evolution of the laser-based contact contour and detected dots inside the
contour at (a) 10% of the stance, (b) 25% of the stance, (c) 50%of the stance, (d) 75%
of the stance and (e) 90% of the stance during subject’s normal walking gait.

the comparison results. Figures 2.9(a) and 2.9(b) demonstrate thex andy positions of

the COP as a function of the percentage of the stanceS, while Fig. 2.9(c) shows thex-y

trajectory of the COP by measurements from various sensors.To evaluate the influence

of the presence of smart shoes sensors on the pressure distribution, we also conduct the

comparison experiments by removing the smart shoe sensors (both the heel and toe

sensors) and only use the flexible force sensor array. As clearly shown in Fig. 2.9, the

flexible force sensor measurements do not show any significant difference between the

experiments with and without the smart shoe sensors inside.This implies that putting

the force sensors inside the shoes does not change the normalgait pressure distribu-

tion. From the results shown in the figure, the COP predictions by the proposed normal

force model match well with the calculations from both the flexible force sensor array

and the smart shoe sensors. These results confirm the effectiveness of the normal force

model.

In Fig. 2.9(c), we omitted data for the first and last 5% of the stance because of low
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Figure 2.9: Comparison results of the COP trajectory duringthe normal walking gait
by various sensor measurements and the normal force model. (a) Evolution of the COP
in thex-axis direction vs. the percentage of stance. (b) Evolutionof the COP in the
y-axis direction vs. the percentage of stance. (c) The COP trajectory comparisons in
the shoe frame.

accuracy of the sensor initialization and foot contact impacts on the sensor measure-

ments. The differences of the COP positions in they-axis direction (Fig. 2.9(b)) among

various sensor measurements could be possibly due to the non-perfect foot-insert that

was placed under the smart shoe sensors to emulate the anatomy of the foot and the

decreased sensitivity of some flexible force sensors at certain locations. An example of

such incorrect sensor reading can be observed in Fig. 2.8(e).

During normal walking when slip does not occur, the deformation of the sole was

detected mainly at the contact boundary. The values of the RCOF calculated from
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the smart shoe sensors shown in Fig. 2.10(a) also confirm thatno global slip happens

because the measured dry sole-floor coefficient of friction (around 0.8-1 in Table 2.1) is

typically larger than RCOF. Figure 2.11 shows the deformation at various percentages

of stance using the camera-based measurements. The deformation inside the contour

is fairly small and without any significant trend. Most significant deformations happen

mainly at the front and rear portion ofC.
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Figure 2.10: Results of the RCOF computed from the smart shoeforce measurements
(a) during normal walking and plotted with respect to the stance S, (b) during walking
with foot slip and plotted with respect to time.
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Figure 2.11: Deformations insideC. (a) Mainly at the front edge ofC at 8% of S.
(b) Deformation at the front edge ofC due to the bending of the sole at 12% of S. (c)
Deformation at the rear edge ofC due to the “rolling” of the shoe over the ground at
78% of S. d) Mainly at the front and rear edge ofC due to the “rolling” effect at 84% of
S. (e) At the push-off phase at 94% of S. All deformations are magnified by 20 times.

At the beginning of the stance (up to 8-10%) the main deformation is located at
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the front part of the contact (Fig. 2.11(a)). At this initialstage, the shoe is pushed

forward. The longitudinal friction force is acting in the direction towards the toes and

deformation or local slip happens at the front part ofC where the normal load is small.

Since the stick area is relatively small and the front portion has a local slip, this is one

of the most crucial phases at which slip could occur. The slipexperiments presented in

the next section confirm such observation.

After the initial contact is established, the flat portion ofthe sole comes into contact

with the ground. Due to the bending effect of the sole, the deformation at the front edge

of C points towards inside its center. The deformation due to bending is observed only

after the initial contact (around 10% of S) and lasts until approximately 25% of the

stance when the entire flat part of the sole is in contact with the floor; see Fig. 2.11(b).

At the mid-stance, no significant local deformation or change of the contact contour is

observed. During the heel-off phase, the shoe is rolling over the front curved portion.

Rear edge ofC starts to move up and forward. This is observed by the deformation

at the rear edge pointing towards the center ofC starting at approximately 50% of the

stance on-wards. Figure 2.11(c) illustrates the deformations at each side of the rear

edge ofC point towards the center line of the shoe. At the last stage ofthe push-

off, deformation was observed due to the twist aroundz-axis and can be observed in

Figs. 2.11(d) and 2.11(e).

2.4.3 Slip and fall gait results

The slip and fall was created at the beginning of the stance. Figure 2.12 shows the

results of the measured deformation from the initial contact to the point when slip

starts. The initial slip starts at approximately 8% of the stance. After the first few

frames of images, it is observed that the dots at the rear havealmost no deformation

compared to the dots at the front edge of the contact contour;see Fig. 2.12(a). Similar

behavior is observed during walking without slip. Gradually, the rear portion starts
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to slip (Fig. 2.12(b)). Finally, at around 70 ms after heel impact, an instantaneous

slip occurs over the entire contact contour, with all the dots having the same size and

direction of the deformation as shown in Fig. 2.12(c).
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Figure 2.12: Measured deformations from initial contact tothe detected slip at (a) 50
ms, (b) 60 ms and (c) 70 ms after beginning of stance. The slip happens at 70 ms. All
deformations are magnified by 20 times.

During all of the slip tests, the subject was able to recover from slip and fall and

continue walking. Figure 2.10(b) shows the calculated RCOFfor the whole step with

foot slip. We plot the RCOF as a function of time instead of stance since the duration

of the step takes a longer time than that of a normal walking step (approximately 0.85

sec). Clearly, at the moment of 70 msec, the slip occurs and the RCOF is around

the available sole-floor COF that is around 0.1 for the wet soap condition on the floor

surface as shown in Table 2.1.

Table 2.1: Model parameters for the shoe-floor force models.

h µ σHeel µDryStat µDryDyn µSoapStat µSoapDyn

0.005 0.1 0.4 1.05 0.75 0.55 0.1

We use the beam-spring model discussed in the previous section to compute the

deformation evolution for the slip experiments. The normalforce distribution model

developed in Section 2.3 is used in the deformation computation. To use the computa-

tional model, the coefficient of friction between the shoe sole and the acrylic plate is
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Figure 2.13: Results right before slip occurs. (a) Computeddeformation distribution.
(b) Measured normal loadfn(x, y). (c) Computed longitudinal friction force distribu-
tion fx(x, y). (d) Computed lateral friction force distributionfy(x, y). Results right
after slip occurs. (e) Computed deformation distribution.(f) Measured normal load
fn(x, y). (g) Computed longitudinal friction force distributionfx(x, y). (h) Computed
lateral friction force distributionfy(x, y).

needed. We obtained and estimated the shoe-acrylic plate friction coefficient through

experiments that are similar to the walking gait. Measured coefficients of friction under

various conditions are listed in Table 2.1. We compute the sole deformation and sole-

floor friction distributions before (Fig. 2.13(a)) and after ( 2.13(e)) the slip happens.

The results demonstrate that the large deformations and slip start at the front edge of

the contact area, similar to the observed experimental results. The areas with the large

normal load slips the last.

The computed longitudinal and lateral friction force distributions are shown in

Figs. 2.13(c), 2.13(d) (before slip) and 2.13(g), 2.13(h) (slip occurred), respectively.

We also plot the measured normal force distributions beforeand after slip as shown

in Fig. 2.13(b) and 2.13(f), respectively. At the time instance right before foot slip,
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the friction forces have the highest values in the neighborhood around the stick portion

of the contact area. The lateral friction force distribution shows the large values, but

different signs, around the stick contact area (Fig. 2.13(d)). The opposite signs indicate

compression and tension in these areas. Friction forces show a smaller value inside the

stick region than those in its neighborhood area. This couldbe due to the large contri-

bution of elastic forces in non-stick areas and also possibly due to the use of Coulomb

friction law in the computational framework. At the instance of slip, both the longitu-

dinal and lateral forces show a high correlation with the normal load distribution and

have peak values at the same areas.

Due to small contact area and the high stiffness of the sole material, the sole-floor

interaction is like a rigid contact and thus, the resultant RCOF calculation seems to

serve as a good prediction of slip occurrence. The sole deformation could also serve as

a good indicator for possible slip, especially when the actual coefficient of friction is

either unknown or is difficult to obtain it in real time. Usingsole deformation as a slip

predictor complements the current reported RCOF indicatorand could be used as a true

assessment for slip occurrence. One advantage of using deformations for slip indicator

is that no prior knowledge of the true sole-floor coefficient of friction is needed. Of

course, obtaining the deformation distribution in a real time is not straightforward and

this is one of our future research directions.

2.5 Conclusion

In this chapter, we studied shoe-floor interactions during human normal and slip walk-

ing gaits. We measured plantar pressure distribution usingflexible force sensors em-

bedded inside the shoe sole as well as the resultant forces using two 6-DoF load-cells

under the hindfoot and forefoot. A normal force distribution model was first built and

then used to compute the sole deformation and friction forcedistributions. We vali-

dated the normal force distribution model through experiments and the results showed
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good agreement by comparing the COP trajectory during the normal walking gaits.

Computer vision-based sole deformation measurements wereused to obtain slip distri-

bution during the walking gaits. The experimental and computational results confirmed

that the largest deformations occurred in the areas with thesmallest normal load, where

partial slips also happened first. Detection of slip occurrence using the deformation

measurements was compared to that by using the RCOF calculation. The comparison

results showed a good agreement. One advantage of using the deformation over the

RCOF to predict slip occurrence is the qualitative assessment of slip, especially when

the friction coefficient is unknown.
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Chapter 3

Dynamic Model of Soft-Solid Interactions

3.1 Introduction

This chapter is an extension of a quasistatic model presented in Chapter 2. To character-

ize the complex dynamic shoe-floor interactions for foot slip prediction, we developed

a novel dynamic friction model that is integrated with the beam-spring network model

to compute the deformation and friction force distributionin soft-solid contact.

Shoe sole-floor contact is an example of a soft-solid contactwith friction forces

generated on the contact patch. For soft-solid contact witha finite area between the soft

materials and the rigid surface, the contact interaction forces are complicated [36, 37].

During foot slip, these interactions become even more complicated due to highly dy-

namic foot slip and changing of the contact area, the normal load distribution and slid-

ing velocity. Dynamic friction models seems a natural option to be used to capture the

friction forces in the soft-solid contact under dynamically challenging conditions [100].

The dynamics friction models, such as LuGre model [101], have been used to cap-

ture and interpret the total friction forces through rubberdeformation distribution. The

LuGre friction model uses the bristle deformation to capture the frictional forces be-

tween two solid contacts [41] and has been used to interpret and calculate thetotal

tire-road friction forces for a given normal force distribution [42–46]. In [33, 47, 48],

a beam-spring network model is used to model the rubber deformation and the friction

force distributions on the contact patch during the stick-to-slip transition. Embedded

force sensors are used to validate the modeling results. However, only static contact is
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considered in [33, 47] and no sliding or dynamic motion is assumed between the tire

and the road interactions.

In this chapter, we integrate the LuGre friction model with the beam-spring network

model to capture the dynamics of the soft-solid contact. Thenew scheme uses the

LuGre friction model to calculate the frictional force properties such as Stribeck and

time-dependent effects, while the beam-spring network model is used to describe the

elastic characteristic of soft materials and its interactions with the solid. The use of the

beam-spring network model not only provides a means to compute the deformation and

force distributions in soft-solid contact, but also fits well with the LuGre friction model

structure. The use of the LuGre friction model simplifies thefriction force calculation

such as the computation in dynamic motion [33, 37]. We validate and demonstrate the

modeling scheme through the fingertip-like contact application and experiments.

3.2 LuGre/beam network model

Figure 3.1 shows two soft-solid contact examples. Figure 3.1(a) shows the tire-road

contact example, while Fig. 3.1(b) shows the soft semi-spherical contact with a rigid

flat surface contact example in fingertip contact applications. For both examples, the

soft-solid contacts are through a contact patch and the interaction forces are through

the soft materials deformation and interaction with the solid.

(a) (b)

Figure 3.1: (a) Tire-road contact example [33]. (b) A fingertip contact example.
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3.2.1 Beam-spring network model

To model the soft-solid interaction deformation and force distributions, we take a sim-

ilar setup of the beam-spring networks in [33] as shown in Fig. 3.2. The soft-solid

contact patch is denoted asP. The contact is considered throughN virtual beams and

each of them has a height ofh and a square cross section with side lengtha. All the

beams are clamped and rigidly connected together at one end.For simplicity, we use

the following assumptions: (1) for each beam, elongation and compression are ignored

and only the bending deformation is considered; (2) all the beams are clamped at one

end on the top layer and are connected with their neighboringbeams at the bottom end

with virtual linear springs; and (3) the mass of each beam is considered to be concen-

trated at the bottom tip.

(a)

(b)
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Figure 3.2: A schematic of the beam-spring network model forsoft-solid contact. (a)
Top view of the contact patch and the beams. (b) Side view of the three beams and
their elastic connections.

The total friction force onP is denoted asF f . The total applied force onP is a

resultant of the bending forces of all the beams and the elastic force among adjacent

beams, denoted asF b andF e, respectively. For theith beam, one end is rigidly con-

nected on the solid surface and defined with a position vectorsi in the inertial fixed
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frame. The position of the free end of the beam is denoted asui = [uix uiy]
T in the iner-

tial frame, whereuix anduiy are the displacements along thex- andy-axis, respectively.

Equation of motion for theith beam is given by

miüi = f i
b + f i

e − f i
f , (3.1)

wheremi is the mass of the beam,f i
b andf i

e are the bending and elastic force acting

on ith beam, respectively, andf i
f = [f i

fx f i
fy]

T is the friction force of theith beam.

The longitudinal and lateral friction forcesf i
fx andf i

fy are along thex- andy-axis,

respectively. In the following, we first describe how to calculate the bending and elastic

forcesf i
b andf i

e and then the friction forcef i
f .

Let kib denote the bending stiffness of theith beam. Because of the large ratio of the

beam height and cross section width, we cannot use the formulation in [33] to obtain

kib. Instead, we relate the estimation ofkib with the total stiffness of the soft materialkb

askib =
kb
N

, whereN is the number of all the beams. We usekb =
dFf

dsx
= ∆Ff/(ṡx∆t)

to compute the total stiffness of the rubber layer.

For theith beam, the absolute positionui is obtained as the composite motion

of the beams tip deformationli and the sliding motion of the other common endsi,

namely,

ui = si + li, (3.2)

whereli = [lix liy]
T is the tip deflection vector of theith beam. The bending force

calculation of theith beam for the hollow structure of a soft material can then be

calculated as

f
i
b = kibli, (3.3)

Similar to [33], the elastic force is calculated as

f i
e =

∑

j∈Ni

f ij
e =

∑

j∈Ni

ke∆uij = Eh
∑

j∈Ni

∆uij (3.4)
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wheref ij
e = ke△uij is the spring (elastic) force between theith beam and its neigh-

boringjth beam,ke = Eh is the spring stiffness coefficient, andNi is the index set of

all the neighboring beams of theith beam.∆uij is the spring deformation between the

jth beam andith beam

∆uij = (uj − ui)

(

1− u0ij
‖uj − ui‖

)

(3.5)

whereuj andui are the position vector for thejth andith beam, respectively, and

u0ij = ‖uj0 − ui0‖ is the length of the position vectors of thejth (uj0) and theith (ui0)

beams without spring deformation, that is,

u0ij = ‖uj0 − ui0‖ =







√
2a i andj are diagonal

a otherwise.

(3.6)

In the soft-solid contact model, the known controlled variable is the velocity profile

of ṡi for the computation. Knowing the absolute velocityu̇i of the free end of the

beams, from (3.2) we compute the relative bending velocityl̇i as−l̇i = ṡi − u̇i. Note

that the bending velocity is negative due to the backwards bending direction.

3.2.2 Friction force calculation

Let δi = [δix δiy]
T denote the local deformation of theith beam’s tip, whereδix and

δiy are the deformations along thex- andy-axis, respectively. To calculate the fric-

tion forcef i
f , we use the LuGre friction model [100]. The LuGre friction model is

built based on the interaction of microscopic contact bristles between two contact sur-

faces. The bristles dynamics are treated as an internal states and are related to the

surfaces/bristle relative sliding velocitẏui. Compared to the LuGre model described

in [41], we consider a finite number of bristles associated with an individual beam of

the beam-spring network. For theith beam, we use the two-dimensional (2D) LuGre
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friction model as follows.

δ̇ik = u̇ik − σ̂i
0k

|u̇iR|
gk(u̇R)

δik (3.7a)

f i
fk = σi

0kδ
i
k + σi

1kδ̇
i
k + σi

2ku̇
i
k, k = x, y, (3.7b)

whereu̇i = [u̇ix u̇iy]
T is the relative sliding velocity of the free end of theith beam with

respect to the ground,u̇ix andu̇iy are the velocities along thex- andy-axis, respectively,

u̇iR =
√

(u̇ix)
2 + (u̇iy)

2 is the magnitude of the sliding velocity, and

gik(u̇
i
R) = µk = µCk + (µSk − µCk)e

−(u̇i
R
/vs)α , k = x, y, (3.8)

captures the Stribeck friction effect [41].µCk andµSk are respectively Coulomb (ki-

netic) and static friction coefficients along thek-axis,vs is the Stribeck velocity and

parameterα determines the shape of the functiong (u̇R) as a function of the ratio

|u̇iR/vs|. In (3.7a), σ̂i
0k = σi

0k/f
i
z, k = x, y, wheref i

z is the normal load,σi
0k, σi

1k

andσi
2k are the stiffness, micro-damping and viscous damping coefficients along thek-

axis of theith beam, respectively. These coefficients describe the contact properties at

the soft-solid interaction, independently of the normal load distribution and/or material

deformation. We define a simple relationship relating the lumped coefficients and the

coefficient for the finite number bristles in contact throughσi
jk = σjk/N , for k = x, y

andj = 0, 1, 2.

Note that the coupling effect of the longitudinal and lateral motions in (3.7) is

captured by the terṁuiR. It is straightforward to obtain thatµCk ≤ gk(u̇k) ≤ µSk,

k = x, y. At steady state, the virtual cantilever beams reach a constant deformation

and then the steady-state friction forcef i
fk,ss is obtained as

f i
fk,ss (u̇k) = f i

z

gk(u̇
i
k)u̇

i
k

γ̄(u̇iR, µ)
+ σi

2ku̇
i
k, k = x, y. (3.9)
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3.3 Computation of the deformation and friction force distribution

In this section, we present a computational approach to obtain the contact deformation

and friction force distributions for the soft-solid contact. Particularly, the existence

of the stick-slip interactions plays an important role in the soft-solid contact and also

increases the complexity of the computation.

Under the external force, the top end of the beams moves in thehorizontal direction

with positionsi and the bending forcef i
b (smaller than the static friction force) is

balanced by the contact friction forcef i
f at the bottom of theith beam. When the total

external force is smaller than the total static friction force, the patch is under micro-

motion, also called the zero-slip behavior [41]. While a portion of the contact patch

of soft material still sticks to the solid material, the restof the contact patch might

start to slip. When the external force keeps increasing, thestick portion ofP reduces

and finally, when it is greater than the total static frictionforce, the entire patch starts

slipping and sliding. Further increasing the displacementsi results in high dynamic

oscillating motion of the beams interchanging between stick (u̇i = 0) and slip (̇ui 6= 0)

state, known as stick-slip motion [41].

To compute the deformation and friction force distributions during the initial stick-

to-slip transition and the stick-slip oscillating motion,we assume that the entire con-

tact patch is initially at rest and then gradually increasing s. This results in a grad-

ual increase of the total bending forceF b =
∑N

i=1 f
i
b from zero to the value that

is greater than the static friction force when the patch starts sliding motion. Using

the LuGre/beam-network model, Algorithm 2 illustrates a computational procedure

to obtain the deformation and friction force distributionsunder a given normal force

distribution.

In the algorithm, we first define the current position and velocity ui and u̇i for

each beam, respectively, and zero friction force. The inputto the model is the velocity
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Algorithm 2: Numerical calculation of soft-solid contact.
1 Initialize: Set normal forcef i

z, velocity inputṡ and top and bottom positions,si
andui, for allN beams. Definen ∈ N and setn← 0, f i

f (0)← 0, f i
b(0)← 0,

f i
e(0)← 0, u̇i(0)← 0, li(0)← 0, δi

k(0)← 0, i = 1, · · · , N ;
2 for n = 1 toNmax = Tmax/∆t do
3 for i = 1 toN do
4 FindNj and updatef i

e(n) by (3.4);

5 Updatel̇i(n) by (3.2),li(n+ 1)← li(n)−∆tl̇i(n);
6 Updatef i

b(n) by (3.3) andüi(n) by (3.1);
7 u̇i(n + 1)← u̇i(n) + ∆tüi(n);
8 ui(n + 1)← ui(n) +

1
2
∆t(u̇i(n + 1) + u̇i(n)) ;

9 Updategik(u̇
i
R) by (3.8) andδ̇

i

k(n) by (3.7a);
10 δi(n + 1)← δi(n) + ∆tδ̇i(n);
11 Updatef i

f(n) by (3.7b);
end

end

profile ṡi of the top end of the beams, where beams are rigidly connected. At each time

step∆t, we first update the bending deformation ratel̇i using the velocity of the free

end of the beamṡui from the previous iteration. Using a forward Euler integration, we

compute the bending deformationli. Then, the friction and elastic force distributions,

f i
f andf i

e, are obtained by (3.3) and (3.4), respectively. We use same bending and

elastic stiffness constantski
b andki

e for all the beams. Using the friction forcef i
f from

the previous iteration, the accelerationüi is updated. A forward Euler integral method

is employed to solve the motion dynamics (3.1). The velocitytermu̇i and the Stribeck

friction functiongik(u̇
i
R) are used to compute the velocityδ̇i, which is an internal state

of the LuGre model and represents an internal bristle dynamics. Note that the normal

load distribution is captured in (3.7a) by the termσ̂i
0k. We integrate velocity terṁδi to

compute the bristle deformationδi. Through the internal bristle dynamics with known

bristle’s stiffnessσi
0k and micro-dampingσi

1k coefficients as well as viscous friction

coefficientσi
2k, we compute the distributed friction force of each beam and deformation

distribution. Parameterσi
1k = 2

√

mσi
0k, k = x, y, is used when the system is critically
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damped [41].

Considering beam’s dynamics, the forward Euler integration and the beam’s net-

work elastic force calculation both require choosing sufficiently small time steps. Due

to the involved beams and bristles dynamics, no convergenceof elastic force by check-

ing theui position error is assured in Algorithm 2 while the algorithmin the quasistatic

case is guaranteed to be convergent in [33].

Remark 3.1. The velocity based criterion cannot be used for detection ofbeams’ stick

or slip state. This is due to the nature of the LuGre bristle’sdynamic model which

allows microscopic displacements to build up the friction force [100]. In Algorithm 2,

the stick or slip status for each beam is not explicitly defined. However, since the

friction force is calculated and obtained, we can uniquely determine the stick or slip

status according to the property of friction force characteristic. From (3.9), we know

thatf i
fk ≤ f i

zµSk =: f i
Sk, k = x, y. If f i

fk < f i
Ck := f i

zµCk, then theith beam is in stick

status. Now iff i
fk ≥ f i

Ck, two possible cases exist: one in the stick state and the other

in the slip state. To distinguish them, we need to check the rate of the friction force. If

df i
fk/dt ≤ 0, theith beam is in slip status and ifdf i

fk/dt > 0, theith beam is in stick

status.

3.4 Experiments

3.4.1 Experimental systems and procedures

We designed and fabricated an experimental setup to study the soft-solid contact inter-

action as shown in Fig. 3.3. Two linear stages in the vertical(z-axis) and the horizontal

(x-axis) directions are used to regulate the normal force and the horizontal displace-

ment/friction force, respectively. To simulate the fingertip-like contact, we molded a

semi-sphere shape specimen made of urethane rubber (VytaFlex 60, Smooth-On Inc.)

A schematic representation of the rubber dimensions is shown in Fig. 3.3(c) and the
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values of the geometric parameters are listed in Table 3.1. The specimen is glued on

an aluminum plate and installed on a linear stage. A thick transparent acrylic plate is

chosen as a flat rigid surface such that we can use camera mounted underneath the plate

to capture the image of the soft-solid contact area. A set of small black dots are painted

on the surface of the rubber and by using the image processingalgorithms we calculate

the rubber deformations. Similar to the design in [32], a setof 6 laser line-generators,

a high-speed camera (Prosilica GX1050C, 1024x1024 pixels,112 fps), and an image

processing algorithm are used to obtain the contact contourand rubber deformations.

The normal and friction force are measured by a 6-DOF force/torque sensor (model

45E15, JR3 Inc.) installed between the linear stage and the rigid plate. A real-time

control is performed using the CompactRIO (National Instruments Inc.) embedded

system. The sampling frequency for all the components is 100Hz except the image

acquisition rate at 50 fps.

Table 3.1: Fingertip-like rubber geometric and material property parameters (the unit
for all geometry variables is millimeter).

R0 R1 r h1 µS µC a h E[MPa] ν ρ[g/cm3]
65 45 10 10 0.76 0.57 2 22 2e5 0.49 1.04

A set of separate experiments were conducted to obtain the normal load distribution

over the contact area. Normal load distribution was measured using a set of 4-cell

pressure sensitive electric conductive rubber (PSECR) sensors (see Fig. 3.3(c)). Two

PSECR sensors were attached flat side-by-side on the acrylicplate. A rubber sample

was loaded several times at different positions along thex-axis with a 5-mm increments

until the the entire normal load distribution was scanned from the front to the back end

of the contact contour. Each time same magnitude of the normal load was applied as

in the sliding experiments.

In sliding motion experiments, we first applied the desired normal loadFz and

then moved the linear stage at a constant velocityṡ along thex-axis direction. This
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Figure 3.3: Experimental setup for dynamic sliding motion of a fingertip-like rubber
against transparent acrylic plate. (a) The entire system of2-DOF linear stage. (b) Laser
line generators setup [32]. (c) Schematics of rubber dimensions.

resulted in increasing the force in thex-axis direction. During this entire process,

the normal load was maintained at constant by the linear stage along thez-axis. The

sliding distance of the rubber layer was around 20 mm. Duringthe sliding motion, the

soft rubber layer exhibited a repeated stick-slip oscillating motion as we discuss and

show in the next section.
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Figure 3.4: Normal load distribution on the contact patch with a normal loadFz = 80
N and no applied horizontal external force.
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3.4.2 Experimental results

Figure 3.4 shows the applied normal load distribution on thecontact patchP. To obtain

the normal load at any arbitrary location onP, we use a4th order polynomial along the

x andy-axis to fit the experimental data. To keep symmetry along theboth axes, we use

an even functionf(x, y) = p0+ p2x
2+ p2y

2+ p4x
4+ p22x

2y2+ p4y
4 to fit the PSECR

sensor measurements. By a least square estimation with additional consideration of

no negative pressure distribution onP, we obtain the values for the coefficients as

p0 = 0.8680, p2 = −0.0198, p22 = 2.2498× 10−4, andp4 = 1.1251× 10−4.
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Figure 3.5: Total friction force and linear stage displacement from the experiments
and simulation under constant normal loadFz = 80 N. (a) Whole range of motion;
(b) Zoomed in friction force oscillations; (c) Two representative single stick-slip force
oscillation from experimental data for transient (TR) and two for steady state (SS)
regime overlaid by one from the simulation results (Sim).
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With the above normal load, Fig. 3.5(a) shows the total friction forceFfx as well

as the contact patch moving displacementsx. For the first 2 sec., the friction force

experiences a rapid increase until micro-slips start causing the average friction force

to increase steadily. Then the slip of the entire contact area occurs and the stick-slip

motion with periodic friction force oscillations is observed after around 5 sec. By

further increasing the sliding distance, the amplitude of the friction force oscillations

increases. Finally, the friction force reaches steady state with a constant oscillation

amplitude (at around 15 sec). In the figure, we also plot the friction force prediction

by the LuGre/beam-network model using the values of the model parameters listed in

Table 3.2.

Table 3.2: The values of the LuGre/beam-network model parameters

ṡi k σ0k σ1k σ2k vs α Fz

(m/s) (N/m) (N/m) (Ns/m) (Ns/m) (m/s) (/) (N)

[8.8e-4; 0] 7.38e4 1e6 2
√
σ0km 0.04 0.002 2 80

Figure 3.5(b) further shows the comparison results betweenthe model prediction

and the experiments of the friction force at the stick-slip steady state. The results

clearly show that the model predicts the experiments closely. We also compare the fric-

tion force oscillating cycles at the beginning of sliding motion and during the steady-

state sliding motion. Figure 3.5(c) shows the comparison oftwo transient (TR) cy-

cles at the beginning of sliding motion (around 5 sec) and twosteady-state (SS) cycles

(around 17 sec). It is shown that the amplitude of the friction force oscillation increases

from 6.5 N to 8 N and time interval increases from 0.145 sec to 0.175 sec, respectively.

The slope of the force increase during stick regime remains constant, which implies

the beam stiffnesski is constant during the entire oscillating motion.

Figure 3.6 shows the deformation distribution and its evolution for the initial slip

(occurred at around 2 sec). Partial slip starts at the outer ring of the contact patch and
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Figure 3.6: Deformation evolution of a very initial stick toslip transition with time
increments of 0.1 sec.
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Figure 3.7: Experimental (a)-(e) and simulation (f)-(j) results of deformation evolution
of a single stick-slip oscillation during sliding. Time increment between images is 0.04
sec.

then propagates towards the center ofP until the entire patch slides. These results are

consistent with that of the tire-road interactions [33] andthe human fingertip sliding

experiments [37,38].

Figure 3.7(a)-(e) shows the results of the deformation evolution during steady-state

stick-slip oscillating motion. Rapid oscillations cause slip to happen instantaneously
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over the entire contact patch. The reason for the fast sliding motion in this case prob-

ably lies in the fact that rubber relaxation and elastic deformation responses are much

slower than the high dynamic oscillations and thus, the rubber layer acts like a hard ma-

terial with a rapid evolution of the deformation growth overthe contact patch. Similar

trend of an instantaneous slip over the entire patch is confirmed through the simulation

results shown in Fig. 3.7(f)-(j). Combining with the force prediction shown in Fig. 3.5,

these results confirm the LuGre/beam-spring network model captures the soft-solid

contact interactions.

Figure 3.8 shows the friction force evolution across the centerline of the contact

(at y = 0) from the initial loading until steady state sliding. It is interesting to note

that the shape of the friction force profile has initially a double-peak feature though

the normal load is a central-peak profile. While the slip evolves, the friction force

profile becomes a central-peak profile and maintains its shape during sliding oscillation

motion. The change of the friction force profiles are clearlyshown in the figure from

the bottom to the top curves. This observation is similar to the results reported in [33]

and the explanation lies in the friction force characteristic and the slip and deformation

evolution profile during the process.
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When computing the model predictions, the static and dynamic coefficients of fric-

tions are constant. Thus, the model cannot capture the slight increase of the aver-

age friction force as observed in experiments and also shownas the blue solid line in

Fig 3.5(a). Although not demonstrating here, we can adjust the shape of a Stribeck

curve by allowing parameterα and Stribeck velocity termvs as a time-dependent or

sliding distance-dependent parameters to further enhancethe model prediction results

to match the experiments.

3.5 Conclusion

This chapter presented a novel computational approach to capture the deformation and

friction force distributions of the soft-solid contact. The new method integrated the

LuGre dynamic friction model and the beam-spring network model. The advantages

of the integrated LuGre/beam network model lie in its ability to capture the dynamics

of the soft-solid contact and to simplify the calculation ofthe friction force and defor-

mation distributions on the contact patch. We validated theproposed computational

approach through an application of the fingertip-like rubber sliding on the flat rigid

surface. The experimental results demonstrated and confirmed that the new model

successfully predicted the experimental deformation and force distributions during the

steady state stick-slip motion.
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Chapter 4

Robotic Bipedal Model for Human Walking with Foot
Slip

4.1 Introduction

Humanoid robots share a similar locomotion pattern as the human walker and therefore,

robotic bipedal models are highly related to human walking.Bipedal dynamic models

have been extensively used to design and control robotic walkers [49]. Recently, multi-

link bipedal models are used to predict the human walking gait [52,102] and design the

prosthetic devices for lower-limbs [102]. However, all of these bipedal models assume

non-slip conditions at the foot-floor contact and the results cannot be directly used to

study locomotion with slips.

In this dissertation, we develop an analytic bipedal model to capture the human

walking locomotion with foot slip and to further understandthe unsteady, unstable

human and humanoid robot locomotion. We first build a foot-floor contact model to

capture the foot rolling characteristics. The proposed human locomotion model is built

on a 7-link robotic bipedal dynamics with actuated ankle joints. The model includes

the dynamics of the both single- and double-stance motion inone stride. Moreover,

the model explicitly considers the foot contact slips and therefore, it can predict the

human gait under slip conditions. We also conduct extensivehuman experiments, in-

cluding both the normal walking gait and the gait with recovered slips, to validate and

demonstrate the capability of the new model.

The presented robotic bipedal model in this dissertation extends the robotic bipedal
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models to study human walking under foot slip. The new model not only predicts the

human gait with slips, but is also helpful for understandingof the motion stability when

slips happen. The new bipedal model naturally helps design the balancing controller

to prevent human from slip and fall. Besides relaxing the assumption of non-slip foot-

floor contact, the new model brings innovative features and properties compared with

the other existing bipedal models. For example, compared with the bipedal models

with a point, a flat or multi-contact foot in [49, 103–105], the new model includes an

experimentally validated foot-floor contact. Unlike the bipedal model in [52] that only

deals with a 6-link robotic bipedal for single-stance humanlocomotion, the proposed

model includes the human trunk (e.g., 7-link) and also the double-stance phase in walk-

ing gaits, which is crucial for slip and fall motion. Compared with the work in [51,102]

that include the double-stance in human gait, the proposed model includes the active

ankle joints and also generates the matched GRF with the experiments. Finally, using

the novel wearable sensors [32], we conduct a set of extensive experiments to validate

and demonstrate the proposed bipedal model1.

4.2 Bipedal walking model without slips

In this section, we present a bipedal model for human walkinggait without slips. The

model considers the actuated ankle joints and the foot geometry and therefore, it can

precisely represent not only the joint angles but also the GRFs.

4.2.1 System configuration

Figure 4.1(a) illustrates the setup of the coordinates for bipedal modeling of human

walking. The human motion is considered only in the sagittalplane. The human body

is considered as a seven-link rigid body. The HAT is considered as one link that is

1The presented work in this chapter is a joint work that resulted in publication [72]. It is presented
here for completeness of this dissertation.
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Figure 4.1: (a) Schematic of the 7-link human walking model with curved foot contact.
(b) Schematic of the foot-contact model.

connected to the left- and right-thigh. The human has two active hip joints, two active

knee joints and two active ankle joints. Similar to those in [52], we use relative angles

qi, i = 2, . . . , 7 to define the configuration of the system and the absolute angle q1

denotes the leading leg orientation with respect to the vertical position.

We defineqa = [q1 · · · q7]T as the gait configuration. The foot-floor contact is

considered as a circular disk rolling on the solid ground; see Fig. 4.1(b). To capture the

slip motion of stance foot, we denote the position of rotating centerOr of the stance

foot rolling as[xo yo]T . To capture the slipping motion of stance foot, we define a

slipping vectorqs = [xs ys]
T = [xo + Rφ yo − R]T , whereφ is the absolute angle

of the stance foot with respect to the vertical direction andis a function ofqa. It

is straightforward to see that when the stance foot is purelyrolling on the ground,

qs = 0. We useqs andqa (i.e., foot rotating angle) to calculate the stance foot-floor

contact pointC. To completely determine the walking gait with foot slip, wedefine

generalizedqe = [qT
a qT

s ]
T .

A human walking cycle consists of a series of repeated sequential movements and

events [49]. During thesingle-stance phase, the stance foot rolls on the ground while

the swing foot moves in the air from position behind to in front of the stance foot. The
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robotic bipedal in the single-stance phase is underactuated [49]. Once the swinging

foot impacts on the ground (i.e., heel-touch), the joint velocity suddenly changes and

the joint configuration is relabeled due to the switching role of the stance and swing

legs. Thedouble-stance phaserefers to the stage when both legs roll on the ground.

In this phase, the joint velocity satisfies a two-dimensional constraint and the system

is overactuated or fully actuated. Finally, the trailing stance foot leaves the ground

(i.e., toe-off) and the pose returns to the single-stance phase. Hybrid models shown in

Fig. 4.2 are used to capture the above-mentioned discrete-continuous dynamics.

4.2.2 Single- and double-stance models and gait controller

The non-slip single-stance dynamics are described as [49]

Σs : Ds(qa)q̈a +Cs(qa, q̇a)q̇a +Gs(qa) = Bsu, (4.1)

whereDs(qa), Cs(qa, q̇a), Gs(qa) andBs are the inertia, Coriolis, gravity and in-

put mapping matrices, respectively. There are six joint torque inputsu ∈ R6 and the

system is underactuation since absolute joint angleq1 is not controlled by any joint

torque. To use (4.1) for modeling human walking gait, a feedback linearization ap-

proach is adopted to control the joint anglesqa to follow a desired trajectory that is

specified by a progression variableθ = cqa, wherec is a constant progression vector.

During the single-stance phase,θ monotonically increases and the desired trajectory

of actuated joint angles are expressed byθ. The feedback linearization controller then

enforces the virtual constraint specified by

y = h(qa) = H0qa − hd(θ) = 0. (4.2)

If u is properly chosen by feedback linearization to drivey = ẏ = 0, only the dynam-

ics ofθ is left as the zero dynamics [49].

To calculate the GRF for single-stance walking, we treat the7-link human walker as

one rigid body that is subject to only three external forces,i.e., gravitational force and
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stance foot GRF, including normal forceFn and tangential forceFx. It is straightfor-

ward to obtainFx andFn by Newtonian mechanics. This force calculation method can

be also generalized to the single-stance slip case that willbe discussed in Section 4.3.2.

During the double-stance phase, both the leading and trailing feet are in contact

with the ground at contact pointsCl andCt, respectively, see Fig. 4.1(a). We here

consider a general modeling approach by defining slipping vectorsgl(qe) ∈ R2 and

gt(qe) ∈ R2 of contact pointsCl andCt, respectively. Note that bothgl(qe) andgt(qe)

are determined as functions of the extended coordinatesqe. Because of the constraints

at the foot-floor contact interactions, the equations of motion during the double-stance

can be expressed as

Σd : De(qe)q̈e +Ce(qe, q̇e)q̇e +Ge(qe) = Beu+ET
e F e, (4.3)

whereDe(qe), Ce(qe, q̇e), Ge(qe) andBe are the inertia, Coriolis, gravity and input

mapping matrices, respectively. MatrixEe = [∂gt(qe)
∂qe

∂gl(qe)
∂qe

]T ∈ R4×9 describes

the contact constraints andF e = [Fxt Fnt Fxl Fnl]
T is a vector of the collection of

the tangential and normal forces atCt andCl, respectively. Note that with non-slip

conditions atCl andCt, we have four kinematic constraintsEeq̇e = 0 and the degree

of freedom given by (4.3) is9− 4 = 5.

Since there are six active joints and five degrees of freedom,the bipedal system is

overactuated. Using a similar derivation as in [51], the constrained dynamics can be

reformulated as

Ddiq̈di +Cdiq̇di +Gdi = M diu, (4.4)

where subscript “di” denotes double-stance independent variable dynamics andqdi =

[q1 q2 q3 q5 q7]
T andM di ∈ R5×6 maps the six joint torques into the five dimensional

dynamics. To predict double-stance human gaits by (4.4), a Bézier polynomial is used

to parameterize the desired trajectory ofqd
di [49]. The control inputu is designed such

thatq̈di = D−1
di (M diu−Cdiq̇di−Gdi) = q̈d

di−Kp(qdi−qd
di)−Kd(q̇di− q̇d

di), where
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Kp andKd are constant gain matrices. To solveu in the above equation, we need an

extra constraint because of the overactuation configuration. In our implementation, we

take a simple linear constraint of the joint torques that is determined by the single-

stance joint torque profiles.

To calculate the ground reaction forcesF e, we take time derivative of the kinematic

constraintEeq̇e = 0. Stacking with the dynamics (4.3), we obtain (argument variables

in the coefficient matrices are dropped for clarity)





De −ET
e

Ee 0






︸ ︷︷ ︸

Dext






q̈e

F e




 =






Be

0




u−






Ce

Ėe




 q̇e −






Ge

0




 . (4.5)

Since matrixDext is full rank, bothq̈e and forcesF e are obtained with the known joint

torquesu from the controller design discussed above.

4.2.3 Impacting model

We use the extended configuration coordinateqe ∈ R9 to describe the impact dynam-

ics. After the impact, the swing leg sticks on the ground and thus, the velocity of the

swing leg contact point is zero. We clearly express the impact mappingHd
s as the pre-

impact joint velocityq̇−
e of the single-stance phase to the post-impact joint velocity q̇+

e

of the double-stance phase as

Hd
s :






De(q
−
e ) −ET

e

Ee 0











q̇+
e

δF e




 =






De(q
−
e )q̇

−
e

0




 . (4.6)

In (4.6), superscripts “+” and “−” are used to indicate the instants just after and before

the impact event, respectively. Also, we know thatq+
e = q−

e . Same as [49, 51], a

relabeling process is applied to the joint angles and their velocities after the impact.

For the transition from the double-stance to single-stancephases, the transition can be

straightforward obtained as

Hs
d : q+

e = q−
e , q̇

+
e = q̇−

e . (4.7)
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4.2.4 Model optimization for human walking gait

To apply the bipedal model to human gait, we need to tune the model parameters to fit

the human walking data. During the human walking experiments, all joint angles and

the GRF information are collected and obtained [32,106].

For single-stance dynamics (4.1), we need to identify and match the virtual con-

strainth(qa) in (4.2) from the collected joint angles. We useH0 = [0 I6], whereIN

is theN × N identity matrix, to choose the active joints [49]. The desired trajectory

hd is parameterized by the Bézier polynomial. To fit the double-stance model (4.3),

we choose to optimize the Bézier spline parametersαd such that the desired trajec-

tory qd
di = qd

di(αd, t) approximates the human walking and also avoids unrealistichigh

joint-angular acceleration. We take the joint angular acceleration into the optimiza-

tion process because the GRF matching is one of the targets besides matching the joint

angles between the model prediction and the human gaits. To achieve such goal and

obtain optimalαd, we minimize the following objective function

Jd(αd) =

∫ tf

t0

‖qd
di(αd, t)− qe

di‖2 + γ‖q̈d
di(αd, t)‖2dt, (4.8)

whereγ > 0 is a weighting factor and[t0, tf ] is the time interval in experiments and

qe
di is the measured joint angle profiles. By the property of the B´ezier polynomials,

we can analytically express both terms ofqd
di andq̈d

di as functions ofαd and therefore,

the optimalαd can be obtained using a scaled conjugate gradient method. Wewill

demonstrate the comparison results between the model prediction and the experiments

in Section 4.4.

4.3 Bipedal walking model with foot-floor contact slip

In this section, we extend the bipedal model in the previous section to consider the

foot-floor contact slip. We first present an overview of the extended hybrid model and

then the detailed dynamics are discussed.
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4.3.1 Hybrid model for walking with slips

Figure 4.2 shows the finite state diagram of the hybrid bipedal model for human walk-

ing with foot-floor contact slip. For the normal walking gait, the hybrid dynamics

contain two states: non-slip single-stance and double-stance phases shown asS1 and

S2, respectively. The heel-touch and toe-off events trigger the switching betweenS1
andS2 with the impact mappingsHd

s andHs
d, respectively.

NoSlip
D.S.

Slip
S.S.

NoSlip
S.S.

Slip
D.S.

Hs
d

Hs
d

Hd
s

HSds

S1

S2 S3S4

Figure 4.2: Finite state diagram of human walking gait with slips.

The foot slip can happen during the single- and double-stance phases. Therefore,

two new states as shown in Fig. 4.2 are introduced for the gaits with slip: single-stance

slip phaseS3 and double-stance slip phaseS4. StateS4 includes the cases where slip

happens on the stance leg only, the swing leg only, or both legs simultaneously. The

transitions amongS1, . . . ,S4 shown in the figure represent the human slip recovery

strategies. For example, as we will show in the case study in Section 4.4, one slip

recovery strategy can be represented in the sequence ofS1 → S4 → S3 → S1. The

human starts with normal single-stanceS1 without slip. Slip is initiated right after the

swing leg touches on the ground, i.e., double-stance slip phase (S4). When slip evolves,

the swing leg is lifted off the ground so the walking gait is insingle-stance slip phase,

i.e.,S3. Then, the human detects the slip and the swing leg touches down on the ground
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and becomes a non-slip stance leg. Meanwhile, the other slipping leg leaves the ground

contact and the gait recovers to the non-slip single-stancephase, namely,S1.

The details of each transition in the finite state diagram areparts of the required

human slip recovery strategies. These slip recovery strategies are out of the scope of

this chapter and will be discussed in Chapter 6, thus we omit the discussion here. In the

following, we describe the extension of the motion and impact dynamics of the single-

and double-stance phases to include foot slips.

4.3.2 Single-stance slip model and gait controller

Due to the foot-floor contact slips, we need to use the extended configuration coordi-

nateqe = [qT
a qT

s ]
T = [qT

a xs ys]
T to describe the motion. The dynamic model is

obtained as
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D21
es D
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ẋs
ẏs
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︸ ︷︷ ︸

Ges

=





Besu

Fx

Fn



 =






Besu

F es




 , (4.9)

whereDes ∈ R9×9, Ces ∈ R9×9, Ges ∈ R9 andBes ∈ R7×6 are the inertia, Coriolis,

gravity and input mapping matrices, respectively. External force F es = [Fx Fn]
T is

the frictional (tangential) and normal forces at the stancefoot.

Note that the stance foot always lies in contact with the ground during slipping (i.e.,

ys = 0) and therefore, we have constraintqs = [xs ys]
T = [xs 0]T . Also, we have

Fx = −µFn, whereµ is the friction coefficient between the shoe sole and the ground

floor. With these constraints, we further simplify (4.9) by defining new coordinate

variableqes = [qa xs]
T ∈ R8 and eliminating external forceFn and finally obtain

Σ
s
s : Ds

esq̈es +Cs
esq̇es +Gs

es = Bs
esu, (4.10)
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where

Ds
es =






D11
es

D21
es + µD31

es




 , C

s
es =






C11
es

C21
es + µC31

es




 ∈ R

8×8,

Gs
es =






G1
es

G2
es + µG3

es




 ∈ R

8, Bs
es =






Bes

0




 ∈ R

8×6.

System (4.10) has eight state variables and six joint torques as inputs and there-

fore, it is underactuated. The absolute joint angleq1 and the slipping distancexs are

underactuated variables. To use model (4.10) for human gaitprediction, we adopt a

similar controller as for non-slip case. A six-dimensionalholonomic virtual constraint

y = h(qa) = H0qa − hd(θs) is used to design the control system, whereθs = csqa

andcs is chosen to insure[HT
0 cTs ]

T has full rank. Similar to the non-slip case, letting

η = h(qa), the controlu is chosen to regulateη = η̇ = 0 and the zero dynamics can

be obtained. Specifically, we defineξs =
(
D11

es

)

1
q̇a, where

(
D11

es

)

1
is the first seven

elements of the first row of matrixD11
es and it corresponds to the unactuated variableq1.

The dynamics ofξs andẋs are indeed the zero dynamics of the system. Compared with

the non-slip single-stance case, the zero dynamics of the slip walking model contain

one additional variablėxs.

4.3.3 Double-stance slip model and gait controller

During the double-stance slip gait, either (1) only one of two feet slips while the other

foot purely rolls on the ground, or (2) both feet slide on the ground. These two situ-

ations share the same equations of motion given by (4.3) but with different governing

constraints. For first case (1), we always define the non-slipping leg as the stance leg

and from the stance leg, we define the absolute joint angleq1, see Fig. 4.1(a). For

second case (2), we take either leg as the stance leg.

By such arrangements, for case (1), without loss of generality, we assume that the
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trailing leg is non-slip and is the stance leg. Therefore, wehave kinematic constraints

gt(qe) = 0 and(gl(qe))2 = 0, where(gi(qe))j, i = l, t, j = 1, 2, represents thejth

coordinate of slipping vectorgi(qe). Moreover, we have the kinetic constraintsFxl =

−µFnl for slipping foot. Similarly, for case (2), we have the kinematic constraints

(gt(qe))2 = (gl(qe))2 = 0 and kinetic constraintsFxt = −µFtn andFxl = −µFnl.

In the following, we only present the dynamics for case (1) and similar results can be

obtained for case (2).

Because of constraintsgt(qe) = 0 andgl(qe)2 = 0, we obtain∂gt

∂qe
q̇e = 0 and

∂(gl(qe))2
∂qe

q̇e = 0. Using the definition ofEe in (4.3), these kinematic constraints can

be written into compact formEesq̇e = 0, whereEes := (Ee)[1,2,4] ∈ R3×9 is a matrix

formed by taking rows1, 2 and4 of Ee. Similarly, the kinetic constraintFxl = −µFnl

is used to re-write the external force vector in (4.3) as

F e =












1 0 0

0 1 0

0 0 −µ

0 0 1












︸ ︷︷ ︸

Cf









Fxt

Fnt

Fnl









︸ ︷︷ ︸

F e3

= CfF e3. (4.11)

Similar to the treatment to obtain (4.5), by taking derivative of velocity constraint

Eesq̇e = 0 and stacking with the simplified (4.3) and (4.11), we obtain
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ext
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Be
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Ge
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ext

.

Matrix Ds
ext has full rank and thereforëqe andF e3 are uniquely determined once the

current state variables and joint torquesu are given. Since the three dimensional con-

straintsEesq̇e = 0 are enforced, the degrees of freedom of the system are9 − 3 = 6.

Therefore, the system isfully actuated.

Letting qi = [q1 q2 q3 q4 q5 q7]
T = Sqe be the independent variables, whereS ∈
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R6×9 is a constant transformation matrix fromqe toqi, we express̈qi = S(Ds
ext

−1Bs
extu+

Ds
ext

−1Cs
ext), whereSDs

ext
−1Bs

ext ∈ R6×6 is a full rank matrix. To track a given tra-

jectoryqd
i , the controlled joint torque can be designed asu = (SDs

ext
−1Bs

ext)
−1(q̈d

i −

Kp(qi − qd
i ) −Kd(q̇i − q̇d

i ) − SDs
ext

−1Cs
ext), whereKp andKd are constant gain

matrices.

4.3.4 Impact model for walking gait with foot slip

The impact model under slip can be obtained from the results presented in Section 4.2.3

for the non-slip case. The main difference is that the slip can happen right after the

impact and therefore, the velocity of heel-touch contact point Cl is possibly nonzero

after impact, unlike zero in non-slip case. From the discussion in the previous sections,

we have the velocity constraintEeq̇e = vslip = [0 0 vslip 0]
T , wherevslip is the slipping

velocity of pointCl (along thex-axis direction) after the heel-touch impact. Therefore,

we obtain

HSd
s :






De(q
−
e ) −ET

e

Ee 0











q̇+
e

δF e




 =






De(q
−
e )q̇

−
e

vslip




 . (4.12)

4.4 Experiments

In this section, we present the experiments to validate the robotic bipedal models for

human walking with slips. Figure 2.1 shows the experimentalsetup for this study. The

human subjects walk on the wooden platform in the laboratory. The human subject is

first asked to walk on the platform to become familiar with thetesting environment be-

fore he is asked to repeat walking on the platform with reduced coefficients of friction

to induce foot slip. The portion of the platform with the reduced coefficient of friction

is not noticeable to the subject such that he still keeps the normal gait before slip starts

on one touch-down foot.

The human walking gait is captured by the optical motion tracking system (8 Bonita
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cameras from Vicon Inc.). A small wireless inertial measurement unit (from Motion

Sense Inc.) is also attached to each shoe to obtain the kinematic information of the foot

and potentially for slip detection. Two six degree-of-freedom (6-DOF) force/torque

sensors (model SS-1 from INSENCO Co., Ltd) are located inside the shoe to measure

the 3D GRF and torques of the foot-floor contact; see Fig. 2.1.These 6-DOF force

sensors are thin (around 12-17 mm in thickness) and the humankeep normal walk-

ing gait when wearing the shoes with embedded force sensors.The force and torque

measurements are transmitted through wireless network to the host computer. The

GRF sensors and the motion capture system are synchronized for data collection. The

details of discussion about the experimental setup are reported in [32].

We test and validate the foot rolling geometry using the normal walking motion

data. Figure 4.3(a) shows the foot center of pressure (COP) trajectory in the ankle

frame. The data confirm the circular shape of the rolling model with radiusR = 0.22

m with its center located at(0.015, 0.096)m in the ankle frame. We use these estimated

values in the bipedal model. Figure 4.3 shows the comparisonresults of the seven joint

angles by the model prediction and the experiments of normalwalking gait. We present

these results over a normalized stanceS due to the symmetry between the left and right

legs. The stance is defined as the time duration from stance foot heel-touch to toe-off.

The human subject walks at a speed of around 1.2 m/s and the double-stance consists

of around 28% of the entire gait cycle. As shown in Fig. 4.3, the model predictions

(blue solid lines) match the experiments (red dash lines) closely for both the single-

stance and double-stance phases. Figure 4.4 further shows the comparison results of

the GRF (i.e.,Fn andFx) of the stance leg. Unlike the diverge results in literature

(e.g., [51]), the model prediction results follow the trendof the force measurements

from the smart shoe sensors. The discontinuity of the predicted GRF takes place at the

phase switching moments due to the calculation errors of thejoint angle accelerations

from the single-stance and the double-stance models.



69

−0.2 −0.1 0 0.1 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Ankle

Foot radius=0.22 m 
center: (0.015,0.096)

 

 

x (m)

z
(m

)

(a)

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

 

 

Model
Experiment

Double−stance Single−stance Double−stance

S

q 1
(d

eg
)

(b)

0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

10

20

30

40

 

 

Model
Experiment

S

q 2
(d

eg
)

(c)

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

10

 

 

Model
Experiment

S
q 3

(d
eg

)

(d)

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

20

 

 

Model
Experiment

S

q 4
(d

eg
)

(e)

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

 

 

Model
Experiment

S

q 5
(d

eg
)

(f)

0 0.2 0.4 0.6 0.8 1
40

50

60

70

80

90

100

110

 

 

Model
Experiment

S

q 6
(d

eg
)

(g)

0 0.2 0.4 0.6 0.8 1
120

130

140

150

160

170

180

190

200

 

 

Model
Experiment

S

q 7
(d

eg
)

(h)

Figure 4.3: (a) Experimental data to calculate the foot-floor contact rolling geometry.
The red stars indicate the center of the pressure (COP) trajectory in the ankle frame
and the blue curve is the fitting circular rolling shape. (b)-(h): Joint angle (q1 to q7)
comparison between the model prediction and the experiments during normal gait over
one stance. The solid lines represent the model predictionsand the dash lines show the
experimental data.
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Figure 4.4: The GRF (Fn andFx) of the stance leg during the walking gait without foot
slip.

We next demonstrate the model prediction results for the slip recovery gait experi-

ment. Figure 4.5(a) shows a video snapshot of the slip recovery gait. The human starts

the normal gait with a single-stance phase (i.e.,S1 in Fig. 4.2) att = 0 s. At t = 0.32

s, the (left) swing leg touches down on the slippery floor and then starts slipping. At

this moment, the (right) foot is still in touch with the floor without slip and the human

gait lies in the double-stance slip phase (S4). Then att = 0.61 s, the (right) swing

foot leaves the ground (toe-off) and the (left) stance foot still slips. Therefore, the gait

enters the single-stance slip phase (S3). The walker quickly realizes and reacts to slip

event. Att = 0.96 s the (right) swing foot touches down, the (left) stance footleaves

the ground and the gait becomes a recovered single-stance phase without slipping (S1).

Figure 4.5(b) shows the human skeleton data measured by the motion capture system

and Fig. 4.5(c) demonstrates the skeleton constructed by the model predicted joint an-

gles.

Figure 4.6 shows the seven joint-angle comparison results of the model prediction

and the measurements by the motion capture system. The results clearly confirm that

the model prediction follows the experiments closely in theentire gait recovery process.
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(a)

(b)

t = 0.01s t = 0.16s t = 0.28s t = 0.35s t = 0.56s t = 0.60s t = 0.69s t = 0.78s t = 0.87s t = 0.96s

(c)

Figure 4.5: A snapshot of the recovery human gait from foot slip. (a) Video snapshot.
(b) Human 7-link skeleton from the optical motion capture system. The empty-circle
dots indicate the reflective optical marker locations. (c) Skeleton prediction by the
bipedal model. In (b) and (c), a red triangle is plotted to indicate the location where the
left leg starts slipping.

Figure 4.6(h) shows the slipping distance comparison and again, the model prediction

follows the experiment. Figures 4.7(a) and 4.7(b) show the normal and tangential GRF

for the both feet. The GRF comparison clearly show that except the double-stance slip

case duringt = 0.32 s to0.61 s, the normal and tangential GRF predictions match the

measurements. However, during the double-stance slip period, the force prediction are

not accurate. We are currently working on improvement of these double-stance force

calculations. Figure 4.7(c) shows the coefficient of friction (COF) of the stance-foot

contact during the slip recovery process. Before slips start (around0.32 s), the required

(actual) COF lies in a range of|µ| < 0.2, which is far less than the available foot-floor

friction coefficient (measured as close to 1 of the dry rubber-wood contact [32]). At

t = 0.32 s, the available COF is less than0.05 due to the soap film on surface. As

shown in Fig. 4.7(c), the required COF is nearly constant aroundµ = 0.05, which is

higher than the available COF. Therefore, slip starts when the foot touches down at that

moment.



72

0 0.2 0.4 0.6 0.8 1 1.2
−30

−20

−10

0

10

20

30

40

50

 

 

Model

Experiment

Normal 
single−stance

no slip

Double−stance
slip on
left leg

Single−stance
slip on
left leg

Recovery
double−stance

no slip

Time (s)

q 1
(d

eg
)

(a)

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

 

 

Model
Experiment

Time (s)

q 2
(d

eg
)

(b)

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

20

 

 

Model
Experiment

Time (s)

q 3
(d

eg
)

(c)

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

20

 

 

Model
Experiment

Time (s)

q 4
(d

eg
)

(d)

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

 

 

Model

Experiment

Time (s)

q 5
(d

eg
)

(e)

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

110

 

 

Model
Experiment

Time (s)

q 6
(d

eg
)

(f)

0 0.2 0.4 0.6 0.8 1
140

150

160

170

180

190

200

210

220

 

 

Model

Experiment

Time (s)

q 7
(d

eg
)

(g)

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

 

 

Double−stance
slip on
left leg

Single−stance
slip on
left leg

Time (s)

x
s

(m
)

(h)

Figure 4.6: (a)-(g): Joint angle (q1 to q7) comparisons between the model prediction
and the experiments during slip recovery gait. The solid lines represent the model
predictions and the dash lines show the experimental data. (h) Slipping distancexs of
the (left) stance leg during the slip recovery experiment.
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Figure 4.7: Comparison results of the GRF and friction coefficient during the slip
recovery. (a) Normal GRFFn. (b) Tangential GRFFx. (c) Friction coefficientµ of
the stance leg foot. In (a) and (b), the model prediction forces for the left- and right
legs are plotted as the blue solid and red circle lines, respectively, and the experiments
are plotted as the blue dotted and the red dash lines. In (c), the model predicted and
experimentalµ in non-slip phase is plotted by the red empty circle and the dash lines,
respectively, and these in the slip phase by the blue solid and dash lines, respectively.

4.5 Conclusions

In this chapter, we presented a robotic bipedal dynamic model for human walking

gait with foot slips. We relaxed the non-slip assumption used in the existing bipedal

robotic models and consider the cases when the foot slips on the ground. A general

hybrid bipedal model and the gait controllers were developed for human walking with
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foot slips. Experiments were conducted using the wearable force sensors to capture

the ground reaction forces during the normal no-slip walking and the slipping recovery

gaits. The comparison results confirmed that the model prediction match the experi-

ments for not only the joint angles but also the ground reaction forces, which has not

been reported previously. The new bipedal model can be potentially used for develop-

ing assistive robotic systems to prevent human from fallingdue to slips.
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Chapter 5

Slip Detection in Human Walking Using Wearable
Sensors

5.1 Introduction

Slip detection during human walking is challenging becauseof the highly unpredictable,

uncontrollable, and fast-evolving slip dynamics. Human’sresponse and corrective re-

actions to unexpected slips create additional complications for slip detection and pre-

diction.

Inertial sensors such as inertial measurements unit (IMU) have been extensively

used to successfully detect features of the normal walking gait [107]. Detection and

identification of many walking motion and gait events, such as heel strike and heel

off, are often built based on the integration of the wearablegyroscope and accelerom-

eter measurements [108–112]. These wearable devices are commonly attached on the

shank, the thigh or at the foot. In a recent paper [113], wearable sensors are used for

real-time gait event detection. However, these studies do not consider the foot slip in

walking gait.

The goal of this chapter is to present an ambulatory slip detection sensing system

and a slip detection and prediction algorithm. The proposedslip detection algorithm is

built on a dynamic model of the foot slip and requires no knowledge about the subject’s

specific gait parameters a priori. The slip dynamic model is inspired and obtained from

the bipedal walking model presented in [72]. The use of the slip dynamics model

enables us to integrate the kinematic sensing measurementsand the physical walking
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constraints. Only a set of wearable IMUs attached to the lower limbs are used for

slip detection and prediction. One attractive feature of the proposed approach is its

instantaneous, accurate slip detection and prediction capability. The fast slip detection

is also critical for design of assistive and rehabilitationdevices used to assist human

for balance recovery and to reduce and prevent the possibility of falls.

The remainder of the chapter is organized as follows. Section 5.2 describes the

wearable sensing systems for slip detection. We present theslip dynamics in Sec-

tion 5.3 and then the slip detection algorithm in Section 5.4. Section 5.5 presents the

experimental results. Finally, we present the concluding summary in Section 5.6.

5.2 Slip detection using wearable sensing systems

Figure 5.1 shows the integrated sensing suite for slip detection and monitoring sys-

tem [32]. The sensing suite consists of two sets of the sensors: (1) a set of lower-limb

wearable motion sensors and (2) an insole force/torque sensor suite.

Five small IMU units (model slimAHRS from Motion Sense Inc.)are attached

to each lower limb. Each IMU unit consists of a tri-axial gyroscope, a tri-axial ac-

celerometer and three magnetometers to measure the three attitude angles. Each set of

two rigid-mounted IMUs are attached to the thigh and the shank segments. The main

reason to use two IMUs on one body segment is to directly obtain the real-time an-

gular acceleration information from the accelerometer measurements without the need

of numerical differentiation [114]. We designed and fabricated a wireless module for

each IMU unit to transmit the motion data in real time. To provide ground truth of the

human movements, an optical motion capture system (8 Bonitacameras from Vicon

Inc.) is used in the experiments.

Two six degree-of-freedom (6-DOF) force/torque sensors (model SS-1 from INSENCO

Co., Ltd) are used to measure the shoe-floor interactions. These sensors are located
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Figure 5.1: The slip detection and monitoring system with kinematics/kinetics/force
sensors.

inside the shoes to measure the total 3D forces and torques atthe forefoot and the

hindfoot locations; see Fig. 5.1. The use of these force sensors is purely to provide val-

idation of the model development, whereas the slip detection and prediction algorithms

do not use any force measurements. A real-time embedded system (CompactRIO from

National Instruments Inc.) is used to sample and process measurements from all force

sensors and the wearable sensors at a frequency of 100 Hz. Thedata collections be-

tween the optical motion capture and the CompactRIO are synchronized through an

analog signal triggering connection between them.

To help create slip during human walking, we build a wooden platform as shown

in Fig. 5.1. The human subjects walk on the platform in the laboratory. The human

subjects are first asked to perform normal walking on the platform to become familiar

with the setup and then they repeat the experiments with reduced coefficients of friction

on the platform by manually applying soap films on the surfaceat certain locations.

These reduced-friction locations are not noticeable to thesubjects and therefore, the

walking styles in these tests are considered the same as the normal walking without
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slip. More detailed discussions about the experimental protocols and results will be

presented in Section 5.5.

5.3 Slip model and estimation

5.3.1 System configuration

A simplified bipedal model is used in this work to characterize human walking with

slip. Due to the fact that slip is most commonly initiated from one foot, we herein

present only single-foot slip dynamics.

The slip model describes the dynamic relationship among theslip variables, such as

the slip displacement and other human gait parameters. Because of the symmetry and

repetitive patterns in bipedal walking, we consider a two-link limb structure as shown

in Fig. 5.2. The four-DOF limb structure is described by two (absolute) joint angles

q1 (shank) andq2 (thigh) with a locked ankle joint. The clockwise direction of these

angles are defined as positive values. The foot-floor contactpoint Cl of the leading

stance leg is considered under slip with coordinate(xs, ys) in a local frameB. Frame

B is attached at the heel of the stance leg and the coordinates are reset to the location

of the new stance leg’s initial foot contact at each step. A ground-fixed inertial frame

I(X, Y ) is defined and axes of framesB andI are aligned.

Figure 5.2(a) shows the two-link double inverted pendulum for the slipping leg.

Link 1 represents the shank and the foot together with massM1, lengthL1, and mass

moment of inertiaJ1 about its mass center. The mass center is located at a distance of

a1 from Cl. Link 2 represents the thigh and the rest of the body with massM2, mass

moment of inertiaJ2 about its mass center, and lengthL2. The mass center of link 2 is

assumed at the hip, namely, close to the human’s COM. The heelposition(xs, ys) of

the stance leg inB captures the slip displacement. The generalized coordinates of the

slip dynamics is then defined asq = [qT
l xs ys]

T , whereql = [q1 q2]
T . The contact
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Figure 5.2: (a) Schematic of a 2-link, 4-DOF model for slip prediction. (b) The wear-
able IMU configuration.

force atCl is denoted as vectorF = [Ft Fn]
T , whereFt andFn are the friction and

normal forces, respectively.

The positions of all IMUs are shown in Fig. 5.2(b). Thex-axis of the IMUs at-

tached to the thigh, the shank and the foot heel are aligned with the corresponding link

segments, respectively. They-axis of each IMU is perpendicular to itsx-axis in the

sagittal plane. We denote the IMUs attached to the thigh, theshank, and the heel asIti ,

Isi, i = 1, 2, andIh, respectively. The distances between the two IMUs attachedto the

thigh and the shank are denoted asdt andds, respectively.

5.3.2 Slip dynamics

With the above configuration and setup, the position vectorsfor the two links are re-

spectively obtained as
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r1 =






xs + a1 sq1

ys + a1 cq1




 , r2 =






xs + L1 sq1 +L2 sq2

ys + L1 cq1 +L2 cq2




 ,

wheresq1 := sin q1, cq1 := cos q1 for q1 and other angles. The kinetic energy of the

2-link limb is then

T =
1

2

2∑

i=1

Miṙ
T
i ṙi +

1

2

2∑

i=1

Jiq̇
2
i .

The potential energyV is expressed as

V = g [M1(ys + a1 cq1) +M2(ys + L1 cq1 +L2 cq2)] ,

whereg is the gravitational constant. Using Lagrangian equation,we obtain the equa-

tions of motion as

Dd(ql)q̈ +Cd(ql, q̇l)q̇ +Gd(ql) = Bdu+ET
dF , (5.1)

whereDd(ql), Cd(ql, q̇l), Gd(ql) andBd are the inertia, Coriolis, gravity and input

mapping matrices, respectively,u = τk as the knee joint torque, and matrixEd =

[∂p2(q)
∂q

]T ∈ R2×4 describes the contact constraints [72], withp2(q) ∈ R2 being defined

as a slip vector of a contact pointCl in frameB. Only the knee joint is assumed to be

actuated. The details of these matrices are given in (5.2) onthe top of the next page.

Taking the third equation from (5.1), we obtain

ẍs =
Ma (sq1 q̇

2
1 − q̈1 cq1) +M2L2(sq2 q̇

2
2 − q̈2 cq2) + Ft

M
, (5.3)

whereM =M1+M2 andMa =M1a1+L1M2. The result in (5.3) implies that the slip

acceleration is obtained directly using the measurements of the kinematic and kinetic

data. Slip velocityẋs and displacementxs can then be obtained by direct integration

of (5.3). The results by direct integration however requireprecise knowledge of the ini-

tial slip displacement and velocity. Obtaining these initial values is not straightforward

and instead, we present a filter-based estimation scheme.
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Dd(ql) =







M2L
2
1 +M1a

2
1 + J1 M2L1L2 cq1−q2 (M2L+M1a1) cq1 −(M2L1 +M1a1) sq1

M2L1L2 cq1−q2 M2a
2
2 + J2 M2L2 cq2 −M2L2 sq2

(M1a1 +M2L1) cq1 M2L2 cq2 M1 +M2 0
−(M1a1 +M2L1) sq1 −M2L2 sq2 0 M1 +M2






,

(5.2a)

Cd(ql, q̇l) =







0 q̇2M2L1L2 sq1−q2 0 0
−q̇1M2L1L2 sq1−q2 0 0 0
−q̇1(M1a1 +M2L1) sq1 −q̇2M2L2 sq2 0 0
−q̇1(M1a1 +M2L1) cq1 −q̇2M2L2 cq2 0 0






, (5.2b)

Gd(ql) =







−g(M1a1 +M2L1) sq1
−gM2L2 sq2

0
g(M1 +M2)






, Ed =







0 0
0 0
1 0
0 1






, Bd =







−1
1
0
0






, (5.2c)

5.3.3 Extended Kalman Filter (EKF)-based slip estimation

From the system configuration, we obtain the kinematic models for the IMU gyro-

scopes attached to the thigh and the shank as [106,115]

q̇1 =

[

0 0 1

]

ωs =: ωsz, q̇2 =

[

0 0 1

]

ωt =: ωtz, (5.4)

whereωs (ωsz) andωt (ωtz) are the IMU gyroscope (z-axis component) measurements

attached to the shank and the thigh, respectively. We define the EKF state variables

x = [x1 x2 x3 x4]
T = [xs ẋs q1 q2]

T and write the state dynamics from (5.3)

and (5.4) as follows.

ẋ = f (x,w) =












x2

fs(x,w)

ωsz

ωtz












, (5.5)

where

fs(x,w) =
Ma(sx3 ω

2
sz − αs cx3) +M2L2(sx4 ω

2
tz − αt cx4)

M
, (5.6)

w = [ωsz ωtz as1y as2y at1y at2y ahx]
T , asiy andatiy, i = 1, 2, are they-axis compo-

nent of theith IMU accelerometer measurements attached to the shank andthe thigh,
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respectively, andahx is thex-axis component of the heel IMU accelerometer measure-

ment. Inclusion ofahx into w is mainly due to the EKF output construction discussed

later in this section. In (5.6),αs andαt are the angular accelerations of the shank and

the thigh, respectively and are calculated by using the linear accelerations, namely,

αi =
ai2y − ai1y

di
, i = s, t. (5.7)

Remark 5.1. Compared with the slip dynamics (5.3), EKF dynamics equation ẋ2 =

ẍs = fs(x,w) in (5.5) drops the friction forceFt term. The rationale for such ap-

proximation are two-folds. First, as demonstrated throughexperimental results in

Section 5.5, the magnitude of forceFt during foot slip is small and can be neglected

without sacrificing estimation accuracy. Second, obtaining Ft needs wearable force

sensors and it is desirable to avoid using these expensive sensors for slip detection

applications.

Three outputs are considered in the EKF design. First, the accelerometer at the heel

directly provides the acceleration measurement along thex-axis inB. Once the heel

touches down, the foot is almost aligned with the floor and therefore, we approximate

the heel acceleration as

y1 = ẍs =

[

1 0 0

]

ah =: ahx, (5.8)

whereah ∈ R3 is the heel accelerometer measurement. The second output ofthe EKF

design is obtained by the kinematic constraint given by the 2-link lower-limb model.

As shown in Fig. 5.2(b), we express the heel velocity along thex-axis ofB as

y2 = hs(x,w) = ẋs − vHip
x + L1q̇1 cq1 +L2q̇2 cq2 = 0, (5.9)

wherevHip
x is the velocity of the hip along thex-axis ofB. The direct measurement

of vHip
x is not available and we estimate its value by considering theentire walking

stance prior to the slip heel strike. During a non-slip stance phase, the horizontal
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velocity of the heel is almost zero. Considering the fact that the hip horizontal velocity

during normal walking is almost constant, we reversely computevHip
x during the non-

slip stance phase by settingẋs = 0 and using the relationship in (5.9). The third output

uses the kinematic relationship between the position of thehip and the heel along the

x-axis ofB as

y3 = gs(x,w) = xs − vHip
x ∆t + L1

(

sq1 − sq01

)

+ L2

(

sq2 − sq02

)

= 0, (5.10)

where∆t is the time elapsed from the heel-strike moment and initial joint anglesq01 and

q02 at the time of the heel strike can be approximated by using thewearable IMUs [116].

With the above three output equations we confirm that the observability matrix of the

system is full rank and thus observable.

With the above discussion, we write the EKF output equation as

y = h(x,w) + ny =









fs(x,w)

hs(x,w)

gs(x,w)









+ ny, (5.11)

whereny ∼ N (0,Σy) is the white noise with variance matrixΣy. Given system

equation (5.5) and output equation (5.11), we calculate Jacobian matricesFEKF =

∂f
∂x

∣
∣
x,u

for the state dynamics andHEKF = ∂h
∂x

∣
∣
x,u

for the outputs at each iterative

step. The EKF design is similar to that in [117] and we here omit the details.

5.4 Slip detection algorithm

The estimates of the slip displacement in the previous section are accurate only once

the foot slip starts. To use these estimates, we need to detect foot slip in real time.

Since foot slip commonly happens at the beginning of the heel-strike, we here focus

on the slip detection algorithm that determines the slipping status right after the heel

strike.
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5.4.1 Slip indicator

An important indication about the foot slip can be assessed by the movement of the

human COM in the sagittal plane. The COM movement is indirectly related to hip-

heel angleθHH, which is the (absolute) angle of the vector formed by connecting the

human COM and the stance leg heel position in the sagittal plane; see Fig. 5.2(a). To

approximateθHH, we use the measurements of the wearable IMUs attached to theupper

thigh (It1) and the heel (Ih).

Considering that slip acceleration̈xs directly indicates the foot slip, we propose a

slip indicatorSI(t)

SI(t) =
ẍs

β(θ̈HH−γ)
, (5.12)

whereβ andγ are constants. The use of the exponential function form in (5.12) pri-

marily enhances the distinction of the ratio ofẍs and θ̈HH for the slip and non-slip

cases. Moreover, it helps to avoid the division of potentially tiny or near-zero value

of (θ̈HH − γ). The slip detection algorithm relies on setting a thresholdfor SI(t). As

suggested in [118], using the threshold technique can minimize the computational load

and the number of used sensor components.

A thresholdSs for SI(t) is used to determine the foot slip: slip is declared whenever

SI(t) exceeds the threshold valueSs (i.e.,SI(t) ≥ Ss); otherwise no slip is identified

(i.e.,SI(t) < Ss). The value of the thresholdSs is determined by experiments and will

be discussed in details in Section 5.5.3. The calculation ofSI(t) requires knowledge of

instantaneous̈θHH andẍs. The estimates of̈xs are directly measured by using the heel

accelerometerIh. To computëθHH, we adopt a similar approach as in (5.7) and use the

accelerometers attached at the upper thigh (close to the hip) and at the heel, that is,

θ̈HH =
at1y − ahx

lHH
, (5.13)

whereat1y andahx are they-axis andx-axis acceleration measurements ofIt1 andIh,

respectively, andlHH is the distance betweenIt1 andIh. In (5.13), we approximate the
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calculation with the small angle and constantlHH assumptions.

5.4.2 Slip detection and estimation algorithm

The flowchart of the slip detection and estimation algorithmis illustrated in Fig. 5.3.

The slip detection and monitoring begins at the heel-strikemoment. We adopt a similar

approach as in [111] for detecting the heel-strike event by checking the first peak of

the shank angular velocity. The calculation ofSI(t) and the EKF prediction algorithm

starts simultaneously. WhenSI(t) ≥ Ss, foot slip is detected (i.e.,flag= 1) and the

information of the slip is obtained from the EKF prediction.It is expected that the

human sensory and voluntary reactive slip recovery response takes place after at least

200 ms [119] and therefore, we use a time period of 400 ms (twice of the voluntary

recovery time) to terminate the EKF prediction.

Heel Strike

t=0, flag=0

       IMUs output:

ax,ay,az,�x,�y,�z

End of slip

monitoring

SI

    compute:

xs,ẋs,q1,q2,SI

(Heel lift-off)

YesNo

t<400ms

assess slip severity

(use EKF predictions)

Yes

(valid EKF)

No

   update flag
SI>SS (Slip)

flag=1

 check

  flag

flag=0 flag=1

SI<SS

flag=0

 He > He
thr

 Sh > Sh
thr

Figure 5.3: Block diagram of the schematics of slip detection algorithm.

If the value of the slip indicator is less than the threshold,namely,SI(t) < Ss,
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no slip is detected (i.e.,flag= 0) and in this case, the detection process is repeated

until the detection of the heel-off event. Heel angleθHe and shank angleθSh are used

to determine the foot heel-off event. The threshold valueθthr
Sh is chosen as the mean

value of the relative shank angle at 50% of stance of all subjects in the experiments.

The threshold valueθthr
He of the heel angle is taken the same as that in [108]. The details

of how to obtain these angles and their threshold values willbe presented in the next

section.

5.5 Experiments

In this section, we first describe the experimental protocol, then present the experimen-

tal results to validate and demonstrate the slip detection algorithms and at the end we

provide the discussions about the results.

5.5.1 Experimental protocols

Eight subjects (4 males and 4 females with ages:26.3± 2.1 years, heights1.73± 0.04

m, and weights62.8 ± 7.8 kg) were recruited for the slip detection experiments and

studies. All of the participants were reported to be in a goodhealth condition. An

informed consent form was signed by all the subjects and the testing protocol was

approved by the Institutional Review Board (IRB) at RutgersUniversity.

In the experiments, the subjects were asked to walk on the wooden platform with

their normal walking speeds (within a range of1.0 to 1.7 m/s) and to look straight

ahead. The subjects in the experiments wore the slip detection wearable sensing sys-

tem shown in Fig. 5.1 and the Vicon motion capture system provided the ground truth

movement information. The subjects were asked to walk several minutes on the plat-

form before the soap film was manually applied on the acrylic surface on the platform
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to create slippery, low friction coefficient surface conditions. The subjects were wear-

ing a headset with a loud music of their choices and a pair of special glasses such that

the lower half of the view was dimmed to prevent the subject from noticing the soap

film on the acrylic plate. A safety harness was used to catch and protect the subjects in

case of a fall.

All eight subjects managed to recover from the unexpected slips and return to the

normal walking gait during the first experiment run. The results and analyses presented

in the following sections only use the unexpected slip recovery data from all eight

subjects.

5.5.2 Experimental results

Figure 5.4 shows a snapshot of the recovery gait during a severe slip [72] for one

representative subject S1. The subject starts the normal gait with a single-stance phase.

When touching down on the slippery floor (heel-strike), the right foot starts slipping

(t = 0). At this moment, the left foot is still on the floor but about to swing up. The

subject detects and reacts to the foot slip and the left foot quickly touches down on the

floor (t = 0.27 s). The (right) slipping foot leaves the floor at aroundt = 0.4 s and then

quickly touches down again at aroundt = 0.46 s. Finally, a following compensatory

step recovers the subject to the normal walking gait. The bottom plots in Fig. 5.4 show

the representation of the human skeleton generated from themotion capture data. The

slipping distance is also marked in the figure.

The EKF prediction results for subject S1 are shown in Fig. 5.5. The estimated

slip displacement (Fig. 5.5(a)) match the ground truth closely. The estimates of the

lower-limb joint angles (Figs. 5.5(b) and 5.5(c)) also follow the ground truth. In the

EKF implementation, we use one set of biomechanics parameters (e.g., limb lengths,

masses etc.) for all subjects, rather than the measured values for each individual. This

simplifies the implementation and also leads to the satisfactory prediction results.
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replacements

t = 0 s t = 0.1 s t = 0.2 s t = 0.3 s t = 0.4 s t = 0.5 s t = 0.6 s t = 0.7 s t = 0.8 s t = 0.9 s

Figure 5.4: A snapshot of the recovery human gait from slip. The top figure shows the
video snapshot and the bottom figure shows the human 7-link skeleton from the optical
motion capture system. The “△” and “▽” markers indicate respectively the locations
where the right leg starts slipping and the left leg touches down the floor.
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Figure 5.5: Comparison results of the EKF estimation and theground truth under large
foot slipping of subject S1. (a) Heel displacementxs. (b) Shank joint angleq1. (c)
Thigh joint angleq2.
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(a) (b)

(c)

Figure 5.6: The EKF prediction errors for all eight subjects. The plots includes the
error mean values (solid line) and the one standard deviation (dash lines). (a) Heel slip
distance errorexs

. (b) Shank angle erroreq1 . (c) Thigh angle erroreq2 .

The errors between the EKF predictions and the motion capture data for all eight

subjects are shown in Fig. 5.6. The predicted slip displacements in Fig. 5.6(a) closely

match the ground truth for the first100 ms after the heel strike, with a mean error less

than2 cm. During the same period, the estimates of the lower-limb poses (Figs. 5.6(b)

and 5.6(c)) also follow the ground truth. Discrepancies between the predicted and

the ground truth values start to increase after100 ms from the heel-strike event. The

possible reasons for these discrepancies lie in the assumption of constant hip velocity

and neglecting the friction force in the slip dynamics model.

The EKF-based heel displacement prediction for the normal walking without foot
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Figure 5.7: Comparison results of the EKF estimation and theground truth of the heel
displacementxs under normal walking for subject S1.

slip for subject S1 is shown in Fig. 5.7. The prediction of theslip displacementxs

has a large discrepancy with the ground truth. The discrepancy possibly results from

the neglection of the large friction forceFt in the slip model. Therefore, it is not

appropriate to use the EKF predicted slip displacementxs to determine the slip status

and instead, the algorithm uses the slip indicatorSI(t).

Figure 5.8 shows the slip indicatorSI(t) over time for all eight subjects for both

the normal walking (Fig. 5.8(a)) and the walking with foot slips (Fig. 5.8(c)). We also

plot SI(t) over the gait stance in Fig. 5.8(b) to clearly observe the variations among

all subjects. The calculation ofSI(t) are based on only the IMU measurements. The

choices of the values of parametersβ andγ and thresholdSs will be discussed in Sec-

tion 5.5.3. For comparison purpose, Fig. 5.9 shows the plotsof SI(t) calculated from

the Vicon motion capture measurements for all subjects. To computeθ̈HH andẍs pro-

files, the motion capture marker position data were filtered using a4th order low-pass

Butterworth filter with a cutoff frequency of6 Hz. Double numerical differentiation

were then used to computëθHH andẍs.

The results of normal walking in Figs. 5.9(a) and 5.8(a) showno detected slips (i.e.,

SI(t) < Ss) and the values ofSI(t) are close to zero until the heel-off event. The small

values forSI(t) is mainly due to the fact thaẗθHH values are less thanγ and the values
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Figure 5.8: The slip indicatorSI(t) calculated from the IMU data for all subjects. (a)
Normal walking with gait progression time. (b) Normal walking normalized with the
stance period. (c) Walking with slip. The horizontal dottedline in each figure indicates
the threshold valueSs = 1.57. The marker “▽” in the normal working indicates the
heel-off and in the slip walking indicates that the other foot touches down on the floor.

of ẍs are equal or smaller than zero. In Fig. 5.9(a), one subject has a high value ofSI(t)

(peak value close to0.7) aroundt = 50 ms. This is due to a relatively small movement

of the wooden platform and the foot (as observed and validated by the Vicon data).

The plots ofSI(t) over stance for normal walking in Figs. 5.8(b) and 5.9(b) clearly

demonstrate the consistent performance of the slip indicator.

For walking with foot slip (Figs. 5.9(c) and 5.8(c)), the values ofSI(t) exceed the

thresholdSs shortly (less than100 ms) after the heel strike, indicating the slip is de-

tected. In the figure, we also plot the moment of the non-slip foot touch-down under
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Figure 5.9: The slip indicatorSI(t) calculated from the Vicon data for all subjects. (a)
Normal walking with gait progression time. (b) Normal walking normalized with the
stance period. (c) Walking with slip. The horizontal dottedline in each figure indicates
the threshold valueSs = 2.83. The marker “▽” in the normal working indicates the
heel-off and in the walking with slip indicates that the other foot touches down on the
floor.

human recovery reaction. It is interesting to observe that it takes at least180 ms af-

ter the slip starts and before the swing foot touches the floor. Figure 5.10 shows an

inter-subject comparison of the slipping distances and thetime durations from the heel

strike until slip is detected by the algorithm. The results include the calculations using

both the motion capture system and the IMU measurements. It is interesting to observe

that the slipping distances using the motion capture data are almost all within 12 mm

except for one at50 mm. The detection times using the motion capture data are on or

before60 ms after the heel strike, while using the IMU data all slips were detected on
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Figure 5.10: Comparison of the slip distance and the slip detection time after heel strike
by the motion capture data and the IMU measurements.

or before90 ms after the heel strike. Even using the IMU-based calculation, the slip

detection time is several times faster than human voluntaryreaction (around200 ms

after slip detection) [119]. The IMU-based slipping distances are under30 mm except

for two subjects at around65 mm. Despite of the possible errors due to numerical ap-

proximations, the results obtained by the motion capture measurements show a highly

consistent trend among all subjects and therefore, are taken as the benchmark.

To further illustrate the above-discussed gait differences, Fig. 5.11 shows the GRFs

of the normal walking and the walking with slips. The plot includes the experiments

from two subjects S1 and S2 and the slip indicators for these two subjects are also

marked in Figs. 5.8 and 5.9. Figure 5.11(a) shows the normal forceFn and the friction

forceFt for normal walking and Fig. 5.11(b) for walking with foot slip. The main

motion difference for S1 and S2 lies in the fact that for S1, the subject’s right foot

slipped and then left the floor, while for S2, the slipping foot came to stop before it

left the floor. The results in Fig. 5.11(a) show that the GRF profiles of both subjects

follow the regular walking pattern. In contrast, for walking with foot slip, the friction

forcesFt for both subjects are much smaller than those in the normal walking. This

confirms that the friction force is indeed a key factor to determine the slip. The results

in Fig. 5.11(b) also show the force profile differences between S1 and S2. When the
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Figure 5.11: Comparison of the GRFs between normal and slip walking experiments.
(a) Normal walking. (b) Walking with foot slip.

slipping foot does not stop before it leaves the ground (i.e., S1), bothFn andFx come

to zero at heel-off, while for the case where the slipping foot stops first, the friction

force is near zero but with non-zero normal force (i.e., S2).

5.5.3 Discussions

Compared with the constructedSI(t) by the integration of the shank angular accelera-

tion [120], the slip indicator in this dissertation demonstrates more robust and reliable

results due to several improvements. The new slip indicatorcombines two highly-

correlated variables (̈θHH and ẍs) rather than one in [120]. The slip indicator in this

dissertation uses instantaneous values of linear and angular accelerations rather than

the integration and as a consequence, it results in significant differences between the

normal walking and walking with slip. Moreover, we enhance the differences inSI(t)

calculation by introducing the exponential function in (5.12).

The differences of the calculatedSI(t) by using the IMU and motion capture mea-

surements result from the differentθ̈HH and ẍs profiles. Figure 5.12 shows the com-

parison of the mean and standard deviation profiles ofθ̈HH and ẍs by these two sets
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(a) (b)

(c) (d)

Figure 5.12: Comparison of the IMU-based and Vicon-based computations of angular
accelerations̈θHH and heel acceleration̈xs. (a) θ̈HH profiles from the IMU measure-
ments. (b)̈θHH profiles from the Vicon data. (c)̈xs profiles by the IMU measurements.
(d) ẍs profiles by the Vicon data.

of measurements. The profiles of both the normal walking and walking with foot slip

are also plotted in the figure for comparison. For the Vicon-basedθ̈HH profiles shown

in Fig. 5.12(b), a significant distinction of the minimum values ofθ̈HH is observed be-

tween the normal walking and the walking with foot slip in thefirst 150 ms period after

the heel strike. Similar difference has also been observed in the calculated values from

the IMU measurements shown in Fig. 5.12(a). During normal walking, the hip-heel

angular accelerations̈θHH experience a decreasing trend after the heel strike and thena

slowly increasing and flat trend until the heel-off event. Consequently, due to an initial

high COM pivoting angular velocity and a near-zero angular acceleration, an almost
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constant angular velocity is maintained, resulting in a steady pivoting of the hip (and

COM) with respect to the heel.

When slip is initiated after the heel-strike,θ̈HH starts at the similar values compared

to those of the normal walking case but afterwards rapidly decreases and reaches a sig-

nificantly lower values. The rapid decrease causes a negative hip-heel angular velocity

and also reduction of the angleθHH. This clearly indicates that the hip (and COM) is

not pivoting around the heel, but is indeed actually swinging backwards relatively to

the foot. This observation implies the presence of a foot slip. After the initial rapid

decrease, the values ofθ̈HH quickly increase to near-zero values after around150 ms

mainly due to the push-off with the trailing leg. The profilesthen oscillate around the

zero value because of the human slip-recovery reactions.

The differences of thëθHH profile by the motion capture and the IMU measurements

primarily result from the possibly different locations of the optical markers and the

accelerometer and the numerical differentiation approximations. However, despite of

the above-mentioned differences, a clear distinction of the θ̈HH profiles between the

normal walking and walking with slips is observed shortly after the heel strike. The

comparison also confirms the validity of the approach of real-time calculation of̈θHH

using the IMU measurements for the slip detection algorithm.

As shown in Figs. 5.12(c) and 5.12(d), the heel accelerationẍs under the normal

walking quickly increases to and stays around the zero valueuntil the heel-off. For

the walking with slip case, thëxs profile first increases similarly as in normal walking

but after the foot-floor contact, the heel does not stop but keeps accelerating (between

20-100 ms). Similar trend of the heel acceleration curves was also reported in [16,69].

The ẍs profiles also show a large variation after around150 ms and this could result

from the start of the human recovery reactions.

The choices of the values of the model parametersβ, γ and the thresholdSs are
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determined by thëθHH and ẍs profiles shown in Figs. 5.12(a) and 5.12(c), respec-

tively. For simplicity, the value of parameterβ is chosen as the Euler’s number, that is,

β = e = 2.718. To determine the value of parameterγ, we use the profile of̈θHH as

shown in Fig. 5.12(a). The profiles of̈θHH under normal walking show a consistently

small variation across all subjects and therefore, we use the first lowest peak point of

θ̈HH profile of normal walking, markedP θ̈
n in the figure, to determine the value ofγ.

Using such a choice, we differentiate the values of slip indicatorSI(t) between the nor-

mal walking and walking with foot slip. In the experiments, we obtainγ = −562 and

γ = −377 deg/s for the motion capture system and the wearable IMU sensor measure-

ments2, respectively. Similarly, we use the slipping acceleration profileẍs to determine

the threshold valueSs. As shown in Fig. 5.12(c), the peak pointP ẍs
n of the ẍs profile

is collocated withP θ̈
n . The corresponding value of̈xs is the same asSs because at this

point, θ̈HH = γ and by (5.12),Ss = ẍs. We obtainSs = 2.83 for the motion capture

data andSs = 1.57 for the IMU measurements.

The slip detection algorithm also needs the detection of theheel-off event to ter-

minate the algorithm and prevent false slip detection during the swing phase. We first

estimate the shank angleθSh by integrating the measurements of the gyroscope attached

on the shank with a zero initial condition starting from the moment of the heel-strike

event. Once the value of the estimatedθSh reaches thresholdθthr
Sh = 22◦ (taken as the

mean at the 50% stance of all subjects), the integration of the heel gyroscope mea-

surement starts (with a zero initial condition) to obtain the θHe. Figure 5.13 shows the

estimates of the heel-off angleθHe and the detection time for all subjects using the IMU

measurements and the ground truth from the vertical motion of the heel marker posi-

tions. Similar to [108], a thresholdθthr
He = 3◦ is used to detect the heel-off event. From

the results in Fig. 5.13, the IMU-based heel-off events match closely with the ground

2These values of parameterγ are actually obtained from two standard deviations ofθ̈HH profiles.
Similarly, the followingSs values are obtained from two standard deviations ofẍs profiles.
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Figure 5.13: The estimation of the heel-off angleθHe and heel-off event detection for
all subjects. The “◦” and the “▽” markers indicate the heel-off instances detected by
the IMU measurement and the Vicon motion capture system.

The use of kinematic constraints (5.9) and (5.10) is important for the convergence

of the EKF design. The relationship in (5.9) is an approximation and Fig. 5.14(a)

illustrates the values ofy2 that are calculated with the ground truth for both the nor-

mal walking and the walking with slip for all subjects. It is clear that the values of

constraints (5.9) are around zero and have smaller variations for the normal walking

than those under walking with slip. For walking with slip, a large variation exists

and this variation is captured through the noise model in (5.9). Similarly, Figs. 5.14(b)

and 5.14(c) show the values of estimated hip velocityvHip
x and outputy3 in constraint (5.10)

for both the normal walking and walking with slip. The same conclusions are obtained

for the hip velocity estimation and constraint (5.10) as those of constraint (5.9).

The slip detection and prediction results in this dissertation focus on the first slip,

that is, the unexpected and novel to the subjects. Therefore, these results are limited to

detect the unexpected slip in human walking. As reported andanalyzed in [121, 122],

the walking gaits on slippery surfaces are different if the human subjects are aware of

the surface conditions and have prior slip experience. The slip detection and prediction
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(a) (b)

(c)

Figure 5.14: Comparison results of (a) the EKF outputy2, (b) the estimated hip velocity
vhip
x , and (c) the EKF outputy3 with the mean value and the one-standard deviation

curves from all subject experiments.

for human walking with prior slip experience and knowledge are out of the scope of

this study.

5.6 Conclusion

We presented a novel real-time foot slip detection and prediction method for human

walking. The proposed slip detection and prediction methodused only the measure-

ments from a set of wearable inertial sensors attached to thelower-limbs and therefore,

the approach is convenient, low-cost, non-intrusive for personal daily activities. The

slip prediction algorithm was built on the slip dynamics model with the integration of
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the physical and walking movement constraints through an EKF design. A slip indi-

cator was also introduced to detect the initiation of the foot slip after heel strike. The

slip indicator used the hip-heel angular acceleration and the heel slip acceleration in-

formation that were both obtained from the wearable inertial sensors. The extensive

experimental results confirmed that the detection algorithm can effectively detect the

foot slip events and also demonstrated the accurate slip predictions.
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Chapter 6

Human Balance Control and Slip-Induced Fall
Prevention

Human balance control is important to maintain equilibriumduring walking and un-

expected perturbations, such as foot slip. In the first part of this chapter we present

a LIP-based dynamics model and control that can capture human balance recovery in

normal walking and walking with foot slips. This is an extension of the modeling ap-

proach presented in Chapter 4 that cannot be used for walkingbalance control due to

its complexity of full-body dynamics. In the second part of this chapter, we present a

design of a robotic knee assistive device as a new paradigm toexamine an active slip-

induced fall prevention possibilities by providing to human an assistive knee torque

during foot slip recovery. Balance recovery control of the first part of this chapter lies

as a foundation for the control of the robotic knee assistivedevice that remains our

future work and is out of the scope of this dissertation.

6.1 Introduction

Slip-and-fall is a complex human locomotion and it is challenging to model human

reaction and control to foot slips due to fast slip dynamics and high-dimensional hu-

man movements. Further challenges arise as few real-time sensing and actuation tech-

nologies are currently available for reliably detect and predict the foot slips and assist

human balance recovery after foot slips.

Robotic bipedal dynamic models, LIP and spring linear inverted pendulum (SLIP)
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models are used to capture human walking and running [51,52,54,55]. However, all of

these models assume non-slip conditions of the foot contactand cannot be directly used

to design human balance control under foot slip. Furthermore, in [63], a simulation

optimization-based model is used to obtain and compare the stability results of the

dynamic balance analyses using a simple invented pendulum model. In the clinical

studies of balance recovery, comparison of the joint torqueand joint angle profiles are

reported between the normal and slip walking [84, 85]. Moreover, the compensatory

stepping for slip recovery is also discussed in [123], but noclear gait control strategies

are presented.

In this chapter, we present the LIP-based balance recovery control of human walk-

ing with slips. A two-mass LIP model is first introduced to produce the human gaits in

normal walking and walking with slips. This model extends the results in [60] by sepa-

rately capturing the ZMP control and the walking pivoting point. The balance recovery

control is then designed using the two-mass LIP model and theextended capture point

design for foot slip. Because of non-periodic gaits, we discuss the recovery CP profiles

that are built on the human experiments. The balance recovery control has hybrid fea-

tures due to the different strategies taken in the single- and double-stance phases. We

illustrate and demonstrate the control performance through human experiments. To the

authors’ best knowledge, this work is the first attempt to present the human-inspired

balance recovery control under foot slips3.

In the second part of this chapter, we present a design and fabrication of a wearable

robotic knee assistive device for active slip-induced fallprevention. A prevention of

human slip-induced falls is a challenging task, due to slip being a fast evolving and

complex process requiring fast corrective reactions for successful slip recovery. In the

literature, several different approaches are reported to address or suggest fall prevention

3The presented work in the first part of this chapter is a joint work that resulted in publication [124].
It is presented here for completeness of this dissertation.
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actions. A proactive approach was reported in [125], where arepeated slip induced

training during sit-to-stand task was shown to effectivelyreduce falls among older

adults during sit-to-stand task. A similar approach, usinga movable platform for slip

training, was performed for personnel delivering mail in [81], where it was shown that

such training improves recovery reactions and reduce fall frequency in older adults.

A fall prevention program was suggested in [87] with strength training focusing on

improving maximum strength and explosive strength measure. The subjects in the

study mainly trained their cognitive reaction skills to train and improve their reactions

to slip occurrence.

Studies of slip biomechanics have shown that compared to thenormal gait the knee

and ankle joints have the highest torque variations during asuccessful slip recovery [84,

85]. In [87], it was suggested that higher knee extension strength, such as greater

knee peak torque and greater rate of torque development (RTD), are critical for slip

balance recovery. These findings imply that for successful fall prevention it would

be the most beneficial to provide assistive torques at the knee and ankle joints. From

these studies we hypothesize that the additional assistiveknee torque could contribute

towards successful slip recovery and prevent slip-inducedfalls. The goal of the second

part of this chapter is to design and fabricate a robotic device to enable investigate this

hypothesis.

Exoskeletons, orthoses and walking assistive devices are commonly used existing

devices providing additional torques at human joints [126–128]. A short overview of

such existing human walking assistive devices reported in the literature is described

below, with aim to explore their designs concepts and to inspire the design of the slip-

induced fall prevention device.

All of the mentioned devices in [126–128] have been primarily designed towards

providing long-time continuous support to the human body, such as carrying heavy

weights or increasing walking endurance/range capabilities. The methods of joint
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actuation used in those devices were comprised of passive actuation, such as elastic

knee exoskeleton [129, 130] or active support, utilized through the electric motors us-

ing either gears [131] or Bowden cables [77, 79, 132, 133], hydraulic actuators [134],

pneumatic artificial muscles (PMA) [135] and electro-rheological fluid based actu-

ators [136–138]. There is further distinction among the exoskeletons that transfer

load directly to the ground, as compared for instance to the HAL exoskeleton sys-

tem [139,140] that augments torques directly at human joints. These devices operate in

direct contact with the human and over the last two decades, the improvements towards

direct human-robot interactions in those devices have beenachieved by the implemen-

tation of the series-elastic actuators (SEA) [141–144]. One of the first examples of

exoskeleton using SEA was the RoboKnee reported in [145]. Further development of

the actuation of those devices involved implementation of aclutch between the motor

and the mechanism, allowing joint free movement during gaitor actuation of the hu-

man joints when desired. An example of clutched parallel-elastic actuators have been

introduced in [146–148].

Assistive devices for slip-induced fall prevention require specific performances,

such as providing instantaneous high peak torques and high RTD for a short time.

For example, the duration of a slip in [67] was less than 0.4 sec (defined from the

time of a heel strike until foot stopped or was lifted of the ground). Other desired

features for the device include lightweight and compact design and a clutch mechanics

that implies low energy consumption of the device, when no actuation is needed. To

minimize the weight on the knee, it is desirable to dislocatethe heaviest parts of the

device away from the knee. A similar approach was reported in[79] for the lightest

series elastic remote knee actuator (SERKA) developed to investigate gait in stroke.

Although probably sharing a similar main structure, the performance requirements for

the fall prevention device are quite different from the aforementioned exoskeletons and

robotic assistive devices and, indeed, are similar to the reported ankle and knee gait
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perturbator devices [76–78].

Figure 6.1 shows an example of a knee perturbators [77, 78]. The purpose of the

gait perturbator devices is not to provide continuous assistive torque for a long time,

but to induce fast perturbations during human gait. Such devices have been used in a

clinical study of characterizing the stretch reflex response of the human thigh muscles

to an unexpected knee flexion at the transition from stance toswing during walking

gait [149]. These knee and ankle perturbators have short actuation times and can exert

high torques at large angular velocities. Those performance characteristics are also

highly desirable for slip-and-fall prevention device.

(a) (b)

Figure 6.1: Knee perturbators reported in literature (a) [77] and (b) [78].

The second goal of this chapter is to present a preliminary design and fabrication

of a new robotic knee assistive device for slip-induced fallprevention. The design

requirements for this device are based on the comparison of the computed knee torques

and angular velocities during normal walking and walking with slip obtained from our

slip testing experiments. The designed robotic assistive system will be used to conduct

further testing on human subjects.

The rest of this chapter is organized as follows. We e first present the two-mass

LIP model in Section 6.2. The balance recovery control is discussed in Section 6.3.

Design of the desired recovery profiles is presented in Section 6.4. We present the
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experimental results of balance recovery control in Section 6.5. We then present the

design of a robotic knee assistive device (ROKAD) in Section6.6. We present the

prototype of ROKAD and possible recovery control strategy for ROKAD in 6.7.

6.2 Two-mass linear inverted pendulum model

In this section, we present a new two-mass LIP model to capture the human walking

with slips. Figure 6.2(a) shows the human walking with wearable inertial sensors on

lower-limbs and Fig. 6.2(b) illustrates the schematic of the two-mass LIP model.

IMU

m1

m2

(a)

x

z

C2

C1

zc

h1

hc

P, u

m1, x1

m2, xs

Fz Fz

Fx

Fx

C

T

(b)

Figure 6.2: A schematic of the two-mass LIP model.

We model the human motion as a linear inverted pendulum with two pointsC1 and

C2 with massesm1 andm2 at the two ends, respectively. Massm1 may represent the

human body andm2 for the lower-limb. Similar to most LIP literature, we assume that

the height of massm1 is located at a constant verticalzc and the other massm2 contacts

with the ground. The introduction of the bottom massm2 into the model is primarily

to capture the ankle actuation effect during foot slip by having mass moment of inertia
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around the center of massC. The horizontal positions of the two masses and the center

of massC in the ground-fixed framexoz are denoted asx1, xs andxc, respectively. It

is straightforward to obtain

xc =
m1x1 +m2xs
m1 +m2

.

We denote the normal and friction forces at the contact limbC2 asFz andFx,

respectively. Due to slipping atC2, an ankle-like torqueT is modeled atC2. We also

denote the ZMP location atP with x-axis coordinateu. At this point we can move the

forces fromC2 without any additional moments ifT = Fz(xs − u). Taking the forces

atP without any additional moments, the rotational equation aroundC is obtained as

m1h1(ẍ1 − ẍc)−m2hc(ẍs − ẍc) = −Fxh2 + Fz(xs − u), (6.1)

wherehc = m1zc
m1+m2

andh1 = m2zc
m1+m2

are the vertical distance fromC to C2 andC1

to C, respectively; see Fig. 6.2(b). Noting thatFz = (m1 + m2)g due to no vertical

acceleration ofC, (6.1) is reduced to

ẍ1 − ẍs =
(m1 +m2)g

m2zc
(x1 − u) +

(m1 +m2)g

m1zc
(xs − u)−

Fx

m2

.

Along the horizontal direction, we obtain the governing equation of motion as

m1ẍ1 +m2ẍs = Fx.

Combining the above two equations, we obtain the governing equation of motion for

the two-mass LIP as

m1ẍ1 =
m1g

zc
(x1 − u) +

m2g

zc
(xs − u), (6.2a)

m2ẍs = −
m1g

zc
(x1 − u)−

m2g

zc
(xs − u) + Fx. (6.2b)

For normal walking without foot slip, the friction force is enough to keep the stance

foot stick to the ground. In this case, nonslip constraintẋs = ẍs = 0 is enforced. The
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capture point (CP) describes the relative motion of COM withrespect to the walking

stance point [58], that is, pointxs. Therefore, denotingδ = x1 − xs, the CP for the

two-mass LIP model is given by

ξ = δ +
δ̇

ω
, (6.3)

where constantω is determined later in this section. The human body has the tendency

to fall forward if ξ > 0 and backward ifξ < 0. For normal walking without slip,

differentiatingξ and usingẋs = ẍs = 0, we obtain

ξ̇ = ω

{

ξ − δ + 1

ω2

[
g

zc
δ +

g

zc

m1 +m2

m1
(xs − u)

]}

. (6.4)

By choosingω = ωw =
√

g
zc

and combiningδ dynamics with (6.4), we obtain the

motion dynamics

Σns :







δ̇ = ωw(ξ − δ),

ξ̇ = ωw

[

ξ − m1+m2

m1
(u− xs)

]

.

(6.5)

From (6.5), it is straightforward to show thatδ converges toξ while ξ dynamics is

divergent.

For walking with foot slip, the friction force is assumed to be proportional to normal

force, namely,Fx = − sgn(vs)µ(m1 + m2)g, whereµ is the friction coefficient and

vs = ẋs is the foot slipping velocity. In this case,ẋs 6= 0, ẍs 6= 0, similar to the

above nonslip case and denotingωs =
√

m1+m2

m2

g
zc

, we obtain the human locomotion

dynamics in state variablesx = [δ ξ]T as

Σs :







δ̇ = ωs(ξ − δ),

ξ̇ = ωs

[

ξ − m1+m2

m1
(u− xs) + µzc

] (6.6)

and the center of massC satisfies

ẋc = vc, v̇c =
Fx

m1 +m2
(6.7)
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wherevc = ẋc is the center of mass velocity. Note that we chooseωs =
√

m1+m2

m2

g
zc

such thatδ does not appear inξ dynamics in (6.6). We also assume that during the

entire slipping period,vs is positive and never changes directions.

Unlike the multi-link bipedal models [49], the above two-mass LIP model does not

explicitly differentiate the single- and double-stance phases of human walking. The

LIP model mainly captures the motion relationship among theCOM, ZMP and CP

and its simplicity is attractive for control systems designfor human locomotion. In

the two-mass LIP model, the human COM motion is captured by variablex1 and the

other variablexs represents the ankle position of the (leading) stance leg (non-slip or

slipping cases.) The switching of the single- and double-stance phases is captured

through the changing value of ZMP positionu, which can be discontinuous as shown

in experiments. Similar to the multi-link bipedal models [49], variablexs is relabelled

once the next heel strike happens or slip stops.

6.3 Balance recovery control with foot slip

6.3.1 Hybrid dynamics with foot slips

As discussed in Chapter 4, human walking dynamics are captured by both the discrete

events (e.g., heel strike and slipping) and continuous timesystems. In Section 4.3, we

showed the finite state diagram of the hybrid model for human walking with foot slip,

see Fig. 4.2, and we described the finite states and transition between them.

The dynamic modelΣns in (6.5) represents the continuous-time dynamics inS1
andS2, while modelΣs in (6.6) for S3 andS4. The transitions betweenS1 andS2
andS3 andS4 result in the possible discontinuous changes for ZMP positionu in the

model. Moreover, the human walker tries to control the ZMP positionu to prevent the

body from falling when foot slips happen. The triggering events between single- and

double-stance phases are the heel-strike and toe-off and these events can be detected by
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wearable sensors, such as shoe pressure sensors. The real-time detection and prediction

of foot slips can also be accomplished using the wearable inertial sensors [120]. The

end of the foot slipping event is considered to be determinedby the external conditions

(e.g., floor surface conditions), rather than by the balancerecovery control.

Due to the complexity of the walking and slip dynamics, the balance recovery

control strategies change for different phases. We consider the case when foot slip

happens after the heel strike. During the single-stance slip phase, the COM position

lags behind the ZMP and the control strategy is to recover therelative position between

COM and ZMP through fast, small, compensatory step to reach double-stance phase.

This is achieved by designing the swing time duration and thetargeted CP. During the

double-stance slip phase, if both legs slips, the control strategy is designed to regulate

the COM position to a quasi-static equilibrium such that thegait can transit to the

recovery steps once the slip stops. For non-slip recovery steps, the control strategy

mainly deals with how to re-position the ZMP within the foot supporting polygon.

In the following sections, we describe the above-mentionedrecovery control for

each phase and apply these control strategies to a balance recovery in the sequence

of S1 → S3 → S4 → S2 → S1. The description of this recovery example will be

discussed in details in Section 6.5.

6.3.2 Balance recovery control

6.3.2.1 Single-stance slip control

In this phase, foot slips once it touches down on the floor and at that time, the trailing

support leg is still in contact with the ground but is about toswing off the ground. We

treat this stage as a single-stance phase. It takes a short time (around hundreds msec.)

for human to detect slipping while still keeping normal walking gait. Due to slipping,

the COM lags behind the ZMP and the body tends to fall backward.
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The control goal in this phase is to adjust the relative COM and ZMP position by

controlled CP. The CP controller computes the input at timet such that at the end of

step timets, the CP reachesξd. Assuming a constant input fromt to ts, the CP position

is explicitly calculated by solving (6.6) as

ξ(ts) = eωs∆tξ(t) + (1− eωs∆t)∆u, (6.8)

where∆t = ts − t and∆u = m1+m2

m1
(u(t) − xs(t)) − µz. Letting ξ(ts) = ξd and

solving for inputu, from (6.8) we obtain

u = xs +
m1

m1 +m2

(
ξd − bξ(t)
1− b + µzc

)

, (6.9)

whereb = eωs∆t.

Plugging (6.9) into (6.6), the closed-loop dynamics is obtained as

ẋ =






δ̇

ξ̇




 =






−ωs ωs

0 ωs

1−b




x+






0

− ωs

1−b




 ξd. (6.10)

The system has the eigenvaluesλ1 = −ωs, λ2 = ωs

1−b
. When∆t > 0, 1 − b < 0

and therefore, both eigenvalues are negative and the systemis stable. Moreover, if

Fx = −µ(m1 + m2)g, from (6.7), v̇c = −µg < 0, and thenvc is decelerating until

slipping stops.

6.3.2.2 Double-stance slip control

Once the swing leg touches the floor, both feet are slipping. The human walker tries

to adjust the ZMP position to support the body movement and keep balancing until the

slip ends. Therefore, we consider a state feedback controller to regulate the gait to the

equilibrium point.

Similar to the previous case, we write (6.6) as

ξ̇ = ωs(ξ −∆u)
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We propose to use the state-feedback control

∆u = k1ξ + k2, (6.11)

where parametersk1 and k2 are obtained empirically from fitting the experimental

data of double-stance recovery steps; see Fig. 6.3 fork1 = 1.9 andk2 = 0.11. The

controller is stable ifk1 > 1. Ideally, this controller can drivex to the equilibrium at

origin xe = [0 0]T , that is,x1 = xs and ẋ1 = ẋs such that the model maintains the

slipping without falling. However, for a short time and short CP range, an aggressive

ZMP control could also work to drive CP from a negative towards positive values and

therefore to move COM ahead relative to the ZMP point.
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−0.6
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Experiments

∆u = 1.9ξ + 0.11

ξ

∆
u

∆u = ξ

Figure 6.3: Relationship of the ZMP control and the CP duringthe double-stance slip
recovery.

6.3.2.3 Double-stance nonslip control

When the foot stops slipping, the human upper body is still moving forward. Human

walker recovers either by a complete stop or normal gait of walking, depending on the

initial condition right after the nonslip phase begins.

In the double-stance nonslip phase, a linear quadratic regulator (LQR) is applied to
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perform the recovery. The CP dynamicsΣns (6.6) is augmented to

ξ̇r :=






ξ̇

u̇r




 =






ωw −ωw
m1+m2

m1

0 0






︸ ︷︷ ︸

Ar

ξr +






0

1






︸︷︷︸

Br

ar, (6.12)

whereur = u− xs and inputar = u̇r is the ZMP velocity. The objective function is

J =

∫ ∞

0

(
1

2
ξT
r Qξr +

1

2
arRar

)

dt,

whereQ ∈ R2×2, R > 0 are weighting constants. Since pair(Ar,Br) is controllable,

the LQR control is given asar = −Kξr, whereK = R−1BT
r S andS is the solution

of the algebraic Riccati equationAT
r S + SAr − SBrR

−1BT
r S +Q = 0. The ZMP

position also needs to satisfy constraint|ur| ≤ β, whereβ is the supporting polygon

length. When|ur| = β, the ZMP stays at the edge of support polygon and immediately

one foot should swing to initiate a compensatory step. The normal walking single-

stance control should be initiated.

6.3.2.4 Single-stance nonslip control

In this last phase, the human gait is recovered to normal walking. We apply the CP-

based normal walking control. The solution ofΣns in (6.5) is obtained as

ξ(ts) = bξ(t) + (1− b)m1 +m2

m1
(u(t)− xs(t)) (6.13)

where∆t = ts − t andb = eωw∆t. Lettingξ(ts) = ξd, the control inputu is obtained

as

u = xs +
m1

m1 +m2

ξd − bξ(t)
1− b . (6.14)

Control input (6.14) is similar to the single-stance slipping control (6.9) and the closed-

loop stability is obtained similarly.
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6.4 Design of balance recovery profiles

In this section, we present the recovery profile design that are used in the balance

recovery control discussed in the previous section. For thefour cases of the recovery

control, the planned single-stance duration∆t = ts − t and desired CPξd at ts are

the primarily profiles that need to be carefully computed. For double-stance slipping

control, the empirical profile is given from the experimental data as shown in Fig. 6.3.

During single-stance normal walking, the ZMP position is preferred to be close

to pivoting pointxs for robust disturbance rejection. Assumingu − xs = 0 during

the entire phase, from (6.13) we haveξd = ξ(ts) = eωw∆tξ(t). Typically we choose

ξd = dsl, wheredsl is the step length, then the single-stance duration is∆t = 1
ωw

ln dsl
ξ(t)

.

During the single-stance slip phase, the subject has the tendency to fall backward.

It is desirable to move ZMP backward as much as possible though its position is con-

strained by the length of the slipping foot support polygon (i.e., β). Meanwhile, the

swing leg needs to touch down on the ground as soon as possibleto initiate a recovery

double-stance double phase. From (6.8), we note that the endof step CP positionξ(ts)

is decreasing with an increase ofu − xs. To prevent the body from falling backward,

the value of termu − xs should be as small as possible, i.e.,u − xs = −β. Then we

have

ξ(ts) = bξs(t) + (1− b)
(

−m1 +m2

m1
β − µzc

)

. (6.15)

Therefore, if the single-stance slip duration∆t is determined by the shortest time the

swing foot touches on the ground, theξd is set atξd = ξ(ts) by (6.15), wherets =

t+∆t. In the following, we present how to compute smallest∆t.

By observing the transition fromS4 toS3, we further divide this transition into two

sub-phases. The first sub-phase represents a small time duration ∆t1 when both feet

are still in contact with the ground and the front leg is slipping after heel-strike. The

second sub-phase, with duration∆t2, starts from the swing leg leaving the ground until
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it touches again after performing a compensatory recovery step.

To compute∆t1, we use a pendulum model with rotating joint at the COM. As

shown in Fig. 6.4, we denote the absolute angleθ1(t) in the COM frame as the an-

gle between the vertical line and the swing foot. The pendulum motion represents the

“back-swing” of the trailing leg. At the beginning, angleθ1(t) is negative and is fur-

ther decreasing until̇θ1(t) reaches zero and at that moment, the first sub-phase ends,

namely, the trailing foot lifts-off and starts to swing forward.

x

z

dscl

Lp

−θ1

∆θ1

Figure 6.4: Schematic to compute the recovery time durationof the single-stance slip-
ping phase.

The governing equation of motion for the pendulum isθ̈1(t) + ω2
sθ1(t) = 0 and its

solution isθ1(t) = A sin(ωst) + B cos(ωst). Two initial conditions are used to obtain

constantsA andB: the initial angleθ1(t) and the initial angular velocitẏθ1(t) at timet.

The initial positionθ1(t) can be obtained by wearable gait sensor (e.g., inertial sensors)

and we use the COM velocitẏx1(t) to approximateθ̇1(t) = −ẋ1(t)/Lp, whereLp is

the distance between the heel of the trailing leg and the COM.With knownA andB,

we obtain∆t1 by settingθ̇1(t+∆t1) = 0 as

∆t1 =
1

ωs
tan−1

(
ẋ1(t)

Lpωsθ1(t)

)

.

The second sub-phase starts with the toe-off of the swingingleg and performing a

compensatory step. This observation is true for normal and fast walking speed [123].
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The response and reaction time vary among subjects, due to different capabilities of

musculoskeletal system and slip sensory systems. The time duration∆t2 of the second

sub-phase is estimated using the length of the compensatorystep lengthdcsl performed

by the swing leg. We use the empirical results between the human walking speed and

dcsl reported in [123], that is,

dcsl = hh

(

0.9003
ẋ1√
ghh
− 0.0622

)

,

wherehh is the human height anḋx1 is the COM horizontal velocity. We use the same

pendulum model with a natural frequencyωp =
√

g
Lp

as shown in Fig. 6.4. The initial

angle is obtained from the previous sub-phase asθ1(t + ∆t1) =: θ1(t
f
1). Due to the

heel pivoting effect around the toe, a non-zero initial angular velocity θ̇1(t + ∆t1) =

ẋh/Lp, where the heel velocitẏxh is obtained from the previous step during the toe-off

phase. The final pendulum position at the swinging leg touch-down is then obtained as

θ1(t + ∆t2) = θ1(t
f
1) + ∆θ1, where∆θ1 = dcsl/Lp for small angle∆θ1. Solving the

equation

θ1(t
f
1) +

dcsl
Lp

=
ẋh
Lpωp

sin(ωpt) + θ1(t
f
1) cos(ωpt)

for time ts = tf1 +∆t2, we obtain

∆t2 =
1

ωp

(

sin−1 Lpθ1(t
f
1) + dcsl
LpC

− tan−1 ẋ1ωp

Lpθ1(t
f
1)

)

,

whereC =
√

ẋ2
1

L2
pω

2
p
+ θ21(t

f
1). With the estimated∆t1 and∆t2, we compute∆t =

∆t1 +∆t2.

6.5 Experimental results

In this section, we use experimental data to validate the proposed model and demon-

strate the control design. The experiments are conducted inindoor setup and several

subjects are recruited to conduct slip-and-fall walking. The subjects’ gaits are captured
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t=0.51s t=0.61s t=0.71s t=0.81s t=0.91s t=1.01s t=1.11s t=1.21s t=1.31s t=1.41s

Figure 6.5: The snapshot sequences that show a successful balance recovery control of
walking with foot slips.

by the motion capture system (from Vicon Inc.) and wearable force/torque sensors

are embedded in the shoes. Wearable inertial sensors are also attached to the subjects’

limbs to detect the foot slips. More details of the experimental setup are presented

in [32, 120]. The subjects are asked to walk on a wooden platform and soap fluids are

used to create slippery surface condition on some portions of the platform. Subjects are

not informed about the location of these low friction portions. The friction coefficient

of the slippery ground is measured asµ = 0.05.

We present a balance recovery control experiment with snapshots shown in Fig. 6.5.

As mentioned in Section 6.3, the entire balance recovery control is described as the

sequence ofS1 → S3 → S4 → S2 → S1 as follows. The subject conducts normal

single-stance walking (i.e.,S1) before foot slips starts. Att = 0.51 s, the slip happens

when the right leg touches down on the floor. We refer this phase as the single-stance

slip, i.e.,S3. Meanwhile, the trailing leg is almost about to leave the ground and then

swings in the air. The subject detects the right foot slip andtries to move the swing leg

to touch on the ground as soon as possible and to place the ZMP backward to counteract

the gravity torque. Att = 0.77 s, the swing leg touches on the ground and two feet

support the body. Fromt = 0.77 to 0.97 s, both feet are slipping on the ground and

this period is the double-stance slipping phase, i.e.,S4. During this period, the ZMP
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Figure 6.6: Simulation and validation of the two-mass LIP model with the experimental
data.

location is manipulated to prevent body from falling. Att = 0.97 s, both slipping

feet hit on the high-friction surface and slipping stops. From t = 0.97 to 1.21 s, both

feet stand on the ground without slip. We refer this period asa double-stance nonslip

phase, that is,S2. At t = 1.21 s, the left foot begins to leave the ground and takes one

compensatory step. Att = 1.39 s, the foot contacts the ground before the swing leg

contacts and this is a single-stance normal walking phase, i.e.,S1.

We first demonstrate the validation of the proposed two-massLIP model. Fig-

ure 6.6 shows the model prediction results with the experimental results comparison.

The model prediction results are obtained by using the calculated ZMP profile in the

experiments as inputs toΣns andΣs. For comparison purpose, we use the same human

subject experiments shown in Fig. 6.5. In the plot, five vertical lines att = 0.51, 0.77,

0.97, 1.21, and1.39 s separate the balance recovery duration into different phases as

described previously. The prediction results of both the COM (x1) and the slipping foot

position (xs) match the experimental results closely throughout all fivephases. These

results confirm that the two-mass LIP model captures the human balance recovery mo-

tion.

We next show the proposed recovery control design. Figure 6.7 demonstrates the
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Figure 6.7: Simulation results of the control design and comparison with the experi-
mental data.

performance of the hybrid control design for the same recovery experiment shown in

Fig. 6.5. The simulation results in the figure are under the proposed hybrid control

design. During the first phase (S1), the two-mass LIP model witḣxs = 0 constraint

is simulated with the single-stance nonslip control. Att = 0.51 s, the single-stance

slip control is initiated with the initial conditions ofxs andẋs matching the experiment

data (inS3). The recovery profile, that is,ts (= 0.51 + ∆t) and ξd, are calculated

by the design presented in Section 6.4. For example, the experimental and predicted

time durations of the first sub-phase are∆t1 = 0.1 and0.101 s, respectively, and for the

second sub-phase these values are∆t2 = 0.16 and0.152 s, respectively. The prediction

of the total time duration of the single-stance slip phase is∆t = 0.253 s and the actual

duration in experiments is0.26 s. These results confirm the correctness of the desired

profile design.

DuringS3, the CP value decreases and the subject has great tendency tofall back-

ward. Fromt = 0.77 s, the double-stance double slip control is applied to control

the phaseS4. The double-stance slip lasts for0.2 s and then both feet stop slipping.

After this incidence, the CP value jumps and becomes positive because the feet stick

to ground and the COM velocity is moving forward. The human now has tendency to
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Figure 6.8: The balance recovery performance under variousperturbed conditions. (a)
Reduced heel-strike contact angle. (b) Increased initial slipping velocity. (c) Longer
single-stance slipping duration. (d) Longer double-stance slipping duration.

fall forward. During this recovery stepS2, the LQR is used to stabilize the motion.

If the ZMP position reaches the edge of the support polygon, the control strategy im-

mediately switches to the single-stance normal walking phase and recovers to normal

walking. The controlled recovery gaits shown in Fig. 6.7 clearly confirm the consistent

performance with the experiments.

We further apply the proposed balance recovery control to the above example with

several variations. We perturb the initial state values andthe timings of critical discrete

events to explore how the recovery results change with respect to these perturbations.

The perturbed variables include the initial heel-strike angle, initial slipping velocity,

and the durations of the single-stance slip phase and the double-stance slip phase. We



121

only change one parameter at a time and keep all other variables the same as in the

experiments. The simulation results of the controlled gaits under these perturbations

are shown in Fig. 6.8.

To capture the heel-strike angle, we change the initial value of xs − xc, i.e., the

distance between the foot and the LIP mass center. Figure 6.8(a) shows the simulation

results with increasedxs − xc, that is, decreased heel-strike touchdown angle. Com-

pared to the experimental data in Fig. 6.7, the CP is further negative and decreases

rapidly, which implies greater tendency to fall backward. Consequently, at the begin-

ning of double-stance nonslip phase, the capture point is still negative. The simulated

motion does not have the tendency to fall forward. The human walker comes to stop

within the double-stance nonslip phase.

Simulation results shown in Fig. 6.8(b) uses the doubled value of the initial slipping

velocity ẋs as that in the experiment. The resulting recovery behavior is similar to that

of increasing initial value ofxs − xc discussed above. It is understandable that the

effect of the increasing initial slipping velocity on balance recovery would be similar

to that of an decreased heel-strike angle.

A longer single-stance slipping duration happens when the subject has a larger

delay time to detect the slip or react to the slipping event. Figure 6.8(c) shows the

simulation results with a0.6 s longer duration of the single-stance slip phase than that

in experiments. As shown in the figure, both slipping distancexs and the COM diverge

during the single-stance slipping phase and indeed, the human falls quickly before the

foot slip stops. In this case, the recovery control fails to keep the human balance.

Therefore, it is critical for human sensorimotor mechanismto react quickly to the slip

event to prevent falling consequence.

We now consider a longer duration in the double-stance slip phase. Having a long

double-stance slip duration might not generate falling risk for human walkers who can

handle the situation when both feet slip simultaneously. Anextreme example is the
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skilled ice skating players who can balance well while both feet slip for long time or

long distance. Figure 6.8(d) shows the simulation results under a long duration of the

double-stance slip phase. Clearly, the results show that the human achieves a stable

configuration that keepsxs close to the COM, that is,ξs close to zero. This implies

no tendency to fall down and the human walker finally recoversto stop due to the

increased friction force.

All of the above simulation results under perturbed conditions have demonstrated

that the two-mass LIP model and the balance recovery controlare capable to capture

the key features and characteristics in slip-and-fall dynamics.

6.6 Design of a robotic knee assistive device (ROKAD)

The design of the robotic assistive device is built upon the results of a preceding anal-

ysis of the maximum human knee torques, angular velocities and power requirements

during successful slip recovery. Figure. 6.9(a) shows the comparison of the knee joint

moments in the sagittal plane of a representative subject inthe experiments during nor-

mal walking and walking with recovered slip. The experimental data are taken from

our initial study [120] and the subject was a young healthy male. The torques were

computed in the OpenSim software [150] through the inverse dynamics using the mo-

tion capture kinematic data and the GRF measurements from the wearable force plates.

The kinematic data was filtered using a second order low-passfilter with a cutoff fre-

quency of6 Hz [151].

The difference between the magnitude of the peak torques during normal walking

and walking with foot slip shown in Fig. 6.9(a) is taken as thereference to determine

the torque requirement of the knee assistive device. From the figure, the maximum

difference of body weight normalized knee torques is0.9 Nm/kg. Considering the

maximum weight of the subject as100 kg, the maximum assistive torque would be
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Figure 6.9: Right leg knee (a) torque, (b) angular velocity,and (c) power during normal
walking (one step before slip) and during foot slip startingat the heel strike.

approximately90 Nm.

Figure 6.9(b) shows the knee angular velocity profiles during the normal walking

and walking with foot slip. The maximum absolute value of themaximum or minimum

angular velocity peaks during slip was313 deg/s. Figure 6.9(c) shows the computed

knee power during the normal walking and the walking with foot slip. From the esti-

mated torque and joint angle velocity we obtain the estimated maximum power during

slip recovery control around150W .

Based on the above analysis of the desired maximum angular velocity and maxi-

mum torque specifications, we select the appropriate motor and gears (i.e., gear ratio),
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and design other components of the assistive device. Similar specifications were re-

ported for the knee perturbator in [78] with the characteristics of angular perturbation

speed360 deg/s, maximum torque80 Nm and holding torque of a clutch115 Nm.

Other desired requirements of the device include lightweight (mass< 3 kg), low power

consumption, unconstrained full range of motion of the kneejoint (0− 120 deg), com-

pliance at human-device interface (similar to SEA), minimally intrusive during regular

walking and to allow normal unconstrained motion of individuals wearing the device.

To incorporate these features, we integrate a torsional spring and a clutch-type mecha-

nism into the design of the robotic knee assistive device.

6.7 ROKAD prototype

Figure 6.10 shows the prototype of the robotic assistive device. The actuators, battery

and the embedded systems are dislocated from the knee to minimize the weight on

the knee joint to allow natural walking pattern, see Fig. 6.10. Figure 6.11 shows the

cross-section of the wearable part of the device with markednotations of the individual

parts.

The device is driven by an electric motor (Magmotor Inc.,150 W brushed servo

motor, modelS23−150, with a500 cpr encoder). The motor control board (Sabertooth

Inc., model2 × 60) is powered by a30 V battery and used to control the main motor.

The main load is transferred from the motor through a bi-directional flexible shaft (C)

(S.S. White Inc, model Ready-Flex187L, 30” long), which is connected to the exten-

sion shaft (D) supported by the bearings. Spiral miter gears(E) are used to transfer the

axis of rotation for90 degree along the main axis of the device, where the other pair

of the miter gear is rigidly connected to the input side of theharmonic drive (F) (Cone

Drive Operations Inc., model CBC20) with80 : 1 gear ratio. This is the maximum

suggested gear ratio to be used for biomimetic joint actuation [152]. The fixed part of
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Figure 6.10: The robotic knee assistive device prototype.

the harmonic gear is mounted to the upper link (A) by using standoffs (P). The upper

link of the device is attached to the thigh using a thigh brace(Alimed Inc.). The output

side of the harmonic drive is rigidly mounted to the main shaft (H), supporting plate

(I), thin cylinder (J) and one end of the torsional spring (K). A needle roller bearing

(N) (INA Inc., model K70×76×20A) is used to allow smooth rotation of the cylinder

around the fixed part of the gear. Such configuration also reduces load on the main

shaft and constrains tilting motions and allows only the pure rotation of the harmonic

gear output. The other end of the torsional spring is attached to the brake disc (L) that

is fixed to a flange (M) and can rotate around the cylinder (J) through another roller

bearing (N) (INA Inc., model K80×86×20A). Disc brake calipers (O) are mounted on

the lower link (B) that is attached to the shank using the straps. Based on the desired

maximum torque and using the recommendations from [153, 154], we have chosen a

torsional spring with the approximate stiffness of150Nm/rad. The actual stiffness of

the coil torsional spring (Peterson Spring Inc., OD=104.41mm, wire diam.=8.41mm)
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is 166 Nm/rad.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

(a)

U

S

Q

R

T

(b)

Figure 6.11: CAD model render of the device: (a) a lateral cross-section along the axis
of the flexible shaft attachment, (b) cross-section showingthe placement of the two
rotary potentiometers.

To measure the knee angle we use a rotary potentiometer sensor (U) between the

thigh (A) and the shank (B) link, see Fig 6.11(b) and Fig. 6.12. Two stoppers on the side

of the thigh link are used to limit the motion of the brace within a regular knee range

motion0− 120 degrees. An additional rotary potentiometer (R) is used to measure the

torsional spring deformation by measuring the displacements between the cylinder (J)

and the disc brake (L). Contact between the friction wheel (Q) on the potentiometer and

slider (S) attached to the disc brake rotates the potentiometer. Due to a large diameter

ratio (∼ 7 : 1) of both elements in contact, the small spring deformation results in a

large rotation of the potentiometer.

The clutch-type mechanism consists of a bicycles disk brakes providing high brak-

ing/friction force(∼ 775 N) [155] and is therefore capable of holding a large torque.

Brakes (Sram Inc., model Avid BB7) allow precise adjustments of each side of the pad
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Figure 6.12: Gear assembly of the device with (a) rotary potentiometer to measure
spring deflection and (b) rotary potentiometer to measure the knee angle.

on the calipers against the disk rotor and also minimizes clutch activation time. Such

simple design guarantees the functionality and satisfies design requirements, although

the design has not been optimized to minimize the weight.

For the purpose of onboard measurements and control, we use areal-time embed-

ded system (MyRIO from National Instruments Inc.) to sampleand process all the

sensors and the wearable motion sensors measurements at1kHz. The characteristics

and specifications of the knee assistive device are listed inTable 6.1.

Table 6.1: Specifications of the assistive device prototype

Max Torque 90 Nm
Max Ang. Vel. 360 deg/s

Gear ratio 80 : 1
Spring stiffness 166 Nm/rad
Motor power 150W

Mass (knee part) 2.5 kg
Mass (backpack) 4.2 kg

Following the observations from the previous sections, we propose the slip recov-

ery control strategy of the robotic knee assistive device tofollow the human recovery

reactions during slip that are obtained in experiments. Similar approach was proposed
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in a recent paper [156] for the design of the lower limb prosthetics controller. Mea-

suring of the muscle activity using electromyography (EMG)during walking with foot

slips and walking on a slippery surfaces was reported in [86,156]. Indeed, muscle re-

sponse during slip was reported to be similar for young and older adults [86], starting

with the activation of the Medial Hamstring at∼ 175 ms, and followed by the onset

of the Vastus Lateralis at∼ 240 ms after the heel contact. These findings match well

with the onset of slip recovery reactions reported in [119].In [84] the reaction time is

defined as the occurrence of corrective moments at the knee and hip joint as an attempt

to recover from slip. The onset of such corrective reactionswas reported to start be-

tween 25% and 45% into stance, corresponding to approximately 190 ms and 350 ms

after heel contact, respectively.

It was suggested in [84,86] that the human reaction strategies to foot slip consist of

the primary and secondary responses. In the primary response, the human tries to first

bring the slipping foot closer back under to the COM. This is performed by initiating

the knee flexion and hip extension moments at approximately 200 ms after the heel

contact. Immediately after follows the secondary responsewhen the human tries to

stabilize itself by generating knee extension and hip flexion moments on a slipping leg

as a support during slip [84]. Similar observations and conclusion were also reported

in a study to investigate the earliest deviations of gait parameters during slip [157].

These reported timings of the corrective reactions match well with our experiments of

the knee moment profiles shown in Fig. 6.9(a).

Typical series elastic actuators use the measured spring deflection to compute the

actuator torques in the controller design [141, 158, 159]. Contrary to this approach,

a PID-based torque control was implemented using the difference between a desired

and the actual knee angle in [79]. We will choose the impedance control between

the subject and the knee assistive device, which is suggested to be used for compliant

actuators in exoskeletons [132,160].
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6.8 Conclusion

We presented a new dynamic model and control strategy for balance recovery in slip-

and-fall human walking. The simple linear inverted pendulum cannot capture the key

features such as non-periodic gait motion when foot slips and therefore, we presented

a new two-mass LIP model for slip-and-fall human locomotion. Based on the new

model, a hybrid control design was presented to drive the capture point along certain

profiles for balance recovery during various slipping phases. Some key parameters

such as slipping phase duration and the targeted CP were obtained by using the biome-

chanics models. Experiments and simulation results were presented to illustrate and

demonstrate the model and the controller design. We also presented the performance

of the balance recovery control under various perturbed conditions and compared these

performance with the experiments.

In the second part of the chapter, we presented the preliminary design of a novel

robotic knee assistive device (ROKAD) for slip-induced fall prevention. The advan-

tages of ROKAD lie in its unique capabilities of generating ahigh torque(∼ 90Nm)

and high angular velocity(∼ 360deg/s). The embedded torsional spring allowed de-

sired compliance for human-device interactions [141, 158,161]. The use of a clutch

mechanism allows the device to be actuated only after the slip is detected and allows

free motion during normal walking. All these features aim atminimally invasive to

human natural gait during regular walking.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation we presented a modelling, sensing and control framework for hu-

man slip-and-fall application. We thoroughly investigated and analysed three main

aspects of human slip-and-fall: (i) slip generation and evolution, (ii) slip detection and

prediction, and (iii) slip recovery control strategy usingbipedal dynamics model. We

also developed a robotic assistive device for slip-inducedfall prevention.

Prediction of human foot slip during walking was achieved byanalysing the shoe-

ground interactions. The shoe-ground interactions provide the traction and braking

forces and torques to support human walking. By understanding the friction force

distribution and local slips detections within the shoe-floor contact area [32], we can

predict the slip evolution in human walking. We proposed themodel for the normal

load distribution and the quasistatic model for the friction force and deformation dis-

tribution during normal walking and slip gaits. Detection of slip occurrence was in

good agreement with the traditional slip prediction methodusing the RCOF. The ad-

vantage of using deformation measurements over using RCOF for slip prediction is

that no information about the actual coefficient of frictionis required. Along the same

general framework of investigation of the shoe-ground interaction for slip prediction,

we proposed a novel dynamic friction force model with applications to a general soft-

solid contact application. We integrated the LuGre friction model with the beam-spring
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network model to compute the friction force and deformationdistributions on the soft-

solid contact interface. The advantages of this dynamic model lie in its ability to cap-

ture the friction dynamics of the soft-solid contact and to simplify the calculation of

the friction force and deformation distributions on the contact patch. The modelling

scheme was validated using the fingertip-like contact application. The model predic-

tion results of the friction forces and deformation distributions matched the experimen-

tal results.

For slip detection and monitoring during normal human walking, we proposed a

novel real-time foot slip detection method. The method is based on the dynamics of

the slipping leg, measured by the IMUs attached on the slipping leg, and integrated

sensor measurements fusion through an EKF design. The method used inexpensive,

lightweight and non-intrusive sensors for human mobility.The results showed that the

method successfully predicted slipping distance with an accuracy of a few centimeters.

Furthermore, we proposed a novel slip indication variable to determine whether the

foot slip occurred. The slip indicator was based on a physical behavior of the COM

movement about the heel and the acceleration of the stance leg heel itself during normal

walking and walking with foot slip. Successful detection ofunexpected slip events was

validated through extensive multi-subject experiments.

For the slip recovery control during human walking locomotion, we first built an

analytical 7-link planar bipedal dynamic model with a relaxed non-slip foot assumption

used in the existing bipedal models. We developed hybrid bipedal slip dynamics model

and the hybrid zero dynamic controller to match the the humangait profiles. The

simulation results of the joint angles and the ground reaction forces (GRF) matched

the experimental data. These analytical tools will be used as a foundation to propose a

controller for successful slip recovery controller in our future work.

Control and prevention of slip-induced falls would be a natural extension of the

work presented in previous chapters. To study a human balance control, we proposed
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a new two-mass LIP model and control strategy to capture balance recovery during

normal and slip-and-fall human walking. CP-based hybrid control was used to design

and drive the recovery CP profiles along those from the experiments. Experimental and

simulation results were presented to validate the model andcontroller design. Lastly,

to examine slip-induced fall prevention possibilities, wedesigned and fabricated a pro-

totype of robotic knee assistive device. We hypothesized that the assistive knee torque

could contribute to successful slip recovery and prevent fall. Our robotic knee device

was designed to meet the maximum torque (90 Nm) and angular velocity (360 deg/s)

requirements, as observed from the slip experiments. The controller design and exten-

sive human subject testing of the robotic knee device remainas our future work and

are out of the scope of this dissertation.

7.2 Future work

As the future extension of this dissertation and our slip-and-fall study, we plan to con-

duct bench testing of our wearable robotic knee assistive device to guarantee the op-

timal and safe operation of the device. Next, we plan to implement the impedance

control for the human-device interaction and test the device on human subjects. Fur-

ther control strategies based on the human responses to the device actuation might be

considered and evaluated as an ongoing research development. At the last stage, we

will implement and test the device for prevention of falls for healthy subjects under

foot slip.

Note that the fall prevention device developed in this dissertation is a preliminary

version and will not have the capabilities to prevent all possible slip-induced falls. The

presented device is designed for fall prevention of only onespecific slip case, more par-

ticularly, a slip starting shortly after the heel strike, because of its common occurrence

in personal daily activities. Indeed, depending on the severity of the slip, the control
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strategies may vary quite significantly. Additional extension of the proposed work and

also an alternative to our proposed recovery control strategy approach is to actuate also

the swing leg during slip and therefore shorten the compensatory step length. Compen-

satory stepping was suggested to be the key factor to maintain stability during balance

loss [123]. The advantage of such an approach would be to instantaneously increase

the base of support during slip and chances of recovery. Moreover, due to the presence

of potential high interaction forces at the human-device interface, special care and con-

sideration will have to be taken during human subject testing. For subject testing and

evaluation of the functionality of the device, we plan to discuss and work with our part-

ners at Kessler Institute of Rehabilitation. We will evaluate the proposed control and

robotic devices on multiple subjects under the clinicians guidance and use the existing

balance criteria and scales to determine the successful rate under the support of our

assistive devices.

Further future direction of our research lies in an additional extension of our the-

oretical and simulation-based approach of foot slip analysis. We are currently work-

ing on integration of the two-mass LIP model and balance control with the multi-link

bipedal model to investigate the optimal control laws to recover stability during walk-

ing with foot slip. Along this research avenue, another research approach is to integrate

the two-mass LIP model and balance controllers of the wearable robotic knee assistive

device for slip-and-fall prevention. Optimization based full-body control frame work

can be one solution to design the balance controller.

Another ongoing research task, is the integration of the slip detection algorithm

with the wearable robotic assistive devices to prevent slip-and-fall. Further improve-

ment of the accuracy of the proposed slip detection algorithm can be investigated

through the extensive human subject experiments. We plan tofurther investigate the

shoe-floor interactions by applying the presented dynamic soft-solid contact model for

slip prediction. Applying the soft-solid contact model to other robotic and mechatronic
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systems such as tire-road interactions and robotic grasping is also among the future re-

search directions.
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