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Nowadays, the demand for Micro Aerial Vehicles (MAVs) is growing rapidly in both commercial and 

military use. Due to the excellent flapping flight capability, insects now serve as a main source of 

biological inspiration for the researches of future micro air vehicles. As the most important organ of flight 

for insects, insect wing, especially its deformation partially controlled by the vein arrangements, is now 

becoming a key factor for the research and the design of insect-like MAVs. The purpose of this research 

is to analyze the effect of the two different kinds of veins and their arrangements on the insect wing 

structure with Finite Element Method. A simplified wing modelling meshed with the Stiffened Shell 

Elements is tested under different vein arrangements. The correlated natural frequencies and modeshapes 

are achieved and analyzed for each case. Through the analysis, we can eventually conclude the effects of 

longitudinal veins, cross veins and their combined arrangements on the wing structure, respectively.   
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Chapter One 

Introduction 

 

1.1  The background and purpose of the research 

In the past few years, the demand for Micro Air Vehicles (MAVs) has been growing at a rapid pace. 

Its advantages in versatility, maneuverability, cost-efficient and counter-observation ability makes it 

increasingly popular in both civil and military use. Insects now serve as a main source of biological 

inspiration for the researches of future micro air vehicles due to their excellent flapping flight capability. 

Especially for the unmanned intelligence, surveillance and reconnaissance purposes, insect’s ability to 

hover in flapping flight and its feature of micro geometry size make it an incomparable research target. 

As the organ of flight for insects, insect wings are extraordinary examples of small-scale biological 

engineering: small, flexible aerofoils with no parallels in technology [5]. By studying and understanding 

the functions of the wing structures, one may get closer to reproduce the flight features of insects on 

MAVs. Most of the wing consist of membrane supported by veins [7]. Here, the veins are cuticular tubes 

containing hemolymph and often tracheae and nerves. There are two kinds of veins. One is main or 

longitudinal vein, which radiates from the base, often branching distally, and the other one is cross-vein, 

which links the longitudinal veins [7].  

  Other than supporting the membrane, the veins on the wing structure also play a major role in the 

flight of insects. In flapping flight, insect wings not only change their direction movement and their angle 

of attack relative to the airflow, they undergo deformation, which may actually be necessary for the 

generation of sufficient aerodynamic force [7]. The deformation of the wings is partially controlled by 

the active muscular forces. However, the forces cannot entirely control the wing shape. They can only 
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interact dynamically with the aerodynamic and inertial forces that the wings experience and with the 

wing’s own elasticity. The instantaneous results of these interactions are essentially determined by the 

architecture of the wing itself [7].  

  In this research, we mainly focus on one of the most important features of the wing’s architecture: the 

distribution of the veins. Through analyzing the effect of different distributions of the veins on the wing’s 

deformation, we will have a clearer idea of how different kinds of veins and their combinations will affect 

the wing’s performance during the flight and we will be one step closer to design a much more efficient 

wing structure with optimized vein distribution for the future insect-like Micro Air Vehicles.  

1.2  The method of the research  

The Finite Element Method is among the most commonly used structural dynamic analysis method 

when it comes to the researches on the insect wing structure. In most cases, a certain species of insect in 

chosen as the research object [1,2,4]. During the researches, the characteristics of wing structures are 

found through various experiments and correlated Finite Element Modelling [1-4,6]. It seems to be 

reasonable and guaranteed to apply such method to the current research. However, such technique fails 

to fulfill the requirements of the research. 

The purpose of the research is not to replicate the performance of specific wing structures, but to 

analyze the effect of veins on the wing structure in a general setting. Thus we use a simplified wing 

model and set up different test cases, each corresponding to a different vein distribution. Then the wing 

model is meshed with a special customized shell element, that is, the Faceted Stiffened Shell with Allman 

Membrane Triangular Element. The stiffness matrix and the mass matrix of the selected element is 

derived to form the linear eigenvalue problem equation of structural dynamics. A matlab program is 

developed to solve the problem and get the natural frequencies, as well as the related modeshapes for 
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each test case. By aforementioned technique, we can eventually find out how different kinds of veins and 

their distributions affect the wing structure.   
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Chapter Two 

Finite Element Method 

 

2.1  Introduction to Faceted Stiffened Shell with Allman Membrane Triangular Element 

 

  The Faceted Stiffened Shell with Allman Membrane Triangular Element is a triangular element that 

consists of the Kirchhoff Plate Bending Element, Allman Membrane Element and 3-D Euler Bernoulli 

Beam Element. Here, the 3-D Euler Bernoulli Beam Elements are used to stiffen the edges of the 

triangular shell element, of which the purpose is to reproduce the function of veins in the following 

dynamic structure analysis. The stiffened shell element has six degrees of freedom, which ensures it to 

display the structure deformation correctly.    

 

2.2  Components of the Stiffened Shell Element  

 

2.2.1  3-D Euler Bernoulli Beam Element  

  The 3-D Euler Bernoulli Beam Element is an extension of 2-D Bernoulli model. Therefore, the 3-D 

Element should be developed within the structure already defined for the 2-D beams and more generally 

for all structural mechanics elements [8]. More specifically, it is developed based on the 2-D Euler 

Bernoulli Beam Element, Rod Element and Torsion Element in the same defined structure. All the three 

elements follow Bernoulli’s law. It corresponds to the relation expressed as: Planar cross sections which 

are perpendicular to the axis will be conserved in deformed configuration. Detailed derivation of each 

element is discussed in the following sections. 
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Fig 2.0 System if coordinates considered in this section [8] 

 

2.2.1.1  Rod Element 

  The Rod Element represents the axial behavior of the 3-D beam element, of which the statement is 

shown in the figure below. As we can see in the figure, the cross section of the rod has a constant area A. 

Here, N denotes the normal stress and u(x) is the displacement field. q(x) is the given distributed load 

along the rod’s surface.  

  

q(x)∆x      

 

 

  

Fig 2.1  Axial Behavior 

Kinematic relation, which is derived from the Bernoulli’s law, and Stress-Strain relation are shown 

below: 

 
εxx =

∂u

∂x
     σxx = Eεxx 

 

(1) 

with εxx the axial strain. 

 

Equation of motion is given by 

N + ∆N N 

∆x 

ρAdxü 
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 N + ∆N − N + q(x)∆x = ρAdxü 

dN

dx
+ q(x) = ρAü 

 

 

(2a) 

Where                       

 N = ∫ σxxdA
A

= ∫ E
du

dx
dA

A

= EA
du

dx
= EAεxx  

(2b) 

After getting the equations above, we can now apply the P.V.W, that is, the principle of virtual work, 

to get the finite element formula of the element. The equilibrium field is  

 
dN∗

dx
+ q∗(x) = ρAu∗̈  

 

And the compatible field is  

ε̂xx =
dû

dx
 

Then we can get the integral equation: 

 ∫ N∗ε̂xxdx
L

0

= ∫ N∗
dû

dx
dx

L

0

= [N∗û]0
L −∫

dN∗

dx

L

0

ûdx

= [N∗û]0
L +∫ q∗(x)

L

0

ûdx − ∫ ρAu∗̈ûdx
L

0

 

 

 

 

(3) 

The generalized displacements at end points are: 

 ∆1= u(0),     ∆2= u(L) (4) 

And the generalized forces are: 

 Q1 = −N(0),   Q2 = N(L) (5) 

Therefore, equation (3) becomes 
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∫N∗ε̂xx dx =∑Qk

∗ ∆̂k

2

k=1

+∫ q∗ûdx
L

0

−∫ ρAü∗û
L

0

dx 
 

(6) 

The selected interpolation polynomial for u 

u = a0 + a1x 

that satisfies (4) is given by 

 
u(x) =∑∆k∅k

2

k=1

 
 

(7) 

Where 

∅1(x) = 1 −
x

L
,             ∅2(x) =

x

L
 

With the equations above, we can now start deriving the FEM formulation by selecting 

u∗ = ∑ ∆j∅j
2
j=1  and û = ∅i 

in       

∫ AE(∑∅j
′∆j

2

J=1

L

0

)∅̂i
′dx = Qi +∫ q∗∅idx

L

0

−∫ ρA(∑∅j∆̈j

2

j=1

)∅idx
L

0

 

And then we have: 

∑AE(∫ ∅j
′

L

0

∅i
′dx

2

j=1

)∆j= Qi +∫ q∗∅idx
L

0

−∑ρA

2

j=1

(∫ ∅j∅idx
L

0

)∆̈j 

  It can also be shown in the form:  

 
∑Kji

2

j=1

∆j +∑Mji

2

j=1

∆̈j= Fi 
 

(8) 

where 

Kji = AE∫ ∅j
′

L

0

∅i
′dx 

Mji =  ρA∫ ∅j∅idx
L

0
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Here, K and M are the stiffness matrix and the mass matrix of the rod element, respectively. The 

matrix form of K and M are shown below: 

 K =
AE

L
[
1 −1
−1 1

]         M =
ρAL

6
[
2 1
1 2

] (9) 

 

2.2.1.2  2-D Euler Bernoulli Beam Element 

The Euler Bernoulli Beam Element and the Timoshenko Beam Element are the two most common 

elements used in the Finite Element Analysis when it comes to the beam or frame problems. They both 

represent the planar flexural behavior of a 3-D beam element. In this case, the Euler Bernoulli Beam 

Element has been chosen since the length-width ratio of the veins on insect wing structure is much larger 

than 10:1 and the rotation of the cross-section plane is not necessarily to be taken into consideration. The 

statement of 2-D beam element is shown in the Fig 2.2. 

 

 

  

  

Fig 2.2 Planar Flexural Behavior 

  As we can see in the figure above, M denotes the bending moment and V denotes the shear force acted 

on the element. w(x) is the distributed load on the element and v(x) is the displacement in y-direction. 

  To get the stiffness matrix and the mass matrix of Euler Beam Element, we need to analyze the element 

y 

x 
∅1, m1  ∅2, m1  

f1y, d1y  f2y, d2y  

M M v, y 

x 
V V 

w(x) 

v(x) 

y 

dv

dx
 

w(x)dx 

dx 

M 

V 

M+dM 

V+dV 
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under static condition in the first place, by which mean we can easily achieve the stiffness matrix. 

Let’s start from the shear force-bending moment-deflection relations. First, we have:  

1) Force equilibrium equation 

−wdx − dV = 0 

2) Moment equilibrium equation  

−Vdx + dM = 0 

Rearrange the two equations and we have the following relations:  

w = −
dV

dx
   V =

dM

dx
 

  The axial strain and stress are: 

u = −y
dv

dx
 

εx = −y
d2v

dx2
 

σx = EεX = −yE
d2v

dx2
 

Then we define that: 

M = −∫ σxdA
A

= E∫ y2
d2v

dx2
dA = EI

d2v

dx2A

 

K =
M

EI
=
d2v

dx2
 

  Therefore, we can get:  

∫σx εxdV = ∫σx (−y
d2v

dx2
) dV = ∫ (∫ −y

A

L

0

σxdA)
d2v

dx2
dx =  ∫ MKdx

L

0

 

 

Now apply the principle of virtual work: 

The equilibrium field is  

d2M∗

dx2
= −w∗    

dM∗

dx
= V∗ 

The compatible field is 
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K̂ =
d2v̂

dx2
 

Thus we have: 

∫ M∗K̂dx
L

0

= ∫ M∗
d2v̂

dx2
dx

L

0

= [M∗
dv̂

dx
]0
L −∫

dM∗

dx

dv̂

dx
dx

L

0

= [M∗
dv̂

dx
]
0

L

− [
dM∗

dx
v̂]
0

L

+∫
d2M∗

dx2
v̂

L

0

dx

= [M∗
dv̂

dx
]
0

L

− [V∗v̂]0
L +∫ (−w∗)v̂

L

0

dx

= M∗(L)
dv̂

dx
(L) + (−M∗(0))

dv̂

dx
(0) + (−V∗(L))v̂(L) + V∗(0)v̂(0) + ∫ (−w∗)v̂

L

0

dx

= m2
∗ ∅̂2 +m1

∗∅̂1 + f2y
∗ d2ŷ + f1y

∗ d1ŷ +∫ (−w∗)v̂
L

0

dx                     (10) 

 Where: 

 d1y = v(0) ∅1 =
dv

dx
(0) d2y = v(L) ∅1 =

dv

dx
(L) (generalized displacement) (11) 

 f1y = V(0)  m1 = −M(0) f2y = −V(L) m2 = −M(L)  (generalized forces) (12) 

To attain the FEM formula, the interpolation polynomial for v̂ is given: 

v(x) = a0 + a1x + a2x
2 + a3x

3 

In order to satisfy (11), the interpolation polynomial can be expressed in terms of d1y, d2y, ∅1, ∅2  

v(x) = d1yN1 + ∅1N2 + d2yN3 + ∅2N4 

where N1 to N4 are the interpolation functions as shown in the Fig 2.3: 

N1 = 1 − 3 (
x

L
)
2

+ 2(
x

L
)
3

 

N2 = x(1 −
x

L
)2 

N3 = 3(
x

L
)
2

− 2(
x

L
)
3

 

N4 = x {(
x

L
)
2

−
x

L
} 

 

  

N1 

𝑥 

N2 

𝑥 
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Fig 2.3 Interpolation functions 

 

The first derivatives of the interpolation functions are: 

N1
， = −

6

L2
x̂ +

6

L3
x2 

N2
， = 1 −

4x

L
+ 3 (

x

L
)
2

 

N3
， =

6

L
x̂ −

6

L3
x2 = −N1

， 

N4
， =

x

L
(
3x

L
− 2) 

  The second derivatives of the interpolation functions are: 

N1
′′ = −

6

L2
(1 −

2x

L
) 

N2
′′ =

2

L
(
3x

L
− 2) 

N3
′′ = −N1

′′ =
6

L2
(1 −

2x

L
) 

N4
′′ =

2

L
(
3x

L
− 1) 

  The third derivatives of the interpolation functions are: 

N1
′′′ =

12

L3
       N2

′′′ =
6

L2
   N3

′′′ = −
12

L3
    N4

′′′ =
6

L2
 

  All the functions mentioned above fulfill the following condition: 

N1(0) = 1，  N2(0) = N3(0) = N4(0) = 0 

N2
，(0) = 1,    N1

，(0) = N3
，(0) = N4

，(0) = 0 

N3(L) = 1，  N1(L) = N2(L) = N4(L) = 0 

N4
，(L) = 1,    N1

，(L) = N2
，(L) = N3

，(L) = 0 

 

N3 

𝑥 

N4 

𝑥 
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Let  (∆1, ∆2, ∆3, ∆4) = (dy1, ∅1, dy2, ∅2 ) = (v(0),
dv

dx
(0), v(L),   

dv

dx
(L)) 

(Q1, Q2, Q3, Q4) = (f1y, m1, f2y, m2) = (V(0), −M(0), −V(L),M(L)) 

 

Fig 2.4 Generalized Displacement and Generalized Force 

 

Select v∗ = ∑ ∆jNj
4
j=1  and v̂ = Ni (i = 1,2,3,4) in (10) to get 

∫ EI(∑Nj∆j)

4

j=1

′′

Ni
′′dx = Qi +∫ (−w)Nidx

L

0

L

0

 

Then it can be derived that 

∑EI(∫ Nj
′′

L

0

4

j=1

Ni
′′dx)∆j= Qi + fi 

 The equation can be expressed as: 

∑Kji∆j= Fi

4

j=1

 

where 

Kji = EI∫ NjNi
′′dx

L

0

 

Fi = Qi + fi 

f1 = ∫ (−w)N1(x)dx
L

0

= −
1

2
wL 

f2 = ∫ (−w)N2(x)dx
L

0

= −
1

12
wL2 

f3 = ∫ (−w)N3(x)dx
L

0

= −
1

2
wL 

f4 = ∫ (−w)N4dx
L

0

=
1

12
wL2 

Here the matrix form of the stiffness matrix Kij is: 

x 
∆2, Q2  ∆4, Q4  

∆1, Q1  ∆3, Q3  

y 
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2EI

L3
[

6 3L −6 3L
3L 2L2 −3L L2

−6 −3L 6 −3L
3L L2 −3L 2L2

] 

In conclusion, the whole equation becomes 

[K] [

∆1
∆2
∆3
∆4

] = [

Q1
Q2
Q3
Q4

] −
1

12
wL [

6
L
6
−L

] 

and 

[K]

[
 
 
 
dy1
∅1
dy2
∅2 ]
 
 
 

= [

f1y
m1

f2y
m2

] +

[
 
 
 
 
 
 
 −

1

2
wL

−
1

12
wL2

−
1

2
wL

1

12
wL2 ]

 
 
 
 
 
 
 

 

After getting the stiffness matrix, we can now get the mass matrix by analyzing the dynamic Euler 

Beam Element. The derivation process is given below. 

 

Fig 2.5 Dynamic Euler Beam Element 

  According to the Fig 2.4, we can have 

−(V + dV) + V − wdx = ρAv̈dx 

M+ dM −M − Vdx + wdx
dx

2
= 0 

    −
dV

dx
+ w = −ρAv̈    

dM

dx
= V  

(13) 

  Apply the principle of virtual work 

The equilibrium field is        
dM∗

dx
= V∗ ,    

dV∗

dx
+ w∗ = −ρAv̈ 

w(x)dx 

dx 

M 

V 

M+dM 

V+dV 

ρAv̈dx 
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The compatible Field is        K̂ =
d2v̂

dx2
 

Therefore, we can obtain: 

∫ M∗K̂dx
L

0

= ∫ M∗
d2v̂

dx2
dx

L

0

= [M∗
dv̂

dx
]
0

L

−∫
dM∗

dx

dv̂

dx
dx

L

0

= [M∗
dv̂

dx
]
0

L

− [
dM∗

dx
v̂]
0

L

+∫
d2M∗

dx2
v̂

L

0

dx

= [M∗
dv̂

dx
]
0

L

− [V∗v̂]0
L +∫ (−w∗ − ρAv̈∗)v̂

L

0

dx

= [M∗
dv̂

dx
]
0

L

− [V∗v̂]0
L +∫ (−w∗)v̂

L

0

dx − ∫ ρAv̈∗v̂
L

0

dx

=∑Qk
∗ ∆̂k

4

k=1

+∫ (−w∗)v̂
L

0

dx − ∫ ρAv̈∗v̂
L

0

dx                            (14) 

To eventually get the FEM formulation, we substitute 

v∗ =∑∆jNj

4

j=1

          v̂ = Ni(i = 1,2,3,4) 

in (14) to get 

∫ EI(∑Nj∆j)

4

j=1

′′

Ni
′′dx = Qi +∫ (−w)Nidx

L

0

L

0

−∫ ρA(∑Nj∆j̈ )

4

j=1

Ni

L

0

dx 

∑EI(∫ Nj
′′Ni

′′dx)∆j

L

0

4

j=1

= Qi + fi −∑ρA(∫ NiNjdx
L

0

)∆j̈

4

j=1

 

∑Kji∆j

4

j=1

+∑Mji∆j̈

4

j=1

= Qi + fi 

where 

Kji = EI∫ Nj
′′Ni

′′dx
L

0

 

Mji = ρA∫ NiNjdx
L

0

 

The matrix form the achieved mass matrix is  

M =
ρAL

420
[

156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

] 
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2.2.1.3 Torsional Behavior  

For 3-D Bernoulli Beam Element, only uniform torsion is considered. Assumptions for this behavior 

are [8]:  

1) Cross sections are free to buckle. 

2) Torsional resistance is only ensured by shear stress τxy,τxz active in the section’s plane.  

 

 

 

Fig 2.6 Torsional Behavior 

Under the assumptions, we can have the following equations according to Saint-Venant torsion theory 

and uniform constitutive law. 

 
dθ

dx
= X  

(15) 

 T = GJX (16) 

where X is the torsion angle by unit length, θ𝑥 is the torsion angle defined on figure, G is the shear 

modulus and J is a geometrical characteristic of the section called constant of torsion. [8] 

The torsional equilibrium relation is written as [8] 

 
dT

dx
= −mx  

(17) 

with mx is the torsion moment by unit length. 

(15), (16), (17) all together lead to the Torsional differential equation: 
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GJ
d2θx
dx2

+mx = ρJθẍ 

Get the weak form of the equation and substitute the interpolation functions: θx = ∑ ∆j∅j
2
j=1 , where 

(∆1, ∆2) = (θx1, θx2) ∅1 = 1 −
(x−xe)

L
 ∅2 =

(x−xe)

L
 

Then we can achieve the stiffness and mass matrix: 

Kij = ∫ GJ
d∅i
dx

d∅j

dx
dx

xe+1

xe

 

K =
GJ

L
[
1 −1
−1 1

] 

Mij = ∫ ρJ∅i∅jdx
xe+1

xe

 

M = [

ρLJ

3

ρLJ

6
ρLJ

6

ρLJ

3

] 

 

2.2.2 Thin (Kirchhoff) Plate Bending using BCIZ Triangular Element 

The element we use in this section is based on the Kirchhoff plate theory. The Kirchhoff plate theory 

is also known as the classical plate theory (CPT). CPT is an extension of the Euler-Bernoulli beam theory 

from one dimension to two dimensions. It is based on the assumptions that a straight line perpendicular 

to the plane of the plate is (1) inextensible, (2) remains straight, and (3) rotates such that it remains 

perpendicular to the tangent to the deformed surface [11].  

  Detailed derivation of FEM formula is shown below. 

 

Fig 2.7 Motion on the Z-direction 

As shown in the Fig 2.7, the equation of motion on z-direction is 

Qydx 
(ρω̈dxdy)dz 

(Qy +
∂Qy

∂y
dy) dx 

(Qx +
∂Qx
∂x

dx) dy 

Qxdy 

𝑥 

𝑦 

𝑧 
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(Qx +
∂Qx
∂x

dx) dy − Qxdy + (Qy +
∂Qy

∂y
dy) dx − Qydx + pdxdy = ∫ (ρω̈dxdy)dz

h
2

−
h
2

 

where Q denotes the shear force, h denotes the thickness, ρ denotes the density and ω denotes the 

displacement in z-direction. 

Divide it by dxdy and we will have 

∂Qx
∂x

+
∂Qy

∂y
+ p = ρI0ω̈ 

I0 = ∫ 1dz

h
2

−
h
2

= h 

  

Fig 2.8 Moment about y axis and x axis 

  As seen in the Fig 2.8, the moment equilibrium about y axis is 

(Myx +
∂Myx

∂y
dy) dx − Myxdx + (Mxx +

∂Mxx

∂x
dx) dy − Mxxdy + Qxdydx = ∫ z2(ρφẍ dxdy)dz

h
2

−
h
2

 

∂Mxx

∂x
+
∂Myx

∂y
− Qx = ρIzφẍ = −ρIz

∂3w

∂x ∂t2
 

where Iz = ∫ z2dz
h

2

−
h

2

   ∂x = −
∂w

∂x
    ∂y =

∂w

∂y
  (w is the displacement in z-direction) 

The moment equilibrium about x axis is 

−(Myy +
∂Myy

∂y
dy) dx +Myydx − (Mxy +

∂Mxy

∂x
dx) dy − Mxydy + Qydxdy = ∫ z2(ρφÿdxdy)dz

h
2

−
h
2

 

∂Mxy

∂x
+
∂Myy

∂y
− Qy = −ρIz

∂3w

∂y ∂t2
 

  Based on the equations above, we can now apply the principle of virtual work 

The equilibrium field is: 

(Myx +
∂Myx

∂y
dy) dx 

(Myy +
∂Myy

∂y
dy) dx 

(Mxx +
∂Mxx

∂x
dx) dy 

(Mxy +
∂Mxy

∂x
dx) dy 

Myxdx 

Myydx 

Mxydy 
Mxxdy 

x 

y 

φÿ > 0 

φẍ > 0 

x 

y 

z 

z 

(ρφẍ dxdydz)𝑧 

(ρφÿdxdydz)𝑧 
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∂Mxx
∗

∂x
+
∂Myx

∗

∂y
− Qx

∗ = −ρIz
∂3w∗

∂x ∂t2
 

∂Mxy
∗

∂x
+
∂Myy

∗

∂y
− Qy

∗ = −ρIz
∂3w∗

∂y ∂t2
 

∂Qx
∗

∂x
+
∂Qy

∗

∂y
+ p∗ = ρI0

∂2w∗

∂t2
 

The compatible field is 

Kαβ̂ = −ω̂,αβ 

Therefore, we have: 

∫σαβ
∗ εαβ̂dV = ∫ dA

A

∫ σαβ
∗ (−zŵ,αβ)dz

h
2

−
h
2

= ∫ dAKαβ̂
A

∫ zσαβ
∗ dz

h
2

−
h
2

= ∫ Mαβ
∗ Kαβ̂dA

A

 

∫ Mαβ
∗ Kαβ̂dA

A

= −∫ Mαβ
∗ ŵ,αβdA

A

= −∫ Mαβ
∗ ŵ,αυβds

c

+∫ Mαβ,β
∗ ŵ,αdA

A

= ∫ Ms
∗φ̂sds

c

+∫ Mαβ,β
∗ ŵυαds

c

−∫ Mαβ,βα
∗ ŵdA

A

 

By using 

{
Mαβ,β
∗ − Qα

∗ = −ρI2w,αtt
∗

Qα,α
∗ + p∗ = −ρI0w,tt

∗  

we will have: 

(Mαβ,β
∗ + ρI2w,αtt

∗ ),α + p
∗ = ρI0w,tt

∗  

Additionally,  

Qn
∗ = Qx

∗υx + Qy
∗υy + ρI2(ω,xtt

∗ ŵ,xυx + ω,ytt
∗ ŵ,yυy) 

where Qn
∗  denotes the normal shear force. 

Then the equations become: 

∫ Ms
∗φ̂sds

c

+∫ (Qα
∗ − ρI2w,αtt

∗ )ŵυαds
c

+∫ (ρI2w,ααtt
∗ + p∗ − ρI0w,tt

∗ )ŵdA
A

= ∫ (Ms
∗ψ̂s + Qn

∗ ŵ)ds
c

+∫ −ρI2w,αtt
∗ ŵ,α + (p

∗ − ρI0w,tt
∗ )ŵdA

A

 

We can convert the line integral term into:  

∫ (Ms
∗ψ̂s + Qn

∗ ŵ)ds
c

= ∫ (Mn
∗ ψ̂n +Mt

∗
∂ŵ

∂s
+ Qn

∗ ŵ)ds
c

 

here 
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∫ Mt
∗
∂ŵ

∂s
ds

c

= ∫
∂(Mt

∗ŵ)

∂s
ds

c

−∫ ŵ
∂Mt

∗

∂s
ds

c

= −∫ ŵ
∂Mt

∗

∂s
ds

c

 

Substitute it into the original equation and then we will get 

∫ {Mn
∗ ψ̂n + (Qn

∗ −
∂Mt

∗

∂s
) ŵ}ds

c

= ∫ {−Mn
∗
∂ŵ

∂n
+ Qeff

∗ ŵ}ds
c

 

where 

Qn
∗ −

∂Mt
∗

∂s
= Qeff

∗  

ψn = −
∂ω

∂n
 

ψt =
∂ω

∂s
 

MSψS = Mnψn +Mtψt 

are used. 

Afterwards we can conclude that: 

−∫ Mαβ
∗ ŵ,αβdA

A

= ∫ {−Mn
∗ ∂ŵ

∂n
+ Qeff

∗ ŵ}ds
c

+∫ −ρI2w,αtt
∗ ŵ,α + (p

∗ − ρI0w,tt
∗ )ŵdA

A

 

 

Since the bending moments are as shown below [11]: 

{
  
 

  
 Mxx

∗ = −(D11
∂2w

∂x2
+ D12

∂2w

∂y2
)

Myy
∗ = −(D12

∂2w

∂x2
+ D22

∂2w

∂y2
)

Mxy
∗ = −2D66

∂2w

∂x ∂y

 

D11 =
E1h

3

12(1 − ν12ν21)
, D22 =

E2h
3

12(1 − ν12ν21)
 

D12 =
ν12E2h

3

12(1 − ν12ν21)
, D66 =

G12h
3

12
  

the equations become: 

∫ ρI2w,αtt
∗ ŵ,α − (p

∗ − ρI0w,tt
∗ )ω̂dA

A

−∫ Mαβ
∗ ŵ,αβdA

A

−∫ {−Mn
∗ ∂ŵ

∂n
+ Qeff

∗ ŵ}ds
c

= 0          

∫ ρI0ŵ
∂2w

∂t2
+ ρI2

∂ŵ

∂x

∂3w

∂x ∂t2
+ ρI2

∂ŵ

∂y

∂3w

∂y ∂t2
+ 4D66

∂2w

∂x ∂y

∂2ŵ

∂x ∂y
+ (D11

∂2w

∂x2
+ D12

∂2w

∂y2
)
∂2ŵ

∂x2A

+ (D12
∂2w

∂x2
+ D22

∂2w

∂y2
)
∂2ŵ

∂y2
− p∗ŵdA − ∫ {−Mn

∗ ∂ŵ

∂n
+ Qeff

∗ ŵ}ds
c

= 0         
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∫ ρI0ŵ
∂2w

∂t2
+ ρI2 (

∂ŵ

∂x

∂3w

∂x ∂t2
+
∂ŵ

∂y

∂3w

∂y ∂t2
) + 4D66

∂2w

∂x ∂y

∂2ŵ

∂x ∂y
+ (D11

∂2w

∂x2
+ D12

∂2w

∂y2
)
∂2ŵ

∂x2A

+ (D12
∂2w

∂x2
+ D22

∂2w

∂y2
)
∂2ŵ

∂y2
− p∗ŵdA − ∫ {−Mn

∗ ∂ŵ

∂n
+ Qeff

∗ ŵ}ds
c

= 0    (18) 

 

To get the FEA formula of the plate element, we define the element nodal displacement as 

dT = {w1, (
∂w

∂x
)
1
, (
∂w

∂y
)
1

, ω2, (
∂w

∂x
)
2
, (
∂w

∂y
)
2

, ω3, (
∂w

∂x
)
3
, (
∂w

∂y
)
3

} 

And the interpolation functions of w and ŵ are 

w = ∅Td = ∑ dj∅j
9
j=1       ŵ = ∅i(i = 1,2, … , n) 

where ∅ is  

∅T = {∅ω1, ∅x1, ∅y1, ∅ω2, ∅x2, ∅y2, ∅ω3, ∅x3, ∅y3} 

The specific value ∅ varies according to the element we choose during the analysis. Here, we select 

the BCIZ triangular element. It is an effective nonconforming triangular element developed by Bazeley, 

Cheung, Irons, and Zienkiewicz, and it consists of three degrees of freedom (w, -
∂w

∂x
. 
∂w

∂y
) at the three 

vertex nodes. The interpobtion functions for the triangular element can be expressed in terms of area 

coordinates as 

{
 
 
 
 

 
 
 
 
∅ω1
∅x1
∅y1
∅ω2
∅x2
∅y2
∅ω3
∅x3
∅y3}

 
 
 
 

 
 
 
 

=

{
 
 
 
 
 

 
 
 
 
 

L1 + L1
2L2 + L1

2L3 − L2
2L1 − L3

2L1
x31(L3L1

2 − 0.5L123) − x12(L2L1
2 + 0.5L123)

y31(L3L1
2 + 0.5L123) − y12(L2L1

2 + 0.5L123)

L2 + L2
2L3 + L2

2L1 − L3
2L2 − L1

2L2
x12(L1L2

2 − 0.5L123) − x23(L3L2
2 + 0.5L123)

y12(L1L2
2 + 0.5L123) − y23(L3L2

2 + 0.5L123)

L3 + L3
2L1 + L3

2L2 − L1
2L3 − L2

2L3
x23(L2L3

2 − 0.5L123) − x31(L1L3
2 + 0.5L123)

y23(L2L3
2 + 0.5L123) − x31(L1L3

2 + 0.5L123)}
 
 
 
 
 

 
 
 
 
 

 

where L123 = L1L2L3 xij = xi − xj yij = yi − yj, (xi, yi) being the global coordinates of the ith node. 

Substitute the interpolation functions into the integration equation, then we can get: 

[Me]{d̈e} + [Ke]{de} = {Fe} + {Qe} 

where the mass, stiffness and force matrix are as shown below: 
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Mij
e = ∫ [ρI0∅i∅j + ρI2 (

∂∅i
∂x

∂∅j

∂x
+
∂∅i
∂y

∂∅j

∂y
)] dA

A

 

 

Kij
e = ∫ [D11

∂2∅i
∂x2

∂2∅j

∂x2
+ D12 (

∂2∅i
∂x2

∂2∅j

∂y2
+
∂2∅j

∂x2
∂2∅i
∂y2

) + D22
∂2∅i
∂y2

∂2∅j

∂y2
+ 4D66

∂2∅i
∂x ∂y

∂2∅j

∂x ∂y
] dA

A

 

 

Fi
e = ∫ p∗∅idAA

  Qi
e = ∫ (−Mn

∗ ∂∅i
∂n
+Qeff

∗ ∅i)dsc
 

 

2.2.3  Allman Membrane Triangular Element 

  The Allman Membrane Triangular Element is a triangular finite element whose nodal degrees-of-

freedom are two in-plane displacements and the 'drilling' rotation about a normal to the element plane 

developed by D.J Allman. The element is, essentially, an improvement of the standard constant strain 

triangle which was the first engineering application of the finite element method. [9,10] 

  This finite element model has cubic polynomial displacement fields u, v defined in terms of triangular 

co-ordinates (See Appendix A.1) L1, L2, L3 over an arbitrary triangle with vertices P1, P2, P3, viz. [9]  

u = {
1

2
(ω1 + ω2) − Ω0} l12 cos γ12 L1L2(L2 − L1) + {

1

2
(ω3 + ω2) − Ω0} l23 cos γ23 L3L2(L3 − L2)

+ {
1

2
(ω1 +ω3) − Ω0} l31 cos γ31 L1L3(L1 − L3) +

1

2
(ω2 − ω1)l12 cos γ12L1L2

+
1

2
(ω3 − ω2)l23 cos γ23L2L3 +

1

2
(ω1 − ω3)l31 cos γ31L3L1 + u1L1 + u2L2 + u3L3 

v = {
1

2
(ω1 + ω2) − Ω0} l12 sin γ12 L1L2(L2 − L1) + {

1

2
(ω3 + ω2) − Ω0} l23 sin γ23 L3L2(L3 − L2)

+ {
1

2
(ω1 +ω3) − Ω0} l31 sin γ31 L1L3(L1 − L3) +

1

2
(ω2 −ω1)l12 sin γ12 L1L2

+
1

2
(ω3 − ω2)l23 sin γ23 L2L3 +

1

2
(ω1 −ω3)l31 sin γ31 L3L1 + u1L1 + u2L2 + u3L3 

 

where lij (ij = 12, 23, 31) are the lengths of the three sides whose outward normals are inclined at angles 

γij to the x-axis. ωi (i = 1, 2, 3) are vertex rotational degrees-of-freedom and where Ω0 is the rotation 
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of the constant strain triangle of area A expressed in terms of its nodal degrees-of-freedom ui, υi and 

nodal co-ordinates xi, yi, viz. [9] 

 Ω0 =
1

4A
[(x2 − x3)u1 + (x3 − x1)u2 + (x1 − x2)u3 + (y2 − y3)υ1 + (y3 − y1)υ2 + (y1 − y2)υ3] 

Then we convert the displacement equations into 

{
u
v
} = NU = {

Nu
Nv
} U 

where 

U = {u1, v1, w1, u2, v2, w2, u3, v3, w3} 

Nu = [L1 −
Vco
4A

b1
Vco
4A

a1 wc1 L2 −
Vco
4A

b2
Vco
4A

a2 wc2 L3 −
Vco
4A

b3
Vco
4A

a3 wc3] 

Nv = [−
Vso
4A

b1 L1 +
Vso
4A

a1 ws1 −
Vso
4A

b2 L2 +
Vso
4A

a2 ws2 −
Vso
4A

b3 L3 +
Vso
4A

a3 ws3] 

with 

Vco = −{l12 cos γ12 L1L2(L2 − L1) + l23 cos γ23 L2L3(L3 − L2) + l31 cos γ31 L3L1(L1 − L3)} 

Vso = Vco(cos → sin) 

and 

wc1 =
1

2
{l12 cos γ12 L1L2(L2 − L1) + l31 cos γ31 L3L1(L1 − L3) + l31 cos γ31 L3L1 − l12 cos γ12 L1L2} 

wc2 =
1

2
{l12 cos γ12 L1L2(L2 − L1) + l23 cos γ23 L2L3(L3 − L2) + l12 cos γ12 L1L2 − l23 cos γ23 L2L3} 

wc3 =
1

2
{l23 cos γ23 L2L3(L3 − L2) + l31 cos γ31 L3L1(L1 − L3) + l23 cos γ23 L2L3 − l31 cos γ31 L3L1} 

wsi = wci(cos → sin) 

The stress and strain fields are 

 

{
  
 

  
 εx =

∂u

∂x

εy =
∂v

∂y

γxy =
∂v

∂x
+
∂u

∂y

 

ε = BU 



23 
 
 

 
 

Substitute the displacement equations into these stress and strain equations and we will have the matrix 

B. The non-linear part of the matrix is  

B(Non − Linear)

=
1

2A

|

|

|

b1
4A
f(c, a) −

a1
4A
f(c, a)

1

2
g1(c, a)

b2
4A
f(c, a) −

a2
4A
f(c, a)

1

2
g2(c, a)

b3
4A
f(c, a) −

a3
4A
f(c, a)

1

2
g3(c, a)

b1
4A
f(s, b) −

a1
4A
f(s, b)

1

2
g1(s, b)

b2
4A
f(s, b) −

a2
4A
f(s, b)

1

2
g2(s, b)

b3
4A
f(s, b) −

a3
4A
f(s, b)

1

2
g3(s, b)

[
b1
4A
f(c, a) [−

a1
4A
f(c, a) [

1

2
g1(c, a) [

b2
4A
f(c, a) [−

a2
4A
f(c, a) [

1

2
g2(c, a) [

b3
4A
f(c, a) [−

a3
4A
f(c, a) [

1

2
g3(c, a)

+
b1
4A
f(s, b)] −

a1
4A
f(s, b)] +

1

2
g1(s, b)] +

b2
4A
f(s, b)] −

a2
4A
f(s, b)] +

1

2
g2(s, b)] +

b3
4A
f(s, b)] −

a3
4A
f(s, b)] +

1

2
g3(s, b)]

|

|

|

 

 

  The function f and g are defined as shown below 

f(c, a) = (l31c31a3 − l12c12a2)L1
2 + (l12c12a1 − l23c23a3)L2

2 + (l23c23a2 − l31c31a1)L3
2

+ 2l12c12(a2 − a1)L1L2 + 2l23c23(a3 − a2)L2L3 + 2l31c31(a1 − a3)L3L1 

{

f(s, b)   (c, a) → (s, b)

f(c, b)   (c, a) → (c, b)

f(s, a)   (c, a) → (s, a)

 

 

gi(c, a) = (lliclial − lijcijaj)(Li
2 + Li) + lijcijai(Lj

2 − Lj) − llicliai(Ll
2 − Ll) + 2lijcij(aj − ai)LiLj

+ 2llicli(ai − al)LlLi 

where                    (i, j, l) = {

1,2,3   (i = 1)

2,3,1   (i = 2)

3,1,2   (i = 3)
 

{

gi(s, b)   (c, a) → (s, b)

gi(c, b)   (c, a) → (c, b)

gi(s, a)   (c, a) → (s, a)

 

The linear part of the matrix B is 

B(Linear) = [

a1 0 0 a2 0 0 a3 0 0
0 b1 0 0 b2 0 0 b3 0
b1 a1 0 b2 a2 0 b3 a3 0

] 

  Matrix B is the sum of the two parts, 

B= B(Non − Linear) + B(Linear) 
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  With the obtained equations in the preceding paragraphs, we can eventually achieve the stiffness 

matrix, mass matrix and the load vector, of which the process is shown below: 

  The stiffness matrix is defined as: 

Ke =∬ BTDBtdxdy
A

=∬ Ktdxdy
A

 

here t is the element thickness. 

D =
E

1 − ν2
[

1 ν 0
ν 1 0

0 0
1 − ν

2

] 

Kij =
E

1 − ν2
{B1iB1j + B2iB2j + ν(B2iB1j + B1iB2j) +

1 − ν

2
B3iB3j} 

where E is the Young’s Modulus and ν is the Poisson’s ratio of the element. 

The mass matrix is  

M =∬ ρtNu
TNudA

A

+∬ ρtNv
TNvdA

A

 

To get the element load vector, we first need to have the normal & tangential displacement along PiPj 

{
 
 

 
 un(s) = Aijs (1 −

s

lij
) (2

s

lij
− 1) + Bijs (1 −

s

lij
) + (1 −

s

lij
)uni + (

s

lij
)unj

ut(s) = (1 −
s

lij
) uti + (

s

lij
)utj

 

 

 

The associated potential energy is  

Vij
(1) = −∫ (σnun + τtut)

PiPj

tds 

Assume σn and τt to be constant and use 

un(s) =
1

2
s (1 −

s

lij
) (ωj − ωi) + (1 −

s

lij
) uni + (

s

lij
) unj 

ut(s) = (1 −
s

lij
) uti + (

s

lij
) utj 

Then we will have 
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Vij
1 = {uni, uti, ωi, unj, utj, ωj}

{
 
 
 
 
 
 

 
 
 
 
 
 

1

2
σntlij

1

2
τttlij

−
1

12
σntlij

2

1

2
σntlij

1

2
τttlij

1

12
σntlij

2

}
 
 
 
 
 
 

 
 
 
 
 
 

 

For the constant distributions of body force X∗, Y∗, the associated potential energy is  

V2 = −∬ (X∗u + Y∗v)tdxdy
A

 

where 

u =
1

2
(ω2 − ω1)l12 cos γ12L1L2 +

1

2
(ω3 − ω2)l23 cos γ23L2L3 +

1

2
(ω1 − ω3)l31 cos γ31L3L1 + u1L1

+ u2L2 + u3L3 

v =
1

2
(ω2 −ω1)l12 sin γ12 L1L2 +

1

2
(ω3 − ω2)l23 sin γ23 L2L3 +

1

2
(ω1 − ω3)l31 sin γ31 L3L1 + u1L1

+ u2L2 + u3L3 

The total potential energy of the applied force is: 

V = V1 + V2 
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2.3 Transformation and Assembly  

 

2.3.1  Assembly of 3-D Euler-Bernoulli Beam Element 

Assembling the contribution of all element that are connected to the same nodes is an essential step to 

develop the 3D Euler-Bernoulli Beam element. Since we have already discussed about the stiffness 

matrices and mass matrices of Rod element, Euler Beam element and Torsion element in the previous 

sections of the chapter, we can easily construct the stiffness with the obtained matrices as shown below: 

K =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
K11
1 K12

1

K11
2 K12

2 K13
2 K14

2

K11
2 −K12

2 K13
2 −K14

2

K11
3 K12

3

−K21
2 K22

2 −K23
2 K24

2

K21
2 K22

2 K23
2 K24

2

K21
1 K22

1

K31
2 K32

2 K33
2 K34

2

K31
2 −K32

2 K33
2 −K34

2

K21
3 K22

3

−K41
2 K42

2 −K43
2 K44

2

K41
2 K42

2 K43
2 K44

2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

With similar techniques, we can also construct the mass matrix for the 3D Euler-Bernoulli Beam 

Element. 

 

2.3.2  Transform and Assembly of TriFrame Element 

The TriFrame Element is a triangular element, which is consisted of three 3D Euler-Bernoulli Beam 

Elements. To construct the TriFrame Element, we can transform the Stiffness and Mass matrices of 3D 

Euler-Bernoulli Beam Elements into global coordination by local-global transform matrix as the 

following: 

{
S = sin γ
C = cosγ

  LTG = |
C −S 0
S C 0
0 0 1

|  T = |

LTG 0 0 0
0 LTG 0 0
0 0 LTG 0
0 0 0 LTG

| 
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Where γ is the angle between x axis of the global coordination and the first beam element*.  

(*here the first beam element means the beam between Node1 and Node2)    

 

2.3.3  Assembly of Allman Shell Element with drilling degree of freedom 

The Allman Shell Element is constructed with the Allman’s Membrane Element and the Plate Bending 

Element. The Stiffness and Mass Matrix of the shell element is the combination of the stiffness and mass 

matrices of the membrane and plate bending element, which are derived in the previous sections.  

 

2.3.4  Transform in to Global Coordination 

Transform the 3D Euler-Bernoulli Beam element and the Allman Shell Element into global 

coordination by the transform matrix as the following 1818 matrix: 

T = [
Λ ⋯
⋮ ⋱ ⋮

⋯ Λ

]   Λ = [
û
v̂
ŵ
] 

where û , v̂ , ŵ  are the unit vectors of the x-axis, y-axis and z-axis, respectively, of the local 

coordination of the triangle element.  

 

2.3.5  Assembly of Allman Stiffened Shell Element 

Add the transformed stiffness matrices, as well as the mass matrices, of the frame element and shell 

element together respectively to stiffen the edge of the shell element with the triangle frame. Now we 

have the final stiffness and mass matrices of the Allman Stiffened Shell Element and we are able to 

calculate the natural frequencies of the element. The linear eigenvalue problem equation of structural 

dynamics is 

λKD = MD 
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Here, λ denotes the eigenvalue and the D is a vector whose components are the global degrees of 

freedom. 

 

2.3.6  The Matlab Code 

  A Matlab Code is developed based on the equations derived above and we can now analyze the effects 

of veins on the insect wing structure by calculating the structure’s natural frequencies and eigenmodes 

under different problem settings.  
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Chapter Three 

Numerical Examples 

 

3.1  Finite Element Modelling  

To explore how vein arrangement contributes to the performance of insect wing structures, a finite 

element model is created. The geometry and material properties of the model is partially based on the 

Manduca Sexta, a moth of family Sphingidae that constantly used as an example for MAV design. The 

model is highly simplified since our goal is not to replicate the wing of a specific kind of insect, but 

rather to create a general model of a wing to see how the change of vein distribution affects the overall 

performance of the structure. As you can see in the Fig3.1, the model is a flat stiffened triangle shell of 

uniform thickness, composed of 130 stiffened shell elements.  

The left end of the structure is where the wing is connected to the body and here it is called the 

supporting point. The horizontal edge of the wing is the leading edge and the other edge passing through 

the supporting point is the trailing edge. The edge which is opposite to the supporting point is called the 

side edge. The wing can be divided by the red line into two parts. Here we call the part left to the red line 

the proximal part and the part right to it the remote part. Additionally, a Cartesian coordination system is 

established for the analysis, of which the origin is located at the supporting point and the x-axis is along 

the leading edge of the wing. The y-axis of the system is vertical to the leading edge and points 

downwards and the z-axis points outwards.  
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Fig3.1: The General Wing Model based on Manduca Sexta 

  Table3.1 summarizes the geometry and material properties of the wing model, such as thickness, 

Poisson’s Ratio, density etc. The detailed information of each node is listed in the Appendix A.2  

 

Span Length (mm) Chord Length(mm) Thickness(𝝁m) 

48 20 12 

Young’s Modulus (GPa) Poisson’s Ratio Density(g/cm3) 

1.90 0.495 2.30 

Table 3.1 Properties of the General Wing Model 

 

3.2  Experimental Cases 

Various experimental cases are implemented during the test. The veins of the wing structure are 

represented by the beam elements on the edge of the shell element. By changing the distribution of the 

beam elements, we can obtain different arrangements of veins. 

In this test, all the veins share the same cross-section and the same material properties, which are 

shown in the Table3.2.  

 

Length(𝝁m) Width(𝝁m) Density(g/cm3) 

30 30 1.40 

Young’s Modulus (GPa) Poisson’s Ratio  

4.00 0.495  

Table 3.2 Properties of the Veins 
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3.2.1   Case Set 1: Longitudinal Vein Arrangements 

The first set contains five cases that focus on the effects of the longitudinal veins, which are also known 

as radiating veins. It should be noted that the longitudinal veins are originated from the proximal 

supporting point, where the wing and the insect body are connected together, and distributed in the radial 

direction. As shown in Fig 3.2, Case 1 is the wing structure without any vein, so that it can be used as a 

reference for the following tests. In Case 2, the red line indicates the vein added to the leading edge of 

the wing structure. The middle longitudinal vein, which connects the supporting point and the middle 

point of the opposite edge, is added to the structure in the Case 3. The opposite edge is now divided into 

two parts by the middle vein. The two parts are called the upper part and the lower part respectively. Two 

more veins that connect the middle points of each part and the supporting point are added in the Case 4. 

In Case 5, the first quarter point and the third quarter point of the upper part are connected by the added 

longitudinal veins.      

 

  

Case 1  Case 2 

  

Case 3 Case 4 
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Case 5 

Fig 3.2 Case Set 1 

 

3.2.2   Case Set 2: Cross Vein Arrangements 

The second set also contains five cases, but this time it mainly focuses on the effect of the cross veins. 

In this case, all the cross veins are parallel to the side edge which is opposite to the supporting point. 

Similarly, in the Case 6, the first cross vein added to the structure is the middle cross vein that connected 

the middle points of the leading edge and the trailing edge. As we can see in the Fig 3.3, more cross veins 

are added to both the left and right side of the middle vein in the following cases, by which means we 

can explore the effects of adding cross veins in either closer or farther positions to the supporting point. 

Additionally, the cross veins on the left side of the middle vein are evenly distributed while the distance 

between the veins on the right side is slightly increasing from the left to the right.   

 

  

Case 6 Case 7 

  

Case 8 Case 9 
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Case 10 

Fig 3.3 Case Set 2 

 

3.2.3   Case Set 3: Combined Veins Arrangements 

The third set contains three cases which include different combined arrangements of longitudinal veins 

and cross veins. If we take a closer look to these cases, we can find that all the three cases are composed 

of the cases in previous Case Sets. Case 11 is the combination of Case 5 and Case 6, while the Case 12 

is the combination of Case 5 and Case 7. Case 13, the final test case, is the combination of Case 5 and 

Case 10.    

 

  

Case 11 Case 12 

 

Case 13 

Fig 3.4 Case Set 3 

 

3.3  Numerical Performance  

The numerical performance of the cases is achieved by using the Matlab Code mentioned in the 

Chapter 2. The general boundary condition of the tests is that the left end of the wing is fixed in all six 
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degrees of freedom. For each case, more than 400 natural frequencies and the corresponding modeshapes, 

that is, how the structure responds to a certain natural frequency, are obtained. Thus we can have a clear 

picture of the relationship between vein arrangements and the performance of wing structure. Here the 

analysis only concerns the six dominant modeshapes at low-frequencies of each case due to the limitation 

of time and energy.  

 

3.3.1  The Reference Case 

Case 1 includes an unstiffened wing structure, of which results are used as a reference for the following 

tests. As shown in the Figure 3.5, the six dominant natural frequencies of Case 1 ranges from 3.173 Hz 

to 167 Hz.   

 
Fig 3.5 Natural Frequencies of Case 1  

 

According to the obtained analysis results, the deformation of wing structure under low frequency 

consists of displacement in the z-direction, rotation about x-axis and rotation about y-axis. To illustrate 

the results more clearly, the graphs of corresponding modeshapes are drawn according to the obtained 

displacement values and shown in the Fig 3.6. 
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Mode 1  Mode 2 

 

 

 
Mode 3  Mode 4 

 

 

 
Mode 5  Mode 6 

Fig 3.6 Modeshapes of Case 1 【Color Denotes the Displacement】 

 

As we can see in the figure, the first modeshape is the bending mode and second modeshape is the 

torsion mode, which happens under 3.173 Hz and 14.73Hz, respectively. The bending mode is along the 

y-direction, while the central axis of the torsion mode is near to the central line that connects the 

supporting node and the middle point of the side edge. Both the third and the fourth modeshape are 

composed of bending and torsion motion. The difference between these two similar modes is that the 

torsion in the third mode takes place in the proximal part, which near to the supporting point of the wing, 

while, in the fourth mode, it occurs at the remote part that is near to the wing tip. The fifth modeshape is 

the so-called “saddle mode”. It can be observed that the deflections on both the leading and trailing edges 
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and the deflection on the side edge together form a saddle-like shape. Other than that, it also includes 

two bending motions and torsion in the proximal part of the wing. Mode 6 occurs at a slightly higher 

frequency than Mode 5. In Mode 6, the deflections seen in Mode 5 move from the edges to the wing tips 

and the torsion becomes more notable. 

 

3.3.2  Effects of the Longitudinal Veins Arrangements 

 

3.3.2.1  Effects on the Natural Frequencies 

From Case 2 to Case 5, various vein arrangements are introduced to the wing structure. The six 

dominant natural frequencies of each case are shown in the Table 3.3. Here, the obtained values are 

compared with the values of the reference case and the increment percentages of natural frequency due 

to the changes of arrangement are shown in the Table 3.4. Fig 3.7 shows the change of natural frequencies 

for each Mode from Case 2 to Case 5. 

 

 Case1 Case2 Case3 Case4 Case5 

Mode1 3.17E+00 3.545 3.878 4.452 4.958 

Mode2 1.47E+01 1.55E+01 1.61E+01 1.75E+01 1.85E+01 

Mode3 3.99E+01 4.23E+01 4.39E+01 4.69E+01 5.02E+01 

Mode4 8.70E+01 8.94E+01 9.13E+01 9.51E+01 9.89E+01 

Mode5 1.42E+02 1.47E+02 1.50E+02 1.56E+02 1.61E+02 

Mode6 1.67E+02 1.74E+02 1.76E+02 1.82E+02 1.91E+02 

Table 3.4 Natural Frequencies of Case 1 to 5 

 

 Case1 Case2 Case3 Case4 Case5 

Mode1 100% 110.58% 122.33% 140.31% 156.26% 

Mode2 100% 104.89% 109.57% 118.47% 125.87% 

Mode3 100% 106.12% 110.06% 117.54% 125.84% 

Mode4 100% 102.75% 104.92% 109.26% 113.63% 

Mode5 100% 103.46% 105.63% 109.70% 113.01% 

Mode6 100% 104.08% 105.39% 109.16% 114.25% 

Table 3.5 Increment Percentages of Natural Frquencies 
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Fig 3.7 The change of corresponding natural frequencies for each mode. 

By examining the results of four cases, one can easily find that adding longitudinal veins to the 

structure dramatically increases the natural frequencies of Mode 1. It is justified to assume that such 

change is due to the fact that adding longitudinal veins increase the stiffness of the whole structure in the 

radius direction and make it more resistible to the bending motion along y-axis. The average increment 

is around 9.38% for each added vein. The increment of frequency by adding longitudinal veins near the 

central line is a little bit higher than the increment by adding veins to the leading edges. Along with the 

increase of numbers of longitudinal veins added to the structure, the frequency increment due to each 

added vein is decreasing. 

  Similar tendency can also be observed in other modes, but with less increment. The average increments 

of Case 2 and Case 3 are both around 4.3%. Meanwhile, the average increments of rest cases are around 

2.2%. Thus we can come to a conclusion that the most significant effect of adding longitudinal veins to 
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the natural frequencies is on the first modeshape, that is, the pure bending mode. For other modes which 

consist of not only bending motion, but also torsion and various deflections, the effect of adding veins 

becomes less considerable. 

3.3.2.2  Effects on the Modeshapes 

   

  
Case 2 Case 3 

  
Case 4 Case 5 

Fig 3.8  Mode 1  a) Case 2 ~ 5 b) Color bands denote displacement  

 

Fig 3.8 shows the change of mode 1 under different longitudinal vein arrangements. As shown in the 

figure, adding longitudinal veins doesn’t change the type of motion, despite that the wing bends in the 

reverse direction in Case 4. However, the node displacement in z-direction slightly decrease along with 

the increase of number of veins added to the wing structure, which strengthens the stiffness of the 

structure.   

 

  

Case 2 Case 3 
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Case 4 Case 5 

Fig 3.9  Mode 2  a) Case 2 ~ 5 b) Color bands denote displacement 

 

  Fig 3.9 shows the change of Mode 2, which is the torsion mode, under different vein arrangements. 

As seen in Mode 1, here the value of nodes displacement in z-direction drops as well with more veins 

added to the wing structure. It is also because the structure stiffness is strengthened by the added 

longitudinal veins.  

 

  
Case 2 Case 3 

  
Case 4 Case 5 

Fig 3.10  Mode 3  a) Case 2 ~ 5 b) Color bands denote displacement 

 

Fig 3.10 shows the change of Mode 3 under different arrangements. Here, the color bands denote the 

displacement of each node. As shown in the figure, the red area near the proximal area shrinks along with 

the increase number of veins, which indicates the decrease of displacement values of the related nodes 

due to the strengthened stiffness. In other words, the torsion has been weakened by the stiffened structure.  
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Case 2 Case 3 

  
Case 4 Case 5 

Fig 3.11  Mode 4  a) Case 2 ~ 5 b) Color bands denote displacement 

 

Fig 3.11 shows the change of Mode 4 under different vein arrangements. Unlike the previous cases, 

the node displacement does not always decrease along with the increasing number of veins. When the 

vein is added to the leading edge in Case 2, rather than decreasing, the displacement increase at most of 

the nodes on the wing structure. However, in Case 3, the node displacement decrease when the vein is 

added to the central line. The displacement keeps decreasing while more veins are added to both sides of 

the central line. Given the observed facts, it can be assumed that the reason why the displacement in Case 

2 increases is that adding longitudinal vein to the leading edge disturbs the structure balance, which 

eventually leads to the exacerbation of torsion in Case 2. The balance is soon restored by adding more 

veins near the central line, thus the node displacement decreases again. 

    

  
Case 2 Case 3 
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Case 4 Case 5 

Fig 3.12  Mode 5  a) Case 2 ~ 5 b) Color Denotes the Displacement 

 

Fig 3.12 shows the change of Mode 5 from Case 2 to Case 5. The node displacement in most part of 

the wing structure decreases while more veins are added, especially in the proximal part close to the 

supporting point. As seen in the figure, the red area which denotes the deflection in the proximal part 

totally disappears in the Case 4. On the contrary, the displacement of where denoted by the green band 

and the nodes near the wing tips increases while the veins are added. 

  
Case 2 Case 3 

  
Case 4 Case 5 

Fig 3.13  Mode 6  a) Case 2 ~ 5 b) Color Denotes the Displacement 

 

Fig 3.13 shows the change of Mode 6 from Case 2 to Case 5. It can be noticed that, in contrast to what 

observed in Mode 5, the node displacement in most part of the wing structure increases. However, just 

like the previous case, the displacement near the side edge decreases along with the increasing number 

of veins. 
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3.3.3   Effects of the Cross Veins Arrangements 

 

3.3.3.1  Effects on the Natural Frequencies 

 

 Case1 Case6 Case7 Case8 Case9 Case10 

Mode1 3.17E+00 3.55E+00 3.56E+00 3.60E+00 3.62E+00 3.62E+00 

Mode2 1.47E+01 1.55E+01 1.57E+01 1.61E+01 1.64E+01 1.65E+01 

Mode3 3.99E+01 4.25E+01 4.29E+01 4.33E+01 4.37E+01 4.39E+01 

Mode4 8.70E+01 8.99E+01 9.17E+01 9.20E+01 9.22E+01 9.51E+01 

Mode5 1.42E+02 1.48E+02 1.50E+02 1.51E+02 1.51E+02 1.54E+02 

Mode6 1.67E+02 1.76E+02 1.77E+02 1.79E+02 1.81E+02 1.83E+02 

Table 3.6 Natural Frequencies of Case1 & Case 6 to 10 

 

 Case1 Case6 Case7 Case8 Case9 Case10 

Mode1 100% 111.79% 112.07% 113.33% 113.93% 113.96% 

Mode2 100% 105.43% 106.79% 109.50% 111.61% 112.15% 

Mode3 100% 106.70% 107.58% 108.63% 109.53% 110.14% 

Mode4 100% 103.34% 105.38% 105.74% 106.02% 109.31% 

Mode5 100% 104.08% 105.00% 105.84% 106.19% 108.51% 

Mode6 100% 105.21% 106.23% 107.37% 108.08% 109.82% 

Table 3.7 Increment Percentages of Natural Frequencies 

 

 

Fig 3.14 The change of corresponding natural frequencies for each mode 
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9.20E+01

9.30E+01

9.40E+01

9.50E+01

9.60E+01

1 2 3 4 5 6

Mode4

1.40E+02

1.42E+02

1.44E+02

1.46E+02

1.48E+02

1.50E+02

1.52E+02

1.54E+02

1.56E+02

1 2 3 4 5 6

Mode5

1.65E+02

1.67E+02

1.69E+02

1.71E+02

1.73E+02

1.75E+02

1.77E+02

1.79E+02

1.81E+02

1.83E+02

1.85E+02

1 2 3 4 5 6

Mode6
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The effects on the natural frequencies due to different arrangements of the cross veins are shown in 

the Table 3.6, Table 3.7 and Fig 3.14. For Mode 1, the average percentage increment of natural frequency 

is less than one percent, which is almost negligible. The effect on the natural frequency of Mode 2, which 

is the torsion mode, is greater than Mode 1, but it is still relatively smaller than what is observed in the 

last section. For Mode 3, the effect is not so obvious as well. Generally, the effect on the frequency of 

Mode 4, Mode 5 and Mode 6 is also quite inconsiderable. Nonetheless, it is still notable that adding cross 

veins to the remote part that is near the side edge has a much greater influence to the natural frequency 

than adding veins to the proximal area of the wing structure. 

 

3.3.3.2  Effects on the Modeshapes 

 

  
Case 6 Case 7 

  
Case 8 Case 9 

 

 

Case 10  

Fig 3.15  Mode 1  a) Case 6 ~ 10 b) Color bands denote displacement 
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Fig 3.15 shows the change of Mode 1 from Case 6 to Case 10. In general, the node displacement all 

over the wing structure increases due to the cross veins added to it. However, the average value of 

increase is really small, which is only around 1% of the original value. The rotations about X-axis and 

Y-axis also change slightly by the arrangements and do not have any considerable impact on the structure 

performance. Considering the outcome regarding the natural frequency in the previous context, we can 

now assert that the cross vein arrangements is not a key factor to the change of Mode 1 because of its 

limited effect to the structure performance in this Mode.  

  
Case 6 Case 7 

  
Case 8 Case 9 

 

 

Case 10  

Fig 3.16  Mode 2  a) Case 6 ~ 10 b) Color bands denote displacement 

 

Fig 3.16 shows the performance of Mode 2 under different cross veins arrangements. Adding cross 

veins to different part of the structure has different effects on Mode 2, the Torsion Mode. According to 

the results of the test, we can find that adding veins to the proximal area that is near to the supporting 



45 
 
 

 
 

point will cause the decrease of node displacement in the whole wing area. On the other hand, the 

displacement will increase when cross veins are added to the remote part, which is near to the side edge.  

 

  
Case 6 Case 7 

  
Case 8 Case 9 

 

 

Case 10  

Fig 3.17  Mode 3  a) Case 6 ~ 10 b) Color bands denote displacement 

 

Fig 3.17 shows the Mode 3 in the five different cases. When the first cross vein added to the structure 

in Case 6, the node displacement in the whole area decrease. Then we add one cross vein to each side of 

the vein added in the last Case, surprisingly, the displacement is increased even the structure is actually 

stiffened by the two added veins. To further explore the effect of the cross veins, more cross veins are 

added to the proximal part of the wing in the following Case 8 and Case 9. After analyzing the results, 

we can find that the displacement near the supporting point decreases in both of the cases, which implies 

that the torsion and bending motion in this area can be resisted by the added veins. Nevertheless, only 

random changes in a relatively small scale can be observed after adding the two veins. In the Case 10, 
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another two veins are added to the remote part, which lead to a considerable increase of displacement to 

the whole structure. Then we can have the conclusion that adding cross veins to the proximal area can 

resist the deformation around the veins yet not much difference will be made to the remote part. At the 

same time, adding cross veins to the remote part will enhance the deformation in the whole structure. 

 

  
Case 6 Case 7 

  
Case 8 Case 9 

 

 

Case 10  

Fig 3.18  Mode 4  a) Case 6 ~ 10 b) Color bands denote displacement 

 

  Mode 4 from Case 6 to Case 10 is shown in the Fig 3.18. In general, the displacement is decreased by 

the added cross veins, despite a small part of it is increased. The most obvious example can be observed 

in the Case 10, where most of the red band which can be seen in the previous Cases is eliminated. Based 

on the result of the analysis, it can be suggested that the torsion happens in the remote part can be resisted 

by the added cross veins, regardless of their positions. 
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Case 6 Case 7 

  
Case 8 Case 9 

 

 

Case 10  

Fig 3.19  Mode 5  a) Case 6 ~ 10 b) Color bands denote displacement 

 

The Fig 3.19 represents the change of Mode 5, the saddle mode, in the five cases. The effects of the 

cross veins on the structure performance can be concluded as the following: 1) Adding cross veins to the 

proximal area will lead to the increase of displacement in the most of the wing area while the 

displacement in certain part my decrease. 2) Adding cross veins to the remote area will cause the increase 

of displacement over the whole area, except for a small part of it will remain decreasing. 3) In most cases, 

the cross veins added to the remote area will have more significant influence than the veins added near 

the supporting point. 
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Case 6 Case 7 

  
Case 8 Case 9 

 

 

Case 10  

Fig 3.20  Mode 6  a) Case 6 ~ 10 b) Color bands denote displacement 

   

The Fig 3.20 shows the change of Mode 6 from Case 6 to Case 10. In this case, the effect of the added 

cross veins is more likely to enhance the deformation of the structure under the natural frequency. In 

Case 10, we can see that the increase of node displacement usually happens near the added veins and the 

wing edge. However, under certain circumstances, the node displacement may also be decreased. As seen 

in Case 7, adding veins to both sides of the middle line leads to the tendency of displacement decrease 

in most part of the wing. In Case 8, even though the node displacement in the proximal area is increased, 

the displacement in the remote part is still decreased. By adding more veins to the proximal area, even 

the displacement in such area is eventually decreased. Till now, we may conclude that the either adding 

cross veins to the proximal or the remote area will lead to the increase of node displacement. Yet, by 

adding cross veins carefully to the proximal area and control the number of veins we use, it is still possible 

to resist the structure deformation in Mode 6.   
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3.3.4  Effects of the Combined Vein Arrangements  

 

3.3.4.1  Effects on the Natural Frequencies 

 

 Case1 Case11 Case12 Case13 

Mode1 3.17E+00 4.96E+00 4.98E+00 5.04E+00 

Mode2 1.47E+01 1.86E+01 1.89E+01 1.96E+01 

Mode3 3.99E+01 5.05E+01 5.09E+01 5.21E+01 

Mode4 8.70E+01 9.95E+01 1.01E+02 1.05E+02 

Mode5 1.42E+02 1.61E+02 1.64E+02 1.69E+02 

Mode6 1.67E+02 1.92E+02 1.94E+02 2.01E+02 

Table 3.8 Natural Frequencies of Case1 & Case 11 to 13 

 

 Case1 Case11 Case12 Case13 

Mode1 100% 156.45% 156.92% 158.97% 

Mode2 100% 126.48% 127.97% 132.86% 

Mode3 100% 126.67% 127.65% 130.66% 

Mode4 100% 114.31% 116.32% 120.46% 

Mode5 100% 113.50% 115.19% 118.57% 

Mode6 100% 115.15% 116.41% 120.24% 

Table 3.9 Increment Percentages of Natural Frequencies 

 

 

Fig 3.21 The change of corresponding natural frequencies for each mode 

 

3.00E+00

5.00E+00

7.00E+00

1 2 3 4
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1.40E+01

1.90E+01

2.40E+01

1 2 3 4
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3.50E+01

4.50E+01
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1 2 3 4
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8.00E+01

1.00E+02

1.20E+02

1 2 3 4

Mode4
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2.20E+02

1 2 3 4

Mode5
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2.00E+02
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  Case 11 to Case 13 are tested and the obtained natural frequencies are shown in the Table 3.8. Table 

3.9 shows increment of natural frequency compared to Case 1. Fig 3.21 shows the change of 

corresponding natural frequencies for each mode. By analyzing the tests results, we can see that the 

frequency increment due to the combined veins arrangements is very close the sum of the increment due 

to longitudinal veins and cross veins, of which the errors are less than 1%.  

  By comparing the contribute of cross veins and longitudinal veins to the frequency increment, we can 

find that the influence of the later one in much more considerable than the former. The ratio of the 

contribute due to cross veins to the contribute due to longitudinal veins ranges from 0.06 to 0.4. The 

smallest one can be seen in Case 1 while the highest value can be found in Case 4. For Case 2 and Case 

3, the ratio is 0.28 and 0.156, respectively. For Case 5 and Case 6, the ratio is around 0.4.  

  Based on the analysis above, we can suggest that the longitudinal veins always play a major part in 

the change of natural frequency. The effect of cross veins is more apparent on the relatively high 

frequencies than on the lower ones.    

3.3.4.2  Effects on the Modeshapes 

 

  
Case 11 Case 12 

 

 

Case 13  

Fig 3.22  Mode 1  a) Case 11 ~ 13 b) Color bands denote displacement 
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  Fig 3.21 shows the change of Mode 1 from Case 11 to Case 13. By comparing Case 11 with Case 6, 

similar effect of longitudinal veins, which has been discussed in the section 3.2.2.2, can be observed. So 

does comparing Case 7 with Case 12 and comparing Case 5 with Case 13.   

 

  
Case 11 Case 12 

 

 

Case 13  

Fig 3.23  Mode 2  a) Case 11 ~ 13 b) Color bands denote displacement 

 

Fig 3.23 shows the change of Mode 2 from Case 11 to Case 13. After analyzing the effect of adding 

two different kinds of vein to the structure, it can be noticed that adding longitudinal veins is more 

effective at reducing the node displacement in the proximal area than adding cross veins. On the other 

hand, it is also confirmed that, in a mixed situation, adding cross veins can still enhance the deformation 

in the remote area.   

 

  
Case 11 Case 12 
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Case 13  

Fig 3.24  Mode 3  a) Case 11 ~ 13 b) Color bands denote displacement 

 

In Fig 3.24, the change of Mode 3 from Case 11 to Case 13 is shown. Given the comparison between 

Case 11 and Case 6, node displacement in the whole area is decreased with the added longitudinal veins. 

The same conclusion can be found by comparing Case 5 and Case 11. Moreover, it should be pointed out 

that the value of placement decrease in the remote area is smaller than the value in the proximal area. By 

comparing Case 5, Case 10 and Case 13, it can be seen that the displacement increase due to longitudinal 

veins is smaller than the increase due to cross veins. Meanwhile, the displacement decrease due to 

longitudinal veins is larger than the decrease due to cross veins. Thus, we can suggest that adding 

longitudinal veins can enhance the displacement decrease in the wing structure with cross veins. It can 

also weaken the displacement increase due to the cross veins. Since the value of displacement decrease 

is usually larger than the value of displacement increase due to the cross veins, the tendency of 

displacement increase caused by the cross veins can be inverted by adding longitudinal veins.  

 

 

  
Case 11 Case 12 
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Case 13  

Fig 3.25  Mode 4  a) Case 11 ~ 13 b) Color bands denote displacement 

The change of Mode 4 is shown in Fig 3.25. As seen in the previous sections, the overall tendency of 

the change of node displacement is decreasing. However, the value of displacement decrease here is not 

always among the two values obtained in the uncombined arrangement cases. Sometimes it’s even higher 

than either of them, which shows that the results of the combined arrangements here are not simply sum 

of the results of two independent cases, but include interaction between longitudinal and cross veins. 

 

  

  
Case 11 Case 12 

 

 

Case 13  

Fig 3.26  Mode 5  a) Case 11 ~ 13 b) Color bands denote displacement 

 

Fig 3.26 shows the change of Mode 5 from Case 11 to Case 13. For the saddle mode, the effect of 

either adding cross veins or adding longitudinal veins still follows the principle discussed in the two 

previous sections. And the value of displacement change is among the values obtained in component 
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cases. In the meantime, the value of displacement decrease in certain area is still higher than both of the 

values we have in the component cases, which means the interaction seen in the last section still exists. 

 

  
Case 11 Case 12 

 

 

Case 13  

Fig 3.27  Mode 6  a) Case 11 ~ 13 b) Color bands denote displacement 

 

  Fig 3.27 shows the change of Mode 6 from Case 11 to Case 1. When adding cross veins and adding 

longitudinal veins both lead to increase of displacement at the nodes, the increment value at most of the 

nodes tends to be higher than the values seen in each of the component cases. Otherwise, the value of 

displacement change will most likely to be among the values obtained in each case that form the 

combined arrangement. Only at a few nodes that the displacement decrease due to the combined 

arrangements is higher than both of the component cases. 
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Chapter Four 

Conclusions and Future Work 

4.1  Conclusions  

After conducting all the thirteen test cases and analyzing the effects of different vein arrangements on 

the six dominant modeshapes and corresponding eigenvalues of each case, the effects of longitudinal 

veins and cross veins to each mode are concluded, respectively.  

From the research, we can see that both the longitudinal veins and the cross veins can change the 

natural frequencies of the structure. However, the longitudinal vein plays a much more considerable role 

in the change of natural frequency when compared with the cross veins. In other words, the stiffness of 

the structure is mainly influenced by the longitudinal veins. 

The effects of adding veins on the insect wing deformation sometimes varies within structure, rather 

than yield the general tendency in the whole area. Adding veins to the different area in the same structure 

will cause different consequences. In certain cases, it even reverses the deformation. 

When the arrangement consists of both longitudinal veins and cross veins, the change of deformation 

will be compromised in most cases. Nonetheless, the change will occasionally be dominated by one of 

them if the change of deformation is inverse to each other and the values of change differ greatly. 

Moreover, it is also observed that, in some cases, the deformation change is strengthened and the value 

of change is even higher than any of the original values obtained in the component cases, which indicates 

a possible relationship between the cross veins and longitudinal veins in the combined arrangements.      
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4.2  Future Work  

  The analysis of the natural frequencies and the corresponding modeshapes is only the first step of 

structural dynamic analysis. It gives us a general picture of how the vein arrangements change the 

deformation of wing structure under varies natural frequencies and it is conducted in the semi-static 

situation without any applied load.  

In future work, the interaction between the wing structure and the airflow should be considered in the 

test process. Additionally, the Newmark method will be introduced in order to analyze the deformation 

of insect wings in the flapping motion. A more refined Finite Element Modelling of the wing structure 

will also be developed in future tests, along with more carefully planned test cases. In future, not only 

the general deformation changes will be discussed, the detailed principles behind the changes will be 

analyzed as well, especially the potential relationships between these two kinds of veins.   

  All the work mentioned above is to serve the ultimate goal of the research, that is, to design a much 

more efficient wing structure with optimized vein distribution for the future insect-like Micro Air 

Vehicles.   
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Appendices 

A1. Triangular Coordinates: 

Li =
1

2A
(Ai

0 + aix + biy) 

{

Ai
0 = xjyl − xlyj

ai = yj − yl = yjl
bi = xl − xj = xlj

 

{
 

 
∂Li
∂x

=
ai
2A

∂Li
∂y

=
bi
2A

 

{
 
 

 
 cij = cos γij =

−al
lij

sij = sin γij =
−bl
lij

 

A.2 Node Coordinate: 

 

 A B C D E F G H I J 

1 [12,0,0]  [15,0,0] [18,0,0]; [21,0,0]  [24,0,0]  [28,0,0]  [31.30,0,0] [35.37,0,0] [40.50,0,0] [48,0,0] 

2 [11.3446,-

0.6546,0] 

[14.1808,-

0.8182,0] 

[17.0169,-

0.9819,0] 

[19.8531,-

1.1455,0] 

[22.6892,-

1.3092,0] 

[26.4707,-

1.5274,0] 

[27.9864,-

1.0479,0] 

[33.4367,-

1.9293,0] 

[38.2993,-

2.2099,0] 

[45.38,-

2.62,0] 

3 [10.7188,-

1.2797,0] 

[13.3984,-

1.5996,0] 

[16.0781,-

1.9195,0] 

[18.7578,-

2.2394,0] 

[21.4375,-

2.5593,0] 

[25.0104,-

2.9859,0] 

[27.9790,-

1.6144,0] 

[31.5921,-

3.7717,0] 

[36.1990,-

4.3217,0] 

[42.98,-

5.12,0] 

4 [10.1153,-

1.8824,0] 

[12.6441,-

2.3530,0] 

[15.1730,-

2.8236,0] 

[17.7018,-

3.2942,0] 

[20.2306,-

3.7648,0] 

[23.6024,-

4.3922,0] 

[29.5889,-

1.7073,0] 

[27.9405,-

4.5693,0] 

[34.1726,-

6.3593,0] 

[40.46,-

7.53,0] 

5 [9.4671,-

2.5298,0] 

[11.8338,-

3.1623,0] 

[14.2006,-

3.7947,0] 

[16.5674,-

4.4272,0] 

[18.9341,-

5.0596,0] 

[22.0898,-

5.9029,0] 

[27.9719,-

2.1589,0] 

[27.9323,-

5.1980,0] 

[31.9942,-

8.5496,0] 

[37.87,-

10.1,0] 

A B C D E F G H I J 

1 

2 

3 

4 

5 

6 

7 
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6 [8.2305,-

3.7649,0] 

[10.2881,-

4.7061,0] 

[12.3457,-

5.6474,0] 

[14.4033,-

6.5886,0] 

[16.4609,-

7.5298,0] 

[19.2044,-

8.7848,0] 

[27.9719,-

3.3223,0] 

[29.8135,-

5.5481,0] 

[27.8343,-

12.7324,0] 

[32.9,-

15.1,0] 

7 [6.9341,-

5.0596,0] 

[8.6677,-

6.3246,0] 

[10.4012,-

7.5895,0] 

[12.1347,-

8.8544,0] 

[13.8683,-

10.1193,0] 

[16.1797,-

11.8058,0] 

[26.3826,-

4.9096,0] 

[27.9227,-

5.9358,0] 

[23.4673,-

17.1234,0] 

[27.74,-

20.2,0] 

8       [24.6919,-

6.5983,0] 

[27.9029,-

7.4563,0] 

[27.8710,-

9.9071,0] 

 

       [21.4666,-

9.8196,0] 

[24.2582,-

11.0966,0] 

  

       [18.0856,-

13.1965,0] 

[20.4375,-

14.9126,0] 

  

 

A.3  The top view and side view of the modeshape 

 

Mode 1 Case 1-5 Mode 2 Case 1-5 

    

    

    

    

    

 

Mode 3 Case 1-5 Mode 4 Case 1-5 
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Mode 5 Case 1-5 Mode 6 Case 1-5 

    

    

    

    

    

 

Mode 1 Case 6-10 Mode 2 Case 6-10 

    

    

    

    

    

 

Mode 3 Case 6-10 Mode 4 Case 6-10 
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Mode 5 Case 6-10 Mode 6 Case 6-10 

    

    

    

    

    

 

Mode 1 Case 11-13 Mode 2 Case 11-13 

    

    

    

 

Mode 3 Case 11-13 Mode 4 Case 11-13 
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Mode 5 Case 11-13 Mode 6 Case 11-13 

    

    

    

 

 


