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nature of 0-0 connectivity with respect to two 0-3 types in many properties, and (iii) 

the extraordinarily high value of 44C , are the three most intriguing features of the 

multiferroic composite here. When the interface is not perfect, most of the constants 

are found to be reduced from their counterparts with a perfect interface. 

5.3.2. Magnetoelectric coupling and overall properties of 1-1 composites 

With the symmetric, axial direction pointing along 3-direction and 1-2 plane 

isotropic, we now display the 17 calculated effective constants for 1-1 connectivity 

and compare them with the two 1-3 composites, CFO-in-BTO and BTO-in-CFO. The 

results with an imperfect interface will also be shown to disclose its effects. 

  
(a) (b) 

FIG. 5.8. Effective magnetoelectric coupling coefficients of 1-1 and 1-3 connectivity: (a) α33 
and (b) α11. 

The effective axial and transverse magnetoelectric coupling coefficients, 33α  

and 11α , are shown in Fig. 5.8(a) and 5.8(b), respectively. For 33α , the three types of 

composites are seen to exhibit very similar magnitudes over the entire range of CFO 

volume concentration. A small crossover between 1-1 and the 1-3 CFO-in-BTO lines 

is observed, however, and 1-3 CFO-in-BTO also displays a consistently higher 

coupling than 1-3 BTO-in-CFO. For 11α  the characteristics of the three are widely 
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dispersed. Within the range of 0.4 to 0.65 CFO concentration, 1-1 connectivity 

provides a notably higher magnitude than the two 1-3 composites, but at the low and 

the high ends of CFO concentrations 1-3 BTO-in-CFO and 1-3 CFO-in-BTO 

respectively dominate the coupling coefficient 11α . In comparing Fig. 5.8(a) to Fig. 

5.2(a), we also observe that the maximum 33α  attained in 1-1 connectivity is 

comparable to that of 0-0 connectivity, both at about 1030 10−× C/(A·m). But the 

maximum of 33α  for the two 1-3 composites are substantially higher than those of 

the two 0-3 composites. This trend, however, is reversed with 11α , for which the 1-1 

and 1-3 composites could only generate a very small magnitude of magnetoelectric 

coupling. The imperfect interface is seen to cause both quantities to decrease from the 

perfect interface condition. 

  
(a) (b) 

FIG. 5.9. Effective electric permittivity of 1-1 and 1-3 connectivity: (a) κ33 and (b) κ11. 

  
(a) (b) 

FIG. 5.10. Effective magnetic permeability of 1-1 and 1-3 connectivity: (a) μ33 and (b) μ11. 
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The effective electric permittivity, 33κ  and 11κ , are shown in Fig. 5.9(a) and 

5.9(b), respectively. The axial coefficient 33κ  is seen to decrease linearly for all 

composites, but the 11κ  variations return to the now familiar pattern that 1-3 

CFO-in-BTO is superior to 1-3 BTO-in-CFO, and that 1-1 connectivity lies between 

the two. While the general characteristics of 11κ  displayed in Fig. 5.9(b) look 

strikingly similar to those in Fig. 5.3(b), the magnitudes associated with 1-3 

connectivity are seen to be slightly lower than those of the 0-3 ones, regardless of 

CFO-in-BTO or BTO-in-CFO. With an imperfect interface the 33κ  remains largely 

unaffected but 11κ  value is notably lowered. 

For 33µ  and 11µ , the two effective magnetic permeability, the results are shown 

in Fig. 5.10(a) and 5.10(b). The axial permeability 33µ , like 33κ , is almost linear and 

very close for all cases, while the transverse permeability 11µ  shows a reversed 

pattern to 11κ , since now CFO is the stronger phase. For 11µ , 1-1 connectivity 

initially behaves like 1-3 CFO-in-BTO but, after the CFO concentration exceeds 0.4, 

it takes off remarkably at the high concentration range. Its value is seen to be bounded 

between the two 1-3 composites. The effect of interface is found to be negligible for 

33µ  and weak for 11µ . 

The three effective piezoelectric constants, 31e , 33e  and 15e , are shown in Fig. 

5.11(a) to 5.11(c). Constants 31e  and 33e  respectively characterize the induced axial 

electric displacement, 3D , due to a unit strain 1ε  and 3ε . These axial 

characteristics, as reflected in Fig. 5.11(a) and 5.11(b), are very linear and almost 

indistinguishable among the three composites. But the characteristics of 15e , which 
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Chapter 6.  

Future work 

In the study of carbon-based nanocomposites, we have shown that the imperfect 

interface plays a crucial role in the determination of effective electrical conductivity. 

And in our current model the concept of interfacial resistivity is introduced to 

mathematically account for this interface effect. But one remaining problem is that, it 

is still not known yet what factors do interfacial resistivity ρ  depend on. It is very 

important to find out the physical mechanism of ρ , and the formula to determine it. 

This is not a trivial problem, since interface effect involves lots of phenomena in 

condensed matter physics or even some quantum mechanics effects. The study on 

interfacial resistivity probably will go beyond the continuum level and call for more 

advanced theories in physics, nanotechnology and quantum mechanics. 

On the other hand, our current study on multiferroic composites is limited to the 

linear behaviors, which is represented by the piezoelectric-piezomagnetic composites. 

However, in many multiferroic composites the material properties are ferroelectric 

and ferromagnetic, which are both nonlinear material properties. Lots of additional 

problems in the nonlinear behaviors, which are beyond the scope of current theory, 

need to be addressed. For example, ferroelectric and ferromagnetic materials are not 

homogenous, but consist of many individual domains. Applied external electric or 

magnetic field can switch these domains, causing the material properties to change. 

Their response to external fields not only depends on the magnitude, but also the 

history of external loading. Therefore it is important to investigate the physical 



108 
 

 

principle of domain switch. Another well-known characteristic of the nonlinear 

behavior of ferroelectric-ferromagnetic multiferroic composites is the hysteresis loop, 

as the one shown by the experimental results of Zheng et al.94 More knowledge on the 

evolution of microstructural domains is apparently needed to analyze this nonlinear 

phenomenon. However the presented linear theory can serve as a starting point for a 

micromechanics-based nonlinear study, such as the works by Li and Weng95 and 

Weng and Wong96 in the study of domain switch in ferroelectric crystals. In this way, 

the mechanisms of polarization switch under a magnetic field and magnetization 

rotation under an electric field can be brought to light. This will be another main focus 

of our future study. 
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Appendix A. 

Orientational average of tensors 

In our 3-D random effective-medium approach, it is essential to calculate the 

orientational average of a tensor. We have given the result for a second-order tensor in 

previous chapter but without a formal derivation. Therefore in this appendix, we will 

show how to calculate the orientational average of a second-, third- and fourth-order 

tensor in details. 

A.1. Orientational average of a second-order tensor 

Let ijT  ( , 1 3i j =  ) be an arbitrary second-order tensor, the transformation of 

ijT , '
ijT , is given by 

 ' ,ij ik jl klT Tβ β=  (A.1) 

where ijβ  is the rotation matrix. The specific orientation in 3-D space can be 

represented by a set of Euler angles ( )1 2, ,ϕ φ ϕ , which denotes three consecutive 

rotations: (i) the first rotation is by an angle 1 [0, 2 )ϕ π∈  about the original 3-axis; 

(ii) the second rotation is by an angle [0, )φ π∈  about the new 1-axis; and (iii) the 

third rotation is by an angle 2 [0, 2 )ϕ π∈  about the new 3-axis. All rotations follow 

the right hand rule. Consequently, we can express the rotation matrix ijβ  in term of 

Euler angles ( )1 2, ,ϕ φ ϕ  as 

1 2 1 2 1 2 1 2 2

1 2 1 2 1 2 1 2 2

1 1

cos cos sin cos sin sin cos cos cos sin sin sin
cos sin sin cos cos sin sin cos cos cos sin cos .

sin sin cos sin cos

ijβ

ϕ ϕ ϕ φ ϕ ϕ ϕ ϕ φ ϕ φ ϕ
ϕ ϕ ϕ φ ϕ ϕ ϕ ϕ φ ϕ φ ϕ

ϕ φ ϕ φ φ

=

− + 
 − − − + 

−  
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 (A.2) 

To calculate the orientational average of ijT , denoted by ijT , we will integrate the 

'
ijT  over the entire 3-D space, such that 

 
1 2

2 2

1 22 0 0 0

1 sin ,
8

ij ik jl klT T d d d
π π π

ϕ φ ϕ
β β φ ϕ φ ϕ

π = = =
= ∫ ∫ ∫  (A.3) 

where 

 
1 2

2 22
1 20 0 0

8 sin .d d d
π π π

ϕ φ ϕ
π φ ϕ φ ϕ

= = =
= ∫ ∫ ∫  (A.4) 

This can be seen as the integration of a planer angle and a solid angle. Carrying out 

the integral in Eq. (A.3), we can get 

 1 ,
3

ij kk ijT T δ=  (A.5) 

which is an isotropic second-order tensor. ijT  has only one unique component, 

which equals to the mean value of three diagonal components of ijT . This is the 

reason why a tensor equation can be reduced to a scalar equation, as we have done in 

previous chapter. 

A.2. Orientational average of a third-order tensor 

Similarly, let ijkT  ( , , 1 3i j k =  ) be an arbitrary third-order tensor, the 

transformation of ijkT , '
ijkT , is now given by 

 ' ,ijk il jm kn lmnT Tβ β β=  (A.6) 

Then the orientational average of ijkT , denoted by ijkT , can be obtained in a similar 

fashion 

 
( )

1 2

2 2

1 22 0 0 0

1 sin
8
1 .
6

ijk il jm kn lmn

lmn lmn ijk

T T d d d

T

π π π

ϕ φ ϕ
β β β φ ϕ φ ϕ

π

ε ε

= = =
=

=

∫ ∫ ∫
 (A.7) 
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Here ijkε  is the third-order permutation tensor. It has to be noted that in certain case, 

for example for the third-order piezoelectric moduli tensor ijke , we have symmetry 

ijk ikje e= . Therefore its orientational average ijke  is reduced to a zero tensor. 

A.2. Orientational average of a fourth-order tensor 

For an arbitrary fourth-order tensor ijklT , its transformation '
ijklT  is given by 

 ' .ijkl ip jq kr ls pqrsT Tβ β β β=  (A.8) 

Its orientational average ijklT , is then calculated as 

 
1 2

2 2

1 22 0 0 0

1 sin
8
1 1 1 ,
3 5 3

ijkl ip jq kr ls pqrs

mmnn ijkl mnmn mmnn ijkl

T T d d d

T J T T K

π π π

ϕ φ ϕ
β β β β φ ϕ φ ϕ

π = = =
=

 = + − 
 

∫ ∫ ∫
 (A.9) 

where 

 ( )1 1 1and .
3 2 3ijkl ij kl ijkl ik jl il jk ij klJ Kδ δ δ δ δ δ δ δ= = + −  (A.10) 

Eq. (A.9) is in accordance with the decomposition of an isotropic fourth-order tensor 

give by Walpole.97 Therefore, like the second-order ijT , fourth-order ijklT  is also an 

isotropic fourth-order tensor. 
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Appendix B. 

Eight variants of multiferroic constitutive equations 

There are eight different types of thermodynamic potentials that can be 

developed based on different choices of the ( ),σ ε , ( ),D E , and ( ),B H  pairs. 

This leads to eight different variants of the electro-magneto-elastic constitutive 

equations. Following the work of Soh and Liu,98 they are listed as follows. 

Type Independent variables Constitutive equations 

1 , ,E Hε  

T T
,

,

,

E H H E

H H

E E

E H
D E H
B E H

ε ε

ε ε

σ ε

ε

ε

= − −

= + +

= + +

C e q
e κ α
q α μ

 

2 , ,D Bσ  

T T
,

,

,

D B B D

B B

D D

D B
E D B
H D B

σ σ

σ σ

ε σ

σ

σ

= + +

= − + −

= − − +

S g m
g β λ
m λ υ

 

3 , ,D Hε  

T T
,

,

,

D H H D

H H

D D

D H
E D H
B D H

ε ε

ε ε

σ ε

ε

ε

= − −

= − + −

= + +

C h q
h β ς

q ς μ
 

4 , ,E Bσ  

T T
,

,

,

E B B E

B B

E E

E B
D E B
H E B

σ σ

σ σ

ε σ

σ

σ

= + +

= + +

= − − +

S d m
d κ η

m η υ
 

5 , ,E Bε  

T T
,

,

,

E B B E

B B

E E

E B
D E B
H E B

ε ε

ε ε

σ ε

ε

ε

= − −

= + +

= − − +

C e n
e κ η

n η υ
 

6 , ,D Hσ  

T T
,

,

,

D H H D

H H

D D

D H
E D H
B D H

σ σ

σ σ

ε σ

σ

σ

= + +

= − + −

= + +

S g p
g β ς

p ς μ
 

7 , ,D Bε  

T T
,

,

,

D B B D

B B

D D

D B
E D B
H D B

ε ε

ε ε

σ ε

ε

ε

= − −

= − + −

= − − +

C h n
h β λ
n λ υ
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8 , ,E Hσ  
,

,

,

T T
E H H E

H H

E E

E H
D E H
B E H

σ σ

σ σ

ε σ

σ

σ

= + +

= + +

= + +

S d p
d κ α
p α μ

 

In these constitutive equations, each subscript indicates that the corresponding 

tensor is measured under which kind of constant field. For instance, ,E HC  means this 

elastic stiffness tensor is measured under constant electric and magnetic field, so its 

value is different from ,E BC  which is measured under constant electric field and 

magnetic flux density. Each set of constitutive equations is related to a kind of 

electro-magneto-elastic moduli tensor, which can further be written in the Voigt and 

Nye contracted notations as a 12×12 moduli matrix. It has to be noted that, these 

moduli matrices are not necessarily symmetric. But in practice a symmetric moduli 

matrix is more desirable, so in some cases we rewrite the constitutive equations by 

giving some of the independent variables a negative sign, to make the moduli matrix 

symmetric. We have done this kind of change in previous chapter, but here we simply 

take all the eight kinds of moduli matrices in their original forms. 

These eight kinds of moduli matrices are not independent, and actually from any 

one kind we can derive the other seven kinds. The way to transform one kind of 

moduli matrix to any other kind is presented as below: 

(i) When all the independent variables are to be reversed, a direct inversion of the 

matrix is sufficient. For instance, given the moduli matrix for independent variables 

( ), ,E Hε , we can find that for ( ), ,D Bσ  through 

 

1T T T T
, ,

, ,

, ,

.
D B B D E H H E

B B H H

D D E E

σ σ ε ε

σ σ ε ε

−
   − −
   − − =   
   − −   

S g m C e q
g β λ e κ α
m λ υ q α μ

 (B.1) 
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(ii) When only one or two independent variables are to be changed, a sequential 

conversion is needed. For example, given the moduli matrix for ( ), ,E Hε , we can 

find that for ( ), ,E Hσ . In the first place we need to have the moduli matrices for 

both ( ), ,E Hε  and ( ), ,D Bσ , which are already given in Eq. (B.1). Then we have 

the following relations 

 

T T
,

,

,

.
E H H E

H H

E E

D E
B H

ε ε

ε ε

σ ε − −   
    =     
        

C e q
e κ α
q α μ

 (B.2) 

At the same time, we also have 

 

T T
,

,
D B B D

D D
B B

ε σ    
    =     
        

S g m
0 I 0
0 0 I

 (B.3) 

and 

 

1T T T T
, ,

, thus ,
E H H E E H H E

E E E E
H H H H

σ ε ε σ
−

   − − − −       
          = =          
                    

C e q C e q
0 I 0 0 I 0
0 0 I 0 0 I

 (B.4) 

where the 0 and I denote the zero and identity matrix, respectively. With these 

relations we can get 

 

T T
,

,

,

1T T T T T T
, , ,

,

,

,

E H H E

H H

E E

D B B D E H H E E H H E

H H

E E

D E
B H

E
H

σ σ

σ σ

ε ε

ε ε

ε σ

σ
−

    
    =     
        

     − − − −  
       =        
             

S d p
d κ α
p α μ

S g m C e q C e q
0 I 0 e κ α 0 I 0
0 0 I q α μ 0 0 I

 (B.5) 

which gives us the moduli matrix for ( ), ,E Hσ . 

  



115 
 

 

Appendix C. 

Determination of electro-magneto-elastic S-tensor 

C.1. General S-tensor 

The electro-magneto-elastic S-tensor has been studied by Li and Dunn,7 Huang et 

al.,6 and several others. Here we briefly summarize the method for calculating this 

S-tensor with the notations used here. This method can be applied to multiferroic 

composites with ellipsoidal inclusions embedded in transversely isotropic matrix, and 

the aspect ratio of inclusions can range from 0 to ∞ . But it also requires that the 

symmetric axis of ellipsoidal inclusions must coincide with the symmetric axis of the 

transversely isotropic property of the matrix. 

First, we define a pseudo material constant "tensor" (which is not a real tensor by 

rigorous definition) iJMnL  for the matrix phase of multiferroic composites, with 

subscript , 1 3i n =   and , 1 5J M =  , 

 

, , 1, 2, 3,
, 1, 2, 3, 4,
, 1, 2, 3, 5,
, 4, 1, 2, 3,
, 5, 1, 2, 3,
, 4, 4,
, 4, 5 & 5, 4,
, 5, 5.

iJMn

niJ

niJ

iMn
iJMn

iMn

in

in

in

J M
J M
J M
J M
J M
J M
J M J M
J M

=
 = =
 = =
 = ==  = =
− = =

− = = = =
− = =

C
e
q
e

L
q
κ
α
μ

 (C.1) 

With iJMnL , we introduce a 5×5 matrix MJK , 

 ,MJ iJMn i nx x=K L  (C.2) 

where [ ]T1 2 3, ,ix x x x= . Then we define another pseudo tensor iJMnJ , 
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 ( ) 1
1 2 3, , ,inMJ i n MJx x x x x −=J K  (C.3) 

so that it is a function of 1x , 2x  and 3x . Next we integrate iJMnJ  over the volume 

of an ellipsoidal inclusion 2 2 2 2 2 2
1 1 2 2 3 3: 1x a x a x aΩ + + ≤ . When this spheroidal 

inclusion is symmetric about 3-direction, it satisfies 1 2a a= , 3 1a aα = , where α  is 

the aspect ratio of inclusion. Hence the volume integral of iJMnJ  can be written as 

 
( ) ( )

( )

1 1 2 2 3 3 1 2 3

1 2

1 2 3
1 0

, , , , ,

, , ,

inMJ inMJ inMJ

inMJ

x a x a x a dV x x x dV

d y y y d d
π

α

τ α τ θ

Ω Ω

−

= =

=

∫ ∫

∫ ∫

H J J

J
 (C.4) 

where the second equality is based on the fact that iJMnJ  is a homogeneous function 

of order zero, thus multiplying all the variables by 1a  will not affect the integral. The 

third equality is given by applying a change of variables from 1x , 2x , 3x  to 

 2 2
1 1 31 cos , 1 sin , ,y y yτ θ τ θ τ= − = − =  (C.5) 

with [ ]1,1τ ∈ −  and [ ]0, 2θ π∈ . Finally the S-tensor is determined by 

 

( )

4

5

1 , 1 3,
8
1 , 4,

4
1 , 5.

4

iJAb inMJ iMnJ

MnAb iJAb in J

iJAb in J

M

M

M

π

π

π

 + =

= =

 =

L H H

S L H

L H



 (C.6) 

Still the electro-magneto-elastic S-tensor is a pseudo tensor. For the convenience of 

calculation it is generally converted into a 12×12 matrix by the Voigt and Nye 

contracted notations. 

The integral in Eq. (C.4) can be analytically evaluated only when aspect ratio 

0α =  or ∞ . For a general spheroid, it can be numerically carried out by using 

Gaussian quadrature, which turns the definite integral into a weighted sum of function 

values at specified points within the domain of integration. Thus Eq. (C.4) can be 
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rewritten as 

 ( ) ( )
1 2

1 2 3
11 0

, , ,
n

inMJ inMJ i i
i

d y y y d d w f
π

τ α τ θ τ
=−

= ≈∑∫ ∫H J  (C.7) 

where ( ) ( )
2

1 2 3
0

, ,inMJf y y y d
π

τ α θ= ∫ J , n is the total number of specified points 

(usually 20n =  or more will provide enough accuracy), iw  is the weight at each 

specified point which can be constructed by different kinds of weight function. Up to 

this point the calculation of S-tensor is completed. In general, the S-tensor S is not 

symmetric, while 1−SL  is always symmetric for any symmetric moduli matrix L of 

the matrix phase. This can be used as a criterion to check if the calculated components 

of S-tensor are correct. 

C.2. Explicit S-tensor components for 1-3 and 2-2 connectivity 

Explicit forms of the S-tensor are available for 1-3 fibrous composite (α →∞ ) 

and 2-2 multilayered structure ( 0α → ). These two connectivities represent the most 

widely used microstructures and are frequently adopted in experiments. Their 

S-tensor components are summarized and listed below. It should be noted that the 

symmetric axis of the transversely isotropic property of the matrix lies on 3-direction, 

and 1-2 plane is isotropic. 

Type Piezoelectric matrix Piezomagnetic matrix 

1-3 

11 12
11 22

11

5 ,
8

C CS S
C
+

= =  

12
12 21

11

1 3 ,
8 8

CS S
C

= = − +  

11 12
11 22

11

5 ,
8

C CS S
C
+

= =  

12
12 21

11

1 3 ,
8 8

CS S
C

= = − +  
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13 31
13 23 19 29

11 11

, ,
2 2
C eS S S S
C C

= = = =  

12
66

11

3 ,
4 4

CS
C

= −  

44 55 77 88 10,10 11,11
1 .
2

S S S S S S= = = = = =  

13 31
13 23 1,12 2,12

11 11

, ,
2 2
C qS S S S
C C

= = = =  

12
66

11

3 ,
4 4

CS
C

= −  

44 55 77 88 10,10 11,11
1 .
2

S S S S S S= = = = = =  

2-2 

31 33 13 33
31 32 2

33 33 33

,e e CS S
e C

κ
κ

+
= =

+
 

15
57 48

44

,eS S
C

= =  

33 31 13 33
91 92 2

33 33 33

,C e C eS S
e C κ

− +
= =

+
 

33 44 55 99 12,12 1.S S S S S= = = = =  

31 33 13 33
31 32 2

33 33 33

,q q CS S
q C

µ
µ

+
= =

+
 

15
5,10 4,11

44

,qS S
C

= =  

33 31 13 33
12,1 12,2 2

33 33 33

,C q C qS S
q C µ

− +
= =

+
 

33 44 55 99 12,12 1.S S S S S= = = = =  

Each 12×12 S-tensor has 144 components. All the other components are zero 

except for those listed above. 

C.3. Explicit S-tensor components for isotropic interphase 

In multiferroic composites, the interphase between the piezoelectric and 

piezomagnetic phase has isotropic property, as mentioned in previous chapter. In this 

case, the components of S-tensor have explicit results, for any aspect ratio of 

inclusion from 0α =  to ∞ . They are given by99 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2
int int
11 22 02 2

0 0

2 2
int
33 0 02 2

0

2
int int
12 21 02 2

0

3 1 91 2 ,
8 1 1 4 1 4 1

1 3 1 31 2 1 2 ,
2 1 1 1

1 31 2 ,
4 1 2 1 4 1

S S g

S g

S S g

α ν α
ν α ν α

α αν ν α
ν α α

α ν α
ν α α

 
= = + − − 

− − − −  
  −

= − + − − +  − − −  
   = = − − +  − − −    
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( )

2 2
int int
13 23 02 2

0 0

int int
31 32 0 02 2

0 0

22
int int
44 55 0 02 2

0

66

1 1 3 1 2 ,
2 1 1 4 1 1

1 1 1 31 2 1 2 ,
2 1 1 2 1 2 1

3 11 1 11 2 1 2 ,
2 1 1 2 1

S S g

S S g

S S g

S

α α ν α
ν α ν α

ν ν α
ν α ν α

ααν ν α
ν α α

 
= = − + − − − − − − 

  = = − − + + − +  − − − −    
  ++ = = − − − − −  − − −    

( ) ( ) ( ) ( )

( )

( )

2
int

02 2
0

int int int int
77 88 10,10 11,11

int int
99 12,12

1 31 2 ,
2 1 2 1 4 1

1 ,
2

1 ,

g

S S S S g

S S g

α ν α
ν α α

α

α

   = + − −  − − −    

= = = =

= = −

 (C.8) 

and all the other components are zero. Here ( ) ( )int int int int
0 11 44 11 442 2C C C Cν  = − −  , is the 

Poisson's ratio of the interphase, and auxiliary function ( )g α  depends on the aspect 

ratio α , as 

 ( )
( )

( )

( )
( )

1
1 2 2

3
2 2

1
2 12

3
2 2

cos 1 , 1,
1

1 cosh , 1.
1

g

α α α α α
α

α
α α α α α

α

−

−

  
− − <  

  −= 
  − − ≥   −

 (C.9) 

This set of S-tensor can reduce to the commonly used S-tensor for the uncoupled 

elastic, dielectric, or magnetic problem. 

C.4. S-tensor for other kinds of constitutive equations 

We have discussed the method to obtain the electro-magneto-elastic S-tensor, 

denoted as (1)S  (superscript 1 means "Type 1"), as given in Eq. (C.6). However this 

S-tensor is only for a particular kind of multiferroic constitutive equations, which has 
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independent variables ( ), ,E Hε − − . It is already known that there are eight kinds of 

constitutive equations, and their corresponding moduli matrices are interchangeable. 

Theoretically speaking, each kind of moduli matrix has its own S-tensor, and these 

eight kinds of S-tensor are also interchangeable. Here we provide the method to 

derive other kinds of S-tensor. Unlike the case of moduli matrices in which any one 

kind can be used to derive the other seven kinds, the derivation of S-tensors must start 

from (1)S . Because ε , E and H are all the gradients of certain potentials, so that only 

for this set of independent variables can we define multiferroic Green's function. 

First let (1)L  be moduli matrix for independent variables ( ), ,E Hε − − , so the 

moduli matrix for ( ), ,D Bσ , denoted by (1)M , can be directly obtained by its 

inverse operation, which is ( ) 1(1) (1) −
=M L . The S-tensor for (1)M  (which is usually 

call T-tensor), (1)T  is given by 

 ( )(1) (1) (1) (1).= −T L I S M  (C.10) 

By the definition in Eq. (1.1), we have the following relations for (1)S  and (1)T  

 (1) * (1) *and ,= =Y S Y X T X  (C.11) 

where X and Y have been given in Eq. (4.5). In addition, when the material is free 

from external field, X and Y also have the relations 

 ( ) ( )(1) * (1) *and ,= − = −X L Y Y Y M X X  (C.12) 

which can be further simplified to 

 ( ) ( )(1) * (1) *and .= − = −X L I Y Y M I X  (C.13) 

If we introduce two tensors A and B, with (1)= −A L I  and (1)= −B M I , we can 

rewrite Eq. (C.11) and (C.13) in components as 
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(1) (1) (1) * (1) (1) (1) *
11 12 13 11 12 13
(1) (1) (1) * (1) (1) (1) *
21 22 23 21 22 23
(1) (1) (1) * (1) (1) (1) *
31 32 33 31 32 33

,
S S S T T T

E S S S E D T T T D
H S S S H B T T T B

D
B

ε ε σ σ

σ

          
          − = − =          
       − −             






* *
11 12 13 11 12 13

* *
21 22 23 21 22 23

* *
31 32 33 31 32 33

, .
A A A B B B
A A A E E B B B D
A A A H H B B B B

ε ε σ         
         = − − =         
   − −                

 (C.14) 

This set of relations can be used to construct the S-tensor for any kind of constitutive 

equations. Here we take the S-tensor for independent variables ( ), ,D Bε , denoted by 

(2)S , as an example. The definition of (2)S  is given by 

 

(2) (2) (2) *
11 12 13
(2) (2) (2) *
21 22 23
(2) (2) (2) *
31 32 33

.
S S S

D S S S D
B S S S B

ε ε    
     =     
         

 (C.15) 

When only *ε  is applied in Eq. (C.15), we have 

 (2) * (2) * (2) *
11 21 31, , .S D S B Sε ε ε ε= = =  (C.16) 

Likewise, when only *ε  is applied in Eq. (C.14), we have 

 (1) * * *
11 21 31, , .S D A B Aε ε ε ε= = =  (C.17) 

Comparing Eq. (C.16) with Eq. (C.17), it is easy to get 

 (2) (1) (2) (2)
11 11 21 21 31 31, , .S S S A S A= = =  (C.18) 

Next we can apply *D  only in Eq. (C.14) and (C.15). In the same way we can get 

 (2) (2) (1) (2) (1)
12 12 22 22 32 32, , .S B S T S T= = =  (C.19) 

Finally we can apply *B  only in Eq. (C.14) and (C.15), and get 

 (2) (2) (1) (2) (1)
13 13 23 23 33 33, , .S B S T S T= = =  (C.20) 

In summary, the S-tensor for independent variables ( ), ,D Bε , (2)S , is given by 

 

(1)
11 12 13

(2) (1) (1)
21 22 23

(1) (1)
31 32 33

.
S B B
A T T
A T T

 
 =  
  

S  (C.21) 
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And the S-tensors for other kinds of constitutive equations can be derived in the same 

way. It should be pointed out that, for (2)S , and the corresponding moduli matrix 

(2)L  for independent variables ( ), ,D Bε , they also satisfy that ( ) 1(2) (2) −
S L  is 

symmetric (given that (2)L  has already been adjusted to a symmetric matrix). In 

addition, not only can we use M-T method to calculate the effective property of 

multiferroic composites with moduli matrix (1)L  and S-tensor (1)S , but we also can 

do the same for multiferroic composites with moduli matrix (2)L  and S-tensor (2)S . 

And the effective property at any specific volume concentration 1c , given by these 

two ways, are interchangeable by the rules discussed in Appendix B. 
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Appendix D. 

Explicit results for 1-3 and 2-2 multiferroic composites 

For fibrous composites and multilayers, explicit formulae for the components of 

S-tensors are listed in Appendix C. With them and the theory given in Chapter 4 for 

the perfect and imperfect interface, we can obtain the explicit expressions for the 

magnetoelectric coupling coefficients, 33α  and 11α . As 1-3 and 2-2 composites are 

widely useful, we present the results here for ready reference. 

In reading the following expressions, care must be exercised that superscript "e" 

always refers to the properties of BaTiO3 regardless whether BTO exists as the matrix 

or inclusions, and superscript "m" always refers to the properties of CoFe2O4, also 

regardless whether it exists as inclusion or matrix. Superscript "i" on the other hand 

refers to the properties of the interface. In addition, for 1-3 composites, 1c  and 0c  

denote the volume concentrations of the inclusions and matrix, respectively, which 

could be CFO or BTO. intc  denotes the volume concentration of interface in the 

thinly-coated inclusion. While for 2-2 composites, 0c , 1c  and intc  denote the 

volume concentrations of BTO, CFO and interface in the whole composite, so that 

they satisfy 0 1 int 1c c c+ + = . 

D.1. The 1-3 fibrous composites with a perfect interface 

First, with CoFe2O4 as inclusions and BaTiO3 as the matrix, we can find 

 ( ) ( )
( ) ( )

0 1 31 31
33 ( ) ( ) ( ) ( ) ( ) ( )

11 11 0 12 12 1 11 11

2 ,
e m

e m e m e m

c c e q
C C c C C c C C

α = −
+ − − + −

 (D.1) 
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and 

 
( ) ( ) ( ) ( )

0 1 15 15 11 11
11 BTO

11

4 ,
e m m ec c e q
Dα

κ µα = −  (D.2) 

where the denominator BTO
11Dα  is 

( ) ( ) ( ){
( ) } ( )

2BTO 2 ( )2 ( ) ( ) ( ) ( ) ( )2 ( ) ( ) ( ) ( )
11 0 15 11 11 1 11 11 1 15 44 44 1 44 44

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 11 1 11 11 11 11 1 11 11

1

.

m e m e m e e m e m

e m e m e m e m

D c q c c e C C c C C

c c

α κ κ κ κ

κ κ κ κ µ µ µ µ

   = + + − + + + + + − ×   

   + + − + + −   

 (D.3) 

On the other hand, with BaTiO3 as inclusions and CoFe2O4 as the matrix, the 

results are 

 ( ) ( )
( ) ( )

0 1 31 31
33 ( ) ( ) ( ) ( ) ( ) ( )

11 11 0 12 12 1 11 11

2 ,
e m

e m e m e m

c c e q
C C c C C c C C

α = −
+ + − − −

 (D.4) 

and 

 
( ) ( ) ( ) ( )

0 1 15 15 11 11
11 CFO

11

4 ,
e m m ec c e q
Dα

κ µα = −  (D.5) 

where the denominator CFO
11Dα  is 

( ) ( ){ ( )
( ) } ( )

2CFO 2 ( )2 ( ) ( ) ( ) ( ) ( )2 ( ) ( ) ( ) ( )
11 0 15 11 11 1 11 11 1 15 44 44 1 44 44

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 11 1 11 11 11 11 1 11 11

1

.

e m e m e m m e m e

m e m e m e m e

D c e c c q C C c C C

c c

α µ µ µ µ

µ µ µ µ κ κ κ κ

   = + + − + + + + + − ×   

   + + − + + −   

 (D.6) 

From the above results, we can see that the signs of 33α  and 11α  are directly 

determined by the product of e- and q-components, which has been discussed in 

previous chapter. 

D.2. The 1-3 fibrous composites with an imperfect interface 

In order to obtain the effective magnetoelectric coefficients of 1-3 multiferroic 
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composites with an imperfect interface, we first derive the relevant properties of 

coated inclusion from Eq. (4.10). This in turn can be used for the properties of the 

inclusion phase in Eq. (4.8) for the overall composite. Since the final results of 

effective 33α  and 11α  are too complicated, here we just present the results for the 

properties of coated inclusion. 

For the coated CoFe2O4 inclusion - with a prime added to superscript m - we can 

obtain from Eq. (4.10) that 

( )
( )

( ) ( )
( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 11 12 44 int 11 44 11 12 44( ')

11 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 int 11 12 11 44 11 44 int 11 44 11 12 44

2 2 1 2
,

2 2 2 4 2

i m m i i i m m i
m

i m m i i i i i i m m i

C C C C c C C C C C
C

C c C C C C C C c C C C C C

+ + − − −
= +

+ + − + + + − −

 (D.7)

( )
( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
44 11 11 12 44 int 44 11 12 4411 11 12 44( ')

12 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 int 11 12 11 44 11 44 int 11 44 11 12 44

2 2 22
,

2 2 2 4 2

i i m m i i m m ii m m i
m

i m m i i i i i i m m i

C C C C C c C C C CC C C C
C

C c C C C C C C c C C C C C

 − + + − −+ +  = −
+ + − + + + − −

 (D.8) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )2 ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( ) ( ) ( ) ( )
44 int 15 44 11 44 44 int 15 44 44 11( ') ( )

44 44 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( )
44 int 44 11 44 44 int 15 44 44

4 2

4 2

m i m m m i i m i m m i m i

m i

i i i m i i m i m m

C c q C C C c q C C
C C

C c C C C c q C C

µ µ µ µ µ µ

µ µ µ µ

   + + − − − − + − −   =
 + − + − + + −  ( ) ( )( ) ( ) ( )

11

,
i m iµ µ − 

 (D.9) 

 ( )
( )

( ) ( )
int 31 11( ')

31 ( ) ( ) ( ) ( ) ( )
int 11 12 11 44 11

2 1
,

2 2 2

m i
m

m m i i i

c q C
q

c C C C C C
−

=
+ − + +

 (D.10) 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )
int 15 44( ')

15 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( ) ( ) ( ) ( )
44 int 44 11 44 44 int 15 44 44 11

4 1
,

4 2

m i i
m

i i i m i i m i m m i m i

c q C
q

C c C C C c q C C

µ

µ µ µ µ µ µ

−
=

   + − + − + + − −   

 (D.11) 

 
( )
( )

( ) ( ) ( )
11 int 11( ') ( )

11 ( ) ( ) ( )
int 11

2
,

2

m m i
m i

i m i

c

c

κ κ κ
κ κ

κ κ κ

− −
=

+ −
 (D.12) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )2 ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( ) ( ) ( ) ( )
11 44 int 15 11 44 44 44 11 int 15 44 44 11( ') ( )

11 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( )
44 int 44 44 44 11 int 15 44

4 2

4 2

m i m m m i i m i m m i m i

m i

i i i m i i m i m m

C c q C C C c q C C

C c C C C c q C C

µ µ µ µ µ µ
µ µ

µ µ µ µ

   + + − − − − + − −   =
 + − + − + + −  ( ) ( )( ) ( ) ( )

44 11

.
i m iµ µ − 

 (D.13) 
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This set of coated properties can be used to replace the original properties of CFO in 

Eq. (D.1) to (D.3), to obtain 33α  and 11α  of the CFO-in-BTO composite with an 

imperfect interface. 

Likewise, for the coated BaTiO3 inclusion - also with a prime added to 

superscript e - we have 

( )
( )

( ) ( )
( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 11 12 44 int 11 44 11 12 44( ')

12 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 int 11 12 11 44 11 44 int 11 44 11 12 44

2 2 1 2
,

2 2 2 4 2

i e e i i i e e i
e

i e e i i i i i i e e i

C C C C c C C C C C
C

C c C C C C C C c C C C C C

+ + − − −
= +

+ + − + + + − −

 (D.14) 

( )
( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
44 11 11 12 44 int 44 11 12 4411 11 12 44( ')

11 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 int 11 12 11 44 11 44 int 11 44 11 12 44

2 2 22
,

2 2 2 4 2

i i e e i i e e ii e e i
e

i e e i i i i i i e e i

C C C C C c C C C CC C C C
C

C c C C C C C C c C C C C C

 − + + − −+ +  = −
+ + − + + + − −

 (D.15) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )2 ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( ) ( ) ( ) ( )
44 int 15 44 11 44 44 int 15 44 44 11( ') ( )

44 44 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( )
44 int 44 11 44 44 int 15 44 44

4 2

4 2

e i e e e i i e i e e i e i

e i

i i i e i i e i e e

C c e C C C c e C C
C C

C c C C C c e C C

κ κ κ κ κ κ

κ κ κ κ

   + + − − − − + − −   =
 + − + − + + −  ( ) ( )( ) ( ) ( )

11

,
i e iκ κ − 

 (D.16) 

 ( )
( )

( ) ( )
int 31 11( ')

31 ( ) ( ) ( ) ( ) ( )
int 11 12 11 44 11

2 1
,

2 2 2

e i
e

e e i i i

c e C
e

c C C C C C
−

=
+ − + +

 (D.17) 

( )
( ) ( ) ( )( )

( ) ( ) ( )
int 15 44( ')

15 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( ) ( ) ( ) ( )
44 int 44 11 44 44 int 15 44 44 11

4 1
,

4 2

e i i
e

i i i e i i e i e e i e i

c e C
e

C c C C C c e C C

κ

κ κ κ κ κ κ

−
=

   + − + − + + − −   

 (D.18) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )2 ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( ) ( ) ( ) ( )
11 44 int 15 11 44 44 44 11 int 15 44 44 11( ') ( )

11 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )2 ( )
44 int 44 44 44 11 int 15 44

4 2

4 2

e i e e e i i e i e e i e i

e i

i i i e i i e i e e

C c e C C C c e C C

C c C C C c e C C

κ κ κ κ κ κ
κ κ

κ κ κ κ

   + + − − − − + − −   =
 + − + − + + −  ( ) ( )( ) ( ) ( )

44 11

,
i e iκ κ − 

 (D.19) 

 ( )
( )

( ) ( ) ( )
11 int 11( ') ( )

11 ( ) ( ) ( )
int 11

2
.

2

e e i
e i

i e i

c

c

µ µ µ
µ µ

µ µ µ

− −
=

+ −
 (D.20) 

This set of coated properties can be used to replace the original properties of BTO in 

Eq. (D.4) to (D.6), to obtain 33α  and 11α  of the BTO-in-CFO composite with an 
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imperfect interface. 

D.3. The 2-2 multiferroic multilayers with a perfect interface 

For the 2-2 multiferroic composites with a perfect interface, we find 

 
( ) ( ) ( ) ( )

0 1 33 33 33 33
33

33

,
e m m ec c e q

Dα

κ µα = −  (D.21) 

and 

 
( ) ( )

0 1 15 15
11 ( ) ( )

0 44 1 44

,
e m

m e
c c e q

c C c C
α = −

+
 (D.22) 

where the denominator 33Dα  is 

( ) ( ) ( )
( ) ( ) ( )

2 ( ) ( ) ( )2 ( ) ( ) ( ) ( ) ( ) ( )
33 0 0 33 1 33 33 33 33 0 1 0 33 1 33 33 33

( ) ( ) ( ) ( ) 2 ( ) ( ) ( )2 ( ) ( )
0 33 1 33 33 33 1 0 33 1 33 33 33 33 ,

m e m m m m e m e

m e e m m e e e e

D c c c q C c c c c C

c c C c c c e C

α κ κ µ κ κ µ

µ µ κ µ µ κ

= + + + +
+ + + + +

 (D.23) 

where 0c  is for BTO and 1c  for CFO. 

D.4. The 2-2 multiferroic multilayers with an imperfect interface 

With an imperfect interface (denoted with the prime symbol), we have 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

' 0 1 33 33 33 33 11
33 '

33

,
e m m e i i ic c e q C

Dα

κ µ κ µα = −  (D.24) 

and 

 
( ) ( ) ( )

' 0 1 15 15 44
11 ( ) ( ) ( ) ( ) ( ) ( )

0 44 44 1 44 44 int 44 44

,
e m i

m i e i e m
c c e q C

c C C c C C c C C
α = −

+ +
 (D.25) 

where the denominator '
33Dα  is 

' 3 3 3 2 2 2 2 2 2
33 1 0 2 1 3 int 4 0 1 5 1 0 6 0 int 7 1 int 8 0 int 9 1 int 10 0 1 int .D c c c c c c c c c c c c c c c c c cα λ λ λ λ λ λ λ λ λ λ= + + + + + + + + +

 (D.26) 
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And the coefficients 1λ  to 10λ  are given by 
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Appendix E. 

An incremental scheme for solving 0-0 and 1-1 connectivity 

The equation governing the effective electro-magneto-elastic moduli, eL , for 

multiferroic composites with 0-0 and 1-1 connectivity has been given by Eq. (5.2). 

For convenience we denote the left-hand side of Eq. (5.2) as a function W, such that 

 ( ) ( )1 11
1 2 2 1 .e e ec c− −−≡ + − + − =W SL L L L L 0  (E.1) 

Our goal is to solve the unknown moduli eL , which is a 12×12 matrix. With the 

transversely isotropic property, it has 17 independent constants. Taking 3-direction to 

be the symmetric axis, we then can write eL  in terms of these constants 

( )11 12 13 33 44 31 33 15 31 33 15 11 33 11 33 11 33, , , , , , , , , , , , , , , , ,e C C C C C e e e q q q κ κ α α µ µ=L  (E.2) 

which means eL  depends on these constants, and its dependence has been given by 

Eq. (4.7). The S-tensor S  also depends on these 17 constants and therefore it is a 

function of eL ; its dependence has been summarized in Appendix C. At any given 

volume concentration 1c  (or equivalently 2c , which satisfies 2 11c c= − ), Eq. (E.1) 

becomes a system of 17 independent implicit equations for the 17 undetermined 

constants of eL . Though theoretically they can be directly solved, it is actually 

extremely difficult (almost impossible) to do so, because these equations are highly 

nonlinear and highly coupled due to the inversion of unknown moduli eL . Therefore, 

to this end an increment scheme is proposed to solve this set of equations numerically 

from 1 0c =  to 1. 

First of all, we recognize that W is a function of 1c  and eL , We can then 

differentiate W with respect to 1c  and eL , as 
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 1
1

: ,e
e

c
c

∂ ∂
∆ = − ∆

∂ ∂
W WL
L

 (E.3) 

where the partial derivatives are 

 
( ) ( )

( ) ( ) ( )

1 11 1 1
1 2 2

1 1
1 1 1
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e e e e e e e e e
e e

e e e

c
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− −

 ∂ ∂
∆ = ∆ − ∆ + − ∆ − ∂ ∂ 

+ − − ∆ −

W SL L L SL L L L L L L L
L L

L L L L L

 (E.4) 

and 

 ( ) ( )1 1
1 2 1 1

1

.e ec c
c

− −∂  ∆ = − − − ∆ ∂
W L L L L  (E.5) 

Eq. (E.3) to (E.5) enables us to calculate e∆L , the increment of eL , from 1c∆ , the 

increment of volume concentration 1c . If the current values of 1c  and eL  are 

already known, we can apply a small 1c∆  and solve for the corresponding e∆L . 

With these increments, the current values of 1c  and eL  can be continuously 

updated to 1 1c c+ ∆  and e e+ ∆L L . In this way the iteration procedure can be carried 

out from 1 0c =  to 1, so that the relation between eL  and 1c  can be determined. 

This is the main idea of our incremental scheme. 

At the starting point 1 0c = , it is obvious that 2e =L L , since now 2L  is the 

sole existing phase. However it should also be noted that, at this point, the 

effective-medium equation has a singularity (as well as at 1 1c = ), thus for the 

calculation of partial derivatives at this point, we should use an equivalent form of Eq. 

(E.1) (denoted by W'), which is 

( ) ( ) ( ) ( )1 11 1
2 2 2 1 1 1' .e e e e e ec c

− −− −   = − + − + − + − =   W L L I SL L L L L I SL L L 0  (E.6) 

Then the partial derivatives at 1 0c =  are given as 

 ' : ,e e
e

∂
∆ = ∆

∂
W L L
L

 (E.7) 
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and 

 ( ) ( ) 11
1 1 1 1

1

' .e e ec c
c

−−∂  ∆ = − + − ∆ ∂
W L L I SL L L  (E.8) 

With the value of eL  and the partial derivatives of W' at 1 0c = , the iteration can 

then start. During the iteration, we only need to solve for the 17 independent material 

constants, rather than the entire matrix of eL , from the 17 implicit equations. We now 

use v to denote these constants and w for the left-hand side of the equation set, so that 

 
( )
( )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

11 12 13 33 44 31 33 15 31 33 15 11 33 11 33 11 33

, , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , ,
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C C C C C e e e q q q κ κ α α µ µ

=

=
 (E.9) 

and 

( )
( )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

11 12 13 33 44 19 39 57 1,12 3,12 5,10 77 99 7,10 9,12 10,10 12,12

, , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , .

w w w w w w w w w w w w w w w w w w

W W W W W W W W W W W W W W W W W

=

=

 (E.10) 

Then Eq. (E.3) can be rewritten as 

 1
1

,i i
j

j

w wv c
v c
∂ ∂

∆ = − ∆
∂ ∂

 (E.11) 

where , 1 ~ 17i j = . Eq. (E.11) is a system of 17 linear equations. In order to solve it, 

a crucial step is to obtain the coefficients i jw v∂ ∂  as well as 1iw c∂ ∂ . Since W is a 

function of 17 independent constants ( 1 ~ 17)iv i =  and 1c , theoretically both partial 

derivatives can be analytically evaluated. However, their explicit forms are extremely 

complicated, due to three inversion operations and the complex form of S-tensor. 

Especially, for 0-0 connectivity, S-tensor has to be computed by Gaussian quadrature. 

In this case, although with a pretty long expression, it is still guaranteed that S-tensor 

can be expressed as a function of 17 independent constants and 1c . But as a 
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consequence of the complexity, it is advised to use mathematical program such as 

Mathematica to compute i jw v∂ ∂  and 1iw c∂ ∂ . Both of them are the functions of 

( 1 ~ 17)iv i =  and 1c . 

With the results for i jw v∂ ∂  and 1iw c∂ ∂ , our numerical scheme can further be 

illustrated as the following iterative procedures: (i) for the multiferroic composite, if 

the current values for 17 independent constants are already known at a given 1c , use 

them to calculate i jw v∂ ∂  and 1iw c∂ ∂  at this 1c ; (ii) substitute the results of these 

partial derivatives into Eq. (E.11), then take 1c∆  as a small, fixed value (for 

example, we have used 1/4000) to get a system of linear equations for 

( 1 ~ 17)iv i∆ = ; (3) solve the linear equation system and add these incremental values 

iv∆  to the original 17 independent constants iv , and to this end we have calculated 

the effective properties of the multiferroic composite at volume concentration 

1 1c c+ ∆ . Finally, with the initial conditions at 1 0c = , repeat these abovementioned 

iterative procedures and we can fully obtain the effective properties of the multiferroic 

composite from 1 0c =  to 1 1c = . 
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