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The advances of microbial predictive modeling techniques facilitate
Quantitative Microbial Risk Assessment (QMRA), which can extensively contribute
to the food safety in meat industry in the United States. However, the challenges of
predictive modeling cannot be neglected, an example of which is the intermediately
induced lag phase. This research sought to expose this problem by validation of a
predictive model for Salmonella growth on ground beef. Salmonella is an important
pathogen related to beef consumption. ComBase is a predictive database that can be
used to predict microbial behaviors with a variety of environmental conditions in a
dynamic manner. The literature review part of this thesis discusses general
properties of Salmonella, the implication of Salmonella in beef and beef products,
the applications of Hazard Analysis and Critical Control Points (HACCP) and QMRA

in meat industry, methods of predictive modeling, challenges and validation of



predictive modeling. The laboratory work of this thesis exposed the fail-safe
phenomenon under a fluctuating temperature profile. Ground beef (20% fat) was
inoculated with a cocktail composed of five strains of Salmonella. The inoculated
ground beef was subjected to programmable water bath with different temperature
profiles. Enumeration of Salmonella was conducted with proper time intervals. The
observed Salmonella concentrations were compared ComBase predictions, accuracy
and bias factors, as well as final differences between the observed and the predicted
were calculated. The results showed that the model was very fail-safe. According to
literature review and previous study in our laboratory, we excluded background
microflora from the major reasons causing the high deviation. And we speculated
that the deviation was mainly resulted from temperature-induced intermediate lag

phase.
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I. 1. Introduction to Salmonella

Salmonella is a Gram-negative rod-shaped bacterium that can be found in a wide
variety of reservoirs (swine, cattle, poultry, etc.). Salmonella is a genus of the
Enterobacteriaceae family and includes two species: S. bongori and S. enterica. It is
reported that S. enterica species includes at least 2600 serotypes (93). Salmonella
can be classified into two general groups: typhoidal and non-typhoidal Salmonella
based on the clinical syndromes. Typhoidal Salmonella includes four serotypes:
Typhi and Paratyphi A-C, which cause systemic illness without diarrhea (29). The
other serotypes besides these four are non-typhoidal Salmonella (29).

Salmonellosis is a result of the infection of Salmonella and is usually caused by
ingestion of Salmonella-contaminated foods. Salmonella colonize the
gastrointestinal tracts in a wide variety of animals, especially the livestock for
human consumption (96). Salmonella survive passage through the acidic human
stomach to invade the mucosa of the small and large intestine, which subsequently
triggers the release of proinflammatory cytokines and thereby induces
inflammatory reactions (26). The toxins produced by Salmonella result in
cytoskeletal changes, and interfere with signaling pathways, resulting in disease
manifestation (84). Salmonella can adjust rapidly to stressful environments (e.g.,
high osmotic pressure, low pH) and utilize various virulence factors, such as flagella,
fimbriae, adhesins/invasins, and effector proteins, to facilitate the invasion process

(24). The clinical symptoms of salmonellosis include diarrhea, fever, abdominal



cramps, etc. The dose of Salmonella needed to cause illness can be as low as a single
cell, and the median dose varies from strain to strain, and can be 15 to 20 cells (11).
Salmonella is a common foodborne pathogen in the United States. The Centers
for Disease Control and Prevention (CDC) estimates that Salmonella causes 1.2
million of illnesses and 450 deaths every year (16). Salmonella also imposes a great
economic loss ($3.4 billion) in the U.S. annually (30).Table I.1. summarizes the
numbers of outbreaks, illnesses, hospitalizations, and deaths caused by Salmonella
relative to all foodborne hazards (mostly microbial pathogens) from 1998 to 2014
in the US as recorded by CDC. Among the dozens of different pathogens, Salmonella
accounts for 12.5%, 17.2%, 50.7%, and 24.8% of all outbreaks, illnesses,
hospitalizations, and deaths, respectively. The serotypes of Salmonella that are most
frequently implicated with outbreaks are Enteritidis, Typhimurium, Newport, and

Javiana, which account for approximately 50% of all Salmonella illness cases (16).

Table I.1. Numbers of outbreaks, illnesses, hospitalizations, and deaths caused by
Salmonella or all foodborne hazards (1998-2014) (16).

Pathogen Outbreaks Illnesses Hospitalizations Deaths
Salmonella 2,273 61,630 6,952 79
Overall 18,211 358,391 13,715 318

I. 2. Salmonella and Safety of Beef
Beef is one of the most important foods in the American diet. From 2002 to

2014, U.S. produced in average 25.9 billions pounds of beef every year, worth $75.3



billion (90). Cattle are a natural reservoir for a variety of pathogens such as
Salmonella, Campylobacter, Listeria, and Escherichia coli 0157:H7. Salmonella is a
major concern of food pathogen in meat industry (87). Barham et al. (2002)
reported that Salmonella prevalence level in cattle’s hides and feces increased from
6% and 18% to 89% and 46%, respectively between feedlot and arrival at the
packing facilty (7). Similarly, Beach et al. (2002) reported that contamination of
hides of cattle with Salmonella increased from about 19% to a 53% during
transportation to abattoir (8). The dehiding, evisceration, and rinsing processes in
abattoirs may also increase the risk of contaminating the carcass. Once beef is
contaminated, any subsequent packaging, transportation, or retail processes that
result in temperature abuse increase the risk of illness to consumers.

Surveys have been conducted to assess the prevalence of Salmonella on beef in
the U.S., some of which are summarized in Table I. 2. 1. One of the most
representative studies (11) found that the overall prevalence of Salmonella in
ground beef is 4.2%, and the most common serotypes include Montevideo (21.0%),
Anatum (14.8%), and Muenster (8.5%). The other studies found 2.2-58.0%
pre-evisceration carcass were positive for Salmonella (7, 11, 13, 85).

Another factor contributing to the beef-borne illness is that the cooking
practices of the food handlers in households and restaurants are inconsistent and
subject to personal preference. The Food Safety Inspection Service under the U.S.

Department of Agriculture (USDA-FSIS) has made recommendations for freezing,



refrigeration, defrosting, and cooking ground beef products (91). USDA FSIS
recommends that a four-ounce-patty be grilled, boiled, or fried for 3-5 min per side,
and the internal temperature needs to reach 160°F (71.1°C). However, a recent
survey shows that, when cooking beef patties, 51% of consumers choose color as
the criterion of doneness, which is not correct since interior color may be affected
by many other factors (50). Cooking to “well-done” may also not be the favorite
choice for some consumers. The same survey shows that 21% consumers prefer
pink interior (50).

Table I. 2. 1. summarizes the outbreaks related to beef or beef products due to
Salmonella or all pathogens separately from 1998 to 2014 based on the records of
CDC. It shows that Salmonella is responsible for 10.7% and 16.7% beef-implicated
outbreaks and illnesses, respectively.

Concerns about antibiotic-resistant strains of Salmonella have risen in recent
years. Bosilevac et al. (2009) reported that 0.6% of the Salmonella tested in ground
beef were multidrug-resistant (11). Schmidt et al. (2015) reported that 7.6% and 0.5%
Salmonella on hides at processing were resistant to third-generation cephalosporin
and nalidxic acid, respectively (85). The antibiotic-resistant property of Salmonella
contributes to higher risk of infection during treatment, elevated severity of illness,

as well as co-selection of higher virulence genes (87).

Table I. 2. 1. Selected studies of Salmonella prevalence in beef in U.S.



Source No. Samples % positive Comment

(2) 1,140 1.6% Bovine lymph nodes used for ground
beef

(7) 12.7% Pre-evisceration carcass samples

(11) 4,136 4.2% Nationwide ground beef samples in
U.s.

(11) 1,995 58% Pre-evisceration carcass samples

(13) 138 26.9-54.4% *  Pre-evisceration carcass

(85) 184 2.2% Pre-evisceration carcass samples

(96) 210 4% Beef samples from 59 stores in greater

Washington, DC area

* Values represent four different plants.

Table L. 2. 2. Numbers of outbreaks, illnesses, hospitalizations, and deaths due to
beef and beef products caused by Salmonella or all foodborne hazards (1998-2014)

(16).

Pathogen Outbreaks Illnesses Hospitalizations Deaths
Salmonella 104 3,242 373 4
Overall 969 19,349 1000 16

I. 3. HACCP and QMRA for Food Safety Assurance

Multiple US agencies collaborate to ensure the food safety of meat and meat
products, including Food and Drug Administration (FDA), Center for Disease Control
and Prevention (CDC), Environmental Protection Agency (EPA), and Department of
Agriculture (USDA). Within USDA, several agencies participate in the regulation,
including Animal and Plant Health Inspection Service (APHIS), Food and Nutrition
Service (FNS), National Institute of Food and Agriculture (NIFA), and Food Safety
Inspection Service (FSIS). Since 1960s, several laws and regulatory programs had

been made to improve food safety in the meat industry, including Wholesome Meat



Act of 1967, Voluntary Quality Control Programs, Total Quality Control Programs,
Partial Quality Control Programs, and the Federal Meat Inspection Act, etc. (65). The
FDA and USDA had made recommendations for the control of salmonellosis due to
numerous outbreaks of Salmonellosis during 1960s and 1970s (61). One of the
current primary regulatory means to assure the safety of US beef are the food safety
audit and inspection led by USDA FSIS. The food safety audit observes whether a
food processing plant complies with good food safety practices (66), and more than
70% of US ground beef comes from audited plants (66). The inspection conducted
by FSIS is mandatory for slaughter and meat processing plants. There are about
8,000 FSIS personnel working 6,200 federally inspected slaughters and processing
facilities (89).

USDA has mandated all slaughter and processing plants to incorporate a new
risk-control program, the Hazard Analysis and Critical Control Point (HACCP)
system to facilitate reduction of foodborne illness (64). HACCP comprises seven
principles: (a) conduct a hazard analysis; (b) identify critical control points; (c)
establish critical limits; (d) establish critical control point monitoring requirements;
(e) establish corrective actions; (f) establish record keeping procedures; and (g)
establish verification procedures for HACCP. The USDA FSIS authorizing regulation
for HACCP also mandated several procedures for meat-producing establishments,
including Sanitation Standard Operating Procedures (SSOPs), microbial testing for

generic E. coli and Salmonella, and pathogen reduction performance standards for



Salmonella (90). Methods of statistically evaluation over the effectiveness of HACCP
have been proposed (16, 34). Although HACCP is widely adopted in a number of
both developed and developing countries (80). HACCP may not address the inherent
variability of risk during food processing (34). Therefore, quantitative microbial risk
assessment (QMRA) was introduced to HACCP to overcome this limitation (14).
QMRA describes the ways that microbial hazards transfer to hosts and causes
harms to hosts quantitatively, and generally includes four steps: hazard
identification, exposure assessment, does-response assessment, and risk
characterization (44). An example of a QMRA project might be helpful to intuitively
illustrate how QMRA works. The FSIS has recently published a risk assessment
report regarding Listeria monocytogenes in Retail Delicatessens (Deli stores) (1),
which is a fairly comprehensive project that involves collaboration among multiple
agencies. In this project, the behaviors of employees in deli stores were observed
and the probabilities and frequencies of these behaviors were then modeled. The
types of behaviors are very specific, including hand washing, sanitization of slicer,
use of gloves, contact between gloves and non-food surfaces, and so on. Each of
these employee behaviors may result in changes in the concentration of the bacteria,
which is described by predictive models. There were different types of predictive
models, including growth models, inactivation models, and transfer models were
used for quantification of bacterial growth in refrigerator, reduction of bacteria due

to sanitization on slicer, and number of bacteria transferred from gloves to meat



chub, respectively. Data on number and type of consumers, amount of product
consumed, transport time, and dose-response models were available in databases,
which can be used to estimate the probability and expected number of illness after
consumption of deli products with certain concentration of the bacteria. The
expected number of illness was estimated through simulation changing some inputs
(e.g., initial concentration of the bacteria, types of deli products), using probabilities
and frequencies employees’ behaviors obtained from observation, predicted change
of bacterial concentration during food handlings as given by predictive models, and
using database of consumption data and dose-response models. The utility of
certain critical control points can be determined based on the simulation results,
which can be then used to modify the HACCP program. For example, the project
mentioned above found that pre-slicing ready-to-eat products once per day (in the
morning) will significantly increase the risk of illness; and that extra sporadic

cleaning does not significantly help reduce the risk (1).

I. 4. Predictive Modeling

Traditionally, quantification of bacterial number relies heavily on laboratory
test, which can be costly, time- and labor-consuming. Although rapid detection
methods, such as qPCR, have been introduced, they may be expensive or require
additional procedures such as enrichment to complete the quantification (92). In

contrast, predictive models can make quick assessments at low cost (61). Use of



predictive models is consistent with the idea that microbial testing should not be
relied upon as a routine measure for HACCP (87). Predictive modeling is an
indispensable part of QMRA. Predictive modeling can help in preliminary hazard
analysis, identification and establishment of critical control points (53). Predictive
models can also be used to estimate the impact on consumer safety or product
quality once problematic products are already released to market (59). Predictive
models include models for cross-contamination, inactivation models for sanitation
or sterilization, growth models for bacterial growth, etc. The research in thesis
focuses on growth models.

A growth model can be subdivided into two categories: growth/no growth
models and quantitative models. The growth/no growth model determines a
boundary between growth and no growth under the effects of multiple factors (e.g.
temperature, pH, water activity). It is a useful tool to help design hurdle techniques
for microbial control. Logistic regression is the most commonly used tool for the
development of growth/no growth model, which is shown in Eq. (I. 4. 1). The right
hand part of the equation, Azemp, pH, a,, ...), can be linear or non-linear, as long as
the regression coefficients are statistically significant. An example of growth/no

growth model for Salmonella in liquid medium is shown in Eq. (1. 4. 2) (41).

In (ﬁo) = flremp, pH, a, ...) (I.4.1)

where P is the probability of growth, and 1-P is the probability of no growth.
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In (ﬁo) =a+al+ apHd+ abw+ a7 pH+ a7 bw+ agpH - bw+ a, 7 pH -
bw+ ag? + agpH* + ayobu? (I.4.2)

where «,, @, ... a;( are regression coefficients; T is temperature; bw is the square

root of the complement of ay.

Development of a quantitative growth model is typically composed of three
stages: primary model, secondary model, and tertiary model. A primary model tells
how the bacterial population changes at certain condition as time elapses. A
secondary model can be built based on primary models, it describes how the
parameters of growth (e.g., exponential growth rate, lag time duration) evolve as
intrinsic (e.g., water activity, pH, concentration of solutes) or extrinsic factors (e.g.,
temperature, atmosphere gas composition) change. A tertiary model can be thought
of as the computer interface that incorporates the developed secondary models,
which enables users to input initial bacterial population and various intrinsic or
extrinsic factors and then obtain the predicted bacterial population.

Bacterial growth is commonly thought to be composed of four phases, which are
lag phase, exponential phase, stationary phase, and death phase. Death phase is
usually excluded from a growth model. A primary model is to fit the growth data of a
bacterium using sigmoidal-shape curve that mimics the growth curve using

non-linear regression techniques. The commonly used mathematical functions for
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primary models include but are not limited to modified Gompertz (100), logistic
model (35), and Baranyi model (4), which are shown in Eq. (I. 4. 3), Eq. (I. 4. 4), and
Eq. (I. 4. 5), respectively. The Baranyi model expresses the gradual improvement in
the physiological state and some believe therefore that this model makes more
biological sense (61). The development of a secondary model for Salmonella on raw
ground beef using four different primary models (logistic, modified Gompertz,
Baranyi, and Huang model) revealed that there was no significant difference in
terms of goodness of fit (38). Another study comparing different primary models
(three-phase linear, Baranyi, and Gompertz model) reported that, despite of better

robustness of a three-phase linear model, the three models had similar goodness of

fit (38).
X(f) = X + (Xmax + XO)eXp [_ exp[—B(f— M]] (I 4. 3)
x(7) = xy + ——2ze—0 (L 4. 4)

1+exp [ B(/—M)]
where X is the initial log10(CFU/g) concentration of the bacterium; x(t) is the
log10(CFU/g) concentration at time ¢; B is the maximum relative growth rate (h1) at
t=M; M (h) is the time when the absolute growth rate reaches the maximum.

— eXP [/ N1 -1
N = Yot /’mdxl'—(f) —In(1+ m) (I.4.5)

where y(t) is In(CFU/g) concentration of the bacterium at time t; yy is the initial
concentration In(CFU/g); tmax is the maximum specific growth rate; v is rate of
increase of the limiting substrate and is assumed to equal to fmax; ho is assumed to

be constant and equal to pumaed; A=M-1/B; K7) = r+ [l)ln (e” + e — e(‘”"ho)).
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The specific growth rate (rmax) from Baranyi model can be obtained from
Umax/In10, whereas the rma from modified Gompertz model and logistic model can

be derived from Eq. (I. 4. 6) and Eq. (I. 4. 7) (38).

Pmax = PE=LEX B (I 4.6)
Fmax = X B (L4.7)

The lag phase duration (1) derived from modified Gompertz model and Baranyi
model can be calculated by Eq. (I. 4. 8), and the A for logistic model is calculated
from Eq. (I. 4. 9) (38).

1

A= M—-- (I 4. 8)

A=M-- (I. 4. 9)
As noted above, a secondary model is used to map conditional factors to the
growth Kinetics, i.e., growth rate or initial lag phase duration. Although conditional
factors can be many, the simplest secondary models use only temperature because
temperature is the primary factor affecting bacterial growth. Thus modeling the
effect of temperature on growth rates or initial lag phase duration enables a
dynamic quantification during a series of food handlings that are subject to
temperature changes. One of the mostly used secondary models for temperature is
modified Ratkowsky model (98) and is shown in Eq. (I. 4. 10). Primary models are

typically built under isothermal conditions, thus a series of data points representing
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different temperature are needed to develop a secondary model.

Pmax = a(T_ 7;71/'/1)2(1 - exp[b(T— 7Zﬂax)]) (I 4. 10)

where T is temperature (°C); Tmin and Tmax are the minimum and maximum
growth-allowed temperatures; a and b are constants.

Eq. (I. 4. 8) and (I. 4. 9) imply that lag phase duration is related to growth rates,
thus it can be computed once the specific growth rates are derived from Eq. (I. 4. 5).

Table I. 4. 1. lists some growth models of Salmonella on either laboratory media
or food products. Table I. 4. 2. shows some growth models for different bacteria on
beef or beef products. A laboratory media-based model is more versatile that it can
be used to predict growth on a relatively wide range of food products; whereas
food-based model is more specific and can only be used to predict similar food
products. Studies comparing the performances of the two are limited.

Tertiary models make primary and secondary models more accessible and
user-friendly to non-expert users. Some tertiary models developed by governmental
agencies or research institutes include Pathogen Modeling Program (Food Safety
Research Unit, USDA), Food MicroModel (Ministry of Agriculture, UK), Growth
Predictor (Institute of Food Research, UK), Seafood Spoilage and Safety Predictor
(Danish Institute for Fisheries Research), and ComBase (Food Standards Agency,
Institute of Food Research, UK; USDA-Agricultural Research Service, US) (33).
ComBase (http://www.combase.cc/) is a powerful tool in predictive microbiology.

It can predict the growth of 14 microorganisms and thermal inactivation of 7
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pathogens under dynamic temperature profile, as well as non-thermal survival of 2
pathogens. The growth predictor allows inputs of initial level, physiological state,
temperature, pH, and water activity/sodium chloride concentration. Our research

focuses on the validation of the ComBase model for Salmonella.

Table 1. 4. 1. Development of Salmonella growth models on different media.

Source Medium Parameters

(27) Egg yolk Temp

(31) Liquid eggs Temp

(37) Chicken Temp

(45) Laboratory media * Temp, pH, ethanol conc., aw

(40) Cantaloupe Temp

(46) Scrambled egg mix Temp

(47) Lab medium Aw, pH

(67) Cooked chicken Temp

(68) Ground chicken breast Temp

(69) Ground chicken Temp

(70) Chcken frankfurters Temp

(71) Raw chicken skin Temp

(72) Chicken at low Temp
temperature

(74) Laboratory media Temp, NaCl, pH

(77) Baby spinach leaves Temp

(83) Ready-to-eat lettuce Temp

(86) Liquid whole egg Temp

(92) Ground sterile pork Temp

(97) Chicken meat Temp, aw

* growth/no growth model.

Table I. 4. 2. Growth models of different bacteria on beef or beef products.

Source Bacterium Product Parameters
(2) Salmonella, Satphylococcus Raw beef Temp

aureus, E. coli 0157:H7
(4) Klebsiella, Pseudomonas, E. coli Ground beef Temp, gaseous

permeability,



(23)
(7)

(39)
(36)

(12)
(48)

(43)

Salmonella

Latic acid bacteria,
Enterobacteriaceae,
Pseudomonas, psychrotrophic
bacteria

Clostridium perfringens from
spores

Clostridium perfringens

Salmonella
Salmonella

Spoilage bacteria

Sterile lean beef
Refrigerated
beef

Cooked cured
beef

Cooked uncured
beef

Ground beef
Minced beef

Ground beef

15

Temp
Temp

Temp
Temp

Temp

Temp,
inoculum size
Temp, pH

I. 5. Challenges and Validation of Predictive Models

Challenges in the development of predictive models have been noted. The

standard method for data collection of building primary models is total viable count,

which can be quite labor-intensive, requiring in some cases more than a hundred

growth curves be sampled (53). More automated methods are claimed to have a

greater risk of misinterpretation (53) and thus may not replace total viable count.

Moreover, the application of predictive models in QMRA was questioned by Nauta

(2002), who pointed out that predictive models should ideally give probability

distributions, instead of point estimates, to better serve the needs of QMRA (63),

since QMRA use probabilities and give results in the form of probabilities, whereas

more predictive models only gives deterministic answers.

A variety of factors may influence the accuracy of prediction on food products,

such as background microflora. It has been noted that microbial competition
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appears to limit the maximum population density (MPD) of the species present in
the system; meanwhile it does not seem to significantly affect the lag time or growth
rate of each species (19). This MPD limiting phenomenon is called the Jameson effect
(82). For example, the growth rate of L. monocytogenes co-cultured with natural
biofilm microflora was not reduced, but the growth of L. monocytogenes terminated
as the microflora reached the stationary phase (28). Ignoring the Jameson effect can
lead to an overestimation of the modeled microorganism by a large scale. For
example, it was found that unconstrained exponential growth models (i.e., where
the background microflora is ignored) resulted in counts that were 106-107 higher
per serving of meat products than a constrained model (17). It has been
demonstrated that microbial interaction is more predominant than other selective
factors. For example, the simultaneous growth of E. coli 0157:H7 and ground beef
background microflora the followed Jameson effect, but were barely impacted by
selective factors (i.e., bile salts, novobiocin, high temperature) (95). By modeling the
ratio between L. innocua and L. monocytogenes, researchers found that interspecies
inhibitory interaction, rather than growth advantage of L. innocua, is the reason why
Listeria innocua overgrows in an enrichment broth designed for L. monocytogenes
(20). Similarly, the maximum population density of L. monocytogenes Scott A in
broth was suppressed by the presence of either the bacteriocin- or non-bacteriocin
producing Carnobacterium piscicola strain (15). A study of the competitive growth of

L. monocytogenes with Lactobacillus sakei MN in meat gravy discovered that the
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inter-species competition changes with temperature (78).

Methods have been proposed to model the co-culture between competitive
species. The Lotka-Volterra model Eq. (I. 5. 1) is used to model two-species
competition (76). Another generally used model is Jameson-effect model, which is
shown in Eq. (I. 5. 2) (19). Vereecken et al. (2000) had proposed graphical and
analytical approaches to evaluate the microbial interaction models between

two-species (94).

dN Ni+aqpN:

d_t1 =ny[1- 1TM11)21 ]

aNy _ g Nateals (I.5.1)
a2 | TMD, ]

where N; and N; are the population densities of species 1 and 2; r; and r; are the
monspecific growth rates; TMD; and TMD; are the maximum population densities
under monospecific condition; a2 and az; are the interspecific competition
coefficients.

1 dNL(b)
r(t) dlt = Umax1 " %1 (t) ’ f(t)
1 dNy(b)

mT = Umax2 " az(t) ’ f(t)

(I.5.2)

0,if t <lagtime
1,if t = lag time ’
inhibition functionis f(t) = (1 — M); and N;(t) and N(t) are the population

Nmax

where a(t) = { f{t) is inhibition function, an example of

densities of species 1 and 2, respectively.

The lag time duration not only reflects the environmental conditions, but also
imparts the physiological state of the inoculum. Although a few predictive models

(e.g., ComBase) do take physiological state of the inoculum as an independent
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variable, it is difficult to link the temperature history and inoculum size to the
physiological state. Therefore, lack of information about the state of the inoculum
may affect the performance of a predictive model. Gay et al. (1996) reported that a
combination of pre-incubation cold temperature and low inoculum size significantly
shifted the growth curve of L. monocytogenes (25). Augustin et al. (2000) observed
the lag time of L. monocytogenes was extended when the inoculum was stressed by
starvation (3). Besse et al. (2006) discovered a significant effect of inoculum size of L.
monocytogenes on lag phase duration and maximal population density (9). The
inoculum size also affected the boundary of temperature, aw, and pH for the
growth/no growth model for L. monocytogenes (42). This concern about the lack of
inoculum information becomes more significant when the actual starting
concentration for pathogen contamination in foods is relatively small, since
predictive models are typically developed with higher starting inocula (61).

Another challenge for predictive modeling is intermediate lag phase.
Intermediate lag phase can be induced if the modeled bacteria are subjected to
abrupt environmental changes. Research on the growth of Lactobacillus plantarum
under fluctuating temperature illustrated that a more accurate growth model should
be able to predict additional lag if temperature shift occurs during both lag phase
and exponential phase (99). This research also showed that shifts around minimum
growth-allowed temperature was more likely to induce lag than milder shifts.

Attempts have been made to model intermediate lag as a function of
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temperature-related parameters. To investigate the effect of temperature shift on
growth Kinetics, researchers have developed a model to describe the parameter ho
(the product of growth rate by the lag phase duration) as a function of
pre-incubation temperature and growth temperature for L. monocytogenes (21). A
systematic study on quantification of lag using E. coli focused on the effect of three
quantities on lag: the amplitude of temperature shift, the pre-shift temperature level,
and the post-shift temperature level (88). The results generally suggested that (a) a
temperature jump less than 5°C probably does not cause intermediate lag, whilst a
temperature jump greater than 10°C probably does; (b) roughly speaking, a
temperature jump of 10°C at lower temperature causes longer intermediate lag than
higher temperature. Similar to temperature shift, an abrupt osmotic shift can also
induce lag phase in many foodborne bacteria including Salmonella (48, 47, 57).
Given the fact that currently most available modeling methods merely focuses on
initial lag, and that modeling intermediate lag is relatively difficult (88), predictive
models should be used with cautions for the scenarios with abrupt environmental
changes.

In addition to the factors mentioned above, naturally present antimicrobials,
structure of the food matrices, potential physic-chemical changes of conditions can
also cause deviation from prediction, so predictive models should be validated
before use. To date, there is no standard method for model validation. Ross (1996)

developed accuracy and bias factors (can be seen in Eq. (II. 4. 1) and Eq. (IL. 4. 2)) for
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model evaluation (81), which were modified by Baranyi (1999) (5) (Eq. (I. 5. 3) and
Eq. (I. 5. 4)). Some researchers considered a prediction accurate if the difference
between predicted and observed value was within 0.3 log CFU (32, 10). Others may
use root mean square error (RMSE) (92) or relative error (%RE) (43) to assess the

performance of a model, which can be seen in Eq. (I. 5. 5) and Eq. (L. 5. 6).

m N =1nu®
Ar = exp {\/ ean/ () DY (I 5. 3)

m

XM An £ (x®)—inu )
m }

By = exp { (I. 5. 4)

where u@,u...u(m are observations; f{x(¥) is the predicted value corresponding to
the kth observation point.

RMSE = \/Z(predictedN—measured) (I. 5. 5)

observed—predicted

%RE =

P X100 (1. 5. 6)
In summary, Salmonella is a significant safety hazard for ground beef
consumption. To reduce the risk of Salmonella, HACCP program has been
extensively employed in meat slaughters and processing plants to assure meat
safety and quality. Predictive models enable the quantification of the food safety
hazards from farm to table, and thus become a complementary tool for HACCP.
Predictive models, however, faces some factors that are not usually incorporated
into the model development, such as background microbiota, insufficient knowledge

for inoculum, and intermediate lag. Therefore, model validation, as the major topic

of this thesis, becomes critical to realizing the value of predictive models.
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II. 1. Abstract

Salmonella is one of the most common foodborne pathogens in the United States.
ComBase is a predictive database that can be used to predict microbial behavior in
various and changing environmental conditions. This research is an extension from
our laboratory and is to validate ComBase for Salmonella in ground beef under
multiple temperature-changing cycles (i.e., three cycles with or without holding time
at 5°C for 2.5 h in between, and six cycles with or without holding time at 5°C for 24
h in between; each cycle included 2.5 h heating from 5°C to 37°C and 2.5 h cooling
from 37°C to 5°C). Five rifampcin-resistant serotypes of Salmonella were used for
this research, i.e., S. Copenhagen, S. Montevideo, S. Typhimurium, S. Saintpaul, and S.
Heidelberg. The Salmonella cocktail was inoculated into 300 g of ground beef, which
was then separated into 5 g samples and subjected to water bath for four different
temperature profiles. Spread plates were conducted on tryptic soy agar plus
rifampcin at certain time intervals. Predictions corresponding to the temperature
profiles were generated in ComBase, which were then compared to the observed
data. The accuracy factors and bias factors range from 1.27 to 1.74 and 1.27 to 1.78,
respectively. We speculated that the major reason causing the deviation from the
model was the intermediate lag phase induced by low temperature. Further

research may be needed to very this speculation.

II. 2. Introduction
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The Center of Disease Control (CDC) estimates that over 1.2 million
salmonellosis cases occur annually in the U.S. annually, which causes $2.3 to 11.3
billions of economic loss (54). Approximately 7% of those salmonellosis cases are
attributed to beef (54). Recently, Salmonella outbreaks due to ground beef occurred
in 2011, 2012, and 2013 (16). The 2011 outbreak included 7 states and 20 cases; 9
states were involved during the 2012 outbreak and 46 individuals were infected;
the 2013 outbreak included 6 states and 22 infected individuals (16).

Time consuming and expensive challenge test are the primary means to
quantify microbial growth in food products, which are fairly time-consuming (92).
An alternative of assurance for microbiological safety is predictive modeling.
Typically, primary models are developed for a microorganism of interest under
certain constant environmental condition (pH, temperature, salt concentration, etc.).
Mathematical functions with sigmoidal shape, e.g., Gompertz, logistic, Baranyi and
Roberts’ model, are usually used to fit the growth curves to develop primary models,
and each generally provides an accurate means to predict microbial growth (26).
Juneja et al. (2009) developed a model for Salmonella in ground beef using logistic,
modified Gompertz, Baranyi, and Huang models, and found that there was no
significant difference with respect to model performance among the four models
(38). Based on primary models, secondary models are built to map a specific
environmental condition to growth parameters (maximum growth rate and/or

duration of lag phase). Predictions for microbial growth under changing
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environmental factors can be made with secondary models. A tertiary model allows
input of a variety of environmental parameters and generates pertinent predictions
based on secondary models. ComBase is a tertiary model that is publicly available
online (http://www.combase.cc/). The name ComBase derives from combined
database or common database, which is created by merging Pathogen Modeling
Program (PMP) in the U.S. and Food MicroModel (FMM) in the U.K,, as well as data
from collaborating institutes and literatures (55).

Predictive models should be validated before being applied to food products.
Models are usually developed in laboratory media, which may not be consistent in
real life food products. The food matrix, competitive microflora, and extreme
environmental conditions can all cause deviation from model prediction.

Researchers generally assumes that bacterial growth rates adapt
instantaneously to temperature change if the changes are within the range for the
growth of the bacteria (12). But it has been noted that adaptation-related delay of
growth occur if the already growing cells are subjected to a new temperature (10).
Also, most models focus on the effect of environmental conditions on the maximum
growth rate with less emphasis on lag phase (43), so temperature fluctuations
across minimum growth-allowed temperature may expose the inaccuracies in a
model.

This research is an extension of a research conducted by McConnell and

Schaffner (2014) (52), who validated ComBase for Salmonella in ground beef under
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one cycle of temperature change (from 4.4 to 15.6, 26.7, or 37.8°C over 4, 6, and 8 h).
They reported that good agreements were observed when maximum temperatures
were lower (15.6 and 26.7°C), whereas the model was fail-safe when the maximum
temperature was 37.8°C. This research seeks to further validate ComBase for
Salmonella in ground beef with more frequent and extreme temperature

fluctuations to give a more conclusive evaluation on the performance of the model.

II. 3. Materials and Methods

Methods are modified based on prior research conducted in our laboratory (18).
Rifampicin (rif) -resistant Salmonella strains (listed in Table II. 3.) were used. Prior
research has shown that antibiotic-resistant and -nonresistant strains are not
significantly different with respect to growth rate in ground beef (52). Ground beef
(20% fat) used in the experiments were purchased from a local supermarket no

more than one day before use.

II. 3. a. Inoculation

The five strains were each grown separately in tryptic soy broth with 50 pg/ml
of rif (TSB+rif) for 8 h at 37°C. The strains were combined in equal volume to form
a cocktail and 1 ml cocktail was centrifuged (accuSpin Micro 17 Microcentrifuges,
ThermoFisher, Grand Island, NY) at 5xg for 5 min. Supernatant was discarded and

pellet was re-suspended with 0.15% peptone water. The centrifugation procedure
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was repeated three times and the final bacterial suspension was diluted 1:10-3, from
which 1 ml was inoculated into 300 g of ground beef, to yield a starting
concentration of 3 log (CFU/g). The inoculated ground beef was kneaded in a sterile
sample bag (24 oz., Nasco Whirl Pak, Salida, CA) for 10 min. Preliminary
experiments showed that 10 min kneading would result in homogenous distribution
of the inoculum in 300 g ground beef. The ground beef was separated into 5 g
portions contained in small sterile sample bags (1 oz., Nasco Whirl Pak, Salida, CA).
The 5 g samples were securely submerged in programed water bath (Chiller
Recirculating Water Bath RTE 17 and RTE 221, Thermo-NESLAB, Portsmouth, NH)

and were subjected to the desired temperature profile.

Table II. 3. Salmonella strains used in this study.

Strains
USDA strain ~ S21 S24 S25 S26 S40
identification
serotype Copenhagen Montevideo Typhimurium Saintpaul Heidelberg

II. 3. b. Temperature profiles

The temperature profile was programmed to rise linearly from 5°C to 37°C in
2.5 h and to drop linearly from 37°C back to 5°C in the same time, constituting one
cycle of temperature change. This experiment included three and six cycles in the
temperature profile. The three-cycle temperature profile had 0 or 2.5 h holding time

at 5°C in between; whereas the six-cycle temperature profile had 0 or 24 h holding
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time at 5°C in between.

II. 3. c. Growth assay

Samples were assayed for Salmonella concentration approximately every two
hours during three-cycle temperature profile. For the six-cycle temperature profile,
two tests were conducted at the beginning, the middle, and the end of each cycle.
Samples were diluted 1:50 with 0.15% peptone buffer and were homogenized by a
stomacher (Stomacher Lab Blender 400, Cooke Laboratory Products, Alexandria,
VA). Additional dilutions were made according to expected Salmonella
concentration and sampling time. Samples were plated on tryptic soy agar plus rif
(TSA+rif) in duplicate and Salmonella colonies were enumerated after 24 h
incubation at 37°C. An uninoculated ground beef sample was plated on TSA+rif at
the beginning and the end of the experiment as a negative control. Appropriately
diluted first sample and final samples with were plated on TSA to enumerate total

plate count (TPC).

IL. 3. d. Predictive modeling

The ComBase online model (http://www.combase.cc/) was used to generate
dynamic growth prediction for Salmonella spp. The physiological state, initial level
(log), pH, and NaCl (%) were set to be as default, 3, 5.7 and 0.5, respectively. The

temperature profile was set as above. The observed data were adjusted slightly to
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have an initial Salmonella level of 3 log (CFU/g) to facilitate comparison with model
predictions. Since the ComBase model for Salmonella does not allow temperature
below 7°C, any temperature points below that limit were adjusted to be 7°C.
Accuracy and bias factors (81) were calculated with the observed and predicted data

to evaluate the performance of the ComBase model.

I1. 4. Results

The results are seen in Table II. 4. 2. Holding time indicates the length of time
when temperature was held at 5°C between two cycles. The resulting accuracy and
bias factors can also be seen in Table II. 4. 1. While Figure II. 4. 1., Figure II. 4. 2.,
Figure II. 4. 3., and Figure II. 4. 4. depict the results from experiment of 3 cycles
without holding, 3 cycles with holding, 6 cycles without holding, and 6 cycles with
holding, respectively.

The TPC present in the ground beef were high at the beginning and end of all
experiments: 6.65+0.28 and 7.07+£0.36 (95% CI) logs CFU/g, respectively. Although
such a high level of background microflora might be thought to inhibit the growth of
Salmonella, prior research in our lab (52) and elsewhere (22) indicated a minimal
impact.

It can be seen from Figure II. 4. 1. and Figure II. 4. 2. that prediction and
observation agreed well in the first temperature cycle, and this continued until the

middle of the second cycle. Since temperature between the end of first cycle and the
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beginning of second cycle was below 10°C, and it has been reported that the lag
duration for Salmonella in ground beef at 10°C was as high as 2,784 h (10), we
speculate that the Salmonella in that period were experiencing physiological
changes due to low temperature and consequently additional lag was induced, as
suggested by Swinnen et al. (2004) (88).

Development of ComBase was based on primary and secondary models, and this
methodology assumes that maximum growth rate adjusts to new temperature
instantaneously. If the temperature abruptly shifts to below the minimum
growth-allowed temperature for a sufficient amount of time, temperature-induced
lag may be induced and if the model does not take this into account, this may be the
key reason why the difference prediction and observation increased after the first
temperature cycle in Figure II. 4. 1. and Figure II. 4. 2.

Similarly, in the 6 cycles experiments (Figure II. 4. 3. and Figure 1. 4. 4.),
prediction and observation agreed well in the first two hours, and the deviation
increased at the rest of the sampling points. It should be noted that both the
maximum predicted concentrations in Figure II. 4. 3. and Figure II. 4. 4. were 8.51
log CFU/g, which is the maximum concentration that Salmonella can grow. The
difference between prediction and observation at the fourth cycle was
approximately as high as 3 log CFU/g, and the final differences were to 3.03+0.24
and 4.37+0.43 log CFU/g for Figure II. 4. 3. and Figure II. 4. 4., respectively.

The closer the accuracy factor is to 1, the more accurate the model. The closer
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the bias factor is to 0, the less biased the model. By comparing the accuracy and bias
factors of the four experiments, general trends regarding cycle number and low
temperature exposure can be seen. The 6-cycle experiments have higher accuracy
and bias factors than the 3-cycle experiments, which means the model is, under
these temperature profiles, less accurate and more biased with more temperature
cycles. The 6-cycle plus 24-h-holding experiment had higher accuracy and bias
factors than the one without holding, which suggests that experiencing low
temperature amplifies the deviation between prediction and observation. This was
not the case for the 3-cycle experiments, where accuracy and bias factors for 3-cycle
with holding were lower than that without holding. We suspect that this is because
the holding time (2.5 h) in the 3-cycle experiment was too short to cause a
physiological difference in the cells.

Some researchers considered a prediction accurate if the difference between
final predicted and observed concentration (Alog CFU/g) was within 0.3 log CFU (11
2). Although the specific value of this criterion can vary, the result of Alog CFU/g in
this study suggests that ComBase was does not provide an accurate prediction for
the tested temperature profiles. Interestingly, the accuracy factors in Table II. 4. 1.
were lower than the average accuracy factor (2.11) reported in previous study (52),
whereas the final differences between the observed and predicted increase in the

current study were generally less than 2 log CFU/g.
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1 redicted.
Accuracy factor = 1002118 Coverced Eq. (II. 4. 1)
1 redicted.
Bias factor = 1002198 (Gerred] Eq. (II. 4. 2)

Table II. 4. 1. Result of accuracy and bias factors under different temperature
profiles. Each cycle includes heating from 5°C to 37°C in 2.5 h and cooling from 37°C
back to 5°Cin 2.5 h. Holding time is the length of time when temperature is held at
5°C between two cycles. Alog CFU/g is the mean difference within 95% confidence
interval (CI) between the final observed and final predicted value of log CFU/g.

Number of Holding time (h) Accuracy factor Bias factor Alog CFU/g
cycles

3 0 1.23 1.23 2.30+1.87
3 2.5 1.18 1.16 2.22+1.32
6 0 141 1.40 3.03+0.24
6 24 1.74 1.74 4.37+0.43

Table II. 4. 2. TPC in different experiments. Initial and final TPC are the TPCs present
in the ground beef in the beginning and in the end, respectively. ATPC is derived
from subtracting final TPC by initial TPC. The values of initial TPC, final TPC, and
ATPC are the 95% confidence interval (CI) of their means.

Number of Holding time Initial TPC (log  Final TPC ATPC (log
cycles (h) CFU/g) (log CFU/g) CFU/g)

3 0 6.36+0.47 6.70+0.74 0.35+0.48
3 2.5 6.52+2.43 7.34+3.12 0.81+0.70
6 0 6.77+0.27 6.82+0.43 0.05+£0.52
6 24 6.97+0.06 7.41+0.06 0.44+0.02
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Figure II. 4. 1. Salmonella growth in ground beef under 3 cycles of temperature
change without holding at 5°C between each cycle. Dashed line, solid line, and solid
circles represent the temperature profile, predicted concentration, and observed
concentration, respectivel.
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Figure II. 4. 2. Salmonella growth in ground beef under 3 cycles of temperature
change with holdings at 5°C between each cycle. Dashed line, solid line, and solid
circles represent the temperature profile, predicted concentration, and observed
concentration, respectivel.
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Figure II. 4. 3. Salmonella growth in ground beef under 6 cycles of temperature
change without holding at 5°C between each cycle. Dashed line, solid line, and solid
circles represent the temperature profile, predicted concentration, and observed
concentration, respectivel.
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Figure II. 4. 4. Salmonella growth in ground beef under 6 cycles of temperature
change with holdings at 5°C between each cycle. Dashed line, solid line, and solid
circles represent the temperature profile, predicted concentration, and observed
concentration, respectivel.

36

Temperature { C)



37

IL. 5. Discussion

Many studies of growth of Salmonella in meat or laboratory medium have been
performed, and some include model development. Mackey and Roberts (1979)
reported that Salmonella did not grow at 7-8°C on beef and that the mean generation
times on beef at 10°C, 12.5°C and 15°C were 8.1 h, 5.2 h and 2.9 h, respectively (49).
Dickson et al. (1992) developed a model for the lag and generation time of
Salmonella, and subsequent validation studies showed no significant difference
between observed and predicted Salmonella concentration in the scenario that lean
or fatty tissues of beef were cooled from 40°C to 10°C in 3.3 or 5 h (23). Mann et al.
(2004) tested the critical limits of temperature and time for Salmonella and
background microflora on ground pork. They observed that Salmonella and
background microflora showed significant log increase in Salmonella-inoculated
ground beef held at room temperature after 6 h and 8 h, respectively; whereas, at
refrigerated temperature, no significant growth of Salmonella was observed and it
took 24 h for microflora to show significant growth (51). These researchers also
found that it took more time for microflora to grow in uninoculated sample than in
inoculated sample (51).

A predictive tool called THERM (Temperature History Evaluation for raw Meats)
was developed to predict pathogen behavior qualitatively (growth/no growth) and
quantitatively in meats (32). Validation studies for THERM showed that, despite of

good qualitative performance, it was inaccurate (observed and predicted growth
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differed by >0.3 log CFU) with respect to quantitative prediction in 58%
experiments for Salmonella in meat (32). Borneman et al. (2009) reported that the
accuracy (within #0.3 log CFU) of THERM prediction for Salmonella serovars,
Escherichia coli 0157:H7, and Staphylococcus aureus in meat products ranged from
51.4t0 67.2% (10).

Performances of PMP, FMM, and ComBase Salmonella models have been
investigated. Oscar (2013) validated PMP prediction for Salmonella at various
constant temperatures on chicken skin that had been frozen for 6 days (73). He
found that the experimental results generally agreed with PMP predictions. Bovil et
al. (2001) subjected Salmonella-medium suspension to rapid temperature
increasing, decreasing, or fluctuating profiles and found no cell death or induced lag
phase due to temperature shock and that the experimental results agreed well with
FMM (12). McConnell and Schaffner (2014) have found that ComBase was accurate
or fail-safe for in predicting Salmonella growth in ground beef in dynamic
temperature conditions (52).

Some research has also been conducted on periodic or fluctuating temperature
profiles. Mitchell et al. (1995) modeled Salmonella growth by evaluating growth
rates at various isothermal medium conditions with different combinations of pH
and sodium chloride concentrations (60). Their study subjected Salmonella cultures
to sinusoidal temperature cycles from 4 to 22°C in 60, 120, or 240 min, and the

result showed good agreement between experimental and predicted result, and, in
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most cases, the growth of Salmonella responded instantaneously to temperature
change without lag phase being induced (60). Pin et al. (2011) modeled Salmonella
concentration throughout the pork supply chain under fluctuating conditions, and
the model they used (Baranyi and Roberts model) did not include lag phase, which
resulted in bias and fail-safe prediction (75). Velugoti et al. (2011) developed a
model to predict growth of Salmonella in sterile ground pork and validated it under
increasing (from 2 to 44°C in 24 h), decreasing (from 45 to 7°C in 10 h), or sinusoidal
(between 10 to 30°C in 40, 120, 240, and 480 min) temperature profiles (92). They
found that most observed data points of increasing and decreasing agreed with
prediction well (within 0.5 log difference); whereas deviation was enlarged if the
sinusoidal temperature profile stayed below minimum growth temperature for
longer period (92).

In our research, the major reason causing experimental deviation from
prediction may be low temperature-induced lag phase. It is commonly believed that
duration of lag is dictated by pre-inoculation physiological state and
post-inoculation environment (6). In those experiment used to develop growth
models, the post-inoculation environment is standardized, thus the predicted
duration of lag is only dependent on pre-inoculation physiological state of the
bacteria (6). However, Swinnen (2004) have pointed out that, besides initial lag,
intermediate lag can be induced by sudden environmental changes and should be

considered in predictive modeling (88). There are many factors that may influence
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intermediate lag qualitatively and quantitatively, including environmental
conditions, growth state, inoculum size, etc., and thus very complicated to model
(88).

Another important factor influencing the accuracy of predictive model is the
competitive natural microflora present in the food matrix. The spoilage flora in
ground meat (predominantly Pseudomonads and Brochothrix thermosphacta) can
grow up to 10° CFU/g at the end of shelf life (42). Pathogens generally stop growing
once the dominant microflora reaches the maximum population density, which is
known as the Jameson effect (62). However, Dickson and Olson (2001) found that
removal of microflora in ground beef by irradiation did not give Salmonella
competitive advantage to grow in ground beef (22). Koutsoumanis et al. (2005)
developed a dynamic model for spoilage microflora in ground meat and their
validation studies indicated good performance of the model in the scenario that
temperature changed periodically from 0 to 10, 15, or 20°C (42). Mgller et al. (2013)
modeled the effect of microflora on growth of Salmonella in fresh pork and noted

that the Jameson effect was temperature dependent (62).

II. 6. Conclusions
ComBase was consistently fail-safe in the fluctuating temperature profiles we
tested. It was noted that more temperature fluctuations and more exposure to low

temperature could increase the deviation from the model predictions. While
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background microflora is one possible explanation for the model deviation, prior
work in our lab and elsewhere indicate background microflora is not the key factor
responsible for the deviation from model predictions. We suggest that
low-temperature-induced intermediate lag phase does influence the performance of

the model.
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