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ABSTRACT OF THE DISSERTATION

Optimal Execution of Real-Options in Illiquid and Incomplete Markets

By Wajahat H. Gilani

Dissertation Director:

M.N.Katehakis

This dissertation, consists of three essays on the problem of quantifying optimal

stopping policies for a multi-period investment, where transition probabilities and the

investment value itself are uncertain. These models are applicable to entrepreneurs

in the technology sector and any investment where option based approach can be

taken.

In the first chapter, I convert the multi-period investment into a partially observable

Markov decision process model with bayesian learning. I assume that the core process

of the investment value is not observable during the multi-period investment process

but can be observed only in its final state if the decision to exploit the investment is

made. I assume that the probability distribution between the observed demand levels

and the underlying value is known. Since this POMDP model is difficult to solve

with dynamic programming because of the size of the possible states, we introduce

ii



a heuristic based on marginal profit gains at each state. With the marginal profit

heuristic we can calculate the minimum probability threshold of the unobservable

state, in a 2-state model, that is the optimal stopping for the process.

In the second chapter, I drop the assumption of knowing the probability distribution

between the observable demand and unobservable underlying value of the state to the

investment, and replace it with a second type of demand level that when observed

together with the first demand level imply certain values of the underlying investment.

I introduce an algebraic logistic function that has the characteristics of a sigmoid

distribution, to serve as an approximation of the probability of the underlying state,

based on the observations of the two demand levels but the ratio between them

quantify the probability, not a known distribution. Since this model has no defined

transition matrix, I develop a best case heuristic, for the 2-state model, that finds a

local optimal range, without the use of the Lambert function, and therefore optimal

stopping point when a local optimal range does not exist. For the n-state model we

define least-case heuristic, similar to the best-case heuristic, except m-local optimal

ranges are defined, where m<n and corresponds to the number of states with a positive

return.

In the third chapter, using the algebraic sigmoid function from the second chapter,

I develop a policy approximation problem for the N-state model, where I define an

optimal policy that maps the probability of the states of the underlying value of the

investments, to an action at each period. In addition, I apply the best-case heuristic

from chapter 2 in aggregating the N-state into a M state decision problem.
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Introduction

The 7th century Arabian general Khalid ibn al-Walid, is respected as one of the great-

est military minds of the ancient world. Given the title, “The Sword of God”, by the

Islamic prophet Muhammad himself, he was known for his superior tactics and strate-

gies and was able to lead the smaller forces of the recently created Muslim nation in

Arabia to victory over the vastly superior armies of the Sassanid-Persian Empire and

Byzantine-Roman Empire Akram (2004). Today historians and researchers debate

and analyze the many factors that lead to such remarkable victories, some of which

can directly be applied to the subject of investing in highly uncertain businesses.

First, he created an elite light cavalry utilizing fast camels and horses, known as the

mobile guard (Tulay‘a mutaharikka) Malik (1968). Second, he equipped his cavalry

with lances, allowing the mostly skirmish oriented Arabs, who had little experience

in open field warfare, to engage and disengage with their adversaries with relatively

little loss. Third, having created the fast infantry with lances, he employed hit and

run tactics, attacking and then retreating to attack the flanks and rears. Lastly, he

created a core group of advisors of intelligent men from the various regions he had

been engaged in battle that served as a simple version of what a modern military

today would refer to as an intelligence staff Akram (2004).

The innovations and tactics employed by the general are in themselves impressive,

but when looked at as a whole we claim that a particular framework starts to become

evident; an option-based framework combined with observational learning. An option

based framework, is a multi-stage decision tree, where at any given stage, there is a

certain or a probabilistic current state of the process. From the current state, an
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agent must decide to take an action, defer an action, or decide to make the current

state the final one. If an action or deferment is taken, then an exogenous force is

applied in tandem possibly causing the state to move to another state or stay in the

current state, in the next stage. The stages of the decision tree continue to either

a predefined number of stages or until the agent chooses to make the current state

the final state. The multistage methodology is favored for situations where there is a

great deal of uncertainty. At every stage of the decision process the agent can make

observations and collect data. This allows the agent to make incremental gains in

knowledge and allows for flexible and adaptive responses. The large unknown decision

can be made into smaller decisions that increase with certainty.

The general faced a large amount of uncertainty about the capability and strategies

of the opposing army. To deal with such uncertainties he took what was a one-

time large bet, a full frontal assault, and transformed it into many smaller bets, i.e.

the hit and run tactics. This not only slowly weakened his adversaries, but also

allowed him to probe for weaker flanks while allowing him to quickly “learn”, via his

intelligence staff, the best possible points of attacks in a manner that was relatively

the safest way for this cavalry to attack and fight. Whenever he engaged in battle,

he gave himself the option to continue an attack, change the direction of the attack,

or retreat. All the while collecting better information with every decision, leading to

better decisions and options during the battle, in the cheapest manner (minimizing

his army’s casualties).

An entrepreneur, like the general Khalid ibn al-Walid, is faced with a large amount

of uncertainty when he or she is looking to develop a new product or service. In

the face of such uncertainty, the entrepreneur needs to quickly gather information

relevant to his or her venture in a cost-efficient manner while simultaneously being

flexible enough to respond to the incremental information. Just like the general, the
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Figure 1: Standard Warfare formation

ideal scenario for the entrepreneur is an option-based framework with observational

learning. According to Schwartz and Trigeorgis (2004), real options are essentially

opportunities that are irreversible and allow the entrepreneur the right but not the

obligation to exploit the opportunity. The authors frame the option-based framewoark

as a series of compound options where the value of each individual option or decision

depends on other options or decisions. This framework implies the entrepreneur takes

the one potentially large bet and transforms it into many smaller, faster and cheaper

bets, which in turn allows for more information gathering opportunities.

In today‘s startup world, this philosophy is best captured by the lean methodology,

Ries (2011). Lean‘s basic principle is to make a minimum viable product (MVP) as

quickly and cheaply as possible, release it into the market and gather live feedback

from actual consumers in the market. Then take the information derived from the

feedback and change the product or service in a manner where the market will find

it more appealing. The idea is to keep each stage as cost-effective and small as

possible so many cycles can be done. Once the entrepreneur starts to see exponential

growth, the entrepreneur then looks to develop a more sustainable version of his or

her MVP. This requires raising capital from professional investors, and where the
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Figure 2: General Khalid ibn al-Walid hit and run formation

value of information gathered and the exponential growth achieved is of value. This

is the equivalent to executing an option contract.

In terms of businesses focusing on consumers, exponential growth is the critical point.

It serves as the optimal execution point for the entrepreneur to raise capital from

professional investors and build the current venture to scale. Many of the larger and

established Venture Capitalists stress to their portfolio companies that capturing a

large number of users is more important then generating revenue. The idea being

that building a large consumer base is much more difficult then establishing ways to

profit from said consumer base. In addition, growth is a way to shield against new

competition Deeb (2014). This strategy has lead to the founding of a sizeable number

of start up companies, called unicorns; private companies with a valuation over one

billion dollars, even if their net profits are significantly less. As long as they have

exponential or reinforced growth, then investors will continue to valuate them at high

levels. With large consumer bases only a tiny of fraction of monetization is needed to

reap asymmetrically large profits. Yet, many companies with exponential growth and

a large initial demand, have failed when demand, for various reasons, reverse course
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Figure 3: Lean Start-up Methodology
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CBInsights (2015).

The focus of this paper is on the optimal decision to be made at each stage of a

multi-period investment, which may have more then one stage, when faced with

uncertainty and the lack of a statistical base line. We define a multi-period investment

as any investment where there is more then one preiod of investing and where one

option has the right to purchase another option, or where one decision can lead to

another decision. Technology startups fulfill this definition because they raise capital

through different phases of their growth. Infrastructure investments can also satisfy

this definition if prior to starting the project, live experiments are done to measure the

efficacy of the project, i.e. measuring the flow and speed of traffic at different times

of the day within a certain location. This can be considered a two-stage investment

problem, with many period, where the live measuring of traffic and collection of data

is the first stage of investment and the decision to pursue the infrastructure project

is the second and last stage of investing.

0.1 Barriers To Real Option Application

The exisiting literature in Real Options is filled with assumptions that are difficult to

make for startups or unique types of businesses. In the case of Herath and Park (2002),

they define three different volatilities, σ1, σ2, and σ3, for three unique investments that

are made in sequential stages and are interrelated to each other. The volatilities σ1,

σ2, and σ3 are independent of one another and have unique distributions. This is an

assumption our model cannot make because our focus is on multi-stage investments

where we have no direct historical information on the volatility σ distribution of the

underlying revenues for each incremental investment. To address the lack of historical

information, we can construct a customized benchmark from the distributions of
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similar features of other investments where historical information exists. In Xu et al.

(2014), a feature-based regression algorithm is used for a recommendation system

when a new user with no prior interaction with the system attempts to use it. The

user’s features are compared to users of similare features and their probability models

are applied to the new user. Another way to address the uncertainty of our model’s

volatilities σ for the underlying investments, is to apply a uniform distribution on our

parameters within rational bounds. In Barmish and Lagoa (1997), the case is made

to use the uniform distribution for uncertain parameters given certain assumptions

about the underlying density functions. When the assumptions are weaker they state

truncated uniform distributions give similar results.

In both cases whether we use the feature equivalent constructed probabilities or the

uniform distribution, our model will be sensitive to the assummptions used in the

construction of those probablity models. The constructed probability model’s critical

assumption is that the correlation of the features’ probabilities have a negligble effect

on the whole benchmarked probability. The critical assumption made on the uniform

distributions are the boundaries. In some cases, the bounds (or at least one bound)

are clear, but in some cases the theoretical boundary, or boundaries, may not exist.

For example, stocks have a clear lower bound, they can never go below zero, but in the

case of the upper bound there is no clear boundary because stock prices, in theory, can

go up to infinity. Our model is a multi-stage decision which allows us the opportunity

to process new signals about the distributions of our volatility σ and modify them

accordingly. The feature based benchmark distribution or the uniform distribution

both can serve as an initial best guess or prior distribution, for our model’s uncertain

distributions. In Herath and Park (2001), using bayesian analysis they perform a

pre-posterior analysis to calculate the expected value of sampling information (EVSI)

which is then compared to their calculated quasi-real option value. If the EVSI

reduces a significant amount of uncertainty, then the sampling is done and the value
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of the real option is re-assessed with better information, leading to another decision

of whether to keep holding the real option. Their examples assume that the samples

and bayesian processes follow normal distributions, but our model not having any

direct historical data does not make any assumptions about the distributions.

Attempting to learn the probability distribution of an underlying value of a multi-

stage decision or option contract complicates our model with three underying assump-

tions. The first assumption is that our prior distribution is an adequate representation

of the underlying distribution to price the primary real option at stage one of the in-

vestment. This assumption affects the decision whether or not to buy the first option

or make the first investment decision. At this point, all that is known is the prior

distribution, and in contrast to other literature, we have do not assume a transition

probability. Second, the optimal number of stages to derive a probability distribution

that is within an acceptable rate of error from the true underlying volatility σ of

the investment can be quantified for our model. Given the uncertain nature of the

underlying distributions it is difficult to find a scenario where the data informed dis-

tribution can be deemed "complete" without an exongenous signal. This assumption

relates to knowing when to stop exploring and to start exploiting an opportunity, or

when to start different stages of partial exploration/exploitantion. Third, the true

underlying volatility σ of our multistage investments is not associated with fat tails

and non-charateristic scale, i.e. power law, which if it were the case would expose

our model to tail risk as discussed in Taleb and Bar-Yam Taleb et al. (2014). The

possible exposure to tail risk in probabilistic investing can cause us to see a temporal

opportunity when the actual volatility and expected profit might be far less or un-

certain as discussed in Makridakis and Taleb (2009). These properties highlight the

difficulty in using option valuaition techniques in illiquid and incomplete markets and

show why managers and consultants prefer simpler modeling techniques over option

valuation techniques as cited in Rigby Rigby (2001). They found real option analysis
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had low satisfaction rates and high defection rates. In summary, our model needs

to answer; if the first or outer layer option should be purchased, when to exploit or

move to another stage of exploration, and if the distribution of the derived value is

stable.

To construct our multi-stage option model we look to the frameworks used by Venture

Capital (VC) firms that invest in disruptive and scalable technologies. VC firms look

to invest in ventures that look to challenge established businesses and markets and

by their very nature are initiatives that attempt to be unique in products and/or

services. The innovative and unique nature of these businesses carries with them

extreme risk and uncertainty, both about the company and the market. To attempt to

manage the uncertainty VC firms fund these startrups with several rounds of funding

with customized contracts sometimes linked to performance and milestones. In Bienz

and Hirsch (2011), they show how the nature and magnitude of uncertainty and

information asymmetry drives VC firms to use and customize multi-staged financing

contracts allowing VC firms to manage uncertainty in a more efficient manner. The

miletstones and performances help guide both the start-up companies and VC firms in

determing when or if to move to another round of funding, or when to execute another

subset of the options. In Choi et al. (2008), they discusses the ignorance reduction

process from the start-up companies point of view in determining how to define a time

threshold to go from exploration to exploitation. They derive propositions focusing on

the defensibility of the business from competitors and the rate of cost of exploratory

phase of the business. In this paper, we structure our framework around the growing

philosophy of the VC world, that looks to invest in "networks", Weissman (2012).

Investing in networks, essentially means investing in the product or service that is

a by product of a semi-auntonomous micro market. Facebook, twitter, Uber are

companies that can all be considered networks, to some degree. The network, is

analogous to a freemium product or service that has a base model that is free and
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then can be upgraded or can offer additional services for a payment of some kind.

The concept of network is superior to a traditional freemium in the sense that the

network is semi-autonomous and is part of the solution process to solve whatever

the objective of that network is trying to solve, or provide services and products to

reinforce the purpose of that network existing in the first place. A better freemium

product or service analogy would be, a product or service where the consumer has

some control to enhance the product or service to some degree, or at the very least

contribute ideas towards a better product. For the purposes of the is paper we will use

networks and freemium interchangeably. The benefits for investors and entrepreneurs

in investing in a network are two-fold. First, with any new product or service, there is

the question of whether there is a significant and sustainable need for said product or

service. Many initial startups have exponential growth and solid marketshare, only to

have that marketshare dwindle after a period of time. A common example is MySpace

whose size became dwarfed by its simpler more viral competitor Facebook Giliette

(2011). A growing and vibrant community, or network, where growth is largely driven

by the network itself, is the quantitative evidence that there is a set of needs that

has a market looking for solutions. This segways into the second benefit, because any

product or solution that is tailored and/or inspired by the network, can be seemlessly

integrated into the network and has a built-in marketshare, and which allows it to

be defensible against copycat competitors. If the product or service fails to convert

network members into paying customers, then the product or solution failed solve

the need and want of the network, but the failure will be faster via the network,

saving potential money and time. A great example of a network is the arts and

crafts market place Etsy. The founders initially had worked on a community forum

dedicated to crafters. The common theme of the discussions on the board was a way

to see their crafts that was cheaper and easier then Ebay. The founders built Etsy,

per the requirements and needs they could gather from the forums and then invited
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the forum to join. From there it grew exponentially, as more crafting communities

were invited and the sellers themselves marketed the site, since it directly benefited

them if more users were coming to the site to buy products.

We want to combine the concept of networks to the real option approach to make a

Network Option Decision Process (NODP) that can apply option-based techniques

in a way that is applicable to the industry. In contrast to the NODP Model we

want to compare the application of the Partially Observable Markov Decision Pro-

cess (POMDP) to the same type of problem. The POMDP Model assumes that the

probability of investments are unobservable during the investment process unless the

full investment is exploited. In addition, there is an observation process that is prob-

abilistically related to the unobservable core process, so that a probabilistic guess can

be made about to the true state of the investment in any give period. This converts

the POMDP model into a MDP model with a very larget state space. These large

intractable decison problems require the development of heuristics and faster method-

ologies to solve. In this paper we propose optimal stopping heuristic for the POMDP

model that is based on the Dowry Problem Gilbert and Mosteller (2006) and marginal

profits. There has been much work on addressing large dimensionality problems and

faser alorithms. In Katehakis et al. (2015), they introduce a faster methodology for

solving large scale systems of equations that arise in markov decision problems, with

the use of a matrix based algorithm, and in Ertiningsih et al. (2015) they extend the

concepts to quasi-skipfree processes, where as in Cowan and Katehakis (2015a) the

exploitation vs exploration problem is explored in a stochastic multi-armed bandit.

In Cowan and Katehakis (2015b), they address the problem of making a choice in

a multi-armed bandit setting where the means of the options available can be infi-

nite, through the use of use bounded distributions, where as in Cowan and Katehakis

(2015c) they provide an optimal policy of maximizing the expected sum out of N

random populations. In, Katehakis and Smit (2012), they introduce a successive
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lumping procedure to solve a class of markov chains and in KATEHAKIS et al., they

compare successive lumping methodology to lattice path counting, finding that SL

based algorithms outperform the lattice path and the former includes a method to

calculate steady state distributions. In Fleischhacker et al. (2015), they optimize the

discounted revenue of a firm with one pool of inventory selling into two different mar-

kets, using efficient dynamic pricing policies. In Shi et al. (2012), the paper address

the optimal management of the two basic cash flows of that businesses have to man-

age, the purchase of inventory and the selling of inventory. Typically in the industry

there is a lag and can be financially dentrimental to a business. They establish a two-

threshold policy for when to order based on asset levels. In Burnetas et al. (2015),

they address the bandit problem with known dependent costs and construct a class

of policies that have an asymptotic lower bound. In Katehakis and Puranam (2012),

an opitmal value function is established throught the use of monotonic properties.

These references go into detail of various optimization and efficiency techniques used

in markov related problems but the list is not nearly exhaustive.

In contrast the MDP and POMDP modelds, the NODP Model makes no assump-

tions about the underlying core process or the observational process, and instead

relies on two sets of observations. One we define as the new paying user (NPU) and

one we define as new freemium user (NFU). The NPU is observational process from

the POMDP model but the NFU is just part of the NODP model. This reduces

expectaction complications that the above MDP algorithms attempt to solve but at

the expense of a transition matrix. The objective is to quantify the likelihood of

the permanent paying user base (PPU), that will in turn drive the valuation of the

investment. The PPU cannot be known unless the investment is fully vested and

exploited. In chapter 1, we start with a two-state POMDP model and explore the

compclications that quickly arise in solving it, and provide a heuristic for an optimal

stopping policy. In chapter 2, we define the two-state NODP model and develop a
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best-case stopping policy that we extend to a N-state NODP model as an average

best-case stopping policy. In chapter 3, we attempt to aggregate the states of the N-

State NODP model to apply a dynamic program, in spite of not assuming transition

probabilities.
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CHAPTER 1
Partially Observable Markov Decision

Process

1.1 Two State Model

To develop a network option decision process (NODP) model we will compare and

contrast different valuation scenarios against an equivacol partially observable markov

decision process (POMDP) model. We assume the valuation V for our multi-stage

investment is dependent on the number of permanent paid users (PPU), Up
T , at exe-

cution period T and can only take the values H or L, where

Up
t = {H,L} in period t

H > L

The concept of permanent paid users or clients, Up is an ephemeral concept in the

tech and business world but investors and entreprenuers focus on the average number

of users for a fiscal quarter to represent the permanent paid user level. For the

purposes of our paper the permanent paid users Up
T at period T will be a sufficient

representative. In our model the number of permanent paid users is not directly visible

by either the POMPDP or the NODP model, but we assume that Up
t follows a core
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process that is represented by the following conditional transitional probabilities

P (Up
t = H|Up

t−1 = H) = α (1.1)

P (Up
t = L|Up

t−1 = H) = 1− α (1.2)

P (Up
t = L|Up

t−1 = L) = β (1.3)

P (Up
t = H|Up

t−1 = L) = 1− β (1.4)

This is representative of the probabilistic nature of uncertain investments. At no

given time do investors know what the true demand for a product or service will be

with certainty unless they execute all stages of the investment. Until then, throught

the multi-stage investment, management looks to data or signals that are indicative

of the probability of the unobservable demand being at a certain level. The condi-

tional transitional probabilies for the PPU Up represent the strength of the product

or service’s ability to create a positive network effect. If the α is 100% that implies

that the product or service has a strong network affect and the multi-stage invest-

ment will be very profitable with little risk. If the α is less then 50%, that implies

that the product or service has a negative network effect and the innovative solution

was rejected by the particular segment of the market. Our model assumes that the

observations of the data or signals that are correlated to the true PPU Up
t , in every

period t, for new paying clients or users is available to both models. In our model the

number of new paid users (NPU) per period are the obsevations that are correlated

to the true state of the PPU Up
t at period t. The variable upt , represents the number

of new paid users (NPU) in period t, and upt can only take on one of two values h or

l where

upt = {h, l} in period t

h > l
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The probability of observing the NPU upt at period t is conditional on the true state

of PPU Up
t at period t and is denoted by the following observation probabilities

P (upt = h|Up
t = H) = δ (1.5)

P (upt = l|Up
t = H) = 1− δ (1.6)

P (upt = l|Up
t = L) = θ (1.7)

P (upt = h|Up
t = L) = 1− θ (1.8)

Just like the conditional transitional probabilities, only the POMDP model assumes

to know the observation probabilities. The NODP model does not assume to know

the conditional transition probabilities for Up
t or the observation probabilities for upt

and can only observe its values for any given period t, as can the POMDP model. It

is important to note that if the δ, for example, were to be 50%, then when the PPU

Up is H that would imply that the NPU up observations are uncorrelated with the

PPU Up and therefore is an incorrect measurement to track. If the δ were less then

50%, that could imply that h is much greater then l to account for the high PPU Up

result.

The NODP model makes one additional assumption that the POMPD model does

not make. The variable uft represents the new free users (NFU) at period t, for all

the new users of the freemium product or service. The NFU uft can only be one of

the two values g or k where

uft = {g, k} in period t

g > k
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Model Assumptions
Assumption POMDP NODP
Up transition probabilities yes no
Up and up observation probabilities yes no
up observations yes yes
uf observations no yes

Table 1.1: List of Assumptions for each Model

Table 1.1 summarizes the assuptions our POMDP and NODP models make. In

multi-stage investments for unique and innovative ventures it is highly unlikely that

the investor or entrepreneur will be able to assume the transition and observation

probabilities of the POMDP model. This is why we chose the POMDP model as

a good comparison against the NODP model, which is more typical of the type

and depth of information entrepreneurs and investors have access to. The POMDP

model does not assume the NFU uf , this is because the transition and observation

probabilities reveal more information about the PPU’s value. Our model assumes

the cost Ct to the be the cost of continuing the investment at every period t. The

problem is defined as a compound option, where the entrepreneur can decide to 1)

continue exploring, 2) abandon the investment opportunity altogether, or 3) swich to

exploitation. At every new stage for the POMDP model the probabilistic value for Up

is re-evaluated, where as for the NODP model the objective is to see either exponential

growth in up relative to uf or to a lesser degree linear growth of up conditional on the

linear growth on uf . In terms of our current two-state model, this means consistently

seeing up = h when we see uf = g, where as in the technology industry VC firms

focus on exponential growth in uf followed by exponential growth in up. Our model

assumes the profit π received from this multi-stage investment will be valuation V i

net of the costs Ct for all stages executed
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Figure 1.1: Two-State POMDP Transtional Diagram

π = V i −
T ∗∑
t=1

Ct (1.9)

where T ∗ is the stage at which the entrepreneur or investor chooses to abandon or

exploit the investment and becomes the final stage.

Figure 1.1 is the transitional diagram for our two-state POMDP model. At perod

0, the probability of PPU P (Up
0 = H) is represented by the variable εH and defined
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by the bounded uniform distribution or the feature-based model, and serve as "best-

guesses" for the investment at period 0. Since the state of our model can only have two

option, P (Up
0 = L) = εL = 1−εH . At this point the investor or entrepreneur will have

to make the decision whether to purchase the initial option at period 0 given the initial

best guess ε distribution and the underlying transitional probabilities or abandon or

execute the deal. At point c in the transition the entrepreneur has continued on the

option and has moved to the next period 1 where NPU up1 is now observed. We now

calculate the new probability for PPU P (Up
1 ) in period 1 of the POMPDP model

using the result of the NPU up1 in period 1. If the NPU up1 = h was observed, then

the probability for the PPU P (Up
1 = H|up1 = h) at period 1 will be

P (Up
1 = H|up1 = h) =

P (up1 = h|Up
1 = H)P (Up

1 = H)

P (up1 = h|Up
1 = H)P (Up

1 = H) + P (up1 = h|Up
1 = L)P (Up

1 = L)

(1.10)

where using our transitional probabilities probability P (Up
1 = H) is

P (Up
1 = H) = P (Up

1 = H|Up
0 = H)P (Up

0 = H) + P (Up
1 = H|Up

0 = L)P (Up
0 = L)

⇒ αεH + (1− β)εL (1.11)

and probability P (Up
1 = L) is

P (Up
1 = L) = P (Up

1 = L|Up
0 = H)P (Up

0 = H) + P (Up
1 = L|Up

0 = L)P (Up
0 = L)
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⇒ (1− α)εH + βεL (1.12)

and therefore equation (1.10) is

⇒ δ(αεH + (1− β)εL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)
(1.13)

If the NPU up1 = l was observed, then the probability for the PPU P (Up
1 = H|up1 = l)

at period 1 will be

P (Up
1 = H|up1 = l) =

P (up1 = l|Up
1 = H)P (Up

1 = H)

P (up1 = l|Up
1 = H)P (Up

1 = H) + P (up1 = l|Up
1 = L)P (Up

1 = L)

(1.14)

⇒ (1− δ)(αεH + (1− β)εL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)
(1.15)

At the end of period 1, the entrepreneur or investor has spent C1 to observe the

NPU up1 during this period and now must make the decision again to; 1) abandon, 2)

continue, or 3) to exploit. Given that a NPU up1 = h was observered in period 1 and

assuming that the investor is risk neutral, if the investor decided to exploit in period

1 then expected profit function is
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πh1 = V H

[
δ(αεH + (1− β)εL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]
+

V L

[
(1− θ)((1− α)εH + βεL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]
− C1 (1.16)

where as if the NPU up1 = l was oberved and the investors chose to exploit, the

expected profit function is

πh1 = V H

[
(1− δ)(αεH + (1− β)εL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]
+

V L

[
θ((1− α)εH + βεL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]
− C1 (1.17)

If the investor decides to abandon the investment after period 1, then only the cost

C1 would be incurred. If the investor chose to continue the multi-stage investment

then the transitional probability of P (Up
2 = H) would be

P (Up
2 = H) = P (Up

2 = H|Up
1 = H)P (Up

1 = H) + P (Up
2 = H|Up

1 = L)P (Up
1 = L)

where if in period 1 NPU up1 = h was observed then
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P (Up
2 = H|up1 = h) = α

[
δ(αεH + (1− β)εL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]
+

(1− β)

[
(1− θ)((1− α)εH + βεL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]
(1.18)

and

P (Up
2 = L|up1 = h) = (1− α)

[
δ(αεH + (1− β)εL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]
+

β

[
(1− θ)((1− α)εH + βεL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]
(1.19)

else if in period 1 NPU up1 = l was observed then

P (Up
2 = H|up1 = l) = (1− α)

[
(1− δ)(αεH + (1− β)εL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]
+

β

[
θ((1− α)εH + βεL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]
(1.20)

and
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P (Up
2 = L|up1 = l) = α

[
(1− δ)(αεH + (1− β)εL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]
+

(1− β)

[
θ((1− α)εH + βεL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]
(1.21)

Then the investor would pay C2 to observe the NPU for period 2, up2. If up1 = h is

observed in period 1 and up2 = h is observed in period 2 then the probability of the

PPU Up
2 = H will be

P (Up
2 = H|up2 = h, up1 = h) =

⇒ P (up2 = h|Up
2 = H)P (Up

2 = H|up1 = h)

P (up2 = h|Up
2 = H)P (Up

2 = H|up1 = h) + P (up2 = h|Up
2 = L)P (Up

2 = L|up1 = h)

⇒
δ

[
α

[
δ(αεH+(1−β)εL)

δ(αεH+(1−β)εL)+(1−θ)((1−α)εH+βεL)

]
+ (1− β)

[
(1−θ)((1−α)εH+βεL)

δ(αεH+(1−β)εL)+(1−θ)((1−α)εH+βεL)

]]
(
δ

[
α

[
δ(αεH+(1−β)εL)

δ(αεH+(1−β)εL)+(1−θ)((1−α)εH+βεL)

]
+ (1− β)

[
(1−θ)((1−α)εH+βεL)

δ(αεH+(1−β)εL)+(1−θ)((1−α)εH+βεL)

]]
+
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(1− θ)

[
(1− α)

[
δ(αεH + (1− β)εL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]
+

β

[
(1− θ)((1− α)εH + βεL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]])
(1.22)

If up1 = h is observed in period 1 and up2 = l is observed in period 2 then the probability

of the PPU Up
2 = H will be

P (Up
2 = H|up2 = l, up1 = h) =

⇒ P (up2 = l|Up
2 = H)P (Up

2 = H|up1 = h)

P (up2 = l|Up
2 = H)P (Up

2 = H|up1 = h) + P (up2 = l|Up
2 = L)P (Up

2 = L|up1 = h)

⇒
(1− δ)

[
α

[
δ(αεH+(1−β)εL)

δ(αεH+(1−β)εL)+(1−θ)((1−α)εH+βεL)

]
+ (1− β)

[
(1−θ)((1−α)εH+βεL)

δ(αεH+(1−β)εL)+(1−θ)((1−α)εH+βεL)

]]
(

(1− δ)

[
α

[
δ(αεH+(1−β)εL)

δ(αεH+(1−β)εL)+(1−θ)((1−α)εH+βεL)

]
+ (1− β)

[
(1−θ)((1−α)εH+βεL)

δ(αεH+(1−β)εL)+(1−θ)((1−α)εH+βεL)

]]
+

θ

[
(1− α)

[
δ(αεH + (1− β)εL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]
+
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β

[
(1− θ)((1− α)εH + βεL)

δ(αεH + (1− β)εL) + (1− θ)((1− α)εH + βεL)

]])
(1.23)

If up1 = l is observed in period 1 and up2 = h is observed in period 2 then the probability

of the PPU Up
2 = H will be

P (Up
2 = H|up2 = h, up1 = l) =

⇒ P (up2 = h|Up
2 = H)P (Up

2 = H|up1 = l)

P (up2 = h|Up
2 = H)P (Up

2 = H|up1 = l) + P (up2 = h|Up
2 = L)P (Up

2 = L|up1 = l)

⇒
δ

[
(1− α)

[
(1−δ)(αεH+(1−β)εL)

(1−δ)(αεH+(1−β)εL)+θ((1−α)εH+βεL)

]
+ β

[
θ((1−α)εH+βεL)

(1−δ)(αεH+(1−β)εL)+θ((1−α)εH+βεL)

]]
(
δ

[
(1− α)

[
(1−δ)(αεH+(1−β)εL)

(1−δ)(αεH+(1−β)εL)+θ((1−α)εH+βεL)

]
+ β

[
θ((1−α)εH+βεL)

(1−δ)(αεH+(1−β)εL)+θ((1−α)εH+βεL)

]]
+

(1− θ)

[
α

[
(1− δ)(αεH + (1− β)εL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]
+

(1− β)

[
θ((1− α)εH + βεL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]])
(1.24)

If up1 = l is observed in period 1 and up2 = l is observed in period 2 then the probability

of the PPU Up
2 = H will be
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P (Up
2 = H|up2 = l, up1 = l) =

⇒ P (up2 = l|Up
2 = H)P (Up

2 = H|up1 = l)

P (up2 = l|Up
2 = H)P (Up

2 = H|up1 = l) + P (up2 = l|Up
2 = L)P (Up

2 = L|up1 = l)

⇒
(1− δ

[
(1− α)

[
(1−δ)(αεH+(1−β)εL)

(1−δ)(αεH+(1−β)εL)+θ((1−α)εH+βεL)

]
+ β

[
θ((1−α)εH+βεL)

(1−δ)(αεH+(1−β)εL)+θ((1−α)εH+βεL)

]]
(

(1− δ)

[
(1− α)

[
(1−δ)(αεH+(1−β)εL)

(1−δ)(αεH+(1−β)εL)+θ((1−α)εH+βεL)

]
+ β

[
θ((1−α)εH+βεL)

(1−δ)(αεH+(1−β)εL)+θ((1−α)εH+βεL)

]]
+

θ

[
α

[
(1− δ)(αεH + (1− β)εL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]
+

(1− β)

[
θ((1− α)εH + βεL)

(1− δ)(αεH + (1− β)εL) + θ((1− α)εH + βεL)

]])
(1.25)

The equations (1.22), (1.23), (1.24), and (1.25), show that the POMDP model is path

dependent and to properly value the option to continue into the next period (i.e, from

period 1 to period 2), requires that all the observations and subsequent transitions

be calculated (i.e., from period 2 onward).

In figure 1.2, a transition diagram for a three-period two-state POMDP model is

shown. In order for an investor to make the decision whether to continue from state
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Figure 1.2: Two-State Three-Period POMDP Transtional Diagram

h in period 1, the values of state hh and hl must be known. Likewise to value

states hh and hl, it is necessary to have the values of states hhh, hhl, hlh, and hll.

Given the computational complexity in the POMDP model our paper uses an optimal

stopping point based on marginal profit (MP). The MP stopping point calculates the

probability of the states Up = H and Up = L at which point there no marginal

gain in continuing the multi-stage investment and abandonment or execution must

be chosen. This is possible because the two-state POMDP allows us to quantify the

two values where in an n-state POMDP model, where n > 2 the values would have

to be approximated. The optimal prability values for the two states are represented

by the variable mpH for the optimal probability P (Up = H) and mpL for the optimal

probability P (Up = L). This is done by focusing on the marginal revenue of the
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transitional probabilities where the states change, as in our model

P (Up
t = L|Up

t−1 = H) = 1− α

P (Up
t = H|Up

t−1 = L) = 1− β

We want to calculate the probabilities, mpH and mpL by calculating the next periods

marginal revenue as being equal to marginal cost

MR = V HP (Up
t+1 = H|Up

t = L)mpL + V LP (Up
t+1 = L|Up

t = H)mpH

mpH +mpL = 1

MC = Ct+1

⇒V HP (Up
t+1 = H|Up

t = L)mpL + V LP (Up
t+1 = L|Up

t = H)mpH = Ct+1

⇒V HP (Up
t+1 = H|Up

t = L)(1−mpH) + V LP (Up
t+1 = L|Up

t = H)mpH = Ct+1

⇒V HP (Up
t+1 = H|Up

t = L)−mpHV HP (Up
t+1 = H|Up

t = L) + V LP (Up
t+1 = L|Up

t = H)mpH

= Ct+1

⇒− V HP (Up
t+1 = H|Up

t = L)mpH + V LP (Up
t+1 = L|Up

t = H)mpH

= Ct+1 − V HP (Up
t+1 = H|Up

t = L)

⇒mpH(V LP (Up
t+1 = L|Up

t = H)− V HP (Up
t+1 = H|Up

t = L)) = Ct+1 − V HP (Up
t+1 = H|Up

t = L)

⇒mpH =
Ct+1 − V HP (Up

t+1 = H|Up
t = L)

V LP (Up
t+1 = L|Up

t = H)− V HP (Up
t+1 = H|Up

t = L)
(1.26)
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and

⇒(1−mpL) =
Ct+1 − V HP (Up

t+1 = H|Up
t = L)

V LP (Up
t+1 = L|Up

t = H)− V HP (Up
t+1 = H|Up

t = L)

⇒−mpL =
Ct+1 − V HP (Up

t+1 = H|Up
t = L)

V LP (Up
t+1 = L|Up

t = H)− V HP (Up
t+1 = H|Up

t = L)
−

V LP (Up
t+1 = L|Up

t = H)− V HP (Up
t+1 = H|Up

t = L)

V LP (Up
t+1 = L|Up

t = H)− V HP (Up
t+1 = H|Up

t = L)

⇒mpL =
V LP (Up

t+1 = L|Up
t = H)− Ct+1

V LP (Up
t+1 = L|Up

t = H)− V HP (Up
t+1 = H|Up

t = L)
(1.27)

The solutions for mpH in equation (1.26) and mpL in equation (1.27), are conditional

on four assumptions. The first assumption is that

V H > Ct ≥ V L (1.28)

V H being greater then Ct and V L is self explanatory but if Ct is greater then V L,

then it implies that the marginal revenue of continuing will always be greater then

marginal cost and the multi-stage investments could theoretically never end. In the

industry, this is not a possible scenario. If there is a theoretical investment in the

industry where

V H > 0

Ct = V T ≥ 0

Then this implies there will be a positive gain with certainty, and the investment

should immediately be exploited in period 0. If
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V H > 0

Ct = V T ≤ 0

Then this implies that the business is being paid for each period of the multi-stage

investment, and no exploitation is needed. Again, this is not a possible scenario in the

industry. Construction, programming, Research & Development, labor, commodity

inputs, etc., are not free let alone revenue-positive inputs for any business or industry

(the Investment Banking industry is a special exception).

The second condition we stated before is

P (Up
t+1 = H|Up

t = L) > P (Up
t+1 = L|Up

t = H) (1.29)

If condition two is violated then this implies that the venture probabilistically will

have negative growth or no network effect, and therefore the investment would never

have been chosen in the industry. The third condition is

for i = 1, 2, . . . , T (1.30)

(V H
i − V H

i−1) ≤ 0 and (1.31)

(V L
i − V L

i−1) ≤ 0 (1.32)

This implies that our model is assuming a constant or decreasing V H and V L, where if

V H and V L were increasing over time then the MP stopping point will give suboptimal

results because it is not taking into account future possibilities. This assumption is

very possible in the industry. As data from multi-stage investments are processed the

initial assumptions about V H and V L can be revised and in some cases are functions
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of data being collected, V L(up) and V H(up). The MP optimal stopping point can

serve as a guide in these situations, serving as a signal to entrepreneurs to justify the

future stages of investments, as a lowerbound.

Since the MP optimal stopping poing, mpH is decreasing in Ct and increaseing in V L,

there is a possibility that for investments where there is little downside, the mpH will

be too high to be used as a practical signal. The greater P (UP
t+1 = L|Up

t = H) is the

more likely it becomes. Therefore, we define the variable, mpH∗ as the highest value

of P (Up = H) observed during the first m periods of the multi-period investment. If

after the firstm periods, the P (Up = H) was never greater then or equal tompH , then

the entrepreneur continues the multi-period investment until P (Up = H) ≥ mpH
∗ .

To define m, we first calculate the longest period, t∗, where the total cost of executing

the investment, with P (Up = H) = mpH equals the total cost of all the t∗ periods of

the investment. In other words, the point at which exploiting the investment at the

optimal stopping probability, mph, no longer becomes profitable.

bt∗c =
V HmpH + V LP (1−mpH)− CF

C
(1.33)

Where CF is the cost of exploiting the multi-stage investment. It could be added into

V H and V L, but for application purposes we separated it into its own variable. Now

m equals

m =
t∗

e
(1.34)
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where e is the natural exponent. Therefore, mpH∗ will be

mpH
∗ ∈ {P (Up = H)1, . . . , P (Up = H)m} (1.35)

such that P (Up = H)i ≤ mpH
∗
, (1.36)

∀P (Up = H)i ∈ {P (Up = H)1, . . . , P (Up = H)m} (1.37)

If all the P (Up = H)’s in a multi-period investment were unique, then this stragey

will identify the highest value (less then mph), 37% of the time Gilbert and Mosteller

(2006). Since α > (1 − α), this implies that the POMDP model will have a high

concentration of P (Up = H)’s, in a range of larger values, and so it’s probability

of finding the max value should be greater then 37%. Therefore, the entrepreneur’s

strategy is to continue the investment until P (Up = H) ≥ mpH in the first m months.

If that condition is met, exploit the investment. If after m periods, the condition

P (Up = H) ≥ mpH has not been met, then continue the investment until P (Up =

H) ≥ mpH
∗ (the highest value in the first m periods) and then stop the investment.

If the expected profit is desirable then exploit, if not abandon. If P (Up = H) ≥ mpH
∗

is not satisfied, then abandon the investment after period t∗.

1.2 Example

Consider the case of a two-state POMDP problem, where an entrepreneur creates a

prototype of a widget that users can pay to use. The widget costs $100 a month to

run and manage, but a commercial version, that is stable and can be scaled, needs

$10,000 additional invested. The monthly payments are sunk costs once they are

made and once the entrepreneur invests the $10,000 that cannot be recuperated. If

the monthly paid user base (MPU) can get to 7500, then the entrepreneur will make

$20,000, on the commercial version of the new widget, but if the number of paid
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users does not make it to 7500, the value of the investment will be a loss of $9000.

Time is not a limiting factor, after the completion of the commercial grade widget,

the demand will be realized instantaneously. The unobservable core process has two

states, 7500 and 0 (any value less then 0 is considered 0 and any value greater then

7500 can be considered 7500).

Up = {7500, 0}

V H = 20, 000

V L = −9, 000

The entrepreneur knows from similar products, that during the prototype stage the

number of users that will become MPU’s tend to follow these conditional probabili-

ties.

P (Up
t = 7500|Up

t−1 = 7500) = 90%

P (Up
t = 0|Up

t−1 = 7500) = 10%

P (Up
t = 0|Up

t−1 = 0) = 40%

P (Up
t = 7500|Up

t−1 = 0) = 60%

This implies that if users decide to become MPUs, most likely they won’t change

their decision, where users who don’t want to use the widget or who haven’t made

up their minds have more uncertainty. The entrepreneur can observe how many new

paid users join the prototype, and can only have two values, 80 or 10, where 80 is
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considered a positive sign of user adoption and 10 is considered a negative sign.

up = {80, 10}

P (upt = 80|Up
t = 7500) = 75%

P (upt = 10|Up
t = 7500) = 25%

P (upt = 10|Up
t = 0) = 55%

P (upt = 80|Up
t = 0) = 45%

The entrepreneur has information on what the users initial reaction to the widget will

be, therefore the initial values of Up
0 are

P (Up
0 = 7500) = 50%

P (Up
0 = 0) = 50%

We generate observations for three scenarios. The first scenario generates observations

for just the Up = 7500 unobservable state, the second scenario generates observations

for just the Up = 0 unobservable state, and the third scenario generates observations

for the unobservable process following the probability transitions. We generate 30
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observations for each scenario.

Scenario 1: 10, 80, 10, 10, 80, 80, 10, 80, 10, 80, 80, 80, 80, 80, 80,

10, 10, 80, 10, 80, 80, 80, 10, 80, 10, 80, 80, 80, 80, 80

Scenario 2: 10, 80, 80, 80, 10, 10, 80, 80, 80, 80, 10, 80, 80, 10, 80,

10, 10, 80, 10, 80, 10, 10, 10, 10, 80, 10, 80, 10, 80, 10

Scenario 3: 80, 80, 80, 10, 80, 80, 10, 80, 80, 10, 80, 80, 80, 80, 80,

80, 10, 80, 80, 80, 80, 10, 80, 10, 10, 80, 10, 10, 80, 80

core: 7500, 7500, 0, 7500, 7500, 7500, 0, 7500, 7500, 7500,

7500, 7500, 7500, 7500, 7500, 0, 7500, 7500, 7500, 7500,

7500, 7500, 7500, 7500, 0, 7500, 7500, 7500, 7500, 7500

Using the equations from 1.26 and 1.27 we calculate the value of the probabilities

of the two states of the MPU, at which point no more value is being gained by the

multi-period investment.

P (Up = 7500) = 92.2%

P (Up = 0) = 7.8%
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Running through each scenario we stop the investment when the probability of the

MPU being 7500 is 92.2%, and exploit the commercial grade option.

Scenario 1: 57.7, 85, 72.8, 67.2, 87.1, 91.2, 75.8, 88.9, 74.7, 88.6, 91.5, 92.1, 92.2, 92.2, 92.2,

76.4, 68.8, 87.4, 74, 88.5, 91.5, 92.1, 76.3, 89, 74.8, 88.7, 91.5, 92.1, 92.2, 92.2

Scenario 2: 57.7, 85, 90.8, 91.9, 76.2, 68.7, 87.4, 91.2, 92, 92.2, 76.3, 89, 91.6, 76, 88.9,

74.7, 68.1, 87.3, 73.9, 88.5, 74.5, 68, 65.1, 63.8, 86.4, 73.5, 88.4, 74.5, 88.6, 74.6

Scenario 3: 83.3, 90.4, 91.9, 76.2, 89, 91.6, 76, 88.9, 91.6, 76, 88.9, 91.6, 92.1, 92.2, 92.2,

92.2, 76.4, 89, 91.6, 92.1, 92.2, 76.3, 89, 74.8, 68.1, 87.3, 73.9, 67.7, 87.2, 91.2

In Scenario 1, the entrepreneur would have stopped the investment in month 13 and

because the expected profit is $6,438 the option is exploited and the entrepreneur

makes $8,700. In Scenario 2, the entrepreneur stops the investment in month 10, with

an expected profit of $6,738. The entrpreneur executes the deal and loses $11,000.

In Scenario 3, the investment is stopped in 14 months and with an expected profit

of $6,338, the investment is exploited and the entrepreneur makes $8,600. The last

period t∗, of this multi-period investment would be 77, and the number of period m

to search for an adjusted mpH∗ would be 28. In the 3 scenarios we had no need for

the mpH∗ because the mph was reached, before m, for each scenario.

1.3 Simulation

Two simulations are run, in the first simulation 1.2, the transitional and observational

probabilities are identical to the example. In the second simulation 1.3, the transition
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Simulation 1
V L Mean STD Max Min
0 -816.77 7462.75 6300 -19800
500 -616.04 7502.71 6400 -20200
1000 -654.98 7545.28 6400 -20600
1500 -689.44 7586.33 6400 -21000
2000 -514.17 7642.76 6500 -21300
2500 -543.3 7686.43 6500 -21800
3000 -568.52 7725.58 6500 -22200
3500 -437.95 7829.86 6600 -22600
4000 -470.49 7879.97 6600 -23000
4500 -279.53 7951.52 6700 -23400
5000 -315.05 8007.05 6700 -23800
5500 -120.06 8052.53 6800 -24100
6000 -147.48 8102.44 6800 -24500
6500 -181.87 8158.35 6800 -24900
7000 3.53 8216.13 6900 -25200
7500 -27.72 8261.59 6900 -25600
8000 186.51 8357.67 7000 -26000
8500 162.76 8379.43 7000 -26300
9000 320.49 8484.95 7100 -26700
9500 6810.38 8172.58 9600 -22500

Table 1.2: Simulation Results where P (Up
t = 7500|Up

t−1 = 7500) = 90%

probabilities to:

P (Up
t = 7500|Up

t−1 = 7500) = 100%

P (Up
t = 0|Up

t−1 = 7500) = 0%

Both simulations are run with V L 20 different values ranging from 0 to 9500, in

500 increments. At each V L price point, 10,000 iterations are run and averaged

togther.

The MP optimal stopping point, for the first set of assumptions, 1.2 on average yields

negative results. It’s interesting to note, that at as V L decreased, the performance got

worse. This implies that our heuristic, borrowing from Gilbert and Mosteller (2006),

was not effective in stopping the POMDP model optimally, as the mpH and mpH
∗
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Simulation 2
V L Mean STD Max Min
0 7659.86 5858.62 9700 -11100
500 7553.8 6095.98 9700 -11500
1000 7434.75 6365.58 9700 -12000
1500 7246.25 6714.1 9700 -12500
2000 7073.51 7052.32 9700 -13000
2500 6797.74 7489.76 9700 -13600
3000 6770.07 7661.78 9800 -14000
3500 6698.01 7838.99 9800 -14400
4000 6624.94 8016.75 9800 -14900
4500 6557.65 8188.71 9800 -15200
5000 6454.73 8401.2 9800 -15700
5500 6373.26 8591.39 9800 -16200
6000 6272.61 8800.35 9800 -16700
6500 6137.98 9047.05 9800 -17200
7000 6070.68 9217.69 9800 -17700
7500 5852.45 9551.99 9800 -18200
8000 5696.41 9823.27 9800 -18700
8500 5624.61 9998.61 9800 -19200
9000 5200.47 10529.91 9800 -19700
9500 5122.42 10711.39 9800 -20200

Table 1.3: Simulation Results where P (Up
t = 7500|Up

t−1 = 7500) = 100%
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were too high. This can be seen by the difference in the max and mins, which are

indicative of the lopsided loses taken on by the entrepreneur. The results in 1.3 are

in line with the assumptions made. With high probable chance that P (Up
t = 7500,

the odds of profit were for the entrepreneur.
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CHAPTER 2
Network Option Decision Process

2.1 Two State NODP Model

The Network Option Decision Process (NODP) Model does not assume any known

or prior probabilities, instead it observes two different performance indicators, new

paid users (NPU) upt and new free users (NFU) uft , during each period t. The NFU uft

indicates the size and depth of the market that the multi-stage investment attempts

to capture, and the NPU upt indicates the success rate of the investment in capturing

said market, in terms of permanent paid users (PPU) Up. As previously stated for

the two-state model, the NFU can only take on the two values uft = {g, k} at period

t where g > k, and the NPU can only take on the two values upt = {h, l} at period

t where h > l. Figure 2.1, shows the transitional diagram for the two-state NODP

model.

The POMDP model has three choices like the NODP model, abandon, exploit or

continue to learn. The difference here is that the NODP model has two separate ex-

ploitation stages x1 and x2. The first stage of the process focuses on just the NFU uft

and whether to continue seeing the results for it or abandoning the multi-stage invest-

ment or to exploit the next stage or level (stage 2) of the multi-stage investment, x1.

Once the next the stage, stage 2, is exploited then it becomes similar to the POMDP

model where the entrepreneur must decide to continue observing the NPU upt , aban-
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doning the multi-stage investment or exploiting the final opportunity. The difference

here is that the NODP does not assume the observational or transitional probabilities

in the POMDP models, but it continues to observe the NFU uft along with the NPU

upt simultaneously. The logic behind the NODP model is that steady or exponential

growth between the NPU upt and NFU uft , implies a PPU of high valuation, Up = H,

whereas negative growth between the NPU upt and NFU uft observations implies a

PPU of Up = L. The probability of the PPU P (Up) is dependent on the combination

of observations between the NPU upt and NFU uft from periods 1 to t.

P (Up
t+1 = H|(upt , u

f
t ), (u

p
t−1, u

f
t−1), . . . , (up1, u

f
1)) = γ (2.1)

P (Up
t+1 = L|(upt , u

f
t ), (u

p
t−1, u

f
t−1), . . . , (up1, u

f
1)) = 1− γ (2.2)

Since our two state model has only two states for both upt and uft , then in period t

any four combinations are possible

(upt , u
f
t ) = {(h, g), (h, k), (l, k), (l, g)}

where h > l, g > k

To translate these four combinations into a probability the NODP model uses an

algebraic variation of the logistic function, which is from the family of sigmoid func-

tions used to model the non-linearity components of complex systems. The logistic

function will allow us to approximate the probability after every observation of the

NPU up and NFU uf . The NODP model is based on the principle that despite not

having a historical probability distribution, good investments are made based on the
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growth rate of the adoption of the different stages of the investment. The two-state

NODP model has two stages, and the relationship, (h, g), describes an exponential

growth in both stages implying the market and the adoption of the market to the

entrepreneur’s product or service are both growing. The relationship (l, k), implies

that there is a very small market for the problem the entrepreneur is trying to service

and little adoption of the product or service that the entrepreneur is providing. It

is important to note that the second stage of the NODP model is exploited after a

sufficient series of NFU’s uft = g are observed based on the cost of each period of

observing the NFU’s uft versus the potential reward of each observation of uft = g.

We approach this problem by starting in stage two of the model, which implies that

a sufficient number of uft = g were observed in stage one. The combination of (l, g)

implies that there is growth in the target market, but the product or service is not

being adopted by the target market. The combination of (h, k) is more complicated

to translate because it is conditional on the stage and size of the investment and the

nature of the observations of uft and upt themselves. Combination (h, k), implies that

there is a growth in adoption of the product or service but no growth in the market

itself. First, if the multi-stage investment is in the initial periods then this implies

that the market being serviced is a small subset of the target market and the product

or service is sucessfully being adopted by this niche market. We define a period as

an initial-period when the total free users (TFU) is less then the target paid-users

(TPU). The TPU is a guideline number that investors define as a necessary condition

for exploiting the second-stage of the multi-stage investment, and the rate at which

the NPU upt can grow to the TPU indicates the certainty at which unobservable PPU

Up will reach state H and therefore profitability. The TPU is less then the PPU

because the current infrastructure of the product or service cannot accomodate the

PPU at its desired state and significant investments must be made, hence the need to

know when or when not to exploit the second-stage of the multi-period investment.
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Investors quantify the TPU based on the combination of exploitation costs versus the

cost of continuing the exploration phase of the investment and quarterly revenue that

the TPU generates. The TPU revenue does need to be profitable it just needs to be

large enough to justify further investment.

The combination of (h, k) in the post-initial periods (periods where TFU ≥ TPU)

of the multi-period investment implies that there is growth and adoption of the en-

trepreneur’s product or service, but despite the NFU uft having positive growth rates

in the initial-periods, the lack of subsequent growth past the TFU level indicates lack

of support for addtional growth of the NPU upt will continue beyond exploitation. In

addtion, this could be a sign that the NPU upt may or not may be correlated with the

NFU uft , which makes the observations obsolete when trying to predicte the proba-

bility of the PPU Up. In practice, if the growth is coming from users that upgraded

from the freemium service to the paid service, and not from new users that never

were part of the freemium service, then the market is considered to be smaller then

initially assumed and the product or service is proven to be succesful at servicing the

niche market. If the latter is the case, then this could be indicative of the product

or service being extremely successful at capturing the market because the new users

are going straight to purchasing the paid feature, an extremely rare scenario in the

industry. For the purposes of our two-state NODP model we assume the combination

(h, k) as a neutral combination that shows no correlation between growths and there-

fore does not affect the probability of Up. Table 2.1 summarizes the combinations

and the marginal gains/losses in probability implied by each combination.

We define our algebraic logistic-based probability function as a percentage of two

variables, ΥH and ΥL each one representing a possible state of the PPU Up. The

probability of the two different possible states of the PPU, in period t, is defined
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Two-state Combinations

Combination Result Incremental Probability
(Increase/Decrease)

(h, g)
strong growth in freemium
and paid service increase success probability

(h, k)
not correlated, random
growth no affect on probability

(l, g)
freemium adoption but not
paid service

medium decrease in success
probability

(l, k)
small growth in freemium
and paid service

strong decrease in success
probability

Table 2.1: List of Combinations

as

P (Up
t = H) =

ΥH
t

ΥH
t + ΥL

t

(2.3)

P (Up
t = L) =

ΥL
t

ΥH
t + ΥL

t

(2.4)

The initial values of ΥH
0 and ΥL

0 at period t = 0 of the multi-period investment are

equal and greater then one

ΥH
0 = ΥL

0

where ΥH
0 ≥ 1 and ΥL

0 > 1

Investors typically target a minimum rate of return (MRR), given that the TPU for

the NODP model is assumed, we can calculate the longest period of time, t∗, that

a benchmark combination of the NPU upt = b and the NFU uft = g, consectively

observed (best case scenario), takes for the multi-period investment to reach the

target TPU, where b < h. If h were to be less then b, then that would imply that

under the best case scenario, the TPU would not be reachable under circumstances
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that would satisfy the MRR and the investment would not be prudent. Also, the

higher the h the faster the rate at attaining the TPU and the greater the probability

implied by our model. If the NPU observation is a constant random whole number

then t∗ can be calculated by simply dividing the V H by MRR times C, where V H

is the revenue generated if the PPU Up = H and the C is the cost of each period of

investment.

bt∗c =
V H

(1 +MRR)C
(2.5)

Using t∗, we can then calculate b, by dividing the TPU by t∗

b =
TPU

bt∗c
(2.6)

If h represent a growth ratio of paid users NPU, then define TFU∗ as the amount of

new free users acquired before the investor exploited the second stage of the multi-

period investment. The maximum number of period t∗ would still be calculated using

equation 2.5 and then b would be calculated using

TFU∗(1 + b)(1 + b) . . . (1 + b) = TPU

TFU∗(1 + b)t
∗

= TPU

(1 + b)t
∗

=
TPU

TFU∗

(1 + b) =

(
TPU

TFU∗

) 1
t∗

with the final equation

b =

(
TPU

TFU∗

) 1
t∗

− 1 (2.7)
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Function Values
Combinations OH OL DH DL

(h, g) h
g

- g -
(h, k) - - - -
(l, g) - l

g
- g

(l, k) - h
g

- g

Table 2.2: Two-state model values for functions D() and O()

We define the formula that incrementally changes the values of ΥH
t and ΥL

t with each

combination of observations uft and upt as

Υi
t = Υi

0 +
ωn

c
tO

c(upt ,u
f
t )

nctD
c(upt , u

f
t )

(2.8)

Where i are the possible states for Up and c are the possible combination of NPU

and NFU observations. In our two-state model i can be H and L, and our combi-

nations are listed in table 2.1. The variable nct is the number of times the unique

combinations of the NPU and NFU (upt , u
f
t ) have been observed up to period t. The

functions Oi(upt , u
f
t ) and Di(upt , u

f
t ) map the observed combinations to numeric values

to approximate desired sigmoid shapes. For the purpose of our two-stage model the

values of h, g, k, and l are sufficient for our sigmoid probability distribution, table 2.2

summarizes the functions values for each observed combination.

The values in table 2.2 directly relate to the desired probability increases and de-

creases from table 2.1, by changing the values of ΥH and ΥL with every combination

observed. For our two-state model, the observation of (h, g) increases the value of ΥH

thereby increasing the probability of UP = H. The combination of (h, k) is defined

to have no effect, and the combinations of (l, g) and (l, k) increase the value of ΥL

by different rates, one implying a faster increase then the other. The structure of

equation 2.8 shows that the values of ΥH and ΥL will grow exponentially which gives

the probability the sigmoid shape the NODP model assumes.
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The value of ω determines the speed, and subsequently the slope at the x origin, at

which the logistic curve accelerates from the lower bound, which at period 0 is 50% as

seen in the example logistic curve in figure 2.2. Using the value of t∗, we can optimize

the value of ω to approach the upper asymptotic boundary at the approximate rate

that corresponds to the best-case scenario of our two-state model. If the best-case

combination is observed consecutively in the first t∗ periods, then the TPU will be

reached and the entrepreneur will exploit the opportunity. It is important to note

that for our two-state model we have simplified the TPU to a constant number, but in

the industry the TPU tends to be a rate of targeted paying-users per a defined period

of time or customer-acquisition cost. This can also be accomodated in our model as

long as the TPU, the NPU up and the NFU uf have equivalent units. Additionally,

the TPU by itself is not a sufficient methodology for signaling an optimal exploitation

point. The path to the TPU is more important, whether the performance indicators,

NPU up and NFU uf , are growing towards the TPU or are their trajectories more

indicative of negative growth. For this reason, we calculate the longest number of

periods t∗ required to reach the TPU from 0 (period 0), which is defined as consec-

utively observing the unique-case scenarios of the benchmark b combination (b, g).

This gives the lowest rate b possible for the longest period of time t∗ for our two-state

model to have the highest probability of indicating the PPU Up = H. Therefore, by

dividing equation 2.8, by the summation of itself plus ΥL and setting that equal to a

very high probability of certainty (for example 99%), defined here as ϕ, and setting

nct equal to t∗, O(upt , u
f
t ) equal to b

g
, and Dc(upt , u

f
t ) equal to g we get

ΥH
0 +

ωt
∗( b

g
)

t∗g

ΥL
0 +

(
ΥH

0 +
ωt
∗( b

g
)

t∗g

) = ϕ

At period 0, ΥH equals ΥL, so we can replace ΥL with ΥH and reduce the amount of
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variables.

⇒
ΥH

0 +
ωt
∗( b

g
)

t∗g

2ΥH
0 +

ωt
∗( b

g
)

t∗g

= ϕ

⇒

ΥH
0 t
∗g + ωt

∗( b
g

)

t∗g

2ΥH
0 t
∗g + ωt

∗( b
g

)

t∗g

= ϕ

⇒ ΥH
0 t
∗g + ωt

∗( b
g

)

2ΥH
0 t
∗g + ωt

∗( b
g

)
= ϕ

⇒ΥH
0 t
∗g + ωt

∗( b
g

) = 2ΥH
0 t
∗gϕ+ ωt

∗( b
g

)ϕ

⇒ωt
∗( b

g
)(1− ϕ) = 2ΥH

0 t
∗gϕ−ΥH

0 t
∗g

Which can be reduced to

ω∗ =

(
2ΥH

0 t
∗gϕ−ΥH

0 t
∗g

1− ϕ

) g
bt∗

(2.9)

We can now use ω∗ in equation 2.8 for every combination that is observed. The

magnitude of ΥH
0 and ΥL

0 at period 0 controls the length of the lower bound asymptote

of the sigmoid model before exponential growth is observed. This is to account for

the assumption that the first consecutive observations of any type of combination

account for very little in terms of evidence of growth. Only after a longer pattern of

consecutive observations are observed does the sigmoid curve exponentially grow and

then starts to decline towards the upper bound. The larger the value chosen for ΥH
0

and ΥL
0 at period 0, the longer the lower bound asymptote and the more consecutive

observations needed to be indicative for a sign of growth. In Figure 2.3, the red graph

has a larger ΥH
0 and ΥL

0 in period 0.
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The expected profit function in period 0, for a risk-neutral investor, is defined as

π0 = V H

[
ΥH

0

ΥH
0 + ΥL

0

]
+ V L

[
ΥL

0

ΥH
0 + ΥL

0

]
(2.10)

where both initial ratios at period 0 are 50%. Just like in the POMDP Model, the

investor spends C1 to observe the NPU up1 in period 1, however unlike the POMDP

Model, the investor also observes the NFU uf1 . For comparison sake, we don’t separate

out the cost for the NFU uf1 . This isn’t a large assumption, since most freemiums

in the industry by definition are cheap proof-of-concepts. In addition, the POMDP

Model does have costs associate with quantifying the transitional and observation

probabilities that are also not separated out. The investor now has to choose whether

to abandon, continue or exploit the multi-period investment. If combination (up1 =

h, uf1 = g) is observed, then first the Υ’s are updated

ΥH
1 = ΥH

0 +
ω∗

h
g

g
(2.11)

ΥL
1 = ΥL

0 (2.12)

If the investor chooses to exploit the investment then the expected profit function for

period 1 is

π
(h,g)
1 = V H

[
ΥH

1

ΥH
1 + ΥL

1

]
+ V L

[
ΥL

1

ΥH
1 + ΥL

1

]
− C1 (2.13)

If combination (up1 = l, uf1 = k) is observed then the Υ’s are updated as such

ΥH
1 = ΥH

0 (2.14)

ΥL
1 = ΥL

0 +
ω∗

h
g

g
(2.15)
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Where as if combination (up1 = l, uf1 = g) is observed then

ΥH
1 = ΥH

0 (2.16)

ΥL
1 = ΥL

0 +
ω∗

l
g

g
(2.17)

Combination (up1 = h, uf1 = k) is considered an outlier and as such no update is

made to the Υ’s. The expected profit function, equation 2.13, for period 1 remain

the same as long as the proper algebraic updates are made to the Υ’s. If the investor

decides to continue the multi-period investment to period 2, then the expected profit

function, after observing combination c2 (assume that in period 1 the combination

(h, g)1, equation 2.11, is observed) will generalize to

π
(h,g)1,c2

2 = V H

[
ΥH

2

ΥH
2 + ΥL

2

]
+ V L

[
ΥL

2

ΥH
2 + ΥL

2

]
− C2 (2.18)

The Υ’s, in period 2 will update accordingly, if combination (up2 = h, uf2 = g) is

observed then

ΥH
2 = ΥH

0 +
ω∗

2h
g

2g
(2.19)

ΥL
2 = ΥL

0 (2.20)

If combination (up2 = l, uf2 = k) is observed then

ΥH
2 = ΥH

0 +
ω∗

h
g

g
(2.21)

ΥL
2 = ΥL

0 +
ω∗

h
g

g
(2.22)
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If combination (up2 = l, uf2 = g) is observed then

ΥH
2 = ΥH

0 +
ω∗

h
g

g
(2.23)

ΥL
2 = ΥL

0 +
ω∗

l
g

g
(2.24)

and if combination (up2 = h, uf2 = k) is observed then no change is made. Unlike the

POMDP Model we do not have transition probabilities to update, but the dilemma

facing the NODP Model is that since there are no observations and transitional prob-

abilities, we cannot calculate a MP stopping point to use as a heuristic to signal

when to abandon, exploit or continue the multi-period investment. Therefore, to op-

timize decision making in the NODP Model we apply a best-case (BC) stopping limit

heuristic. Given the profit function at the end of period t

πct = V H

[
ΥH
t

ΥH
t + ΥL

t

]
+ V L

[
ΥL
t

ΥH
t + ΥL

t

]
− Ct

we find if there exists a local maximum profit function, πotm, that is greater then

πct , if only the most optimal combination (h, g) is consecutively observed (best case

scenario) from periods t + 1 to tm, where tm is the period of the local maximum

profit function under the best case scenario. The variable o is defined as tm − t

and represents the number of consecutive combinations (h, g) that are needed for

πotm > πct , if πotm exists. Therefore the profit function for the local maximum is

πotm = V H

[
ΥH
t m

ΥH
t m+ ΥL

t m

]
+ V L

[
ΥL
t m

ΥH
t + ΥL

t m

]
− Ctm
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where the Υ’s are defined as

ΥH
tm = ΥH

0 +
ω∗

tmh
g

tmg
(2.25)

ΥL
tm = ΥL

t (2.26)

The logic here is that if under the best-case scenario going forward there will not be

an expected value in the future greater then present expected value, then the multi-

period investment should be stopped. At this stopping point, if the expected-profit is

greater then the MRR, then the multi-periond investment should be exploited. If not,

then the investment should be abandoned. The solve for the local maxima at time tm

would require the derivative of equation 2.25 with respect to tm, which would require

the use of the Lambert function. We propose instead to use an algorithm take an

estimated range of tm. First, for the general profit function

π = V Hϕ+ V L(1− ϕ)− C(tm) (2.27)

where ϕ is the probability at which point the profit function is optimal given the

linear cost of the multi-period options C, here defined as a fixed cost. To solve for

equation 2.27, we have to define tm in terms of ϕ, which requires solving

ΥH
0 +

ω∗
th
g

gt

ΥL
t + ΥH

0 +
ω∗

th
g

gt

= ϕ (2.28)

in term of t. Given the ratio ω∗
th
g

gt , to solve this would again require the use of the

Lambert function. To avoid this, we define an upper bound tQ and lower bound tq

for t, by replacing the gt in equation 2.28, with TPU/b, defined as g∗, and g. The

TPU divided by b gives a longer time then is necessary for the optimal combination
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to achieve the same probability, where as g by itself will give a value smaller then our

target tm.

⇒
ΥH

0 +
ω∗

tQh
g

g∗

ΥL
t + ΥH

0 +
ω∗

tQh
g

g∗

= ϕ

⇒ΥH
0 +

ω∗
tQh
g

g∗
= ϕ

[
ΥL
t + ΥH

0 +
ω∗

tQh
g

g∗

]

⇒ω∗
tQh
g

g∗
= ϕΥL

t + ϕΥH
0 + ϕ

ω∗
tQh
g

g∗
−ΥH

0

⇒ω∗
tQh
g

g∗
= ϕΥL

t + ϕΥH
0 + ϕ

ω∗
tQh
g

g∗
−ΥH

0

⇒ω∗
tQh
g

g∗
(1− ϕ) = ϕΥL

t + ϕΥH
0 −ΥH

0

⇒ω∗
tQh
g =

g∗(ϕΥL
t + ϕΥH

0 −ΥH
0 )

(1− ϕ)

⇒tQh

g
= logω

(
g∗(ϕΥL

t + ϕΥH
0 −ΥH

0 )

(1− ϕ)

)

tQ =
g

h
logω

(
g∗(ϕΥL

t + ϕΥH
0 −ΥH

0 )

(1− ϕ)

)
(2.29)

Equivalently, tq can be defined by equation 2.29, with g in place of g∗

tq =
g

h
logω

(
g(ϕΥL

t + ϕΥH
0 −ΥH

0 )

(1− ϕ)

)
(2.30)

It is evident to see that g and g∗ have a direct relationship with t and since g < g∗, tq is

the lowerbound for tm and tQ is the upperbound. The upperbound and lowerbound

equations are substituted for tm in equation 2.27, which allows the general profit
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function to be solved for the local maxima, with respect to ϕ.

maximize
ϕ

V Hϕ+ V L(1− ϕ)− C g
h

logω

(
g(ϕΥL

t + ϕΥH
0 −ΥH

0 )

(1− ϕ)

)
(2.31)

The derivative of the first two parts of equation 2.31 are trivial, but to solve the the

third part requires that the equation be written in terms of natural log and the use

of the quotient rule.

⇒C g

h log(ω)
log

(
(gϕΥL

t + gϕΥH
0 − gΥH

0 )

(1− ϕ)

)′

⇒C g

h log(ω)

[
(1− ϕ)

(gϕΥL
t + gϕΥH

0 − gΥH
0 )

][
(1− ϕ)(gΥL

t + gΥH
0 ) + (gϕΥL

t + gϕΥH
0 − gΥH

0 )

(1− ϕ)2

]

⇒C g

h log(ω)

[
1

(gϕΥL
t + gϕΥH

0 − gΥH
0 )

][
gΥL

t + gΥH
0 − gΥL

t ϕ− gΥH
0 ϕ+ gΥL

t ϕ+ gΥH
0 ϕ− gΥH

0

(1− ϕ)

]

⇒C g

h log(ω)

[
1

(gϕΥL
t + gϕΥH

0 − gΥH
0 )

][
gΥL

t + gΥH
0 − gΥL

t ϕ− gΥH
0 ϕ+ gΥL

t ϕ+ gΥH
0 ϕ− gΥH

0

(1− ϕ)

]

⇒C g

h log(ω)

[
gΥL

t

gΥL
t ϕ+ gΥH

0 ϕ− gΥH
0 − gΥL

t ϕ
2 − gΥH

0 ϕ
2 + gΥH

0 ϕ

]

We can now solve equation 2.31 for the maximum ϕ.

⇒V H − V L = C
g

h log(ω)

[
ΥL
t

ΥL
t ϕ+ ΥH

0 ϕ−ΥH
0 −ΥL

t ϕ
2 −ΥH

0 ϕ
2 + ΥH

0 ϕ

]

⇒ΥL
t ϕ+ ΥH

0 ϕ−ΥH
0 −ΥL

t ϕ
2 −ΥH

0 ϕ
2 + ΥH

0 ϕ = C
gΥL

t

h log(ω)(V H − V L)

⇒− (ΥL
t + ΥH

0 )ϕ2 + (ΥL
t + 2ΥH

0 )ϕ = C
gΥL

t

h log(ω)(V H − V L)
+ ΥH

0

Using the quadratic formula we solve for ϕq and ϕQ, and since the g inside the brackets

corresponds to g and g∗ of our upper and lower bounds cancel out we are left with
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just ϕq and ϕQ for both tq and tQ.

ϕQ =

−(ΥL
t + 2ΥH

0 ) +

√
(ΥL

t + 2ΥH
0 )2 − 4(ΥL

t + ΥH
0 )

[
C

gΥL
t

h log(ω)(V H − V L)
+ ΥH

0

]
−2(ΥL

t + ΥH
0 )

(2.32)

ϕq =

−(ΥL
t + 2ΥH

0 )−

√
(ΥL

t + 2ΥH
0 )2 − 4(ΥL

t + ΥH
0 )

[
C

gΥL
t

h log(ω)(V H − V L)
+ ΥH

0

]
−2(ΥL

t + ΥH
0 )

(2.33)

Then substituting ϕQ and ϕq for ϕ in the profit function

π(ϕ) = V Hϕ+ V L(1− ϕ)− C g
h

logω

(
g(ϕΥL

t + ϕΥH
0 −ΥH

0 )

(1− ϕ)

)

we define ϕ∗ as

ϕ∗ = max[π(ϕQ), π(ϕq)]

With the optimal ϕ∗, we define the future optimal profit function as π∗(ϕ∗) and the

optimal upper and lower bounds, tq∗ and tQ∗ as

dtQ∗e =
g

h
logω

(
g∗(ϕ∗ΥL

t + ϕ∗ΥH
0 −ΥH

0 )

(1− ϕ∗)

)
− Ct (2.34)

btq∗c =
g

h
logω

(
g(ϕ∗ΥL

t + ϕ∗ΥH
0 −ΥH

0 )

(1− ϕ∗)

)
− Ct (2.35)

The time of the global maximum profit under the best-case scenario, tm, from period
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t will be in the range between tq
∗ and tQ

∗ . Depending on the difference between g

and g∗ the possible range of the optimal upper and lower bounds can be large or

small, but the entrepreneur does know that the optimal profit function at period tm

will be π∗(ϕ∗). Therefore, if the current profit function at the end of time t, πct , is

greater or equal then π∗(ϕ∗), then the multi-period investment should be stopped.

Then if the profit function πct is greater then or equal to the MPP, the investment

should be exploited, else the multi-period investment should be abandoned. If the

future optimal profit function π∗(ϕ∗) is greater, then the multi-period investment

should continue because conditional on observing the best-case combinations (h, g),

the entrepreneur has the possibility of gaining more value through the gathering

of more data. Therefore, at time 0, the best-case future optimal profit function is

π∗,0 and the multi-period investment should continue as long as the current profit

function, πct , is less then that, but when a non best-case combination is observed,

then the best-case future optimal profit function becomes π∗,1, and the multi-period

investment should continue until it is equal to it. The 0 and 1 from the future optimal

profit functions correspond to the number of non best-case combinations observed,

and because of the sigmoid shape of the probability and the cost, Ct, of each period

of the investment, the future optimal profit function has an inverse relationship to

every non best-case combination observed so that

π∗,n
c

> π∗,n
c+1

(2.36)

where nc is the number of non best-case combinations observed.
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2.2 N-State NODP Model

The NODP N -State model is defined as the PPU, Up, having N possible states.

Up = {H1, . . . , HN}

H i < H i+1

The NFU can take on R values, uft = {g1 . . . gR}, in period t where gr < gr+1. The

NPU has S possible states, upt = {h1 . . . hS}, in period t where hs < hs+1. The

number of both NPU and NFU observations are both greater then the number of

PPU states.

R > N

S > N

The model is now reflective of all the possible range of observations an entrepreneur

can observe, althought R and S are from the same state space, they are not necessarily

equivalent. This causes the N -state model to possibly have an extremely large set

of combinations that can be observed. If the multi-period investment is exploited,

the values of the possible states are V H1 to V HN , where V H1 is less then V HN . The

probability of the PPU, Up
t , being H i at period t is

P (Up
t = H i) =

ΥHi

t

N∑
n=1

ΥHn

t

(2.37)
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where

ΥH1

0 = ΥH2

0 = . . . = ΥHN−1

0 = ΥHN

0

where ΥHi

0 ≥ 1, for i in 1 . . . N

In the N -state model there is still one minimum rate of return (MRR) and one TPU,

because it is associated with the minimum number of paid users needed to justify an

expansion or a limit to the capacity of the temporary infrastructure in stage two of

the multi-period investment. Here we hightlight a that in the industry, VC’s equate

rapid and exponential sales with a large opportunity and high valuation, therefore

the reality of multiple demand levels being observed should signal different levels of

PPU and subsequently different V Hi ’s. For industry application purposes we present

a simple and transparent way to structure the observations, for valuation purposes.

There are now N periods of time t∗i’s, where i is 1 to N , that are the longest possible

periods of time that the entrepreneur can continue the multi-period investment while

still meeting the MRR. Each corresponding to every possible state of the PPU. Using

equation 2.5,

bt∗ic =
V Hi

(1 +MRR)C

where i = 1, . . . , N

There are m+ t∗i’s that are positive, and m− t∗i’s that are negative or 0 because the

V Hi ’s are less then 0 or the V Hi ’s are too small given the cost of each period. The

total sum of m−, and m+ equals N . Since the PPU Up are ordered according to their
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valuations, V HN to V HN∗ have t∗i’s in m+, and V H1 to V HN− have t∗i’s in m−.

m−︷ ︸︸ ︷
V H1

, . . . , V HN−

,

m+︷ ︸︸ ︷
V HN∗

, . . . , V HN

m−︷ ︸︸ ︷
t1, . . . , tN

−
,

m+︷ ︸︸ ︷
tN
∗
, . . . , tN

We calculate the adjusted NPU lowerbound b for the t∗i’s in set m+.

bi =
TPU

bt∗ic
(2.38)

where i ∈ {m+} (2.39)

Or if up is a growth ratio

bi =

(
TPU

TFU∗

) 1

t∗i

− 1 (2.40)

where i ∈ {m+} (2.41)

The objective of the entrepreneur is to continue the multi-period investment with the

assumption that at least the MRR is attainable, so we identify the largest bi that is

less then the largest NPU up observation possible, hS. The larger the bi, the smaller

the value of V Hi , but we want to choose a bi that is possible. If there is a bi that is

larger then hS then that implies under the best case scenario, the targer MRR would

not be attainable and therefore that should not be our target bm.

bm ∈ m+ such that bm ≥ bi ∧ bm ≤ hS, ∀bi ∈ m+ (2.42)

Now we create adjusted bia’s for every V Hi . Let V Hm denote the V Hi that is associated

with bm. Using V Hm , V HN , the highest valuation possible, and hS we calculate the
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dollar rate increase from the minimum observation rate b, to the highest NPU up

observation possible.

∆Q =
hS − bm

V HN − V Hm + 1
(2.43)

where ∆Q is the dollar rate for bia’s greater then bm and

∆q =
bm − h1

V Hm − V H1 (2.44)

where ∆q is the dollar rate for bia’s less then bm. The difference in equation 2.43 and

2.44 is that hS is the upper bound for ΥHN , where for ΥH1 , h1 is the lower bound.

With ∆Q we define bia, for values greater then m as

bia = (V Hi − V Hm

) ∗∆Q + bm (2.45)

where i > m (2.46)

and for values less then m, we use ∆q

bia = bm − (V Hm − V Hi

) ∗∆q (2.47)

where i < m (2.48)

Now for each bia we create N ω factors of the algebraic sigmoid incremental function

using equation 2.9, gR, and tm, the length of periods associated with bm

ω∗i =

(
NΥHi

0 tm
∣∣gR∣∣ϕ−ΥHi

0 tm
∣∣gR∣∣

1− ϕ

)∣∣∣∣∣ gRbiatm
∣∣∣∣∣

(2.49)

for {i, . . . , N} (2.50)
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Just like in the 2-Stage model we choose a very high ϕ less then one, for example

99%. We choose the highest NFU, gR, because ω is increasing in g and we want to

establish the highest ω for each bia, so that high ratios of NPU to NFU will increase

the Υ values faster.

We now define our N -Stage incremental algebraic sigmoid formula from equation 2.8

as

Υi
t = Υi

0 +
ωO

i
t

Di
t

(2.51)

The variable Oi
t is now the product of all the ratios observed from period 1, . . . , t

in the range of bia, and Di
t is the product of all the observed NFU, gr, from period

1, . . . , t where

Oi
t =

t∏
n=1

∣∣∣hsn
grn

∣∣∣ (2.52)

Di
t =

t∏
n=1

∣∣grn∣∣ (2.53)

where bia ≤ hsn < bi+1
a (2.54)

Equations 2.52 and 2.53 replace the need for table 2.2. For each bia we define hia as

the largest NPU observation possible within each categorey of bia.

hia ∈ {h1, . . . , hS} such that hs ≤ hia < bi+1
a ,∀hs ∈ {h1, . . . , hia} (2.55)

Since, we now haveN ϕ’s, we calculateN best-case scenarios, one for each bia category,

but this makes the maximization problem in equation 2.31 difficult to solve, because

of the additional variables. Since, the ϕ is a fraction of the Υ’s, the only component

that the model needs to maximize for in the range bia, is the Υi’s. We re-define the
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upper and lower bounds tq and tQ in terms of Υi.

tQ
i

=
gR

hia
logiω[g∗(ΥHi

t −ΥHi

0 )] (2.56)

tq
i

=
gR

hia
logiω[g(ΥHi

t −ΥHi

0 )] (2.57)

For i ∈ {1, . . . , N} (2.58)

Where

ϕi =
ΥHi

N∑
n=1

ΥHn

(2.59)

The N -State maximization problem (with tQ substituted in) is now

maximize
ΥHi

t

N∑
n=1

V Hn

ΥHn

t

N∑
n=1

ΥHn

t

− Cg
R

hia
logiω[g∗(ΥHi

t −ΥHi

0 )] (2.60)

⇒

N∑
n=1

V Hi

ΥHn

t −
N∑
n=1

V Hn

ΥHn

t( N∑
n=1

ΥHn

t

)2
= C

gR

hialog(ωi)

[
1

ΥHi

t −ΥHi

0

]

⇒

N∑
n6=i

ΥHn

t (V Hi − V Hn

)

( N∑
n=1

ΥHn

t

)2
= C

gR

hialog(ωi)

[
1

ΥHi

t −ΥHi

0

]

⇒ ΥHi

t −ΥHi

0( N∑
n=1

ΥHn

t

)2
= C

gR

hialog(ωi)

[
1

N∑
n6=i

ΥHn

t (V Hi − V Hn

)

]
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Since the right side of the equation is a constant, for simpler notation we define the

variable Z as

Zi = C
gR

hialog(ωi)

[
1

N∑
n6=i

ΥHn

t (V Hi − V Hn

)

]
(2.61)

The maximization problem becomes

⇒ ΥHi

t −ΥHi

0( N∑
n=1

ΥHn

t

)2
= Zi

⇒ΥHi

t −ΥHi

0 = Zi((ΥHi

t )2 +
N∑
n6=i

2ΥHn

t ΥHi

t ) + Zi(
N∑
n6=i

ΥHn

t (
N∑
p 6=i

ΥHp

t ))

⇒− Zi(ΥHi

t )2 + ΥHi

t − ZiΥHi

t

N∑
n 6=i

2ΥHn

t −ΥHi

0 = Zi(
N∑
n6=i

ΥHn

t (
N∑
p 6=i

ΥHp

t ))

⇒− Zi(ΥHi

t )2 + ΥHi

t (1− ZiΥHi

t

N∑
n6=i

2ΥHn

t )−
[
ΥHi

0 + Zi(
N∑
n6=i

ΥHn

t (
N∑
p 6=i

ΥHp

t ))

]

Using the quadratic formula, solve for ΥHiQ

t and ΥHiq

t

ΥHiQ

t =

−(1− ZiΥHi

t

N∑
n 6=i

2ΥHn

t ) +

√√√√(1− ZiΥHi

t

N∑
n6=i

2ΥHn

t )2 − 4Zi

[
ΥHi

0 + Zi(
N∑
n6=i

ΥHn

t (
N∑
p 6=i

ΥHp

t ))

]
−2Zi

(2.62)

ΥHiq

t =

−(1− ZiΥHi

t

N∑
n 6=i

2ΥHn

t )−

√√√√(1− ZiΥHi

t

N∑
n6=i

2ΥHn

t )2 − 4Zi

[
ΥHi

0 + Zi(
N∑
n6=i

ΥHn

t (
N∑
p 6=i

ΥHp

t ))

]
−2Zi

(2.63)
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Substitute ΥHiQ

t and ΥHiq

t into the profit function and then take the maximum

N∑
n=1

V Hn

ΥHn

t

N∑
n=1

ΥHn

t

− Cg
R

hia
logiω[g∗(ΥHi

t −ΥHi

0 )]

The future maximum value profit function for the best-case scenrio for each range bia

at period t is πi∗t = max{πi(ΥHiQ

t )t, π
i(ΥHiq

t )t}. At period t, after observing hs and

gr, the current profit function is πt. If there are no future maximum profit functions

πi∗t that are greater then πt, then the multi-period investment should be stopped, and

if πt is greater or equal to MRR, the multi-period investment should be exploited

otherwise it should be abandoned. If all πi∗t are greater then πt, then the investment

should continue. For the majority of the scenarios, πt will have several πi∗t ’s greater

then it. Here we provide a heuristic based on bm. Let π̄mt equal the average of future

profit functions for ranges greater or equal to bm, at period t

π̄mt =

∑N
i=m Υi × πi∗t∑N

i=m Υi
(2.64)

If πt is less then π̄mt , then continue the multi-period investment. Once πt is greater

then or equal to π̄mt , then stop the multi-period investment, and then exploit or

abandon based on the value to the MPP.

2.3 Example

Consider the case of a two-state NODP problem, where an entrepreneur creates a

community around the subject of a widget (NFU). After observing growth of activity

and membership in the community the entrepreneur releases a prototype of a widget,

tailored to the community that users can pay to use. The widget costs $100 a month
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to run and manage, but a commercial version, that is stable and can be scaled, needs

$10,000 additional invested. The monthly payments are sunk costs once they are

made and once the entrepreneur invests the $10,000 that cannot be recuperated. If

the monthly paid user base (PPU) can get to 5000, then the entrepreneur will make

$20,000, on the commercial version of the new widget, but if the number of paid

users does not make it to 5000, the value of the investment will be a loss of $9000.

Time is not a limiting factor, after the completion of the commercial grade widget,

the demand will be realized instantaneously. The unobservable core process has two

states, 5000 and 0 (any value less then 0 is considered 0 and any value greater then

5000 can be considered 5000).

Up = {5000, 0}

V H = 20, 000

V L = −9, 000

The entrepreneur does not know what the transtional probabilities are, but knows

the monthly addition of new members in the widget community, uf , and how many

people from the widget community transition to paying for the widget prototype, up.

The number of new widget community members can only have two values, 120 and

20, where 120 is a positive sign of problem validation and 20 is a negative sign. The

number of new paid users joining the prototype, can also only have two values, 80

or 10, where 80 is considered a positive sign of user adoption and 10 is considered a
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negative sign.

uf = {120, 20}

up = {80, 10}

P (upt = 80, uft = 120|Up
t = 7500) = 70%

P (upt = 80, uft = 20|Up
t = 7500) = 5%

P (upt = 10, uft = 120|Up
t = 7500) = 5%

P (upt = 10, uft = 20|Up
t = 7500) = 20%

P (upt = 10, uft = 120|Up
t = 0) = 15%

P (upt = 10, uft = 20|Up
t = 0) = 40%

P (upt = 80, uft = 120|Up
t = 0) = 15%

P (upt = 80, uft = 20|Up
t = 0) = 30%

The entrepreneur requires at least a 20% return (MRR) on the multi-period invest-

ment.

We generate observations for three scenarios. The first scenario generates observations

for just the Up = 5000 unobservable state, the second scenario generates observations

for just the Up = 0 unobservable state, and the third scenario generates observations

for the unobservable process following the probability transitions. We generate 30
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observations for each scenario.

Scenario 1: 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 3, 1,

4, 1, 2, 1, 1, 4, 1, 4, 1, 1, 1, 2, 1, 4, 2

Scenario 2: 2, 4, 4, 1, 3, 3, 4, 2, 4, 4, 4, 3, 3, 4, 1,

4, 4, 2, 2, 1, 4, 4, 2, 2, 4, 1, 4, 4, 2, 3

Scenario 3: 4, 1, 1, 3, 1, 1, 1, 3, 4, 4, 4, 1, 1, 3, 1,

1, 3, 1, 1, 4, 4, 1, 3, 3, 1, 1, 3, 1, 1, 1

core: 0, 5000, 5000, 0, 5000, 0, 0, 0, 0, 0,

0, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 0,

5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000

Index: 1− (80, 120)

Index: 2− (80, 20)

Index: 3− (10, 120)

Index: 4− (10, 20)

Even though the entrepreneur has no notion of the transitional probabilities, the

numbers in scenario 3 are being generated by them.

P (Up
t = 5000|Up

t−1 = 5000) = 90%

P (Up
t = 0|Up

t−1 = 5000) = 10%

P (Up
t = 0|Up

t−1 = 0) = 40%

P (Up
t = 5000|Up

t−1 = 0) = 60%
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We calculate the values needed for our best-case heuristic.

ΥH = 100

ΥL = 100

t∗ = 83

b = 60.24

ω = 1.34

Combo 1 will contribute to ΥH , where as combo 3 and 4 will contribute to ΥL.

Combo 2 will not contribute to anything and be treated as noise, but in scenario

2, we’ll contribute it to ΥH . In all 3 scenarios, the multi-period investment was

stopped after 18 months, for a loss of $1800. Where for scneario 2, that was a great

result for scenario 1 and 3, the entrepreneur passed on an investment that otherwise

would have been profitable. The reason is because the NODP model needs several

periods of consistent data that signals growth, to increase the probability beyond

the range of 50%. Given, that this example has the not practical expected return

of a negative profit at 50%, the NODP model ends the investment early. We state

that the example is not practical because if investors and entrepreneurs would not

invest in a scenario, where in period 0, there is an equal amount of loss and profit

possible. If we run all 3 scenarios again excluding the $10,000 sunk cost required to

build the commercial grade widget, in sceario 1, the entrepreneur will make $13,000,

in sceario 2, the entrepreneur will lose $12,000, and in sceario 3, the entrepreneur will

make $12,900. The loss in scenario 2, is just from the multi-period cost, which shows

that the NODP is more expensive when the unobservable state and its subsequent

observations are not profitable. In that scenario, the entrepreneur lost more then if

the commercial grade investment was made initially and failed. The upside in this

case drove the investment past the $9,000 mark.
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Figure 2.1: Two-State NODP Transitional Diagram
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Figure 2.2: Example of Logistic curve

Figure 2.3: Examples of Logistic curves with different Υ’s
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CHAPTER 3
Policy Function Approximation

3.1 NODP Policy Function

In this section we model the N -Stage Network Option Decision Process as an approx-

imate dynamic program. We now assume that the PPU Up now as N possible states

corresponding to N possible valuations, so that N is greater then S × R, where S is

the number of possible states of the NPU and R is the number of possible states of

the NFU.

Up = H1, . . . , HN where H i < H i+1

uf = g1, . . . , gR where gr < gr+1

up = h1, . . . , hS where hs < hs+1

so that N > S ×R

The size of the NPU is now indicative of conditional nature of the valuations on the

speed and value of the aggregate observations (hs, gr). The N -State heuristic could

still be used to find the optimal stopping point as long the variance for the expected

future profit function, π̄mt , isn’t too large. For small PPU’s, NPU’s and NFU’s, we

could use regular dynamic programming, using pre-calculated lookup tables, but here

our assumption is that N ,S, and R are very large, reflecting the continuous nature of

ratios entrepreneurs observe. On the other hand, VC’s tend to aggregate valuations
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according to even lot ranges, $1,000,000, $5,000,000, $10,000,000, etc., in spite of the

continuous nature of the data they observe. We define the state variable as Φt at

period t, as a vector of all the possible Υ’s.

Φt = {Υ1
t , . . . ,Υ

N
t } (3.1)

where Υ1
0 = Υ2

0 = . . . = ΥN−1
0 = ΥN

0 and Υn ≥ 1 (3.2)

The actual state should be the PPU Up, but because it is not observable during the

multi-period investment, the vector of Υ’s is used as function to represent it. We use

the variable at to represent the three discrete action spaces in our model.

At = {c, x, a} (3.3)

We letWt represent the combinations of NFU and NPU observed at and up to period

t.

Wt = {(hs, gr)1, . . . , (h
s′ , gr

′
)t} (3.4)

The variable, ΦM , represents the transition function from state Φt to Φt+1.

Φt+1 = ΦM(Φt, At,Wt+1) (3.5)

The objective function is the expected net profit, and is defined as

B(Φt, At) =

N∑
n=1

V Hn

Υn
t

N∑
n=1

Υn
t

− (C × t) (3.6)
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where C is the cost of continuing the multi-period investment each period. We want

to maximize the objective function, as a expected net profit. Our objective is to find

the best policy Π that will give net returns greater then or equal to zero.

max
Π

EΠ
T∑
t=1

B(Φt, A
Π(Φt)) (3.7)

where function AΠ determines the action choice according to policy Π. Typically,

we can compute an optimal policy using Bellman’s optimality equation which would

be

Γt(Φt) = max
At

(
B(Φt, At) +

∑
s∗

p(s∗|Φt, At)Γt+1(s∗)

)
(3.8)

where Γt(φ) equals the value of being in state Φt = φ at period t to the end of the

mult-period investment following the optimal policy Π. The function p(s∗|Φt, At) is

the probability of transitioning to state s∗, given that the current state is Φt and

action At is chosen. The dilemma our model faces is that we have no way to calculate

the probability transition from one state to another. We are wholly reliant on the

combinations we observe that are generate according to a unobservable random dis-

tribution. We developed a heuristic for the N -Stage model, where we created ranges

to aggregate NPU observations associated with the possible valuation, V Hn , levels

and then developed probabilities using our algebraic sigmoid function that are de-

pendent on the combinations observed to calculate expected value. We did not create

transition probabilities, instead we created future best-case expected values for each

aggregated range and then took an average of them. The strategy being, if there is an

expected return greater then or equal to the MRR possible, then we should continue

the multi-period investment because the primary objective was gaining value through

information. For our approximate dynamic program we now need to develop a prob-

ability approximation for the transition function and policy function, which will map
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states to actions. Typically, we would create a lookup table, but given the size of the

observations now, an approximation is needed. We can write the optimality equation

in terms of our transition function ΦM as

Γt(Φt) = max
At

(
B(Φt, At) + E{Γt+1(ΦM(Φt, At,Wt+1))|Φt}

)
(3.9)

The first step is to aggregate the N possible states of the PPU into M states. In

forecasting a multi-period investment in the industry, there is little difference between

$1,000,000, $1,039,052.35, or $1,109,802. In addition, there are fundamental limits to

how much money can be lost (initial costs plus option based costs) and how much

can be profited (limited size of the network).

H∗1︷ ︸︸ ︷
H1, . . . , Hn,, . . . ,

H∗M︷ ︸︸ ︷
HN−o, . . . , HN (3.10)

V H∗1︷ ︸︸ ︷
V H1

, . . . , V Hn

,, . . . ,

V H∗M︷ ︸︸ ︷
V HN−o

, . . . , V HN

(3.11)

The state variable Φ∗ reflects this in its vector of Υ’s size M . The next step is

to calculate the adjusted lower bound for the NPU, bia, and the maximum periods

the entrepreneur can continue without violating the MRR, just as we did with the

best-case heuristic.

btmc =
V H∗m

(1 +MRR)C

where m = 1, . . . ,M

bm =
TPU

lfloortmrfloor

where tm > 0
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Or if up is a growth ratio

bm =

(
TPU

TFU∗

1
tm

)
− 1

where tm > 0

We then identify, be, such that it is the largest bm less then or equal to the largest

possible value for the NPU, hS, and then calculate the positive and negative dollar

rates, ∆Q and ∆q.

∆Q =
hS − be

V HM − V He + 1
(3.12)

∆q =
be − h1

V He − V H1 (3.13)

bma = (V Hm − V He

)×∆Q + be (3.14)

where m ≥ e (3.15)

bma = be − (V He − V He

)×∆q (3.16)

where m < e (3.17)

We now define the ωm and the algebraic sigmoid function from equation 2.9 and

equation 2.51.

ω∗m =

(
NΥHm

0 te
∣∣gR∣∣ϕ−ΥHm

0 te
∣∣gR∣∣

1− ϕ

)∣∣∣∣∣ gRbma te
∣∣∣∣∣

(3.18)

for {m, . . . ,M} (3.19)

Υm
t = Υm

0 +
ωO

m
t

Dm
t

(3.20)
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Where Om
t and Dm

t are defined as

Om
t =

t∏
i=1

∣∣∣hsi
gri

∣∣∣
Dm
t =

t∏
i=1

∣∣gri ∣∣
where bma ≤ hsi < bm+1

a

We now define the adjusted upper bound of the NPU.

hma ∈ {h1, . . . , hS} such that hs ≤ hma < bm+1
a ,∀hs ∈ {h1, . . . , hma }

We can now define our policy approximation Π, which is a rule based function. Let

Pt be the set of all Υ’s greater then 0 at period t.

{Pt} ∈ {Υ1
t , . . . ,Υ

M
t } such that Υm

t > 0 (3.21)

For all the Υ’s in set Pt, we now calculate
∣∣P ∣∣ scenarios of only the the NPU ranges

in set P . Let Λp
t+1 equal the expected profit if in the next period, the corresponding

range’s hpa was observed as the NPU and the average D̄m
t was observed.

Υp
t+1 = Υp

0 +
ω
Om

t ×
h
p
a

D̄m
t

Dm
t × D̄m

t

(3.22)

Λp
t+1 =

M∑
m=1

V Hm

ΥM
t+1

M∑
m=1

Υm
t+1

− (C × (t+ 1)) (3.23)

where p ∈ {1, . . . , P} (3.24)
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The expected value of the continuing therefore is

E[Λ] =
1∣∣P ∣∣

P∑
p=1

Λp
t+1 (3.25)

So the policy is therefore, that after te periods (least amount of time to meet MRR

limit), if the currentB(Φt, At) is less then E[Λ], then continue on with the multi-period

investment. If it is greater then or equal to, then stop the multi-period investment

and exploit if the expected return is greater then or equal to the MRR and abandon

otherwise. It is important to note that in our policy function we delay making a

decision till te. The reason is that enough observations have not been sampled yet,

and therefore the model waits the minimum time that the probability can convincingly

signal a PPU state.
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APPENDIX A
Examples and Simulations - R Code

A.1 Example 1

#POMDP − Scenario 1
scen1=sample (c (80 , 10 ) , 30 ,T, c ( . 7 5 , . 2 5 ) )
#POMDP − Scenario 2
scen2=sample (c (80 , 10 ) , 30 ,T, c ( . 4 5 , . 5 5 ) )
#POMDP − Scenario 3
scen3=rep (0 , 30 )
core=rep (0 , 30 )
core [ 1 ] = sample (c (7500 ,0 ) , 1 ,T, c ( . 5 , . 5 ) )

for ( i in 1 :NROW( core ) )
{

i f ( core [ i ]==7500)
{

scen3 [ i ]=sample (c ( 80 , 10 ) , 1 ,T, c ( . 7 5 , . 2 5 ) )
i f ( i<NROW( core ) )
{

core [ i +1]=sample (c (7500 ,0 ) , 1 ,T, c ( . 9 , . 1 ) )
}

}
else
{

scen3 [ i ]=sample (c ( 80 , 10 ) , 1 ,T, c ( . 4 5 , . 5 5 ) )
i f ( i<NROW( core ) )
{

core [ i +1]=sample (c (7500 ,0 ) , 1 ,T, c ( . 6 , . 4 ) )
}

}
}

#opt imal p r o b a b i l i t i e s where no more va lue can gained
mph=(100−20000∗ . 6 )/(−9000∗.1−20000∗ . 6 )
mpl=(−9000∗ .1−100)/(−9000∗.1−20000∗ . 6 )
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c a l cS c ena r i o=function ( scen , ac tua l =7500 ,p_7500=.5 ,p_0 = . 5 ,
prob_80_7500=.75 , prob_10_7500=.25 , prob_80_0=.45 , prob_10_0=.55 ,
probHH=.9 ,probLH=.1 ,probHL=.6 , probLL=.4)
{

#The core s t a t e p r o b a b i l i t i e s a t time 0
prob_7500=p_7500
prob_0 = .5

p7500res=rep (0 ,NROW( scen ) )
p0res=rep (0 ,NROW( scen ) )

for ( i in 1 :NROW( scen ) )
{

prob_7500 t = probHH∗prob_7500 + probHL∗prob_0
prob_0t = probLH∗prob_7500 + probLL∗prob_0
i f ( scen [ i ]==10)
{

prob_7500=(prob_10_7500∗prob_7500 t )/
( prob_10_7500∗prob_7500 t+prob_10_0∗prob_0t )
prob_0 = ( prob_10_0∗prob_0t )/
( prob_10_7500∗prob_7500 t+prob_10_0∗prob_0t )

}
else
{

prob_7500=(prob_80_7500∗prob_7500 t )/
( prob_80_7500∗prob_7500 t+prob_80_0∗prob_0t )
prob_0 = ( prob_80_0∗prob_0t )/
( prob_80_7500∗prob_7500 t+prob_80_0∗prob_0t )

}
p7500res [ i ]=prob_7500
p0res [ i ]=prob_0

}
l=l i s t ( p7500res , p0res )
return ( l )

}

r e s=ca l cS c ena r i o ( scen1 )
res7500=re s [ [ 1 ] ]
r e s 0=r e s [ [ 2 ] ]

r e s=ca l cS c ena r i o ( scen2 )
res7500=re s [ [ 1 ] ]
r e s 0=r e s [ [ 2 ] ]
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r e s=ca l cS c ena r i o ( scen3 )
res7500=re s [ [ 1 ] ]
r e s 0=r e s [ [ 2 ] ]

#POMDP Simulat ion
scensim = matrix (0 ,10000 ,100)
cores im = matrix (0 ,10000 ,100)

makeScen=function ( )
{

s c en f=rep (0 ,100)
core=rep (0 ,100)
core [ 1 ] = sample (c (7500 ,0 ) , 1 ,T, c ( . 5 , . 5 ) )

for ( i in 1 :NROW( core ) )
{

i f ( core [ i ]==7500)
{

s c en f [ i ]=sample (c ( 80 , 10 ) , 1 ,T, c ( . 7 5 , . 2 5 ) )
i f ( i<NROW( core ) )
{

core [ i +1]=sample (c (7500 ,0 ) , 1 ,T, c ( . 9 , . 1 ) )
}

}
else
{

s c en f [ i ]=sample (c ( 80 , 10 ) , 1 ,T, c ( . 4 5 , . 5 5 ) )
i f ( i<NROW( core ) )
{

core [ i +1]=sample (c (7500 ,0 ) , 1 ,T, c ( . 6 , . 4 ) )
}

}
}
l=l i s t ( core , s c en f )
return ( l )

}

for ( i in 1 :10000)
{

l l=makeScen ( )
cores im [ i , ]= l l [ [ 1 ] ]
scensim [ i , ]= l l [ [ 2 ] ]

}

r e t = rep (0 ,10000)
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v re s = matrix (0 ,20 ,10000)
for ( v in 1 : 20 )
{
va l = (v−1)∗500
mph=(100−20000∗ . 6 )/(−va l∗.1−20000∗ . 6 )
mpl=(−va l∗ .1−100)/(−va l∗.1−20000∗ . 6 )
t_end = (20000∗mph + −va l∗(1−mph) −10000)/100
m_end = f loor ( t_end/exp ( 1 ) )
t_end = f loor ( t_end)

for ( i in 1 :10000)
{
ismax = 0
l l=ca l cS c ena r i o ( scensim [ i , ] , a c tua l =7500 ,p_7500=.5 ,
p_0=.5 , prob_80_7500=.75 , prob_10_7500=.25 , prob_80_0=.45 ,
prob_10_0=.55 ,probHH=1,probLH=0,probHL=.6 , probLL=.4)
mphend=max( l l [ [ 1 ] ] [ 1 :m_end ] )
for (h in 1 : t_end)
{
i f (h<=m_end)
{
i f ( l l [ [ 1 ] ] [ h]>=mph)
{

i f ( cores im [ i , h]==7500)
{

r e t [ i ]=20000 − 10000 − h∗100
}
else
{

r e t [ i ]=−val−10000−h∗100
}
ismax = 1
break

}
}
else
{
i f ( l l [ [ 1 ] ] [ h]>=mphend)
{

i f ( cores im [ i , h]==7500)
{

r e t [ i ]=20000 − 10000 − h∗100
}
else
{
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r e t [ i ]=−val−10000−h∗100
}
ismax = 1
break

}
}
}
i f ( ismax==0)
{

r e t [ i ]= −h∗100
}
}
vre s [ v , ]= r e t
}

f i n r e s = matrix (0 , 20 , 5 )
for ( i in 1 : 20 )
{

f i n r e s [ i , 1 ]=( i −1)∗500
f i n r e s [ i ,2 ]=mean( v re s [ i , ] )
f i n r e s [ i ,3 ]= sd ( v re s [ i , ] )
f i n r e s [ i ,4 ]=max( v re s [ i , ] )
f i n r e s [ i ,5 ]=min( v re s [ i , ] )

}

f i n r e s 2 = matrix ( 0 , 20 , 1 )
for ( i in 1 : 20 )
{

f i n r e s 2 [ i ,1 ]=paste (round( f i n r e s [ i , ] , 2 ) , c o l l a p s e="␣\&␣" )
}

A.2 Example 2

#NODP − Scenar io 1
#1 (80 ,120) , 2 (80 , 20 ) , 3 (10 ,120) , 4 (10 ,20)
scen1=sample ( c ( 1 , 2 , 3 , 4 ) , 200 ,T, c ( . 7 , . 0 5 , . 0 5 , . 2 ) )
#NODP − Scenar io 2
scen2=sample ( c ( 1 , 2 , 3 , 4 ) , 200 ,T, c ( . 1 5 , . 3 , . 1 5 , . 4 ) )
#NODP − Scenar io 3
scen3=rep (0 ,100)
core=rep (0 ,100)
core [ 1 ] = sample ( c (7500 ,0 ) , 1 ,T, c ( . 5 , . 5 ) )

f o r ( i in 1 :NROW( core ) )



A.2. EXAMPLE 2 - 86 -

{
i f ( core [ i ]==7500)
{
scen3 [ i ]=sample ( c ( 1 , 2 , 3 , 4 ) , 1 ,T, c ( . 7 , . 0 5 , . 0 5 , . 2 ) )
i f ( i<NROW( core ) )
{
core [ i +1]=sample ( c (7500 ,0 ) , 1 ,T, c ( . 9 , . 1 ) )
}
}
e l s e
{
scen3 [ i ]=sample ( c ( 1 , 2 , 3 , 4 ) , 1 ,T, c ( . 1 5 , . 3 , . 1 5 , . 4 ) )
i f ( i<NROW( core ) )
{
core [ i +1]=sample ( c (7500 ,0 ) , 1 ,T, c ( . 6 , . 4 ) )
}
}
}

bigQ=func t i on ( upsl , upsh ,C, g , h ,w, vha , vhl )
{
a=−1∗(ups l+upsh )
b=(ups l+2∗upsh )
c=−1∗(C∗( g∗ ups l /(h∗ l og (w)∗ ( vha − vhl )))+upsh )

i f ( ( b^2 − 4∗a∗c )>0)
{
bq = (−1∗b+sq r t (b^2 − 4∗a∗c ) )/ (2∗ a )
}
e l s e {bq=0}
return (bq )
}

l i lQ=func t i on ( upsl , upsh ,C, g , h ,w, vha , vhl )
{
a=−1∗(ups l+upsh )
b=(ups l+2∗upsh )
c=−1∗(C∗( g∗ ups l /(h∗ l og (w)∗ ( vha − vhl )))+upsh )

i f ( ( b^2 − 4∗a∗c )>0)
{
bq = (−1∗b−s q r t (b^2 − 4∗a∗c ) )/ (2∗ a )
}
e l s e {bq=0}
return (bq )
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}

w = ((2∗100∗83∗120∗ .99 − 100∗83∗120)/ ( . 01 ) )^(120/(60 .24∗83) )
ca lcS igmoid = func t i on ( scen , vh , vl ,C)
{

uph = 100
upl = 100
cnt=rep (0 , 4 )

cur_pro f i t=rep (0 ,NROW( scen ) )
f i n_p r o f i t=0
mrr=0
mp = rep (0 ,NROW( scen ) )

f o r ( i in 1 :NROW( scen ) )
{
mq=l i lQ ( upl , 100 ,100 ,120 ,80 ,w,10000 ,−19000)
mQ=bigQ ( upl , 100 ,100 ,120 ,80 ,w,10000 ,−19000)
in l ogq =(120∗(mq∗100+mq∗100−100)/(1−mq) )
inlogQ=(120∗(mQ∗100+mQ∗100−100)/(1−mQ))

i f ( in logq >0)
{
pq = vh∗mq + vl ∗(1−mq) −C∗(120/80)∗ l og ( in logq ,w) −10000
−C∗( i −1)
qrate=(vh∗mq + vl ∗(1−mq)−C∗(120/80)∗ l og ( in logq ,w) −10000
−C∗( i −1))/(C∗(120/80)∗ l og ( in logq ,w) +10000 +C∗( i −1))
}
e l s e
{
pq=−10000
}

i f ( inlogQ >0)
{
pQ = vh∗mQ + vl ∗(1−mQ) −C∗(120/80)∗ l og ( inlogQ ,w) −10000
− C∗( i −1)
Qrate=(vh∗mQ + vl ∗(1−mQ) −C∗(120/80)∗ l og ( inlogQ ,w) −10000
− C∗( i −1))/(C∗(120/80)∗ l og ( inlogQ ,w) +10000 + C∗( i −1))
}
e l s e
{
pQ=−10000
}
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max_profit = max(pq ,pQ)
m_rate = max(Qrate , qrate )
mp[ i ]=max_profit
i f ( scen [ i ]==1)
{
cnt [1 ]= cnt [1 ]+1
uph = 100 + (w^( cnt [ 1 ]∗ ( 8 0 / 1 2 0 ) ) ) / ( cnt [ 1 ]∗120 )
}
e l s e i f ( scen [ i ]==2)
{
cnt [2 ]= cnt [2 ]+1
}
e l s e i f ( scen [ i ]==3)
{
cnt [3 ]= cnt [3 ]+1
upl = 100 + (w^( cnt [ 3 ]∗ ( 1 0 / 1 2 0 ) ) ) / ( cnt [ 3 ]∗120 )
}
e l s e
{
cnt [4 ]= cnt [4 ]+1
upl = 100 + (w^( cnt [ 4 ]∗ ( 8 0 / 1 2 0 ) ) ) / ( cnt [ 4 ]∗120 )
}
cur_pro f i t [ i ]=vh∗(uph/(uph+upl ) ) + v l ∗( upl /(uph+upl ) )
− C∗ i − 10000
mrr=cur_pro f i t [ i ] / (C∗ i +10000)
i f ( cur_pro f i t [ i ]>=max_profit )
{
break
}
e l s e i f (m_rate<.2)
{
break
}

}
i f (mrr>=.2)
{
f i n_p r o f i t =20000−10000−C∗ i
}
e l s e
{
f i n_p r o f i t=−C∗ i
}
l = l i s t ( f i n_pro f i t , mrr , cur_prof i t ,mp, cnt )
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r e turn ( l )
}

ca lcS igmoid2 = func t i on ( scen , vh , vl ,C)
{

uph = 100
upl = 100
cnt=rep (0 , 4 )

cur_pro f i t=rep (0 ,NROW( scen ) )
f i n_p r o f i t=0
mrr=0
mp = rep (0 ,NROW( scen ) )

w = ((2∗100∗166∗120∗ .99 − 100∗166∗120)/( . 01 ) )^(120/(30 .12∗166) )

f o r ( i in 1 :NROW( scen ) )
{
mq=l i lQ ( upl , 100 ,100 ,120 ,80 ,w,20000 ,−9000)
mQ=bigQ ( upl , 100 ,100 ,120 ,80 ,w,20000 ,−9000)
in l ogq =(120∗(mq∗100+mq∗100−100)/(1−mq) )
inlogQ=(120∗(mQ∗100+mQ∗100−100)/(1−mQ))

i f ( in logq >0)
{
pq = vh∗mq + vl ∗(1−mq) −C∗(120/80)∗ l og ( in logq ,w) −C∗( i −1)
qrate=(vh∗mq + vl ∗(1−mq)−C∗(120/80)∗ l og ( in logq ,w)
−C∗( i −1))/(C∗(120/80)∗ l og ( in logq ,w) +C∗( i −1))
}
e l s e
{
pq=−10000
}

i f ( inlogQ >0)
{
pQ = vh∗mQ + vl ∗(1−mQ) −C∗(120/80)∗ l og ( inlogQ ,w) − C∗( i −1)
Qrate=(vh∗mQ + vl ∗(1−mQ) −C∗(120/80)∗ l og ( inlogQ ,w)
− C∗( i −1))/(C∗(120/80)∗ l og ( inlogQ ,w) +10000 + C∗( i −1))
}
e l s e
{
pQ=−10000
}
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max_profit = max(pq ,pQ)
m_rate = max(Qrate , qrate )
mp[ i ]=max_profit
i f ( scen [ i ]==1)
{
cnt [1 ]= cnt [1 ]+1
uph = 100 + (w^( cnt [ 1 ]∗ ( 8 0 / 1 2 0 ) ) ) / ( cnt [ 1 ]∗120 )
}
e l s e i f ( scen [ i ]==2)
{
cnt [2 ]= cnt [2 ]+1
}
e l s e i f ( scen [ i ]==3)
{
cnt [3 ]= cnt [3 ]+1
upl = 100 + (w^( cnt [ 3 ]∗ ( 1 0 / 1 2 0 ) ) ) / ( cnt [ 3 ]∗120 )
}
e l s e
{
cnt [4 ]= cnt [4 ]+1
upl = 100 + (w^( cnt [ 4 ]∗ ( 8 0 / 1 2 0 ) ) ) / ( cnt [ 4 ]∗120 )
}
cur_pro f i t [ i ]=vh∗(uph/(uph+upl ) ) + v l ∗( upl /(uph+upl ) ) − C∗ i
mrr=cur_pro f i t [ i ] / (C∗ i )
i f ( cur_pro f i t [ i ]>=max_profit )
{
break
}
e l s e i f (m_rate<.2)
{
break
}

}
i f (mrr>=.2)
{
f i n_p r o f i t=20000−C∗ i
}
e l s e
{
f i n_p r o f i t=−C∗ i
}
l = l i s t ( f i n_pro f i t , mrr , cur_prof i t ,mp, cnt )
re turn ( l )
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}

r s1=calcS igmoid2 ( scen1 ,20000 ,−9000 ,100)
fp1 = rs1 [ [ 1 ] ]
mrr= rs1 [ [ 2 ] ]
cp = rs1 [ [ 3 ] ]
mp1 = rs1 [ [ 4 ] ]
cnt1 = rs1 [ [ 5 ] ]

r s2=calcS igmoid2 ( scen2 ,20000 ,−9000 ,100)
fp2 = rs2 [ [ 1 ] ]
mrr2= rs2 [ [ 2 ] ]
cp2 = rs2 [ [ 3 ] ]
mp2 = rs2 [ [ 4 ] ]
cnt2 = rs2 [ [ 5 ] ]

r s3=calcS igmoid2 ( scen3 ,20000 ,−9000 ,100)
fp3 = rs3 [ [ 1 ] ]
mrr3= rs3 [ [ 2 ] ]
cp3 = rs3 [ [ 3 ] ]
mp3 = rs3 [ [ 4 ] ]
cnt3 = rs3 [ [ 5 ] ]
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