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Abstract

Relative Rips Machine

and Thin Type Components of Band Complexes

By Pei Wang

Dissertation Director: Professor Mark Feighn

The Rips machine is a method of studying the action of groups

on real trees. Roughly speaking, the Rips machine is an algorithm

that takes as input a finite 2-complex equipped with a transversely

measured lamination, namely a band complex, and puts it in a “normal

form”, which is the disjoint union of finitely many sub-laminations.

Each component of this normal form belongs to one of the four types:

simplicial, surface, toral and thin. The earlier three types are well-

studied, whereas thin type does not have a standard model. Building

on the work of [BF95], the first part of this thesis provides an additional

structure for thin type components of band complexes. The second part

of this paper develops a version of the Rips machine which studies pairs

of band complexes. The goal of this machine is to convert pairs of band

complexes into standard forms which can be further used to study sub-

laminations and subgroup actions.
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1 Introduction

The Rips machine was introduced by Eliyahu Rips in about 1991 to study

the action of groups on real trees. In [BF95], Bestvina and Feighn described

the machine as processes made of geometric moves on a special class of 2-

complexes equipped with measured laminations, called band complexes, which

is also interpreted as a system consisting a finite number of isometries between

compact intervals in [GLP94].

A band complex is constructed in the following way (See more details in def-

inition 2.9). A band B is a space of the form b × I where b is an arc of the

real line and I = [1, 0]. b × {0} and b × {1} are called bases of B. A sub-

set of the form {point} × I is called a vertical fiber of B. A union of bands

Y is a space obtained from a multi-interval Γ by attaching a finite collection

of bands through length-preserving homeomorphisms from their bases into Γ.

Each band is assigned a weight according to the attaching map. B is a weight

0 band if it is an (foliated) annulus. B is a weight 1
2

band if it is a Mobius

band. Otherwise B is a weight 1 band. A leaf of Y is an equivalence class of

the equivalence relation on Y generated by x ∼ x′ if {x, x′} is a subset of some

vertical fiber of a band in Y . Y is then naturally foliated by its leaves. A band

complex X is a CW 2-complex based on a union of bands Y with 0, 1, and

2-cells attached in such way that the image of all attaching maps is disjoint

from the “interior” of Y (the measured lamination on Y ). The intersections

between these attached cells and Y are called attaching regions.

The Rips machine takes as input a band complex X with its underlying union

of bands Y and converts Y into a normal form, namely a finite disjoint union
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of components each of which has one of the following four types: simplicial

(every leaf is compact), surface, toral and thin (every leaf is dense). The latter

three are also called the minimal components. Roughly speaking, a surface

component is a compact hyperbolic surface with geodesic lamination and a

toral component is the 2-skeleton of a n-torus with the lamination induced by

irrational planes of codimension 1. The first part of this paper will provide

some additional structure for thin type. The main feature of thin type is that

arbitrarily thin bands (bases with small measure) will be created as the Rips

machine is applied and each thin band is a naked band (it is disjoint from

attaching regions of cells). Building on the work of [BF95], in section 3, we

show:

Proposition 1.1. Let X be a band complex with its underlying union of bands

Y . Suppose Y consists a single component of thin type. Let X = X0, X1, . . .

be an infinite sequence of band complexes formed by the Rips machine. Denote

the underlying union of bands for Xi by Yi. Then the following holds.

• There exist integers A > 0, N > 0, m ≥ 0 such that for any n > N , Y n

1contains exactly m generalized bands2 of length less than A, such bands

are called short bands. As a consequence3, Y n contains a bounded

number of generalized bands whose lengths are greater than A. These

bands are called long bands.

• For n > N , there is a natural bijection between short bands {Sin} in Yn

1Y n is Yn omitting weight 0 bands
2See definition 3.1.
3It is shown in [BF95] that all bands in Y n can be organized into a bounded number of

generalized bands.
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and short bands {Sin+1} Yn+1. More precisely, every short band SYn+1

in Yn+1 is a sub-generalized band of a short band SYn in Yn (induced by

the inclusion Yn+1 ↪→ Yn). In particular, SYn+1 and SYn have the same

length.

• An island is either a connected component of the union of short bands

or a component of Γi. For n > N (see definition 3.7). There is a

natural bijection fn between islands {I in} in Yn and islands {I in+1} in

Yn+1. Moreover, up to passing to a subsequence, fn : I in → I in+1 is a

homeomorphism for ∀i. We say that the homeomorphism type of each

island stabilizes. See figure 1.

• Each base of a long band is contained in an island. Thus, every long

band travels from one island to another island (maybe the same one).

Considering each island as a vertex and each long band as an edge, a thin

component then can be viewed as a “graph of spaces”, see figure 2.

It is proved in [BF09] that every long band is disjoint from the attaching regions

of cells. Thus each cell of Xi attaches to Yi along some island. Moreover, we

will show that (∗) fn in above propostion can be construced in such a way

that it is the indentity on no-trivial (not null-homotopic) attaching regions of

cells. Based on (∗), in analogy to the Sela’s shortening argument for surfaces

[Sel01], we will show in section 3.3 that thin component can also be shortened.



4

J

S1 S2

S3

B1

B2 B3

I in

Figure 1: This is a local picture in Yn of an island I in formed by the union of
short bands S1,S2,S3 (determined by the union of short fibers, see definition
3.5, showing in red). B1,B2 and B3 are long bands, one of whose bases is
contained in I in. Yn+1 is obtained from Yn by collasping a free subarc (see
definition 4), say J . This move preserves the homeomprhism type of I in.

e

I1

I2 I3

Figure 2: A “graph of spaces” like structure for a thin component. I1, I2

and I3 are islands. In particular, I1 is a type II island (see definition 3.7)
determined by e. Bands travel between islands are long bands.
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Given a group acting on a real tree, we may ask questions about how its

subgroups act on their corresponding minimal subtrees. The main part of this

paper (section 4 - section 6) is a version of the Rips machine, named relative

Rips machine, to study subgroup actions.

Let X and X ′ be band complexes with their underlying unions of bands Y

and Y ′. A relative cellular map ι : X → X ′ is called a morphism (Definition

4.1) if it restricts to a morphism of their underlying real graphs (isometry on

edges up to finite subdivisions) and takes each band of Y homeomorphically

to a subband of Y ′. The input of the machine is a pair (Definition 4.3) of band

complexes: two band complexes X and X ′ with a morphism ι : X → X ′.

This relative Rips machine is made of moves on pairs of band complexes.

Suppose that H < G are finitely presented groups, TG is a G-tree and TH < TG

is a minimal H-tree, and (TH ↪→ TG) is called a pair of trees. If (X
ι→ X ′)

and (X∗
ι→ X∗′) are related by a sequence of moves and (X

ι→ X ′) resolves

(TH ↪→ TG) (see definition 4.4) then (X∗
ι→ X∗′) also resolves (TH ↪→ TG).

The goal of this machine is that using sequence of moves to put a pair of band

complexes into a normal form while it still resolves the same pair of trees.

In section 4, we describe some further assumptions (A1)–(A5) we may make

on any given pair of band complexes. In particular, after a finite sequence

of folding on the level of bands and real graphs (see definition 4.7), we may

always assume that ι : X → X ′ is locally injective on the level of union of

bands.

In section 5, we will describe three processes (sequences of moves) for relative

Rips machine: Process I, Process II and Process III. As with the Rips machine,
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this relative machine studies one pair of components (Y0
ι→ Y ′0) of (Y

ι→ Y ′)

at a time. In each step of Process I and Process II, we first apply a sequence of

moves, called an operation, to Y ′0 . It is the same operation one would apply to

Y ′0 in the original Rips machine. Then we apply suitable moves to Y0 and mod-

ify ι correspondingly so that ι remains an immersion. Successive applications

of Process I and Process II will convert Y ′0 into a standard form (Definition

2.14), whereas Y0 may not be in its standard form yet. In particular, there

may exist weight 1 bands in Y0 map to weight 0 or weight 1
2

bands. Such bands

in Y0 are called pre-weight 0 bands and pre-weight 1
2

bands. Process III is then

needed to deal with such bands. Roughly speaking, for a fixed pre-weight 0

or pre-weight 1
2

band BY0 ⊂ Y0, we may always assume one of its bases bY0

contains all the other bases of bands intersect it. We may slide all the other

bands across BY0 and then collapse BY0 . However, the induced map between

the resulting component of this sequence of moves, still name it Y0, and Y ′0

may fail to be an immersion. Bands in Y0 are then folded according to their

ι-images. Folding reduces the number of generalized band in Y0 and so stops

in finitely many steps. By that time, we will have a new pair of components

still name it (Y0
ι→ Y ′0) with the property (∗) that Y ′0 is in standard form and

bands in Y0 have the same weights as their images in Y ′0 . Now to convert Y0

into standard form, we will go back to Process I with (Y0
ι→ Y ′0). Property (∗)

ensures that Process III will not appear again.

In section 6, as machine output, we will show that one is able to tell the type of

Y0 as the machine successively applied and the machine will eventually convert

Y0 into standard form if Y0 is of the surface or thin type.
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We show in Proposition 5.2 that Process I and Process II will convert ι into

an almost partial covering map (A technical term. It is slightly weaker than

a partial covering map which is defined as a locally injective morphism that

maps every band onto its image band. See details in definition 5.3) when Y ′0 is

a surface or thin component. Based on this, in section 6, as machine output,

we have:

Theorem 1.2. Let (Y
ι→ Y ′) be a pair of unions of bands and (Y 0 ι0→ Y ′0) =

(Y
ι→ Y ′), (Y 1 ι1→ Y ′1), . . . be a sequence of unions of bands formed by succes-

sively application of relative Rips machine. Then for each pair of components

(Y0
ι0→ Y ′0) ⊂ (Y

ι→ Y ′) where Y ′0 is a minimal component, Y0 is either a

minimal component of the same type as Y ′0 or Y0 is simplicial.

Moreover, let the pair of components corresponding to (Y0
ι0→ Y ′0) in (Y n ιn→

Y ′n) be (Yn
ιn→ Y ′n). Then Y0 and Y ′0 are both surface or thin components if

and only if omitting weight 0 bands, ιn : Yn → Y ′n is a finitely covering map

for sufficiently large n. In addition, for sufficiently large n, Y ′n is in standard

form and every surface or thin component of Y n is also in standard form.

Corollary 1.3. Let H < G be two finitely presented groups. Further let TG

be a G-tree with trivial edge stabilizers and TH ⊂ TG be a minimal H-subtree4.

Suppose that (X
ι→ X ′) is a pair of band complexes, that X and X ′ resolve

TH and TG correspondingly, that Y and Y ′ are single minimal components of

either surface or thin type and that π1(Y ) generates H, π1(Y ′) generates G.

Then [G : H] is finite.

4i.e. TH contains no proper H-subtrees.
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This whole thesis was motivated by an attempt to simplify and fill in details of

the Bestvina-Feighn’s note on Zlil Sela’s work on the Tarski problem [Sel01]-

[Sel06b], also see Kharlampovich-Myasnikov’s appoarch in [KM06]. In the

last section, we will describe Bestvina-Feighn’s enlargement argument using

machinery developed in this thesis. There is a joint paper in preparation.

2 Background

In this section we briefly review the relevant definitions and list some useful

properties without proofs of the Rips machine, see details in [BF95], [Bes02].

Definition 2.1. A real tree, or an R-tree, is a metric space T such that for

any x, y in T there is a unique arc from x to y and this arc is isometric to an

interval of the real line.

Definition 2.2. A real graph Γ is a finite union of simplicial trees such that

each interval of these tress is identified with an arc of the real line.

Let I = [0, 1]. A band B is a space of the form b × I where b is an arc of

the real line. We identify b with b × {0}. b × {0} and b × {1} are called the

basesof B. Subsets of b × {point} are horizontal and subsets of {point} × I

are vertical. A vertical fiber is a set of the form {point} × I. A band has an

involution δB given by reflection in b× {1
2
}, known as the dual map. Bases of

B then denoted by b and dual(b).

Definition 2.3. Let B1, . . . , Bn be bands and Γ be a real graph. For each base

bi of each Bi, let fbi be a length-preserving homeomorphism from bi to Γ. A



9

union of bands is the quotient space Y of the disjoint union ΓtB1t· · ·tBn

modulo the union of the fbi ’s.

Definition 2.4. A band B (or each of its bases) of a union of bands Y is

assigned a weight according to the attaching map. B is a weight 0 band if

it is an annulus. B is a weight 1
2

band if it is a Mobius band. Otherwise

B is a weight 1 band. A block is the closure of a connected component

of the union of the interiors of the bases. The complexity of a block is

max{0,−2 +
∑

weight(b)|b ⊂ block}. The complexity of Y is the sum of the

complexities of its blocks. A leaf of Y is an equivalence class of the equivalence

relation on Y generated by x ∼ x′ if {x, x′} is a vertical subset of a band in

Y . Y is foliated with a natural transverse measure by these leaves [MS84].

Remark 2.5. Let Y be a union of bands constructed by gluing bands to ΓY

where ΓY is a disjoint union of simplicial trees. According to [BF95, Lemma

6.1], up to a finite sequence of moves, we may assume Y has the following

property.

(A1): Its underlying real graph ΓY is the disjoint union of edges. Each edge is

either a block or meets no bands.

We will make this assumption for all union of bands throughout the paper

unless otherwise mentioned.

Definition 2.6. Let Y be a union of bands with its underlying real graph Γ.

For z ∈ Γ denote by NΓ(z, ε) the closed ε-neighborhood of z in Γ. If z /∈ Γ we

take NΓ(z, ε) to be empty. For a band B = b× I of Y , z = (z, t) ∈ b× I = B,

and ε > 0, let NB(z, ε) be the closed horizontal segment {(x′, t) ∈ B||x−x′| ≤
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ε}. For z ∈ Y , define N(z, ε) to be the union of NΓ(z, ε) and of the NB(z, ε)

over all B containing z. A subset of Y is horizontal if it is a subset of Γ

or if it is contained in a single band and is horizontal there. let s, s′ ⊂ Y be

horizontal and let p be a path in a leaf of Y . We say s pushes into s′ along

p if there is a homotopy H of s into s′ through horizontal sets such that

• for every z ∈ s, H({z} × I) is contained in a leaf, and

• there is z0 ∈ s so that p(t) = H(z0, t) for all t ∈ I.

Given a horizontal s and path p in a leaf with p(0) ∈ s, we say that s pushes

along p if there is a horizontal set s′ such that s pushes into s′ along p.

As subset S of Y is pushing saturated if given a path p with p(0) ∈ S and

ε > 0 such that N(p(0), ε) pushes along p then p(1) ∈ S.

Definition 2.7. Let Y be a union of bands. Y is minimal if every pushing

saturated subset of Y is dense in Y and is simplicial if every leaf of Y is

compact. A leaf is singular if it contains a proper pushing saturated subset.

Otherwise, it is nonsingular.

Proposition 2.8. [BF95, Proposition 4.8] Let Y be a union of bands. There

are only finitely many isotopy classes of compact leaves in Y . Suppose that no

leaf of Y has a subset that is proper, compact and pushing saturated. Then,

the following holds.

• Each component of Y is a union of bands that is either simplicial or

minimal.
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• Each simplicial component of Y is an I-bundle over some leaf in that

component.

• All but finitely many leaves of Y are nonsingular.

Definition 2.9. A band complex X is a relative CW 2-complex based on a

union of bands Y . X is obtained from Y with 0, 1, and 2-cells attached such

that

• only finitely many (closed) cells of X meet Y ,

• the 1-cells of X intersect Y in a subset of Γ,

• each component of the intersection of Γ and a 2-cell of X is a point, and

• each component of the intersection of a band of Y and a 2-cell of X is

vertical.

Intersections between attaching cells and Y are call attaching regions.

Here is a terminology convention. If X is a band complex then Y is always its

underlying union of bands and Γ is always its real graph. Similarly, the union

of bands for X ′ is Y ′, etc. Further, Y denotes the union of bands obtained

from Y by omitting weight 0 bands.

A leaf of a band complex X is a leaf of Y . Similarly, we say that X is

minimal or simplicial if Y is minimal or simplicial. The complexity of X is

the complexity of Y . The transverse measure on Y can then be integrated

along a path in X. A generalized leaf of X is an equivalence class of points of

X under the equivalence relation x ∼ x′ if there is a path in X joining x and
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x′ with measure 0. X∗ ⊂ X is a band subcomplex if X∗ is a band complex with

its underlying real graph Γ∗ ⊂ Γ and its underlying union of bands Y ∗ ⊂ Y .

Let G be a finitely presented group acting on a R-tree T by isometries (called

a G-tree for short). We may obtain a band complex from T in the following

way. Let X be a 2-complex whose fundamental group is G. A resolution for

T is a G-equivariant map r : X̃ → T (X̃ is the universal cover of X) such that

the image of a generalized leaf of X̃ is a point and r embeds the lifts of bases.

We say that X a resolving complex.

Proposition 2.10. [BF95, Proposition 5.3] Let G be a finitely presented

group. Every G-tree T has a resolution.

The goal of the Rips machine is to put a band complex X into a normal form.

There is a list of 6 moves (M0)-(M5) that can be applied to a band complex.

The complete list is in section 6 of [BF95]. These moves are elementary ho-

motopic moves with respect to the underlying measured lamination. If a band

complex X ′ is obtained from a band complex X by a sequence of these moves,

the following holds.

• There are maps φ : X → X ′ and ψ : X ′ → X that induces an isomor-

phism between fundamental groups and preserve measure.

• If f : X̃ → T is a resolution, then the composition fψ̃ : X̃ ′ → T is also

a resolution, and if g : X̃ ′ → T is a resolution, then so is gφ̃ : X → T .

• φ and ψ induce a 1−1 correspondence between the minimal components

of the laminations on X and X ′
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We now describe two moves which will be used a lot in the following sections.

(M4) Slide. Let B = b × I and C = c × I be distinct bands in X. Suppose

fb(b) ⊂ fc(c). Then a new band complex X ′ can be created by replacing fb by

fdual(c) ◦ δC ◦ f−1
c ◦ fb. This is a slide of b across C from c to dual(c). We say

that c is the carrier, and b is carried. See figure 3.

CB C

B

Figure 3: Slide B across C.

Definition 2.11. Let B = b × I be a band of Y . A subarc J of a base b is

free if either

• b has weight 1 and the interior of J meets no other base of positive weight

(see figure 4), or

• b has weight 1
2
, the interior of J doesn’t contain the midpoint of b, and b

and dual(b) are the only positive weight bases that meet the interior of

J .

(M5) Collapse from a free subarc. Let B = b×I be a band, and let J ⊂ b be a

free subarc. If b has weight 1, collapse J×I to dual(J)∪(∂J×I) to obtain X ′.

Typically, the band B will be replaced by two new bands. But if J contains

one or both endpoints of b, say x, then we also collapse x × [0, 1]. Thus B
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Figure 4: J is a free subarc, and the red subarc is not.

is replaced by 1 or 0 bands. Attaching maps of relative 1- and 2-cells whose

image intersect interior of J × [0, 1), can be naturally homotoped upwards.

See figure 5.

If b is of weight 1
2
, we may subdivide B over the end-point of J nearest the

midpoint of b such that J is contained in a band of weight 1 ([BF95, Lemma

6.5]). Then we can collapse from J as before.

J

Figure 5: Collapse from J within a weight 1 band. Subdivison annuli are
attached between red loops and between blue loops.

In this paper, we will use some additional moves.

(M6) Attach a band : Glue b× I to X via measure-preserving b× ∂I → Γ(X)

transverse to the measured lamination.

(M7) Adding an arc to the real graph: Add an extra segment c of the real line

to ΓX . A special case is extend ΓX by gluing one end point of c to an end
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point of ΓX .

(M8) Attach a disk : Glue a 2-disk D to X via ∂D → X(1) representing a

measure 0 loop, where X(1) is the union of bands Y and the relative 1-cells.

Remark 2.12. Note that unlike the moves in [BF95], (M6) − (M8) may

change the fundamental group of X. But we never perform such moves alone.

For example, after a (M6)-attaching a band to X, we always perform (M8)-

attaching a disk (multiple times if needed) to make sure the resulting band

complex X ′ have the same fundamental group and resolves the same tree.

By [BF95], after applying a sequence of moves to X, we may arrange that

no leaf of the complex has a subset that is proper, compact, and pushing

saturated. Therefore, each component of X (Y ) is either simplicial or minimal.

The Rips machine consists of two processes (sequence of moves), Process I and

Process II. Neither process increases complexity. It is designed to study one

minimal component at a time. Fix a minimal component Y 0 of Y . First,

Process I is successively applied until no base of Y 0 has a free subarc. It is

possible that Process I continues forever. If no base has a free subarc then

Process II is successively applied until the complexity of Y 0 decreases, or else it

is applied forever. Thus eventually only one of the processes is applied. After

putting Y 0 in the “normal form”, we continue by choosing another component.

Definition 2.13. If, in the Rips machine, eventually only Process I is applied

to Y 0, then Y 0 is of thin type (also called Levitt or exotic type). If

eventually only Process II is applied and excess is 0 then Y 0 is of surface

type. If eventually only Process II is applied and excess is positive then Y 0

is of toral type (or axial type).
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Definition 2.14. In applying the Rips machine to Y 0, we will obtain an infi-

nite sequence Y 0, Y 1 . . . where each component is obtained from the previous

by a process. Further, there exists an integer N such that only a unique

process (either Process I or II) is applied in the sequence after Y N , and

Complexity(Y n) = Complexity(Y n+1) for all n > N . Y n is said to be in

standard form for n > N . A band complex is standard if its every minimal

component is standard.

Definition 2.15. Given a union of bands Y , let q ∈ Y be a point and lq ⊂ Y

be the leaf containing q. Each component dp of lq − q is called a direction

of Y at q. A direction is infinite if the corresponding component of the

leaf is infinite. For q ∈ ΓY , a band in Y containing q determines a unique

direction at q. Denote the direction set of Y at q by TqY . For a given a

morphism between union of bands ι : Y → Y ′, we define the derivative map

Dqι : TqY → Tι(q)Y by defining Dqι(dq) = ι(dq) for each direction dq at q,

where ι(dq) represents the direction at ι(q) containing the image of dq in Y ′.

For each q ∈ Ȳ , we define its index by

iY (q) = #{infinite directions at q} − 2.

The limit set ΩY of Y is the set of points in Ȳ whose index is at least zero.

Its intersection with the real graph (i.e. ΩY ∩ ΓY ) is called the limit graph.

Each type of component in Y then can be characterized in the following way.

Proposition 2.16. [BF95, section 8] Let Y be a union of bands in the standard

form defined in definition 2.14 and Y0 be one of its component. Then
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1. Y0 is a simplicial component if and only if ΩY0 is empty;

2. Y0 is a surface component if and only if iY (q) = 0 for ∀q ∈ ΩY0 and the

closure of ΩY0 is Y0;

3. Y0 is a thin component if and only if there are finitely many points in

ΩY0 have positive index and ΩY0 ∩ ΓY0 is a dense Gδ set in ΓY0;

4. Y0 is a toral component with rank n > 2 if and only if ΩY0 contains

infinitely may points of positive index.

Associated to a band complex is a GD which is a generalization of the GAD’s

of [BF09].

Definition 2.17. A generalized decomposition, or GD for short, is a graph

of groups presentation ∆ where some vertices have certain extra structure.

Namely, the underlying graph is bipartite with vertices in one class called

rigid and vertices in the other called foliated. Further each foliated vertex has

one of four types: simplicial, toral, thin, or surface.

A band complex X is naturally a graph of spaces where vertex spaces are

components of Y and components of the closure of X \ Y (the complements

of Y ). An edge corresponds to a component of the intersection of the closures

of sets defining two vertices. The GD associated to X, denoted by ∆(X), is

the graph of groups decomposition coming from this graph of spaces.
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3 Thin Type components

3.1 Review.

As described in section 2, Y0 is of thin type if eventually only Process I is

applied. In this section, we will review Process I and restate some properties

proved in [BF95] for our convenience.

Definition 3.1. Let B1, B2, . . . , Bn be a sequence of weight 1 bands in Y . We

say that they form a generalized band B provided that :

• the top of Bi is identified with the bottom of Bi+1 and meets no other

positive weight bands for i = 1, 2, . . . , n− 1, and

• the sequence of bands is maximal with respect to above property.

We say Bi and Bi+1 are consecutive bands. The bottom of B1 and the top

of Bn are bases of B, and denote them by b and dual(b). Let In = [0, n],

then a generalized band B has the form b × In. A vertical fiber of B is a set

of the form {point} × In. The union of a sub-sequence of consecutive bands

Bi, Bi+1, . . . , Bi+k called a section of B, where i ≥ 1, i+ k ≤ n. The length of

B, denoted by l(B), is n (the number of bands in B). The width of B, denoted

by w(B), is the transverse measure of its base b. Let c ⊂ b be a sub-interval,

C = c× In is a sub-generalized band of B. Similar to the definition for bands,

we may talk about the weight of a generalized band.

Definition 3.2. For a given band, the midpoint of a base divides the base

into halves. A weight 1 base is isolated if its interior does not meet any other
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positive weight base. A half h of a weight 1
2

base b is isolated if the interior h

meets no positive weight bases other than b and dual(b). A weight 1 base b is

semi-isolated if a deleted neighborhood in b of one of its endpoints meets no

other positive weight base. A half h of a weight 1
2

base b is semi-isolated if

a deleted neighborhood in h of one of its endpoints meets no positive weight

base other than b and dual(b).

We are now ready to describe Process I.

Process I. We define X ′ to be the band complex obtained from X by the

following operation. Find if possible, a maximal free subarc J of a base b of

Y 0. If such a J does not exist, define X ′ = X and go on to process II. Now

use (M5) to collapse from J . If there are several J ’s to choose from, abide by

the following rules:

1. If there is an isolated (half-) base c, set J = c. This is called an I1-

collapse.

2. If there is no isolated (half-) base, but there is a semi-isolated (half-)

base c then choose J so that it contains an endpoint of c. This is called

an I2-collapse.

3. If there are no isolated or semi-isolated (half-bases), we can use any free

subarc as J. This is called an I3-collapse.

4. Generalized bands are treated as units.

Let X = X0, X1, . . . be an infinite sequence of band complexes formed by

Process I defined above (i.e. Xi+1 = Xi
′). Denote the underlying union of
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bands for Xi by Yi. Further denote the collapse from Yi to Yi+1 by δi, the

natural inclusion Y i+1 ↪→ Y i by ιi and the number of generalized bands in

Yi that have positive weight by ai. We say a generalized band B′ ⊂ Yi+1 is

an image of a generalized band B ⊂ Yi, if a section of B′ is contained in B

under ιi. Then B has no image under an I1-collapse, exactly one image under

an I2-collapse and at most two images under an I3-collapse. It is clear that in

either case l(B) ≤ l(B′). A collapse δi is said to be increasing if the length of

some generalized band in Yi is strictly less than the length of one of its images

in Yi+1.

Lemma 3.3. Following the above notation, for a given collapse δi : Yi → Yi+1

we have:

• If δi is an I1-collapse, then ai+1 = ai − 1 and δi is not increasing.

• If δi is an I2-collapse, either ai+1 = ai or ai+1 = ai − 1. Moreover, δi is

an increasing collapse in the latter case.

• If δi is an I3-collapse, then ai+1 = ai + 1 or ai+1 = ai or ai+1 = ai − 1.

Moreover, δi is an increasing collapse in the latter two cases.

Proof. The first item is clear since a whole generalized band vanishes in an

I1-collapse.

For the second item, let Ci be a generalized band in Yi. Suppose one of its bases

ci is a semi-isolated base and δi collapses from a maximal free subarc J ⊂ ci.

In Yi+1, let the remaining part of Ci be C′i and the image of Ci(exactly one

image due to I2-collapse) be Ci+1, see Figure 6. If C′i = Ci+1, then ai+1 = ai
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and δi is not increasing. If C′i ( Ci+1, then Ci+1 must be the concatenation

of C′i and another generalized band (can not concatenate with more than one

band due to no proper compact subset of each leaf). In this case, ai+1 = ai−1

and δi is increasing. The third item can be argued in the same fashion.

J
ci

Ci

dual(ci)

Ai

Yi

Collapse J

C′i

Ci+1

A′i

Yi+1

Figure 6: Without the red dashed lines, the picture showes the case that
C′i ( Ci+1 and ai+1 = ai − 1. In Yi+1, C′i and Ai form a longer generalized
band Ci+1. If Ai has the red dash as its boundary, then C′i = Ci+1 and
ai+1 = ai.

Proposition 3.4. Let X be a band complex with its underlying union of

bands Y . Suppose Y consists a single component of thin type. Further let

X = X0, X1, . . . be an infinite sequence of band complexes formed by the Rips

machine. Denote the underlying union of bands for Xi by Yi. Then the fol-

lowing holds.

1. Complexity(Yi+1) ≤ Complexity(Yi) for i = 0, 1, 2 . . . . In particular,

eventually the complexity is a fixed number C.
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2. All bands in each Y i can be organized into at most N = 6C+1 generalized

bands.

3. Let L be the induced lamination on Y and L∞ = L∩
⋂∞
i Y i. Then each

subband of a band in Y either fully collapses within finitely many steps

or meets L∞ in infinitely many vertical fibers.

Proof. (1) This follows from the definition of complexity. Suppose δi is an I1-

collapse and b is the isolated base of the collapsed generalized band B. If the

complexity of the block containing dual(b) is positive, then Complexity(Yi+1) <

Complexity(Yi). Otherwise Complexity(Yi+1) = Complexity(Yi). A similar

analysis can be done for both I2- and I3-collapse.

(2) According to the first item, without loss, we may assume all Yi have the

fixed complexity C. Therefore in Γi, the number of blocks of positive com-

plexity is bounded by C. Recall that the number of generalized bands in Y i

is denoted by ai. Suppose ai+1 > ai, then this occurs only if δi : Yi → Yi+1

is an I3-collapse (lemma 3.3). Thus Yi contains no isolated or semi-isolated

bases. Therefore, each block of complexity 0 consists of two coinciding bases

of weight 1, or of a weight 1
2

pair that coincides with a weight 1 base. So for

a given generalized band B, either at least one of its bases is contained in a

block of positive complexity or B is of weight 1
2

whose bases form a block of

complexity 0 along with another weight 1 base. It follows that ai is bounded

above by 6C, and so ai+1 ≤ 6C+1. If Yi+1 → Yi+2 is an I1 or I2-collapse, then

ai+2 ≤ ai+1 ≤ 6C + 1. If it is an I3-collapse, then the same analysis shows

that ai+1 ≤ 6C, ai+2 ≤ 6C + 1. Therefore, the number of generalized bands is

bounded by N = 6C + 1.
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(3) Assume B ⊂ Y is a subband that does not fully collapse within finitely

many steps. By [BF95, Proposition 7.2], I3-collapses occur infinitely often.

So the number of components of the intersection between B and Y i goes to

infinity with i. Each of these components then have nonempty intersection

with L∞ and we are done.

Let X = X0, X1, . . . be an infinite sequence formed by the Rips machine. In

general, it is possible that the process of Rips machine applied to Xi bounces

between Process I and Process II for a while before it eventually stabilizes

with Process I. Moreover, the complexity of Yi may actually decrease at the

beginning stages. Nonetheless, there exists some integer N such none of these

situations happens after YN . So without loss, for the rest of this section, we

always make the assumption that in the sequence X = X0, X1, . . . only Process

I occurs and the complexity is fixed for every Xi.

Let B ⊂ Y0 be a band. We say B vanishes along the process if B ∩ Yi = ∅

for all sufficiently large i’s (Yi ⊂ Y0). It is clear that bands only vanish in

I1-collapses. Since I1-collapses lead to reductions of complexity, under our

assumption of fixed complexity, we may further assume that only I2-collapses

and I3-collapses occur along the sequence X0, X1, . . . . In particular, no band

vanishes.

3.2 Structure of Thin Type.

We will continue with the same notation as in section 3.1. Denote the union
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of bases of the generalized bands in Yi by Ei. Then Ei is the union of at

most 2N closed intervals where N is the uniform upper bound of the num-

ber of generalized bands in Yi as in Proposition 3.4. Yi+1 ⊂ Yi implies that

the sequence E1 ⊃ E2 ⊃ . . . is nested. According to [BF95, proposition

8.12], max{widths of generalized bands of Yi} → 0 as i → ∞. Therefore, the

intersection ∩∞i=0Ei consists of at most 2N points. Denote these points by

e1, e2, . . . , en where n ≤ 2N . If a vertical fiber of a generalized band in Yi

contains some ej, by definition, ej must be an endpoint of that fiber.

A vertical fiber of a generalized band in Yi is short if both its endpoints

are contained in {e1, e2, . . . , en}. Since leaves of the limiting lamination L∞

contain no loops (Proposition 8.12 [BF95]), if there are more than two vertical

fibers from ei to ej, i 6= j, then one of them has to be in the boundary of

Yi. Therefore, the total number of short vertical fibers is bounded above by(
n
2

)
+ 2N . Let s1, s2, . . . , sm be the list of short vertical fibers. Furthermore,

since widths of bands in Yi converge to 0 with i, each generalized band in

Yi contains at most one of {sj}j for i sufficiently large. In particular, m ≤

min{
(
n
2

)
+ 2N,N} = N .

Definition 3.5. In Yi, we say a generalized band of positive weight is short

if one of its vertical fibers is a subset of a short vertical fiber. Otherwise,

we say the generalized band is long. In particular, for i sufficiently large, a

generalized band is short if and only if it contains one of {sj}j.

Proposition 3.6. Following the same notation as in proposition 3.4, we have

that in Yi’s:
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1. Lengths of short bands are bounded above by ls = max
j∈{1,...,m}

{l(sj)}.

2. There exists an integer M such that for any i > M , Yi contains exactly

m short bands. In particular, for all i > M , there is a natural bijection

between short bands in Yi and Yi+1. More precisely, every short band

BYi+1
in Yi+1 is a sub-generalized band of a short band BYi in Yi (induced

by the inclusion Yi+1 ↪→ Yi).

3. For any fixed number k, there exists a number N(k) such that the lengths

of long bands are all greater than k after the stage YN(k). In particular

lengths of long bands are going to ∞ as i→∞ in Yi.

4. Yi contains at least one long band.

Proof. (1), (2) follow directly from Definition 3.5.

(3) Let li be the length of a shortest long bands in Yi. Then the sequence {li}i

is non-decreasing as i → ∞. We need to prove that the sequence is indeed

increasing. Assume it is bounded above, then for all sufficiently large i, li is

a fixed number l∗. Note that each long band in Yi+1 with length l∗ is a sub-

generalized band of some long band in Yi, which also has length l∗. This implies

that there exists a sequence of long bands {BYi}i such that BYi+1
↪→ BYi and

l(BYi) = l∗ for all i’s. Thus ∩∞i BYi ∈ {s1, s2, . . . , sm}. But this contradicts

the assumption that BYi ’s are long bands.

(4) Since the number of generalized bands in Yi is uniformly bounded, we only

need to show that there are infinitely many increasing δi’s in the the sequence

Y0
δ0→ Y1

δ1→ Y2 . . . . We are going to construct an infinite subset of {Yi}i such

that for each Yi in that subset, its corresponding δi is increasing. Firstly, since
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ai is bounded by N , there exists a subsequence A = {Yk1 , Yk2 , . . . } with the

property that for any fixed j, akj ≥ ai for all i ≥ kj. Starting with Yk1 , if δkj

is increasing, we continue to check δkj+1
. Otherwise, by lemma 3.3, either δk1

is an I2-collapse with ak1+1 = ak1 , in which case we replace Yk1 by Yk1+1 in the

subsequence A; Or δk1 is an I3-collapse with ak1+1 > ak1 , which contradicts to

the choice of Yk1 . Since I3-collapses happen infinitely often in Y0, Y1, . . . , A is

an infinite set.

According to above proposition, for i > M , a generalized band in Yi is short

if and only if its length is less than ls , otherwise it is long (thus the name).

Definition 3.7. {e1, . . . , en} are defined as above. In Yi, an island is either

• Type 1 A connected component of the union of short bands in Yi along

with the blocks containing their bases, or

• Type 2 A block containing an ej which is not contained in an island of

type 1.

An island is trivial if it is null-homotopic. Then by definition, every type 2

island is trivial.

Definition 3.8. A generalized band B of a band complex X is naked if the

interior of B (measured lamination on B) is disjoint from the attaching region

of the 2-cells in Y . Further B is very naked if there are no subdivision annuli

attached to B.

Proposition 3.9. Let X be a band complex with its underlying union of bands

Y . Suppose Y consists a single component of thin type. Then we have the

following,
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1. There exists an integer M ′ > M such that the number of islands is fixed

for all i > M ′. In particular, let S = ∪mj=1si, E = ∪nj=1ei and the fixed

number for islands be NI . Then NI equals the number of components of

S ∪E. Moreover, δi induces a natural bijection between islands in Yi and

Yi+1. Further after passing to a subsequence, each island in Yi and its

image island in Yi+1 have the same homeomorphism type. We say that

islands eventually stabilize.

2. For i > M ′, let I ⊂ Yi be a type 1 island and SI be the component of S

it contains. I is trivial if and only if SI contains no loops. In particular,

if I is non-trivial, SI must contain some sj that is in the boundary of

Yi.

3. Every long band is naked 5. Each base of a long band is contained in an

island.

4. For i > M ′, there is an isomorphism fi between islands in Yi and islands

in Yi+1 which preserve measure and is the identity map on the non-trivial

attaching region of 2-cells in Yi.

Proof. (1) To show the existence of M ′, we only need to show that eventually

two distinct short bands either stay connected or disconnected and every ej

stays either in a type 1 island or not. Let B1
Yi

and B2
Yi

be two short bands

in Yi for i > M , B1
Yi+1

and B2
Yi+1

be the corresponding short bands in Yi+1.

Without loss, we may assume that s1 ⊂ B1
Yi

, s2 ⊂ B2
Yi

are short vertical fibers

determining them. If s1 and s2 share an endpoint, it is clear that B1
Yi

and

5This is proved in [BF95]
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B2
Yi

stay connected for all i > M . Otherwise, there exists an ε > 0 such that

ε-neighborhoods of endpoints of s1 and s2 are disconnected. Since widths of

generalized bands in Yi converge to 0 as i→∞, there exists M∗ > 0 such that

B1
Yi

and B2
Yi

are disconnected for all i > M∗. Exactly argument shows that

there exists M∗∗ such that every ej /∈ S is not contained in a type 1 island.

Thus for all i > M ′ = max{M∗,M∗∗}, every component of S ∪ E determines

a unique island in Yi. In particular, the combinatorial type of an island as a

union of bands is bounded. After passing to a sub-sequence, each island in Yi

is homeomorphic to its image in Yi+1.

(2) If SI contains no loops, I can be viewed as an I-bundle over SI and so is

a trivial island. Otherwise SI contains loops. Note that every I-bundle neigh-

borhood of SI intersects the limiting lamination L∞ infinitely often. Leaves

in L∞ have no loops6 implies that SI must contain some sj that is in the

boundary of Yi.

(3) Since long bands are getting infinitely long, up to homotopy, we may as-

sume that each long band meets the attaching region only at points. Further,

up to homotopy, we may assume that these points are contained in its bases.

Therefore, it is a naked band. By the definition of {ej}j, every block of Γi con-

tains at least a point in {ej}j for i sufficiently large. Thus the block containing

a base of a long band must be part of an island.

(4) The bijection fi induced by δi between islands in Yi and islands in Yi+1 in

fact is an measure preserving isomorphism since each island in Yi and its image

in Yi+1 have the same homeomorphism type. There are in total finitely many

6See for example [BF95, Proposition 8.9] or [Gui00].
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components of the attaching regions in Yi. By composing with homotopies

within bands, we may assume that fi is identity on attaching regions that are

homotopy equivalence to a point. Now for each attaching region (contained

in a leaf) that is not null-homotopic, if it is not contained in a boundary leaf

of a weight 0, this attaching region must contain a segment in a boundary of

an non-trivial island By item (2), such an attaching region are contained in a

component SI of S that is not null-homotopic. fi is identity on such SI ’s and

so fi is identity on attaching regions.

It follows from proposition 3.9 that every long band travels from one island to

another island (maybe the same one). After a finite sequence of sliding (M4)

weight 0 bands, we may assume that every long band is very naked. Thus

every subdivision annulus is attached to an island. Each island along with

weight 0 bands attached to it is called a generalized island. Considering

each generalized island as a vertex and each long band as an edge, a thin

component then has a “graph of spaces” like structure (see figure 2).

More generally, for band complex with more than one component, we have the

following corollary .

Corollary 3.10. Let X be a band complex with its underlying union of bands

Y , ∆(X) be the associated GD of X and Y0 be a thin component. Further let

X0 = X,X1, . . . be a sequence of band complexes and Yi ⊂ X i be the compo-

nent corresponding to Y0. Then for n sufficiently large, intersections between

Yn and other vertex spaces of ∆(Xn) (attaching regions) are contained in gen-

eralized islands of Y n. Moreover, fn : Yn → Yn+1 constructed in Proposition
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3.9 can be extended to fn : Xn → Xn+1 with the property that fn is the identity

on the closure of the complement of Yn in Xn.

Proof. By construction, every long band is very naked and so every attaching

region of Yn is contained in a generalized island of Yn. According to Item (2)

of Proposition 3.9, fn : Yn → Yn+1 is an identity on the attaching regions.

Therefore fn can uniquely extend to fn : Xn → Xn+1 by defining fn to be the

identity on the closure of the complement of Yn in Xn.

3.3 Shortening Thin Type

Now let X be a band complex with its underlying union of bands Y , m be

the transverse measure on X and B be a set of loops in Y generating π1(X).

Set |X|B :=
∑

µ∈Bm(µ) be the length of X with respect to B. Further let

Y0 ⊂ Y be a thin component, X = X0, X1, . . . be an infinite sequence of

band complexes formed by the Rips machine and Yn ⊂ Xn be the component

corresponding to Y 0. In this section, we will use fn : Xn → Xn+1 constructed

in Corollary 3.10 to show that in analogy to Sela’s shortening argument for

surfaces, lengths of X can also be shortened using thin components.

Definition 3.11. Let u be a subarc of an edge of the underlying real graph Γ

of X with basepoint z0 in the interior of u. A short (with respect to u) loop

is a loop p1 ∗ λ ∗ p2 based at z0 where p1 and p2 are paths in the interior of u

and λ is a path within a leaf.

By [BF95, Proposition 5.8], given any non-degenerated segment u in Γ, there
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exists a generating set of the image of π1(Y ) in π1(X) consisting of short loops

with respect to u. In particular, we may choose a sequence {ui}i such that

each ui is a spanning arc of a long band in Yi (transverse to the lamination).

To be more precise, if we cut a long band of Yi along a spanning arc ui, Yi is

then decomposed into a finite union of simplicial components. Each of these

simplicial components has the form of finite tree times a foliated interval.

Further Yi is homotopy equivalent to the space obtained by gluing the ends

of these simplicial components. This simplicial structure allow us to find a

collection of short loops generating the fundamental group of Yi.

Proposition 3.12. There is an infinite subsequence of Y1, Y2, . . . such that for

any l > k, there exists a homeomorphism hk,l : Yk → Yl that is the identity on

the attaching regions and with the following additional property. There exists

transverse subarcs uk ⊂ Yk and ul ⊂ Yl such that hk,l induces a isomorphism

between the set of simplicial components of Yk formed by cutting open along

uk to the set of simplicial components of Yl formed by cutting open along ul.

Proof. By proposition 3.9, the homeomorphism types of islands stabilize for

i sufficiently large. Further there are bounded number of long bands, so the

combinatorics of {Yi}’s is bounded. Thus there is an infinite subsequence of

Y1, Y2, . . . has the same homeomorphism type. Name the subsequence also

by Y1, Y2, . . . . Let the homeomorphism from Yk to Yl induced by the isomor-

phism fl ◦ fk be hk,l. So hk,l is an identity on the attaching regions. Let uk be

a spanning arc of a long band in Yk which induces a simplicial decomposition.

ul = hk,l(uk) must also induce the same decomposition. Thus the correspond-

ing sequence of union of bands Y1, Y2, . . . satisfies the requirement and we are
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done.

We may now shorten by thin components as in the surface case. Let Bn be

a generating set of π1(Yn) consists of short loops. Further let H = π1(X),

mn be the transverse measure on Xn and Bn (containing Bn) be a generating

set of π1(Xn) = H. Then the length of Xn with respect to Bn is |Xn|Bn :=∑
µ∈Bn mn(µ). For each µ ∈ Bn represented by a short loop of the form p1∗λ∗p2

in Yn, we have mn(µ) = mn(p1) +mn(p2).

Let {Yi}i be a sequence of the property described in Proposition 3.12, Bi be

the generating set induced by cutting Yi along ui. Every loop in Yl (↪→ Yk)

can be viewed as a loop in Yk, where l > k. Thus every short loop in Bl can

be written in terms of short loops in Bk. This induces an automorphism of

H, denoted by αk,l. More precisely, αk,l is the identity map on Bk −Bk and is

defined in the following way on Bk. For every µ 7 in Bk, αk,l maps µ to hkl(µ)

which is a short loop in Bl and so can be realized as an element generated by

Bk.

Now fix k = 1. For ∀µ ∈ B1, mi(α1j(µ)) → 0 as i → ∞ since the weights

of bands in Yi goes to 0 as i → ∞. In particular, for any ε satisfying the

following,

min{m1(µ)|µ ∈ B1} > ε > 0,

we may pick l sufficiently large such that ml(α1,l(µ)) < ε for ∀µ ∈ B1. Then

7We abuse the notation µ here for both the element and the short loop representing the
element.
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we have

|X1|B1 > ε ∗ |B1|+
∑

µ∈B1−B1

m1(µ) >
∑
µ∈B1

ml(α1,l(µ)) = |X1|α1,l(B1).

Thus X1 is shortened by α1,l.

In fact, |Y1|B1 can be shortened as much as one wants to by taking l sufficiently

large. Every generating set of Y1 can be written in terms of B1. Therefore Y1

can be shortened with any given fixed generating set, and so is Y 1.

4 Overview for the Relative Rips Machine

Given a group acting on a real tree, we may ask how its subgroups act on

their minimal subtrees. In section 4 and section 5, we will construct a version

of Rips machine, called relative Rips machine, to study subgroup actions.

Relative Rips machine takes as input a pair of band complexes (see definition

4.3): two band complexes X and X ′ with a morphism ι : X → X ′, denoted by

(X
ι→ X ′). The goal of this machine is to put both X and X ′ into some normal

form simultaneously as well as improve the map between them. As with the

Rips machine, this relative machine studies one pair of components (Y0
ι→ Y ′0)

of (Y
ι→ Y ′) at a time. To be more precise, fix a minimal component Y ′0 of

Y ′, and let Y0 (possibly simplicial) be a component of Y such that ι(Y0) is

contained in Y ′0 . In general, for a fixed Y ′0 , there are finitely many choices for

Y0. To simplify the notation, we will first work on the special case where there

is only one such pair (Y0
ι→ Y ′0) (the choice for Y0 is unique), then justify the

machine described in the special case for the general case in section 6.2.
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Definition 4.1. Let X and X ′ be band complexes. A map Γ → Γ′ is a

morphism if every edge of Γ has a finite subdivision such the restriction on

each segment of the subdivision is an isometry. A morphism Y → Y ′ restricts

to a morphism of real graphs and takes each band of Y homeomorphically to

a sub-band of Y . Finally, a morphism X → X ′ is a relative cellular map

restricting to a morphism Y → Y ′. Inclusion of band subcomplex into a band

complex is an example of morphism.

Definition 4.2. Let Y , Y ′ be two unions of bands and ι : Y → Y ′ be a

morphism. Let q be a point in Y , ι is locally injective near q, if there exists

a neighborhood of q in Y such that the restriction of ι on that neighborhood

is injective. ι is an immersion if ι is locally injective near every point in Y .

Further let p = ι(q) ∈ ι(Y ) ⊂ Y ′. ι is locally surjective near q, if there

exists ε > 0 such that for ∀ε′ < ε, ε′-neighborhood Up of p has a corresponding

neighborhood Uq of q such that Up = ι(Uq). ι is a submersion if ι is locally

surjective near every point in Y . We say ι is a local isometry if ι is an

immersion and also a submersion.

Definition 4.3. Given two band complexes X and X ′, we say they form a pair

if there is a morphism ι : X → X ′, denoted by (X
ι→ X ′). Correspondingly,

(Y
ι→ Y ′) is a pair of union of bands. (Y0

ι→ Y ′0) is a pair of components

where Y0 ⊂ Y is a component and Y ′0 is a component in Y ′ with the property

that ι(Y0) ⊂ Y ′0 .

Definition 4.4. Let H < G be two finitely presented groups, TG be a G-tree,

TH ⊂ TG be a minimal H-subtree. (TH ↪→ TG) is called a pair of trees. Further
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let (XH
ι→ XG) be a pair of band complexes. We say (XH

ι→ XG) resolves

(TH ↪→ TG) if there exists resolutions rG : X̃G → TG and rH : X̃H → TH such

that the following diagram commutes.

X̃H TH

X̃G TG

..................................................................... ............
rH

.......

.......

.......

.......

.......

.......

.......

..................

............

ι̃
.......
.......
.......
.......
.......
.......
.......
.......
.......
..............
............

................

........................................................................ ............
rG

Remark 4.5. In this section and section 5, we will apply moves on a pair

of band complexes (X
ι→ X ′). Suppose that H < G are finitely presented

groups, TG is a G-tree and TH < TG is a minimal H-tree. If (X
ι→ X ′) and

(X∗
ι→ X∗′) are related by an operation (a sequence of moves) and (X

ι→ X ′)

resolves (TH ↪→ TG) then (X∗
ι→ X∗′) also resolves (TH ↪→ TG). The goal is

to use the moves to put a pair of band complexes into a normal form while it

still resolves the same pair of trees.

We now describe some further assumptions we will make throughout the rest

sections of this paper for a pair (X
ι→ X ′).

For a given band complex X, according to [BF95, Lemma 6.1], we may always

arrange that no leaf of the complex has a subset that is proper, compact, and

pushing saturated by a sequence of moves. This further allows us to make

the assumption that the underlying union of bands Y of this complex is a

disjoint union of components. We can arrange this for a pair of band complexes

(X
ι→ X ′) as well. There are only finitely many proper, compact, pushing

saturated subsets of leaves in X and X ′ (since each singular leaf contains at

least one vertical fiber in the boundary of Y ). Firstly, such “bad” subsets in X
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can be removed by splitting as in [BF95, Lemma 6.1] (composition of cutting

its underlying real graph and subdividing bands). Denote the resulting band

complex by X∗. Define morphism ι∗ : X∗ → X ′ as the following. On the

level of union of bands, ι∗ is the composition of the inclusion Y ∗ ↪→ Y and

ι : Y → Y ′ which remains an morphism. ι∗ maps subdivision annuli and cones

in Γ(X∗) created by above splits to the ι-images of the corresponding split

vertical fibers and split vertices in Y , and remains the same as ι on all the

other 2-cells. Secondly, we may remove “bad” subsets in X ′ again by splitting

to obtain X ′∗ and these splittings are disjoint from ι∗(X∗) since leaves of X∗

are made containing no “bad” subsets. So (X∗
ι→ X ′∗) is a pair with the

desired property. Hence, from now on we will assume that for a pair of band

complexes (X
ι→ X ′) we have the following,

• (A2): No leaf of X and X ′ has a subset that is proper, compact, and

pushing saturated. In particular, their underlying union of bands Y and

Y ′ are disjoint unions of components.

In definition 4.1, a morphism ι : X → X ′ takes each band of Y homeomorphi-

cally to a subband of Y ′. In general, it may not hold on the level of generalized

bands. The following lemma allows us to work only with generalized bands.

Proposition 4.6. Let (Y
ι→ Y ′) be a pair of union of bands. We may convert

ι into a morphism that takes each generalized band of Y homeomorphically to

a sub-generalized band of Y ′ by applying finitely many moves to Y .

Proof. Let BY be a generalized band of Y and its image in Y ′ be B̂Y = ι(BY ).
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1. First, we may assume that B̂Y is contained in a single generalized band

BY ′ in Y ′. Otherwise B̂Y is contained in the union of two or more

consecutive generalized bands in X. In this case, we can horizontally

(transverse to the foliation) subdivide BY into several generalized bands

such that each new generalized band of the induced subdivision on B̂Y

is contained in a single generalized band, see figure 7;

BY
Subdivide BY horizontally

B1
Y

B2
Y

Figure 7: Blank rectangles represent generalized bands in Y ′. The figure shows
the case where Y ↪→ Y ′ (locally this is always true), i.e. Y = ι(Y ). Shaded
parts are generalized bands in Y .

2. Then we may assume that there is no two or more consecutive gener-

alized bands B1
Y ,B

2
Y . . . of Y map into the same generalized band of

Y ′. Otherwise, let biY and dual(biY ) be the bottom and top bases of Bi
Y .

dual(bi−1
Y )∪ biY −dual(bi−1

Y )∩ biY are union of free subarcs. After collaps-

ing these free subarcs, B1
Y ,B

2
Y , . . . form a new longer generalized band,

whose image in Y ′ is a single sub-generalized band. See figure 8;

3. Finally, we may assume l(B̂Y ) = l(BY ′) i.e. B̂Y is a sub-generalized

band. Otherwise l(B̂Y ) < l(BY ′). One of the bases of B̂Y is a type I free

subarc. This implies that one of the bases of BY is a free subarc of type

I and so the whole BY can be collapsed. See figure 9.
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J1

J2

B1
Y

B2
Y

Collapse J1 and J2 BY

Figure 8: This is the case where Y ↪→ Y ′ (Y = ι(Y )). dual(b1
Y ) ∪ b2

Y −
dual(b1

Y ) ∩ b2
Y = J1 ∪ J2. Shaded parts are generalized bands in Y and blank

rectangles are generalized bands in Y ′.

BY

Collapse BY

Figure 9: This is the case where Y ↪→ Y ′ (Y = ι(Y )). Shaded parts are
generalized bands in Y and blank rectangles are generalized bands in Y ′.

The number of generalized bands in Y ′ is bounded. So after finitely many

moves, ι maps every generalized band in Y to a sub-generalized band in Y ′.

Proposition 4.6 allows us to make the following assumption and only work

with generalized bands unless otherwise stated.

• (A3): A morphism between two band complexes always represents the

morphism it induced on the level of generalized band.

Definition 4.7. Let Y be an union of bands and B1, B2 be two distinct bands

(both have length 1, i.e. the original bands, not the generalized bands) in Y .

If a base of B1 is identified with a base of B2, we say that these two bands
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have a common base, denote the base by b. Let φ : B1 → B2 be the linear

homeomorphism fixing b. Define “ ∼ ” be the equivalence relation on Y such

that x ∼ φ(x), for all x ∈ B1. The quotient space Y/ ∼ is still an union

of bands. Call the quotient map f : Y � Y/ ∼ a fold between union of

bands. If a base of B1 overlaps a base of B2 (B1 overlaps B2 for short), i.e.

b1 ∩ b2 = o 6= ∅, see Figure 10 , we may fold the subbands 8 determined by

the common segment o in B1 and B2 (shaded parts in figure 10). Moreover,

we may also fold two generalized bands with a common base (or an overlap)

if they have the same length.

B2

B1

b1
ob2

Identify shaded parts

in B1 and B2 to obtain B3

o

B3

Figure 10: B1 and B2 are two bands in Y . Their bases overlap at o. Fold
subbands in B1 and B2 determined by o to obtain a new band B3.

Remark 4.8. In previous sections, we always assumed that a given union of

bands Y has the structure constructed in definition 2.9, in particular (A1) is

satisfied. Roughly speaking, in this section, for a given pair of band complexes

(X
ι→ X ′) (with its underlying pair of union of bands (Y

ι→ Y ′)) we will fold Y

8Here“subband” is abused for the case where o is a single point
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(according to ι : Y → Y ′) to get a new union of bands Y 1 (= Y/ ∼) such that

ι1 : Y 1 → Y ′ is “closer” to an immersion. In general, the ΓY 1 obtained after

folding is a simplicial forest. To fix this, we could do subdivision. However,

the problem is that we may have to subdivide infinitely many times before we

reach immersion and the underlying real graph of the limiting union of bands

may not be simplicial anymore. To bypass this, whenever ΓY 1 fails (A1), we

will replace (Y 1 ι1→ Y ′) by a new pair (Y 1∗ ι1∗→ Y ′) resolving the same pair of

trees where ΓY 1∗ satisfies (A1). This replacement procedure is discussed in

proposition 4.10.

Definition 4.9. Let ι : Y → Y ′ be a morphism between two union of bands

where ΓY is a simplicial forest (ΓY ′ is a union of edges), B1
Y ,B

2
Y be two gen-

eralized bands in Y that have some overlap. Let the overlap be o = b1
Y ∩ b2

Y

where b1
Y ⊂ B1

Y and b2
Y ⊂ B2

Y are bases. Denote ι(b1
Y ) ∩ ι(b2

Y ) by ô. o and ô

are segments. We say the overlap between B1
Y and B2

Y is wide if o and ô have

the same length.

Proposition 4.10. Let (X
ι→ X ′) be a pair of band complexes where ΓX is a

simplicial forest. We may replace (X
ι→ X ′) by a new pair (X∗

ι∗→ X ′) such

that it resolves same pair of trees as (X
ι→ X ′) and the restriction of ι∗ on

the underlying real graphs ι∗ : ΓX∗ → ΓX′ is an immersion. In particular, all

overlaps between bands are wide.

Proof. The restriction of ι on the underlying real graphs ι : ΓX → ΓX′ is a

morphism between graphs, which can be realized as composition of finitely

many folds (for graphs) and an immersion [BF91]. Let X∗ be the resulting
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band complex obtained from X by folding ΓX according to ι. Let ι∗ : X∗ → X ′

be the induced morphism. (X∗
ι→ X ′) is then a new pair of union of bands

with the desire property.

Proposition 4.11. Let (X
ι→ X ′) be a pair of band complexes where ΓX is a

simplicial forest. Up to a finite sequence of folds between union of bands, we

may replace (X
ι→ X ′) by a new pair (X∗

ι∗→ X ′) such that it resolves same

pair of trees as (X
ι→ X ′) and ι∗ : Y ∗ → Y ′ is an immersion.

Proof. We may assume that ι : ΓX → ΓX′ is an immersion by Proposition

4.10. We are done if ι : Y → Y ′ is an immersion. Otherwise there exists

some band BY ′ ⊂ Y ′ has two preimages B1
Y ,B

2
Y ⊂ Y with the property that

B1
Y overlaps B2

Y and the overlap is wide. Then fold B1
Y and B2

Y according to

the overlap. Let the resulting band complex be X∗ and ι∗ : X∗ → X ′ be the

induced morphism. BY ∗ = B1
Y ∪B2

Y / ∼fold is then a new band in Y ∗ and ι∗

maps BY ∗ into BY ′ . In particular, the number of generalized bands in Y ∗ is

less than the number in Y due to the fold. Therefore, after finitely many steps

of folding, ι∗ will be an immersion.

Proposition 4.11 allows us to make the following assumption to any given pair

of band complexes (X
ι→ X ′).

• (A4) The restriction of ι on the level of union of bands ι : Y → Y ′ is an

immersion

Let Y ′0 be a minimal component of Y ′. Its ι-preimage may consists several

components in Y . In each step of relative Rips machine, we will do moves
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on Y ′0 first, then apply induced moves to its preimages in Y and modify ι

properly. To simplify our notation, we will focus on the special case (A5) first,

then come back to the most general case in section 6.2.

• (A5) For a fixed minimal component Y ′0 in Y ′, its ι-preimage, if not

empty, is a unique component Y0 in Y .

Remark 4.12. Here we note that to describe a morphism ι : Y → Y ′ between

two unions of bands, one only need specify a well-defined map between some

neighborhoods of their underlying real graphs. This is because morphisms map

every generalized band BY in Y homeomorphically to a sub-generalized band

in Y ′. If a map is well defined between neighborhoods of their underlying real

graphs, i.e. for ∀BY ∈ Y , neighborhoods of its bases bY and dual(bY ) map to

dual positions near bY ′ and dual(bY ′) which uniquely determine a band BY ′

in Y ′, it induces a unique morphism from Y to Y ′ (up to homotopy within a

band) by sending BY to BY ′ . Moreover, for a given morphism ι : Y → Y ′ , to

show ι is an immersion/submersion, one only need to check local injectivity

/surjectivity near their real graphs. We will use this fact throughout this

section.

Definition 4.13. Let (X
ι→ X ′) be a pair of band complexes with their

underlying unions of bands (Y
ι→ Y ′). In relative Rips machine, described in

section 5, some sequences of moves will be applied to Y and Y ′ as units. We

list these combinations of moves here for better reference.

1. Subdivide X at a point. Let q ∈ ΓX be a point on the real graph of X.

We obtain a new band complex X∗ by subdividing bands in Y , whose
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bases contain q as an interior point. X∗ is well-defined since there are

only finitely many such bands in Y (See figure 11). (X∗
ι∗→ X ′) is a new

pair of band complexes with immersion ι∗ defined as follows. On the level

of union of bands, ι∗ : Y ∗ → Y ′ is the composition of inclusion Y ∗ ↪→ Y

and ι : Y → Y ′. On the level of attaching cells, ι∗ maps subdivision cells

newly created from subdivisions to their corresponding vertical fibers in

X ′ and remains the same on all the other attaching cells.

B

C

D

q
Subdivide at q

C1 C2 C3

B1 B2 D

q

Figure 11: The left figure is a part of Y . There are three generalized bands
B,C,D containing point q. In particular B and C contains q as an interior
point of their bases. So they are subdivided during this move.

2. Subdivide X ′ at a point. Let p ∈ ΓX′ be a point on the real graph of X ′

and q1, . . . , qn ∈ ΓX be its ι-preimages in ΓX . As above move, we may

subdivide X ′ at p to obtain X ′∗. To get a new pair (X∗
ι∗→ X ′∗), we may

then obtain X∗ by subdividing X at q1, . . . , qn. Let ι∗ : X∗ → X ′∗ be

the induced map from ι. In particular newly created subdivision cells in

X∗ map to corresponding newly created subdivision cells in X ′∗.

3. Duplicate a segment of the underlying real graph of a union of bands.
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Let c be a segment of ΓY . Add an extra segment c′ of length l(c) to ΓY .

Then attach to Y a new band C = c× I via a measure-preserving map

c× {0} → c and c× {1} → c′. It is clear that there are two copies of c

in the new Y and the new Y resolves the same tree as the original one.

In particular, a band B ⊂ Y with one of its bases b contained in c can

now be attached to the new Y either along c or c′ (slide B across C).

We will use this move to solve the problem of keeping ι as an immersion

when there are overlapping bases in Y that map to disjoint bases after

applying moves to Y ′. The ι-image of C is uniquely determine by ι-

images of other bands with their bases contained in c and c′, see section

5.2 for more details.

Notation 4.14. For the rest of this paper unless otherwise stated, we will use

the following notations:

• (X
ι→ X ′) is a pair of band complexes satisfying assumptions (A1)−(A5);

• (Y
ι→ Y ′) are their underlying unions of bands (a pair of unions of bands)

and Ŷ = ι(Y ) ⊂ Y ′;

• (Y0
ι0→ Y ′0) is a pair of components, where Y0 ⊂ Y , Y ′0 ⊂ Y , and Ŷ0 =

ι(Y0) ⊂ Y ′0 ;

• BY ⊂ Y is a generalized band with bases bY and dual(bY ) (Similarly

for other generalized bands, e.g. cY and dual(cY ) for CY ⊂ Y , bY ′ and

dual(bY ′) for BY ′ ⊂ Y ′).
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5 The relative Rips machine

We will describe relative Rips machine in this section. The machine consists

three processes (sequences of moves): Process I, Process II and Process III. Let

(X
ι→ X ′) be a pair of band complexes, (Y0

ι→ Y ′0) be a pair of components

of it. In each step of Process I and Process II, we first apply a move to

Y ′0 . It is the same move one would apply to Y ′0 in the original Rips machine.

Then we apply moves to Y0 and modify ι correspondingly so that ι remains

a morphism. Successive applications of Process I and Process II will convert

Y ′0 into a standard form, whereas Y0 may not be in its standard form yet.

In particular, there may exist weight 1 bands in Y0 that map to weight 0 or

weight 1
2

bands. Such bands in Y0 are called pre-weight 0 bands and pre-weight

1
2

bands. Process III is then needed to deal with such bands (see section 5.3).

After finitely many steps in Process III, we will again have a new pair of

components still call it (Y0
ι→ Y ′0) with the property (∗) that Y ′0 is in standard

form and bands in Y0 have the same weights as their images in Y ′0 . We will go

back to Process I with (Y0
ι→ Y ′0). Property (∗) ensures that Process III will

not appear again. In section 6, as machine output, we will show that one is

able to tell the type of Y0 as the machine successively applied and the machine

will eventually convert Y0 into standard form if Y0 is of the surface or thin

type. Once we finish analyzing (Y0
ι→ Y ′0), we continue by choosing another

pair. From section 5.1 to section 5.3, we will describe these three processes.
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5.1 Process I

Let (Y0
ι0→ Y ′0) be a pair of components and ι0 = ι|Y0 . We define (X∗

ι∗→ X ′∗)

to be a pair of band complexes obtained from (X
ι→ X ′) by the following

operation. Find, if possible, a maximal free subarc JY ′ of a base bY ′ in Y ′0 .

If such a JY ′ does not exist, define (X∗
ι∗→ X ′∗) = (X

ι→ X ′) and go on to

Process II. Else in Y ′0 , use (M5) to collapse from JY ′ to get Y ′1 . If there are

several JY ′ ’s to choose from, abide the rule described in section 3.1.

Now we need to make corresponding changes to Y0 and ι0 to obtain Y1 and ι1

. It depends on if the collapsed region in Y ′0 , union of JY ′ and the interior of

JY ′ = JY ′ × In (JY ′ is identified with JY ′ × {0}), intersects the image of Y0

(denoted by Ŷ0). If the collapsed region in Y ′0 does not intersect ι0(Y0) = Ŷ0,

let Y1 = Y0 and ι1 = ι0.

Figure 12: The figure is a special case where we assume that Y0 is identified
with Ŷ0 near this portion of the union of bands. Blank rectangles are bands
in Y ′0 and gray parts are bands in Ŷ0.

Otherwise let {Ji}i=1,...,n be the set of preimages of JY ′ ∩ Ŷ0 in Y0, and let Ji

be the base of Ji whose ι0-image is contained in JY ′ . Since ι0 is an immersion,
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Ji’s are also free subarcs in Y0. Y1 is produced by collapsing {Ji}’s in Y0. Then

restricting ι0 on Y1, we will get ι1 : Y1 → Y ′1 (See Figure 12). In particular,

ι1 maps subdivision annuli created by collapsing Ji’s to the subdivision annuli

created by collapsing JY ′ .

For the case where JY ′ is contained in a weight 1
2

band, each Ji is either

contained in a weight 1
2

or weight 1 band. The above process is well defined

for both cases. In more details, suppose the band containing JY ′ is BY ′ of

weight 1
2

and the band containing Ji is Bi
Y . Let w be the midpoint of the base

bY ′ of BY ′ . Recall that to collapse JY ′ from BY ′ , we will firstly replace BY ′ by

bands of weight 0, 1
2
, and 1 (In the degenerate case where w is one end point

of JY ′ , there is no weight 1
2
). JY ′ is now a free arc in a weight 1 base (JX is

contained in the weight 1 band). In each Bi
Y , we will do the corresponding

replacement (induced subdivision). Each Ji is then contained in a weight 1

band that maps to the weight 1 band of BY ′ . We may now collapse from JY ′

in Y ′0 and Ji’s in Y0 as described above .

In either case, let (X∗
ι→ X ′∗) be the resulting pair of band complexes and we

say it is produced from (X
ι→ X ′) by Process I. It is clear ι1 is obtained by

restricting ι0 on Y1, thus remains an immersion. We then continue by applying

Process I to (X∗
ι→ X ′∗).

Note that by the first item of proposition 3.4,

Complexity(X ′
∗
) ≤ Complexity(X ′).
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5.2 Process II

Follow the same notation as above, we now describe Process II which again

will produce from (X
ι→ X ′) another pair of band complexes (X∗

ι→ X ′∗).

Process II will only be applied after Process I. So, in this section, we also

assume that Y ′0 has no free subarc (Y0 may contain some free subarcs), i.e. for

each point z ∈ ΓY ′0 , we have

(∗2): the sum of the weights of the bases containing z is at least 2.

Therefore, if the Rips machine constructed in [BF95] takes Y ′0 as an input, its

Process II will be applied. Moves described below for Y ′0 (to obtain Y ′1) is in

fact the same moves one would apply to Y ′0 in the Rips machine.

We may orient ΓY ′0 and order the components of ΓY ′0 . This induces a linear

order on ΓY ′0 . Let K be the first component and z be the initial point of K.

Let bY ′ be the longest base of positive weight containing z, chosen to have

weight 1 if possible. Further let BY ′ be the corresponding generalized band.

The union of bands Y ′1 is the result of the composition of the following two

operations.

Operation 1 (Slide) Y ′0 → Y ′∗0 : First slide from bY ′ all these positive weight

bases contained in bY ′ (except bY ′ and dual(bY ′)) whose midpoint is moved

away from z as a result of the slide.

Operation 2 (Collapse) Y ′∗0 → Y ′1 : Then, Collapse from the maximal free initial

segment of bY ′ .

Then we only need to define Y1 and ι1 : Y1 → Y ′1 . Once Y1 and ι1 have been
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properly defined, since

Complexity(Y ′1) ≤ Complexity(Y ′0)

and if they are equal, (∗2) holds for Y ′1 ([BF95, Proposition 7.5]), we are in

position to apply Process II again. Thus we successively apply Process II

unless the complexity of Y ′i decreases at some stage. In this case, we say

Process II sequence ends, and we go back to Process I.

Now we will describe how to obtain Y1 and ι1 by cases depends whether Ŷ0

intersects BY ′ .

z
z′JY ′

J1

C1
Y ′ C2

Y ′

BY ′

Figure 13: The figure is a special case where we assume that Y0 is identified
with Ŷ0 near this portion of the union of bands. Blank rectangles are bands
in Y ′0 and gray parts are bands in Ŷ0. In Y ′0, BY ′ is the carrier. C1

Y ′ will be
carried and C2

Y ′ will not. J1 is defined as shown.

Let JY ′ be the maximal free initial segment of bY ′ produced in operation 1 and

let the sub-generalized band containing the collapsed region in operation 2 be

JY ′ . We will assume for the rest of this section that:

(∗3): In Y ′0 , Ŷ0 intersects some generalized band that is carried in operation 1.

Suppose not. If further Ŷ0 also has no intersection with the interior of JY ′ , let
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Y1 = Y0, ι1 = ι0 and we are done; If Ŷ0 only intersects JY ′ (See Figure 13),

let the set of preimages in Y0 of these intersections be J1, . . . ,Jk. Let Ji’s be

bases of Ji’s as in Process I. Y1 is obtained by collapsing from all Ji’s in Y0

and ι1 is obtained by restricting ι0 on Y1.

Under assumption (∗3), there are now two cases.

Case 1 Ŷ0 only intersects generalized bands that are carried from Y ′0 to Y ′∗0

(No intersection with the carrier BY ′).

Let cY be a base of a generalized band CY in Y0. If ι0(cY ) is contained in a

base that is carried by BY , we say cY is also carried, otherwise, we say cY

is not carried. According to remark 4.12, to define Y1 and ι1 we only need to

work on neighborhoods of ΓY0 . The definition of Y1 and ι1 will be made block

by block depending on whether bases contained in that block is carried.

Let I be a block of ΓY0 . If every base contained in I is not carried, Y1 and ι1

are defined to be the same as Y0 and ι0 near this block. If every base contained

in I is carried, then let Y1 be the same as Y0 near this block, while ι1 is defined

by mapping every base cY ⊂ I to the dual position of ι0(cY ) in dual(bY ′). To

be more precise, let CY ′ be the band in Y ′0 containing the ι0-image of CY ,

where CY ⊂ Y0 is the band with base cY . During the operation Y ′0 → Y ′1 , CY ′

is slid across BY ′ to its new position in Y ′1 . ι1 is defined to map CY into CY ′ ’s

new position in Y ′1 . Otherwise

(∗4): Within a block I, some bases are carried and some bases are not.

Near blocks satisfying (∗4), Y1 is defined as the result of the composition of

the following two operations.
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Operation 1′ (Slide) Y0 → Y ∗0 : Let the union of carried bases within I be

ω = ω1∪ · · · ∪ωk, where each ωi is a component of ω. Near I, we define Y ∗0 by

modifying Y0 as below. Duplicate the real graph of Y0 on each ωi (Definition

4.13) by adding a new band Ωi = ωi × [0, 1] along it. Denote the other base

of Ωi by dual(ωi) (See figure 14). In I, every carried base cY is contained in

some ωi. Slide each band CY corresponding to a cY across the Ωi.

Do this modification on every block satisfying (∗4) and call the resulting union

of bands Y ∗0 .

By above construction, Y ∗0 is the same as Y0 away from Ωi’s. To define ι∗0 :

Y ∗0 → Y ′0
∗, we only need to describe the map near Ωi’s. In ΓY ∗0 , firstly, consider

the blocks containing ωi’s. All bases other than ωi’s in such blocks are bases in

Y0 that are not carried. Define ι∗0 = ι0 near these bases and ι∗0(ωi) = ι0(ωi) ⊂

b∗Y ′ = bY ′ . Secondly, consider the blocks of ΓY ∗0 containing dual(ωi)’s. Every

base, say cY , other than dual(ωi)’s in such blocks is a base come from Y0 that

is carried. So define ι∗0 as mapping cY to the new position of ι0(cY ) in Y ′∗ and

ι∗0(dual(ωi)) = dual(ι0(ωi)) in dual(bY ′∗). Finally, let the unique subband of

BY ′∗ determined by the image of ωi and dual(ωi) be Ω̂i, define ι∗0(Ωi) = Ω̂i.

Now let’s check that ι∗0 is an immersion. Near the blocks of ΓY ∗0 containing ωi’s,

ι∗0 is the restriction of ι0 on all the bands other than Ωi’s. ι0 is an immersion

and Ŷ0 does not intersect BY ′ implies ι∗0 is injective near these blocks. Near

the blocks of ΓY ∗0 containing dual(ωi)’s, ι
∗
0 is injective for the same reason.

Operation 2′ (Collapse) Y ∗0 → Y1: Let Ŷ ∗0 ⊂ Y ′∗0 be the image of Y ∗0 under ι∗0.

According to operation 1′, Ŷ ∗0 may intersect JY ′ (The intersection part will
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collapse in this operation). Exactly the same as in Process I, let the set of

preimages of these intersections be Ji’s. Y1 is obtained by collapsing from Ji’s

in Y ∗0 . ι1 is then the restriction of ι∗0 on Y1. ι1 is an immersion since ι∗0 is.

Y ′:

BY ′

CY ′ AY ′

BY ′ Ω′

CY ′AY ′

Y :
ω

CY AY

ω

dual(ω)

CY AY

Ω

ω dual(ω)

Ω

CYAY

Figure 14: The shaded part is Ŷ (within Y ′).

Case 2 If Ŷ0 also intersects BY ′ , Y1 and ι1 is produced as follows.

Operation 0′ (Subdivide) Let B1, . . . ,Bk be generalized bands of Y0, whose

images under ι0 are contained in BY ′ . Further for each Bi, let its base that

maps into bY ′ be bi with end points zi and z′i and the block of ΓY0 containing

bi be Ii. Subdivide Y0 at every zi or z′i, if zi or z′i is an interior point of Ii.

Denote the resulting union of bands still by Y0. Each band in the new Y0 is

a subband of the original Y0. So the original ι0 will induce a map from the

new Y0 to Y ′0 . The induced map, denoted still by ι0, remains an immersion
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since every block in the new Y0 is contained in a block of the original Y0. On

the level of band complexes, annuli produced from subdivision are mapped to

corresponding subdivided leaves in Y ′0 .

As a result of operation 0′, we may assume the following property for each

block I of Y0.

(∗5) For generalized bands with one of their bases contained in I, either none

of them has its ι0-image intersects the interior of BY ′ or exactly one of them

has its ι0-image that intersects the interior of BY ′. Further in the later type,

that base coincides with I.

Operation 1′ (Slide) Y0 → Y ∗0 : For blocks of Y0 in the former type of (∗5),

proceed exactly as in case 1 to get Y ∗0 and ι∗0. Otherwise, let BY be the

generalized band that map into BY ′ with one of its bases bY = I mapping

to bY ′ . Further let CY ⊂ Y0 be a generalized band with one of its bases cY

contained in bY , and denote the band in Y ′ containing its ι0-image by CY ′ .

Then Y ∗0 is obtained by sliding every carried CY across BY . ι∗0 is defined by

mapping carried CY in its new position in Y ∗0 into CY ′ ’s new position in Y ′0
∗.

It is well-defined since CY is carried if and only if CY ′ is carried. Thus ι∗0 is

also an immersion.

Operation 2′ (Collapse) Y ∗0 → Y1: We can define Ji’s as in case 1 and collapse

from Ji’s to get Y1. In particular, for a given block I in the later type of (∗2),

if its image under ι0 is contained in JY ′ , all the other bases in this block must

be carried. Therefore such I’s become free arcs in Y ∗0 , and hence completely

collapse. Restricting ι∗0 on Y1, we will get ι1 and ι1 is an immersion since ι∗0 is.

Example 5.1. The 2-sheeted covering surface example. Y0 is a surface com-
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ponent in standard form, and ι : Y0 → Y ′0 is an inclusion. Y ′0 is not in standard

form. Run relative Rips machine, we get a sequence of pairs (Y0
ι→ Y ′0), (Y1

ι→

Y ′1) . . . . Note that Y3 is a 2-sheeted cover of Y ′3 and both Y ′3 and Y3 are in

standard form.

Proposition 5.2. Let (Y0
ι0→ Y ′0) be a pair of components where Y ′0 is of either

thin or surface type and (Y0
ι0→ Y ′0), (Y1

ι1→ Y ′1), . . . be a sequence of pairs of

components formed by Process I and Process II. There exists an integer N such

that for any generalized band BY ′n in Y ′n with n ≥ N , ιn(Yn)∩BY ′n is a unique

sub-generalized band. Further let B1
Yn
, . . . ,Bkn

Yn
be generalized bands in Yn that

map into BY ′n (BY ′n’s ιn-preimage set), then ∩knj=1ιn(Bj
Yn

) contains a vertical

fiber that is in the limiting lamination L∞ of Y ′i ’s.

Proof. By construction, there exists an integer N0 ≥ 0 such that for any pair

(Yi
ιi→ Y ′i ) with i ≥ N0, Y ′i is in a standard form.

Firstly, assume that there exists some (Yn
ιn→ Y ′n) with n ≥ N0 with the

following desire property

(∗6) : For any generalized band BY ′n in Y ′n, ιn(Yn) ∩ BY ′n is a unique sub-

generalized band and ∩knj=1ιn(Bj
Yn

) contains a vertical fiber in the limit set.

We will check that this property (∗6) is also true for (Yn+1
ιn+1→ Y ′n+1).

Suppose (Yn+1
ιn+1→ Y ′n+1) is obtained from (Yn

ιn→ Y ′n) by Process I and JY ′n is

the sub-generalized band in Y ′n containing the collapsed region. If Ŷn does not

intersect the interior of JY ′n , then Yn+1 = Yn and property (∗6) is automatically

preserved. Otherwise, we need check property (∗6) for the band BY ′n that

contains JY ′n . Let BY ′n+1
be an image of BYn in Y ′n+1 (BY ′i

may have two images

if the collapse is an I3 collapse, see section 3 for more details.) and {Bj
Yn+1
}j’s
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be the set of BY ′n+1
’s ιn+1-preimage in Yn+1. Further, let the vertical boundary

of JY ′n contained in the interior of BY ′n+1
be l. Each Bj

Yn+1
is an image of some

Bj′

Yn
. So ∩kn1 ιn(Bj

Yn
) is not empty implies every B̂j

Yn+1
contains a neighborhood

of l in BY ′n+1
. Moreover the limit set is a prefect set in Y ′n+1 ([BF95]). Thus

the statement is also true for (Yn+1
ιn+1→ Y ′n+1).

Suppose (Yn+1
ιn+1→ Y ′n+1) is obtained from (Yn

ιn→ Y ′n) by Process II (This

implies that Y ′n is a surface component). If BY ′n is not the carrier for Y ′n → Y ′n+1,

the property is true for BY ′n+1
since B̂j

Yn+1
= B̂j

Yn
for j = 1, . . . , kn. Assume BY ′n

is the carrier. Then Y ′n is a surface component implies that for any z ∈ b̊Y ′n

(a base of BY ′n), other than BY ′n there is exactly one positive weight band

containing z. Therefore no block of ΓYn has property (∗4) and no move of

duplicating real graph is applied from Yn → Yn+1. In particular, preimages

of BY ′n+1
in Yn+1 are only produced from Bj

Yn
by collapsing. Follow the same

argument as above for Process I, property (∗6) is also true for carrier.

Now we will show there exists some n > N0 such that the property (∗6) holds

for (Yn
ιn→ Y ′n).

Thin Case. In general, for a fixed generalized band BY ′0
in Y ′0 , Ŷ0 ∩ BY ′0

consists of finitely many sub-generalized bands. Given two fixed generalized

bands B1
Y0
,B2

Y0
⊂ Y0, let Bj

Yi
be an image of Bj

Y0
in ⊂ Yi for j = 1, 2.

(∗7) Claim that for i sufficiently large, B1
Yi

and B2
Yi

map to the same band

BY ′i
⊂ Y ′i if and only if B̂1

Yi
∩ B̂2

Yi
contains a vertical fiber in the limit set.

The if direction of the claim is clear. To prove the only if direction, suppose

B1
Yi

and B2
Yi

map to the same band and B̂1
Yi
∩B̂2

Yi
does not contain any vertical



56

fiber in the limit set. Then there exists a vertical fiber l′ ⊂ BY ′i
between B̂1

Yi

and B̂2
Yi

that is not in the limit set. l′ will collapse along the process. So there

exists some m > 0 such that l′ collapse from Xi+m → Xi+m+1. Then each

image of B1
Yi

and each image of B2
Yi

in Yi+m+1 will either be exactly the same

generalized band Xi+m+1 (contradiction!) or two different bands in Xi+m+1.

So the claim (∗7) holds.

We may pick n sufficiently large such that the claim is true over all choices of

BY ′0
’s and BY0 ’s, then property (∗6) follows.

Surface Case. If Y ′0 is of surface type, then eventually only Process II is

applied. For m > N0, Y ′m is of standard form and there is an infinite sequence

m1 = m < m2 < . . . such that Y ′mi
is a scaling down version of Y ′mi−1

. Thus all

generalized bands in Y ′m are getting thinner and their limits are the boundary

leaves. Therefore, over all components of ιm(Ym)∩BY ′m , only the one containing

the limiting boundary (if there is any) survives till the end. Thus ∩km1 Bm

contains a neighborhood of the limiting boundary and we are done.

Definition 5.3. Let ι : Y → Y ′ be a morphism between two unions of bands.

ι is graph like if each generalized band of Y maps onto a generalized band

in Y ′. If ι is a graph like immersion, we say ι is a partial covering map.

Further an immersion ι is an almost partial covering map if every pair of

components (Y0
ι0→ Y ′0) ⊂ (Y

ι→ Y ′) has property (∗6) described in Proposition

5.2.

Thus Process I and Process II will eventually convert Y ′ into standard form

and turn ι0 : Y0 → Y ′0 into an almost partial covering map when Y ′0 is a surface
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or thin component. We say (Y
ι→ Y ′) is stabilized in this case.

5.3 Process III

Let (Y0
ι0→ Y ′0) be a pair of components and BY ′0

⊂ Y ′0 be a generalized band. If

weight(BY ′0
) = 1, then all of its preimages in Y0 are of weight 1. On the other

hand, if weight(BY ′0
) is 0 or 1

2
, it is possible that some of its preimages in Y0

are of weight 1 instead of having the same weight as weight(BY ′0
) (Note that

preimage of a weight 0 (or 1
2
) band can not be a weight 1

2
(or 0) band). We

call such weight 1 preimages pre-weight 0 bands or pre-weight 1
2

bands

depending on the weight of BY ′0
. Moreover, we say that ι0 : Y0 → Y ′0 has a

certain property up to weight 0 bands if the restriction of ι0 to the preimage

of Y
′
0 in Y0 (i.e. Y 0 omitting pre-weight 0 bands, denote it by Y̌0) has that

property.

One goal of relative Rips machine is to convert both Y ′0 and Y0 into some

normal form simultaneously. Let (Y0
ι0→ Y ′0), (Y1

ι1→ Y ′1), . . . be a sequence of

pairs of components formed by Process I and Process II. As from section 5.2,

(Yn
ιn→ Y ′n) stabilizes for sufficiently large n. We would like to conclude that

Yn is also in standard form by then. However, Yn may fail to be standard due

to the existence of pre-weight 0 or pre-weight 1
2

bands (see example 5.4). In

Process III, we will “get rid” of pre-weight 0 and pre-weight 1
2

bands. Two

bases of a pre-weight 0 (or 1
2
) band have the same image in Y ′0 . Intuitively, we

may collapse pre-weight 0 and pre-weight 1
2

bands by viewing them as ultra

thick real graphs. More details are discussed below.

Example 5.4. Let Y ′n be a minimal component in standard form and let Yn
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be a double cover of Y ′n. Suppose BY ′n ⊂ Y ′n is a weight 0 band and its two

preimages in Yn are B1
Yn
,B2

Yn
. Assume that B1

Yn
and B2

Yn
are both pre-weight

0 bands and form an annulus in Yn as shown in figure 15. Then Yn is not

in standard form since the complexity of Yn goes down if we slide B1
Yn

across

B2
Yn

.

Yn

B1
Yn

B2
Yn

double cover
BY ′n

Y ′n

Figure 15: Yn is a double cover of Xn. Two preimages of weight 0 band BXn

are two pre-weight 0 bands B1
Yn

and B1
Yn

. Dashed bands are possible other
bands attached to the same block.

B2
Y

B1
Y

dual(cY )

B3
Y

Slide B1
Y across CY

Then collapse CY

B2
Y

CY

B1
Y

cY

dual(cY )

B3
Y

Figure 16: We may slide B1
Y across CY even if cY does not contain bY . If the

red dashed B3
Y was there, B3

Y also can also be slided as shown
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Definition 5.5. Let Y be a union of bands and BY ⊂ Y be a generalized band

with bases bY and dual(bY ). We say a base b ⊂ ΓY is wide if b coincides with

the block containing it, i.e. any other base intersecting b is contained in b . BY

is wide if either bY or dual(bY ) is wide. Suppose bY is wide, we may collapse

BY by first sliding all bases contained in bY across BY and then collapsing BY

from bY . This sequence of move is called collapse a wide band.

Let BY ,CY ⊂ Y be two distinct generalized bands with the property that

bY ∩ cY is non-degenerated (not a point). Using move (M4) defined in section

2 (which will preserve (A1) for Y ), we can only slide BY across CY if bY ⊂ cY .

If we further allow Y ’s underlying real graph to be a simplicial forest, BY can

be slid across CY as in figure 16 even without the assumption that bY ⊂ cY .

Let the block of ΓY (a component of the union of all open bases) containing

bY and cY be KY . In fact, we may slide every band with a base contained in

KY across CY . After all sliding, cY is then a free arc in the resulting union of

bands and so can be collapsed. The new union of bands produced above is the

same as viewing CY as an ultra thick segment of the underlying real graph of

Y . This sequence of move is called collapse a general band.

We are now ready to describe Process III which again will produce from

(X
ι→ X ′) another pair of band complexes (X∗

ι∗→ X ′) (X ′ remains the same).

Process III will only be applied when Y ′0 is in standard from and Y0 contains

some pre-weight 0 or pre-weight
1

2
bands.

Suppose Y0 contains in total Nw (Nw > 0) pre-weight 0 and pre-weight 1
2

bands. Let BY ⊂ Y0 be one of them and BY ′ ⊂ Y ′0 be the weight 0 (or 1
2
)

band containing ι0(BY ). Further let the block of ΓY0 containing bY be KbY and
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the block of ΓY ′0 containing bY ′(= dual(bY ′)) be KbY ′
. Apply either collapse a

wide band move or collapse a general band move to collapse BY (i.e. slide all

bands, one of whose bases is contained in KbY , across BY and then collapse

BY ). Denote the resulting component by Y ∗0 . Let the block (may not be

an edge) in Y ∗0 formed in this move be K∗bY . Since ι0(bY ) = ι0(dual(bY )),

ι0 : Y0 → Y ′0 induces a well-defined morphism ι∗0 : Y ∗0 → Y ′0 . In particular,

ι∗0 : K∗bY → KbY ′
is a morphism between graphs. Let the resulting band

complex corresponding to Y ∗0 be X∗, ι∗ : X∗ → X ′ be the morphism that

equals to ι∗0 when restricting to Y ∗0 and remains the same as ι on all the other

components. Further, according to Proposition 4.11, up to a finite folding

sequence, we may assume ι∗ is an immersion. (X∗
ι∗→ X ′) is then the new

pair of band complexes produced from (X
ι→ X ′) by Process III. Let the total

number of pre-weight 0 and pre-weight 1
2

bands in X∗ be N∗w. It is clear that

N∗w ≤ Nw−1 as at least BY is collapsed.(If there are more than one pre-weight

0 or 1
2

bases in one component, pick one to be the carrier and the other one will

become weight 0 or 1
2
.) If N∗w = 0, we say Process III sequence ends, and then

go back to Process I with (X∗
ι∗→ X ′) (whichever appropriate). Otherwise, we

are in the position to apply Process III again.

Proposition 5.6. Let (Y0
ι0→ Y ′0) be a pair of components and (Y0

ι0→ Y ′0), (Y1
ι1→

Y ′1), . . . be a sequence formed by Process I, II and III as described above. Then

Process III appears only finitely many times. In particular, there exists N > 0

such that for any n > N , Y ′n is in standard form, Yn contains no pre-weight

0 or 1
2

band and ιn : Yn → Y ′n is an almost partial covering map when Y ′0 is a

surface or thin component.
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Proof. Suppose (Yi+1
ιi+1→ Y ′i+1) is obtained from (Yi

ιi→ Y ′i ) by Process III.

Then the total number of pre-weight 0 and pre-weight 1
2

bands in Yi+1 is less

than the number of Yi due to collapsing pre-weight 0 or pre-weight 1
2

band

(and possibly pre-weight 0 or 1
2

bands become weight 0 or 1
2

bands and some

folding). Now let (Yk
ιk→ Y ′k) → (Yk+1

ιk+1→ Y ′k+1) (note Y ′k+1 = Y ′k) be the

first time that Process III is applied. Then after finitely many steps, say m

steps, the machine will return to Process I. Furthermore, Y ′k is in standard

form (otherwise Process III would not be applied) implies that any weight 0

(resp. 1
2
) band in Y ′k+i is a sub-band of a weight 0 (resp. 1

2
) band in Y ′k for all

integers i > 0. As consequence Yk+m contains no pre-weight 0 nor pre-weight

1
2

band implies Yk+m+i contains no pre-weight 0 nor pre-weight 1
2

band for all

i > 0. Thus, Process III won’t be applied again. Let N = k + m, and we are

done.

6 Machine Output

6.1 Special case

For a pair of components (Y0
ι0→ Y ′0), in relative Rips machine, eventually either

only Process I is applied (Y ′0 is of thin type) or only Process II is applied (Y ′0

is of surface or toral type). In this section, for a fixed Y ′0 , we examine possible

outputs for the structure of Y0, focusing on cases where Y ′0 is either thin or

surface.

We will discuss some properties of pair of components in the next few lemmas.
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Lemma 6.1. Let (Y0
ι0→ Y ′0) be a pair of components where ι0 is an immersion,

then

1. If Y0 is a toral component with rank n > 2, then so is Y ′0 .

2. If Y ′0 is a toral component and Y0 is not a simplicial component, then Y0

is also a toral component .

Proof. (1) Y0 is a toral component implies that there are infinitely many points

in the limit graph9 of Y0 are of positive index which must also be true for Y ′0 ,

so Y ′0 is toral.

(2) Y ′0 is toral component implies its dual tree is a line, and therefore the

minimal subtree corresponding to Y0 is also a line. Thus Y0 is a toral compo-

nent.

Lemma 6.2. Let (Y0
ι0→ Y ′0) be a pair of components where ι0 is an immersion.

If further ι0 : Y0 → Y ′0 is also a submersion, i.e. ι0 is a local isometry, then

ι0 : Y0 → Y ′0 is a covering map of finite degree. In particular, Y0 and Y ′0 are

of the same type.

Proof. It is clear that ι0 is a finite covering map as ι0 is a local isometry and

Y0 is a finite complex, see for example in [Hat02].

By Proposition 2.16 and Lemma 6.1, we have the following. If either one of

Y0 and Y ′0 is a simplicial component, then every leaf in both Y0 and Y ′0 is

compact and so both of them are simplicial. If either one of Y0 and Y ′0 is a

toral component, then so is the other one. Moreover if any one of them is a

surface component, then all but finitely many points in both ΓY ′0 and ΓY0 are

9See definition 2.15.
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of zero index, thus both of them are of surface type. If any one of Y0 and Y ′0 is

a thin component, then limit graphs of both Y0 and Y ′0 are dense Gδ set, and

so both are of thin type.

Lemma 6.3. Let (Y0
ι0→ Y ′0) be a pair of components. Suppose that Y ′0 is a

minimal component in standard form and Y0 is a finite-sheeted cover of Y ′0 .

Further assume that Y0 contains no pre-weight 0 nor pre-weight 1
2

band. Then

Y0 is also in standard form.

Proof. By lemma 6.2, Y0 is also a minimal component and is of the same

type as Y ′0 . The assumption that Y0 contains no pre-weight 0 band nor pre-

weight 1
2

band implies that every generalized band BY0 in Y0 and its image

BY ′0
in Y ′0 have the same weight. In particular, for any q ∈ ΓY0 and its image

ι0(q) = p ∈ ΓY ′0 , iY0(q) = iY ′0 (p), i.e. p and q have the same index. Since Y ′0 is

in standard form, by proposition 2.16, Y0 is also in standard form.

Corollary 6.4. Let (Y0
ι0→ Y ′0) be a pair of components. Suppose that ι0

is a local isometry up to weight 0 bands. Then there exists a finite-sheeted

covering map ι′0 : Y ∗0 → Y ′0 (up to subdividing some weight 0 bands) extending

ι0 : Y0 → Y ′0 . Moreover, we may create Y ∗0 by attaching finitely many bands

to Y0 such that all of these attached bands are either weight 0 band or will

become a weight 0 band if we apply Rips’ machine to Y ∗0 . In particular, Y0 is

a minimal component of the same type as Y ′0 .

Proof. We may assume that ι0 is a partial covering map (i.e. images of weight

0 bands and pre-weight 0 bands of Y0 in Y ′0 are generalized bands, not proper

sub-generalized bands). Otherwise, we may archive this by subdividing weight
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0 bands in Y ′0 and their preimages in Y0 correspondingly. For a given weight 0

band BY ′0
with base bY ′0 in Y ′0 , let b1

Y0
, . . . , bnY0 ⊂ ΓY0 be preimages of bY ′0 in the

real graph of Y0. Every component of the union of preimages of BY ′0
in Y0 is

either a weight 0 band or a consecutive sequence of pre-weight 0 bands.

If ι0 is in fact a local isometry, let Y ′0 = Y0 and we are done by lemma 6.2.

Otherwise there exists some weight 0 band BY ′0
in Y ′0 such that ι0 is not

surjective near some bkY0 . Since ι0 is a partial covering map, there are only two

possibilities. One is no band in Y0 with base bkY0 maps to BY ′0
. We may fix

this by adding a weight 0 band Bk
Y0

to Y0 along bkY0 and defining ι∗0 to map Bk
Y0

onto BY ′0
. The other case is that there exits exactly one pre-weight 0 band

B with base bkY0 mapping to BY ′0
. Then B must be one end of a consecutive

sequence of pre-weight 0 bands. One end base of this sequence is bkY0 and the

other end base must be one of {b1
Y0
, . . . , bnY0}, say it is bk

′
Y0

. We may fix this

situation by attaching a band B′ to Y0 with one of its bases along bkY0 and the

other one along bk
′
Y0

(orient in the same direction) and defining ι∗0 to map B′

also onto BY ′0
. Following above attaching rule, we may do this to each such bkY0

(for a fixed BY ′0
) and for every weight 0 band in Y ′0 . Let the resulting union

of bands be Y ∗0 . Then ι∗0 : Y ∗0 → Y ′0 is a local isometry by construction and

so Y ∗0 is a finite-sheeted covering space of Y ′0 . Moreover in Y ∗0 , we may alter

each B′ to a weight 0 band by sliding one of its bases across the consecutive

sequence of pre-weight 0 bands containing B and call the resulting union of

bands Y ∗∗0 . Since Y0 only differs from Y ∗∗0 by weight 0 bands, Y0 is the same

type of component as Y ∗∗0 is, and further the same as Y ∗0 and Y ′0 .
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In the proof of corollary 6.4, we start with a partial covering map ι0 : Y0 → Y ′0

(up to finitely many subdivisions), and extend it to a finite covering map.

Mimicking the similar argument for graphs in [Sta83], the following lemma

shows that this completing process can be done for any partial covering map

between union of bands.

Lemma 6.5. Let (Y0
ι0→ Y ′0) be a pair of components and ι0 : Y0 → Y ′0 be

a partial covering map. Then by adding finitely many arcs to the real graph

ΓY0 (using move (M7)) and attaching finitely many new bands to Y0 (using

move (M8)), we may extend ι0 to a finite covering map. Moreover, assume Y0

contains no pre-weight 1
2

band (resp. pre-weight 0), then the new constructed

Y0 also contains no pre-weight 1
2

(resp. pre-weight 0) band. In particular, on

the level of fundamental group, Y0 either is a finite index subgroup of Y ′0 or is

a free factor of a finite index subgroup of Y ′0 .

Proof. ΓY0 and ΓY ′0 contain only finitely many blocks. ι0 is a finite covering

map equivalent to ι0 is a local isometry near every block. Y ′0 and Y0 can be

viewed as graphs by considering each block as a vertex and each generalized

band as an edge. ι0 then can be viewed as an immersion between finite graphs

with the property that maps each edge to exactly one edge as ι0 : Y0 → Y ′0 is

a partial covering map.

The preimage of a block K ⊂ ΓY ′0 are finitely many blocks K1, . . . , Kn(K) in

ΓY0 . Different blocks may have different numbers of preimages (n(K) depends

on K). Let n = max{n(K)}K . For blocks in ΓY ′0 , the number of whose

preimages is less than n, add extra arcs (move M7) to ΓY ′0 to complete ι0

as a covering map on the level of real graphs. Then we need to complete ι0
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for bands. Let BY ′0
⊂ Y ′0 be a generalized band. If bY ′0 and dual(bY ′0 ) are

contained in the same block, processed exactly as in Corollary 6.4. Otherwise,

let the block containing bY ′0 be K, the block containing dual(bY ′0 ) be K ′ and

K 6= K ′. At each preimage Ki of K, there is either no band or exactly one

band Bi
Y0

maps to BY ′0
since ι0 is an immersion. The band Bi

Y0
uniquely

determines one preimage of K ′. Thus each preimage of BY ′0
in Y0 groups one

block in {K1, . . . , Kn} with one block in {K ′1, . . . , K ′n}. After paring up like

this, there are a same number of {Ki} and {K ′i} left unpaired. Pair these

leftover up randomly. For each these new pair (Ki, K
′
j), attaching a new band

B∗Y0 = b∗Y0 × IN with the property that m(bY ′0 ) = m(b∗Y0) and l(BY ′0
) = N to

Y0 in the following way: glue b∗Y0 to bY ′0 ’s preimage in Ki and glue dual(b∗Y0) to

dual(bY ′0 )’s preimage in K ′j. Further extend ι0 to B∗Y0 by mapping it to BY ′0
.

Do the above process for all generalized bands in Y ′0 . It is easy to check that

the resulting union of band is then a finite cover of Y ′0 .

In the case that Y0 contains no pre-weight 1
2

(resp. pre-weight 0) band, the set

of preimages of weight 1
2

(resp. weight 0) bands in Y ′0 contains only weight 1
2

(resp. weight 0) bands in Y0. So restricting on weight 1
2

(resp. weight 0) bands

of Y ′0 , Y0 can be convert to a finite covering by adding only weight 1
2

(resp.

weight 0) bands. Thus the new constructed Y0 also contains no pre-weight 1
2

(resp. pre-weight 0) band.

In the proof of proposition 6.9, we will need to complete an almost partial

cover to a cover. The following lemma shows that we may first complete an

almost partial cover to a partial cover and then, using lemma 6.5, complete

the partial cover to a finite cover.
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Lemma 6.6. Let (Y0
ι0→ Y ′0) be a pair of components and the immersion

ι0 : Y0 → Y ′0 be an almost partial covering map. Then there exists a pair of

components (Y ∗0
ι∗0→ Y ′0) such that ι∗0 is a partial covering map, Y0 ⊂ Y ∗0 and

ι∗0|Y0 = ι0. In particular, Y ∗0 can be constructed by adding finitely many arcs

to the real graphs ΓY0 and attaching finitely many bands to Y0. We call this

extending ι0 to a partial covering map.

Proof. Let BY0 be a generalized band in Y0, BY ′0
be a generalized band in Y ′0

and BY0 properly map into (not onto) BY ′0
. Further, let bY0 and dual(bY0)

be bases of BY0 , bY ′0 and dual(bY ′0 ) be bases of BY ′0
. Then at least one of

the endpoints of bY0 , denote it by q, maps to an interior point p ∈ bY ′0 . ι0

is an almost partial covering map implies that there is no other band with

the property that its base(s) contained in the same block as bY0 or dual(bY0)

and it maps into BY ′0
. Otherwise that band must have some overlap with BY0

which contradicts to ι0 is an immersion. Further we may assume that within

the block containing bY0 or dual(bY0), there is a segment b∗Y0 or dual(b∗Y0) maps

onto bY ′0 or dual(bY ′0 ). Otherwise, we may obtain b∗Y0 or dual(b∗Y0) by adding

new arcs to ΓY0 (γ′ in figure 17). Then by attaching a new band to Y0, BY0

can be extended to a new band whose bases are b∗Y0 and dual(b∗Y0). Let the

resulting band be B∗Y0 . We can then modify ι0 to get ι∗0 such that it maps B∗Y0

onto BY ′0
. Finally, since there are finitely many of generalized bands in Y0, we

may extend (Y0
ι0→ Y ′0) to (Y ∗0

ι∗0→ Y ′0) with the property that ι∗0 is a partial

covering map within finite steps.

Now for a pair of unions of bands (Y0
ι0→ Y ′0), we will discuss the type of Y0

when ι0 is not a finite covering map. In lemma 6.7, we will show that if Y ′0 is
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p
bY ′0

BY ′0

dual(bY ′0 )

Y ′0 :

BY ′0

q
b∗Y0

dual(bY0)

bY0

BY0

Y0:

BY0

γ′

Figure 17: The gray part is Ŷ0 within Y ′0 .

simplicial, then Y0 must also be simplicial. In lemma 6.8, we will show that if

Y ′0 is a surface or thin component and relative Rips machine does not convert

ι0 into a map which is surjective (i.e. Ŷ0 ( Y ′0), then Y ′0 must be simplicial. In

proposition 6.9, we will discuss the general case where ι0 is surjective but not

locally surjective.

Lemma 6.7. Let (Y0
ι0→ Y ′0) be a pair of components. Suppose Y ′0 is a simpli-

cial component, then Y0 is also a simplicial component. In particular, for any

pair of components (Y0
ι0→ Y ′0), if Ŷ0 = ι0(Y0) is simplicial, then so is Y0.

Proof. Y ′0 is simplicial implies Ŷ0 is also simplicial. Suppose Y0 is minimal,

then every leaf in Y0 is dense which implies its image in Ŷ0 is also dense. This
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contradicts to Ŷ0 is simplicial.

Lemma 6.8. Let (Y0
ι0→ Y ′0) be a pair of components and ι0 : Y0 → Y ′0 be an

immersion. Further assume that Y ′0 is in standard form and it is either of thin

type or surface type. If there exists a point p in Y ′0 with iY ′0 (p) ≥ 0 such that it

has no pre-image in Y0, then Y0 is simplicial. In particular, the fundamental

group of Y0 is an infinite index subgroup of the fundamental group of Y ′0 .

Proof. Let Ŷ0 = ι0(Y0). By lemma 6.7, we only need to show that Ŷ0 is

simplicial.

Ŷ0 is a band sub-complex (a closed set) in Y ′0 . By the assumption, p is contained

in Y ′0 − Ŷ0. So there exists a neighborhood of p that is contained in Y ′0 − Ŷ0.

Without loss, we may assume that p is an interior point of some band in Y ′0 .

Hence, there exists a sub-generalized band BY ′0
in Y ′0 containing p which is

disjoint from Ŷ0.

Assume that Ŷ0 is not simplicial, then by Lemma 6.1, Ŷ0 is either a surface

component or a thin component. According to proposition 2.16, since Y ′0 is

in standard form, there is an uncountably many collection of leaves in Ŷ 0 (Ŷ0

omitting weight 0 bands) that are 2-ended trees which is quasi-isometry to

lines 10. Further in Y ′0, leaves containing these leaves are also 2-ended trees

expect for finitely many. Therefore we may pick a leaf l in Ŷ 0 which is a

2-ended tree such that the leaf l′ in Y ′0 containing it is also a 2-ended tree. So

l′ is also quasi isometry to a line and let the line be l
′
(= l′ ∩ ΩY ′0

). iY ′0 (p) ≥ 0

implies that l
′
intersects BY ′0

infinitely often. Hence, each component of l′∩ Ŷ0

10In the case of surface, all but finitely many of leaves are q.i. to lines. See [BF95, section
8]
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is either a finite tree or an 1-ended tree. However, this contradicts to our

choice that l is a 2-ended tree. Thus Ŷ0 must be simplicial, and so is Y0.

The immersion ι0 : Y0 → Y ′0 induces an monomorphism on the level of their

fundamental groups. Since Y0 is simplicial, the minimal translation length of

elements in the fundamental group of Y0 is bounded below by some positive

number ε. On the other hand, Y ′0 is a minimal component, so there exists

sequence of elements in the fundamental group of Y ′0 whose translation lengths

converge to 0. Therefore, the fundamental group of Y0 is an infinite index

subgroup of Y ′0 .

Proposition 6.9. Let (Y0
ι0→ Y ′0) be a pair of components. Suppose that Y ′0

is either a surface or thin component. Then either Y0 is simplicial or for

any sequence (Y0
ι0→ Y ′0), (Y1

ι1→ Y ′1), . . . formed by relative Rips machine,

ιn : Yn → Xn is a finite covering map up to weight 0 bands for all sufficiently

large n.

Proof. By Proposition 5.6, we may assume that Y ′0 is in standard form, ι0 is

an almost partial covering map and Y0 contains no pre-weight 0 nor pre-weight

1
2

band. In particular, ι0(Y 0) ⊂ Y ′0. Therefore we may work with (Y 0, Y
′
0)

instead. To simplify the notation, without loss, we will assume that both Y0

and Y ′0 do not contain any weight 0 band.

Firstly, (Y0
ι0→ Y ′0) can be extended to (Y ∗0

ι∗0→ Y ′0) such that ι∗0 is a partial

covering map as in lemma 6.6. Then by lemma 6.5, ι∗0 can further be extended

to a finite covering map ι̃∗0 : Ỹ ∗0 → Y ′0 . Lemma 6.3 implies that Ỹ ∗0 is the

same type of minimal component as Y ′0 is and Ỹ ∗0 is also in standard form. By

construction we have Y0 ↪→ Y ∗0 ↪→ Ỹ ∗0 . We may assume that Y0 ( Ỹ ∗0 , or we



71

are done. If the image of Y0 in Ỹ ∗0 misses any point in the limit set of Ỹ ∗0 , by

lemma 6.8, Y0 is simplicial. Otherwise, each sub-generalized band C ∈ Ỹ ∗0 −Y0

contains no point in the limit set of Ỹ ∗ and so image of C in Y ′0 must also

contain no point in the limit set of Y ′0 . Moreover, Ỹ ∗0 must be a thin type

component since all but finitely many leaves of a surface component are in the

limit set.

By construction, the following diagram commutes.

Y0 Y ∗0 Ỹ ∗0

Y ′0

......................................................................................................... ......................
......

......................................................................................................... ......................
......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

ι0

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
.............................

ι̃∗0

Consider three pairs of components (Y0
ι0→ Y ′0), (Y0 ↪→ Ỹ ∗0 ) and (Ỹ ∗0

ι̃∗0→ Y ′0).

The procedure of obtaining (Y1
ι1→ Y ′1) from (Y0

ι0→ Y ′0) can be viewed as

combination of obtaining (Ỹ ∗1
ι̃∗1→ Y ′1) from (Ỹ ∗0

ι̃∗0→ Y ′0) first, then obtaining

(Y1 ↪→ Ỹ ∗1 ) from (Y0 ↪→ Ỹ ∗0 ).

For any given sequence (Y0
ι0→ Y ′0), (Y1

ι1→ Y ′1), . . . formed by relative Rips

machine, let Ỹ ∗i be the induced intermediate finite cover of Y ′i . By above

analysis, images of C’s in Y ′0 contains no point in the limit set and so fully

collapse within finitely many steps (Proposition 3.4). As a consequence, C’s in

Ỹ ∗0 fully collapse within finitely many steps. Therefore Yn = Ỹ ∗n for sufficiently

large n. Thus eventually Yn is a finite-sheeted cover of Y ′n.

Following immediately from Proposition 5.6, Lemma 6.1, Lemma 6.2 and

Proposition 6.9, we have:
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Theorem 6.10. Let (Y
ι→ Y ′) be a pair of unions of bands and (Y 0 ι0→ Y ′0) =

(Y
ι→ Y ′), (Y 1 ι1→ Y ′1), . . . be a sequence of unions of bands formed by relative

Rips machine. Then for each pair of components (Y0
ι0→ Y ′0) ⊂ (Y

ι→ Y ′) where

Y ′0 is a minimal component, Y0 is either a minimal component of the same type

as Y ′0 or Y0 is simplicial. Moreover, let the pair of components corresponding

to (Y0
ι0→ Y ′0) in (Y n ιn→ Y ′n) be (Yn

ιn→ Y ′n). Then Y0 and Y ′0 are both surface

or thin components if and only if ιn : Y n → Y
′
n is a finitely covering map for

sufficiently large n. In addition, for sufficiently large n, Y ′n is in standard

form and every surface or thin component of Y n is also in standard form.

Remark 6.11. It is possible that both Y0 and Y ′0 are of toral type but Y n is

not a finite cover of Y
′
n. For example, let Y0 be a toral component that is dual

to the action of Z3 = 〈a〉 × 〈b〉 × 〈c〉 on a real line where a→ 1, b→ e, c→ π.

Its infinite index subgroup 〈a〉× 〈b〉 ' Z2 also acts on the real line and is dual

to a toral component.

Corollary 6.12. Let H < G be two finitely presented groups. Further let TG

be a G-tree with trivial edge stabilizers and TH ⊂ TG be a minimal H-subtree11.

Suppose that (X
ι→ X ′) is a pair of band complexes, that X and X ′ resolve

TH and TG correspondingly, that Y and Y ′ are single minimal components of

either surface or thin type and that π1(Y ) generates H, π1(Y ′) generates G.

Then [G : H] is finite.

Proof. Apply relative Rips machine to (X
ι→ X ′). Since Y is a surface or thin

component, according to Theorem 6.10, the machine will eventually convert

11i.e. TH contains no proper H-subtrees.
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(X
ι→ X ′) into a new pair (X∗

ι→ X ′∗) such that Y
∗

is a finite cover of Y ′
∗
.

By [BF95], TG has trivial edge stabilizers implies that that Y ∗ and Y ′∗ contain

no attaching annulus. Thus Y ∗ is a finite cover of Y ′∗.

Claim that X∗ is also a finite cover of X ′∗. X∗ and X ′∗ are obtained from Y ∗

and Y ′∗ by attaching 2-cells. If a 2-cell is attached along a loop l in Y ∗, then

there must be a corresponding 2-cell is attached along the image of l in Y ′∗.

Otherwise l is contained in the torsion of G. Moreover every loop in Y ′∗ has

finitely many preimages in Y ∗. If there is a 2-cell attached along some loop

in Y ′∗, there must be finitely many 2-cells attached along all its preimages

in Y ∗ as H is a subgroup of G. Therefore, X∗ is also a finite cover of X ′∗,

G = π1(X ′∗), H = π1(X∗), and so [G : H] is finite.

6.2 General case

In previous subsections, for a given pair of band complexes (X
ι→ X ′), we

always assume that (A6) ι is injective between components of Y and Y ′ to

simplify our description. In fact, the assumption (A6) is not necessary for

relative Rips machine. Suppose there are several components Y 1
0 , . . . , Y

k
0 ⊂ Y

map to the same component Y ′0 ⊂ Y ′. Relative Rips machine described above

can then be applied to a k + 1-tuple (Y 1
0 , . . . , Y

k
0 , Y

′
0). Roughly speaking, in

each step, we may apply proper move to Y ′0 first, then correspondingly modify

each Y i
0 .

In more details, if Y ′0 contains some free subarc, “Process I” will be applied.

Similarly as in subsection 5.1, let Jj1, . . . ,J
j
nj

be pre-images of JY ′ ∩ Ŷ j
0 in

Y j
0 . Then collapse JY ′ in Y ′0 and collapse Jj1, . . . ,J

j
nj

in Y j
0 for j = 1, . . . , k
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to obtain (Y 1
1 , . . . , Y

k
1 , Y

′
1). If Y ′0 contains no free subarc, “Process II” will

be applied. Y ′1 is obtained by applying Process II of the original Rips ma-

chine to Y ′0 . Each Y j
1 is obtained by modifying Y j

0 as described in subsec-

tion 5.2 (considering each (Y j
0

ιj0→ Y ′0)j as a pair). Therefore, the sequence

(Y 1
0 , . . . , Y

k
0 , Y

′
0), (Y 1

1 , . . . , Y
k

1 , Y
′

1), . . . produced by Process I and Process II

will eventually be stabilized by proposition 5.2. Now for a stabilized k + 1-

tuple (Y 1
i , . . . , Y

k
i , Y

′
i ), if none of Y j

i contains pre-weight 0 band, continue

with either Process I or Process II (whichever appropriate). Otherwise, apply

Process III to (Y 1
i , . . . , Y

k
i , Y

′
i ) (considering each (Y j

i

ιji→ Y ′i )j as a pair) to ob-

tain (Y 1
i+1, . . . , Y

k
i+1, Y

′
i+1). Then by Proposition 5.6, Process III appears only

finitely many times.

Then by exactly the same arguments, all results proved in subsection 6.1 hold

for pair of band complexes (X
ι→ X ′) without assuming (A5) that the restric-

tion of ι on the level of union of bands ι : Y → Y ′ is an immersion.

7 Application

In this section, we will need a partial order on the band complexes.

Definition 7.1. A morphism ι : X → X ′ induces a cellar map φ : ∆(X) →

∆(X ′) between their GD’s. We say that a vertex of ∆(X) changes types

under the map φ, if the vertex and its image have different types. For example,

a simplicial component maps into a minimal component.

For a vertex v of ∆(X), write π(v) for the conjugacy class of the subgroup of

π(X) generated by the corresponding union of bands. We say v gets bigger
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if the stabilizer of the image of v strictly contains the image of the stabilizer

of v, i.e. φ(π(v)) ⊂ π(φ(v)). For example, a surface component maps onto

another surface component as a 2-sheeted cover.

Definition 7.2. For band complexes X and X ′, we write X ′ > X if there is

a morphism ι : X → X ′ such that:

1. ∆(X) has more vertices than ∆(X ′); or

2. ∆(X) and ∆(X ′) have the same number of vertices and under the mor-

phism either a vertex changes type or a surface or thin vertex gets bigger.

Lemma 7.3. Let Xi’s be band complexes. Then all sequences X1 < X2 < . . .

is finite.

Proof. It is enough to consider the case of a sequence Y0 < Y1 < Y2 < . . .

where each Yi is a union of bands of a single surface or thin component and each

ιi : Yi → Yi+1 is a morphism. View each (Yi
ιi→ Yi+1) as a pair of components.

According to theorem 6.10, up omitting weight 0 bands, Yi is a finitely covering

space of Yi+1. In the case of surface component, the length of a sequence of

finitely sheeted covering spaces is bounded by the Euler characteristic of the

corresponding surface of Y1, also see in for example [Rey11]. In the case of

thin type, each Yi can be viewed as a graph in the following fashion. View

each island in Yi as a vertex and each long band as an edge. Then the length

if the sequence Y0 < Y1 < Y2 < . . . is bounded by the Euler characteristic of

the graph corresponding to Y1.

Throughout the rest of this section, let H < G be two finitely generated

groups, F be a fixed non-abelian free group, hi : H → F be a sequence of
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homomorphisms and gi : G→ F be a sequence of extensions of hi’s. Moreover,

let B be a fixed basis for F, H ⊂ G be fixed finite generating sets for H < G.

With some further assumptions (described below), we may construct a pair of

band complexes in the following way.

Each hi can be viewed as an action of H on the Cayley graph of F via hi,

denote the corresponding H-tree by Thi . Up to passing to a subsequence,

there exists TH = limThi in the projective space of H-trees ([Sel97], also in

[Gui08]). Similarly each gi can be realized as a G-tree , denoted by Tgi , with

a limiting G-tree TG = limTgi (up to sub-sequence). Up to passing to proper

quotient, we may assume that TH is a faithful H-tree and TG is a faithful

G-tree. Further assume that H is not elliptic in TG, then up to scaling, TH is

the minimal H-subtree in TG.

Let XH be a finite complex with fundamental group H and XG be a finite

complex with fundamental group G containing XH . Each hi is represented by

a resolution ri : X̃H → Thi which induces a band complex structure on XH ,

denote it by X i
H . Each leaf of X i

H is transversely labeled by an element of B.

For each α ∈ H, fix a curve lα ⊂ XH with π1(lα) = α ∈ H. We may arrange ri

such that it is tight on every lα (map lifts of lα to axises of [α] in Thi), and so

the value of hi(α) can be read off by following lα and keeping track of curves

it intersects. In this case we say that ri is exact on H. Let r : X̃H → TH be

the limiting resolution of ri’s, denote the induced band complex structure on

XH by X∞H .

We may then extend r and ri to resolutions r̂ : X̃G → TG and r̂i : X̃G → Tgi

correspondingly. Similarly, denote the band complex structure on XG induced
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by r̂i by X i
G and the band complex structure on XG induced by r̂ by X∞G . By

attaching extra bands and extra 2-cells, we may arrange r̂i to be exact on G.

(X∞H ↪→ X∞G ) is then a pair of band complexes.

Definition 7.4. Suppose {hi : H → F} converges to TH equipped with a

resolution r : X̃H → TH as above. A sequence h′i : H ′ → F converging to TH′

together with a resolution X̃H′ → TH′ is an enlargement if:

• H < H ′

• h′i|H = hi;

• TH′ := limTh′i is a faithful H ′-tree;

• H is not elliptic in TH′ ;

• XH′ > XH .

Proposition 7.5. Let (X∞H ↪→ X∞G ) be a pair of band complexes constructed

as above and ι : X∞H → X∞G be the induced morphism. Suppose that X∞G

contains either a surface or thin component, denoted by YG. Then either

1. ι−1(YG) is empty; or

2. ι−1(YG) is a single component in X∞H , denote it by YH with the property

that relative Rips machine will convert ι : YH → YG into a homeomor-

phism; or

3. we may find an enlargement of X∞H .
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Proof. Suppose that ι−1(YG) is not empty. By theorem 6.10, every component

of ι−1(YG) is either a minimal component of the same type as YG or is simplicial.

Moreover, we may assume YG and its preimages do not contain weight 0 bands

as TH and TG are limiting trees admitted super stable and very small actions

[BF09]. So relative Rips machine will convert every minimal component of

ι−1(YG) into a finitely covering space for YG.

Assume that the second bullet in the proposition fails. Then either there are

more than one choices for YH . Or for a fixed choice of YH , YH is a simplicial

component or ι : YH → YG is a n-sheeted covering map (n > 1). Now we will

show that in either case, we may enlarge X∞H .

Firstly, suppose that ι−1(YG) contains more than one component. Then besides

YH , there is another component Y ∗H ∈ X∞H also maps into YG. Intuitively, we

will enlarge X∞H by gluing these two components together. It will be done

in the following way. Let J be an arc in the real graph of YG with positive

transverse measure. By picking J small enough, we may assume that J has

finitely many pre-images J1 . . . Jn in YH and finitely many pre-images J∗1 . . . J
∗
n∗

in Y ∗H with the property that ι maps each Ji and J∗i∗ homeomorphically onto J .

Attach a band B = J × I to X∞H via a measure-preserving map J ×{0} → Jm

and J × {1} → J∗m∗ for some m ∈ {1, . . . , n},m∗ ∈ {1, . . . , n∗}12. Let the

resulting complex be XH′ where H ′ is its fundamental group and X∞H′ be the

induced band complex with the new component YH′ formed by the union of

YH , Y ∗H and B. In particular, X∞H′ > X∞H since ∆(X∞H′) has less vertices than

∆(X∞H ). By construction, for large i, X i
H have similar band complex structure

12We may add one band for each pair of segments in {J1 . . . Jn, J∗
1 . . . J

∗
n∗} to get a bigger

enlargement
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as X∞H . So by adding an extra band B as for X∞H , we may build X i
H′ . We may

extend H to a generating set H′ ⊂ G for H ′. For ∀i, let the map obtained by

reading off interactions between lα and X i
H′ , for all α ∈ H′, be h′i : H ′ → F.

Then h′i is an extension of hi. Finally, replace H ′ by limh′i and add on extra

2-cells to XH′ if necessary. We now have an enlargement of X∞H .

Secondly, suppose there is a pair of components (YH , YG) where YH is either

a simplicial component or a finite covering space of YG. Intuitively, we will

enlarge X∞H by replacing its component YH by YG. It proceeds as follows. Let

J ⊂ ΓG be an small arc as in the previous case and J ′ ⊂ ΓH be one of its

preimages in YH . Since YG is either a surface or thin component, there is a

band complex structure for YG whose union of bands is the result of glueing

finitely many bands to J via their bases. First let XH′ be the result of glueing

these new bands to J ′ in YH where H ′ is the fundamental group of this new

complex and X∞H′ be the induced band complex with the new component YH′

formed by YH and new bands glued to J ′. By construction, for large i, X i
G

have similar band complex structure as X∞G . Thus cutting the component

of X i
G containing J open along J , we will obtain a band complex structure

similarly as in YG (may be a little off towards boundaries of bands). By glueing

these bands to X i
H , we may build X i

H′ . Proceed as in the previous case, we

will obtain h′i. Again replace H ′ by limh′i and add on extra 2-cells to XH′ if

necessary. Now to show X∞H′ is an enlargement, we only need to check that

X∞H′ > X∞H . Indeed, either the vertex corresponding to YH changes type or gets

bigger (up to moves, YH is a proper cover of YG whereas YH′ is homeomorphic

to YG).
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According to lemma 7.3 and proposition 7.5, for a given pair of (X∞H
ι→ X∞G ),

up to finitely many enlargement, ι induces an isomorphism between surface

and thin components in X∞H and ι(X∞H ).

This enlarging technique can be used inductively in understanding questions

arising from model theory such as solving equations over groups, extension

problems and decision problems through a geometric point of view.
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