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The purpose of this study is to examine how knowledge of astronomy can enhance college-level 

learning situations involving mathematics. The fundamental symbiosis between mathematics and 

astronomy was established early in the 17th century when Johannes Kepler deduced the 3 basic 

laws of planetary motion. This mutually harmonious relationship between these sciences has 

been reinforced repeatedly in history. In the early 20th century, for example, astronomer Arthur 

Eddington used photographic evidence from a 1919 solar eclipse to verify Einstein’s 

mathematical theory of relativity. This study was conducted in 5 undergraduate mathematics 

classes over the course of 2 years. An introductory course in ordinary differential equations, 

taught in Spring Semester 2013, involved 4 students. A similar course in Spring Semester 2014 

involved 6 students, a Summer Semester 2014 Calculus II course involved 2 students, and a 

Summer 2015 Astronomy course involved 8 students. The students were asked to use Kepler’s 

astronomical evidence to deduce mathematical laws normally encountered on an undergraduate 

level. They were also asked to examine the elementary mathematical aspects involved in a 

theoretical trajectory to the planet Neptune. The summer astronomy class was asked to draw 

mathematical conclusions about large numbers from the recent discoveries concerning the dwarf 
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planet Pluto. The evidence consists primarily of videotaped PowerPoint presentations conducted 

by the students in both differential equations classes, along with interviews and tests given in all 

the classes. All presentations were transcribed and examined to determine the effect of 

astronomy as a generator of student understanding of mathematics. An analysis of the data 

indicated two findings: definite student interest in a subject previously unknown to most of them 

and a desire to make the mathematical connection to celestial phenomena. 

  



STUDENT COMPREHENSION OF MATHEMATICS 

v 

Preface 

When I was 12 years old, I dragged my parents out on our front lawn to observe the 

annual Perseid meteor shower. It was a warm August night, and the midnight sky was clear. We 

lived in suburban Long Island, and the moon was new; the conditions were ideal for viewing, but 

there were no meteors! A half-hour passed, and my pajama-clad parents were becoming 

impatient. Suddenly, a burst of 15 to 20 meteors filled the night sky. My parents were fascinated, 

but the event merely reaffirmed my life-long love of astronomy. Years later, when I had to 

choose a college major and subsequent career path, I pursued the more practical option of 

mathematics. This led to a lifetime of teaching mathematics on the high school and college level. 

However, I have never lost my love of astronomy. 

In the early 17th century, Johannes Kepler discovered the elliptical nature of planetary 

motion. In doing so, Kepler used mathematics to construct the bridge from ancient to modern 

astronomy. Indeed, modern astronomy and mathematics are almost genetically intertwined. From 

a teaching perspective, it would seem logical and obvious to ask a simple question: Could 

examinations of phenomena such as a meteor shower, a solar eclipse, or even a distant dwarf 

planet result in a greater student appreciation of the mathematics involved in such phenomena? 

As a college math teacher (and, more recently, an astronomy teacher), I am in a position to 

explore this question. The following project is the culmination of several years of work and 

presentations conducted by various undergraduate classes at Centenary College, New Jersey. I 

believe that once the evidence of my work is revealed, the results will be illuminating. 
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Chapter 1: Introduction 

Mathematics can be a difficult concept for students who do not appreciate its wonders 

and intricacies. Although mathematics is universally noted as the language of the sciences, 

students often regard the subject as a necessary evil. Astronomy is similar to mathematics, in that 

it is an acquired taste. For every student who finds this subject fascinating, there are others who 

regard it as merely a chapter in the earth science textbook. Even the Journal for Research in 

Mathematical Education has published few articles relevant to a possible educational symbiosis 

between the two topics. However, mathematics and astronomy are inextricably linked in history. 

After publishing his theory of special relativity in 1905, Albert Einstein struggled for years to 

incorporate gravity into his relativity framework. In 1916, he presented a paper to the Prussian 

Academy of Science in which he detailed what are now known as the Einstein equations. These 

equations formed the core of his general theory of relativity. This theory went unheeded until it 

was famously verified by astronomer Arthur Eddington in 1919 (Douglas, 1957). 

Eddington travelled to Africa to photograph a rare total solar eclipse. He also 

photographed stars the night before and contrasted them with the same stars photographed when 

they were visible during the eclipse. He pinpointed the stars in the photographs and used a 

planetarium effect in a display to several renowned scientists. The shift in the star positions 

dramatically illustrated the effect of gravity on light. His display made Einstein globally famous, 

and the general theory of relativity subsequently revolutionized 20th century science. For 

educators who look upon astronomy with wonder, it is clear that mathematics can only enhance 

their interest. Indeed, mathematics can be viewed as the key to the comprehension of traveling 

vast distances, describing alien environments, and understanding the complex mechanics of 

rocket propulsion. 
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Purpose 

The purpose of this study was to examine students’ learning and comprehension of 

mathematics through an exploration of astronomy. This study is a journey of learning similar to 

the Voyager project and pays homage to our ancestors who relied upon celestial movement to 

govern the course of their daily lives. 

Our immediate astronomical neighborhood is, of course, the group of planets that 

comprise the solar system. The motion of the five planets visible to the naked eye stymied 

humankind for thousands of years. It was not until the early 17th century that Johannes Kepler 

mathematically deduced the elliptical nature of the orbits. Although it took Kepler 4 years to 

determine the nature of the orbit of Mars, the dynamics of elliptic motion are known to any 

student studying calculus or even upper-level high school algebra. Given relevant information on 

any planet, considerable insight can be gained by calculating an ellipse that would fit its orbital 

parameters. Johannes Kepler deduced the same result when he discovered the laws of planetary 

motion in the 17th century (Burton, 2011). 

Neptune is the eighth most distant planet in our solar system. Its nearly circular elliptical 

orbit has a radius of approximately 30 AU (one astronomical unit [AU] is about 93 million 

miles). It was the first planet whose existence was predicted before its discovery. In the 19th 

century, Carl Freidrich Gauss speculated the existence of another body beyond the recently 

discovered seventh planet, Uranus. Specifically, he used Kepler’s laws of planetary motion to 

account for abnormalities in the orbit of Uranus (Burton, 2011). Neptune was eventually 

discovered by various astronomers in 1846. Named after the Roman god of the sea, Neptune has 

a distinct bluish tint due to the heavy amounts of methane in its atmosphere. It is one of the four 

gas giants with a mass roughly equivalent to four Earth masses. A day is about 10 hours and a 
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year is 165 Earth years. Neptune has one principal natural satellite, Triton, which was named, 

appropriately enough, after one of the mythical god Neptune’s offspring. Not much was known 

about either body until August 1989, when the NASA space probe Voyager II made a historic 

flyby before departing the solar system into deep space. Among many other revelations, Voyager 

measured the violence of Neptune’s atmosphere, including storms with winds approaching 2100 

km/hr. It also revealed that Triton has a measurable atmosphere, a surface with active geysers 

spewing liquid nitrogen, and the coldest recorded temperature in the solar system: 40 degrees 

above absolute zero. These discoveries led to speculation that Triton is actually an object from 

the Kuiper Belt (a system of asteroids beyond Pluto’s orbit) captured by Neptune’s intense 

gravitational field. All of these unexpected discoveries have scientists and astronomers 

continuing to envision a more sophisticated version of the Voyager probe that will answer new 

questions about the nature of the Neptune system.  

For nearly 10 years, the Cassini probe, a joint venture by NASA and the European Space 

Agency, has been orbiting the neighborhood of the sixth planet, Saturn, and its myriad moons. 

Known as the most successful space probe in history, Cassini has made several astonishing 

discoveries, including warm-water active geysers on the tiny moon Enceladus, chaotic behavior 

within Saturn’s rings, and lakes of liquid methane on the principal moon, Titan. In effect, the 

probe has become a permanent satellite in the Saturn system. With a sophisticated, Earth-guided 

propulsion system, the probe has made several flybys of the ring system and the nine major 

moons and will continue its mission through 2017. This successful tour has further fueled 

scientists’ hope for a similar probe to the planet Neptune, with a similar mission: to explore the 

planetary system with several flybys of the moon Triton. The journey would take 15 years, and 

the subsequent exploratory mission would take 3 years. 
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With respect to a Cassini-type probe to the planet Neptune, the relevant celestial 

mechanics involve extremely complex mathematical models. In fact, a graduate student at Delft 

University published a thesis report on this subject (Melman, 2007). Melman explained the probe 

trajectory through graduate-level mathematical modeling. This study, however, involved a 

teaching experiment to exploit the links between astronomy and calculus in an introductory 

differential equations classroom. For this undergraduate-level study, students were required to 

have an understanding of basic mathematic principles learned in calculus and a basic 

understanding of the solar system. 

Research Articles of Question 

Can applying fundamental astronomy knowledge enhance learning situations involving 

ordinary differential equations (ODE) or elementary calculus? This theory was explored by 

participating undergraduate students, who were challenged with analyzing the nature of the 

orbits of the planets Neptune and Mars. This was accomplished in two different subject matters 

(ODE and calculus) and considered two different orbital trajectories (planning a theoretical 

journey of an unmanned space probe to the planet Neptune and recreating Kepler’s discoveries 

of the orbit of Mars). The impetus to this learning is to demonstrate how an understanding of 

various concepts in astronomy, ODE, and calculus can lead to a meaningful connection that 

generates a learning outcome of a greater appreciation of both astronomy and mathematics. The 

study used actual data from the Voyager probes of the 1970s and 1980s, as model guides. 

Specifically, students were asked to calculate the orbital trajectories of Neptune and Mars. To 

calculate these trajectories, students independently learned basic astronomical and calculus 

principles that would apply to the exercises.  
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The learning outcome for this study was the students’ ability to solve problems normally 

covered in calculus and ODE that are relevant to solar system astronomy. The following research 

articles of question were explored to substantiate this study: 

1. What is the level of student understanding of astronomy? 

2. What evidence is there that students, either individually or as teams, use astronomy as 

a tool for a better understanding of mathematics? 

3. Are visual displays of astronomy (i.e., PowerPoint slides) conducive to a greater 

understanding of mathematics? 

4. Is there any evidence that astronomy can be used as a device leading toward a better 

understanding of difficult mathematical concepts (i.e., arc length, ellipses)? 

a. What calculus and ODE algorithms were applied to the tasks of determining 

planetary motion and orbital length? 

5. Is there any evidence that exposure to the history of astronomy, and its connection to 

mathematics, is conducive to a greater student appreciation of mathematics? 

The types of data used to gather evidence needed to answer each question, along with an analysis 

to support conclusions, can be categorized with respect to each question: 

1. The level of student familiarity with astronomy was examined with tests given to the 

Spring Semester 2014 Differential Equations class. The evidence gathered included 

test results, interview transcripts, and subsequent presentations. Analysis of the mean 

test scores indicated initial unfamiliarity with the subject matter. The later 

presentations were used to confirm or deny subsequent gained knowledge. 

2. Student visual taped presentations in 2013 and 2014 were used as data to explore the 

use of astronomy as a catalyst toward a deeper understanding of mathematics. The 
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primary evidence consisted of written transcripts of the student visual tapes. The 

visual evidence displayed the extent of student recognition of mathematical 

foundations of astronomical phenomena (e.g., the orbit of Mars is an ellipse). 

3. PowerPoint displays were used in the presentations given in 2013 and 2014. The 

instructor also showed PowerPoint displays to all classes to enhance student 

understanding and interest. These displays constituted the data used to explore the 

effectiveness of visual displays in astronomy. Evidence gathered included videotaped 

transcripts and interview transcripts from the Spring Semester 2013. Analysis shows 

the effectiveness of PowerPoint lectures designed to engender student interest. 

Subsequent student presentations were used to confirm or deny the influence of these 

lectures. 

4. The data, and subsequent evidence, gleaned from the student presentations of 2013 

and 2014 were used to explore the question of whether astronomy can be used as a 

device leading toward a better understanding of difficult mathematical concepts. The 

project results from the Summer 2014 Calculus class were also examined. Analysis 

explored the extent of student understanding of such subjects as arc length and ellipse 

construction. 

5. The test results, interviews, and student presentations were used as evidence to 

examine the effectiveness of exposure to historical examples of mathematical 

modeling in astronomy. In particular, the spring and summer classes in 2014 created 

projects exploring the laws of planetary motion discovered by Johannes Kepler in the 

17th century. 
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Chapter 2: Literature Review 

Recent literature connecting college mathematics to astronomy is notably scarce. Specific 

articles in both Educational Studies in Mathematics and the Journal for Research in 

Mathematical Education, two of the leading journals in mathematics education, have been 

virtually nonexistent over the past decade. Since 2000, no articles have been written, in either 

publication, that link astronomy and mathematics. Related literature relevant to this study covers 

mathematical modeling, reform calculus, and ODE. Mathematical modeling and astronomy share 

many intricate relationships, such as charting the phenomena of elliptical orbits. Mathematical 

modeling also uses algorithms found in reform calculus and ODE; these shared principles form 

the equations from which we can understand the mechanics of celestial phenomena. 

Undergraduates’ perspectives on these relationships have remained unknown.  

Mathematics and Astronomy Through History 

From the dawn of history, humankind has tried to explain the mysterious movements of 

the heavenly bodies. In an address delivered before the American Mathematical Society, Otto 

Neugebauer discussed the mathematical techniques employed by the ancient Greek and 

Babylonian cultures to explain these movements. Ptolemy’s Almagest is regarded as the main 

source of knowledge of ancient astronomy (Neugebauer, 1948, p. 1013). This work relied upon 

the discoveries of the astronomer Hipparchus, whose findings represented a “milestone in the 

development of mathematical astronomy” (Neugebauer, 1948, p. 1013). The Babylonians also 

studied the movements of the Moon and the planets from 400 to 250 BC. To summarize these 

efforts, Neugebauer mentioned three seemingly observational astronomy problems that are 

actually “essentially dependent upon mathematical theories.” (Neugebauer, 1948, p. 1014). 

These problems involve determining the diameter of the Moon, the constant of precession, and 
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the parameters of geographical longitude. Solutions to these problems involved both knowledge 

of celestial mechanics and transformational geometry between celestial and terrestrial 

coordinates. 

In the Almagest, Ptolemy assumed that the Earth was the center of the solar system and 

that the planets’ motions were based on circular orbits around the Earth, with each planet 

traveling in epicycles around its orbit. This theory explained the occasional retrograde motion of 

a planet in the night sky. In summary, Ptolemy created a mathematical model with “a 

consistency and inner perfection that seemed hardly open to improvement” (Neugebauer, 1948, 

p. 1015). Ptolemy’s work provided a justification for continued public interest in both astronomy 

and astrology, and his system remained unquestioned through the Middle Ages. 

The dawn of modern astronomy began in 1543, when Nicholas Copernicus published De 

Revolutionibus Orbium Coelestium (On the Revolution of Celestial Spheres). In this work, he 

proposed that the Earth and the other planets revolved in circular orbits about the Sun. This 

revolutionary concept contradicted the accepted geocentric vision of Ptolemy’s Almagest. The 

revolution continued with the efforts of Johannes Kepler and Galileo Galilei. In the early 17th 

century, Kepler studied the recorded observations of the astronomer Tycho Brahe. From these 

records, he deduced how the planets moved. His three laws of planetary motion read as follows 

(Burton, 2011, p. 360): 

1. The orbits of the planets are ellipses, with the Sun as a focal point. 

2. The velocity of a planet increases as it approaches the Sun. 

3. The period (year) of a planet and its average distance from the Sun are proportionally 

related. 
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During the same time period, Galileo became the first person to use a telescope to 

observe the Moon and the planets. Politically dangerous at the time, Galileo’s observations 

nonetheless set the solar system to an entirely new perspective. The revolution became complete 

with the work of Isaac Newton. While Kepler explained how the planets moved, Newton 

explained why with his law of universal gravitation. His work provided the framework for most 

of the astronomy explored over the next 200 years. During this time, two more planets were 

discovered. William Herschel discovered the planet Uranus by accident in 1781, and the 

perturbations of its orbit led to the discovery of the planet Neptune by J. C. Adams and U. J. J. 

Le Verrier in 1846. In 1801, Giuseppe Piazzi discovered Ceres, the largest asteroid in the belt 

between Mars and Jupiter. At one point, astronomers lost visual contact with Ceres, and 

mathematician Carl Freiderich Gauss used Kepler’s laws and advanced gravitational theory 

developed by J. L. LaGrange to compute the position where the asteroid was subsequently 

rediscovered. LaGrange, Leonhard Euler, and Pierre LaPlace were also responsible for 

pioneering advances in the burgeoning science of celestial mechanics. Another contemporary, 

Frederich Bessel, developed the parallax algorithm to determine “the first measurement of 

distance” to a star (in this case, the star 61Cygni). The parallax method involves taking positional 

readings of a star 6 months apart. From the different perspectives, an angle is formed, from 

which the star’s distance can be calculated by elementary trigonometry. 

The advent of the 20th century heralded another revolution in the field of astronomy. The 

architects of this revolution were Albert Einstein and Edwin Hubble. On a cosmological scale, 

Einstein’s theories of relativity reworked Newton’s law of gravitation. On a local scale (i.e., 

within the realm of the solar system), the law of gravity routinely applies in any interaction 

between two objects. With respect to physically large, nonlocal objects, such as stars and 
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galaxies, Einstein proposed that gravity should be regarded as a geometrical consequence 

between two objects within the perspective of a space–time continuum. As mentioned 

previously, Einstein’s theory was confirmed when the astronomer Arthur Eddington presented 

visual proof in star photographs taken during a total solar eclipse in 1919. 

In addition to Einstein’s theories, the latter-day revolution was further fueled by the 

astronomer Edwin Hubble. On January 1, 1925, Hubble offered a presentation on stars known as 

Cepheid variables. The groundwork for his findings had been previously established by two 

other astronomers, Henrietta Leavitt and Vesto Slipher. Slipher investigated the star-like clouds 

known as nebulae. Centuries earlier, Galileo had confirmed that these clouds contained stars. 

Slipher found that these nebulae were moving at very high velocities. Leavitt established a 

period-luminosity relationship for Cepheid variable stars located within nebulae that could be 

used to determine distance. Hubble used these findings to confirm that nebulae previously 

thought to be confined to the limits of our Milky Way galaxy were actually galaxies themselves. 

Furthermore, these galaxies were at a tremendous distance from the Milky Way and traveling at 

tremendous velocities away from us. The expanding universe was revealed, and Edwin Hubble 

dramatically altered the perspective of cosmology.  

In the latter half of the 20th century, further discoveries were made in the exponential 

growth of cosmology. In 1964, Arno Penzias and Robert Wilson, scientists at Bell Laboratory in 

Holmdel, New Jersey, conducted experiments to detect radio waves reflecting off artificial 

satellites. In doing so, they discovered traces of cosmic microwave background radiation 

considered to be the remnants of the spontaneous explosion popularly known as the Big Bang 

that gave birth to the universe 13 billion years ago. At about the same time, Maarten Schmidt, an 

astronomer working at the Mt. Palomar Observatory in California, discovered quasars. These 
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radio sources, which were star-like but with the brightness of galaxies, are the most distant 

objects in the universe to date. In the 1970s, the scientist Stephen Hawking fused astronomy and 

quantum mechanics with his ground-breaking theories on black holes, which are the ultimate 

fates of aging giant stars collapsing under the inevitable pull of gravity. The 1990s saw the 

launchings of the first orbital telescopes free of the influence of Earth’s atmosphere. One direct 

result was the discovery of several exoplanets orbiting stars outside our own solar system.  

With all the breakthroughs that occurred, along with humankind’s first physical journeys 

into outer space, “Astronomy was revolutionized in the 20th century” (Hughes, 2007, p. 1). The 

theoretical boundaries of astronomy will continue to expand into the 21st century. Astronomy 

and Astrophysics in the New Millennium is a series of reports published by the National Research 

Council. Three long-term quests are recommended for pursuit by the Astronomy and 

Astrophysics program: 

1. To comprehend our cosmic origin. 

2. To image black holes and elucidate relativistic gravity. 

3. To understand the elements essential for forming Earth-like planets and life. 

The foundations for research in these topics will be based in such fields as physics, 

quantum mechanics, string symmetry, chaos theory, and even fractal geometry. All of these 

fields share one thing: all theoretical advances that will be made in the course of this century will 

be written in the language of mathematics. Meeus (2004), in his five-volume Mathematical 

Astronomy Morsels, refers to the “classical, mathematical science of the sky” (p.1). Even though 

computer technology has rendered the tortured hand calculations of The Almagest obsolete, the 

need for a sound mathematical perspective remains strong. 
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Recent Discoveries 

On July 14, 2015, an unmanned spacecraft reached the neighborhood of the dwarf planet 

Pluto. The New Horizons probe was launched by NASA in January 2006 and traveled over 3 

billion miles to accomplish its pioneer mission, which was to record and gather information on 

the heretofore unexplored world.  

A. Stern and Mitton (1999) chronicled the history of the discoveries in the Pluto system. 

The existence of Pluto was first postulated by the astronomer Percival Lowell in the late 19th 

century. In 1930, another astronomer, Clyde Tombaugh, discovered the planet after years of 

painstakingly examining photographic plates at the Arizona observatory named in Lowell’s 

honor. In 1978, Pluto’s main moon, Charon, was discovered by astronomer James Christy. By 

the end of the 1980s, all the major planets in the solar system, with the exception of Pluto, had 

been visited by unmanned probes. Shortly after New Horizons was launched, Pluto was 

reclassified as a dwarf planet by the International Astronomical Union (Overbye, 2006). The 

New Horizons probe successfully transmitted the first close-up photographs of Pluto, along with 

a wealth of scientific information about the planet and its five moons. 

Mathematical Modeling 

A central theme in mathematics education over the past 30 years has been the relationship 

“between mathematics and the real world” (Blum, 2002, p. 1). Mathematical modeling is the 

foundation of understanding in real-world astronomy. Classic historical models, such as the 

elliptical planetary orbits deduced by Johannes Kepler, emphasize the importance of 

mathematical modeling in a proper understanding of the movements of the heavens. 

Educational scholars have closely studied mathematical modeling in recent years. A 

recent international research forum was called “Mathematical Modeling in School Education: 
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Mathematical, Cognitive, Curricular, Instructional, and Teacher Education Perspectives.” A key 

concern was the apparent schism between the creative mathematical modeling process and the 

way this process is taught by mathematical educators. “Even those researchers who have long 

been conducting research on mathematical modeling have not come to an agreement on the 

processes of mathematical modeling and how to conceptualize mathematical modeling” (Cai et 

al., 2014, p. 2). According to the forum, mathematical modeling is viewed as a “bidirectional 

process of translating between the real-world and mathematics” (Cai et al., 2014, p. 2). Since 

mathematical modeling “is practiced far and wide—across the natural sciences” (Cai et al., 2014, 

p. 5), this process is critical in the discoveries made in modern astronomy.  

One very prominent historical example was the advent of modern astronomy, the three 

laws of planetary motion discovered by Johannes Kepler in the early 17th century. The first law 

states that the orbits of the planets are ellipses with the Sun as a focal point. This conclusion was 

the direct result of a 4-year study by Kepler in which he constructed a mathematical model based 

on the observations of the planet Mars by the astronomer Tycho Brahe. Using navigational 

instruments on an elaborate island observatory, Brahe made painstaking positional recordings of 

all the visible planets, and Mars in particular. These recordings were made without the use of 

telescopes, which had yet to be invented. Kepler took these recordings and constructed a 

mathematical model. The model turned out to be an ellipse with low eccentricity. Brahe made 

these recordings of the planet’s longitudinal placements over a several years. These positional 

recordings provide ideal data for students to construct the ellipse for themselves. This was done, 

in fact, in the Summer Semester 2014 Calculus class. This endeavor is an example of how 

astronomy is relevant when exploring both the mathematical modeling process and the basic 

properties of an ellipse. These concepts are explored in any standard Calculus II class. 
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Other topics explored by the mathematical modeling forum included the nature of a 

mathematical modeling curriculum and the existence of mathematical modeling in current 

mathematics textbooks. In designing most curricula, the choice of a relevant text is critical. 

Three texts, published over the past 30 years, have examined mathematical models in astronomy: 

Concepts of Mathematical Modeling (Meyer, 1984), Mathematical Models and Their Analysis 

(Wan, 1989), and at least three editions of A First Course in Mathematical Modeling (Giordano, 

Weir, & Fox, 2003). All three texts have either chapters or illustrated problems about planetary 

orbits, gravitation, acceleration, and rocket flight. Meyer’s work, in particular, contains examples 

in astronomy illustrating various qualities of a strong mathematical model. One such quality is 

generalization, where two models can be used to illustrate each other. Meyer (1984) contrasted 

Kepler’s second law, which explains how a planet moves in its orbit, with Newton’s law of 

universal gravitation, which explains why a planet moves in its orbit. Meyer (1984) quoted 

Bertrand Russell: “I remember a sense almost of intoxication when I first read Newton’s 

deduction of Kepler’s second law from the law of gravitation. “Few joys are so useful as this”  

(p. 211). Meyer (1984) also illustrated the concept of robustness with the efforts of ancient 

astronomers to calculate the distance of Earth from various celestial objects. From these 

examples, it is obvious that astronomy is a field open to the explorations of mathematical 

modeling. 

The mathematical modeling process is “something uniquely defined for each individual 

through the mathematical activity in which they take part” (Barba & Rubba, 1992, p. 12). The 

process is fueled by motivation and interest. Meyer (1984) pointed out that, while planetary 

motions have little impact on modern everyday life, these motions were of great import in the 

17th century. Meyer noted, “Nearly everyone” (p. 212) in the medieval world believed in 
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astrology, where the movements of the planets were thought to influence everyday life. This was 

the primary impetus for Johannes Kepler in formulating his laws that revolutionized the science 

of astronomy. The question of motivation survives to modern times and is relevant to teaching 

strategies “involved in getting students engaging in school mathematics” (Coles, 2016, p. 3). 

Reform Calculus and ODE 

Mathematical modeling is evident in all of mathematics, but especially in the related 

fields of calculus and ODE. The solution of real-world problems in the sciences invariably 

involves the dynamics of equations of motion. Nowhere is this more evident than in current and 

historical discoveries in astronomy. A great deal of attention has been given, over the past two 

decades, to the pedagogy involved in teaching ODE. Several innovations in instructional design 

have been suggested over this time to improve traditional lecture approaches. Prominent among 

these is the inquiry-oriented ODE (IO-DE) project (Rasmussen, Kwon, Allen, Marrongelle, & 

Burtch, 2006). The central aim of this project was to create “a learning environment where 

students routinely offer explanations of and justifications for their reasoning” (Rasmussen et al., 

2006, p. 42). Assessments were given that compared the IO-DE group with a group of students 

exposed to a traditional teaching approach. The assessments, along with a subsequent follow-up 

study, gave evidence that “the students in the IO-DE group scored significantly higher on the 

conceptually-oriented items” (Rasmussen et al., 2006, p. 69), which would tend to indicate 

independent thinking and creativity, as opposed to reliance on procedurally oriented algorithms. 

Discourse analysis in one of the IO-DE classes indicated students viewed mathematics as “a 

product of their own engagements” (Rasmussen et al., 2006, p. 90). 

As illustrated by this study, the perception of mathematics by students has undergone a 

great deal of scrutiny. In the late 1980s, the National Council of Teachers of Mathematics 
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established standards that stressed “opportunities to solve many kinds of problems, and 

encounters with real-world situations” (Romberg, 1989, p. 209) such as astronomy. Blum (2002) 

later noted “a substantial gap between the forefront of research and development in mathematics 

education, on the one hand, and the mainstream of mathematics instruction, on the other.”  

(p. 150). With such revolutionary standards, educators have worked to make mathematical 

concepts more palatable to students. Mathematical applications for various physical and 

industrial phenomena inevitably come to the forefront when one speaks of “willingness within 

the community of mathematics teaching in higher education to explore the potential of 

innovative practices” (Nardi, Jaworski, & Hegedus, 2005, p. 285). The practical application 

relevant to this particular study was the science of astronomy. The curriculum in this case was 

ODE, which is a subject that is a practical tool used in all the sciences. A project involving an 

astronomy activity was a platform of interest to explore mathematical application techniques 

involving ODE. 

A course in ODE is, by its nature, an extension of the theorems and techniques normally 

encountered in calculus. The emphasis in any ODE syllabus is typically on scientific and 

industrial applications. In the 1990s, the Mathematical Association of America enacted major 

reforms in teaching calculus. The reforms were summarized in Calculus: The Dynamics of 

Change (Roberts, 1996). It was recognized that the ideal calculus course should be “at the same 

time a culmination and a beginning” (Roberts, 1996, p. 1). In the same article, particular 

emphasis was placed on the importance of students using calculus as a springboard to pursue the 

other sciences. Roberts (1996) noted, “Not only must these students have a thorough grounding 

in calculus, but they need to be encouraged in their interests with some indications of how the 

subject relates to these interests” (p. 1). This reason in particular would lend credence to the 
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belief that “the calculus course has been, and in all likelihood will continue to be, the central 

course in the undergraduate mathematics curriculum” (Roberts, 1996, p. 5). 

Cole (1996), in defining a reform calculus course, referred to other courses, such as 

differential equations, that normally succeed calculus in undergraduate mathematics sequences. 

He examined three preliminary texts, Exploring Differential Equations via Graphics and Data 

(Lomen & Lovelock, 1996), Differential Equations (Blanchard, Devaney, & Hall, 1998), and 

Differential Equations: A Modeling Perspective (Borelli & Coleman, 1996). Borelli and 

Coleman’s text, in particular, emphasized modeling and visualization. The problems examined in 

their text included such topics as carbon dating and logistic population growth, where solutions 

involve the construction of models involving appropriate differential equations. 

A mathematical modeling project of a deep space probe involving students who have a 

genuine interest in pursuing such a project was a logical first step as part of an ODE project. 

With the undergraduate students involved in this study, there was a decided emphasis on 

elementary mathematical modeling. There has been an actual proposal for a deep space 

exploration of the Neptune system, “Trajectory optimization for a mission to Neptune and 

Triton” (Melman, 2007) which contains complex mathematical models. The students in this 

study learned the foundations in calculus and ODE on which such models rest. A primary 

example of one such principle is the simple concept of arc length. Many advanced concepts in 

celestial mechanics have their bases in calculus topics such as angular momentum, gravitational 

acceleration, and, of course, the conic sections. 

Although only one unmanned space probe (Voyager II) has briefly explored the 

immediate neighborhood of Neptune, the planet has been an object of continuing interest and 

speculation for over 200 years. Earth-based telescopes and instruments revealed the basic 
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structure and composition of Neptune and Triton. The Voyager II probe exponentially expanded 

this body of knowledge. Neptune has a “uniquely active atmosphere” (Cruikshank, 1995, p.xiii) 

and a complex magnetic field that envelops Triton and at least six other smaller satellites. 

Voyager II also revealed the nature of Triton as a body possibly captured from the outer solar 

system by Neptune’s gravitational pull. It has a uniquely eccentric orbit and an “astonishing 

surface geology” (Cruikshank, 1995, p.xiii), despite having the coldest recorded temperature in 

the solar system to date. More discoveries are made on a regular basis by the Hubble Space 

Telescope and other instruments in near-space Earth orbit. This continuing research generates 

interest in possible missions to the planet; “in-situ scientific investigations” (S. Stern, Lunine, 

Friedlander, & Chenge, 1995, p. 1151) have, in fact, been proposed. This interest provides a 

fertile landscape of curiosity for sufficiently motivated students. It is with this motivation that the 

students in this study were given the opportunity to plan a hypothetical journey of an unmanned 

probe to travel to Neptune and conduct a 3-year survey of the system. To get them started and 

adequately prepared, they were asked to describe the formulation of the arc length formula in 

calculus and subsequently show competence in solving related problems. These students 

elaborated on their work in a PowerPoint presentation describing how the mathematics would 

relate to the mechanics involved in making the space probe journey. These efforts stand as a 

concrete example of what Dowling (2013) referred to as an esoteric domain: “This domain is 

here conceived as a hybrid domain of, first, linguistic and extra linguistic resources that are 

unambiguously mathematical in terms of both expression and content and, second, pedagogic 

theory . . . that enables the mathematical gaze onto other practices” (Dowling, 2013, p. 1). 

There are many factors to consider in the student pursuit of such a study. Particularly 

relevant to this project is the fact that educators expect students to absorb “in a short time, basic 
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principles (in mathematics, but also in other scientific disciplines) that took humanity thousands 

of years to construct” (Sinclair, 1990, p. 19). Also relevant is the mathematical modeling process 

itself, and the need for “standing outside mathematics and looking into mathematics to find 

things that conceivably might help resolve the driving question” (Dossey, 2010, p. 88). Students 

in this study were asked to explore the oldest science to understand the mathematics involved in 

constructing the flight plan of a planetary probe. Student interest was a major consideration, as 

the opportunity existed for practical analytic scaffolding to “show promise for improving 

students’ learning of mathematical skills with deeper conceptual understanding” (Speer & 

Wagner, 2009, p. 530). 

Although the mathematics involved in Melman’s (2007) study was on the upper graduate 

level, the basic principles (e.g., conic sections, arc length) are accessible on an undergraduate 

level. Mathematical modeling in astronomy can be approached from a historical viewpoint. The 

longitudinal position readings of the planet Mars, as originally observed and recorded by Tycho 

Brahe, are readily available for study (Gingerich, 1983). 

Astronomy Education 

 The symbiosis between mathematics and astronomy in student learning should also be 

examined from the perspective of astronomy education. Despite the fact that astronomy is one of 

the oldest sciences, “research in astronomy education is a very new field” (Slater & Bailey, 2003, 

p. 20). The Astronomy Education Review (AER) began publication early in the new millennium. 

Prior to this, no such journals existed. Perhaps this could be attributed to the general state of 

astronomy education in the 20th century. In most major undergraduate liberal arts institutions, 

astronomy was either an elective or a topic covered in an Earth science course.  
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Since 2001, the AER has published significant results from several quantitative studies. 

“A Review of Astronomy Research” (Slater & Bailey, 2003, p. 20) was one of the first articles 

published in the journal. The article included a summary of research in astronomy education. In 

particular, the authors examined the Astronomy Diagnostic Test, an assessment tool conceived in 

1999. The test was first intended as an introductory astronomy survey for liberal arts majors. It 

was later redesigned, “revised and validated by extensive student interviews, to probe student 

understanding in a quantitative way” (Slater & Bailey, 2003, p. 30). It became a standardized test 

to explore misconceived astronomy notions (Deming & Hufnagel, 2000). The device has been 

used as both a pretest and a post-instructional indicator. The results verified significant initial 

student misconceptions on a wide variety of topics, from seasonal star positions and relative 

planetary distances to the nature of solar energy. Although there was evidence of increased 

awareness after traditional instruction, test results still indicated significant student 

misconceptions on various astronomical concepts. Comins (2001, pp. 46, 47) outlined many 

misconstrued statements assumed to be true by many undergraduate students. Some commonly 

mistaken notions include the following: 

 The Sun is solid. 

 Mercury, the closest planet to the Sun, is hot everywhere on its surface. 

 Saturn is the only planet with rings. 

 We see all sides of the Moon from the Earth. 

 Black holes are holes in space. 

 Comet tails are always behind the comet. 

These are among a great many mistaken facts in astronomy that a significant portion of the 

general student population assumes to be true. Since the beginning of the new millennium, the 
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AER has chronicled systematic research conducted on the learning and teaching of astronomy. 

As mentioned before, the Astronomy Diagnostic Test has been streamlined to cover a broad area 

of topics (Deming & Hufnagel, 2000). Instructors are advised “to not use this as a cumulative 

test of astronomy knowledge, but rather as a test to compare instructional interventions and to 

characterize populations” (Slater & Bailey, 2003, p. 30). 

Student misunderstandings are closely associated with the notion of teacher 

understanding of the relevant subject material. The American Association for the Advancement 

of Science urges that teachers join with their students to “learn about the excitement and process 

of inquiry, with adequate content background and an appreciation for the philosophical, 

historical, and cultural importance of science” (Slater & Bailey, 2003, p. 30). Various 

pedagogical paradigms have been investigated by Barba and Rubba (1992), Atwood and Atwood 

(1996), and Trundle, Atwood, and Christopher (2003). Michael Zeilik, a pioneer of astronomical 

education research, has concentrated on university studies “that can verify and pragmatically 

inform instruction” (Slater & Bailey, 2003, p. 36). These educators and many others have 

contributed to a reform of astronomy education that has exploded in recent years.  

Closely associated with this reform movement is a continuing debate on “the role of 

mathematics in introductory college courses” (Slater & Bailey, 2003, p. 36). Mathematics is 

emphasized as a device to lead to greater understanding in any science course, especially 

astronomy. Reasoning skills are emphasized over rote memorization of algorithms. The resulting 

experience is, hopefully, “more rewarding to students and is more appropriate when modeling 

real astronomy” (Slater & Bailey, 2003, p. 36). 
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Chapter 3: Methodology 

The Testing Environment 

This study was conducted at Centenary College, Hackettstown, New Jersey, during the 

spring semesters of 2013 and 2014 and the summer semesters of 2014 and 2015. 

Centenary College is an independent 4-year liberal arts institution with a combined enrollment of 

approximately 4,000 graduate and undergraduate students. This study focused on the 

undergraduate liberal arts mathematics courses. 

Course Background 

The courses involved in this study cover first semester Introductory ODE, second 

semester Calculus II, and Introductory Astronomy. The main objective of both courses was to 

use various algorithms to solve any equation involving derivatives. The calculus text used was 

one of the many versions written by Larson, Hostetler, and Edwards (Calculus of a Single 

Variable: Early Transcendental Functions, 1999). The material over two semesters covered the 

first 10 chapters of the book, which contained the following topics: differentiation, integration, 

practical applications, convergence and divergence of infinite series, and conic sections. The 

ODE text was written by Rice and Strange (Ordinary Differential Equations With Applications, 

1994). The one-semester course covered six chapters, including such topics as first-order ODE, 

approximation methods, homogeneous and nonhomogeneous equations, and Laplace transforms.  

The prerequisite for the ODE course is two semesters of college calculus. The main 

objectives of elementary calculus are to become proficient in the techniques of differentiation 

and integration. Many of the concepts normally encountered in calculus, especially arc length, 

are also emphasized in ODE. The astronomy course was a science elective, with no prerequisites, 

offered to undergraduates and local high school students.  
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Student Background and Data Collection 

Three classes were involved in this study and the study covered the spring 2013, spring 

2014, summer 2014, and summer 2015 time frame. The study population consisted of traditional 

and international Centenary College undergraduate students, representing ODE, Calculus II, and 

Astronomy. Of the total student population who participated in this study (n = 19), only one 

student had a background in astronomy. The background included basic celestial terminology. 

Specific course data are summarized in Table 1. Student data are summarized in Table 2. 

Table 1 

Study Course Breakdown 

Semester Course No. students Median age Major 

Spring 2013 ODE 4 21 Math (3) / Math education (1) 

Spring 2014 ODE 6 21 Math (3) / Math education (3) 

Summer 2014 Calculus II 2 21 Math (2) 

Summer 2015 Astronomy 7 20 Elective 

 

Table 2 

Study Data Breakdown 

Semester Course Lecture 

Independent 

study Testing 

No. 

students Interview 

Presentation/ 

final project 

Spring 2013 ODE X X X - Oral 4 X - 4 X - 2 groups 

Spring 2014 ODE X X X - Written 6  X - 1 

Summer 2014 Calculus II X X Written 2  X 

Summer 2015 Astronomy X X Written 7  X 
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 Specific subject learning in ODE was as follows: 

 The subject material covered included first-order ODE, homogeneous and 

nonhomogeneous equations, approximation methods, and Laplace transforms. 

Concepts from earlier mathematics courses, including arc length, conic sections, and 

the ellipse were also emphasized. 

 The instructor created three PowerPoint presentations: 

o PowerPoint 1: Titled “Planets in Review,” the presentation covered basic solar 

system factoids and historical mileposts, including the number of planets; the 

age of each planet; and the surface features, atmosphere, size, and history of 

planet exploration (see Appendix G). 

o PowerPoint 2: Titled “Neptune,” it concentrated on the planet Neptune with 

attention to the possibility of life on the planet Neptune (see Appendix G).  

o PowerPoint 3: Titled “Creativity in Mathematical Thought,” it was a former 

graduate school project highlighting historical perspectives on mathematical 

modeling. In particular, the presentation highlights Johannes Kepler’s laws of 

planetary motion (see Appendix G). 

 Two accompanying diagnostic tests were given (see Appendix D) and a fact sheet 

about Neptune was distributed (see Appendix E). 

o The first test was designed to assess student comprehension of basic solar 

system knowledge and to serve as a benchmark of learning. For example, the 

test was designed to cover seemingly easy (e.g., general), moderate, and more 

challenging knowledge of the solar system. It was important for students to 
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grasp and apply their knowledge, as it was a key variable for determining the 

journey to the planet Neptune.  

o The fact sheet about the essential parameters of Neptune was from NASA’s 

website: http://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html. 

Students were tasked with comprehending the information provided in this 

fact sheet and using it as a springboard to take a deeper dive into 

understanding the intricacies of Neptune, thereby enhancing and contributing 

to the project of plotting a journey to the planet Neptune. The students were 

given a second test to measure their level of comprehension of the fact sheet. 

 The students were asked to pool their results to produce a PowerPoint presentation 

highlighting the elliptic properties of Neptune’s orbit. They were also asked to verify 

Kepler’s laws of planetary motion relative to the orbits of both Earth and Neptune. 

Three videotaped presentations constitute the main body of evidence for this study. 

o The PowerPoint presentations were videotaped: 

 PowerPoint 1 – Tuesday, May 7, 2013 

 PowerPoint 2 – Monday, May13,2013 

 PowerPoint 3 – Tuesday, May 13, 2014  

 The interviews were only conducted in the Spring Semester 2013 class (n = 4). The 

purpose of the interviews was to examine the extent of student comprehension 

relative to the understanding of the mathematical principles. The interviews were 

conducted two thirds of the way through the semester and served as a gauge to refine 

the project for this particular group of students. 
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Specific subject learning in Calculus II was as follows: 

 The study was continued in a Summer Semester 2014 Calculus class. The learning 

method primarily implemented was lecture, with an atmosphere that promulgated 

easy responses and questions from the students.  

 The main problem studied was a laboratory exercise developed at Clark College and 

based on an article written by Gingerich (1983). The problem involved calculating the 

orbit of the planet Mars using the longitudinal observations recorded by Tycho Brahe 

in the latter part of the 16th century. 

The students’ video-recorded presentations, along with the accompanying PowerPoints, 

constituted the main body of evidence for analysis. Each presentation and PowerPoint is 

presented and examined in the following section. The work performed by the Calculus II class is 

also presented. The following transcriptions, along with a display of a student solution to the 

problem posed in the calculus course of summer 2014, constitute a systematic recording of the 

relevant data collected. 

Subject learning in the astronomy course of summer 2015 was as follows: 

 Astronomical distances and the mathematical foundation of astronomical science 

 The solar system: Sun, planets, moons, asteroid belts 

 The New Horizons space probe flyby of the dwarf planet Pluto (July 2015) 

 The history of astronomy 

 Constellations, star formation, and galaxies 

 Pulsars, quasars, and black holes 

 Comets and meteors; the Perseid meteor shower (August 2015) 

 Text used: ASTRO2, Michael Seeds and Dana Blackman (2014) 



STUDENT COMPREHENSION OF MATHEMATICS 27 

 

 Several PowerPoint presentations were employed, including 

o Planets in review (see Appendix G) 

o Pluto rocks (see Appendix G) 
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Chapter 4: Student Videotaped Presentations and Projects 

This section is a compilation of the data collected from all five classes. The data include 

three videotaped presentations, one orbital ellipse project, and a worksheet project.  

Spring Semester 2013 

The following is a transcript of a presentation given by three students on May 7, 2013. 

These students were members of a class in ODE. The transcript is followed by the accompanying 

PowerPoint, along with a brief summary of the students’ efforts. 

Trajectory Toward Neptune – A Presentation 

Instructor: This is a presentation in a class in differential equations. I am the instructor, 

and our hypothetical little project involves the journey of an unmanned probe to the 

planet Neptune, the exploration of the planet Neptune thereof, and the mathematics 

behind such an adventure. Here I present my class [the students designated B, C, and D 

introduce themselves]. 

Student C: I am [Student C] and I’m from South Korea. Actually I am not a math major, 

like [my colleagues]. I am a business major. 

Student B: Actually I will start. Today we are going to start by talking about Neptune, 

which is the eighth planet of the solar system [Displays a slide titled “Facts and 

Figures”]. This planet was discovered by three people, Urban Le Verrier, John Couch 

Adams, and Jonathan Galle, in 1846. The orbit of Neptune around the Sun is almost 30 

times as far as Earth’s orbit. 

Instructor: Neptune’s orbit has a radius of almost 3 billion miles. 

Student B: The velocity of this planet is less than our planet, because the planet is further 

away 
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Instructor: The velocities are less. 

Student B: [Displays another “Facts and Figures” slide].   The volume is much heavier 

than Earth. Almost 58 times more than Earth.  

Instructor: It’s one of the gas giants.  

Student B: Compared to this planet, it [Neptune] is really, really huge. Its density is 

much, much lighter than Earth’s because it’s composed mostly of gas. 

Instructor: It’s mostly gas. 

Student B: There’s no logs, no earth, no heavy things. 

Instructor: It’s not land as we know it. 

Student B: It’s just made mostly of gas. That is why it is so light. It’s also very, very cold. 

The temperature is close to -300 degrees because this planet is the eighth planet from the 

Sun, very far from the Sun. That’s why it’s so cold compared to Earth. The atmosphere is 

composed of hydrogen and helium. Usually they are kind of a gas, so any kind of life 

cannot exist in this planet because there is no oxygen.  

Instructor: Not the kind of right mix that occurs on Earth. Earth’s atmosphere is mostly 

oxygen and nitrogen. The major part of the atmosphere on Neptune is methane, which 

accounts for the bluish color of the planet. 

Student B: So any kind of life cannot exist on this planet. 

Student C: [Displays another slide titled “Part 2: Voyager 2”].   So here is my part. It’s 

about Voyager, the second one. There are, like, two Voyagers: Voyager 1 and Voyager 2. 

You can see Voyager 2 [displays another slide] made to investigate other planets.  

Instructor: The first one was made to explore the inner planets (i.e., Jupiter and Saturn). 

This one was made to explore Jupiter, Saturn, Uranus, and Neptune. 
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Student C: So, like you said, it [Voyager 2] was launched in 1977. It was made to explore 

the outer Solar System and eventually interstellar space. As of today, it has been 

operating 35 years, 8 months, and 17 days so far. The spacecraft receives and transmits 

data via the Deep Space Network. So it is working still, along with its sister craft, 

Voyager 1.  

Instructor: They were both launched the same year: 1977. 

Student C: So now we know its extended mission. It was tasked with locating and 

studying the boundaries of the solar system. It is going further away, further and further. I 

would like to talk about the history of Voyager [displays another slide]. It’s very 

interesting, really. Conceived in the 1970s, Voyager was an idea of NASA. They 

proposed a planetary grand tour to study the outer planets. It was determined that 

utilizing gravity assists would enable a single probe to visit the four gas giants: Jupiter, 

Saturn, Uranus, and Neptune. 

Instructor: It’s known as the gravitational slingshot effect, using a planet’s gravitational 

force as a boost to, in effect, slingshot the probe to the next planet. 

Student C: At the same time requiring only a minimum amount of propellant and a 

shorter transit duration between planets. Originally, Voyager 2 was planned as Mariner 

12 of the Mariner program. Due to congressional budget cuts, the mission was scaled 

back to be a flyby of Jupiter and Saturn and renamed the Mariner Jupiter-Saturn Probes. 

As the program progressed, the name was later changed to Voyager, as the probe designs 

began to differ from previous Mariner missions [Displays another slide].  Each Voyager 

probe carries a gold-plated audio visual disk in the event that either spacecraft is ever 

found by intelligent life forms from other planetary systems. The disks carry photos of 
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the Earth and its life forms. It actually has [audio] recordings of the United Nations and 

the president of the United States [Jimmy Carter] and the children of the planet Earth. It 

also has songs and sounds, including babies wailing, waves breaking on the shore, and 

various songs. 

Instructor: If I’m not mistaken, it actually has a Chuck Berry record, “Johnnie Be 

Goode.” 

Student D: [Displays another slide titled Part 3: Trajectory].  I’m going to talk about the 

Voyager trajectories. The Voyagers [Voyager 2 before Voyager 1] were launched in 1977  

[Displays a slide showing a diagram of the Voyager trajectories against the backdrop of 

the Gas Giant orbits]. Voyager 1 was faster than 2 [Traces the trajectories on the 

diagram].  Voyager 1 went to interstellar space.  

Instructor: The Voyager 2 probe went by the orbits of Jupiter, Saturn, Uranus, and 

Neptune. In years, both Voyagers passed Jupiter in 1979, Saturn in 1981. Voyager 2 

reached Uranus in 1986, and Neptune in August of 1989.  

Student D: [Displays another slide titled “Gravity Assist”]. I’m going to explain how the 

Voyagers work. The Voyagers work on the principle of gravity assist. It uses the relative 

movement of the rocket and the gravity of the planet to alter, to change, the path and 

speed of the spacecraft. It saves propellant, time, and expenses. It accelerates, or 

redirects. 

Instructor: Uses the gravitational force as a boost. 

Student D: It causes elastic collision, even though there is no actual contact. 

Instructor: It uses centrifugal force at a certain speed and for a certain length. It [the 

probe] is acted upon by another force. 
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Student C: [Explains the diagram].  The velocity v of the probe is boosted by the 

gravitational force U as it travels around the planet, resulting in a net velocity v + 2U. 

The planet pulls the Voyager and gives it a 2U boost. The example is a tennis ball 

bouncing off a moving train. Imagine throwing a ball at 30 mph and a train approaching 

at 50 mph. The engineer of the train sees the ball approaching at 80 mph. After the ball 

bounces elastically, the bounce off the front will produce a velocity of 130 mph relative 

to the station. This is the end of our presentation [Displays a slide of references]. 

5-7-13 
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Facts & Figure

 

Facts & Figure
• Volume: 15,000,714,125,712 mi3 (57.723 x Earth)
• Density: 1.638 g/cm3 (0.297 x Earth)
• Effective temperature: -353  F
• Atmospheric constituents: Hydrogen, Helium,

Methane (Earth atmosphere consists mostly of N2 and O2
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Gravity Assist
- The use of the relative movement and gravity of a planet to
alter the path and speed of a spacecraft (typically in order
to save propellant, time, and expense).

- Accelerates and/or re-direct the path of a spacecraft.
- Elastic Collision (no actual contact…)

- Ex) a tennis ball bounces off a moving train. Imagine
throwing a ball at 30 mph toward a train approaching
at 50mph. The engineer of the train sees the ball
approaching at 80 mph and then departing at 80 mph
after the ball bounces elastically off the front of the
train. Because of the train’s motion, the departure is at
130 mph relative to the station.
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Summary  

The three students were in the college’s international program and were from South 

Korea. Student C was a business major, while Students B and D were mathematics majors. The 

presentation lasted approximately 15 minutes. They were asked to formulate a theoretical 

journey of an unmanned space probe from Earth to the planet Neptune. They were also tasked 

with describing the mathematics involved in planning such an adventure. The students presented 

their project in three sections, with each student explaining the relevant PowerPoint slides. 

Student B started with a section titled “Neptune.” He summarized two slides containing relevant 

facts about the planet. These slides included a history of the planet’s discovery in 1846 by the 

astronomers Le Verrier, Adams, and Galle. The physical characteristics of Neptune were also 

summarized, including orbit size and velocity, volume and density, atmospheric constituents, and 

average temperature. Student B also referred to the designation of Neptune as a gas giant and the 

unlikelihood of any life existing on the planet. 

Student C then presented the second section titled “Voyager 2.” The three slides 

contained information on the flights of the Voyager probes launched by NASA in 1977. Their 

joint mission was to use a rare planetary alignment to study the outer solar system by visiting the 

four gas giants: Jupiter, Saturn, Uranus, and Neptune. Student C noted that the probes are 

presently still receiving and transmitting data via the Deep Space Network. He then gave a brief 

history of the Voyagers’ mission, from its genesis in the 1960s as a planned grand tour of the 

outer planets to its final realization when the Voyagers were launched in 1977. Student C finally 

gave a brief description of the gold-plated audio-visual disks contained in both Voyager probes. 

These disks contain photos and audial recordings of Earth and its life forms. 
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Student D then presented the final section titled “Trajectory.” The two slides he presented 

delved into the mathematics behind the mission flight. He displayed the flight paths for both 

Voyagers on the first slide, and he explained why those paths differed. He noted that the Voyager 

I trajectory was altered to gain more information on Saturn’s moon Titan. This alteration caused 

Voyager I to take a path outside the ecliptic plane of the solar system and thus bypass the outer 

planets Uranus and Neptune. Voyager II stayed its original course and performed a close flyby of 

Uranus in 1986 and Neptune in 1989. 

Student D’s second slide was a diagram illustrating the mathematical physics behind the 

acceleration boosts known as gravity assists. Such boosts involve the use of the relative 

movement and gravity of a planet to alter the path and speed of a spacecraft. The ultimate result 

would be an acceleration and redirection of the spacecraft. Typically, this maneuver would be 

done to conserve propellant, save time, and defray expenses. Student D provided an example 

involving a tennis ball and a moving train. He concluded by noting references. 

The students who presented the first two sections were business majors. The 

presentations, “Neptune” and “Voyager 2,” were mainly expository. The third student, a 

mathematics major, conducted the final section, “Trajectory,” which contained a mathematical 

analogy to illustrate the phenomenon of gravity assist. 

The following is a transcript of a presentation given on May 13, 2013, by a student in a 

spring semester introductory course in ODE. The student, a senior, majored in mathematics, and 

her presentation was approximately 8 minutes long. A PowerPoint follows the transcript. 

Neptune: A Presentation 

Instructor: This is a presentation in a class in differential equations. I am the instructor, 

and our hypothetical little project involves the journey of an unmanned probe to the 
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planet Neptune, and the exploration of the planet Neptune thereof, and the mathematics 

behind such an adventure. Here I proudly present my student [introduces Student A]: 

Student A: Thank you. [Introduces herself] I would like to give my presentation on the 

planet Neptune. [Displays slide titled “Neptune Facts”] Neptune was, originally, in Greek 

mythology, the God of the Sea. It’s the eighth planet from the Sun, and it was discovered 

in 1846. Its orbit is approximately, what is it, 4 billion km. Its diameter is about 50,000 

km. Its mass is about 1.0247E26. That’s scientific notation, times 10 to the 26th power.  

Instructor: You could fit about four planets the size of the Earth in Neptune.  

Student A: Wow! That’s huge! [Displays another “Neptune Facts” slide] I think the 

reason why they named the planet Neptune as because of its bluish tint and that Neptune 

is the [Greek] God of the Sea.  

Instructor: Its atmosphere is mostly methane. 

Student A: Neptune has between 12 and 19 moons of varying size  

Instructor: That’s a whole bunch of small ones, but the one big one is Triton.  

Student A: The Voyager spacecraft recorded the lowest temperature reading in history: 

230 degrees below zero centigrade (40 degrees above absolute zero degrees Kelvin). I 

cannot even imagine such coldness. Neptune is about 30 times farther from the Sun than 

Earth. Its atmosphere is blue because it is composed mostly of hydrogen, helium, and 

methane. Neptune also has a ring system made of dark dust particles difficult to see, as 

opposed to Saturn’s bright ring system of ice particles. [Displays another slide] Neptune 

is the stormiest planet, with wind speeds approaching 2100 miles per hour.  

Instructor: These wind speeds were recorded by Voyager II. 
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Student A: Compared to hurricanes on Earth, these storms were 10, or was it 30, I 

forget, times more powerful. Significantly more powerful than storms on planet Earth! 

And the spot that’s on there [points to a spot on the slide] compares to a similar spot on 

the planet Jupiter. It’s a great storm, which, by the way, no longer exists. It was 

photographed in 1989, but recent photos taken by the Hubble Space Telescope reveal that 

it no longer exists. [Displays another slide titled “Neptune and Arc Length”] So a little bit 

with the math. For the trajectory to the planet Neptune, this is the arc length formula 

[displayed on screen]. I have an example of very simple curves, displaying how it’s 

broken down. So we’re using the distance formula, the Pythagorean Theorem. [Displays 

another slide] This is a picture of the orbit of Neptune. The red line is the orbit. [Displays 

another slide] This is a diagram of the trajectories of Voyager 1 and Voyager 2 [along 

with trajectories for Pioneer 10 and Pioneer 11, two similar probes that were launched in 

the early 1970s]. So it intersects here and here [points to Neptune’s orbit and Voyager 

II‘s trajectory]. It can’t just go in a straight line; it has to curve around because of the 

gravitational forces.  

Instructor: The trajectory has to curve to take advantage of the gravitational slingshot 

effects. Otherwise, the trip would have taken 40 years. You can’t just aim a rocket at 

where a planet is now. You have to figure out where it’s going to be 20 years from now. 

Student A: Right. [Displays another slide] Yes, this is a kind of simpler form of the 

previous slide. This basically shows the trajectory from the Earth, curving around the 

planet Jupiter, and on to Neptune. If it were launched in January 2018 and employed a 

gravitational boost from Jupiter, it would arrive at Neptune in January of 2033. So 
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basically you would use the formulas of the previous slides to calculate the trajectory 

path of this voyage, and thank you! 
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5-13-13 

Neptune 

Neptune facts
 Neptune- God of the Sea

 8th planet from the sun

 Discovered September of 1846

 Orbit- 4,504,000,000 km from the Sun

 Diameter- 49,532 km

 Mass – 1.0247e26

 

Neptune Facts

 Largest Moon is Triton

 Coldest Temperature recorded on Triton (-230 C)

 30 times farther form the sun then Earth

 Atmosphere blue because its made of mostly gas

 Hydrogen

 Helium

 Methane

 Has rings made of dust
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Neptune Facts
 Stormiest planet

 Winds reaching up to 1,240 MPH

 

Neptune and Arc Length

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Neptunes Orbit
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Summary  

Student A chose to give an individual presentation because of an overriding interest in 

astronomy. The first three slides involved basic information on the planet Neptune, including the 

history of its discovery. Physical characteristics were also mentioned, including mass, diameter, 

atmosphere, and distance from the Sun. Student A also mentioned Neptune’s main moon, Triton, 

and the findings of the Voyager 2 spacecraft when it flew by the planet in August 1989. Unique 

physical phenomenon were also mentioned, including frigid temperatures and ferocious storms. 

In addition to expository slides, Student A displayed four slides explaining the 

mathematics behind the proposed mission to Neptune. She began with an illustration of the arc 

length formula, which is normally covered in first-semester calculus. She gave a brief 

explanation of the formula and its relevance to orbital trajectories. She then displayed the historic 

paths of both Voyager probes in their grand tour of the outer planets. She also mentioned the 

difficult procedure of predicting the location of a planet years after the launch of a probe. In her 
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final slide, she explained the orbital path of a probe to Neptune, which would take advantage of a 

gravitational boost from the planet Jupiter. Student A concluded with references. 

Spring Semester 2014 

The following is a transcript of a videotaped group presentation given by six students 

designated TC, HD, KC, TT, CV, and RL, who took an introductory course in ODE in Spring 

Semester 2014. The students were traditional upperclassmen. The presentation lasted 

approximately 8 minutes. The accompanying PowerPoint follows the transcript. 

Neptune: A Presentation 

TC: [Displays slide] Neptune sidereal period: the time required for a celestial body within 

the solar system to complete one revolution with respect to the fixed stars. This can be 

calculated if its synodic period (time for it to return to the same position relative to Sun 

and Earth) is known. 

HD: [Displays slide] Tropical period: customary to specify positions of celestial bodies 

with respect to the vernal equinox. Because of precession, this point moves back slowly 

along the ecliptic. 

TT: [Displays slide] Aphelion is a point in the orbit of a planet or a comet at which it is 

farthest from the Sun. Perihelion is the point in the orbit of a planet or a comet at which it 

is nearest to the Sun. 

HD: [Displays slide] Semi-major: one half of the major axis of an ellipse (as that formed 

by the orbit of a planet). 

TT: [Displays slide] Eccentricity: an astronomical object is a parameter that determines 

the amount by which its orbit around another body deviates from a perfect circle. This is 

the equation [points to equation]. E is the total orbital energy, L is the angular 
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momentum, m{red} is the reduced mass, and alpha is the coefficient of the inverse-

square law central force. 

KC: [Displays another slide] Okay, Neptune is the eighth planet from the Sun. So 

calculating the average distance of Neptune from the Sun, you’re going to use Kepler’s 

third law. This states that the square of the period is proportional to the cube of the 

average distance. In other words, the ratio of the period squared to the distance cubed of 

one planet is the same as the similar ratio for another planet. The period is in years, and 

the distance is in terms of astronomical units (AU) [where 1 AU = 93,000,000 miles]. So 

the algebra is right there [points to figures on slides]. The precise numbers are 164.79 

years and 30.104 AU. 

TC: [Displays another slide] So the equation for Neptune’s orbit is given by (1-e^2)/(1-

e*cos This is the equation of an ellipse. Neptune’s elliptical, which means that it’s 

almost an exact circle. So we were tasked with the question of distance. That is, the time 

it would take to travel 50,000 km at the perigee as opposed to 50,000 km at the apogee. 

Since it’s so closely related to a circle, it [the time] doesn’t actually change that much. So 

using Kepler’s second law, equal area in the arc of a circle, you would simply calculate 

the arc length divided by the radius, which would give you theta. Once you calculated 

theta, you would get a fraction of the total years in one period. It turns out to be, it’s 

tough to read these slides, but essentially it is 2.59 hours [at perigee]. 

CV: [Displays another slide] versus 2.538 hours at apogee. It’s actually moving faster, 

which is why [garbled audio]. The slight differences in the numbers indicates an almost 

perfect circle. 
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RL: [Displays another slide]  So I’m going to look at Kepler’s third law. This states that 

the square of the period of any planet is proportional to the cube of the semi-major axis of 

its orbit. This third law can be applied to anything. It doesn’t necessarily have to be 

planets in our system. It can be applied to satellites as well. It’s useful in finding orbits of 

moons and binary stars. [Displays another slide] So we’re solving for Neptune’s orbital 

period using his [Kepler’s] law. I basically plugged in numbers [points to equations on 

board]. So I came up with 164.8 years. [Displays another slide] Strange facts about 

Neptune. The strongest winds in the solar system have been recorded on Neptune, at 

speeds of up to 2000 km per hour. Neptune sometimes orbits the Sun further away than 

Pluto. From 1979 to 1999, Pluto was closer to the Sun than Neptune. As Pluto was 

classified as a planet at the time, Neptune was then the ninth planet from the Sun. 

[Displays another slide] Neptune was almost named Le Verrier, [after] the French 

astronomer that first saw it. In certain regions of Neptune, the length of the day varies by 

as much as 6 hours. Because of the pressure on Neptune’s surface, it may be a giant 

diamond or oil factory. [Displays another slide] So this is the proof of Kepler’s third law. 

You derive it from the second law. I used this, which was the centripetal acceleration. So 

you make these substitutions, you get the square of the period. That’s our presentation. 
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Neptune
(Differential Equations Class)

 

SIDEREAL 
PERIOD

• The time required for a celestial body within the solar system to 
complete one revolution with respect to the fixed stars

• Can be calculated if its synodic period (time for it to return to the 
same position relative to Sun and Earth) is known
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Tropical Period

• Customary to specify positions of celestial bodies with 
respect to the vernal equinox. 

• Because of precession, this point moves back slowly along 
the ecliptic

 

• The point in the orbit of a planet or a comet 
at which it is farthest from the sun

The point in the orbit of a planet or a comet at 
which it is nearest from the sun
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Semi-major

• One half of the major axis of an ellipse (as that 
formed by the orbit of a planet)

 

Eccentricity

• an astronomical object is a parameter that determines the amount by 
which its orbit around another body deviates from a perfect circle

• E is the total orbital energy, L is the angular momentum, m {red} is 
the reduced mass. and alpha the coefficient of the inverse-square law 
central force
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Average Distance 
to the Sun!

• Kepler’s Third Law
• Period^2 = Distance^3 (with periods 

in years and distance in AU)
• You are given period = 164.8 years 

• 164.8^2 = 27,159.04 

• cube root of 27,159.04 = 30.059 

• Distance = 30.059 AU

• Miles= 3 billion miles 

• (The precise numbers are 164.79 
years and 30.104 AU.)

 

Equation for Neptune orbit

• ( 1- e²)a/  1- e cosθ (equation)

• e= 0.0086  (Eccentricity)

• a=4.498 x 10 to the 9th  kilometers  (aphelion)

 



STUDENT COMPREHENSION OF MATHEMATICS 56 

 

Traveling to 
Neptune!

• Perigee
• Shortest distance from the planet to the sun

• s/r=theta

• S= arc length                                                      r= radius

• S= 50,000 kilometers                                       r= 4,444,450,000 kilometers

• Theta= 0.0000112499

• theta(167.8 years/2pi) x (360days/1 year) x (24 hours/1 day)

• = 2.59 hours for 50,000 kilometers at Perigee

Traveling to Neptune!

• Apogee

• Longest distance from the planet to the sun

• s/r=theta

• S= arc length                     r= radius

• S= 50,000 kilometers      r= 4,545,670,000 kilometers

• Theta= 0.0000109999

• theta(167.8 years/2pi) x (360days/1 year) x (24 hours/1 day)

• = 2.538 hours for 50,000 kilometers at Apogee
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Kepler’s Third Law states that the square of the period 
of any planet is proportional to the cube of the semi 
major axis of its orbit

These laws were originally derived about the 
planets orbits around the sun but can be applied to 
any satellite orbits as well.

Useful in finding orbits of moons and binary stars.

 

Solving for Neptune’s Orbital Period
• Kepler's 3rd Law states that

P2 = a3

Where P is the orbital period and a is the semi-major axis of the 
elliptical orbit (also the average distance from the Sun). The simplest 
way to do this problem is by using ratios. We know that for Earth, P = 1 
year and a = 1 AU. So let's set up the ratio:

• PN2/P2 = aN3/a3

• Now, solve for the period of Neptune:

PN2 = (aN/a)3*P2

Now take the square root of both sides:

PN = (aN/a)3/2*P

Now plug in the values and do some arithmetic

PN = (30.06 AU/1 AU)3/2*1 year = 164.8 years
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Strange Facts About Neptune

• The strongest winds in the Solar System have been recorded 
on Neptune, at speeds of up to 2,000 kilometres per hour.

• Neptune sometimes orbits the Sun further away than Pluto. 
From 1979 to 1999, Pluto was closer to the Sun than 
Neptune. As Pluto was classified as a planet at the time, 
Neptune was then the ninth planet from the Sun.

 

Continued

• Neptune Almost Was Named "Le Verrier.“

• In Certain Regions of Neptune, the 
Length of the Day Varies by as Much as 
Six Hours.

• Neptune May Be a Giant Diamond and Oil 
Factory.
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Proof to Kepler’s Law

 

Summary 

 The first two students presented five expository slides. The information on these slides 

included basic astronomical terms (sidereal and tropical period, aphelion and perihelion). They 

also displayed a diagram of an orbital ellipse, along with the equation for eccentricity of an 

ellipse. The third student attempted to use Kepler’s third law to calculate Neptune’s distance 

from the sun using astronomical units. In her equation, she used the average distance of the Earth 

from the Sun (1 AU) and the orbital periods of the Earth (1 year) and Neptune (164.8 years). The 

student calculated an average distance of 30 AU for the planet Neptune.  

The fourth student presented an expository slide displaying the equation of Neptune’s 

orbit. The fifth student gave an example illustrating Kepler’s second law, which basically states 

that a planet moves faster in its orbit when it is closer to the sun. He noted the fact that the orbit 

of the planet Neptune is an ellipse with low eccentricity. This makes the orbit close to being a 

perfect circle. As a result, his comparison speeds were very close. The final student attempted to 
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derive Kepler’s third law by creating a mathematical proportion model using actual figures. He 

also mentioned several strange facts about the planet Neptune. These included high winds and 

varying day lengths. 

Calculus II, Summer 2014 

Two students in this class were asked to create a mathematical model of the orbit of the 

planet Mars using the longitudinal readings first recorded by the astronomer Tycho Brahe in the 

16th century. Both students successfully calculated the elliptical orbit of the planet using the 

following data set: 

Date Heliocentric longitude of Earth Geocentric longitude of Mars 

February 17, 1595 159’ 135’ 

January 5, 1597 115’ 182’ 

September 19, 1591 6’ 284’ 

August 6, 1593 323’ 347’ 

December 7, 1593 86’ 3’ 

October 25, 1595 42’ 50’ 

March 28, 1587 197’ 168’ 

February 12, 1589 154’ 219’ 

March 10, 1585 180’ 132’ 

January 26, 1587 136’ 185’ 

Both students used instructions developed by a Clark College astronomy course (see Appendix 

C). One student successfully completed the task and constructed a model of the orbit of Mars. 

She followed the instructions to triangulate five positions of the planet in its orbit (see Figure 1). 
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Figure 1.The orbit of Mars.  

The student was asked to calculate the length of the planet’s semimajor axis based on the 

scale she had used in constructing her diagram. The results of her calculations were as follows: 

1. Semimajor axis (scale) = 6.985 cm 

2. Semimajor axis = 1.397 AU 

3. Percent error = 8.8% 

4. Semimajor axis = 209,550,000 km 

5. Distance of closest approach = 57,150,000 km 

6. Distance of greatest separation = 133,350,000 km 

7. (Your) value of eccentricity = 0.27 

8. Percent error = 65.9% 
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The actual semimajor axis of Mars is 1.52 AU, which corresponds to approximately 227,920,000 

km. 

Astronomy, Summer 2015 

This elective course was taken by six undergraduate science majors and two local high 

school students. The text used was Astro 2: Instructor Edition (Seeds & Backman, 2014). The 

teaching method was primarily lecture driven, with the instructor giving daily PowerPoint 

presentations. The course content was informational; although mathematics was not emphasized 

overall, the introduction involved explanations of the terms light year, astronomical unit, and 

parsec. Since these terms involve exponentially large numbers and distances that are difficult to 

comprehend, the introduction covered mathematical notions such as scientific notation and 

elementary distance equations. The dwarf planet Pluto was also emphasized, as the New 

Horizons space probe encountered the world in July 2015. A worksheet was given with five 

questions: 

 It took nine years for the New Horizons probe to reach Pluto. How fast was it 

travelling in miles per hour? 

 If there was a straight road from Earth to Pluto, and your car was travelling at a 

constant speed of 65 mph, how long would it take to reach Pluto? 

 How long does it take for any electronic transmission to travel from Pluto to Earth? 

(You should come up with about 4.5 hours) 

 How big is a billion? (What does that figure mean to you?) 
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Chapter 5: Analysis and Results of Student Data Collection 

The goal of this study was to examine student learning techniques and problem-solving 

abilities when tasked with formulating a mathematical model of the orbits of our planetary 

neighbors, specifically Neptune and Mars. Topics of learning included the study research, the 

conclusions, the laws of planetary motion as discovered by Johannes Kepler in the beginning of 

the 17th century, the analysis of basic calculus and ODE laws and algorithms, and basic celestial 

mechanics. The specific mathematical principles needed for this study included arc length, 

accelerated forces, angular momentum, conic figures, and a fundamental understanding of 

cosmological distances. Students were also encouraged to read elementary astronomy texts to 

become familiar with relevant celestial terminology. 

The subject of this interdisciplinary relationship between astronomy and mathematics 

was explored from Spring Semester 2013 through Summer Semester 2014. 

 The Spring Semester 2013 included four students in two different ODE classes. The 

students participated in lecture, independent study, oral testing, and interviews. They 

were tasked with preparing a PowerPoint presentation that showcased their learning. 

(Their presentations and accompanying interviews are indexed in Appendix A.)  

 This investigation continued in a Spring Semester 2014 ODE class with six students. 

The students participated in lecture, independent study, and testing. They were also 

tasked with preparing a PowerPoint presentation showcasing their learning. (Their 

presentations and accompany interviews are indexed in Appendix B.) 

 The investigation continued with the Summer Semester 2014 Calculus class 

consisting of two students. The questions raised by the participating study students in 

Spring Semester 2014 were incorporated into this class. The students participated in 
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lecture and independent study by way of an experiment in orbital ellipses. Their final 

project did not require a PowerPoint presentation. They focused instead on 

documentation of an orbital ellipse of the planet Mars using Johannes Kepler’s laws 

(see Appendix C).  

 The investigation concluded with the Summer 2015 Astronomy class composed of 

eight students. The class was an elective the students chose to fulfill various degree 

requirements. The class also included two local high school students. This class was 

included in the investigation to examine student familiarity (or, perhaps, lack thereof) 

of the mathematics behind various astronomical concepts and to take advantage of 

several astronomical events occurring at that time. 

Astronomy has often been called the oldest science. What is seemingly old assumes new 

relevance when students discover the value of a forgotten science. In this study, students were 

asked to make the connection between the skies above and modern-day undergraduate 

mathematics. The specific data examined included the following: 

1. The presentation and accompanying PowerPoint “Trajectory Toward Neptune” 

conducted by Students B, C, and D on May 7, 2013. 

2. The presentation and accompanying PowerPoint “Neptune” conducted by Student A 

on May 13, 2013. 

3. The presentation and accompanying PowerPoint “Neptune” conducted by six students 

in the Spring Semester 2014 Introductory Differential Equations class. 

4. The calculation of the orbit of Mars provided by a student in the Summer Semester 

2014 Calculus II class. 

5. The survey given to the Summer Semester 2015 Astronomy class. 
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The data were examined with the specific purpose of answering the research articles of question 

posed in the Introduction. With respect to these data, several claims are made, followed by the 

reasons why these claims are made: 

1. There are varying levels of student familiarity with solar system knowledge: In the 5-

7-13 presentation, Student B gave a detailed profile of Neptune, and Student D gave an analysis 

of the Voyager II journey. In the 5-13-13 presentation, Student A also described slides of 

Neptune and the Voyager II probe. In the May 2014 group presentation, some of the students 

merely presented definitions with accompanying pictures culled from the Internet. One student 

presented a slide with strange facts about Neptune. The Summer 2015 Astronomy class had little 

background in either mathematics or astronomy. Their appreciation of astronomy can only be 

represented by positive student evaluations. 

2. Astronomy can be used as a tool for better understanding of mathematics: In the 5-7-13 

presentation, Student C gave a mathematical explanation of the phenomenon of gravity assist, 

along with an illustrative slide. In the 5-13-13 presentation, Student A explored the concept of 

arc length by illustrating the formula with a slide juxtaposed with a slide illustrating the orbit of 

Neptune. Three students in the Spring Semester 2014 class examined mathematical implications 

of astronomical phenomena; Student KC used Kepler’s third law to calculate the average 

distance of Neptune from the Sun, Student TC used Kepler’s second law to approximate the rate 

differences between Neptune’s orbit at apogee and perigee, and Student RL used and derived 

Kepler’s third law to calculate Neptune’s orbital period successfully. The student in the 2014 

Calculus class successfully used longitudinal readings to trace the orbit of Mars. 
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3. Visual displays were used to illustrate aspects of mathematical and astronomical 

synchronicity: The three PowerPoint presentations offered in Spring Semesters 2013 and 2014 

constituted visual evidence of student efforts and interest. 

4. Historical applications of mathematical modeling were used to support the student 

learning process: In the Spring Semester 2014 class, Student KC used Kepler’s third law to 

calculate planetary distance, Student TC used Kepler’s second law to illustrate varying orbital 

speeds, and Student RL used the third law to calculate an orbital period. In the summer 2014 

class, the student used Kepler’s first law, along with Tycho Brahe’s actual longitudinal readings, 

to calculate to calculate the orbit of Mars. As noted before, Kepler’s laws are mathematical 

models that forged a bridge from ancient to modern astronomy. 

5. Mathematical algorithms were used to construct astronomical models: Although no 

actual algorithms were displayed, the 5-7-13 presentation given by Student D used a diagram 

illustrating the mathematical physics behind acceleration boosts. In the 5-13-13 presentation, 

Student A displayed the arc length formula to illustrate orbital trajectories. The Spring Semester 

2014 students displayed equations for ellipses and used proportionality models to demonstrate 

Kepler’s laws. The summer 2014 student used longitudinal readings to formulate the ellipse 

demonstrating Kepler’s first law. 

The students’ work during the semester and post semester feedback indicated evidence 

supporting the benefits of independent and collective mathematical application coupled with a 

genuine interest in discovering the symbiotic relationship between astronomy and mathematics. 

An examination of the student data collection, as compiled from various teaching methods, 

supported the observation that students are open to different learning techniques. Lecture tends to 
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be the most common teaching technique, but students are equally receptive when lectures are 

supplemented with visual displays, preliminary testing, or interviews. 

Diagnostic Test Results 

The results from the written test (see Appendix D) given to the six students at the 

beginning of the Spring Semester 2014 ODE class revealed a lack of basic knowledge of the 

solar system. When the instructor reviewed the results with the students, he learned that 

astronomy was not part of their education process. Therefore, students had difficulty connecting 

celestial knowledge to basic mathematical principles such as the ellipse, arc length, and basic 

acceleration mechanics. All three of these mathematical principles are covered in either ODE or 

Calculus II. More important, command of these mathematical principles is essential to plotting 

the journey to the planet Neptune. The average scores of the six students who participated in the 

diagnostic testing reflected less than 40% comprehension of basic solar system knowledge. 

As mentioned previously, one student had a background in astronomy. This student was 

in the Spring Semester 2013 ODE class. She was not tested, as the instructor was aware of her 

previous astronomical knowledge. Upon post presentation discussion with the instructor, she 

acknowledged that her astronomical ability aided her in making an immediate connection 

between the two sciences. 

Lecture 

Based on the student test performance (spring 2014), the instructor created three 

PowerPoints designed to provide basic celestial knowledge, supplement the fundamental 

differential equation course requirements, and motivate independent learning to fulfill the 

assignment (all three PowerPoints are displayed in Appendix F). The first, “Planets in Review,” 
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gave a brief summary of the nine major planetary bodies in the solar system. Brief anecdotes 

were displayed for each planet. These included the following: 

1. If Mercury replaced the Moon in orbit around Earth, tidal waves would be over 400 

feet high, and coastal cities would no longer exist. 

2. The Venera probes of the 1970s revealed the surface of Venus to be utterly 

inhospitable to any life-forms.  

3. Earth is the only place in the solar system where life of any kind is actually known to 

exist. Life-forms range from intelligent (Albert Einstein) to not so intelligent (Stan 

Laurel and Oliver Hardy). 

4. Deimos, a moon of Mars, has a gravitational force so weak that one could literally 

jump off its surface into space. 

5. The Shoemaker-Levy comet impacted the surface of Jupiter in 1994. If the same 

comet had struck Earth, global extinctions would have resulted. 

6. The Cassini probe, a joint project of NASA and the European Space Agency, has 

been exploring the Saturn system since 2004. In 2005, the Huygens sub probe made a 

soft landing on the surface of Saturn’s moon Titan, the only satellite in the solar 

system with a significant atmosphere. In the same year, Cassini also viewed active 

warm water geysers on the tiny moon Enceladus. 

7. Uranus was visited by Voyager II in 1984. Its rotational axis is tilted nearly 90 

degrees. Its five major moons are named after characters created by William 

Shakespeare and Alexander Pope. 
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8. Voyager II flew by Neptune in 1989. It recorded the fiercest winds in the solar system 

(nearly 2100 mph). It also recorded the coldest temperature (40 degrees above 

absolute zero) on Neptune’s cantaloupe moon, Triton. 

9. The picture of Pluto and its moon Charon was taken by the Hubble Space Telescope. 

The Discovery probe, launched in 2005, arrived at the planet in July 2015. 

Each planet description was accompanied with a list of movies made about the planet. 

This was done not only for entertainment purposes, but also to contrast actual exploratory 

evidence with popular fanciful depictions. The ultimate objective of this particular presentation 

was twofold: to provide information in an entertaining form and to display phenomena 

associated with each planet of the solar system visually. 

The second PowerPoint, “Neptune,” was created to provide necessary background 

information for the implementation of student projects. The planet Neptune was chosen as the 

basis for this project for a number of reasons. The inner planets (Mercury, Venus, and Mars) 

have been extensively studied and explored. The gas giants Jupiter and Saturn have also been 

examined and visited by unmanned space probes. In contrast, Neptune has been visited only 

once, by the Voyager II space probe in August 1989. The brief flyby revealed a planet in 

meteorological turmoil, along with a geologically active main satellite, Triton. The discoveries in 

this encounter included the following: 

1. The highest recorded wind velocities (2100 mph) and a great storm (designated the 

Great Blue Spot) on Neptune itself. 

2. The lowest recorded temperature (40 degrees above absolute zero) on the moon 

Triton. 

3. Active geysers spewing liquid nitrogen on Triton. 
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Melman (2007) wrote a thesis report titled Trajectory Optimization for a Mission to 

Neptune and Triton. The mathematics displayed in the report were extremely complex and 

outside the range of the undergraduates involved in this study. The concepts of orbital ellipses 

and arc lengths, however, form the bases of trajectory analysis. These elemental notions are 

commonly covered in undergraduate calculus and differential equations courses. The ultimate 

objective for this PowerPoint was to provide background and familiarity with the planet, which 

was also the objective of this mathematical exercise. 

The third PowerPoint presented was titled “Creative Thought in Mathematical History.” 

The purpose of this PowerPoint was to present the creative processes evident in several historical 

breakthroughs in mathematical history. From the tile proof of the Pythagorean Theorem to the 

creation of the Mandelbroit set, most historical mathematical discoveries have been characterized 

by intuitive innovation and plenty of hard work. This presentation of the mathematical thought 

processes used by great mathematicians in history was displayed to the students in this study to 

inspire them and to aid them in their own creative approaches to the problem at hand. 

One of the scientists examined in this presentation was Johannes Kepler, who used 

mathematical reasoning to arrive at the three basic laws of planetary motion. In particular, he 

examined the positions of the planet Mars, as recorded by the astronomer Tycho Brahe. Over a 

period of 4 years of research, Kepler concluded that the orbit of Mars is an ellipse with the sun as 

one of the focal points. This discovery marked the dawn of modern astronomy, and it also served 

as evidence of the importance of mathematics in the scientific method. The students in the 

Summer 2014 Calculus class used Tycho Brahe’s readings to calculate the elliptical orbit of 

Mars. The ultimate purpose of this PowerPoint was to provide students with insights into the 
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nature of mathematical reasoning. The presentation was also meant to highlight the efforts of 

Johannes Kepler in creating a mathematical model. 

Students reacted positively to the PowerPoint lecture style and expressed a desire to 

proceed with the assignment. Specifically, students were intrigued by the intricacies of planetary 

motion and fascinated by the various factoids about the nature of our cosmic neighborhood. An 

analysis of each PowerPoint presentation follows, in which each of the research articles of 

question is addressed: 

1. What is the level of student understanding of astronomy? 

2. What evidence is there that students, either individually or as teams, use astronomy as 

a tool for a better understanding of mathematics? 

3. Are visual displays of astronomy (i.e., PowerPoints) conducive to a greater 

understanding of mathematics? 

4. Is there any evidence that astronomy can be used as a device leading toward a better 

understanding of difficult mathematical concepts (i.e., arc length, ellipses)? 

a. What calculus and ODE algorithms were applied to the tasks of determining 

planetary motion and orbital length? 

5. Is there any evidence that exposure to the history of astronomy, and its connection to 

mathematics, is conducive to greater student appreciation of mathematics? 

The first presentation, “Trajectory to Neptune,” was performed on May 7, 2013. The participants 

were three students in the college’s international program. Each one presented a section. The first 

two sections were expository in nature, while the third section delved into the mathematics 

involved. Students B and C, who presented the first two sections, were business majors. Their 

sections reflected a nominal understanding of astronomy, to answer Question 1. A visual display 
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of astronomy was evident in both sections. However, there was no evidence of relevance to a 

greater understanding of mathematics (Questions 2, 3, and 4). A partial answer to Question 5 was 

given by Student C, who presented a history of the Voyager II probe. Student D, who presented 

the final section, was a mathematics major. In his section, he addressed the relevant 

mathematical questions. He used a solid understanding of astronomy (Question 1), along with an 

effective visual display (Question 3), to use astronomy as a tool for deeper mathematical insight 

(Question 2). In particular, he used a model involving a tennis ball and a moving train to 

illustrate the phenomenon of gravity assist (Question 4). It should be noted that this example is 

sometimes examined in first-semester calculus and physics. Student D provided sufficient 

evidence in his presentation to answer the first four articles of question. 

The second PowerPoint presentation was held on May 13, 2013. It was given by Student 

A, who was an upper-class mathematics major. Her solo presentation was titled “Neptune.” She 

had an inherent interest and nominal understanding of astronomy (Question 1). She used her 

knowledge of orbital paths to come to a greater understanding of arc length (Question 2). She 

used visual displays in her presentation to make the connection between orbits and arc lengths 

(Question 3). She also investigated the large numbers involved in calculating the distance and 

mass parameters of distant planets. Citing orbital trajectories as examples, she displayed the arc 

length formula and explained this formula in terms of the Pythagorean Theorem (Question 4). 

She successfully addressed four articles of question in a presentation marked by enthusiasm and 

interest. 

The third PowerPoint presentation was held on May 13, 2014. It was a group presentation 

given by six members of a class in differential equations and also titled “Neptune.” The students 

displayed nominal interest in astronomy, as evidenced by the quality of the slides they prepared 
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(Questions 1 and 3). Each student was responsible for explaining a slide. Two of the students 

presented slides displaying astronomical terms. One student displayed the equation of the 

eccentricity of an ellipse. Three students addressed the mathematics involved in Johannes 

Kepler’s laws of planetary motion. In doing so, they gave evidence of using astronomy as a 

means to come to a better understanding of mathematics. Specifically, each student explored 

mathematical modeling (Question 2). One student used Kepler’s third law to calculate the mean 

orbital radius of Neptune, which is basically an example of exponential proportionality. She 

successfully calculated a mean radius of 30.1 AU. Another student used Kepler’s second law to 

compare the planet’s rates of speed at different locations in orbit. This law states that a given 

planet’s velocity increases as it approaches the sun. He successfully calculated two mean rates 

that were very close in value. However, he noted how close Neptune’s elliptical orbit came to 

being a perfect circle. The third student used relevant figures, comparing Earth and Neptune, to 

derive Kepler’s third law as a mathematical model. He displayed his figures and noted several 

anomalies about the planet. All three students successfully used astronomical models to verify 

underlying mathematical theories. They also used Kepler’s laws, which represent a milestone in 

the history of astronomy. In doing so, they successfully addressed all five articles of question. 

With regard to the Summer 2014 Calculus class, lecture was the primary motivational 

tool because the course curriculum demanded a focus on the fundamentals of differentiation and 

integration algorithms. Opportunities to create mathematical models were therefore limited 

compared to the ODE classes. Nonetheless, when these students were presented with the 

opportunity to optimize their learning by including the development of a mathematical model 

(specifically, the orbit of Mars as opposed to Neptune), they welcomed the assignment.  
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It should be noted that the instructor intentionally chose the planet Mars, as opposed to 

Neptune for the end point of the orbital project for the following reasons:  

 Johannes Kepler’s laws are relevant to the orbits of all planets. 

 Johannes Kepler’s laws are essential and fundamental to both calculus and ODE 

mathematical models. 

 Johannes Kepler relied upon the actual longitudinal recordings of Tycho Brahe to 

calculate the orbit of Mars. These data are commonly used in a standard calculus 

course to calculate the equation of an ellipse. Mastering calculus is the precursor to 

mastering ODE. 

 At the time of Johannes Kepler’s breakthroughs, Neptune had yet to be discovered, 

which made it a more relevant and ultimately a more challenging project for a class in 

ODE as opposed to calculus. 

PowerPoint Analysis 

The PowerPoint presentations were given by 10 students, including four students from 

Spring Semester 2013 and six students from Spring Semester 2014. All 10 students involved in 

the PowerPoint presentations represented an unusual amalgam of interest, intelligence, and 

enthusiasm. These qualities are not present in every student in every class. It has been noted that 

the actual mathematics involved in the calculation of the celestial mechanics of such a deep 

space voyage (the trajectory to the planet Neptune) is extremely complex. The students’ 

assignment involved the basic mathematical principles upon which the more complex equations 

are based.  

While the PowerPoint presentations reflected students’ appreciation and ability to 

connect mathematics and astronomy, there was a noticeable difference in the expression of the 
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content. For example, the student from Spring Semester 2013 who developed and presented the 

presentation on her own displayed a solid command of mathematics and a distinct passion for 

astronomy. It was noted that this student already possessed a strong command of ODE and 

Calculus II, as well as a basic knowledge of astronomy. This student successfully intertwined her 

knowledge of astronomy with the mathematics involved. This was evident in the illustrations she 

displayed in her comprehensive presentation. 

The group presentations (Spring Semester 2013 and Spring Semester 2014) took a 

strategically methodical path of first laying out the foundations of astronomy and then 

progressively incorporating the relevant mathematics to support the astronomical phenomena. 

The groups worked synergistically, keeping the end goal of the project in mind. Each 

participating student focused on one particular component of the project, thereby building the 

presentation story. The project objective, along with a proof of Kepler’s third law of planetary 

motion, was eloquently stated at the conclusion of the presentation. The students thus 

demonstrated their ability to integrate the mathematical principles with the astronomical 

phenomena. 

In summary, the mathematics explored by these students reflected a solid grasp of the 

mathematical subject material (differential equations and Calculus II), and an appreciation for 

the shared connection with astronomy. Specific topics examined included the following: 

1. The equation of an ellipse: Kepler’s first law of planetary motion states that the orbit 

of any planet is an ellipse with the sun as a focal point. Ellipses were examined in all 

three PowerPoints. 
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2. The equation for arc length: This formula from calculus is used to calculate lengths 

involving orbital trajectories. This equation was specifically examined by Student A 

in the May 13, 2013, presentation. 

3. Mathematical modeling involving exponential proportionality: Kepler’s third law of 

planetary motion states the proportionality between the square of its yearly period and 

the cube of its mean distance from the sun. This law was specifically examined by 

two students in the May 13, 2014, presentation. 

4. Mathematical modeling involving orbital velocity: Kepler’s second law of planetary 

motion states that a planet’s radial speed varies with its distance from the sun. This 

law was specifically examined by one student involved in the May 13, 2014, 

presentation. 

5. Comprehension of the mathematical nature of the phenomenon of gravitational assist: 

An illustration of this effect was specifically examined by a student in the May 7, 

2013, presentation. 

6. Comprehension of the large numbers involved in the data of astronomical 

phenomena. 

Videotape Analyses 

May 2013 Presentation 1. This was a videotape of a PowerPoint presentation conducted 

by three students in a differential equations class during the Spring Semester 2013. The three 

students (JS, JB, CP) were in the college’s international Program; all hailed from South Korea. 

JS was a math major, while JB and CP majored in business. The presentation lasted 

approximately 15 minutes, and an analysis follows. 
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Each student presented a subdivision of the PowerPoint. The first two sections, 

“Neptune” and “Voyager 2,” were presented by JB and CP, who were business majors. These 

sections were expository rather than mathematical. JS, a mathematics major, conducted the third 

section, “Trajectory.” The student presented a mathematical analogy to illustrate the concept of 

gravity assist. 

The videotaped evidence shows a definite familiarity, on the part of all three students, 

with knowledge of the solar system. One student, JS, used a mathematical model to illustrate the 

Voyager trajectory; in doing so, he displayed a better understanding of the mathematical 

undertones of this space journey. The PowerPoint itself, constructed by the students, is a visual 

display in astronomy where mathematical modeling was evident. An example of this is the 

description of the eccentricity of Mars’ orbit.  

Mars’ orbit has an eccentricity of e = 0.0086. The aphelion for the planet is 4.498 * 10^9 

km. 

CV: [Displays another slide]  The eccentricity is .00865. 

May 2013 Presentation 2. This presentation was conducted by a single student who 

displayed a marked interest in astronomy. Her enthusiasm for the subject matter was reflected in 

her performance. She recognized the mathematical foundations of astronomy in two instances. 

First, she examined the formula for arc length and its importance in calculating the orbital 

trajectory of the Voyager II probe. She also discussed the nature of Neptune’s orbit without 

going into the specifics of ellipse calculations. 

May 2014 presentation. The presentation was created by all six members of a 

differential equations class conducted at Centenary College in the spring semester of 2014. Three 

of the students (TC, HD, TT) read off the PowerPoint. One student (KC) described the 
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PowerPoint page on Kepler’s third law relative to the planet Neptune. She explained the numbers 

on the page and tried to derive the law using Neptune’s characteristics (semimajor axis = 30.059 

AU; period = 164.8 years).  Another student (CV) explained two PowerPoint pages on Kepler’s 

second law using a given distance of 50,000 km. The final student (TM) derived Kepler’s third 

law using the second law as a basis. He also explained the last few pages of Neptune facts on the 

PowerPoint. 

By their own admission, the students who participated in the demonstration became 

familiar with previously unfamiliar astronomical expressions. The evidence for three of the 

students (TC, HD, TT) involved simply reading off the PowerPoint slides. Evidence for the other 

three (KC, CV, TM) involved mathematical interpretations of the slides they presented.  

KC presented a mathematical example of Kepler’s third law. Specifically, the student 

calculated the mean distance of Neptune’s orbit from the sun using the planet’s period (year) of 

164.8 Earth years. KC correctly calculated a mean distance of 30.059 AU, which she then 

correctly converted to approximately 3 billion miles. 

CV gave a demonstration of Kepler’s second law using an arbitrary distance of 50,000 

km. He was attempting to show that a planet travels faster at its closest approach to the sun 

(perigee) than it does at its most distant point in the orbit from the sun (apogee). While his 

calculations actually produced a greater time for the perigee (2.59 hours) as opposed to the 

apogee (2.538 hours), this could be attributed to approximation errors. More important, CV 

correctly realized that the numbers indicated an orbit of very low eccentricity; Neptune’s orbit, in 

fact, is very close to being a perfect circle.  

Like KC, TM delved into the mechanics of Kepler’s third law. He actually proved this 

law, demonstrating how it could be derived from Kepler’s second law. It should be noted that 
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this student, in Spring Semester 2014, also engaged in a celestial mechanics research project 

involving the famous three-body problem.  

The evidence provided in this demonstration provides an answer to the first research 

question: What is the level of familiarity of student knowledge of the solar system? Although test 

scores clearly indicated initial unfamiliarity with the subject matter, the demonstration confirmed 

subsequent understanding. 

The results showed that half of the students involved demonstrated a mathematical 

curiosity with the astronomical orbital figures. Although the evidence is not overwhelmingly 

positive, this demonstration shows that astronomy can be used as a tool for a better 

understanding of mathematical modeling. 

Summer 2014 Analysis 

One student successfully completed the assignment, which involved drawing a diagram 

of the orbit of the planet Mars based on the recorded longitudinal observations by Tycho Brahe 

in the latter half of the 16th century. Based on her scaled diagram (see Figure 1), she then 

calculated the length of the semimajor axis of the orbit, along with its eccentricity. In the 

diagram, the semimajor axis would have corresponded to half the length between Position 1 and 

Position 2. Her semimajor axis length, 6.985 cm, was then converted to astronomical units using 

the scaled radius of Earth’s orbit (the diagrammed inner circle with the Sun at center). She used a 

radius of 5 cm to produce a length of 1,397 AU. The actual mean distance of Mars from the Sun 

is 1.52 AU. This resulted in a relative error of about 8.8%. In the diagram, the actual radius of 

the inner circle (corresponding to Earth’s orbit) is 4.2 cm, which would produce a semimajor 

axis of 1.66 AU and a corresponding percentage error of 9.4%. Given the approximate values of 

the longitudes in the chart, either value would have come within 10% of the actual mean 
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distance. Furthermore, her value of 1.397 AU would correspond to her converted value of 

209,550,000 km (using a scale of 1 AU = 1.5 * 10^8 km). The actual value of the mean distance, 

which corresponds to the semimajor axis, is 227,920,000 km (see Appendix G). This would give 

a relative error of approximately 8%. 

To calculate the eccentricity, the distance from the center of the major axis to one of the 

focal points is divided by the length of the semimajor axis. The eccentricity of Mars is 0.0935 

(see Appendix G) based on the fact that Kepler’s first law states the Sun is a focal point of every 

planet’s orbit. In the student’s diagram, the distance of the Sun from the midpoint of the major 

axis is approximately 0.5 cm. Using the scaled semimajor axis length of 6.985 cm, the value of 

the eccentricity is approximately 0.0716. This would result in a percentage error of about 

23.44%. The student’s calculated value of 0.27 results in a much greater error percentage. Two 

other calculations involved the distance of closest approach and the distance of greatest 

separation of Mars from Earth. Both calculations involve the alignment of Earth, Mars, and the 

Sun along the Martian major axis. From the student’s diagram, the closest approach, or perigee, 

would be about 75,000,000 km. The greatest separation, or apogee, would be about 425,000,000 

km. The student’s values (57,150,000 km and 133,350,000 km) differed significantly. 

An analysis of the data led to two conclusions. First, the student successfully interpreted 

the longitudinal locations used to locate the five critical points in her diagram of the orbit of 

Mars. This led to the determination of the Martian semimajor axis within a 9% degree of error, 

which would indicate the successful use of astronomical data to determine the basic properties of 

an ellipse. The calculations for determining the eccentricity, along with the apogee and perigee, 

were less successful. This would seem to lead to either of two conclusions: a mistaken definition 

was used in the calculation or, more likely, the scale measurements in the diagram resulted in 
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widely varying degrees of accuracy. Ultimately, the student’s efforts resulted in positive answers 

to two of the research questions: 

1. Astronomy can be used as a tool for a better understanding of mathematics. The 

student used the longitudinal readings of the planet Mars to draw an ellipse 

successfully. 

2. A historical data set in astronomy can be used to construct a mathematical model. In 

this case, the student used the longitudinal readings of the astronomer Tycho Brahe to 

construct a mathematical model of an ellipse. 

Summer 2015 Analysis 

The astronomy class in summer 2015 was an elective course with no mathematics majors. 

The students had the opportunity to solve the worksheet problems (p. 74) independently. 

The problems were then examined in class, guided by the instructor. The first question was as 

follows: “It took 9 years for the Discovery probe to reach Pluto. How fast was it travelling?” A 

distance of 3 billion miles was assumed. The standard equation was also assumed:  

Distance = Rate * Time. 

With a time of 9 years converted to 78,840 hours, the rate was calculated to be approximately 

38,052 mph. The second question once again involved the basic distance equation: “If there was 

a straight road . . . and a constant rate of 65 mph, how long would it take to reach Pluto?” The 

answer, 46,153,846 hours, converts to 5,269 years.  

The third question involved the speed of light: 186,000 miles per second: “How long 

does it take an electronic transmission to travel from Pluto to Earth?” Using the distance 

equation and various conversions, the answer, 4.5 hours, merely confirmed a figure prominently 

mentioned in news broadcasts. The answers to all these questions were arrived at through mutual 
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discussion between instructor and students. The fourth question involved speculation and 

investigation for the students: “How big is a billion?” Some of the results included the following: 

 If a billion pennies were stacked one on top of the other, the height would be 870 

miles. 

 One billion flies grouped together would be the equivalent of the mass of an elephant. 

The investigation of these questions produced various answers to the research questions. 

For the first question, the students involved definitely gained familiarity with basic solar system 

knowledge. The second question was actually answered in reverse; elementary mathematical 

notions were employed to gain a deeper understanding of the vast distances involved in 

astronomy. To answer the third question, visual PowerPoint displays were used throughout the 

course to illustrate the variety of topics explored. The fourth question involved the history of 

astronomy; the mathematical model of an ellipse was examined to illustrate Kepler’s laws of 

orbital motion. The fifth question was only answered indirectly; the only mathematical 

algorithms used were the distance equation and elementary conversion processes. 

Interviews 

 Interviews were only conducted during the middle of the Spring Semester 2013 ODE 

class. The class was split into two groups (Group A and Group B). Group A was represented by 

one student. This student had previous astronomical knowledge. Group B was comprised of three 

international students, none of whom had previous astronomical knowledge. The interviews were 

informal and recorded. They focused on the course syllabus and additional lecture data about 

astronomy as provided by the instructor.  

The outcome of these interviews resulted in clarification of student perspective about the 

connection between astronomy and mathematics. Specifically, the instructor modified the course 
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lecture to enhance learning about astronomy and made its connection to mathematics (e.g., arc 

length, ellipse, and acceleration mechanics). In turn, students were motivated to embark on 

independent learning to enhance the connection between both sciences.  

Interviews were not incorporated in the spring 2014 or summer 2014 courses for two 

reasons: (a) a strict course syllabus and (b) the syllabus content and compressed course timelines 

negated an effective interview process. Two interview sessions were conducted with the three 

international students (A, B, C) in Spring Semester 2013. The first session covered a specific 

topic in ODE: homogeneous equations with constant coefficients (see Appendix H). The 

majority of the session consisted of lecture demonstrating various examples of homogeneous 

equations and the accompanying algorithms used to solve these equations. This lecture was 

conducted with considerable verbal interaction between teacher and students. Specifically, four 

examples were covered. Toward the end of the session, the instructor suggested Internet research 

on the planet Neptune. A short discussion on astronomy, NASA, and the Apollo missions of the 

1960s followed. 

The second session began with a short discussion of the teacher’s family and career 

background (see Appendix H). This was followed by a discussion of the differential equations 

algorithm known as reduction of order. Specifically, quadratic differential equations involving 

two unknowns were examined. With the first example presented, one of the students asked for a 

clarification of the phrase reduction of order. Once this was explained, two more examples were 

presented. Again, there was considerable interaction between students and teacher. After these 

examples were analyzed, time ran out on the session. 

The effectiveness of these two interview sessions should be judged against the 

PowerPoint presentation given by these students at the end of Spring Semester 2013. The 
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presentation was mostly expository. The mathematics covered in the gravity assist model is 

normally encountered in first-semester calculus or physics. While the interest in astronomy was 

evident in the presentation, the level of mathematics did not reflect the difficulty normally 

encountered in an introductory course in differential equations. 

In addition to these sessions, two interviews were conducted with the single student who 

presented the second Neptune PowerPoint presentation in Spring Semester 2013. Both interviews 

were conducted prior to the presentation (see Appendix H for the transcript). The first interview 

session began with a discussion of the student’s mathematical background, along with her long-

standing interest in astronomy. A pretest taken earlier was then discussed and analyzed. 

Ultimately, the student appreciated the opportunity to brush up on her calculus background.  

The second interview developed into a productive learning experience. Two examples 

were discussed. The first one involved an advanced calculus integral, presented in another class, 

that the student was having difficulty solving. The instructor suggested simple substitution or 

integration by parts, as both algorithms are normally encountered in first-year calculus. Through 

productive interaction between student and instructor, the problem was solved by successive 

applications of the integration-by-parts algorithm. With some guidance, the student succeeded in 

applying the algorithm to solve a spontaneously presented problem. 

The second example involved deriving the formula for arc length. This formula was 

chosen because, on a simple level, the formula can be used to calculate the length of orbital 

segments and trajectories. The topic itself is normally encountered in Calculus I. With some 

guidance, the student successfully derived the formula using simple derivatives and the 

Pythagorean Theorem. The instructor then presented two problems involving arc length. The first 

problem involved the length of a line segment. This problem was chosen because the answer 
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arrived at by use of the arc length formula can easily be verified by simple geometry. The student 

had no difficulty applying the formula to obtain the correct result. A second, more complex 

example involved using trigonometric formulae. The student solved the problem, but needed 

assistance with the various trigonometric identities involved. Throughout the course of this 

session, the student showed considerable input and enthusiasm. 

The effectiveness of these two sessions must be judged against the presentations the 

students conducted at the end of Spring Semester 2013. As in the previous student presentation, 

there was considerable exposition, specifically on the planet Neptune. In this case, considerable 

attention was paid to the arc formula and its relevance in calculating orbital trajectories. The 

student demonstrated an enthusiasm in astronomy that translated to mathematical models 

involving arc length and ellipses. 
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Chapter 6: Conclusions 

The analysis and results of this research reveal positive student motivation and 

comprehension of new learnings when exposed to an unfamiliar scientific milieu. Despite having 

a limited or complete lack of basic solar system knowledge, the students expressed a desire to 

learn the connection between astronomy and mathematics. Their final presentations, whether a 

PowerPoint (ODE) or written analysis (Calculus II), demonstrated their comprehension of 

mathematics through the application of astronomy. In each presentation, all students exhibited a 

command of astronomy, thereby expanding their knowledge base and connecting the symbiotic 

relationship between the two sciences. Additional post class discussion revealed student 

appreciation and satisfaction in exploring astronomy, specifically its fundamental relevance to a 

real-life scenario where mathematical modeling is applied. Participating students in this study 

successfully applied and expanded their problem-solving abilities. The astronomy course 

conducted in summer 2015 provided an opportunity to deal with the symbiosis between 

mathematics and astronomy from a different perspective, that of displaying the importance of 

elementary mathematics in understanding the dimensional aspects of the world’s oldest science. 

Testing oral or written methodology at the beginning of each class gauged students’ 

current understanding of astronomical knowledge and provided ample guidance for enhancing 

the lecture content. Only one student (Student A) had previous astronomical familiarity. This 

student made her familiarity known to the instructor prior to formally enrolling in the class. 

Sheer interest was the primary impetus in raising her level of knowledge. Therefore, the 

instructor selected oral testing, as this method provided flexibility to delve deeper into the 

specifics of her knowledge based on her initial verbal responses.  
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The other students did not have astronomy as part of a formal class curriculum. 

Therefore, the oral or written testing methodology provided a benchmark by which the instructor 

tailored the content and delivery of the lecture. 

Although the interview technique was helpful, the instructor used it only for the Spring 

Semester 2013 class. The decision to discontinue the interview process was based on the class 

size of the spring 2014 course and the compressed time frame of the summer 2014 class. Strict 

syllabus adherence was a priority. 

In all three courses (Spring Semester 2013, Spring Semester 2014, and Summer Semester 

2014), the lecture method provided the students with ample exposure to the celestial background 

needed to engage in these projects, as evidenced by the content expressed by all students in their 

final projects. The instructor did supplement the lecture method with several PowerPoint 

presentations for both spring 2013 and spring 2014 classes. This decision was made for two 

reasons: the complexity of the final project (developing the trajectory of an unmanned space 

probe to the planet Neptune) required a deeper understanding of astronomy and the course length 

of 16 weeks provided ample time to introduce astronomy into the ODE course curriculum. The 

summer 2014 course curriculum for Calculus II, however, required strict attention to the course 

syllabus and was scheduled to run in a compressed learning timeline of 6 weeks. The nature of 

the Calculus II course did not require an extensive understanding or learning of astronomy; a 

PowerPoint presentation was not paramount to aid the students with their final project on 

recreating Kepler’s discovery of the orbit of Mars. Additionally, the course material covered in a 

Calculus II class sets the framework for the material covered in ODE. A future goal would be to 

challenge these students, who now have a fundamental understanding of astronomy, to also 
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present an unmanned space probe to the planet Neptune. It would be interesting to see the results 

and the methodology for completing this project. 

The lecture technique was a sufficient motivator for independent, supplemental learning. 

This statement is reflected in the successful completion of the student projects, including a 

PowerPoint or visual example. A notable observation was that classes introduced to astronomy 

through PowerPoint presentations displayed more curiosity. They asked many questions and 

engaged in a collective conversation at the conclusion of each presentation. The class response to 

learning astronomy with the aid of PowerPoint supports a conclusion that visual representation 

positively supports lecture. Similarly, with regard to the benefits of using visual displays of 

astronomy to demonstrate the solution to a mathematical problem (specifically the ODE class 

project of planning the trajectory of an unmanned space probe to the planet Neptune), students 

methodically built each slide to support the relationship between both sciences. 

Student A, from the Spring Semester 2013 ODE course, supplemented her astronomical 

knowledge by laying down the foundation for the inherent mathematical principle of an arc 

length. While her presentation did not overtly visualize the connection, she eloquently explained 

the formula for arc length and its connection with orbital trajectories. 

The Spring Semester 2013 international students also explored arc length. They explained 

how a planetary gravity boost was necessary to complete the journey. The incorporation of 

gravity boost into the explanation of the journey to Neptune demonstrated a profound 

understanding of the mechanics of propulsion necessary to complete such a planetary journey. 

The Spring Semester 2014 students explored multiple aspects of the mathematics behind a 

proposed Neptune probe, including arc length, gravity boost, conic sections, and Kepler’s third 

law. They successfully implemented the planetary motion laws established by Johannes Kepler. 
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For instance, one student summarized and proved Kepler’s third law and integrated this with the 

actual mechanics of the proposed journey to the planet Neptune. 

The Summer 2014 Calculus II students explored Kepler’s first law of motion by using 

longitudinal recordings to construct the orbit of the planet Mars. This illustrated a basic 

understanding of the essential characteristics of an ellipse.  

The efforts of all five classes demonstrated that astronomy can be used as a device 

leading to a more profound understanding of mathematics. Further, the combined efforts of the 

two spring semester ODE classes demonstrated noticeable differences in team and individual 

approaches. The summer 2014 class demonstrated that astronomical history is conducive to a 

greater understanding of the relevant mathematics. The students in all five classes recognized the 

learning connection between the two sciences. Furthermore, student feedback revealed that 

interest in astronomy was a positive impetus to explore the relevant mathematical principles. 

This feedback also established the fundamental importance of mathematical modeling in making 

the connection. 

The students who attended the astronomy course offered in summer 2015 had only a 

general background knowledge of mathematics. By taking the course as an elective, the students 

displayed genuine interest in the subject. Their interest was further enhanced by fortuitous 

timing; in this case, the summer of 2015 marked the successful arrival of the New Horizons 

space probe to the distant dwarf planet Pluto. The 9-year journey of the NASA spacecraft 

covered a distance of over 3 billion miles. This real-life event was covered by virtually all major 

news media and offered the unique opportunity to explore the mathematical perspective behind 

the exponentially large distances involved in space exploration. The mathematical principles 

involved were essentially simple, as they involved the conversion process and the distance 
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formula. The students nonetheless gained an appreciation of the vastness of outer space 

dimensions, without being overwhelmed by higher level mathematics. Later, the same students 

worked with the simple model of an ellipse to illustrate Kepler’s laws of planetary motion. 

The answers to the five research articles of question can be summarized as follows: 

1. What is the level of familiarity of student knowledge of the solar system? Initial 

pretests indicated a low level in all four classes, with one student in the Spring 2013 

ODE class having a working knowledge of the solar system. Subsequent PowerPoint 

presentations in the three ODE classes offered proof of an increased student 

awareness of basic astronomy facts and terminology. The Summer 2014 Calculus II 

class demonstrated a working knowledge of the nature of planetary orbits and 

accompanying historical background. The Summer 2015 Astronomy class offered a 

survey of general information on stars and planets to students with little previous 

background knowledge. 

2. How can astronomy be used as a tool for better understanding of mathematics? There 

were several instances in the five classes where basic principles in astronomy were 

illustrated by mathematical models. For example, Kepler’s laws of planetary motion 

were illustrated using mathematical models involving ellipses. Also, space probe 

trajectories were examined using the standard calculus formula for arc length. In yet 

another instance, the large numbers involved in planetary and galactic distances were 

illustrated with proportional perspective models. 

3. Are visual displays of astronomy conducive to this understanding? Visual PowerPoint 

displays were used extensively to support the lectures given in all four classes. The 

astronomy course, in particular, was characterized by daily displays of current topics, 
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such as the New Horizons encounter with the dwarf planet Pluto. In the upper-level 

mathematics classes, the response to this stimulus was evident in the quality of the 

individual PowerPoint projects.  

4. Can exposure to historical examples of mathematical modeling in astronomy support 

this learning process? A specific historical example used in all five classes was 

Johannes Kepler’s discovery and development of the laws of planetary motion in the 

early 17th century. His achievement marked the dawn of modern astronomy. The 

primary focus of his work was his examination of the orbit of the planet Mars. The 

Calculus 2014 class, in particular, used Kepler’s figures, painstakingly recorded by 

the astronomer Tycho Brahe, to construct the mathematical model of an ellipse. All 

four mathematics classes specifically referenced Kepler’s laws in their individual 

projects. 

5. How were calculus and ODE algorithms used to construct astronomical mathematical 

models? The algorithms used to construct an ellipse are covered in Calculus I. As 

mentioned before, these algorithms were used to illustrate the elliptical nature of 

planetary orbits. Arc length is also a concept covered in Calculus I. This concept was 

used to calculate spacecraft trajectories. Physical models involving distance, velocity, 

and acceleration are routinely used in both calculus and ODE to develop the 

equations governing spacecraft journeys. 

Relevant articles in prominent mathematical educational journals have been scarce. 

Nonetheless, history has shown that there is a vital link between astronomy and theoretical 

mathematics. The students at Centenary College who participated in this study recently 
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demonstrated this through their projects. The students’ eagerness to express their revelation 

about the significance of astronomy was revealing.  

A few conclusions can be drawn from this study. From the presentations given, student 

interest in astronomy as it relates to mathematics is evident, and the immediate future of 

astronomy can only fuel that interest. From continuing revelations on Pluto as electronic 

feedback from the probe is translated and disseminated, to continued explorations of the planet 

Mars by mobile rover vehicles, and to the summer 2017 solar eclipse that will be visible across 

North America, opportunities to exploit student curiosity exist. Also, the lack of relevant 

literature emphasizes the need for further research articles on educational ramifications. The 

present astronomical revelations require mathematical modeling techniques involving differential 

equations. Opportunities will exist for examining student success in applying these techniques. In 

short, this study showed the promise for astronomy to connect mathematical techniques and 

mathematical modeling, as well as to motivate student engagement. 

A subtext to this study relates to the role of the instructor, who relied upon the sage 

guidance offered by one of his first trusted colleagues: “Remember, the students who are signing 

up for your class aren’t just taking math. They’re taking you” (T. Griesbach, personal 

communication, Jan. 12, 1975). 
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Appendix A: Spring Semester 2013 

There were two student groups; student A by herself formed one group, and three 

international students (B, C, and D) formed the second group. 

Table 3 

Student Course Breakdown: Differential Equations (ODE), Spring 2013 

COURSE # of CLASSES # of STUDENTS PER 

CLASS 

ODE 2 1 – Student A 

  3 – Student B, C, D 

 

Student A was a junior at the time with an equine major and mathematics minor. An 

achiever with a high GPA, her work ethic is matched by her enthusiasm to explore new topics. 

When presented with the opportunity to participate in a mathematics related astronomy project, 

she immediately agreed.  

Students B, C, D were three Korean students in their junior year participating in the 

College’s International Program. As with Student A, they were enthusiastic about participation in 

the project.  

Typical to students in this program, all had completed a calculus program in their pre-

collegiate school experience overseas. One particularly notable quality was their mutual 

curiosity, as they took many opportunities to ask questions about the instructor’s educational 

background and life experiences, along with American life experiences in general. All three were 

Business majors with Mathematics minors. 
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Both student groups were tasked with developing and presenting a PowerPoint presentation. 

Both presentations were videotaped.  

  

Student A PowerPoint Presentation 

Student A’s presentation, entitled NEPTUNE, began with a physical description of the 

planet and the history of its discovery. Then an updated version of relevant information on both 

Neptune and Triton was given, based on the August 1989 flyby of the Voyager II probe. Student 

A then discussed the relative distances involved, including lengths of the orbits and the time 

length such a journey would involve. (Anywhere from 12 to 20 years.). Related calculus 

principles were then discussed, including the concept of arc length with its associated formula. 

Finally, the concept of planetary based gravity “slingshot” effects were discussed. This principle 

was successfully utilized by both Voyager probes to boost their velocities and shorten the 

mission times considerably. An estimated 40-year journey to Neptune was reduced to 12 years, 

as Voyager II, launched in 1977 and reached Neptune in 1989.  

In addition to the presentation, student A submitted to three audio interviews. The first 

two were of an introductory nature. Student A’s background included four semesters of calculus 

and several upper level courses, including the present course. The material being presently 

covered compared to her second semester of calculus. With this as a background, the third in-

depth interview concentrated on the subject of arc length. Specifically, the derivation of the arc 

length formula was covered (See fig. 1). Student A’s extensive background made it easy for her 

to follow the derivation, but certain identities (specifically, involving trigonometry) were not 

immediately forthcoming. However, throughout the interview, Student A followed the formula 

derivation without difficulty.  
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Figure 2. Arc length formula 

 

The interview in question began with an integral problem. The interview was held in a 

classroom with normal whiteboards. Although technology was available, it was not used. The 

problem in question was solved, and discussion proceeded to the subject of arc length. In setting 

up the question and referring to the following diagram (See Fig. 3) 

 

 

Figure 3.Arc length diagram 

Student A made the following comment: 

 

”Doesn’t this have to do with …the Pythagorean Theorem?” 

From this point, the transition from geometry to differentials was smooth. At one point 

the instructor made a reference to the “magic trick” of multiplying an expression by one 

(in disguise as a ratio of differentials) to which Student A remarked: 

“Well…I’ve never seen this (trick) before.” 
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The next stage of the derivation involved the use of algebra to bring the formula to its 

recognizably familiar final form (above, Fig. 2). Then an example was used, involving a 

linear formula where the length could be calculated without using calculus, to verify the 

formula. This reinforced the validity of the formula in the student’s mind. The discussion 

then proceeded to a more complicated problem where both calculus and trigonometry 

were used. At this point Student A made a reference indicative of the present state of 

educational reality; 

“I was actually trying to relate it to, like, real world problems. And I was 

GOOGLING….” 

 

In the seemingly never-ending attempts at educational reform, technological fingertip 

information is an undeniable, indelible fact of life. Closely related to this fact is the educational 

de-emphasis on using rote memory to retrieve facts, like trigonometric identities. Prior to the 

technological revolution of the early 1980s, retention of certain facts was vital to success in 

Mathematics. Now, with such information at the tap of a button, the emphasis has shifted. In the 

subsequent discussion, Student A, an extremely motivated mathematics major, did not have the 

command of certain trigonometric identities that she certainly would have had in earlier decades. 

At one point she remembered the fundamental trigonometric identity: 

“Sine squared plus cosine squared equals one.” 

 

She used this to derive the less familiar identity involving tangent and secant.  

 

“Tangent squared plus one equals secant squared.” 
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More trigonometric identities and mathematical “tricks” were subsequently employed to 

decipher a particularly difficult integral; namely, the definite integral, between two points, of 

secant cubed. At one point Student A had to convert from degree to radian measure, which she 

did readily. 

From this moment on, Student A, with little instructor help, deciphered the integral and 

calculated the arc length in question.  

Shortly thereafter, the interview concluded. Ultimately, Student A displayed an aptitude 

for analytical reasoning along with an avid enthusiasm for the subject material. Once again it 

should be pointed out that the actual celestial and propulsion dynamics involved in a theoretical 

journey to a distant planet would be extremely difficult. However, an appreciation of the 

trajectories involved was evidenced in Student A’s presentation (See Fig. 4 below).  In fact, such 

a journey has already been outlined; Trajectory Optimization for a Mission to Neptune and 

Triton (Melman, 2007). 
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Figure 4. Pioneer and Voyager Orbital Trajectories 

The relevance of arc length (in a simplified analogy) is obviously present in Student A’s 

presentation. 

 

 “Why would this be called reduction of order?” 

In the instructor’s previous experience, such a question was never actually asked. Most 

students would seem to accept the expression as they would any other mathematical term! The 

rest of the class (interview) proceeded in the normal fashion, with problems assigned and work 

continuing with the project. 
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Student B, C, D PowerPoint Presentations 

In addition to Student A’s presentation and interviews, students B, C, and D also gave a 

presentation and consented to interviews. Their PowerPoint presentation, “Trajectory toward 

Neptune”, was videotaped. Each student (B, C, D) explained a program segment: Student B gave 

Neptune planetary facts, Student C explained the historic Voyager II flyby of the outer planets in 

the late 20th century, and Student D presented the mathematics of gravity assisted “boosts”. As in 

the other presentation, trajectory models (specifically, the Voyager I and II probes were 

displayed. (See Fig. 5) 

 

Figure 5. Voyager Trajectories 

 

Additionally, Student D presented a specific illustration of the mathematics of a planetary 

assisted gravity “boost” (See fig. 6) 
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Figure 6. Gravity Assist Diagram 

The students displayed enthusiasm and knowledge on a difficult subject, particularly 

because only one specialized in Mathematics (The other two were business majors). In addition 

to the presentation, two videotaped interview sessions were held, in which pertinent topics in 

ODE were covered. The first interview covered the topic of homogeneous equations with 

constant coefficients. Specific problems involved the use of solutions of the form e^mx to break 

equations down to quadratic or cubic polynomials solvable by factoring or the use of formulas. 

Related topics included synthetic division. The methods were quite familiar to the students. The 

problems were solved quite smoothly, with little help from the instructor.  

After this, the class proceeded to deal with a cubic polynomial and the use of synthetic division 

to render it factorable. The students then dealt with the converse: given a solution, how does one 

derive the original differential equation? A typical problem was examined, and homework 

problems were then assigned. 

The class concluded with an update on student progress with the proposed planetary 

projection project. The students had done some research on the internet. They asked the 

instructor about his interest in Astronomy, at one point asking him if he had ever worked for 

NASA. (For the instructor, the subject has merely been a lifelong hobby.) The informal 

discussion then ranged from the Apollo missions of the 1960s and 1970s to the more recent 
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Space Shuttle journeys. The students were asked to GOOGLE the Neptune trajectory by the 

following class. 

A second interview session was held with the same students a few weeks later. This time 

the main topic was reduction of order.  

A differential equation was presented which involved reduction of order. The solution of 

this equation was interspersed with further references to the instructor’s past. The present 

difficulty of finding any meaningful teaching job was also mentioned.  

Eventually several problems were presented and solved. As in the previous interview, the 

students’ analytical skills were evident. Also evident were attempts at a deeper understanding of 

the material itself. 
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Appendix B: Spring Semester 2014 

Table 4 

Study Course Breakdown: Differential Equations (ODE), Spring 2014 

COURSE # of CLASSES # of STUDENTS PER 

CLASS 

ODE 1 6 

 

May 12, 2014 Neptune Presentation – ODE 

Prior to the presentation the students were given survey pre-test concerning general 

astronomy. (Appendix D, p.38) The results, though inconclusive, showed a not-unexpected 

unfamiliarity in the subject. 

The six students involved gave a videotaped presentation revolving around mathematical 

knowledge as it related to astronomy; the planet Neptune, its nature, and its orbital 

characteristics. An analysis of the presentation follows. 

The students presented the topic as a team, with each one speaking on a specific aspect. The first 

three discussed terminology; they showed that comprehension of arcane terms can be achieved 

and readily presented. The final three dealt with the mathematical terms at hand. The first student 

explained Kepler’s Third Law and independently used Neptune’s “year” to correctly establish its 

mean distance from the sun. The second student used Kepler’s second law to establish Neptune’s 

orbital length and various speeds along its orbit. The third student independently derived 

Kepler’s third law and discussed various unusual aspects of the eighth planet. 
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Overall, the students independently; 

1. Achieved familiarity with difficult astronomical terms 

2. Discovered Kepler’s laws and used effective examples from their investigation of 

Neptune to solve mathematical problems 

3. In one case, actually explored and derived Kepler’s third law 

  



STUDENT COMPREHENSION OF MATHEMATICS 108 

 

Appendix C: Calculus II, Summer Semester 2014 

Table 5 

Study Course Breakdown: Calculus II, Summer 2014 

COURSE # of CLASSES # of STUDENTS PER 

CLASS 

Calculus II 1 2 

 

The following longitudinal positions of the planet Mars were originally recorded by the 

astronomer Tycho Brahe from his observatory in Denmark in the late 16th Century. 

Date   Heliocentric Longitude of Earth  Geocentic Longitude of Mars 

Feb 17, 1595  159’     135’ 

Jan 5, 1587  115’     182’ 

 

Sept.19,1591  6’     284’ 

Aug. 6, 1593  323’     347’ 

 

Dec 7, 1593  86’     3’ 

Oct. 25, 1595  42’     50’ 

 

Mar. 28, 1587  197’     168’ 

Feb. 12, 1589  154’     219’ 

 

Mar. 10, 1585  180’     132’ 

Jan. 26, 1587  136’     185’ 
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  The degree pairings are based on the Martian “year” of 687 days, and the Spring Equinox 

corresponds to a Solar reading of 0’.  

(Note: the following instructions were provided in an Astronomy course conducted at Clark 

College) 

Once every 687 days, Mars returns to the same point in its orbit around the sun. If we plot the 

lines of sight from the earth to Mars at this interval we can triangulate a point on the orbit of 

Mars. Materials needed include graph paper, protractor, compass, and centimeter ruler.  

1. Turn the graph paper so that the long edge is horizontal. Place a small dot near the center 

labeled “Sun.” 

2. Using the ruler, draw a straight line to the right, starting at the Sun and ending roughly 

two centimeters from the right side of the page. This line is the “Vernal Equinox. ”This is 

the direction an observer on earth would look to see the Sun on March 21. All angles will 

be measured counter-clockwise from this line. 

3. Using the compass, draw a 5.0 cm. radius circle centered on the Sun. This is “Earth’s 

Orbit.” We know that the earth’s orbit is actually an ellipse.  You will see that the effect 

that this difference has on our model when you finish constructing the orbit of Mars. 

4. This sets the scale of our drawing at 5.0 cm. = 1 A.U. (Astronomical Unit) where 1 A.U. 

is the average distance between the Earth and the Sun. (93 million miles or 1.5 *10^8 

km.) 

5. Note that the data table is divided into pairs of dates. Each pair represents an interval of 

one Martian year. Starting with February 17, 1585, use a protractor to plot the 

heliocentric longitude of the Earth (159’) given in the table as a point on the earth’s orbit. 
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6. Next center the protractor on the point you just marked and plot the geocentric position of 

Mars (135’) with a line. 

7. Now repeat this procedure for the January 5, 1587 date. The point of intersection of the 

lines is the position Mars had occupied on these two dates. Label this as position “1.” 

8. Repeat this procedure for the next four pairs of data, numbering each point in sequence. 

You should have five positions for Mars. 

9. Kepler chose the first two sets of data to represent the aphelion and perihelion for Mars, 

respectively. Draw a line from the first position for Mars to the second position for Mars. 

This line is the major axis of the orbit. 
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Appendix D: Quizzes 

Quiz 1 

March 17, 2004 

SURVEY QUIZ 

(Easy) 

1. How many planets are in our Solar System? 

2. What is the planet closest to the sun? 

3. What is the largest planet? 

4. What is the planet whose orbit is closest to Earth’s? 

5. Which planet is dubbed “the red planet”? 

(Harder) 

1. The Galilean moons orbit which planet? 

2. Which moon orbiting which planet is the only moon with an appreciable atmosphere? 

3. Which planet was recently (2006) declassified to “planetoid” status? 

4. For the past ten years the CASSINI probe has been in orbit about which planetary 

system? 

5. In the late 1970s NASA sent unmanned space probes to fly by the outer planets of the 

Solar System. What were they named? 

(Tough) 

1. Name the Galilean moons. 

2. What is the only moon in the solar system in retrograde orbital motion? (Hint; it also has 

the coldest recorded temperature in history.) 

3. On what planet or moons is there evidence of man-made artifacts? 
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4. What is the only planet in retrograde rotation? (e.g. from the surface, the sun would be 

seen rising in the west and setting in the east.) 

5. What is the largest body in the asteroid belt? (Hint; it made Gauss famous.) 

Quiz 2 

April 28, 2014 

ODE further questions in Astronomy 

Given the Neptune Orbital Fact Sheet and the opportunity to find information on the internet 

1. Define the following terms; sidereal period, tropical period, aphelion, perihelion, semi-

major, eccentricity 

2. Determine the average distance of Neptune from the sun 

3. What is this distance in AU (Astronomical units; 1 AU = 93,000,000 mi.) 

4. Given that the major axis lies on the x-axis and the center is the origin, determine the 

equation of the Neptune (elliptic) orbit. (Use the Neptune Mean Orbital Elements in the 

table and a unit distance of 1 AU) 

5. Using the comparative facts in the sheet on Earth and Neptune, verify Kepler’s third law 

of planetary motion. 

6.  Travelling in its orbit calculate the time difference it takes Neptune to travel 50000 km at 

perigee to the same distance at apogee. 

7. Given the polar spiral r = (1/2^2, calculate the arc length from theta =0   =6 
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Appendix E: Neptune/Earth Comparison 

 

Bulk parameters 

                                      Neptune      Earth   Ratio (Neptune/Earth) 

Mass (1024 kg)                     102.42    5.9726        17.147 

Volume (1010 km3)             6,254     108.321         57.74  

Radius (1 bar level) (km) 

    Equatorial                     24,764      6,378.1        3.883 

    Polar                             24,341      6,356.8        3.829 

Volumetric mean radius (km)        24,622      6,371.0        3.865 

Ellipticity (Flattening)            0.01708    0.00335        5.10 

Mean density (kg/m3)               1,638      5,514          0.297 

Gravity (eq., 1 bar) (m/s2)        11.15       9.80           1.14 

Acceleration (eq., 1 bar) (m/s2)   11.00       9.78           1.12 

Escape velocity (km/s)             23.5       11.19           2.10 

GM (x 106 km3/s2)                   6.8351     0.3986        17.15  

Bond albedo                             0.290      0.306          0.95 

Visual geometric albedo             0.41       0.367          1.12 

Visual magnitude V(1,0)            -6.87      -3.86             - 

Solar irradiance (W/m2)             1.51       1,367.6        0.0011 

Black-body temperature (K)        46.6      254.3           0.183 

J2 (x 10-6)                      3411.      1082.63           3.151     

Number of natural satellites        14          1 
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Planetary ring system               Yes         No 

 

 

Orbital parameters 

                                       Neptune                Earth   Ratio (Neptune/Earth) 

Semimajor axis (106 km)         4,495.06       149.60       30.047 

Sidereal orbit period (days)     60,189.         365.256     164.79    

Tropical orbit period (days)     59,799.9        365.242     163.73 

Perihelion (106 km)                 4,444.45       147.09       30.216      

Aphelion (106 km)                    4,545.67       152.10       29.886 

Synodic period (days)                 367.49        -             - 

Mean orbital velocity (km/s)          5.43       29.78         0.182    

Max. orbital velocity (km/s)          5.50       30.29         0.182        

Min. orbital velocity (km/s)          5.37       29.29         0.183       

Orbit inclination (deg)               1.769        0.000         - 

Orbit eccentricity                       0.0113       0.0167      0.677 

Sidereal rotation period (hours)   16.11*       23.9345      0.673 

Length of day (hrs)                    16.11        24.0000      0.671 

Obliquity to orbit (deg)             28.32        23.44        1.208 

* Magnetic coordinates (as determined by the Voyager 2 Radio Science experiment)  

 

Neptune Observational Parameters 

Discoverer:      Johann Gottfried Galle (based on predictions by   



STUDENT COMPREHENSION OF MATHEMATICS 115 

 

                 John Couch Adams and Urbain Leverrier) 

Discovery Date:  23 September 1846 

Distance from Earth 

        Minimum (106 km)         4305.9 

        Maximum (106 km)         4687.3 

Apparent diameter from Earth 

        Maximum (seconds of arc)    2.4 

        Minimum (seconds of arc)    2.2 

Mean values at opposition from Earth 

        Distance from Earth (106 km)           4347.31     

        Apparent diameter (seconds of arc)    2.3 

        Apparent visual magnitude                 7.8       

Maximum apparent visual magnitude         7.78 

Neptune Mean Orbital Elements (J2000) 

Semi-major axis (AU)                 30.06896348   

Orbital eccentricity                      0.00858587    

Orbital inclination (deg)              1.76917   

Longitude of ascending node (deg) 131.72169    

Longitude of perihelion (deg)       44.97135   

Mean Longitude (deg)                  304.88003 
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North Pole of Rotation 

Right Ascension: 299.36 + 0.70 sin N 

Declination:       43.46 - 0.51 cos N 

Reference Date: 12:00 UT 1 Jan 2000 (JD 2451545.0) 

N = 359.28 + 549.308T degrees 

T = Julian centuries from reference date  

 

Neptunian Magnetosphere 

Goddard Space Flight Center OTD (O8) Model  

Dipole field strength: 0.142 gauss-Rn3 

Dipole tilt to rotational axis: 46.9 degrees 

Longitude of tilt: 288 degrees (IAU convention) 

Dipole offset (planet center to dipole center) distance: 0.55 Rn 

Note: Rn denotes Neptunian radii, here defined to be 24,765 km  

 

Neptunian Atmosphere 

Surface Pressure: >>1000 bars   

Temperature at 1 bar: 72 K (-201 C) 

Temperature at 0.1 bar: 55 K (-218 C) 

Density at 1 bar: 0.45 kg/m3 

Wind speeds: 0-580 m/s 

Scale height: 19.1 - 20.3 km 

Mean molecular weight: 2.53 - 2.69 g/mole 



STUDENT COMPREHENSION OF MATHEMATICS 117 

 

Atmospheric composition (by volume, uncertainty in parentheses) 

    Major:       Molecular hydrogen (H2) - 80.0% (3.2%); Helium (He) - 19.0% (3.2%); 

                 Methane (CH4) 1.5% (0.5%) 

    Minor (ppm): Hydrogen Deuteride (HD) - 192; Ethane (C2H6) - 1.5 

    Aerosols:    Ammonia ice, water ice, ammonia hydrosulfide, methane ice (?) 
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Appendix F: Earth/Mars Comparison 

Bulk parameters 

                                   Mars            Earth     Ratio (Mars/Earth) 

Mass (1024 kg)           0.64174          5.9726         0.107 

Volume (1010 km3)     16.318          108.321          0.151   

Equatorial radius (km) 3396.2          6378.1          0.532 

Polar radius (km)          3376.2          6356.8          0.531 

Volumetric radius (km) 3389.5          6371.0          0.532 

Core radius (km)            1700            3485            0.488 

Ellipticity (Flattening)   0.00589         0.00335        1.76 

Mean density (kg/m3)       3933           5514            0.713  

Surface gravity (m/s2)       3.71            9.80           0.379 

Surface acceleration (m/s2)   3.69       9.78           0.377 

Escape velocity (km/s)        5.03         11.19           0.450  

GM (x 106 km3/s2)           0.04283         0.3986         0.107 

Bond albedo                       0.250           0.306          0.817 

Visual geometric albedo       0.170        0.367          0.463 

Visual magnitude V(1,0)       -1.52           -3.86             - 

Solar irradiance (W/m2)         589.2          1367.6            0.431 

Black-body temperature (K)   210.1           254.3            0.826 

Topographic range (km)           30             20            1.500 

Moment of inertia (I/MR2)      0.366           0.3308         1.106 

J2 (x 10-6)                              1960.45         1082.63           1.811  
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Number of natural satellites          2              1 

Planetary ring system                No             No 

 

Orbital parameters 

                                   Mars           Earth     Ratio (Mars/Earth) 

Semimajor axis (106 km)          227.92          149.60           1.524 

Sidereal orbit period (days)     686.980         365.256          1.881 

Tropical orbit period (days)     686.973         365.242          1.881 

Perihelion (106 km)              206.62          147.09           1.405        

Aphelion (106 km)                249.23          152.10           1.639 

Synodic period (days)            779.94             -               - 

Mean orbital velocity (km/s)      24.07           29.78           0.808  

Max. Orbital velocity (km/s)      26.50           30.29           0.875 

Min. orbital velocity (km/s)      21.97           29.29           0.750 

Orbit inclination (deg)            1.850           0.000            - 

Orbit eccentricity                 0.0935          0.0167         5.599 

Sidereal rotation period (hrs)    24.6229         23.9345         1.029 

Length of day (hrs)               24.6597         24.0000         1.027 

Obliquity to orbit (deg)          25.19           23.44           1.075 
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Mars Observational Parameters 

Discoverer:      Unknown 

Discovery Date:  Prehistoric 

Distance from Earth 

        Minimum (106 km)           55.7 

        Maximum (106 km)          401.3 

Apparent diameter from Earth 

        Maximum (seconds of arc)   25.1 

        Minimum (seconds of arc)    3.5 

Mean values at opposition from Earth 

        Distance from Earth (106 km)         78.39     

        Apparent diameter (seconds of arc)   17.9 

        Apparent visual magnitude            -2.0 

Maximum apparent visual magnitude            -2.91       

 

Mars Mean Orbital Elements (J2000) 

Semi-major axis (AU)                  1.52366231   

Orbital eccentricity                     0.09341233    

Orbital inclination (deg)             1.85061    

Longitude of ascending node (deg)   49.57854   

Longitude of perihelion (deg)      336.04084    

Mean Longitude (deg)                 355.45332 
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North Pole of Rotation 

Right Ascension: 317.681 - 0.106T 

Declination    :  52.887 - 0.061T 

Reference Date: 12:00 UT 1 Jan 2000 (JD 2451545.0) 

T = Julian centuries from reference date  

 

Martian Atmosphere 

Surface pressure:  6.36 mb at mean radius (variable from 4.0 to 8.7 mb depending on season)   

                   [6.9 mb to 9 mb (Viking 1 Lander site)] 

Surface density: ~0.020 kg/m3 

Scale height:  11.1 km 

Total mass of atmosphere: ~2.5 x 1016 kg 

Average temperature:  ~210 K (-63 C) 

Diurnal temperature range: 184 K to 242 K (-89 to -31 C) (Viking 1 Lander site) 

Wind speeds:  2-7 m/s (summer), 5-10 m/s (fall), 17-30 m/s (dust storm) (Viking Lander sites) 

Mean molecular weight: 43.34 g/mole  

Atmospheric composition (by volume):  

 Major: Carbon Dioxide (CO2) - 95.32%: Nitrogen (N2) - 2.7% 

                 Argon (Ar) - 1.6%; Oxygen (O2) - 0.13%; Carbon Monoxide (CO) - 0.08%  

 Minor (ppm): Water (H2O) - 210; Nitrogen Oxide (NO) - 100; Neon (Ne) - 2.5; Hydrogen-

Deuterium-Oxygen (HDO) - 0.85; Krypton (Kr) - 0.3 

 



STUDENT COMPREHENSION OF MATHEMATICS 122 

 

Appendix G: PowerPoint Presentations 

The PowerPoints displayed in Appendix G were presented to all classes involved in this study.  

PLANETS IN REVIEW !

 

 

STARRING
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MERCURY
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MERCURY

• Smallest (Pluto)

• Fastest …1 year = 88 (earth) days

• 1 “day” = 56 (earth) days….”sunstop”

• Greek God of speed

• Tides if Mercury “replaced” Moon (by 4x)

• Einstein and the 1919 eclipse
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VENUS

 

 

 

] 
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THE VENERA PROBES
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VENUS

• Brightest (Galileo phases)..Alaska…(cast shadows)

• Greek godess of love

• Phosphorus & Hesperus

• “Sister” planet…closer to Sun.. Cloud enshrouded …life 
possibilities

• Year = 225 days…”Day” = 243 days

• Retrograde motion (Sun rises in West, sets in East)

• The Venera probes
– Surface temp 800 deg F (melts lead)

– Air pressure 90x Earth (Pacific Ocean bottom)

– Carbon Dioxide atmosphere..sulfur clouds..sulfuric acid rain
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EARTHRISE (CHRISTMAS, 1968)
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Le Voyage dans le lune (1902)
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MARS
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EVIDENCE

 

U-TURN
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MARTIAN LANDSCAPE

 

DEIMOS – “Able to leap…”
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WAR OF THE WORLDS
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MARS – PLANETARY BOX-OFFICE KING !

• Flash Gordon’s Trip to Mars (1938)

• Flying Disc Man from Mars (1951)

• Abbott & Costello Go to Mars (1953)

• Robinson Crusoe on Mars (1964)

• Santa Claus Conquers the Martians (1964)

• The Maid and the Martians (Pajama Party) (1964)

• The 12-handed Men of Mars (Mexican) (1964)

• Mars Needs Women! (1966)

• Lobster Men from Mars (1989)

• Bad Girls from Mars (1990)

• Martians Go Home! (1990)

• Mars Attacks! (1996)

• Brave Little Toaster Goes to Mars (1998)

 

MARS

• Roman god of war

• Day = 23.5 hrs….Year = 670 days 

• Orbit tilt = seasons like Earth

• Percival Lowell’s “canals”…deepest canyons

• H. G. Wells’ “War of the Worlds”

• Closest (35 mil miles) to feasibly explore

• Mass =  land mass of Earth

• Olympus Mons (highest mt. in solar system

• Landings – Viking (1970s) & Rovers

• Water and micro-organic fossils
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JUPITER
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JUPITER LIGHTNING
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SCHOMAKER COMET 1994
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IO

 



STUDENT COMPREHENSION OF MATHEMATICS 147 

 

PROMETHEUS

 

EUROPA
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JUPITER

• Roman king of the Gods

• Largest “Gas Giant” (almost a small sun)…dime to a 

dinner plate

• Great Red Spot (storm hundreds yrs old)

• Voyager probes 1979

• Galileo

• Io, Europa, Ganymede, Callisto
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SATURN
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VOYAGER 1, 1980
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THE RINGS

 

SATURN AND MIMAS
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THE HEXAGON
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MET. DR. THIP

• Mimas

• Enceladus

• Tethys

• Dionne

• Rhea

• Titan

• Hyperion

• Iapetus

• Phoebe
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TITAN

 

 

LAKES OF METHANE
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HUYGENS PROBE

 

ENCELADUS
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ENCELADUS
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SATURN

• Rings (less than 1 mile thick!)

• Roman God of Agriculture

• Voyager probes 1980, 1981

• Cassini Probe 1997…in orbit since 2004

• Huygens probe Jan. 2005 …TITAN

• ENCELADUS… Jan. 2006

• “Met Dr. Thip”

 

URANUS
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URANUS RINGS
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URANUS

• Greek deity of Heavens

• Voyager 2 – Jan. 24, 1986

• Retrograde orbit and 89 deg tilt

• MAUTO – moons named after Shakespeare & Pope

• 2 billion miles away
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NEPTUNE
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NEPTUNE

• Discovered by Gauss and LeVerrier

• Voyager 2 – Aug. 25, 1989

• Roman god of the Sea

• Fastest winds – 2100 km/hr

• Triton – coldest recorded temp (-400 deg F. – 40 deg 

above absolute zero!)

 

PLUTO
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PLUTO THE PUP

 

PLUTO

• Clyde Tombaugh – 1930

• Roman God of War

• 1 year = 243 (Earth) years

• Now a “Dwarf” planet

• “New Horizons” Probe to reach Pluto in 2015

• Charon (1978) – ferried the dead across Styx
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NEPTUNE 

  

. 
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NEPTUNE
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NEPTUNE – A THUMBNAIL SKETCH

• Eighth planet from the sun, with a mean 
distance of 3 billion miles

• A gas giant of about 4 Earth-masses, it is the 
fourth largest planet in the solar system

• Its “day” is 16.4 hours, its “year” is 165 Earth-
years

• Discovered in 1846, it recently celebrated its 
first Earth “birthday”

• Named after the Roman god of the sea.

 

THE GREAT DARK SPOT
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WAVE CLOUD

 

SCOOTER
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THE VIEW FROM HUBBLE

 

TRITON
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TRITON – THUMBNAIL SKETCH

• Named after the son of Neptune

• Discovered in 1846 by William Lassell

• Last major solar system body viewed by 
Voyager II (August 1989)

• Retrograde orbital motion

• One of three places in the solar system where 
active geysers have been detected

 

THE CANTALOUPE MOON
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GEYSERS OF LIQUID NITROGEN

 

VOYAGER’S LAST VIEW

 

 

 

 



STUDENT COMPREHENSION OF MATHEMATICS 175 

 

 

 

 

 

 

 

 

 

 

 

CREATIVITY IN MATHEMATICAL THOUGHT 

 

CREATIVITY IN 
MATHEMATICAL THOUGHT

HISTORICAL PERSPECTIVES

PRESENTED BY

BOB SEARCH

MEMORY AND COGNITION
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PYTHAGORAS OF SAMOS

 (585 – 500 B.C.)

 THE RIGHT TRIANGLE THEOREM

 THE “TILE’ INSPIRATION

 

THE PYTHAGOREAN “TILE”
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EUCLID OF ALEXANDRIA

 (323 – 285 B.C.)

 ELEMENTS OF GEOMETRY

 EUCLIDEAN GEOMETRY

 NUMBER THEORY

 

EUCLID’S ELEMENTS…ON PAPYRUS
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LEONARDO OF PISA
(FIBONACCI)

 (1175 – 1250 A.D.)

 THE FIBONACCI SEQUENCE

 1,1,2,3,5,8,13,21,34,…

 THE GOLDEN RATIO

 

THIS IS A “GOLDEN RECTANGLE”
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THE GOLDEN RATIO IN NATURE

 

THE GOLDEN RATIO IN ART
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JOHANNES KEPLER

 (1571 – 1630)

 THE THREE LAWS OF PLANETARY MOTION

 ORBITS ARE ELLIPSES

 EQUAL ARCS IN EQUAL TIME

 DISTANCE AND YEAR LENGTH PROPORTIONAL

 TYCHO BRAHE

 ASTRONOMICAL OBSERVATIONS

 

THE SOLAR SYSTEM
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RENE DESCARTES

 (1596 – 1650)

 THE NUMBER LINE
 EQUATIONS WITH ONE VARIABLE

 EQUATIONS WITH TWO VARIABLES
 VISUAL REPRESENTATION 

 INSPIRATION
 THE CARTESIAN COORDINATE SYSTEM

 

THE RECTANGULAR COORDINATE SYSTEM

8

6

4

2

-2

-4

-6

-8

-10 -5 5 10

CB = 7.57 cm

CA = 9.08 cm

A

B

C
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PIERRE de FERMAT

 (1601 – 1665)

 “FERMAT’S LAST THEOREM”

 PROVED BY ANDREW WILES…IN 1994

 ELLIPTIC MODULARITY

 EXTENSIVE USE OF TECHNOLOGY

 

FERMAT’S LAST THEOREM

 X^n + Y^n = Z^n

 This equation has no non-zero integer 
solutions for x, y and z when n > 2. 

 I have discovered a truly remarkable proof 
which this margin is too small to contain.
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BLAISE PASCAL

 (1623 – 1662)

 PROBABILITY

 COMBINATORICS

 “PASCAL’S TREE”

 

PASCAL’S TRIANGLE

EXPAND 1 1

(A + B)^N 1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
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LEONHARD EULER

 (1707 – 1783)

 CALCULUS
 SEQUENCES

 COMPLEX NUMBERS
 THE EULER IDENTITY

 GRAPH THEORY
 THE KONIGSBERG BRIDGE PROBLEM

 

EULER’S IDENTITY
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THE KONIGSBERG BRIDGE 
PROBLEM

 

CARL FRIEDRICH GAUSS

 (1777 – 1855)

 NUMBER THEORY

 MATHEMATICAL INDUCTION

 DISQUISITIONES ARITHMETICAE

 THEORETICAL ASTRONOMY

 THE DISCOVERY OF CERES
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GAUSS...IN FOURTH GRADE

ADD THE NUMBERS FROM 1 TO 100

1  + 2   + 3 +……….+ 99   + 100 = N

100 + 99 + 98 +………+ 2     +  1   = N

101+101+101+…….+101 +101 +101   = 2N

100 * 101  = 2N

5050    =  N

 

ARTHUR CAYLEY

 (1821 – 1895)

 COLLECTED MATHEMATICAL PAPERS
 (1889 – 1898)

 13 VOLUMES

 LINEAR ALGEBRA

 EQUATIONS AS ARRAYS
 MATRICES
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MATRIX REPRESENTATION

 

MITCHELL FEIGENBAUM

 BORN IN 1944

 CHAOS THEORY

 TURBULENCE IN FLUID DYNAMICS

 LOGISTIC POPULATION GROWTH

 BIFURCATIONS

 PREDICTION OF CHAOTIC EVENTS

 THE FEIGENBAUM CONSTANT

 37 HOUR DAILY CYCLE

 



STUDENT COMPREHENSION OF MATHEMATICS 188 

 

BIFURCATION DIAGRAM

 

BENOIT MANDELBROIT

 BORN IN 1924

 COINED THE TERM “FRACTAL”

 ISOLATED CURIOSITIES 

 BEFORE THE 1980S

 MICROCHIP TECHNOLOGY

 THE REVOLUTION OF THE 1980S

 THE MANDELBROIT SET

 FRACTAL GEOMETRY
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THE MANDELBROIT SET

 

 

 

 

 

 

PLUTO ROCKS 
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Appendix H: Interviews 

Differential Equations Interview session one 

RJS – teacher 

B, C, D – students 

RJS – OK, I just wanted to see if this thing worked. All right today we are going to look at 

homogeneous equations with constant coefficients.  

 

For the next few moments we discussed the equation 

 Y” – 7y’ +10y = 0 

We discussed how all linearly independent solutions would be of the form e^mx. In the case of 

our example, there would be a solution of the form 

 Y = c1e^5x + c2e^2x    (c1, c2 two arbitrary constants) 

Other similar equations were discussed. Cubic equations were looked at, and synthetic division 

was explored as a means of breaking down the cubic. The three students, Korean internationals 

in their mid-twenties, had no problem with the material (they had seen synthetic division in the 

past.) It was obvious that they understood the logic of the session.  

The discussion culminated with an overall view of how to deal with homogeneous differential 

equations. assuming solutions of the form e^mx and how the derivatives, y’ = me^mx and y” 

=m^2e^mx, lead to the characteristic equation, to be solved for m. 
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We concluded with a simple, factorable cubic where we used synthetic division (which they 

learned, by the way, in middle school.) Problems were assigned, and the students were 

dismissed. The session lasted about an hour and fifteen minutes. The rest of the transcription 

follows: 

RJS – OK, we’re dealing with homogeneous equations and I want to consider homogeneous 

equations with constant coefficients. We’re going to look at one type today and we’re going to 

look at more types in the coming days. Supposing let’s say we’ve got second degree equations’ 

Let’s say: 

Y” – 7y’ + 10y = 0 

All the coefficients, if you noticed, are constant terms. OK, 1, -7, and 10. OK, the claim is this, 

whenever you have a situation like this. This is called a homogeneous equation with constant 

coefficients (writes on board). OK, I don’t feel like writing “this” and this stands for coefficients. 

Once again, homogeneous means you’ve got a zero here, and constant coefficients means the 

derivatives of all the functions are all constant numbers. Now when you have a situation the 

claim is that the solutions are going to be something of the form e to the mx power. And then 

what you want to do is take the derivatives and put them in here. OK, this would be 

B – m times e to the mx 

RJS – Exactly. And y” would be.. 

B – m squared e to the mx 

RJS – Exactly. And then what they claim is …what you can do is when you put that claim into 

that equation, into the original diff. eq., this becomes: 
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m^2e^mx – 7me^mx + 10e^mx = 0 

Now as you can see every one of these term has a factor of e^mx. You take that out. And what’s 

left inside, you’ve got: 

m^2 – 7m + 10 = 0 

When you do this, this equation inside is given a name. It’s known as the characteristic equation. 

(Writes on board) and it’s characteristic of degree 2. This characteristic equation will always be a 

quadratic equation, which is solvable. Now I deliberately picked my numbers so that this 

characteristic equation is something easily factorable. Now if I were to ask you to solve this;  

m^2 – 7m + 10 = 0 

could you do it? The thing of course with this guy is that it’s pretty easy to factor. So the 

equation would factor into.. 

B - (m – 5)(m – 2) 

RJS - Exactly 

(m -5)(m – 2) = 0 

Which means, of course, m = 5 or m = 2. This means that this diff. eq. is going to have 2 linearly 

independent solutions. Your one solution is going to be e^(5x) and your other will be e^(2x). 

When you come to think of it, it’s fairly simple. And you’ll find that each one of them checks 

out. Because for instance if you put e^(5x) the second derivative will become 25e^(5x) - 7 times 

5e(5x) +10e^(5x) and is it equal to zero? You can see pretty easily that it is. Because this is 

going to be 25 – 35 + 10. They easily cancel each other out. Which means the complete solution 
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is going to be this. To make a long story short, the total solution is going to be something times 

e^(5x) plus something else times e^(2x), and that would be your final solution to this problem. 

And again you can have situations with initial conditions or boundary conditions and that will 

place a value on each of those. And there are going to be certain types…we’ll stay for the time 

being with quadratics. Suppose we have something like what we had before: 

y” – 2y’ + y = 0 

That’s another quadratic situation. So we presume, just like before, that a solution should exist, 

something of the form e^(mx). So like before, y’ is me^(mx) and y” is m^2 e^(mx). So when you 

put this guy in this becomes: 

m^2e^(mx) – 2me^(mx) + e^(mx) = 0 

And just like the other situation you’ll be able to factor e^(mx) out and what you have left inside 

is : 

m^2 – 2m + 1 = 0 

This is your so-called characteristic equation. Solve it.. 

B – negative one.. 

RJS – This of course factors into (m – 1)^2 = 0. As opposed to the other equation, this has just 

one solution. We say it is a solution of multiplicity 2. So..(shuffles papers)..OK, so m = 1. So one 

solution would be e^(1x). Now y1 would be e^(1x) and y2 would also be e^(1x). These two guys 

are linearly dependent. So  you have a situation where you have just one solution. What you 

basically have to do is ..quadratic…you simply do this…your other solution will always be this; 

x times e^(mx). It will always be that because as it turns out this guy will always solve this and 
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in addition these two will always be linearly independent where the other two weren’t . Again to 

make a long story short, for a quadratic of this form one solution will always be e^(mx) and the 

other will always be xe^(mx). And your final solution would become: 

Y (total) = c1e^(x) + c2xe^(x) 

And this isn’t too bad…I’ll show that it fits.. 

Y’ = c1e^(x) + c2( 1e^(x) + xe^(x)) 

What we put in the brackets there we had to use the product rule. So it’s the derivative of x times 

this + x times the derivative of this. And you put them together, you’ve got. 

Y’ = (c1 + c2 + xc2)e^(x) 

And then we do your double derivative which would be  

Y” = (c1 + c2 + xc2)e^(x) + c2e^(x) 

Again you have to apply the product rule. And you can combine like terms to get 

(c1 + 2c2 + xc2)e^(x) 

Now you don’t have to do this all the time but let’s see if this does, in fact, work in the original 

equation. Y” becomes this…(writes on board)…minus 2 times this guy + this guy. And we hope 

all this cancels out. Let’s see ..we get..(c1 +2c2)..(more writing on board)..(everything does, 

eventually, cancel)…(the cancellations done collaboratively)…So let’s just say..I’ll throw 

another one up there. We’ll just stick to quadratics. OK, let’s do…We’ll look at this guy (writes 

on board). It’s quadratic, homogeneous, with constant coefficients. We make the assumption that 
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a solution will always be of the form e^(mx) This becomes, you get used to this after a while. Y’ 

is me^(mx) and y” is m^2e^(mx).These get substituted in here: 

m^2e^(mx) + 6me^(mx) + 9e^(mx) = 0 

So then factor out e^(mx) and what’s left: 

m^2 + 6m + 9 = 0 

This thing is called the characteristic equation. Now by itself...you realize e^(mx) can never be 0. 

So in order to solve this- it has to be set = 0. And that’s the so-called characteristic equation. And 

again I deliberately picked these numbers 6 and 9. So I believe that’s easily factorable. That 

would factor into 

B – (m + 3) 

RJS – exactly. Which = 0 which means of course m would have to be negative 3. And we know 

that’s the only solution. So we say that since every quadratic of degree 2 has to have 2 solutions. 

So that means either 2 distinct or 1 with multiplicity 2. Or it’s also possible, sometimes you 

could have quadratics with no solutions…you know, with imaginary numbers and that’s another 

can of worms entirely 

B – so you would multiply.. 

RJS – I’m sorry..this stands for..when I say mult it stands for multiplicity. All right, so if m is -3 

when that happens my 2 solutions would be y1 = e^(-3x) and y2 = xe^(-3x) Which means my 

total overall solution would be: 

Y = c1e^(-3x) + c2xe^(-3x) 
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So that in general is how to solve a….and you can have… 

B – Did you get your hair cut? 

RJS – Yes I did. My wife fooled me. My wife was getting her hair cut Sunday and I went with 

her and after she finished her hair cut she said “Come on. Your turn now.” I have a very hard 

time saying no to my wife. 

B – Aah, you.. 

RJS – Originally I was going to say no. I have a girl who has been cutting my hair since 1993. 

Her name’s Tammy and I know her quite well. This girl was different from Tammy. I didn’t 

want that initially but when my wife says “get on the chair” I get on the chair. So that’s how I got 

my hair cut. Let me do this…(pause)..OK, again let’s deal with…the principle’s the same..again, 

remembering the degree of the equation..OK, I see what it’s doing…(another pause) …Ok, let’s 

say we have this diff. eq.: 

Y triple prime… 

RJS – OK, we have a third degree equation. Now for the third derivative we’re going to have at 

least (most) 3 solutions. Two of them may be identical, one different…or all 3 might be 

identical. So we got to figure that out. Again just like the previous problem we assume a solution 

will be of the form e^(mx). I can always cancel out the e^(mx) and get the characteristic equation 

to solve. What’s the third derivative of this going to be? 

B – m cubed e^(mx) 

RJS – OK, and this guy.. 
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B – m^2 e^(mx)…( more writing on board).. 

RJS – and just like the previous situation e^(mx) will cancel out and what’s left will be 

m^3 – 6m^2 + 11m – 6 = 0 

Now the thing we have to solve is this thing. Now, are you guys familiar with synthetic 

substitution? 

B – yeh.. 

RJS – Synthetic substitution is a very easy thing. I deliberately chose these numbers so that it’s 

easily factorable. For what you want to do with this is find an easy number that works. And a 

very easy way to check is to use this thing called synthetic substitution. OK, synthetic division 

goes like this. This of course is an implied one. You write the coefficients 1, -6, 11, -6. Let’s say 

you want to check one, see if one works. Synthetic division works like this ; if you end up with a 

zero here then one works. Now how do you do this? Step 1…( describes synthetic division in this 

case for m=1)…that means that one works. And what that means is this; if one works, (m – 1) is 

a factor. What’s left after you take the factor out? Well, that will be determined by these guys. 

You bring it down one..bring it down to squares. It will be: 

 

m^2 – 5m + 6 = 0 

And I think you can see that m^2 – 5m + 6 is easily factorable. It would factor into what? 

B – (m – 3)(m – 2) 
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RJS – Which means that m can be either +3 or +2. Which means over-all your solution is going 

to be this: 

Y = c1e^(x) + c2e^(2x) + c3e^(3x) 

So you’re good with synthetic substitution? 

B – We’re good. We learned that in middle school. 

(A little interactive mumbling follows) 

RJS – If you wind up with a cubic..it’s an easy way.. you guess…you hope ..that an easy number 

works like one or two or zero. You write down this number..and you multiply and add..and keep 

doing it. It’s a pretty easy way of working on..if you have a quadratic equation all you gotta do is 

factor…or use the quadratic formula. With cubics you might have…well you might find this one 

very easy.. 

B – Some are very complicated.. 

RJS – Some are complicated, so when you wind up with something complicated and it’s of 

degree 3 or higher. One easy way to help is, number one, you write out the coefficients and you 

hope an easy number works 

B – (indistinguishable)..I don’t understand why is that…..y = z……I don’t understand.. 

RJS – Oh it’s when you got… 

B – Linear combination 
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RJS – If it’s 1,2 or 3 that means that e^(1x) works and so does e^(2x) and e^(3x) and as it turns 

out when there are separate numbers they will be linearly independent. And when they are 

linearly independent and it’s a cubic equation that means that all solutions are going to be some 

kind of combination of those three. That’s what they say when they have linear combination. So 

the complete solution will be a linear combination of these guys. So overall: 

Y = c1e^(x) + c2e^(2x) +c3e^(3x) 

RJS – so we got a whole bunch…(pause)..on your books, if you look at page 181…I also have to 

show you…if you have a solution and you don’t know what the diff eq. is you can figure out the 

diff. eq. from that 

B – diff. eq.? 

RJS – Differential equation. Yeah, let me show you. Suppose you have a diff. eq….and the 

solution is..looks like this: (writes on board) The questions is what is the diff eq. that this 

function is supposed to solve? And it’s actually quite easy. What it means is you look at these 2 

numbers and your characteristic equation is m – this number times m – this number… 

B – You work it the other way around? 

RJS – Before we were given the equation we had to use this. Also, if you’re given this it’s 

possible to come up with a diff. eq. The diff. eq. is going to be…simply write down this m - (-2) 

is going to become m + 2 times m – 2 which becomes…m^2 – 4. That is your characteristic 

equation which means your diff. eq. is going to be: 

Y” – 4y = 0 

I’ll give you another example. Supposing we had: 
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Y = c1e^(-4x) + c2e^(5x) 

What is the original diff. eq. It’s going to start (m – (-4))(m – 5) and your diff.eq.will become: 

y” – y’ -20y = 0 

There’s your diff. eq. There’s a bunch of problems on p. 181. Let me just show you that some of 

them look rather strange. The first 20, based on what we did here, should be no problem. Let’s 

say you have something that looks like this…(writes on board)…what you have to realize is that 

when you see something that looks like this….this is just the same as y” ..this is just the same as 

5y’……and you assume a solution of the form y = e^(mx) and the second derivative is 

m^2e^(mx) + 5me^(mx) + 4e^(mx) = 0. Then it becomes standard you factor out e^(mx). This 

becomes 

m^2 + 5m + 4 = 0 

Solve this. It becomes..something easily factorable..(writes on board)…This becomes..either -4 

or -1 which means your final solution is going to become: 

y = c1e^(-4x) + c2e^(-x) 

You should have enough now to do p.181 without too many problems. So next time we’ll do 

some of these problems. So if you have questions, just go over what we need to do. So did you 

get the chance to look at anything on the internet?...On Neptune?....Like I said just look up 

B – Did you work on….? 

RJS –No I never did work at NASA 

B-So this is a hobby? 
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RJS - Yes this is just a hobby for me . My hobby is astronomy 

B – Astronomy…and physics.. 

RJS – They’re closely related.. 

B - …I see… 

RJS – exactly…I just did it…I never took a class or anything..I just did it because I liked it. 

The rest of the transmission is just conversation about the Apollo missions ( I watched Apollo 11 

on television) Just conversation about Apollo 18 ( which never happened) Some discussion about 

Apollo 13. ..space shuttle discussion…Challenger disaster. I actually applied to be the teacher in 

space…All seven astronauts died..The O rings…another disaster in 2002…2010 they completely 

stopped the program..which is a shame…some discussion on unmanned flights…The distances 

are incredibly immense…..if you could look up..just do Neptune trajectory on Google..by 

Thursday…then we’ll do some more problems….(class ends) 

 

Differential Equations Interview 2     April 25, 2013 

RJS – teacher 

Students B, C, D 

RJS – Were there any problems with the homework? 

B – No problem. 

RJS – (garbled) Well then We’ll show you something called reduction of order 
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B – reduction of order? 

RJS – yes, go to it here 

B – How old are you? 

RJS – I’m 66 years old 

B – 66? 

RJS – 66 

B – Ohh! 

RJS – I was born in January 1947. Two years after the end of the war. As an actual fact, my 

father was a captain in the army  He was in communications and he was stationed in the Pacific 

during World War II. He was fighting the Japanese during World War II 

B – Your father was a general? 

RJS – He was a captain. In World War II, originally, the plan was to invade Japan itself. There 

was going to be a massive invasion of Japan. If that had happened, there would have been 

massive destruction. My father would have been in communications. If you invade a land, one of 

the first things to do would be to set up proper communications. So if they actually had invaded 

Japan, my father would have been among the first into Japan. But as it turned out they dropped 

the bombs on Hiroshima and Nagasaki and they forced…I think the reason why they dropped 

two was because if they only dropped one, they might have thought they only had one. So what? 

But if they drop two they might have the capability of dropping more. So this forced the 

Japanese to surrender. If there had been an invasion, my father could very easily have been killed 



STUDENT COMPREHENSION OF MATHEMATICS 243 

 

and I might never have been born. As it was I was born two years later. So I guess you might say 

I am the child of the atom bomb!  

B – Ha! Ha! 

RJS – So that’s my World War II story! So I and my generation were the original baby boomers! 

All of the Americans who came home from WWII, they all moved into the suburbs and gave 

birth to people like me!! I was born in Brooklyn, and when I was 5 years old we moved out to 

Long Island where I grew up with a lot of other baby boomers. 

B – Do you have any brothers or sisters? 

RJS – Yes I have two brothers and one sister. If I tell you their ages, they will kill me! So you are 

sworn to secrecy. My sister is two years younger than me, my brother Steve is just turning 60, 

and my younger brother John is 51. 

B – So you are the oldest? 

RJS – Yes I am. So that’s my family history. We were fortunate. We grew up in relative 

prosperity. We’re in relatively tough economic times now, but like I said, we were fortunate back 

then. I eventually graduated college in 1969 and I got a job teaching high school math. I was 

lucky, teaching jobs are a bit tougher to get these days…… 

THE REST of the transcription involved a short discussion of some of the incidents (specifically, 

0ne where I was mistaken for a student!) of my teaching career. This, in turn, was followed by a 

discussion involving reduction. Specifically, it involved the differential equation: 
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 X^2y” - 6xy’+4y = 0 

Knowing one solution, y = x^2, use reduction of order to find the other solution (y = x^2lnx ) 

This was followed by a discussion of various kinds of solutions (involving real, complex, 

repeated, etc.) This was followed by a discussion on how the DE could be derived from the 

solution. A few homework problems were assigned, followed by dismissal. The entire session 

lasted roughly one hour fifteen minutes. The students (Korean internationals in their mid-

twenties) had absolutely no difficulty following the logic of the session. The rest of the 

transcription is now forthcoming: 

RJS – I taught at this one high school for 15 years. That’s a long time. And it’s really weird. All 

these people I taught..recently..I taught from 1969 to 1985. I got an e-mail a couple of days ago 

from some people from the class of 1978…is having a reunion. The class of 1978..eighty-

eight…ninety eight..two thousand eight….The class of 1978. It’s going to be their thirty-five 

year reunion. Their average age when they graduated was 18, and now they’re going to be about 

53. 35 plus 18. They’re going to be an average age of 53. They’re going to have their reunion 

next Thanksgiving. 

B – Did you teach (mentions former student’s name.)? 

RJS – Oh yeah! I taught her. Yep. She’s teaching here now.  

B – She was your..greatest student here? Like now, greatest student mathematics here?... 

RJS – Yeh, Yeh, She was a very good mathematics student. She’s a very good teacher. At least 

that’s what I’ve found. 
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B – She is much younger than us, actually. 

RJS – No kidding 

B - We’re 24. 

RJS – I had no idea you were 24. 

B – About the same age as American students. It’s kind of like the army. 

RJS – That’s cool. When I started teaching high school I was 22 years old 

B – 22?..Oh.. 

RJS – And I was only five years older than most of my students. When you’re in high school it’s 

not like you’re in college. You know in high school, if you’re caught in the hall, you know you 

have to be in a classroom, you have to be sitting down. If you’re caught in the halls, you have 

detention. You know, you have a detention system. One day I was walking with a bunch of my 

students and I lost track of time. I wasn’t aware.. the bell had rung and classes had started and I 

was with these three or four students and the vice-principal looks at us. The high school 

students…they all froze. He looks at all of us, the vice-principal, and says “Don’t you all have to 

be somewhere?” The students go “Yeah, we …uh.” They all go to their separate rooms, and I 

just stood there. And he looks at me and goes “Well?!!” And I looked at him and I said 

“Um…I’m a teacher here” And he goes “OH my god! “ He thought I was a student” 

B – Um.. 

RJS – Which got me into more trouble. I shouldn’t have been out in the hall. I could tell you 

stories for the next 5 hours of stuff I did when I was teaching high school. Excuse me! I shall do 
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reduction of order! It kind of like goes like this …(writes on board) It’s when you have…and 

we’ll concentrate on..quadratics…and I’ll best do it with an example. OK The general form of a 

quadratic equation..a differential quadratic equation of the form we’ve been looking at…looks 

like this…some function of x times the second derivative plus another function of x times the 

first derivative plus some other function times y equals zero. I say x but these could be constants. 

A sub zero could be 4. And what you want to do is this. You come up with…you find some kind 

of solution..one by one…that works here, and you’re supposed to come up with another 

one…OK if you have a quadratic equation there’s gonna be two solutions…so-called linearly 

independent solutions. So what you want to do is if you’re given one function what you want to 

do is find another function you let that be equal to whatever this function is times some other 

function v and then you of figure out what v is. We’ll find an example…what I’ll do is this 

(shuffles paper..writes something on board) We’ll look at the book. It’s  

 X^2y” – 3xy’ + 4y = 0 

That’s the differential equation. OK and you’re given that one such solution is x squared. OK, so 

the first thing you want to do is ask does that solution fit? That part of it, is easy. OK, you simply 

get the derivative y one prime would be.. 

B – 2x 

RJS – and y double prime would be just two. So the question is if you put these 3 things into here 

will it balance? And you can see without too much trouble, that it will. X squared time y” which 

is 2 minus 3x times y’ which is 2x + 4x squared and the question is does that equal to 0? OK? 

And you can easily see that it is. You got 2x squared minus 6x squared + 4x squared = 0. So you 

have to develop a second formula from that. What you’re gonna do is this. You’re gonna set your 
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second solution, whatever it is, = to something, whatever it is, times x squared. So if your y 2 

prime …Now you realize this v is some function of x we don’t know it..it’s gonna be v’ x 

squared + the derivative of x squared which is 2x 

B – Also, this could have that in it.. 

RJS - Yes, and we’re presuming this function v could have something in x. It could be a constant 

too don’t forget. OK, but presuming it’s a function of x, then you do this and y 2 double prime 

would be v”x Squared + 2v’x. And we gotta do this guy. Plus 2 x’ is one plus xv’. OK, so we 

have to use the product rule on this.. the derivative of this times v + this times the derivative of v 

and the derivative of x is just 1. So 1 times v is just here and then x v’ is there. So we combine 

the like terms and we get v”x^2 + 2xv’ +2xv’ is 4xv’ + 2…OK, now we’ve got to plug all this in 

to this guy. OK, so we’re gonna do x squared times this thing…all right then, minus 3x times 

..uh..this….,+ uh 4 times (mumble)..OK, this was put in place of y”, this was put in place of y’ 

and this was put in place of y. OK, so there should be some cancelling out going on here. We get 

v”x to the 4rth + 4 x cubed v’ + 2x squared v minus 3 x cubed v”..minus 6x squared + 4x^2 v 

(writes on board) = 0. And as you can see we got 4 x^2 v minus 6x^2 v + 2x^2v..they cancel and 

we’ve got 2 like terms here and we wind up with…v”x^4 + x^3v” + v”x^3 = 0 and assuming that 

x does not = 0 we can divide by x^3 and we find v”x + v’ = 0 and we get another substitution. 

We’re gonna let v’ = some w. and we’ll replace it with v afterward. Then v” just becomes w’ and 

+ w just = 0. A simple linear diff. eq. which we can easily solve by moving to minus w..we get.. 

I think I got this right..so this eventually means natural log w = natural log of x ^-1. W = x^-1 

and w was originally our v’. So we get v’ = x^-1. So v is the antiderivative of dx/x. and the 

(anti)derivative of dx/x is natural log of x 
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B – natural log of w =….. 

RJS - OH,plus if two natural logs are = to each other. If natural log of f(x) = natural log of g(x) 

then f(x) and g(x) are themselves =. 

B – (mumbles) 

RJS – Natural log is a so-called monotone increasing function. And if 2 logs are =. Natural log of 

x2 = natural log of x1 then x2 will equal x1. So if the natural log of w, which is this is equal to 

the natural log of this which is 1/x. I can write this as x^-1 as natural logs go. Minus natural log 

of x is natural log of x^-1 and then you get this times the antiderivative of this dx/x which is 

natural log of x. Now originally we had our second y which is this now becomes our second y.. 

This guy turned out to be natural log x. So I can write my y2 as x^2 natural log of x. That 

process is what’s called reduction of order. Does it work? Let’s see if it does. Can I erase this? 

B – Sure. 

RJS – In order to see if it fits here we have to take the first and second derivatives of this thing. 

So we have to use the product rule on this thing. The derivative of this times this + the derivative 

of this times this. So we have 2x natural log of x + x^2 times 1/x. Which is 2x natural log of x + 

x. The second derivative I’ll do this derivative first, which is just 1 + 2 times the derivative of 

this thing which is natural log of x + x times the derivative of natural log x which is just 1/x. So 

we simplify and combine like terms, this is just obviously 1 + 2 times 3 y”. Now the question 

is..x^2 times 3 + 2 natural log of x minus 3x times y’ = 2x natural log of x + 1…+4 times x^2 

natural log of x…question is, will it be 0? OK, let’s see, we’ve got 

3x^2 +x^2 lnx - 6x^2lnx – 3x^2 + 4 x^2 lnx 
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Now I think we can pretty easily see that…we’ve got….eventually…cancellation. We can see 

that this solution and this solution are linearly independent. So our final solution would be c1y1 

+ c2y2. In other words, c1x^2 + c2x^2lnx. So then I’ll show you one more thing… 

B – Why would this be reduction of order? 

RJS – Oh, the reason why would be that at one point remember we had natural log of ….we had 

v” of x + v’ = 0 The reason why we did that was that if we let v” …or w = v’. This is a second 

degree differential and the reason they call it reduction is if v’ = w then v” = w’. Then w’ + w = 

0. This order of this equation is 2 while the order of this is 1. 

B – ooh… 

RJS – that’s why they call it reduction of order. Let me show you one more thing. I neglected to 

mention complex numbers. (shuffles papers)..uh…just show this..Oh, I’m not going to do 

complex #s yet. There may be equations like this guy. Y triple prime – y’ =0 Again, uh, the 

normal way of doing this with constant coefficients…you’ve got an implied one here minus 5 

minus 2. When you have that situation you always assume that a solution exists which will have 

this form…and we have to go to the third degree. That’s easy enough. Y double prime..y triple 

prime..we’ve got m e to the mx. We’ve got m^2 e to the m x and we’ve got m cubed. We put 

those into this equation. We’re going to get e to the mx times m cubed – 5m e to the mx – 2. As 

you can see the e to the mx factors (it is never zero) and we’ve got: 

m^3 – 5m -2 = 0 

And again, as I’ve told you in the past this is never 0. So in order for this thing to have a solution 

we have to solve this (pointing to above) and again this is a cubic equation. The standard way of 
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doing is if you can’t find a solution..hopefully there’s an easy one…you resort to synthetic 

division. Remember there is no second degree and you have to account for every power of m. So 

we have 1 for m cubed no coefficient for m^2 so we have to account for that with a zero minus 5 

m – 2. I believe what works ..oh, let’s cheat..it says that negative 2 works…We’ll do negative 2. 

If you do something like this (with possibilities) +1, -1 or 0 I think you’d find…the idea is to 

hopefully get a 0 there. You bring down this guy (1) -2 times 1 is -2 -2 times -2 is 4. -5 +4 is -1 

and the negative 2 times positive 1 is negative 2..and that gets you zero. So that says that if: 

P(m) = m^3 – 5m – 2  

And -2 is a zero of the function. I should point out that if you put -2 in for m in that polynomial, 

then (-2)^3 minus 5(-2) – 2…this is easy to figure out (-2)^3 is -8 . (-5) times (-2) is 10. You can 

see that -8 +10 _ 2 is zero. So, if -2 is a root, and it is, then minus a minus 2 

B – m + 2 

RJS – right, m + 2 is a factor. And when you divide it, it’s determined by these guys (referring to 

the bottom line of the synthetic division).Then this becomes  

B – m^2 – 2m – 1 

RJS – Right. Now with this guy, as it turns out, this is not factorable. So, over here, you’ve got to 

use your quadratic formula. So we get – (-2) plus or minus the square root of (-2)^2 – 4(1)(-1) 

over 2(1). So that ‘s what it comes out to ( points to solution). So this would become 

B – 2 plus or minus root 8 over 2 

RJS – Which would reduce to.. 
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B – 1 plus or minus root 2 

RJS – so your solution would eventually be c1e^(-2x) + c2e(1 – radical 2)x + c3e^(1 +radical 

2)x. I should show you one more thing. If you have the solution and you want to produce the 

equation. Suppose you have: 

Y = c1e^3x + c2e^(-5x) 

Your solution is, um,…your characteristic equation is going to be: 

(m – 3)(m + 5) 

Which would become: 

m^2 + 2m – 15 

which means your diff. eq. is going to be 

y” + 2y’ – 15y = 0 

So I just have to show you one more thing relative to that. What happens when you throw in a 

third, let’s say, a constant. Let’s say you have c1e^(-2x) + cl2e^(4x) You know that that’s a 

solution, and you have to deal with that. What you do is.. 

B – Make it a zero x 

RJS – Exactly. And that means your characteristic equation is going to be this: 

(m – 4)(m + 2)(m – 0 ) 

Which is just m so you have 
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m^3 – 2m^2 + 2m 

 

which makes your differential equation; 

y triple prime minus 2 y Double prime + 2y Prime = 0 

RJS – So you can look at..(gives a 2 page problem set)…You do have a copy of the book 

B – Yeh, Yeh 

RJS – So if you look at the problems on those 2 pages you’ll see pretty much what we covered 

today. We’ll discuss more of the Neptune Project next week. 

B – Thank you 

RJS – Thank You! 

 

Student A Interview 1 – Mar 12, 2013 

Q. How is the course proceeding so far? 

A. So far I believe it has gone well. I like the pace, and it has challenged me with calculus. 

Q. Describe your mathematical background (i.e. courses taken, etc.) up to this semester. 

A. Business stats, stats, Calc 1 thru 4, Advanced Geometry, Discrete Math, Quantitative 

Literacy, Number Theory, History of Math. 

Q. How difficult was the Pre-test? 
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A. I found the Pre-test to be of medium difficulty. I had trouble with some of the problems, but 

others I found easy. 

Q. How comfortable are you with your calculus background? 

A. Not as comfortable as I should be with calculus, but I’m working on it. 

Q. What calculus algorithms do you feel you need review on? 

A. Homogeneous equations, solving different differential equations that I’ve seen previously. 

Also, doing more difficult integrals (like trig substitutions, partial fractions, etc.) 

Q. From what you’ve seen so far, describe the relevance of this course to so-called “real life” 

applications.  

A. I can see how math is relevant to all matters of real life science, including such subjects as 

astronomy. 

Q. What do you hope to get out of this course? 

A. A greater appreciation for the relevance of differential equations, and where they are relevant 

in fields such as astronomy, etc. 

Q. Do you feel any changes should be made to improve the course as we move on? 

A. No, I think the pace is comfortable for me. 

Q. Are you enjoying yourself? 

A. Yes, this class is enjoyable because it has challenged my calculus background, which needed 

a brush up. 
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Q. Let’s discuss the specifics of your Pre-test 

(Actually, we discussed it in detail when she took it a few weeks ago) 

 

 

 

(Student A ) Interview 2        May 2, 2013 

RJS – interviewer 

A – interviewee 

RJS – OK, give me the problem. 

A – yeah, um, OK 

RJS – Oh, yeah, this is a very interesting little thing…the integral of natural log of x quantity 

cubed dx..and we would figure this one out…let’s see…this is a function within a function…I 

would say… 

A – (mumble) 

RJS – yes, let’s see.. 

A – Do we have to figure out the problem first? (note; the problem is an identity proof.) 

RJS – Let’s see if we can figure this one out. If we did a simple substitution..u would be natural 

log of x, v would be x cubed…and we would get nowhere… 
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A – That’s what I did! That’s what I did…and it goofed up… 

RJS - Yes 

A – I know the derivative of natural log of x is 1 over x 

RJS – What’s this in context of? 

A – It’s just a problem. My brother had it and he couldn’t figure it out, and he asked me to figure 

it out… 

RJS – OK, was it a textbook problem? 

A – Yes it was 

RJS – OK, then we should be able to figure it out..I think maybe we could do it 

with…integration by parts….integral u dv = uv – integral v du…that would make it look like 

..uh.. 

A – Let me just have … uh… 

RJS – pause… 

A – it says ..uhh.. prove that…this is..prove this..antiderivative this… 

RJS – OK, let’s try this. Let dv = dx and u = natural log of x cubed. …pause..This becomes du = 

3 natural log of x squared dx…and v = what? 

A – uh…x. 

RJS – that’s right. It’s going to be this times this…x times natural log of x cubed minus v 

du…which would be integral 3 times natural log of x squared….OK now these x’s conveniently 
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cancel..so we get ..uh.. x nl x (nl = natural log) cubed – 3integral ln (x squared) dx..Now I 

believe that for this we have to use integration by parts again..  

 

A - OK  

RJS – So this becomes.. let u 

A – Wait, is that negative…. 

RJS – So we have to go through the same process with this that we went through with this 

(points). So u = ln(x squared) and dv = dx. So du = 2ln(x) times 1/x dx and v = x. OK, so we’ve 

got x ln(x) cubed minus 3 times now this process becomes x times ln(x) squared…pause 

…minus v dx 2 times ln (x) times x…times dx, I’m sorry..OK 2 ln(x) (all of this is being done on 

a whiteboard)…yeah, and the x’s once again cancel..OK, so I get…x ln(x) cubed minus3x ln(x) 

squared and then we’ve got minus a minus which is plus 3 times 2 which is 6 and the x’s cancel 

out and the derivative of ln x we have plus six ln(x) and we have to do it one more time which is 

dv = dx,.. OK, du = 1/x dx and v = 

A – x 

RJS – yes OK, so this finally becomes ..running out of space here..I’ll put it up 

here..equals..we’ve got x cubed…pause..minus 3x ln(x) squared plus 6 now we have to do x 

ln(x) minus x times 1/x 

A – wait it would be  
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RJS – v du…OK so that becomes x ln(x cubed) minus 3 x ln(x squared) plus 6x ln(x) minus this 

is just 1 dx which is x…OK, is that what it came out to be? 

A – Yeah, it did…that was awesome.. 

RJS – Let me see where we were at ..uh..doing our…I believe we were doing our..where is my 

interview…(pause)…just a second here..let’s see..give me your questions, relative to the 

Neptune thing.. 

A – This one? 

RJS – Oh, yeah..now I guess, OK, when I say, arc length, what, specifically, does that mean to 

you? 

A – Uh, the, um..arc length is the ..it’s so frustrating..I just couldn’t figure it out… 

RJS – excessive application of integration by parts..this formula ..so you have to do it…you 

actually had to do it three times …OK 

A – OK, so arc length…you have ..um..you have a function and you want the arc length from 

this point to this point 

RJS – exactly…say from point a to point b 

A – arc length is the actual length if you ..uh..straightened it out… 

 RJS – the actual physical length of this arc ….you can do it according to a formula which goes 

something like this 

A – Yeah, its in here.. 
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RJS – yeah, here to here (shuffles papers) and we’re using the fact that we can consider this a 

part of the total arc length 

A – doesn’t this have to do with ..um..the Pythagorean theorem? 

RJS – exactly dx and dy… you’re breaking it up into little triangles 

B – yes 

RJS – and what it becomes is by Pythagoras is going to become dx squared plus dy squared 

A – Yeah! 

RJS – OK, and that comes out to… 

A – the change in x squared and the change in y squared. 

RJS – and then your arc length call it s will be whatever it is from a to b 

A – ds 

RJS – and the whole thing would be dx squared plus dy squared…a little mental 

arithmetic…multiplied by dx / dx….which is basically multiplying by one..you don’t change 

anything..you make a further change..you go from a to b and you take the square root of dx 

squared and dy squared and with this you can do a little bit of mathematical trickery…and you 

can make this guy dx squared 

A- Well, I’ve never seen this before.. 

RJS – This dx becomes .. you express it like that…you haven’t really changed it 

A – Right 
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RJS – and because what it does…you can stick this thing into that part of it….and so you get a to 

b of the square root of this thing in here ..the square root of dx squared plus dy squared OK times 

..this becomes over dx squared and so this becomes the square root times dx on the outside. What 

that does is this ..you can now distribute dx over dx squared here and her ..and so this becomes 

the integral from a to b of radical dx squared over dx squared , which becomes one plus dy/dx 

quantity squared dx..and there you have your formula and if you do it in terms of functions with 

dy/dx, the derivative..if you write it as y it would become 1 plus y prime quantity squared dx. 

Now, what would such a problem look like in real life? 

A – Ummm. 

RJS – Well, you’d get…well, you could do something simple 

A – Well they talk about axis of rotation 

RJS – yes, well that stuff..when you’re talking about arc length…and we’re going to be using arc 

length to calculate the orbit to Neptune. So let’s just use a very simple function for y, y = x, 

which would look like this (demonstrates on board) Something easily verifiable, let’s see..the 

thing I gave you…let’s go from x = 0 to x = 5. This is , of course, all I’m asking is just the 

physical length of this line ..something you can do without calculus.. 

A – Yeh 

RJS – Well you can see from here to here, from zero to 5, this is just a right triangle. That’s nice 

and simple...a 45- 45 -90…I mean you can do 5 squared plus five squared = x squared. Or, if you 

recognize the fact that this is a 45 - 45 - 90 triangle, all you have to do is multiply 5 by radical 2. 
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Now the question is if you were to do the same problem using this little formula, what would it 

look like? To give you a little bit of understanding of how it works… 

A – Right 

RJS – OK, we would calculating the arc length from 0 to 5 

A – OK, this is what we’re going to have to do 

RJS – Yeh, yeh, so this is going to become 1 plus whatever f prime of x is squared. Now in this 

case f(x) is just x. What’s f prime of x? What’s the derivative of x with respect to x? 

A – One 

RJS – Just one. OK, so this formula now becomes your little s becomes the integral from 0 to 5 

of radical 1 plus now f prime of x is just one..so we have 1 plus 1 squared dx 1 squared is just 1 . 

1 plus 1 is (formula) radical 2. This is just a constant, radical 2, so I put it on the outside time 0 to 

5 of dx and that integral is just what? 

A – One 

RJS – The integral of dx is just what? 

A – x 

RJS – So it’s going to be radical 2 times x from 0 to 5. So it’s radical 2 times x=5 minus x = 0 

which is 5radical2. Which is what you would expect. 

A – OK  
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RJS – OK, so what we want to do is look at it with a little more…sometimes these problems 

involve trigonometric substitution. The problem I’m looking for is ..let me just take a look at this 

section (shuffles papers) 

A – I was actually trying to relate it to, like, real world problems. And I was googling…. 

RJS – Ah yes. And this is exactly what I was looking for. Let’s say we have this problem…yeh, 

right,..This one’s going to be, unfortunately, a little more complicated.. 

A – Yeh 

RJS – Let’s see what we have here…f(x) is now one-half x squared. (writes on board). And 

we’re going to try to find…and this is going to be a parabola..that looks kind of like this…and 

we want it from x = 0 to x = 1 that’s simple enough. It’s going to look something this..and y = 

one-half x squared. So we’re basically looking for that thing. And we’re going to try to 

use…we’ll call it s..we’ll use the trick formula …s is..we are looking from 0 to 1 of the integral 

of radical one plus f prime, whatever that is, squared and dx. So, if f(x) = one-half x squared, 

what is f prime of x? 

A Um, it’s just 1x? 

RJS – Exactly. 

A – So it’s just x 

RJS – Yeh. Derivative of x-squared is 2x and multiplied by ½ is just x. So this becomes just 

radical 1 plus x-squared. Here’s where the fun comes in. We now have to deal with the fact that 

radical 1 plus x-squared does not go by your normal rules 
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A – Right 

RJS – You let ..basically you’re going to use a trig formula. You’re going to start by drawing a 

reference triangle. You’re looking for an x and you’re looking for a . OK, you’re starting with 

a right triangle with an angle  whose opposite side is x and adjacent side is one. What 

formulaconnects  with x with 1? 

A – Sine? 

RJS – Close… 

A – No,no,no,no……tangent! 

RJS – yes, tangent  is x over one in this reference triangle. Opposite over adjacent. If the 

opposite is x and the adjacent is one in this right triangle, what is the hypotenuse? 

A – x squared plus 1..uh, the square root of x squared plus 1! 

RJS – Yep, now what you have to do next is express x in terms of another variable, namely . 

You know that tangent  = x. You now have to take the derivative of both sides. What’s the 

derivative of tangent? 

A – Secant?...secant squared! 

RJS – Right…secant squared  de. So, this equation becomes transformed. We keep it from 0 

to 1. So this becomes the square root of 1 plus tangent squared. Dx becomes secant squared  

de. OK, so how about this? Is there a trig identity that you can replace 1 plus tan squared  

with? 
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A – Sine over cosine? 

RJS – You’re on the right track. What is the fundamental trig identity? 

A – Sine squared plus cosine squared = 1 

RJS – and that’s used all the time. And there’s something that follows from it that is used almost 

as often. If I divide through by cosine squared x, what’s going to happen? 

A – Sine squared over cosine squared plus 1 = 1 over cosine squared 

RJS – Yeh. 1 plus this squared = 1 over cosine squared. Now, what’s sine over cosine? It’s the 

same as opposite over adjacent.. 

A – Um..x.. 

RJS – The same as opposite over adjacent 

A – Oh! Tangent 

RJS – OK, so this is 1 plus tangent squared. And what’s 1 over cosine? 

 A – Hesitates.. 

RJS – 1 over cosine…. 

A – Secant! 

RJS – Yeh, that’s it, exactly…OK, so radical 1 plus tan squared x..is..secant x. so this becomes 

secant theta. So we get 0 to 1 of integral of secant cubed  de. Now, problem is..what in God’s 

name do we do with that!? It’s doable but… 
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A – Do we have to separate it? Like, uh, secant squared and secant? 

RJS – Yeh, the best way of doing it..I do this all the time…I would say the best way of dealing 

with this is ah..secant cubed …9 times out of 10 with this we usually rely on integration by 

parts. You should always keep this formula (points to board) u dv = uv – v du. Let’s say we got 

secant squared..ah, I would say 

A – You mean, we’ll have to do it more than once? 

RJS – I don’t believe we’ll have to use it more than once. I would say, for secant cubed, we 

would use u =secant , dv = secant squared 

A – Yeh, that’s what I was going to do.. 

RJS – Because the derivative of tangent is.. 

A – Secant squared? 

RJS – yeh, and the anti-derivative of secant squared would be 

A – Tangent 

RJS – Yeh, and how about the derivative of secant ? 

A – Is it secant tangent?  

RJS – That’s it, exactly! The derivative of secant  is secant  tangent . 

A – I remembered something! Yay! 
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RJS – OK, so what does this mess become?! We have got..secant cubed  becomes …u times v 

becomes secant  tangent  minus..uh..(writes on board)…this becomes minus the 

antiderivative ..v du becomes secant  times tangent squared ..(pause)..OH, and tangent 

squared is secant squared plus 1…OK, so what do we have here? We have this…now remember, 

we’re going to have to repeat this s = 0 to 1 secant cubed  de. We have to do a little bit of a 

trick here..This becomes the integral of secant cubed  again plus one times secant . Now, as 

you can see, the derivative repeats itself here 

A – Yeah 

RJS – OK, so what we have to do is the following. We’re going to keep this .. 

A – Yeh, yeh…the same thing we had before… 

RJS – Yeh, exactly! A little tricky math..and then we get secant cubed minus the anti-derivative 

of secant  de. OK, so now what happens is this is going to move over here. So we ultimately 

wind up with twice 0 to 1 of secant cubed  de equals what we had here secant  tangent  

minus antiderivative of secant  de. OK a thousand dollars for antiderivative of secant  de

A – Of secant ? 

RJS – It’s cool when you figure it out…but it’s not …uh… 

A – Wait,…the integral?...secant  de..Is it not secant… 

RJS – Actually, it’s a really neat trick. It’s an illustration of a mathematical trick. It’s like, OK, 

what I’m going to do is..you do..just concentrate on secant 
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A – OK..Don’t you just do tangent  plus 1. 

RJS – You’re on the right track…you are definitely on the right track…and it’s the old math 

trick of multiplying by 1. OK, so what does multiplying by one mean? It means secant … 

A – Oh, by itself! 

RJS – Only I’m going to express one in the following way.. 

A – Theta over secant 

RJS – You’re on the right track. We would better express it as 

A – Tan over tan 

RJS – Tangent  plus secant  OVER tangent  plus secant . Have I changed anything at all? 

A – No 

RJS – What I’ve done is …watch what I’ve done. I recognize the bottom as tangent  plus 

secant  but on the top I’m going to multiply out secant  times secant  is secant squared  

plus secant  times tangent . Now, what is the derivative of the denominator? What is the 

derivative of secant  plus tangent ? 

A – Um 

RJS – What is the derivative of tangent? 

A – Uh… 

RJS – You just said it before… 
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A – Secant squared 

RJS – Yeah, and what is the derivative of secant ? 

A – Secant  tangent . I knew it was something like this 

RJS – Notice, the derivative of the denominator is the numerator 

A – Yeah 

RJS – What you have is the situation. Keep in mind, what you now have is this dv over v. And 

what is the antiderivative of dv over v? 

A – Uh, v, no..oh, would it be natural log 

RJS – Natural log v . And the means that the anti-derivative of this is simply the natural log of 

the denominator. 

A – Oh, yeah! 

RJS – OK, so what does this mess turn out to be over here? We finally get..this turns out to be s. 

What we were looking for turns out to be the integral for 0 to 1 of secant cubed  de = one-

half of secant  tangent  minus one-half natural log of secant  plus tangent . Now this 

would turn out to be..in calculus..keep in mind that under these circumstances we now have to 

convert back to x . Once we’re dealing with that. Sometimes with calculus you can do either one 

of two things at this point. 0 to 1 is in terms of x’s. We would have to convert all our secants and 

tangents to functions of x’s. 

A – (agrees) 
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RJS – We do have an alternative. We first said this is x’s and we originally substituted for the 

x’s…x becomes tangent . When the tangent of  = 0 what is ? 

A –  is 1? 

RJS – No, zero. Now when x is 1. Give me a simple..uh…what is..when you have right triangles, 

when do you have tangent  = 1. 

A – When that is equal to one…opposite over adjacent 

RJS - =1. That would make  how many degrees? 

A – Uh, forty five? 

RJS – Exactly! And forty five in radians would be? 

A – In radians would be …. over 4? 

RJS – Exactly. So, to make this a little easier we can covert to  = 0 to  = /4 

A - Oh, yeah, I remember this 

RJS – That would become 0 to /4. The integral becomes one-half secant /4 tangent /4 minus 

one-half natural log secant /4 plus tangent /4 minus this whole thing at  = 0… (pauses)… 

minus one-half natural log secant 0 plus tangent 0. Which if you look at the bottom of zeroes, 

what is the tangent of zero?  

A – Zero! 

RJS – This drops out. And what’s secant zero? If cosine zero is 1, cosine is also… 
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A –One 

RJS – And what’s natural log of 1? 

A – 1 over X? 

RJS – Natural log of 1 ..e to the zero power is 1. So natural log of 1 is just… 

A – Zero 

RJS – So this drops out. So what we need to do up her is…We do one-half of secant /4 tangent 

/4 minus one-half….now we’re doing /4…so my triangle would be 1 – 1 – radical 2…./4, 

forty five degrees. We know that the tangent is 1..uh..what’s secant /4? Not adjacent over 

hypotenuse but hypotenuse over adjacent… 

A – So it’s radical 2? 

RJS – And the minus natural log of radical 2 plus 1. There is your arc length from 0 to 1 

A – Wow. That’s pretty cool, actually 

RJS – Yeah, it is. You’ve got a whole lot of mathematical tricks in there 

..the rest is checking. 

RJS – Looks like we’ve got what we want..So I am going to stop! 
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Appendix I: Student Study Consent Form  

Consent Form 

DIFFERENTIAL EQUATIONS STUDY 

Rutgers University Graduate School of Education 

 

Description: As a student scheduled to take MTH304 Differential Equations in the Spring 

Semester 2013, you are invited to participate in a study based on the teaching methods that will 

be used in this course. This study will involve the researcher conducting observations during the 

first month of class sessions, and you will be asked to participate in 6 additional hours of 

interviews and other observed sessions. The interviews and sessions may be audio [or video] – 

taped for the purpose of maintaining accurate records. These tapes will only be used by 

personnel involved in this study. 

 

Risks and Benefits: There are no foreseeable risks or benefits associated with your participation 

in this research study. 

Time Involvement: Your participation in this study will take no more than normal class time and 

6 additional hours. 

Payment and Costs: You will receive no payment for your participation in this study, and there 

will be no foreseeable costs for you associated with your participation.  

 

Subject’s Rights: If you have read this form and decided to participate in this project, please 

understand your participation is voluntary. You have the right to withdraw your consent or 

discontinue participation at any time without penalty. You have the right to refuse to 

answer particular questions. 

 

Research Products: Your name and organization will not be identified in any reports of the 

findings from this study. You will be given a copy of the report describing the study’s findings. 

The principal investigator for this study is: 

Robert Search, Centenary College, Hackettstown, NJ 07840 tel. (908)852-1400 (ext. 2112) 

Rutgers Graduate School of Education 
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10 Seminary Place 

New Brunswick, NJ 08901 

 

If you have any questions about your rights as a research subject, you may contact the Sponsored 

Programs Administrator at Rutgers University at (732)932- 0150 (ext. 2104) 

 

I give consent to participate in this study. 

Signature_________________  Date_____________ 

Name____________________ 

Signature of Investigator______________ 

 

I give consent to be audio-recorded. 

Signature_________________  Date_____________ 

Name____________________ 

Signature of Investigator______________ 

 

 

 

 

 

 


