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Many cognitive diagnosis model (CDM) examples assume independent cogni-

tive skills; however, cognitive skills need not be investigated in isolation (Kuhn, 2011;

Tatsuoka, 1995). Kuhn (2001) argues that some preliminary knowledge can be the

foundation for more sophisticated knowledge or skills. When this type of hierarchical

relationships among the attributes are not taken into account, estimation results of

the conventional CDMs may be biased or less accurate. Hence, this dissertation in-

vestigates the change in the degree of accuracy and precision in the item parameter

estimates and correct attribute classification rates of different estimation approaches

based on modification of either the Q-matrix or prior distribution.

Modification of the prior distribution and the Q-matrix depend on the assumed

hierarchical structure, as such, identifying the correct hierarchical structure is of

the essence. To address the subjectivity in the conventional methods for attribute

structure identification (i.e., expert opinions via content analysis and verbal data

ii



analyses such as interviews and think-aloud protocols), this dissertation proposes

a likelihood-ratio test based exhaustive empirical search for identifying hierarchical

structures. It further suggests a likelihood-approach for selection of the most accurate

hierarchical structure when multiple candidates are present.

Furthermore, implementation of the CDMs requires construction of a Q-matrix

to indicate the associations between test items and attributes required for successful

completion of the items (de la Torre, 2008; Chiu, 2013). Q-matrix construction heavily

depends on content expert opinions, as such this subjective process may result in

misspecifications in the Q-matrix. Up to date, several parametric and nonparametric

Q-matrix validation methods have been proposed to address the misspecifications that

may emerge due to fallible judgments of experts in Q-matrix construction (Chiu,

2013). Yet, although they have been examined under various conditions, none of

these methods was tested under hierarchical attribute structures. Therefore, this

dissertation further investigates the reciprocal impact of misspecified Q-matrix and

hierarchical structure on hierarchy identification and Q-matrix validation.

The results showed that structured prior distribution led to the most accu-

rate and precise item parameter estimation, and highest correct examinee classifi-

cation. When an unstructured prior was employed, impact of structured Q-matrix

was different for compensatory and noncompensatory CDMs. Furthermore, study

results showed that likelihood-based exhaustive search was promising in identifica-

tion/validation of hierarchical attribute structure. Lastly, results indicated that per-

formance of Q-matrix validation methods might not be as high when they are used

as is under hierarchical attribute structures.
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Chapter 1

Introduction

Reasoning processes are generally assessed through complex tasks providing

information on reasoning strategies and thinking processes. Significant role of cogni-

tive theory in educational testing has been emphasized in the literature (e.g., Chip-

man, Nichols, & Brennan, 1995; Embretson, 1985). Embretson (1983) claimed that

cognitive theory could improve psychometric practice by guiding the construct rep-

resentation of test, which is defined by knowledge, mental process, and examinees

response strategies. Cognitive requirements eliciting particular knowledge structures,

processes, skills, and strategies could be assembled into cognitive models to develop

test items (Leighton, Gierl, & Hunka,2004). A generic term attribute is used in psy-

chometric literature to refer to cognitive processes, skills, knowledge representations,

and problem solving steps that need to be assembled into cognitive models for test

development (de la Torre, 2009; de la Torre & Lee, 2010).

After comprehensive examination, Leighton and Gierl (2007) concluded that,

among the three types of educational tests (i.e., cognitive model of test specification,

cognitive model of domain mastery, and cognitive model of task performance), only

cognitive model of task performance was feasible for obtaining convincing evidence for

diagnostic inferences on students’ cognitive strengths and weaknesses. Assessments

based on cognitive model of task performance are usually referred to as cognitively

diagnostic assessment (CDA) in the psychometric literature (de la Torre & Minchen,

2014), and aim to identify the attribute mastery status of examinees. CDAs need to

be purposefully developed to empirically confirm the examinees’ thinking process in
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problem solving. Hense, CDMs can also be used to validate specific models of human

cognition (Corter, 1995).

Sample tasks administration with standard think-aloud procedure to a rep-

resentative group of a target population can be useful in CDA development process

(Chi, 1997; Taylor & Dionne, 2000). However, the role of cognitive theory needs to

be well articulated in test design, only then CDA can prove to be useful in testing

practice. Yet, until a few decades ago, the impact of cognitive theory on test de-

sign was minimal (Embretson, 1998; National Research Council, 2001), which was

attributed by Embretson (1994) to lack of frameworks incorporating cognitive theory

in test development. Thereafter, various testing approaches using cognitive theory

in psychometric practice have been proposed. The rule space methodology [Tatsuoka,

1983], the attribute hierarchy method [Leighton et al., 2004], and the generalized-DINA

model framework [de la Torre, 2011] are among these proposed approaches.

CDA, in general, aim to serve for formative assessment purposes so that feed-

back obtained from the analysis of the assessment results could be used to modify

teaching and learning activities (DiBello & Stout, 2007). Therefore, interest in CDA

rapidly increased as the need for formative assessment prompted by the No Child Left

Behind Act (2001). This increased interest in CDA gave rise to the developments of

statistical models to extract diagnostic information from CDA. These statistical mod-

els are restricted latent class models (Templin & Henson, 2006), and referred to as

cognitive diagnosis models (CDMs) or diagnostic classification models (DCMs) (de la

Torre & Minchen, 2014).

Attribute interaction in response construction and the attributes required for

each item are among the features that need to be known to derive a CDM (Chiu,

Douglas, & Li, 2009). Thus, a J×K item-by-attribute specifications matrix, referred

to as Q-matrix (Tatsuoka, 1983), is used in CDM. The Q-matrix is usually a binary

matrix of J rows and K columns where j = 1, . . . , J indicates the items and k =
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1, . . . , K represents attributes measured by the test. In a Q-matrix, an element qjk is

coded as 1 if item j requires attribute k; otherwise, it is coded 0.

Moreover, when K attributes measured through a test, the test could partition

examinees’ latent ability space into 2K latent classes. CDM classifies examinees into

these latent classes based on examinees’ attribute profile estimates. For example, for

K = 3, an examinee is classified into latent class {110} when the examinee has been

inferred to have mastered the first two attributes out of three attributes.

It is not uncommon to see prerequisite relationships among attributes. In

such cases, mastery of basic attributes is prerequisite for mastering more complex

attributes (de la Torre, Hong, & Deng, 2010; Leighton et al., 2004; Templin & Brad-

shaw, 2014). When attributes have such hierarchical structure, CDMs need to take

the hierarchy into account; otherwise, they may not be appropriate and useful (Tem-

plin & Bradshaw, 2014). Nevertheless, approaches to incorporate attribute hierarchy

into CDM estimation have not been studied thoroughly. Furthermore, identification

of hierarchical structures using statistical tests have not explored yet.

1.1 Motivation, Objectives, and Research Questions

Several studies suggest not to investigate cognitive skills in isolation (i.e.,

Kuhn, 2011; Tatsuoka, 1995). Some basic knowledge can be the foundation for more

complex knowledge or skills (Kuhn, 2001). In that vein, attributes measured in

educational and psychological assessments may hold a hierarchical structure (Gierl,

Wang, & Zhou, 2008; Leighton et al., 2004; Templin & Bradshaw, 2014). Yet, as-

sumption of independent cognitive skills is very common in CDM examples. Use of

conventional CMDs with independent attributes assumption may yield biased or less

accurate item parameter estimates that may eventually decrease attribute estimation

accuracy. Thus, this dissertation investigates the change in the degree of accuracy
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and precision in the item parameter estimation and correct attribute classification

when either the Q-matrix or the prior distribution is modified by the hierarchical

attribute structure.

Under the assumption of hierarchical attribute structure, multiple approaches

can be employed in CDMs for item parameter estimation and examinee classification.

This study discusses the approaches based on the constrained or unconstrained status

of the Q-matrix component of a CDM and the prior distribution used in the estima-

tion algorithm. When prior distribution is unstructured all prior probabilities for

2K possible latent classes are nonzero. In structured prior distribution case, a prior

probability of zero can be assigned to the latent classes that are theoretically impos-

sible. Although Q-matrix can also be structured in accordance with the hierarchy, an

unanswered question in CDM literature is whether it needs to be. Therefore, the first

study in this dissertation presents different estimation approaches using structured

and unstructured versions of the Q-matrix and the prior distribution.

The first study of this dissertation is designed to answer the following research

questions;

1. Does employment of a structured prior distribution improve item parameter

estimation in terms of accuracy and precision?

2. Does employment of a structured Q-matrix improve the item parameter esti-

mation under the structured and unstructured prior distribution cases?

Prior distribution and Q-matrix are structured based on the assumed hierar-

chical attribute structure. Thus, misspecifications of the prerequisite relationships

among the attributes can substantially degrade estimation accuracy. As such, correct

hierarchical structure identification is of the essence. In practice, hierarchy deriva-

tion procedure relies on either expert opinions via content analysis or verbal data

analyses such as interviews and think-aloud protocols (Cui & Leighton, 2009; Gierl
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et al., 2008). Because either procedure is subjective, hierarchy derivation may result

in disagreements over the prerequisite relationships that yield multiple hierarchies.

Moreover, hierarchical structures obtained from verbal analysis and expert opinion

may not be the same (Gierl et al., 2008).

Heretofore, no model based statistical tests were used in attribute hierarchy

identification to address the subjectivity in the conventional hierarchy identification

methods. To address this subjectivity, the second study of this dissertation proposes

a model-fit based empirical exhaustive search method to identify prerequisite relation-

ships among the attributes. Intended use of this method should complement rather

than replace the current hierarchy derivation procedures that rely on domain experts’

opinions. The second study of the dissertation also explores the viability of statistical

model selection methods for hierarchy selection when multiple candidates are present.

The second study is designed to address the following research questions;

1. To what extent is the likelihood-ratio-test based statistical hypothesis testing

useful for attribute hierarchy detection and hierarchical structure selection?

2. How viable are the AIC and BIC information criteria for hierarchy selection?

Recall that CDM implementations require construction of a Q-matrix, which

indicates the associations between test items and attributes required for successful

completion of the items (Chiu, 2013; de la Torre, 2008). Because the Q-matrix inte-

grates cognitive specifications into test construction (Leighton et al., 2004), correct

Q-matrix specification is essential to obtain maximum information on the attribute

mastery patterns (de la Torre, 2008). However, misspecifications in a Q-matrix may

occur due to subjective Q-matrix development procedures, such as expert opinions

and verbal data analyses. Up to date, several parametric and nonparametric Q-

matrix validation methods have been proposed to address the misspecifications that

may emerge due to fallible judgments of experts (Chiu, 2013). Viability of these
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Q-matrix validation methods has been tested in variety of conditions using either

simulated or real data sets. In these studies, attributes are assumed to be either in-

dependent (e.g., 2K attribute patterns are uniformly distributed) or dependent such

that there is correlational or higher order relationships between the attributes. Be-

cause none of these methods was tested under truly hierarchical attribute conditions,

this study aims to examine their performances under such conditions.

The second study of this dissertation implicitly assumes that Q-matrix used

in hierarchy identification and/or selection was correctly specified. However, the Q-

matrix used for structure selection may not be correct. Therefore, the third study

complicates the structure selection by involving a misspecified Q-matrix. It also ex-

amines the impact of selected hierarchical structure on empirical Q-matrix validation

procedures. Thus, the third study is concerned with two problems: (1) misspecifi-

cations in Q-matrix may adversely affect correct hierarchical structure selection, and

(2) Q-matrix validation procedures may not yield accurate results if the hierarchi-

cal structure to begin with is misspecified. Therefore, examining and reporting the

reciprocal impact of misspecified Q-matrix and hierarchical structure on hierarchy

identification and Q-matrix validation are among the objectives of this dissertation.

The third study of this dissertation is designed to answer the following research

questions;

1. To what extent does a misspecified Q-matrix degrade the hierarchical attribute

structure detection and structure selection?

2. To what extent does an inaccurate attribute structure have impact on Q-matrix

validation?
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Chapter 2

Approaches to Estimating Hierarchical Attribute

Structures

2.1 Introduction

Assessment of reasoning processes usually requires complex tasks that provide

information about reasoning strategies and thinking processes. Educational mea-

surement professionals have underscored the appreciable role of cognitive theory in

educational testing (e.g., Chipman, Nichols, & Brennan, 1995; Embretson, 1985).

Because knowledge, mental processes, and examinees’ response strategies define con-

struct representation, Embretson (1983) asserted that cognitive theory could improve

psychometric practice by guiding the construct representation of a test. Leighton,

Gierl, and Hunka (2004) argued that the cognitive requirements eliciting particular

knowledge structures, processes, skills, and strategies could be assembled into cogni-

tive models that are then used to develop test items. In the psychometric literature,

the generic term attributes is used to refer to cognitive processes, skills, knowledge

representations, and problem solving steps to be assembled into cognitive models for

test development (de la Torre, 2009b; de la Torre & Lee, 2010).

Assessments designed and developed for identifying attribute mastery status

of examinees to obtain convincing evidence for diagnostic inferences about students’

cognitive strengths and weaknesses are referred to as cognitively diagnostic assessment

(CDA: de la Torre & Minchen, 2014). CDAs need to be purposefully developed to
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empirically confirm the examinees’ thinking process in problem solving. These well-

designed diagnostic tests can also help validating specific models of human cognition

(Corter, 1995).

Administering sample tasks to a representative group of a target population

with a standard think-aloud procedure can help the development process of a CDA

(Chi, 1997; Taylor & Dionne, 2000). However, for CDA to impact testing practice,

the role of cognitive theory needs to be well articulated in test design. Yet, until quite

recently, the impact of cognitive theory on test design was minimal (Embretson, 1998;

National Research Council, 2001). This minimal impact was attributed by Embretson

(1994) to lack of frameworks that use cognitive theory in test development. Recently,

various approaches integrating cognitive theory into psychometric practice have been

proposed (e.g., the rule space methodology [Tatsuoka, 1983], the attribute hierarchy

method [Leighton et al., 2004], and the generalized-DINA model framework [de la

Torre, 2011]). Some of these approaches are purely psychometric in nature while

others are not (de la Torre, 2014).

The CDA usually serve for formative assessment purposes and teaching and

learning activities can be modified in accordance with the crucial feedback obtained

from analysis of the assessment results (DiBello & Stout, 2007). Thus, the popularity

of CDA rapidly increased as the need for formative assessment prompted by recent

political changes including the No Child Left Behind Act (2001). Thereafter, quite

a few statistical models that are used to extract diagnostic information from CDA,

which are referred to as cognitive diagnosis models (CDMs) or diagnostic classification

models (DCMs) (de la Torre & Minchen, 2014), were proposed. These models are the

restricted latent class models (Templin & Henson, 2006).

Underlying assumptions to derive a CDM requires two features to be known:

the attribute interaction in the response construction process and the attributes that

are needed for each item (Chiu, Douglas, & Li, 2009). Therefore, in CDMs, a JxK
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matrix, referred to as Q-matrix (Tatsuoka, 1983), is used to set item-by-attribute

specifications. The Q-matrix is a binary matrix of J rows and K columns where

j = 1, . . . , J indicates the items and k = 1, . . . , K represents attributes measured by

the test. Item j requires examinees to possess attribute k for success if qjk element of

the matrix is coded as 1. When qjk is 0, it means that kth attribute is not necessary

for solving item j.

In some cases, attributes may have hierarchical structure such that mastery

of basic attributes is prerequisite for mastering more complex attributes (de la Torre,

Hong, & Deng, 2010; Leighton et al., 2004; Templin & Bradshaw, 2014). In such cases,

CDMs need to take the hierarchical structure into account; otherwise, they may not

be appropriate and useful (Templin & Bradshaw, 2014). Nevertheless, many CDM

examples assume independent cognitive skills. Hence, this dissertation investigates

the change in the degree of accuracy and precision in the item calibration and correct

attribute classification rate when either the Q-matrix or the prior distribution is

modified in accordance with the hierarchical attribute structure.

When attributes are hierarchical, several approaches under CDMs can be em-

ployed for model parameter estimation and attribute classification. The approaches

discussed in this study are based on the constraint or unconstraint status of the Q-

matrix component of a CDM and the prior distribution to be used in the estimation

algorithm. For an unstructured prior distribution all prior probabilities for 2K num-

bers of possible latent classes are nonzero. In other situations, a prior probability

of zero can be assigned in a structured prior distribution for latent classes that are

theoretically impossible while nonzero prior probabilities are assigned to the permis-

sible classes. The Q-matrix can also be structured in accordance with the hierarchy.

Therefore, an unanswered question in CDM literature is concerned with whether

the Q-matrix needs to be structured in accordance with the hierarchical structure

of the attributes. From this point of view, this study presents different estimation
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approaches based on structured or unstructured status of the Q-matrix and the prior

distribution.

2.2 Background

Within the cognitive diagnosis modeling (CDM) literature, various specific

and general models with different underlying assumptions about the relationships

between the attributes and test performances have been developed. De la Torre (2011)

shows that the commonly used specific CDMs are special cases of the general models.

For example, the generalized deterministic inputs, noisy “and” gate (G-DINA; de la

Torre, 2011) model is one of the general cognitive diagnosis models, from which the

deterministic input, noisy “and” gate (DINA; de la Torre, 2009b, Junker and Sijtsma,

2001), deterministic input, noisy “or” gate (DINO; Templin and Henson, 2006), and

additive-CDM (A-CDM; de la Torre, 2011), among others, can be derived.

The IRF of the generalized-DINA model (G-DINA; de la Torre, 2011) under

the identity link is

P (α∗lj) = δj0 +

K∗j∑
k=1

δjkαlk +

K∗j∑
k′=k+1

K∗j−1∑
k=1

δjkk′αlkαlk′ + · · ·+ δj12...K∗j

K∗j∏
k=1

αlk (2.1)

where K∗j represents the number of required attributes for the jth item (notice that K∗j

is item specific and does not represents the total number of attributes measured by a

test); l represents a particular attribute pattern out of 2K
∗
j possible attribute patterns;

δj0 is the intercept for the item j; δjk is the main effect due to αk; δjkk′ represents

interaction effect due to αk and αk′ ; and δj12...K∗j is the interaction effect due to

α1, . . . , αK∗j (de la Torre, 2011). Therefore, the G-DINA model splits examinees into

2K
∗
j latent groups for item j based on the probability of answering item j correctly.



14

DINA Model: In the psychometric literature, due to containing only two

item parameters (i.e., guessing and slip), the DINA model is known as one of the

most parsimonious and interpretable CDMs (de la Torre, 2009b). The DINA model

is also known as a conjunctive model (de la Torre, 2011; de la Torre & Douglas,

2004), which assumes that missing one of the several required attributes for an item

is the same as having none of the required attributes (de la Torre, 2009b; Rupp &

Templin, 2008). This assumption can be statistically represented by the conjunctive

condensation function (Maris, 1995, 1999). Given an examinee is in a particular latent

class, αl, and the jth row of the Q-matrix (i.e., attribute specification of jth item)

the conjunctive condensation rule generates a group-specific deterministic response

(ηlj = 1 or 0) through the function

ηlj =
K∏
k=1

α
qjk
lk . (2.2)

Moreover, the probabilistic component of the item response function (IRF)

of the DINA model allows the possibility of slipping on an item when an examinee

possesses all the required attributes for it. Likewise, The IRF also allows the pos-

sibility that an examinee lacking at least one of the required attributes can guess

the item. The probabilities of slipping and guessing for item j are denoted as

sj = P (Xij = 0|ηij = 1) and gj = P (Xij = 1|ηij = 0), respectively, where Xij is

the observed response of examinee i to item j. Given sj and gj, the IRF of the DINA

model is written as

P (Xj = 1|αl) = P (Xj = 1|ηjl) = g
(1−ηjl)
j (1− sj)ηjl (2.3)

where αl is attribute pattern l among 2K possible attributes patterns; ηjl is the

expected response of an examinee to item j who possesses attribute pattern l; and

gj and sj are guessing and slip parameters, respectively (de la Torre, 2009a). Notice
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that gj and (1− sj) correspond to δj0 and δj12K∗j , respectively, in the G-DINA model

representation. Thus, the G-DINA reduces to the DINA model by setting all the

parameters but δj0 and δj12...K∗j to zero.

DINO Model: The DINO model is the disjunctive counterpart of DINA

model with the assumption that having one of the several required attributes is the

same as having more than one or all required attributes to answer an item successfully

(Rupp & Templin, 2008; Templin & Rupp, 2006). Due to disjunctive nature of the

model, given an examinee’s latent class, αl, and the jth row of the Q-matrix, the

group-specific deterministic response (i.e., ωlj = 1 or 0) for the model is obtained by

the function

ωlj = 1−
K∏
k=1

(1− αlk)qjk . (2.4)

As such, the DINO model also splits examinees into two groups: One group consists of

examinees possessing at least one of the required attributes for the item, and another

group consists of examinees who mastered none of the required attributes.

Similar to the DINA model, the DINO model also has two item parameters;

s∗j = P (Xij = 0|ωij = 1) and g∗j = P (Xij = 1|ωij = 0), where 1− s∗j is the probability

that examinee i correctly answers item j given that the examinee has mastered at

least one of the required attributes, and g∗j is the probability that examinee i correctly

answers item j when the examinee has not mastered any required attribute. The item

response function of the DINO model is

P (Xj = 1|αl) = P (Xj = 1|ωjl) = gj
(1−ωjl)(1− sj)ωjl (2.5)

where αl is attribute pattern l; ωjl is the expected response of an examinee to item

j who possesses attribute pattern l; and g∗j and s∗j are guessing and slip parameters

for item j, respectively (Templin & Rupp, 2006).
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As mentioned earlier, the DINO model can also be derived from the G-DINA

model. This is attained by setting δjk = −δjk′k′′ = . . . = (−1)K
∗
j +1δj12...K∗j in the

G-DINA model (de la Torre, 2011). In words, the G-DINA model is reduced to the

DINO by constraining the main and the interaction effects to be equal with alternating

sign, thus, that allowing only two probabilities: δj0 = g∗j and δj0 + δjk = 1− s∗j .

2.3 Estimation Approaches

2.3.1 Permissible Latent Classes and Structured Prior Dis-

tribution

When all attributes are independent (i.e., mastery of one attribute is not pre-

requisite for mastering another attribute) the latent classes are unstructured and all

of the 2K latent classes are permissible. Conversely, when the attributes are depen-

dent with respect to some hierarchical relations, the latent classes are referred to as

(hierarchically) structured, where some constraints defining impossible latent classes

exist (de la Torre et al., 2010; Leighton et al., 2004). For example, based on the linear

hierarchical structure among three attributes in Figure 2.1A, the latent classes 000,

100, 110, and 111 are permissible, whereas 010, 001, 101, and 011 patterns are not.

That is, attribute patterns having an attribute without possessing the prerequisite(s)

are not allowed. Likewise, in the divergent structure depicted in Figure 2.1C, the la-

tent classes 000, 100, 110, 101, and 111 exist; yet, 010, 001, and 011 patterns do not.

In other words, because mastering the second and third attributes requires mastery

of the first attribute, no examinee could have an attribute profile of 010, 001, or 011

in the divergent structure.

De la Torre et al. (2010) found that empirical Bayes estimation method, in

general, outperforms fully Bayes estimation method. It should be noted here that the

difference between the fully and empirically Bayes methods lies in the prior weights
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Figure 2.1: Hierarchies with Corresponding R-Matrices

which are updated in the empirical Bayes method after each iteration, whereas they

remain fixed in the fully Bayes method. Although we cannot precisely know the

distribution of the permissible latent classes, we can assign a prior probability of

zero to theoretically non-existent classes by careful consideration of the hierarchical

structure of the attributes. Therefore, imposing zero prior probabilities for the latent

classes that are not permissible within a particular hierarchy yields a structured prior

distribution.

2.3.2 Structured and Unstructured Q-matrix

In cases where attributes are ordered, test items may or may not explicitly re-

quire more basic attributes (i.e., prerequisites) along with a complex one for successful

completion (de la Torre et al., 2010; Leighton et al., 2004). One example is given in

de la Torre et al. (2010) where they argue that ‘taking the derivative’ presupposes

‘knowledge of basic arithmetic operation’, yet, an item can be constructed such that

it solely requires ability to differentiate without the need for basic arithmetic opera-

tions. Thus, a Q-matrix for noncompensatory models (e.g., DINA) can be designed

such that it follows the hierarchical structure of the attributes where, all more basic

attributes, even though they are not explicitly probed by the item, are represented by
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1. In contrast, a Q-matrix can also be designed such that only attributes explicitly

needed for successful completion are specified. In this manuscript, these two types

of Q-matrices are referred to as structured or implicit Q-matrix, and unstructured or

explicit Q-matrix, respectively.

To demonstrate the differences in the two Q-matrices, an item requiring only

the third attribute out of the three in Figure 2.1A can be represented as 001 in an

explicit Q-matrix, whereas it is specified as 111 in an implicit counterpart. Note that

because the latent classes 001, 101, and 011 are among the nonexistent classes when

the linear hierarchy applies, regardless of the Q-matrix types, the item can only be

correctly answered by the examinees possessing all three attributes.

Conversely, for compensatory models, the Q-matrix is also structured such that

only the most basic attribute is specified even though the item also probes the more

complex ones. For instance, when three attributes are linearly hierarchical, where A1

is the most basic attribute and A3 is the most complex attribute, an item probing all

three attributes can be represented as either 100 by an implicit Q-matrix, or 111 by

an explicit Q-matrix. Likewise an item requiring the second and third attributes is

specified as 010 in an implicit Q-matrix, whereas an explicit Q-matrix specifies both

of the second and third attributes (i.e., 011). Notice that, following the DINO model,

examinees must have mastered at least the second attribute to successfully complete

this item. Then, regardless of the type of the Q-matrix, this item would be answered

correctly by the examinees that are either in the 110 class or in the 111 class among

the permissible latent classes.

Although examinee responses are not affected by how a Q-matrix is con-

structed, impact of item-attribute specification (i.e., implicit vs. explicit) on estima-

tion of hierarchically ordered attributes has not been studied in the CDM literature.

Hence, to fill this gap, the current study aims to investigate whether designing a Q-

matrix corresponding to hierarchical structure (i.e., implicit Q-matrix) improves the
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parameter estimation and attribute classification.

2.4 Simulation Study

A simulation study was designed to understand the impact of structured Q-

matrix, if any, on item parameter estimation and attribute classification when at-

tributes are hierarchical. To accomplish this, the unstructured and structured ver-

sions of the Q-matrices were crossed with the unstructured and structured forms of

latent classes. This resulted in four different approaches that can be employed in

CDM estimations. Three general attribute hierarchy types (i.e., linear, convergent,

and divergent) consisted of six attributes, as defined by Leighton et al. (2004), were

considered. These structures are illustrated in Figure 3.1 and the permissible latent

classes under each hierarchy are given in Appendix 2A. For instance, in the linear case,

instead of 26 attribute patterns, only seven attribute patterns (i.e., 000000, 100000,

110000, 111000, 111100, 111110, and 111111) are permissible. Likewise, 12 and 16

latent classes exist when six attributes follow the given convergent and divergent

structures, respectively.

The unstructured Q-matrix and its structured counterparts used throughout

the study are given in Appendix 2B. Unstructured Q-matrix consisted of items requir-

ing one, two, and three attributes. Although the first 18 items designed to measure

each of the six attributes equally, two more items (i.e., item 19 and item 20) were

added to have at least two items differentiating adjacent latent classes (e.g., 000000

and 100000, and 111110 and 111111) when the Q-matrix is structured. Ideal response

patterns corresponding to the unstructured Q-matrix are given in Appendices 2C and

2D, which shows that all permissible latent classes are identifiable. Furthermore, the

impact of the estimation approaches were studied in different hierarchical conditions

where three levels of item quality and two generating models (i.e., DINA and DINO)

were employed. The item quality was defined by the item discrimination (i.e., 1−s−g)
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Figure 2.2: Linear, Convergent, and Divergent Hierarchies Defined by Leighton et al.
(2004)

as higher, lower, and mixed item qualities.

Three-levels of item quality, two CDMs (i.e., the DINA and DINO models),

three general hierarchy types, and two different sample sizes were crossed to form

the simulation conditions. For the higher-quality (HQ) items, the lowest and highest

success probabilities (i.e., P (0) and P (1)) were generated from U(0.05, 0.20) and

U(0.80, 0.95), respectively. For the lower-quality (LQ) items, the lowest and highest

success probabilities were drawn from U(0.15, 0.30) and U(0.70, 0.85), respectively.

In other words, the slip and guessing parameters to generate the data were drawn

from U(0.05, 0.20) and U(0.15, 0.30) for higher and lower item quality conditions,

respectively. Additionally, for mixed item quality conditions, lowest and highest

success probabilities were drawn from U(0.05, 0.30) and U(0.70, 0.95), respectively.

Attributes were generated following the linear, convergent, and divergent hierarchies.

The sample size also had two levels (i.e., N = 500 and N = 1000 examinees). In all

conditions, the test length and number of attributes measured were fixed to twenty

and six, respectively. Moreover, the number of replication for each condition was
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Table 2.1: Simulation Factors in the Study

Type of Prior Type of Type of Item Sample

CDM Distribution Q-matrix Hierarchy Quality Size

DINA Structured Explicit Linear Higher Quality 500

DINO Unstructured Implicit Convergent Mixed Quality 1000

Divergent Lower Quality

Note. CDM = cognitive diagnosis model; DINA = deterministic input, noisy “and” gate model; DINO
= deterministic input, noisy “or” gate model.

fixed to 100. Throughout the study data generation and model estimation performed

using the OxMetrics programming language (Doornik, 2011). All the factors with

varying levels are summarized in Table 2.1. Item parameter estimation was carried out

with marginal maximum likelihood estimator (MMLE) via expectation-maximization

(EM) algorithm and attribute estimation was based on expected a posteriori (EAP)

estimator.

2.5 Simulation Results

To determine the impact of the Q-matrix design on item parameter estimation

accuracy and precision, the bias and the root mean squared error (RMSE) of the

estimates across 100 replications were computed. The bias and RMSE for guessing

are defined as

biasgj =
1

R

R∑
r=1

(ĝjr − gjr),

RMSEgj =

√√√√ 1

R

R∑
r=1

(ĝjr − gjr)2,

respectively, where R is the number of replications in each condition, ĝjr is the guess-

ing parameter estimate for item j in replication r, gjr is the generating guessing

parameter for item j in replication r. Notice that the same formulas can be used for

slip parameter, where g is replaced by s.
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The correct attribute classification rates at the individual-attribute level (i.e.,

correct attribute classification rate; CAC ) and at the attribute-vector level (i.e., cor-

rect vector classification rate; CVC ) were also investigated. The CAC and CVC can

be computed using the formulae

CACk =
R∑
r=1

N∑
i=1

I|α̂rik = αrik|
NR

, (2.6)

and

CV C =
R∑
r=1

N∑
i=1

I|α̂r
i = αr

i |
NR

, (2.7)

respectively, where N is the total number of examinees, R is the total number of

replications, I is the indicator function, αrik is true mastery status of examinee i

for attribute k in replication r, and α̂rik is the expected a posteriori (EAP) estimate

of examinee i for attribute k in replication r, αααri is generating attribute pattern of

examinee i in replication r, and α̂r
i is the estimated attribute pattern for the same

examinee in the same replication. Moreover, the false-positive and false-negative

classification rates resulting from two distinct ways of Q-matrix specification under

structured and unstructured versions of prior distribution were reported.

2.5.1 DINA Model Results

It should be noted here that, due to space constraint, the simulation results

based on the DINA model will be discussed in detail, and only DINO model results

that depart significantly from the DINA model counterpart will be emphasized.

Effect of Implicit Q-matrix on Item Parameter Estimation

Figure 2.3 and Figure 2.4 depict the mean absolute item parameter bias ob-

served by employment of different estimation approaches when samples consist of
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1000 and 500 examinees, respectively. Similarly, mean RMSEs obtained via four es-

timation approaches when the sample sizes are 1000 and 500 are given in Figures 2.5

and 2.6, respectively. In all four figures, the upper panels indicate the mean abso-

lute bias and RMSE obtained when attributes are linearly hierarchical. Likewise, the

middle and lower panels show the bias and RMSE results for the convergent and

Figure 2.3: Mean Absolute Item Bias of the Estimation Approaches: N = 1000

(a) Linear

(b) Convergent

(c) Divergent

Note. HQ = higher quality; MQ = mixed quality; LQ = lower quality; UPUQ = unstructured
prior with unstructured Q-matrix; UPSQ = unstructured prior with structured Q-matrix; SPUQ
= structured prior with unstructured Q-matrix; and SPSQ = structured prior with structured Q-
matrix.
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divergent hierarchical structures, respectively. Furthermore, within each panel there

are three horizontally located bar-plots, which were produced by three levels of item

qualities. Thus, scrolling across the columns of a row shows the effect of item quality

on item parameter bias and RMSE. It can clearly be seen from these four figures that

by keeping the sample size, hierarchical structure, and estimation approach constant,

Figure 2.4: Mean Absolute Item Bias of the Estimation Approaches: N = 500

(a) Linear

(b) Convergent

(c) Divergent

Note. HQ = higher quality; MQ = mixed quality; LQ = lower quality; UPUQ = unstructured
prior with unstructured Q-matrix; UPSQ = unstructured prior with structured Q-matrix; SPUQ
= structured prior with unstructured Q-matrix; and SPSQ = structured prior with structured Q-
matrix.
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both the mean absolute bias and RMSE increased as the item quality decreased.

These figures also demonstrate that regardless of hierarchical structure and item

quality, mean absolute bias and RMSE decreased as the sample increased. One

important observation is that mean absolute bias and RMSE significantly decreased

when either the Q-matrix or the prior distribution was structured. When neither the

Figure 2.5: Mean Item RMSE of the Estimation Approaches: N = 1000

(a) Linear

(b) Convergent

(c) Divergent

Note. HQ = higher quality; MQ = mixed quality; LQ = lower quality; UPUQ = unstructured
prior with unstructured Q-matrix; UPSQ = unstructured prior with structured Q-matrix; SPUQ
= structured prior with unstructured Q-matrix; and SPSQ = structured prior with structured Q-
matrix.
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Q-matrix nor the prior distribution was structured, the bias, especially of the guessing

parameter, was inflated.

Although it was clear from Figures 2.3, 2.4, 2.5, and 2.6 that item parameter

estimation bias and RMSE became larger if neither the Q-matrix nor prior distribu-

tion is structured, we investigated the obtained parameter biases and RMSEs for

Figure 2.6: Mean Item RMSE of the Estimation Approaches: N = 500

(a) Linear

(b) Convergent

(c) Divergent

Note. HQ = higher quality; MQ = mixed quality; LQ = lower quality; UPUQ = unstructured
prior with unstructured Q-matrix; UPSQ = unstructured prior with structured Q-matrix; SPUQ
= structured prior with unstructured Q-matrix; and SPSQ = structured prior with structured Q-
matrix.
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all 20-items to provide more accurate information on the remaining three estimation

approaches. In examining the parameter estimates for each of 20 items in various con-

ditions, we saw that the parameter estimates using the unstructured and structured

versions of the Q-matrix were identical when the prior distribution was structured to

match the latent class structure. Therefore the results for cases in which prior dis-

tribution was structured (i.e., SPUQ and SPSQ) will be reported together as SP Q

condition. This result implies that use of either Q-matrix results in the same item

parameter estimates when the prior distribution is properly structured. In other re-

spects, these two types of Q-matrices yielded different item parameter estimates when

the prior distribution was unstructured. Therefore, the results based on the two types

of Q-matrices needed to be reported separately for the unstructured prior distribution

cases. Because the results obtained from each of the estimation approaches presented

similar patterns under three levels of generating item parameters, only the results

obtained from mixed item quality are discussed in detail. The item parameter biases

and corresponding RMSEs by the distinct estimation approaches are given in Tables

2.2 and 2.3, respectively. It should be noted here that although only simulated re-

sponses of 1000 examinees were used to obtain the results given in Tables 2.2 and 2.3,

sample size of 500 resulted in slightly higher biases and RMSEs, but the pattern was

similar.

Results given in Table 2.2 indicate that regardless of the types of hierarchies

involved, the guessing and slip parameters can be estimated with the maximum abso-

lute biases of 0.050 and 0.012 (i.e., items 5 in linear and 15 in convergent), respectively,

when neither the Q-matrix nor the prior distribution was structured (i.e., UPUQ).

These two values reduce to 0.011 and 0.06 (i.e., items 11 in divergent and 6 in linear)

when only the Q-matrix was structured (i.e., UPSQ). Furthermore, when we compare

the biases obtained from structured Q-matrix with unstructured prior distribution to

the biases observed when estimation involved structured prior distribution (SP Q),
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Table 2.2: Item Parameter Bias (N = 1000, Mixed Quality Items)

Linear Convergent Divergent

Par. Items UPUQ UPSQ SP Q UPUQ UPSQ SP Q UPUQ UPSQ SP Q

g 1 0.001 -0.006 -0.012 0.012 -0.002 -0.008 0.037 0.003 -0.006
2 -0.043 -0.002 -0.003 -0.049 -0.003 -0.005 -0.018 -0.001 -0.002
3 -0.042 -0.001 -0.001 -0.017 -0.001 -0.001 -0.013 -0.001 -0.001
4 -0.043 0.001 0.001 -0.010 0.004 0.003 -0.018 0.011 0.000
5 -0.050 0.001 0.001 -0.049 -0.007 0.002 -0.020 0.000 0.000
6 -0.003 0.001 0.001 -0.003 0.001 0.001 -0.003 0.000 0.000
7 -0.001 -0.001 -0.002 0.006 0.001 -0.001 0.005 0.003 0.003
8 -0.007 -0.005 -0.005 -0.002 -0.001 -0.002 -0.004 -0.003 -0.003
9 -0.003 -0.001 -0.001 -0.002 0.000 -0.001 -0.002 0.001 0.001
10 -0.005 -0.002 -0.002 -0.004 -0.002 -0.003 -0.001 -0.001 -0.001
11 -0.001 0.000 0.000 -0.001 -0.001 0.000 -0.002 -0.001 -0.001
12 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001 0.000 0.000 0.000
13 -0.001 -0.001 -0.001 0.000 -0.001 -0.002 -0.002 -0.002 -0.002
14 -0.001 0.000 0.000 -0.001 0.000 -0.001 -0.001 -0.001 -0.001
15 -0.004 -0.003 -0.003 -0.004 -0.003 -0.003 -0.004 -0.003 -0.003
16 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
17 -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001 -0.001
18 -0.001 0.000 0.000 -0.001 0.000 0.000 -0.001 0.000 0.000
19 -0.003 -0.008 -0.014 0.014 0.003 -0.002 0.035 0.008 0.000
20 -0.003 0.001 0.001 -0.003 0.001 0.001 -0.001 0.002 0.002

s 1 -0.002 0.000 0.000 -0.003 -0.001 0.000 -0.005 -0.001 0.000
2 -0.001 0.000 0.001 -0.003 0.000 0.001 -0.003 -0.001 -0.001
3 -0.002 -0.001 -0.001 -0.001 -0.001 0.001 0.003 0.003 0.003
4 -0.001 0.000 0.000 -0.002 -0.001 0.001 -0.011 -0.001 -0.001
5 0.001 0.002 0.002 -0.002 0.000 0.000 -0.001 0.000 0.000
6 -0.005 -0.006 -0.006 -0.002 -0.003 -0.003 -0.001 -0.002 -0.002
7 0.003 0.002 0.002 -0.001 0.001 0.002 0.004 0.004 0.004
8 0.002 0.000 0.000 0.000 -0.001 0.001 0.001 0.001 0.001
9 0.002 -0.001 -0.001 0.004 0.000 0.001 -0.001 -0.001 0.000
10 0.007 0.001 0.001 0.008 0.000 0.002 0.001 0.000 0.000
11 0.003 0.003 0.003 -0.002 0.000 -0.001 0.002 0.000 0.000
12 -0.002 -0.003 -0.003 0.001 0.001 0.001 -0.001 0.000 0.000
13 0.002 0.002 0.002 -0.001 0.000 0.002 0.000 0.001 0.001
14 0.005 0.002 0.002 0.000 -0.002 -0.001 -0.003 -0.003 -0.002
15 0.010 0.004 0.004 0.012 0.004 0.004 0.009 0.005 0.005
16 0.005 0.005 0.005 0.004 0.003 0.006 -0.001 0.000 0.000
17 -0.004 -0.004 -0.004 -0.005 -0.003 -0.003 0.000 -0.001 -0.001
18 0.005 0.005 0.005 -0.001 0.001 0.001 0.003 0.001 0.001
19 -0.001 0.001 0.001 -0.003 0.000 0.000 -0.004 0.000 0.000
20 0.003 0.001 0.001 -0.001 -0.002 -0.002 0.003 0.002 0.002

Note. N = sample size; Par. = item parameter; UPUQ = unstructured prior and unstructured Q-
matrix; UPSQ = unstructured prior and structured Q-matrix; and SP Q = structured prior with either
Q-matrix.
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Table 2.3: Item Parameter RMSE (N = 1000, Mixed Quality Items)

Linear Convergent Divergent

Par. Items UPUQ UPSQ SP Q UPUQ UPSQ SP Q UPUQ UPSQ SP Q

g 1 0.054 0.051 0.051 0.074 0.068 0.068 0.100 0.084 0.082
2 0.060 0.031 0.031 0.075 0.043 0.043 0.038 0.026 0.026
3 0.051 0.021 0.021 0.029 0.022 0.022 0.022 0.016 0.016
4 0.051 0.018 0.018 0.023 0.020 0.019 0.060 0.050 0.045
5 0.057 0.013 0.013 0.058 0.022 0.020 0.032 0.019 0.019
6 0.015 0.015 0.015 0.016 0.016 0.016 0.018 0.017 0.017
7 0.031 0.030 0.030 0.043 0.041 0.041 0.031 0.031 0.031
8 0.022 0.021 0.021 0.019 0.020 0.020 0.016 0.016 0.016
9 0.019 0.018 0.018 0.015 0.015 0.015 0.017 0.016 0.016
10 0.014 0.014 0.014 0.017 0.017 0.017 0.018 0.018 0.018
11 0.013 0.013 0.013 0.015 0.015 0.015 0.014 0.014 0.014
12 0.014 0.014 0.014 0.016 0.016 0.016 0.017 0.017 0.017
13 0.020 0.020 0.020 0.019 0.019 0.019 0.016 0.016 0.016
14 0.016 0.015 0.015 0.014 0.014 0.014 0.013 0.013 0.013
15 0.015 0.015 0.015 0.014 0.014 0.014 0.013 0.013 0.013
16 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
17 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
18 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.014
19 0.060 0.056 0.056 0.086 0.079 0.078 0.111 0.094 0.093
20 0.013 0.012 0.012 0.014 0.013 0.013 0.016 0.016 0.016

s 1 0.015 0.015 0.015 0.013 0.013 0.013 0.015 0.013 0.013
2 0.014 0.014 0.014 0.014 0.013 0.013 0.020 0.020 0.020
3 0.015 0.015 0.015 0.020 0.020 0.020 0.022 0.022 0.022
4 0.019 0.019 0.019 0.022 0.022 0.021 0.021 0.017 0.017
5 0.022 0.022 0.022 0.018 0.018 0.018 0.023 0.023 0.023
6 0.036 0.035 0.035 0.029 0.029 0.029 0.023 0.023 0.023
7 0.018 0.017 0.017 0.016 0.015 0.015 0.023 0.022 0.022
8 0.017 0.017 0.017 0.018 0.019 0.018 0.027 0.026 0.026
9 0.025 0.024 0.024 0.031 0.032 0.032 0.035 0.034 0.034
10 0.028 0.027 0.027 0.030 0.028 0.028 0.029 0.028 0.028
11 0.028 0.028 0.028 0.023 0.023 0.023 0.027 0.026 0.026
12 0.032 0.032 0.032 0.025 0.025 0.025 0.022 0.022 0.022
13 0.017 0.017 0.017 0.022 0.022 0.022 0.025 0.024 0.024
14 0.018 0.017 0.017 0.028 0.028 0.028 0.026 0.026 0.026
15 0.022 0.019 0.019 0.036 0.033 0.033 0.033 0.033 0.032
16 0.036 0.036 0.036 0.034 0.033 0.034 0.030 0.029 0.029
17 0.028 0.028 0.028 0.025 0.024 0.024 0.028 0.027 0.027
18 0.033 0.033 0.033 0.025 0.025 0.025 0.027 0.026 0.026
19 0.014 0.014 0.014 0.012 0.012 0.012 0.013 0.012 0.012
20 0.034 0.033 0.033 0.024 0.023 0.023 0.024 0.024 0.024

Note. N = sample size; Par. = item parameter; UPUQ = unstructured prior and unstructured Q-
matrix; UPSQ = unstructured prior and structured Q-matrix; and SP Q = structured prior with either
Q-matrix.
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it can be seen that they were very similar such that differences can only be observed

in the third decimal points. Therefore, more accurate item parameter estimation can

be achieved by structuring the Q-matrix and/or prior distribution in concordance

with the hierarchical structure among measured attributes.

Similar to the bias case, RMSEs obtained from UPUQ were slightly higher in

comparison to the RMSEs obtained based on UPSQ and SP Q. This can easily be

observed for the guessing parameter RMSEs by looking at the results corresponding

to items 3, 4, and 5. When RMSEs of UPSQ and SP Q are compared, it can be

observed that RMSEs of these approaches are almost identical, where the maximum

difference is in the third decimal place (see items 4, 8, 16 and 19 in convergent and

items 1, 4, 15, and 19 in divergent cases). Thus, these results based on RMSEs

indicate that more precise item parameter estimation can be obtained by structuring

the Q-matrix and/or prior distribution in accordance with the attribute hierarchy.

As a whole, in all types of hierarchies, the parameter estimates obtained from

UPUQ were relatively poor. When the prior distribution was unstructured, more

accurate and precise item parameter estimates are obtained when an implicit Q-

matrix was used. Because estimations with implicit and explicit Q-matrices yielded

identical solutions when the prior distribution was structured, use of implicit Q-matrix

does not harm the item parameter estimation procedure. However, the most accurate

and precise item parameter estimates are produced with SP Q, the estimates based

on UPSQ are comparably accurate and precise.

Effect of Implicit Q-matrix on Attribute Estimation

The CAC and CVC rates are given in Table 2.4. The CAC and CVC results

reported in the upper panel of the table are based on the simulated response vectors of

500 examinees, whereas the result on the lower panel are obtained based on a sample

size of 1000 examinees. Scrolling across the columns of a row of the table shows
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the classification results based on the linear, convergent, and divergent hierarchical

structures. The first six columns under each hierarchy indicate the correct individual

attribute classification. The seventh column (i.e., Ā) reports the average correct

individual attribute classification. The next column labeled as CVC provides correct

attribute vector classification rates. Scrolling down the columns enable us to compare

the CAC and CVC rates that can be obtained based on the four estimation approaches

(i.e., UPUQ, UPSQ, SPUQ, and SPSQ), in which SPUQ and SPSQ are reported

together as SP Q. Lastly, both the upper and lower panels of the table provide results

under three levels of item qualities.

Regardless of the hierarchical structures, both CAC and CVC rates were higher

for larger sample size conditions (i.e., N = 1000) and these classification rates in-

creased as the item quality increased. Similar to the item parameter estimation

case, CACs and CVCs resulted from implicit and explicit Q-matrices were identical

when prior distribution was structured. Again, this result implies that once the prior

distribution is structured, structuring the Q-matrix does not provide additional in-

formation for examinee classification. Both classification rates were higher than the

ones obtained from estimation approaches involving an unstructured prior distribu-

tion. One surprising result was that, unlike in item parameter estimation, structuring

the Q-matrix resulted in slight reduction in both CAC and CVC rates when unstruc-

tured prior distribution was used. In other words, individual attribute and attribute

vector estimation accuracy of UPSQ was slightly less accurate than UPUQ.

Attribute misclassifications of the implicit and explicit Q-matrix use were also

investigated in terms of false-negative and false-positive classification rates. A false-

negative is said to have occurred when an examinee who mastered an attribute is

classified as a non-master. Similarly, a false-positive occurs when an examinee is

considered as master of an attribute s/he has not mastered. Because the estimation

approaches resulted in similar patterns across different item qualities, and for the two
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levels of sample sizes, only the results based on mixed item quality under the sample

size of 1000 examinees were given in Figure 2.7. In the figure the false-negative

rates are stacked up on top of false positives. As can be seen, there are nine bar-plots

where scrolling across the columns shows the three hierarchies, whereas scrolling down

enables comparison of the misclassifications by the estimation approaches. Here the

upper panel, middle and lower panels represent the misclassification results of UPUQ,

UPSQ, and SP Q, respectively.

These misclassification bars show that misclassification occured less often for

linear hierarchy, and more often in divergent hierarchy. This result may have arisen

from the fact that linear, convergent, and divergent hierarchies involve 7, 12, and

16 latent classes, respectively, which means that each examinee needs to be assigned

to one of the 7, 12, and 16 latent classes. One interesting observation is that false-

negative classification rates of UPUQ, UPSQ, and SP Q were much more similar than

the corresponding false-positive classification rates. The figure also shows that false-

positive rates were higher under estimation approaches involving unstructured prior

distribution, whereas false-positive rates were in the same level with the false-negative

rates when estimation involved structured priors. It should also be noted here that

the smallest misclassification rates were observed under structured prior conditions,

which result in approximately equal false-negative and false-positive rates.

2.5.2 DINO Model Results

The DINO model item parameter estimates were similar to those obtained

from the DINA model in terms of size of bias and RMSE, as well as the accuracy and

precision produced by the estimation approaches. However, the attribute estimation

results were quite different. Individual attribute estimation accuracy and attribute

pattern estimation accuracy of the estimation approaches for the DINO model are

given in Table 2.5. Note that these results are based the condition where item quality
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Figure 2.7: False-Negative and False-Positive Attribute Classificatin Rates (MQ Items
and N = 1000)

(a) UPUQ

(b) UPSQ

(c) SP Q

Note. FN = false-negative; FP = false-positive; and A1-A6 = measured attributes.
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Table 2.5: Attribute and Vector Classification Rates: DINO (MQ and N = 1000)

CAC

Hierarchy Est. appr. A1 A2 A3 A4 A5 A6 Ā CVC

Linear UPUQ .99 .93 .95 .95 .94 .95 .95 .78
UPSQ .99 .97 .97 .96 .94 .94 .96 .82
SP Q .99 .97 .97 .97 .95 .95 .97 .83

Convergent UPUQ .99 .95 .86 .89 .92 .91 .92 .65
UPSQ 1.00 .98 .87 .89 .93 .91 .93 .67
SP Q 1.00 .98 .87 .89 .93 .92 .93 .68

Divergent UPUQ .99 .88 .87 .97 .87 .91 .91 .61
UPSQ 1.00 .90 .87 .97 .87 .91 .92 .62
SP Q 1.00 .90 .88 .97 .87 .91 .92 .64

Note. CAC = correct attribute classification; CVC = correct vector classification; Est. Appr.
= estimation approach; A1-A6 = measured attributes; Ā = mean CAC; UPUQ = unstructured
prior with unstructured Q-matrix; UPSQ = unstructured prior with structured Q-matrix; and
SP Q = structured prior with unstructured Q-matrix.

was mixed, and sample size was 1000. These results are given to exemplify how the

DINO results can differ from the DINA results. Again, SPUQ and SPSQ classification

rates were identical, and the highest as they also were in the DINA case. Yet, now

CAC and CVC rates of structured Q-matrix were higher than the ones produced by

unstructured Q-matrix under unstructured prior distribution conditions. This result

may imply that, in general, holding all other factors constant, items measuring less

attributes are more informative in both the DINA and DINO models.

The false-positive and false-negative classification rates of the DINO model

estimations under mixed item quality and 1000 examinees were given in Figure 2.8.

The false-negative and false-positive rates of the all estimation approaches were higher

for the DINO model; however, this may be an artifact of the Q-matrix we began with.

Furthermore, recall that in DINA model estimation, false-positive rates under UPUQ

and UPSQ estimations were significantly higher than false-negatives. Here in DINO,

false-positive and false-negative rates were much more balanced.
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Figure 2.8: False-Negative and False-Positive Attribute Classificatin Rates for DINO
(MQ Items and N = 1000)

(a) UPUQ

(b) UPSQ

(c) SP Q

Note. FN = false negative; FP = false positive; and A1-A6 = measured attributes.
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2.6 Real Data Analysis

The Simulation study was followed by a numerical example. The analyzed data

consisted of 2922 exaimnees’ binary responses to the 28 items in the grammar section

of the Examination for the Certificate of Proficiency in English (ECPE), which was

developed and administered by the University of Michigan English Language Institute

in 2003. The dataset and the Q-matrix are available in and obtained from the ‘CDM’

package (Robitzsch, Kiefer, George, & Uenlue, 2014) in R software environment. The

dataset have been analyzed in several studies (e.g., Chiu, Douglas, & Li, 2009; Henson

& Templin, 2007; Templin & Bradshaw, 2014), and Templin and Bradshaw (2014)

reported that the three attributes measured by the ECPE grammar test had a linear

hierarchy among the three attributes (i.e., A1 = Lexical rules is a prerequisite to A2

= Cohesive rules, which is a prerequisite to A3 = Morphosyntactic rules).

The DINA model was fitted to the data with different estimation approaches

defined by structured and unstructured versions of the prior distribution and Q-

matrix. In the estimations, Q-matrix and the prior distribution were structured such

that Lexical rules was a prerequisite for Cohesive rules, which in turn was a prereq-

uisite attribute for Morphosyntactic rules. The obtained item parameter estimates

are given in Table 2.6. Based on the simulation results, we expected the item pa-

rameter estimates to be similar, especially for those produced by UPSQ and SP Q.

The table indicates that the maximum absolute difference in parameter estimates

between UPUQ and UPSQ was 0.043 (i.e., item 24). The maximum difference be-

tween the item parameters obtained from UPSQ and SP Q was 0.001 (i.e., items 2,

8, 25, and 26). These results support the simulation result that implicit Q-matrix

provides item parameter estimates as accurate as the calibrations with a structured

prior distribution.
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Table 2.6: ECPE Test Item Parameter Estimates

UPUQ UPSQ SP Q

Items Guessing Slip Guessing Slip Guessing Slip

1 0.705 0.085 0.712 0.096 0.712 0.096
2 0.723 0.101 0.747 0.107 0.746 0.108
3 0.438 0.266 0.438 0.263 0.438 0.263
4 0.481 0.162 0.472 0.165 0.472 0.165
5 0.764 0.040 0.758 0.042 0.758 0.042
6 0.718 0.067 0.712 0.068 0.712 0.068
7 0.544 0.085 0.546 0.083 0.545 0.083
8 0.801 0.040 0.824 0.047 0.824 0.047
9 0.535 0.199 0.532 0.204 0.532 0.204
10 0.481 0.163 0.497 0.161 0.497 0.161
11 0.556 0.099 0.558 0.098 0.558 0.098
12 0.194 0.306 0.199 0.305 0.199 0.305
13 0.632 0.122 0.643 0.121 0.643 0.121
14 0.515 0.212 0.526 0.208 0.526 0.209
15 0.749 0.040 0.743 0.041 0.743 0.041
16 0.549 0.126 0.551 0.124 0.551 0.124
17 0.816 0.058 0.814 0.061 0.813 0.061
18 0.729 0.086 0.723 0.087 0.723 0.087
19 0.473 0.150 0.465 0.154 0.465 0.154
20 0.239 0.296 0.242 0.294 0.242 0.294
21 0.621 0.097 0.623 0.096 0.623 0.096
22 0.322 0.188 0.311 0.193 0.311 0.193
23 0.635 0.076 0.668 0.081 0.667 0.081
24 0.311 0.322 0.354 0.330 0.353 0.331
25 0.511 0.272 0.517 0.267 0.517 0.267
26 0.555 0.211 0.550 0.213 0.550 0.213
27 0.263 0.369 0.279 0.366 0.279 0.366
28 0.659 0.086 0.652 0.088 0.652 0.088

Note. UPUQ = unstructured prior and unstructured Q-matrix; UPSQ = unstructured prior
and structured Q-matrix; and SP Q = structured prior with either Q-matrix.

To demonstrate the individual-attribute and attribute-vector estimation con-

sistency, agreement of UPUQ, UPSQ, and SP Q are given in Table 2.7. As can be

seen from the table, the highest agreement was on the estimation of the first attribute

(i.e., Lexical rules), which was the most basic attribute among the three. The lowest

agreement was on the second attribute (i.e., Cohesive rules). In general, the high-

est attribute-wise and pattern-wise agreement were observed among the UPUQ and

SP Q. It should be recalled here that, in the simulation results, the CAC and CVC

rates of UPUQ and SP Q were higher than the UPSQ attribute estimation rates.
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Table 2.7: Classification Agreements

UPSQ SP Q

A1 A2 A3 Pattern A1 A2 A3 Pattern
UPUQ .99 .80 .90 .75 .99 .96 .98 .94
UPSQ . . . . . . . . . . . . 1.00 .77 .89 .73

Note. UPUQ = unstructured prior and unstructured Q-matrix; UPSQ = unstructured prior and
structured Q-matrix; and SP Q = structured prior with either Q-matrix.

2.7 Conclusion and Discussion

CDMs are useful tools that provide fine-grained information on examinees’

strengths and weaknesses. This type of specific information can then be used to

inform classroom instructions and learning. To obtain diagnostic information on

examinees’ mastery status of a set of attributes, CDAs are developed and admin-

istered. The response data are then analyzed by the CDMs to provide diagnostic

information. In some cases, attributes may hold a hierarchical structure, such that

more basic attributes must be mastered before mastering more complex attributes.

In such cases, more accurate item parameter estimation and examinee classification

can be achieved by structuring either the Q-matrix or prior distribution in the model

estimation procedure.

This study was designed to understand the impact of a structured Q-matrix on

item parameter estimation and examinee classification when attributes were hierar-

chical. Study results indicated that structuring the Q-matrix provides more accurate

and precise item parameter estimates in both DINA and DINO models. Although

structured Q-matrix resulted in higher attribute and vector-level attribute estima-

tion in the DINO case, it yielded lower attribute and vector level attribute estimation

under the DINA model. Results also indicated that both the structured and unstruc-

tured versions of the Q-matrix yielded identical item parameter estimates and exam-

inee classification when prior distribution was structured. Furthermore, the highest
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attribute and vector-level correct classification rates were obtained when prior distri-

butions were structured so that only the latent classes allowed by the hierarchy were

involved in estimation.

Although CDAs are primarily designed to be used as formative assessmens

in low-stakes contexts, we cannot discount their potential use in high-stakes testing

situations. In such cases, use of an estimation approach that produces more accurate

and precise estimates, even if the improvement is slight, might be vital. Furthermore,

in practice, the same level of attribute estimation accuracy might be accomplished

with shorter tests when hierarchical attribute structure is taken into account.

Several limitations of the current study need to be mentioned. This study

considered several factors for model estimation; however, test length and number of

attributes were fixed. Moreover, only one explicit Q-matrix was used, which was

well-balanced (i.e., all latent classes are identifiable and all attributes are measured

approximately equal number of times). It would be interesting to see the impact of

unbalanced and/or incomplete (i.e., not all possible single-attribute items included)

Q-matrices on model estimation approaches. Lastly, Impact of misspecified Q-matrix

on estimation approaches could also be investigated.

When the prior distribution and/or Q-matrix was structured, hierarchy was

assumed to be known. However, in practice, hierarchical structure among the at-

tributes may not always be well established. Thus, incorrect specification of the

hierarchical relationships among the attributes can be expected to adversely impact

the model estimation. In such a case, item parameter estimates and examinee classi-

fications may be adversely affected by structured prior distribution and/or Q-matrix.

Therefore, correctly identifying hierarchical relationships among the attributes is of

vital importance. Then, development of statistical methods to validate expert-based

hierarchical structures can be a potential future research direction.
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2.9 Appendices

Appendix 2A: Permissible Latent Classes by General Hierarchy Types

Attributes Hierarchies Attributes Hierarchies

LC A1 A2 A3 A4 A5 A6 Lin. Con. Div. LC A1 A2 A3 A4 A5 A6 Lin. Con. Div.

α1 0 0 0 0 0 0 3 3 3 α33 1 0 0 0 0 0 3 3 3
α2 0 0 0 0 0 1 α34 1 0 0 0 0 1
α3 0 0 0 0 1 0 α35 1 0 0 0 1 0
α4 0 0 0 0 1 1 α36 1 0 0 0 1 1
α5 0 0 0 1 0 0 α37 1 0 0 1 0 0 3
α6 0 0 0 1 0 1 α38 1 0 0 1 0 1 3
α7 0 0 0 1 1 0 α39 1 0 0 1 1 0 3
α8 0 0 0 1 1 1 α40 1 0 0 1 1 1 3
α9 0 0 1 0 0 0 α41 1 0 1 0 0 0
α10 0 0 1 0 0 1 α42 1 0 1 0 0 1
α11 0 0 1 0 1 0 α43 1 0 1 0 1 0
α12 0 0 1 0 1 1 α44 1 0 1 0 1 1
α13 0 0 1 1 0 0 α45 1 0 1 1 0 0
α14 0 0 1 1 0 1 α46 1 0 1 1 0 1
α15 0 0 1 1 1 0 α47 1 0 1 1 1 0
α16 0 0 1 1 1 1 α48 1 0 1 1 1 1
α17 0 1 0 0 0 0 α49 1 1 0 0 0 0 3 3 3
α18 0 1 0 0 0 1 α50 1 1 0 0 0 1
α19 0 1 0 0 1 0 α51 1 1 0 0 1 0
α20 0 1 0 0 1 1 α52 1 1 0 0 1 1
α21 0 1 0 1 0 0 α53 1 1 0 1 0 0 3 3
α22 0 1 0 1 0 1 α54 1 1 0 1 0 1 3
α23 0 1 0 1 1 0 α55 1 1 0 1 1 0 3 3
α24 0 1 0 1 1 1 α56 1 1 0 1 1 1 3 3
α25 0 1 1 0 0 0 α57 1 1 1 0 0 0 3 3 3
α26 0 1 1 0 0 1 α58 1 1 1 0 0 1
α27 0 1 1 0 1 0 α59 1 1 1 0 1 0 3
α28 0 1 1 0 1 1 α60 1 1 1 0 1 1 3
α29 0 1 1 1 0 0 α61 1 1 1 1 0 0 3 3 3
α30 0 1 1 1 0 1 α62 1 1 1 1 0 1 3
α31 0 1 1 1 1 0 α63 1 1 1 1 1 0 3 3 3
α32 0 1 1 1 1 1 α64 1 1 1 1 1 1 3 3 3

Note. LC represents the possible latent classes; 3 shows the permissible latent classes; A1 through A6
indicate the six attributes; Lin. is the linear hierarchy; Con. is the convergent hierarchy; Div. is the
divergent hierarchy.
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Appendix 2B: Explicit and Implicit Q-matrices

Explicit Q-matrix Implicit Q-matrices

Linear Convergent Divergent

j A1A2A3A4A5A6 A1A2A3A4A5A6 A1A2A3A4A5A6 A1A2A3A4A5A6

DINA 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0
3 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
4 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0
5 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0
6 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1
7 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0
8 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
9 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
10 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0
11 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
12 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1
13 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
14 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
15 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0
16 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
17 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
18 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
19 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
20 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1

DINO 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
4 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
5 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
6 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
7 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
8 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
9 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
10 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
11 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1
12 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
13 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
14 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
15 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
16 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0
17 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
18 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
19 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
20 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Note. DINA = deterministic input, noisy “and” gate model; DINO = deterministic input, noisy “or”
gate model; A1 through A6 are the measured attributes; and j = item.



46

Appendix 2C: Ideal Response Patterns: DINA

Latent classes Ideal response patterns

Structure α1 α2 α3 α4 α5 α6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Linear 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Convergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Divergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1
1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1
1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note. DINA = deterministic input, noisy “and” gate model; and α1 through α6 are the attributes.
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Appendix 2D: Ideal Response Patterns: DINO

Latent classes Ideal response patterns

Structure α1 α2 α3 α4 α5 α6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Linear 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Convergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Divergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0
1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0
1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note. DINO = deterministic input, noisy “or” gate model; and α1 through α6 are the attributes.
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Chapter 3

Likelihood Ratio Approach for Attribute

Hierarchy Identification and Selection

3.1 Introduction

In many educational and psychological tests, examinees are required to use

their knowledge, skills, strategies, and cognitive competencies to successfully com-

plete the assessment tasks. These types of categorical latent variables representing

the knowledge states of examinees are referred to as attributes, which may have a

hierarchical structure (Templin & Bradshaw, 2014). Acquisition of domain related

attributes may proceed sequentially as the cognitive and educational research sug-

gest that building conceptual understanding requires connecting novel knowledge to

preliminary or more basic knowledge (Linn, Eylon, & Davis, 2004; Smith, Wiser,

Anderson, & Krajcik, 2006; Vosniadou & Brewer, 1992). Therefore, curriculum need

to be designed and developed coherently such that disciplinary and interdisciplinary

ideas need to form a meaningful structure that allows teaching steps build upon one

another (Schmidt, Wang, & McKnight, 2005).

Gierl, Zheng, & Cui (2008) argued that cognitive processes function within

a larger network of inter-related skills so that they share dependencies. This type

of dependencies may form hierarchical structures among the attributes. Leighton,

Gierl, & Hunka, (2004) asserted that the ordering among the attributes may be de-

rived by empirical or theoretical considerations. For example, Leighton et al. (2004)

discussed and explained a hierarchical structure among the seven syllogistic reasoning
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attributes. Similarly, Based on a task analysis on SAT algebra I and II items, Gierl,

Wang, & Zhou (2008) showed hierarchical relationships among nine ratio and algebra

attributes. Likewise, Templin & Bradshaw (2014) reported a linear hierarchical rela-

tionship among the three attributes measured on an English proficiency certification

test.

When attributes follow a hierarchical structure, the Q-matrix and the prior

distribution employed in the model estimation can be modified so that more accu-

rate and precise item and person parameters are obtained (Akbay & de la Torre,

2015). Modification of the prior distribution and the Q-matrix depend on the as-

sumed hierarchical structure so that identifying the correct hierarchical structure is

of the essence. Specification of an incorrect hierarchical relationship between any

two attributes can substantially degrade estimation accuracy. As such, the impor-

tance of correctly identifying the hierarchical structure among attributes cannot be

overemphasized.

In current applications, attribute hierarchy is derived from either expert opin-

ions via content analysis or verbal data analyses such as interviews and think-aloud

protocols (Cui & Leighton, 2009; Gierl et al., 2008). These hierarchy derivation pro-

cedures may result in disagreements over the prerequisite relationships, which may

consequently yield more than one hierarchical structure. Furthermore, emerging hi-

erarchical structures from verbal analysis and expert opinion approaches may not be

the same (Gierl et al., 2008). In the literature, there is no model based statistical tests

that can address the subjectivity in the conventional methods for attribute structure

identification. Therefore, to address this subjectivity, this study proposes a model-fit

based empirical exhaustive search method that can be used for identifying the hier-

archical relationships among the predefined set of attributes. The proposed method

is intended to complement rather than replace the current procedures that rely on

experts’ decisions.
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3.2 Background

The deterministic input, noisy “and” gate (DINA; de la Torre, 2009b, Junker

and Sijtsma, 2001) model has two item parameters (i.e., guessing and slip). This

property makes the DINA model one of the most parsimonious and interpretable

CDMs (de la Torre, 2009b). The DINA is known to be a conjunctive model (de

la Torre, 2011; de la Torre & Douglas, 2004) as it assumes that missing one of the

required attributes result in the baseline probability that is equal to the probability

of answering an item when none of the required attributes is mastered (de la Torre,

2009b; Rupp & Templin, 2008). For a given examinee latent group, αl, and the jth

q-vector; an ideal response (ηlj = 1 or 0) for the latent group is produced by the

conjunctive condensation function (Maris, 1995, 1999),

ηlj =
K∏
k=1

α
qjk
lk . (3.1)

Hence, examinees are splitted into two groups by the the DINA model. The first group

can be referred to as mastery group that involves examinees who mastered all required

attributes for the item, and the second group, which can be called nonmastery group,

consists of examinees who lack at least one of the required attributes.

Possibility of slipping on an item for mastery group members, and guessing on

the item for nonmastery group members are allowed by the probabilistic component

of the item response function (IRF) of the model. The probabilities of slipping and

guessing on item j are denoted as sj = P (Xij = 0|ηij = 1) and gj = P (Xij = 1|ηij =

0), respectively, where Xij is the observed response of examinee i to item j. Given sj

and gj, the IRF of the DINA model is written as

P (Xj = 1|αl) = P (Xj = 1|ηjl) = g
(1−ηjl)
j (1− sj)ηjl , (3.2)
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where αl is attribute pattern l among 2K possible attributes patterns; ηjl is the

expected response of an examinee to item j who possesses attribute pattern l; and gj

and sj are guessing and slip parameters, respectively (de la Torre, 2009a).

The deterministic input, noisy “or” gate (DINO; Templin and Henson, 2006)

model is the disjunctive counterpart of the DINA model. It assumes that having at

least one of the required attributes and having all required attributes produce the

same probability of success on answering an item correctly (Rupp & Templin, 2008;

Templin & Rupp, 2006). Because of the disjunctive nature of the model, for a known

q-vector of item-j, ideal response of an examinee (i.e., ωij = 1 or 0) in latent group

αl is produced by the function

ωij = 1−
K∏
k=1

(1− αlk)qjk . (3.3)

Although the DINO also splits exaimnees into mastery and nonmastery group, now,

the nonmastery group comprises examinees who lack all the required attributes, and

the rests are classified into the mastery group.

The DINO model’s item parameters are defined as s∗j = P (Xij = 0|ωij = 1)

and g∗j = P (Xij = 1|ωij = 0). Therefore, 1 − s∗j becomes the success probability of

examinees in the mastery group on item j, and g∗j becomes the success probability of

examinees in the nonmastery group. The item response function of the DINO model

can be written as

P (Xj = 1|αl) = P (Xj = 1|ωjl) = gj
(1−ωjl)(1− sj)ωjl , (3.4)

where αl is attribute pattern l; ωjl is the expected response of an examinee to item

j who possesses attribute pattern l; and g∗j and s∗j are guessing and slip parameters

for item j, respectively (Templin & Rupp, 2006).
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3.3 An Empirical Exhaustive Search for Identifying Hierar-

chical Attribute Structure

Specification of an incorrect hierarchical relationship between any two at-

tributes can substantially degrade classification accuracy due to the imposed con-

straints on the prior distribution. Thus, the importance of correctly identifying the

hierarchy among the attributes cannot be overemphasized. As mentioned earlier, at-

tribute hierarchy may be derived from either empirical or theoretical considerations

(Leighton et al., 2004). In such a process, content experts define hierarchical re-

lationships via protocol (or verbal) analysis through a sample of items (Gierl et al.,

2008), which may result in disagreement among experts over the hierarchical relations.

Consequently, this process may yield more than one hierarchical structure. In this

study, a model-fit based empirical exhaustive search method for attribute structure

identification is proposed to address this subjectivity.

When attribute k is prerequisite to attribute k′, not all of the 2K attribute

patterns are permissible. An example is provided in Table 3.1 involving three at-

tributes where A1 is prerequisite for A2, whereas A3 is independent from A1 and A2.

In this case, a model can be estimated by one of the two ways depending on how the

prior distribution is treated. The first way is to use an unstructured prior distribution

in which all attribute patterns are permissible; the second way is to employ a prop-

erly structured prior distribution that does not permit certain attribute patterns. By

treating the latter as the null model and the former as the alternative model, we can

apply a likelihood ratio test (LRT) with an expectation of rejecting the null hypothe-

sis when attribute k is not a prerequisite attribute for attribute k′. Moreover, Akaike

information criterion (AIC) and Bayesian information criterion (BIC) may also be

used to evaluate the fit of the two competing models.
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Table 3.1: Status of Possible Attribute Patterns when A1 is Prerequisite for A2

Attributes

Latent Classes A1 A2 A3 Status

α1 0 0 0 3

α2 0 0 1 3

α3 0 1 0 7

α4 0 1 1 7

α5 1 0 0 3

α6 1 0 1 3

α7 1 1 0 3

α8 1 1 1 3

Note. 3 = the permissible latent classes; 7 = impermissible latent classes.

Rationale and Search Algorithm: In circumstances where attribute k

is prerequisite to attribute k′, 3(2K−2) latent classes are permissible. For example,

when six attributes are measured and one attribute, say A1, is prerequisite for another

attribute, say A2, then the subset of attribute patterns conforming to this hierarchical

relationship (i.e., 00****, 10****, and 11****) becomes permissible, whereas the

attribute patterns not implied by this prerequisite relationship (i.e., 01****) will not

be allowed. Here * stands for either 0 or 1 allowing 16 different classes. Thus,

1/4 of 2K latent classes would not be allowed when one attribute is assumed to be

prerequisite for another one.

Furthermore, when items are sufficiently discriminating, using a structured

prior distribution in the estimation is expected to yield a model-fit statistic that is

not too different from the model-data fit obtained from model estimation using an

unstructured prior distribution. In the circumstances, we obtain a null model by

constraining the prior distribution, whereas the alternative model puts no constraint

on the prior distribution. For instance, DINA or DINO model estimates 2J + 2K − 1

parameters when prior distribution is unstructured. When the prior distribution is

structured such that impermissible latent classes are assigned zero probabilities, the

number of parameters to be estimated reduces to 2J + L− 1 where L is the number
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of permissible latent classes.

Due to the nested relationship between the constrained and unconstrained

models, we can apply a likelihood ratio test based hypothesis testing with an expec-

tation of retaining the null hypothesis (i.e., the null model fits the data equally well)

when attribute k is a prerequisite for attribute k′. Therefore, an empirical exhaus-

tive search based on the LRT can be implemented to identify hierarchical structure

of attributes. To attain this, KP2 = K(K − 1) reduced models need to be specified

such that each of these reduced models assumes a distinct prerequisite relationship be-

tween attributes k and k′ (i.e., all possible pairwise prerequisite relationships between

K attributes need to be specified as reduced models). Then, LRT based hypothesis

testing can be carried out between each of the reduced models and the full model.

The hierarchy identification procedure can be carried out in six steps;

• Step 1: Estimate the model parameters with an unstructured prior distribution

(i.e., alternative model) and record the −2LL.

• Step 2: Estimate the model parameters with a structured prior distribution con-

forming to the assumption that attribute k is prerequisite to attribute k′ and record

the −2LL.

• Step 3: Repeat Step 2 for all possible (i.e., KP2) pairwise presumptive relationship.

• Step 4: Compare the fit of the alternative model against the fit of each of KP2 null

models.

• Step 5: Report the test results as binary outcomes where 0 and 1 stand for rejection

and retained null hypothesis, respectively.

• Step 6: Let these binary outcomes fill in the off-diagonals of an KxK identity

matrix, which becomes an R-matrix representing all direct and indirect prerequisite

relationships.
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Table 3.2: Demonstration of the Implementation of Search Algorithm

Permissible latent classes

Hypotheses 000 100 010 001 110 101 011 111 -2LL Deviance p-val. Rej.

A1 → A2 3 3 3 3 3 3 28699.59 0.36 0.547 7

A1 → A3 3 3 3 3 3 3 28699.23 0.01 0.966 7

A2 → A1 3 3 3 3 3 3 29306.97 607.74 0.000 3

A2 → A3 3 3 3 3 3 3 28700.21 0.98 0.322 7

A3 → A1 3 3 3 3 3 3 29985.20 1285.96 0.000 3

A3 → A2 3 3 3 3 3 3 29493.34 794.11 0.000 3

Full Model 3 3 3 3 3 3 3 3 28699.23

Note.p-val.= p-value obtained from the chi-square test with two degrees of freedom; Rej.= rejection
decision.

Implementation of the Exhaustive Search Algorithm To illustrate

the implementation of the algorithm, consider three linearly hierarchical attributes.

Draw the DINA guessing and slip parameters from U(0.05, 0.30), and generate re-

sponse data for 1000 examinees who respond to 28 items. Then, specify 3(23−2) = 6

reduced models such that each time a pair of attributes will have prerequisite rela-

tionships, whereas the third attribute will be independent. Then, estimate each of

the reduced model and the full model by setting prior distributions compatible with

the hypothesized hierarchies.

Once the full and each of the reduced models have been fitted to the data,

we can test each of the hypothesis, and make decision on rejection or retaining the

null hypotheses as demonstrated in Table 3.2. The results in the table show that the

first, second, and fourth reduced models fitted to the data as good as the full model.

Therefore, these hypotheses were retained, whereas the rest of the hypotheses were

rejected. One can create a KxK identity matrix in the same order that the hypotheses

constructed and fill its off-diagonals with the binary decision outcomes row-by-row as

shown in Table 3.3. It is then becomes an R-matrix that defines hierarchical attribute

structure. In this case, the resulting R-matrix indicates that A1 is prerequisite for

both A2 and A3; and A2 is also prerequisite for A3 such that they all together define
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a linear structure among the three attributes.

Table 3.3: Incorporation of the Hypothesis Testing Results into R-Matrix

Identity Matrix R-Matrix

A1 A2 A3 A1 A2 A3
A1 1 0 0 A1 1 1 1
A2 0 1 0 A2 0 1 1
A3 0 0 1 A3 0 0 1

Notice that the exhaustive search is computationally intensive and more ef-

ficient algorithms may also be developed. One way to accomplish this may require

fixing the hierarchical relationship, when found, for the rest of the search. So that,

this can reduce the number of remaining possible pairwise hierarchical relationships to

be looked for. Furthermore, the method can also be used iteratively by constraining

the prior distribution after each cycle. The algorithm may run until all the hypothesis

regarding possible pairwise hierarchical relationships are rejected in one cycle (i.e.,

akin to refinement techniques used in differential item functioning framework).

3.3.1 Hierarchical Structure Selection

Domain experts can identify the attributes as well as the hierarchical struc-

ture among them via two common approaches. In the first approach, experts base

their decision on the literature and existing theories about cognitive process of human

performance (Embretson, 1998; Leighton et al., 2004). In the second approach, ex-

perts identify the attribute and hierarchical structure among them by analyzing the

examinee response data, which are directly collected via interview and think-aloud

procedures (Chi, 1997; Leighton et al., 2004). A desirable way involves both ap-

proaches iteratively where the former approach is used to identify the attributes and

the latter is used to validate them (Tjoe, & de la Torre, 2014); however, time and

cost arising from conducting both approaches may restrain this option.
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Although these two approaches are commonly used, they may result in differ-

ent hierarchical structures among the attributes (see Gierl et al., 2008). Moreover,

even within the same approach, experts may not have a consensus, and two or more

hierarchical structures can be proposed. When this is the case, the optimum structure

must be selected to provide the most accurate information regarding the examinees’

attribute-mastery level. Therefore, this study proposes a likelihood-ratio approach

for hierarchical structure selection when multiple structures are proposed.

Recall that LRT is only useful when the models being compared are nested

such that the null model can be attained by constraining the alternative model. Thus,

in this manuscript, the null and alternative models are based on the hierarchical

structures S0 and SA, respectively, where S0 subsumes SA such that all direct and

indirect prerequisite relationships specified in SA are also specified in S0. Thus, it

further implies that all permissible latent classes defined by S0 are also in the set

of permissible latent classes defined by SA (i.e., L0 ⊂ LA). For example, the linear

structure among six attributes defined by Leighton et al., (2004) contains all the

prerequisite relationships among any pair of attributes that are defined in a convergent

structure. Thus, the convergent structure can be regarded as SA whereas the linear

structure can be considered as S0. Likewise, all seven permissible latent classes defined

by linear hierarchy are also members of the set of latent classes allowed by convergent

structure. Consequently, a model allowing L0 in the estimation becomes the null

model whereas the model allowing LA can be regarded as the alternative model.

Consequently, LRT can be useful for selecting one of the competing structures owing

to their nested set-up.

Comparing the two structures through the LRT is straightforward when the

candidate structures are nested. In other words, selection of the most appropriate

structure can be carried out directly using LRT when L0 ⊂ LA. However, LRT cannot

be directly used when two candidate structures are not nested. In such circumstances,
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a unified structure (i.e., SU) can be defined such that it allows union of the permissible

latent class sets allowed by S1 and S2 (i.e., L1 ⊂ LU and L2 ⊂ LU). Therefore, S1

and S2 can be indirectly compared through SU . Alternatively, AIC and BIC model

selection criteria can also be used to compare two hierarchical structures that are not

nested.

3.4 Simulation Studies

3.4.1 Design

Two simulation studies were designed to assess the viability of the likelihood-

ratio based exhaustive search for attribute structure identification and the likelihood

approach for hierarchical structure selection. For the first simulation study, the three

general attribute hierarchy types (i.e., linear, convergent, and divergent) consisting of

six attributes, as defined by Leighton et al. (2004), were considered. These structures

are illustrated in Figure 3.1 and their associated permissible latent classes are given

in Appendix 3A. An unstructured attributes condition was also included, where all

possible latent classes were allowed. Two CDMs (i.e., the DINA and DINO) and two

different sample sizes (i.e., N = 500 and N = 1000) were employed to assess the

viability of the search algorithm. Impact of item quality and significance-levels (i.e.,

α-levels) were also among the considered factors. On top of the LRT, AIC and BIC

model selection criteria were employed.

The second simulation study was conducted based on four hypothetical hier-

archical structures (i.e., S1, S2, S3, and S4). These four structures are demonstrated

in Figure 3.2, and their corresponding permissible latent classes (i.e., L1, L2, L3, and

L4) are given in Appendix 3B. As can be seen from Appendix 3B, L1 is a subset of

other sets of permissible latent classes. Similarly, L2 and L3 are subsets of L4, whereas

L2 and L3 are not subsets of one another. This simulation study aimed to assess the



59

Figure 3.1: General Hierarchy Types in Leighton et al., 2004

viability of the likelihood ratio approach for hierarchical structure selection as well as

investigating impact of some factors that may have on selection of the correct or the

most accurate structure. These factors included the size of the difference in the sets

of permissible latent classes, item quality, generating CDM, and sample size. Lastly,

the AIC and BIC information criteria were also evaluated for structure selection. The

Q-matrix that was used for both simulation studies is given in Table 3.4. Ideal re-

sponse patterns of permissible latent classes by CDM are given in Appendices 3D and

3E to show that all permissible latent classes are identifiable given the Q-matrix.

3.4.2 Data Generation and Model Estimation

The three-levels of item quality were combined with the other factors that were

taken into account in this research. For the higher-quality (HQ) items, the lowest and

highest success probabilities (i.e., P (0) and P (1)) were generated from U(0.05, 0.20)

and U(0.80, 0.95). In other words, slip and guessing parameters were drawn from

U(.05, 0.20) in the data generation. For the lower-quality (LQ) items, the lowest
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Figure 3.2: Four Hypothetical Hierarchical Structures for Six Attributes

and highest success probabilities were drawn from U(0.15, 0.30) and U(0.70, 0.85),

respectively, so that the slip and guessing parameters were drawn from U(0.15, 0.30).

A third level of item quality was referred to as mixed-quality (MQ), for which the

generating parameters were drawn from U(0.05, 0.30).

In all conditions, the test length and number of attributes were fixed to 20-

items and six-attributes. Examinees’ attribute profiles followed a uniform distribution

of permissible latent classes. For the first simulation study, the attributes were gener-

ated following the linear, convergent, and divergent hierarchies on top of an unstruc-

tured attribute condition. In the second simulation study, examinee attribute profiles

followed the four hypothetical hierarchies given in Figure 3.2. In both studies, 100

datasets were generated and analyzed for each condition. Item parameters estimated

using marginal maximum likelihood (MML) estimator via expectation-maximization

(EM) algorithm. Then, attribute estimation was accomplished using expected a pos-

teriori (EAP) estimator. Data generation and model estimation were carried out by
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Table 3.4: The Q-Matrix

Attributes Attributes

Item A1 A2 A3 A4 A5 A6 Item A1 A2 A3 A4 A5 A6

1 1 0 0 0 0 0 11 0 0 0 0 1 1
2 0 1 0 0 0 0 12 1 0 0 0 0 1
3 0 0 1 0 0 0 13 1 1 1 0 0 0
4 0 0 0 1 0 0 14 0 1 1 1 0 0
5 0 0 0 0 1 0 15 0 0 1 1 1 0
6 0 0 0 0 0 1 16 0 0 0 1 1 1
7 1 1 0 0 0 0 17 1 0 0 0 1 1
8 0 1 1 0 0 0 18 1 1 0 0 0 1
9 0 0 1 1 0 0 19 1 0 0 0 0 0
10 0 0 0 1 1 0 20 0 0 0 0 0 1

Note. A1 through A6 are the measured attributes.

the Oxmetrics programming language (Doornik, 2011). In the analysis, prior distri-

bution that was used in estimation process was structured in concordance with the

assumed hierarchy. Table 3.5 summarizes all factors considered in these two simula-

tion studies.

3.5 Results

3.5.1 Results of Simulation Study I

To assess the viability of the search algorithm, false-positive (FP) and false-

negative (FN) results are reported in Table 3.6. These results were obtained based

on LRT under various significance levels. FP and FN rates indicate the empirical

Type-I and Type-II error rates (i.e., α and β), respectively. Complement of FP is

the true-negative (i.e., 1 − α), which can be referred to as sensitivity. Sensitivity

indicates the proportion of retained null hypothesis when it is true. Likewise, the

complement of FN is the true-positive (i.e., 1− β), which may also be referred to as

specificity, and it reports the proportion of rejected null hypothesis when it is wrong.

It should be noted here that the proportions given in Table 3.6 are averaged across the
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Table 3.5: Simulation Factors

Simulation I

CDM Sample size True str. Item quality Selection criterion LRT α-level

DINA 500 Linear High Quality LRT α=0.01
DINO 1000 Convergent Mixed Quality AIC α=0.05

Divergent Low Quality BIC α=0.10
Unstructured α=0.20

Simulation II

CDM Sample size True str. Item quality Selection criterion Candidate str.

DINA 500 S2 High Quality LRT S1

DINO 1000 Mixed Quality AIC S2

Low Quality BIC S3

S4

Note. DINA = deterministic input, noisy “and” gate model; DINO = deterministic input, noisy “or”
gate model; True str. = true structure; LRT = likelihood ratio test; AIC = Akaike information criterion;
BIC = Bayesian information criterion.

true and false hypothesized pairwise relationships in accordance with the hierarchical

structure. For example, because all the hypotheses we test in unstructured conditions

are false, we cannot have FPs, therefore, proportions are obtained by averaging the

FNs observed across all K(K − 1) = 30 hypotheses test results. Similarly, in linear

structure, half of the hypotheses we test are true whereas the others are wrong, so

FP and FN rates become average of 15 hypothesis test results for each replication.

FPs are, in general, close to zero for linear and divergent hierarchies. The

largest FPs (i.e., .003 and .004 for the DINA and DINO) were observed under the

significance level of .01 when the sample size was 500 and item quality was low. These

FP rates were even smaller in larger sample and higher item quality conditions. Yet,

elevated FP was obtained for the convergent hierarchy. Observed FPs in convergent

hierarchy case in the DINA were .286; whereas FP rates varied from .001 to .286 in

DINO model conditions. These high FP rates may be due to the fact that examinees

can master A5 when they master either A3 or A4. Careful review of the analysis

results (although not shown in this manuscript) indicated that, for the convergent
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hierarchy, the search algorithm resulted in a hierarchical structure where A3 and A4

are not prerequisite to A5; however, A1 and A2 are still prerequisites for A5. So, this

resulting hierarchy allows some additional latent classes (i.e., 110010 and 110011)

in the estimation process along with 12 latent classes conforming the convergent

hierarchy.

Notice that FP results in additional latent classes to be allowed in the per-

missible latent class set, whereas FN yields in discarding some of the latent classes

that conform to the true hierarchical structure. Therefore, adverse impact of FN

on model estimation may be much stronger in comparison to the negative impact

of FP. As shown in the table, FN rates varied across conditions. When sample size

was 1000, the largest FN observed for DINA and DINO models were .060 and .085,

respectively. The corresponding values for the small sample size were .133 and .304,

respectively. For mixed item quality conditions, the FNs decreased significantly and

they approached to zero under the high quality item conditions.

When sample size was high, the reported specificity (i.e., 1− β) for all condi-

tions were about and over .940, .960, and .995 when lower, mixed, and higher quality

items were used. For the smaller samples, .870, .940, and .960 were observed, respec-

tively, when the generating and estimating model was DINA. When the DINO model

was fitted, these values were comparable in the linear and convergent hierarchy, but

larger in the divergent hierarchy. This reduction may be due to the Q-matrix used

in this study. The impact of significance level should also be mentioned here. In all

conditions, except the convergent hierarchical structure, the FPs were much smaller

than the nominal alpha levels. However, considering the fact that FNs significantly

reduced by employment of larger significance levels, α = .20 may be employed to

minimize FN decisions.

Table 3.7 presents the FN and FP results when the AIC and BIC criteria were

used. Comparison of the results of the LRT, AIC, and BIC showed that the results of
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Table 3.7: Hypotheses Testing Results: AIC and BIC

AIC BIC

DINA DINO DINA DINO

N Hierarchy IQ FP FN FP FN FP FN FP FN

500 Linear HQ .000 .008 .000 .013 .011 .001 .004 .000
MQ .000 .053 .000 .055 .017 .008 .015 .012
LQ .000 .133 .000 .128 .038 .031 .032 .035

Convergent HQ .286 .039 .087 .024 .289 .004 .280 .001
MQ .286 .057 .023 .064 .292 .023 .203 .008
LQ .285 .094 .003 .209 .305 .038 .109 .045

Divergent HQ .000 .000 .000 .029 .008 .000 .005 .004
MQ .000 .002 .000 .074 .024 .000 .035 .015
LQ .000 .062 .000 .286 .034 .003 .035 .040

Unstructured HQ NA .000 NA .000 NA .000 NA .000
MQ NA .001 NA .000 NA .000 NA .000
LQ NA .034 NA .034 NA .000 NA .000

1000 Linear HQ .000 .000 .000 .000 .006 .000 .001 .000
MQ .000 .011 .000 .017 .008 .000 .008 .000
LQ .000 .060 .000 .061 .008 .006 .012 .009

Convergent HQ .286 .004 .237 .004 .289 .000 .287 .000
MQ .286 .036 .104 .033 .290 .004 .250 .008
LQ .286 .060 .004 .072 .289 .029 .133 .026

Divergent HQ .000 .000 .000 .005 .004 .000 .010 .001
MQ .000 .000 .000 .028 .015 .000 .010 .006
LQ .000 .008 .000 .085 .009 .000 .020 .019

Unstructured HQ NA .000 NA .000 NA .000 NA .000
MQ NA .000 NA .000 NA .000 NA .000
LQ NA .001 NA .000 NA .000 NA .000

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; N = sample
size; IQ = item quality; FP = false-positive; FN = false-negative; HQ = higher quality; MQ =
mixed quality; and LQ = lower quality.

the AIC criterion were almost identical to the results of the LRT under significance

level of .01. Due to the fact that FN rates were higher under significance level of

.01 than FN rates under larger significance level (i.e., .20); it can be concluded that

use of LRT with more liberal significance levels may be preferable over use of the

AIC criterion. FP rates of AIC were also comparable to the ones obtained from LRT

under the significant level of .01. Moreover, in comparison of BIC and LRT, it was

seen that the BIC significantly decreased the FN rates with a largest FN rate of .045

(500 examinees, convergent hierarchy, and lower item quality condition) across all
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conditions. Yet, in return, FP rates slightly increased (up to .05). Given the fact

that. under the BIC criterion, both FP and FN rates were under .05 for all conditions

of linear, divergent, and unstructured hierarchies, BIC could be used to identify direct

prerequisite relationships among the attributes.

3.5.2 Results of Simulation Study II

Table 3.8 summarizes the simulation results for structure selection when gen-

erating model was the DINA. The table has two main panels where the upper panel

provides the results of 500 examinees, whereas the lower panel is created based on

sample size of 1000 examinees. In both panels, the results were organized such that

LRT, AIC, and BIC results can be seen by scrolling across the columns. Likewise,

scrolling across rows presents the results obtained under higher, mixed, and lower

item quality conditions. The structure selection results were given in terms of null

hypothesis rejection rates where the null hypotheses specify that the more parsimo-

nious model fits the data as good as the more general model. The generating and the

candidate hierarchical structures are given as the column and row labels, respectively.

For example when generating structure was S1, fit of the model allowing the

latent classes that are permissible by S1 was compared with the model-fits that are

obtained by the structured-DINA models allowing the latent classes specified by S2,

S3, and S4. Across 100 replications when the sample size was 1000 and items were

higher quality, rejection rates of S1 were .00, .01, and .00 in favor of S2, S3, and S4,

respectively. In other words, the null hypotheses that structured-DINA model based

on S1 fits the data as well as the structured-DINA models consistent with S2, S3,

and S4, were retained 100%, 99%, and 100% of the time, respectively.

Similarly, when the generating hierarchy was S2, fit of the structured-DINA

model based on S2 was compared against the structured-DINA models based on S1,

S3, and S4. Fit of the model based on S1 was rejected 100% of the time in favor
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Table 3.8: Structure Selection Results: DINA

Higher Quality Mixed Quality Lower Quality

N SM Structure S1 S2 S4 S1 S2 S4 S1 S2 S4

500 LRT S1 — 1.00 1.00 — 1.00 1.00 — 1.00 1.00
S2 .00 — 1.00 .00 — 1.00 .00 — 1.00
S3 .00 — 1.00 .00 — 1.00 .03 — 1.00
S4 .00 .01 — .00 .01 — .00 .00 —

(S3 vs S4) 1.00 1.00 1.00

AIC S1 — 1.00 1.00 — 1.00 1.00 — 1.00 1.00
S2 .01 — 1.00 .03 — 1.00 .01 — 1.00
S3 .02 .00 1.00 .03 .00 1.00 .06 .00 1.00
S4 .00 .01 — .00 .01 — .00 .03 —

BIC S1 — 1.00 1.00 — 1.00 1.00 — 1.00 1.00
S2 .00 — 1.00 .00 — 1.00 .00 — 1.00
S3 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00
S4 .00 .00 — .00 .00 — .00 .00 —

1000 LRT S1 — 1.00 1.00 — 1.00 1.00 — 1.00 1.00
S2 .00 — 1.00 .01 — 1.00 .00 — 1.00
S3 .01 — 1.00 .01 — 1.00 .00 — 1.00
S4 .00 .00 — .00 .00 — .00 .00 —

(S3 vs S4) 1.00 1.00 1.00

AIC S1 — 1.00 1.00 — 1.00 1.00 — 1.00 1.00
S2 .00 — 1.00 .02 — 1.00 .00 — 1.00
S3 .01 .00 1.00 .01 .00 1.00 .01 .00 1.00
S4 .00 .00 — .00 .00 — .00 .01 —

BIC S1 — 1.00 1.00 — 1.00 1.00 — 1.00 1.00
S2 .00 — 1.00 .00 — 1.00 .00 — 1.00
S3 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00
S4 .00 .00 — .00 .00 — .00 .00 —

Note. N = sample size; SM = selection method; LRT = likelihood ratio test; AIC = Akaika infor-
mation criterion; BIC = Bayesian information criterion; and S1-S4 are the hypothetical hierarchical
structures.

of the model consistent with S2; and the model by S2 was rejected 0% of the time

in favor of the model by S4. It should also be noted here that, because structured

models based on S2 and S3 are not nested, their comparison by LRT was obtained

through S4. The model fit comparisons of S3 to S4 are given as the fifth row in LRT

model selection results. As can be seen from the table, when compared against S4,

model by S2 was retained 100% of the time and model by S3 was retained 0% of the

time.
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Table 3.9: Structure Selection Results: DINO

Higher Quality Mixed Quality Lower Quality

N SM Structure S1 S2 S4 S1 S2 S4 S1 S2 S4

500 LRT SS1 — 1.00 .96 — 1.00 1.00 — .95 .48
S2 .02 — 1.00 .03 — 1.00 .03 — .95
S3 .05 — 1.00 .03 — 1.00 .01 — .99
S4 .00 .00 — .00 .01 — .02 .02 —

(S3 vs S4) .97 .86 .51

AIC S1 — 1.00 1.00 — 1.00 1.00 — .97 .99
S2 .06 — 1.00 .08 — 1.00 .06 — .97
S3 .08 .00 1.00 .08 .00 1.00 .07 .03 .99
S4 .00 .02 — .00 .02 — .02 .03 —

BIC S1 — 1.00 1.00 — .96 .86 — .58 .23
S2 .00 — 1.00 .00 — .93 .00 — .51
S3 .00 .00 1.00 .00 .00 .97 .00 .03 .58
S4 .00 .00 — .00 .00 — .00 .00 —

1000 LRT S1 — 1.00 1.00 — 1.00 .96 — 1.00 1.00
S2 .02 — 1.00 .01 — 1.00 .00 — 1.00
S3 .02 — 1.00 .01 — 1.00 .00 — 1.00
S4 .02 .02 — .00 .01 — .00 .00 —

(S3 vs S4) 1.00 1.00 .88

AIC S1 — 1.00 1.00 — 1.00 1.00 — 1.00 1.00
S2 .04 — 1.00 .04 — 1.00 .03 — 1.00
S3 .04 .00 1.00 .01 .00 1.00 .03 .02 1.00
S4 .01 .03 — .00 .02 — .00 .03 —

BIC S1 — 1.00 1.00 — 1.00 .99 — .92 .74
S2 .00 — 1.00 .00 — 1.00 .00 — .87
S3 .00 .02 1.00 .00 .00 1.00 .00 .02 .93
S4 .00 .00 — .00 .00 — .00 .00 —

Note. N = sample size; SM = selection method; LRT = likelihood ratio test; AIC = Akaika infor-
mation criterion; BIC = Bayesian information criterion; and S1-S4 are the hypothetical hierarchical
structures.

Table 3.8 shows that when sample size was 1000, regardless of the item quality

levels, the LRT and AIC selected the generating hierarchy at least 99% and 98% of

the time, respectively. The BIC selected the true hierarchy 100% of the time. When

the sample size was reduced to 500, BIC still performed perfectly on selecting the

generating structured-DINA model among the four candidates. Yet, the true model

(i.e., DINA model constrained by the generating hierarchy) selection rates of the LRT

and AIC decreased down to 97% and 94%, respectively, for the lower quality item
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conditions. These two selection rates were to 99% and 98%, respectively, when the

generating item parameters were of higher quality. Thus, in general, we can say that

all three model selection methods were able to accurately identify the DINA model

structured by the generating hierarchy.

When the generating model was the DINO and sample size was 1000, all three

model selection methods identified the generating structure at and above 95% of the

time under higher and mixed item quality conditions. However, their performance,

particularly that of the BIC, significantly decreased when item quality was lower.

Similar results with further reduction in identification of the true structure were ob-

served under the sample size of 500. Under the lower item quality, the model selection

methods tended to select the more parsimonious structures when the generating hi-

erarchical structure was more liberal. Again, true model identification ability of the

BIC was relatively poor in comparison to the LRT and AIC especially under the lower

item quality conditions.

Results given in tables 3.8 and 3.9 suggest that true hierarchical structure

can be identified accurately by all three model selection methods when items are

at least mixed item quality and the sample has more than 500 examinees. Results

indicated that when the generating model is DINA, the model selection methods can

select the true hierarchical structure even under the lower item quality conditions.

Although the observed results show that structure selection in DINO model would

not be as accurate under lower item quality conditions, the observed differences under

the DINA and DINO models might be due to the Q-matrix used in this study as the

information it provides for the two models might not be in the same level.
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Table 3.10: Attribute Hierarchy Search on ECPE Data

Null A1 A2 A3 Full

hypothesis A2 A3 A1 A3 A1 A2 model

-2LL 85689.47 85689.76 85721.90 85701.65 85912.15 85745.69 85686.52
Deviance 2.95 3.24 35.37 15.12 225.63 59.16 –
p-values . 22 .20 .00 .00 .00 .00 –

AIC 85705.47 85705.76 85737.90 85717.65 85928.15 85761.69 85706.52
BIC 85753.31 85753.60 85785.74 85765.49 85975.99 85809.53 85766.32

Note. A1 = lexical rules; A2 = cohesive rules; A3 = morphosyntactic rules; AIC = Akaika infor-
mation criterion; and BIC = Bayesian information criterion.

3.6 Real Data Analysis

The simulation studies were followed by a numerical example for hierarchy

identification and selection. The dataset to be analyzed consists of 2922 exaimnees’

binary responses to the 28 items in the grammar section of the Examination for the

Certificate of Proficiency in English (ECPE). The test was originally developed and

administered by the University of Michigan English Language Institute in 2003. The

response data and the Q-matrix, which was developed later for CDM analysis, are

available in and obtained from the ‘CDM’ package (Robitzsch, Kiefer, George, &

Uenlue, 2014) in R software environment.

First, possible hierarchical structure was identified by the exhaustive search

algorithm. Model selections based on LRT, AIC, and BIC were summarized in Table

3.10. Based on the LRT and AIC, null models assuming A1 was prerequisite to A2,

and A1 was prerequisite to A3 fitted the data as well as the full model. Further,

BIC indicated that, on top of the above two null models, the model assuming A2

was prerequisite for A3 also fitted the data as well as the full model. Therefore,

exhaustive search employing LRT and AIC resulted in a divergent hierarchy where

A1 was prerequisite for both A2 and A3; whereas BIC resulted in a linear hierarchy

where acquisition of A2 required A1; and A3 required both A1 and A2. In the

resulting linear and divergent structures, four and five latent classes are permissible,
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Table 3.11: Comparison of Attribute Profile Proportions

Attribute Profile 000 100 010 001 110 101 011 111

LCDM unstructured .301 .129 .012 .009 .175 .018 .011 .346
DINA unstructured .309 .049 .041 .008 .103 .027 .012 .451

linear .357 .068 — — .102 — — .472
divergent .357 .073 — — .091 .044 — .434

Note. Attributes are lexical rules, cohesive rules, and morphosyntactic rules, respectively.

respectively, rather than all eight latent classes. Then, the final structure could

be selected by comparing the likelihoods of the models with four and five latent

classes. When the fit of these two resulting structures (i.e., linear and divergent)

were compared with 1 degrees of freedom, the p-value was .000. Therefore, the the

linear hierarchy was rejected in favor of the divergent hierarchy.

The same data were analyzed using the log-linear cognitive diagnosis model

(LCDM; Henson, Templin, & Willse, 2009) in Templin & Bradshaw (2014). They

argued that attributes had a linear hierarchy. Although the LCDM and DINA outputs

cannot always be compared due to differences in their structural parameters, Table

3.11 show that the LCDM and DINA yielded similar attribute estimations for this

particular data when all attributes are assumed to be independent. Thus, it can be

argued that the results obtained by these two models are at least comparable. The last

two rows of the table show that few examinees were estimated to have attribute profile

101 (4.4 % of the sample), whereas rest of the sample were estimated to have one

of the four remaining permissible latent classes. Given the different CDMs employed

(i.e., DINA and LCDM), and the small proportion of examinees being classified in the

latent class 101 under the divergent hierarchical structure, it is acceptable to arrive

at a hierarchy that is not linear.

As the final step, all possible hierarchical structures were compared in terms

of model fit. There were a total of 16 hierarchical structures that could be specified.

These possible structures and corresponding permissible latent classes are given in
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Appendix 3C. When each of the reduced models based on possible hierarchical struc-

tures were compared to the full model, only three reduced models (i.e., A1→A2, A3;

A1→A3, A2; and A1→{A2, A3}) fitted to the data as well as the full model. There-

fore, the final model chosen was A1→{A2, A3}) as it was the most parsimonious one

among the three.

3.7 Conclusion and Discussion

When attributes hold a hierarchical structure, CDM model estimation can be

improved by taking this hierarchical relationship into account in the estimation pro-

cess. However, attribute hierarchy must be correct, otherwise, incorrect assumptions

on the hierarchy may degrade the model estimation. In this study, an empirical ex-

haustive search algorithm to identify hierarchical relationships among the attributes

was proposed and the viability of the algorithm was investigated in various conditions.

In this search algorithm using likelihood based model selection methods each of all

possible direct prerequisite relationships among attributes are statistically tested. In

this statistical tests, the null hypothesis states that structured-CDM based on a direct

prerequisite relationship among two attributes fits the data as well as its unstructured

counterpart.

Based on the results we can conclude that the likelihood ratio test based ex-

haustive search yields an R-matrix that specifies all the prerequisite relationships

among all attributes for linear, divergent, and unstructured conditions. However, in

the convergent structure case, it fails to identify that both A3 and A4 are prereq-

uisites to A5; rather it specifies a direct prerequisite relationship between A2 and

A5. Consequently, permissible latent classes obtained from the exhaustive search

includes two additional latent classes on top of the ones defined by the convergent

hierarchical structure. Even in this circumstance, the exhaustive search eliminates

many of the non-existing latent classes. Thus, overall, the results indicate that we
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can, most of the time, recover the generating hierarchical structure successfully. It

was also emphasized that the LRT was superior to the AIC in determining the hierar-

chical structure. Among all three, the BIC was the most successful in recovering the

true direct prerequisite relationships among the attributes. It should be noted here

that although the method is promising and can be used for exploratory purposes in

attribute hierarchy identification; the intent of the method is to complement rather

than replace the current subjective procedures.

Moreover, in this study, model-fit based hierarchical structure selection was

also investigated. Results indicated that generating hierarchical structure can be

accurately selected among the several candidates when model selection criteria such

as LRT, AIC, and BIC are used. Correct hierarchy selection rates of all three criteria

are 95% or even higher when response data are generated by at least mixed quality

items. In small sample conditions, correct hierarchy selection rates were smaller,

especially under DINO models. Incorrect hierarchy selection rates were higher with

lower quality items.

In practice, multiple nonnested hierarchical structures (e.g., S2 and S3) could

be selected when they are compared against the more liberal candidate (e.g., S4).

In such tie conditions, practitioner can always consider the p-values in LRT, and

AIC and BIC results to break the tie. Another option can be to proceed with the

more liberal hierarchical structure (e.g., S4) when it does not significantly increase

the number of permissible latent classes. Furthermore, practitioner may also consider

to compare the selected hierarchical structure to the unstructured model when the

selected hierarchy is the most liberal one among the candidates. However, it should

be noted that practitioners need to work with domain experts to make final judgments

on the attribute structure.

Although several factors that may have impact on the viability of the search

algorithm and hierarchy selection were studied in the study, more conditions (i.e.,
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varying test lengths, number of attributes, and hierarchies) may be needed to obtain

more information on the practicability of the search algorithm and usefulness of like-

lihood based hierarchy selection. Thus, the use of fixed test length, attributes, and

Q-matrix is among the limitations of the study. Because the AIC and BIC take the

sample size into account, performance of these two criteria may need to be further

studied under different sample sizes. Furthermore, investigation of impact of mis-

specifications in Q-matrix on the viability of search algorithm and hierarchy selection

may also be instructive. Therefore, considering misspecified Q-matricies may be a

next step.
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3.9 Appendices

Appendix 3A: Permissible Latent Classes by General Hierarchy Types

Attributes Hierarchies Attributes Hierarchies

LC A1 A2 A3 A4 A5 A6 Lin. Con. Div. LC A1 A2 A3 A4 A5 A6 Lin. Con. Div.

α1 0 0 0 0 0 0 3 3 3 α33 1 0 0 0 0 0 3 3 3
α2 0 0 0 0 0 1 α34 1 0 0 0 0 1
α3 0 0 0 0 1 0 α35 1 0 0 0 1 0
α4 0 0 0 0 1 1 α36 1 0 0 0 1 1
α5 0 0 0 1 0 0 α37 1 0 0 1 0 0 3
α6 0 0 0 1 0 1 α38 1 0 0 1 0 1 3
α7 0 0 0 1 1 0 α39 1 0 0 1 1 0 3
α8 0 0 0 1 1 1 α40 1 0 0 1 1 1 3
α9 0 0 1 0 0 0 α41 1 0 1 0 0 0
α10 0 0 1 0 0 1 α42 1 0 1 0 0 1
α11 0 0 1 0 1 0 α43 1 0 1 0 1 0
α12 0 0 1 0 1 1 α44 1 0 1 0 1 1
α13 0 0 1 1 0 0 α45 1 0 1 1 0 0
α14 0 0 1 1 0 1 α46 1 0 1 1 0 1
α15 0 0 1 1 1 0 α47 1 0 1 1 1 0
α16 0 0 1 1 1 1 α48 1 0 1 1 1 1
α17 0 1 0 0 0 0 α49 1 1 0 0 0 0 3 3 3
α18 0 1 0 0 0 1 α50 1 1 0 0 0 1
α19 0 1 0 0 1 0 α51 1 1 0 0 1 0
α20 0 1 0 0 1 1 α52 1 1 0 0 1 1
α21 0 1 0 1 0 0 α53 1 1 0 1 0 0 3 3
α22 0 1 0 1 0 1 α54 1 1 0 1 0 1 3
α23 0 1 0 1 1 0 α55 1 1 0 1 1 0 3 3
α24 0 1 0 1 1 1 α56 1 1 0 1 1 1 3 3
α25 0 1 1 0 0 0 α57 1 1 1 0 0 0 3 3 3
α26 0 1 1 0 0 1 α58 1 1 1 0 0 1
α27 0 1 1 0 1 0 α59 1 1 1 0 1 0 3
α28 0 1 1 0 1 1 α60 1 1 1 0 1 1 3
α29 0 1 1 1 0 0 α61 1 1 1 1 0 0 3 3 3
α30 0 1 1 1 0 1 α62 1 1 1 1 0 1 3
α31 0 1 1 1 1 0 α63 1 1 1 1 1 0 3 3 3
α32 0 1 1 1 1 1 α64 1 1 1 1 1 1 3 3 3

Note. LC represents the possible latent classes; 3 shows the permissible latent classes; A1 through
A6 indicate the six attributes; Lin. is the linear hierarchy; Con. is the convergent hierarchy; Div. is
the divergent hierarchy.



78

Appendix 3B: Permissible Latent Classes for Four Hypothetical Structures

Attributes Structures Attributes Structures

LC A1 A2 A3 A4 A5 A6 S1 S2 S3 S4 LC A1 A2 A3 A4 A5 A6 S1 S2 S3 S4

α1 0 0 0 0 0 0 3 3 3 3 α33 1 0 0 0 0 0 3 3 3 3

α2 0 0 0 0 0 1 α34 1 0 0 0 0 1
α3 0 0 0 0 1 0 α35 1 0 0 0 1 0
α4 0 0 0 0 1 1 α36 1 0 0 0 1 1
α5 0 0 0 1 0 0 α37 1 0 0 1 0 0
α6 0 0 0 1 0 1 α38 1 0 0 1 0 1
α7 0 0 0 1 1 0 α39 1 0 0 1 1 0
α8 0 0 0 1 1 1 α40 1 0 0 1 1 1
α9 0 0 1 0 0 0 α41 1 0 1 0 0 0
α10 0 0 1 0 0 1 α42 1 0 1 0 0 1
α11 0 0 1 0 1 0 α43 1 0 1 0 1 0
α12 0 0 1 0 1 1 α44 1 0 1 0 1 1
α13 0 0 1 1 0 0 α45 1 0 1 1 0 0
α14 0 0 1 1 0 1 α46 1 0 1 1 0 1
α15 0 0 1 1 1 0 α47 1 0 1 1 1 0
α16 0 0 1 1 1 1 α48 1 0 1 1 1 1
α17 0 1 0 0 0 0 α49 1 1 0 0 0 0 3 3 3 3

α18 0 1 0 0 0 1 α50 1 1 0 0 0 1
α19 0 1 0 0 1 0 α51 1 1 0 0 1 0 3

α20 0 1 0 0 1 1 α52 1 1 0 0 1 1 3

α21 0 1 0 1 0 0 α53 1 1 0 1 0 0 3 3 3

α22 0 1 0 1 0 1 α54 1 1 0 1 0 1
α23 0 1 0 1 1 0 α55 1 1 0 1 1 0 3 3

α24 0 1 0 1 1 1 α56 1 1 0 1 1 1 3 3

α25 0 1 1 0 0 0 α57 1 1 1 0 0 0 3 3 3 3

α26 0 1 1 0 0 1 α58 1 1 1 0 0 1
α27 0 1 1 0 1 0 α59 1 1 1 0 1 0 3 3

α28 0 1 1 0 1 1 α60 1 1 1 0 1 1 3 3

α29 0 1 1 1 0 0 α61 1 1 1 1 0 0 3 3 3 3

α30 0 1 1 1 0 1 α62 1 1 1 1 0 1
α31 0 1 1 1 1 0 α63 1 1 1 1 1 0 3 3 3 3

α32 0 1 1 1 1 1 α64 1 1 1 1 1 1 3 3 3 3

Note. S1, S2, S3, and S4 are four distinct structures; LC represents the possible latent classes; 3
shows the permissible latent classes; A1 through A6 indicate the six attributes.
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Appendix 3C: Permissible Latent Classes for All Possible Hierarchical Structures

Permissible latent classes

Structure 000 100 010 001 110 101 011 111

A1 → A2 → A3 3 3 3 3

A1 → A3 → A2 3 3 3 3

A2 → A3 → A1 3 3 3 3

A2 → A1 → A3 3 3 3 3

A3 → A1 → A2 3 3 3 3

A3 → A2 → A1 3 3 3 3

A1 → {A3, A2} 3 3 3 3 3

A2 → {A1, A3} 3 3 3 3 3

A3 → {A1, A2} 3 3 3 3 3

A1 → A2, A3 3 3 3 3 3 3

A1 → A3, A2 3 3 3 3 3 3

A2 → A1, A3 3 3 3 3 3 3

A2 → A3, A1 3 3 3 3 3 3

A3 → A1, A2 3 3 3 3 3 3

A3 → A2, A1 3 3 3 3 3 3

A1, A2, A3 3 3 3 3 3 3 3 3

Note. → specifies prerequisite relationships; and 3 shows permissible latent class.
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Appendix 3D: Ideal Response Patterns: DINA

Latent classes Ideal response patterns

Structure α1 α2 α3 α4 α5 α6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Linear 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Convergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Divergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1
1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1
1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note. DINA = deterministic input, noisy “and” gate model; and α1 through α6 are the attributes.
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Appendix 3E: Ideal Response Patterns: DINO

Latent classes Ideal response patterns

Structure α1 α2 α3 α4 α5 α6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Linear 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Convergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Divergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0
1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0
1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note. DINO = deterministic input, noisy “or” gate model; and α1 through α6 are the attributes.
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Chapter 4

Impact of Inexact Hierarchy and Q-matrix on

Q-matrix Validation and Structure Selection

4.1 Introduction

Implementation of the most, if not all, of the CDMs requires a constructed

Q-matrix that describes the association between the items and attributes needed to

complete the items (de la Torre, 2008). Q-matrix embodies the cognitive specifications

in test construction (Leighton, Gierl, & Hunka, 2004), and it needs to be correctly

specified to provide maximum information in cognitively diagnostic assessment (de la

Torre, 2008). However, Q-matrix construction depends on content-experts’ judgments

and this subjective process may result in misspecifications. Recent research (e.g.,

Chiu, 2013; de la Torre, 2008; de la Torre & Chiu, 2016) showed the negative effect of

misspecified Q-matrix in item calibration, which may consequently degrade attribute

classification accuracy. Furthermore, when the correctness of the Q-matrix is not

verified, misspecifications in the Q-matrix may result in model misfit (de la Torre,

2008; de la Torre & Chiu, 2016).

To address misspecifications in Q-matrix that may emerge due to misjudg-

ments of experts, several parametric and nonparametric Q-matrix validation methods

have been proposed (Chiu, 2013). Some of these methods are designed for specific

CDMs (e.g., DINA; Junker & Sijtsma, 2001 and DINO; Templin & Henson, 2006),

whereas others can also be used with a general model (e.g., G-DINA; de la Torre,
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2011). Viability of the data-driven Q-matrix validation methods have been tested un-

der various factors including the correlational and higher order relationships among

the attributes. Yet, neither higher-order nor correlational dependency among the at-

tributes can represent the conditions where the attributes are truly hierarchical. One

purpose of this study is to investigate the impact of correctly and incorrectly specified

hierarchical structures on Q-matrix validation.

A Q-matrix used for likelihood based structured-model selection (i.e., hierarchy

selection) may not always be correct. The second purpose of this manuscript is

to make the hierarchical structure selection more realistic with the employment of

misspecified Q-matrices. Thus, the problem here is twofold: (1) a misspecified Q-

matrix can adversely impact the hierarchical structure selection, and (2) selection of

an erroneous structure can also affect Q-matrix validation procedure. This study aims

to document the reciprocal impact of misspecified Q-matrix and inexact hierarchical

structure on hierarchy selection and Q-matrix validation, respectively.

The remainder of the manuscript consists of the following sections. In the

next section, recent development on empirical Q-matrix validation will be presented.

In the third section, three empirical Q-matrix validation methods used in this study

will be summarized. Fourth section will provide brief summary of the CDMs used

throughout this study. Simulation study and its results will be given in the fifth

section, respectively. The conclusion of the study will be the last section of the

manuscript.

4.2 Background

To provide empirical information to validate the provisional Q-matrix con-

structed by content experts, de la Torre (2008) proposed an empirically based Q-

matrix validation method, which is referred to as the delta (δ) method. Although he
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introduced and implemented the method in conjunction with the DINA model, the

method can also be used with the DINO model after modifying the rule for classi-

fying examinees into group ηj = 1 and ηj = 0. The method was established on the

idea of maximizing the difference in the probabilities of correct response between the

groups ηj = 1 and ηj = 0 (de la Torre, 2008). He demonstrated that correct q-vector

maximizes the differences in the probabilities of correct response for the two distinct

groups, whereas the misspecification of any q-entry shrinks the gap due to either a

higher guessing or slip parameter.

It should be noted here that Feng (2013) showed the applicability of the delta

method, employing sequential search algorithm proposed by de la Torre (2008), in

conjunction with reparameterized unified model (Reduced-RUM: Hartz & Roussos,

2005) and DINO models. In her dissertation study, she incorporated the sequential

search based on the posterior distribution of attribute patterns and Bayesian model

selection criteria. Therefore, she formulated the variation of the delta method as a

two-stage validation method.

To make empirical Q-matrix validation viable with more general models, de

la Torre and Chiu (2016) extended the δ-method such that the new method operates

within the G-DINA framework. This general method is also based upon an item

discrimination index referred to as G-DINA discrimination index. The G-DINA dis-

crimination index was proposed in the same paper and is denoted as ς2. It should

be noted here that this index is also item specific. The main principle on which the

general validation method was developed is that the correct q-vector results in homo-

geneous latent groups with respect to the probability of success (de la Torre & Chiu,

2016). De la Torre and Chiu (2016) showed that the correct q-vector is expected to

result in groups producing a ς2, which approximates the maximum ς2.

On top of the two EM-based Q-matrix validation methods explained above,

DeCarlo (2012) proposed a Bayesian model-based Q-matrix validation method that
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is only practicable with reparameterized DINA (R-DINA: DeCarlo, 2010) model.

Requirement for identification of presumptive misspecified elements of a Q-matrix is

the apparent shortcoming of this method. The method treats the q-entries that are

conceivably wrong as random variables to be estimated.

To be freed from the challenges encountered in MLE-based Q-matrix valida-

tion methods, several nonparametric counterparts have been developed recently. The

need for sophisticated and expensive software, high sample size requirement, and be-

ing sensitive to starting values are among the challenges encountered in parametric

methods. Chiu (2013) proposed Q-matrix refinement method to identify and correct

misspecified elements in the matrix. The method uses the residual sum of squares

(RSS) between the observed and expected responses as a loss function to identify

misspecified q-entries. This method employs a nonparametric classification method,

developed by Chiu and Douglas (2013), to assign examinee class memberships, which

are then used to obtain examinees’ expected responses. It should be noted here that

to obtain examinees’ expected responses, the nonparametric classification method

postulates a specific CDM that supposedly underlies the examinee responses.

Liu, Xu, and Ying (2012) proposed a Q-matrix estimation approach by means

of minimizing a loss function. The approach needs only the information of dependent

structure of examinee responses as input. Although viability of this approach does

not depend on item parameters or attribute distributions, additional information such

as the partial information about the Q-matrix can be incorporated in the estimation

process to increase the efficiency in terms of computational time and correctness of

the resulting Q-matrix. Furthermore, Barnes (2010) proposed a data mining tech-

nique, referred to as Q-matrix method, which uses students response data to create a

Q-matrix. This method extracts a Q-matrix using a hill-climbing algorithm with the

expectation that the extracted Q-matrix can be useful for obtaining diagnostic infor-

mation. Although Barnes (2010) underscored the usefulness of this initial work on
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Q-matrix construction, she pointed out that the extracted and the expert Q-matrices

did not often coincide.

4.3 Empirical Q-matrix Validation Methods

4.3.1 The Sequential EM-Based Delta Method

Recall when a test is associated with K attributes, there are 2K , possible

attribute profiles, and 2K − 1 possible q-vector that specifies required attributes for

item j. Based on the examinees’ deterministic responses, any q-vector for item j

partitions the examinees into two distinct groups in both the DINA and DINO models

(i.e., group ηj = 1 and ηj = 0 for the DINA model, and group ωj = 1 and ωj = 0

for the DINO model). Then, the q-vector for item j corresponding to αααl is regarded

as correct if it maximizes the difference in the probabilities correct response between

the two examinee groups (de la Torre, 2008). This statement can be expressed as,

qj = arg max
αl

[P (Xj = 1|ηll′ = 1)− P (Xj = 1ηll′ = 0)] = arg max
αl

[δjl], (4.1)

for l, l′ = 1, 2, , 2K − 1, where ηll′ =
∏K

k=1 α
αlk

l′k .

De la Torre (2008) further explained that the q-vector maximizing the equation

above minimizes the sum of the guessing and slip parameters for the same item.

Accordingly, he noted that although δj = (1 − sj) − gj changes as q-vector changes,

δj could be considered as an item-specific discrimination index when the Q-matrix is

correctly specified (de la Torre, 2008). De la Torre (2008) demonstrated that when an

unnecessary attribute was specified, the guessing parameter increases; and omission

of a required attribute increases the slip parameter. Therefore, he claimed that any

specification error in the q-vector shrinks the δj. Then, to find the correct q-vector,

starting from single attribute q-vectors, this algorithm keeps track of changes in δj
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and allows a new attribute in the q-vector as long as the gain in δj is meaningful.

4.3.2 General Method of Empirical Q-matrix Validation

This general method of empirical Q-matrix validation is based on the G-DINA

index, ς2, which is a measure of the weighted variance of the probability of success for a

particular attribute distribution (de la Torre & Chiu, 2016). For the formal definition

of the ς2, let the total number of attributes measured be K and the first K∗ attributes

be requisite for the item where K ′ ≤ K∗ ≤ K ′′. Further let w(α1, . . . , αK′′) and

p(α1, . . . , αK′′) be the weight and success probability of (α1, . . . , αK′′), respectively.

Also define

w(αααK′:K′′) =
1∑

α1=0

. . .
1∑

αK′−1=0

w(ααα1:K′′), (4.2)

and

p(αααK′:K′′) =

∑1
α1=0 . . .

∑1
αK′−1=0w(ααα1:K′′)p(ααα1:K′′)

w(αααK′:K′′)
. (4.3)

Then, given the definitions for the key components above, de la Torre and Chiu (2016)

formulated the index as

ς2 = ς2K′:K′′ =
1∑

αK′=0

. . .
1∑

αK′′=0

w(αααK′:K′′)[p(αααK′:K′′)− p̄(αααK′:K′′)]2, (4.4)

where p̄ is the mean of the probability of success across all the 2K
′′−K′+1 possible

patterns of p(αααK′:K′′) (de la Torre & Chiu, 2016).

De la Torre and Chiu (2016) introduced a general method for empirical Q-

matrix validation by employing ς2. This validation method was developed based on

the idea that the correct q-vector results in homogeneous latent groups with respect

to the probability of success (de la Torre & Chiu, 2016). However, they argued that

any q-vector resulting in latent groups with homogeneous within-group probabilities

of success can be referred to as appropriate, from which the most parsimonious one
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is defined as the correct q-vector. The correct q-vector is expected to be the most

parsimonious q-vector such that resulting ς2 approximates the maximum ς2.

4.3.3 The Q-matrix Refinement Method

Chiu (2013) developed the Q-matrix refinement method with the intent of

identifying and correcting misspecified elements in a Q-matrix. The operational logic

of the method is minimizing the RSS between the examinee responses and expected

responses of an item. Thus, the CDM that gives rise to observed examinee responses

needs to be known to be able to generate the expected responses. Furthermore,

this method employs a nonparametric classification method, developed by Chiu and

Douglas (2013), to assign examinees into latent classes.

To define the method, let Yij be observed response of examinee i to item j and

ηij be the expected response of the same examinee to the same item. Then, squared

residual becomes (Yij − ηij)2. The RSS for item j is defined as

RSSj =
N∑
i=1

(Yij − ηij)2 =
2K∑
m=1

∑
i∈Cm

(Yij − ηjm)2 (4.5)

where Cm is the latent class m, and N is the total number of examinees in the sample

(Chiu, 2013). Because the expected responses are class-specific, the index for ideal

response changes in the right hand-side of the equation (see Chiu, 2013 and Chiu &

Douglas, 2013 for details of class-specific expected responses).

In her paper, Chiu justified that when examinee classification is correct, the

RSS of the correct q-vector is supposed to be the minimum among all the RSSs

produced by 2K − 1 possible q-vectors. Therefore, a correct Q-matrix is expected

to yield minimum RSS for the entire test. Moreover, the algorithm of the method

is initialized with the item that has the highest RSS produced by the provisional

Q-matrix. After considering possible change in the q-vector of the initial item, the
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algorithm searches for a new item that has the next highest RSS. Essentially, this is

an iterative method and the algorithm terminates when all items are checked, and

RSS of all items are the minimum in their current q-vector forms.

4.4 The Cognitive Diagnosis Models

Up to date, many cognitive diagnosis models (CDMs) have been proposed.

These models differ in terms of the assumptions on the relationships between at-

tributes and test performance. Several well recognized specific CDMs such as the

deterministic input, noisy “and” gate (DINA; de la Torre, 2009b, Junker and Sijtsma,

2001), deterministic input, noisy “or” gate (DINO; Templin and Henson, 2006), and

additive-CDM (A-CDM; de la Torre, 2011) can be derived from the generalized de-

terministic inputs, noisy “and” gate (G-DINA: de la Torre, 2011) model.

The IRF of the generalized-DINA model (G-DINA; de la Torre, 2011) under

the identity link is

P (α∗lj) = δj0 +

K∗j∑
k=1

δjkαlk +

K∗j∑
k′=k+1

K∗j−1∑
k=1

δjkk′αlkαlk′ + · · ·+ δj12...K∗j

K∗j∏
k=1

αlk (4.6)

where K∗j represents the number of required attributes for the jth item (notice that

K∗j is item specific and does not represents the total number of attributes measured

by a test); l represents a particular attribute pattern out of 2K
∗
j possible attribute

patterns; δj0 is the intercept for the item j; δjk is the main effect due to αk; δjkk′

represents interaction effect due to αk and αk′ ; and δj12...K∗j is the interaction effect

due to α1, . . . , αK∗j (de la Torre, 2011). The G-DINA model splits examinees into 2K
∗
j

latent groups for item j based on the probability of answering item j correctly.

DINA Model: The DINA model in known to be one of the most parsimo-

nious model as it contains only two item parameters (i.e., guessing and slip). This
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model is referred to as a conjunctive model (de la Torre, 2011; de la Torre & Douglas,

2004) because it assumes that missing one of the several required attributes for an

item is the same as having none of the required attributes (de la Torre, 2009b; Rupp

& Templin, 2008). This assumption is statistically represented by the conjunctive

condensation function (Maris, 1995, 1999). Given an examinee’s attribute profile,

αi, and the jth row of the Q-matrix (i.e., attribute specification of jth item) the con-

junctive condensation rule generates a deterministic response (ηij = 1 or 0) through

the function

ηij =
K∏
k=1

α
qjk
ik . (4.7)

Furthermore, item response function (IRF) of the DINA model has a proba-

bilistic component, which allows probability of slipping an item when an examinee

possesses all required attributes. This probabilistic component also allows an exami-

nee lacking at least one required attribute to guess the correct response. The proba-

bilities of slipping and guessing for item j are denoted as sj = P (Xij = 0|ηij = 1) and

gj = P (Xij = 1|ηij = 0), respectively, where Xij is the observed response of examinee

i to item j. Given sj and gj, the IRF of the DINA model is written as

P (Xj = 1|αi) = P (Xj = 1|ηij) = g
(1−ηij)
j (1− sj)ηij (4.8)

where αi is examinee’s attribute pattern among 2K possible attributes patterns; ηij

is the expected response of examinee i to item j; and gj and sj are guessing and

slip parameters, respectively (de la Torre, 2009a). It should be noted here that

gj and (1 − sj) correspond to δj0 and δj12K∗j , respectively, in the G-DINA model

representation. Therefore, the G-DINA is reduced to the DINA model by setting all

the parameters but δj0 and δj12...K∗j to zero.



91

DINO Model: The DINO model is the disjunctive counterpart of the DINA

model. It assumes that having one of the several required attributes is sufficient to

answer an item successfully (Rupp & Templin, 2008; Templin & Rupp, 2006). It is

the same thing saying that having one of the required attributes produces the same

success probability as having all of the required attributes. Due to this nature of the

model, given an examinee’s attribute profile, αi, and the jth row of the Q-matrix, the

deterministic response (i.e., ωij = 1 or 0) for the model is obtained by the function

ωij = 1−
K∏
k=1

(1− αik)qjk . (4.9)

Therefore, the DINO model also splits examinees into two distinct groups. The first

group consists of examinees possessing at least one of the required attributes for item

j, and the second group is constituted by the examinees who mastered none of the

required attributes.

The DINO model also has two item parameters; s∗j = P (Xij = 0|ωij = 1) and

g∗j = P (Xij = 1|ωij = 0). Then, 1 − s∗j is the probability that examinee i correctly

answers item j given that the examinee has mastered at least one of the required

attributes. Likewise, g∗j stands for the probability that examinee i correctly answers

item j when the examinee has not mastered any required attribute. The item response

function of the DINO model is written as

P (Xj = 1|αi) = P (Xj = 1|ωij) = gj
(1−ωij)(1− sj)ωij (4.10)

where αi is examinee’s attribute pattern; ωij is the expected response of examinee

i to item j; and g∗j and s∗j are guessing and slip parameters for item j, respectively

(Templin & Rupp, 2006).

The DINO model can also be derived from the G-DINA model by setting

δjk = −δjk′k′′ = . . . = (−1)K
∗
j +1δj12...K∗j (de la Torre, 2011). In words, the DINO
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Table 4.1: The Q-Matrix

Attributes Attributes

Item A1 A2 A3 A4 A5 A6 Item A1 A2 A3 A4 A5 A6

1 1 0 0 0 0 0 11 0 0 0 0 1 1
2 0 1 0 0 0 0 12 1 0 0 0 0 1
3 0 0 1 0 0 0 13 1 1 1 0 0 0
4 0 0 0 1 0 0 14 0 1 1 1 0 0
5 0 0 0 0 1 0 15 0 0 1 1 1 0
6 0 0 0 0 0 1 16 0 0 0 1 1 1
7 1 1 0 0 0 0 17 1 0 0 0 1 1
8 0 1 1 0 0 0 18 1 1 0 0 0 1
9 0 0 1 1 0 0 19 1 0 0 0 0 0
10 0 0 0 1 1 0 20 0 0 0 0 0 1

Note. A1 through A6 are the measured attributes.

model is obtained from the G-DINA by constraining the main and the interaction

effects to be equal with alternating sign that allows only two probabilities; δj0 = g∗j

and δj0 + δjk = 1− s∗j .

4.5 Simulation Study

4.5.1 Design and Analysis

To investigate the impact of misspecified Q-matrix on attribute hierarchy selec-

tion, three misspecified Q-matrices and the true Q-matrix were used. The generating

Q-matrix is given in Table 4.1. Ideal response patterns based on the permissible latent

classes generated by this Q-matrix can be found in Appendices 4B and 4C. These

show that all permissible latent classes are identifiable. Table 4.2 shows the type of

misspecifications and the items they were applied to. Furthermore, three hypotheti-

cal hierarchical attribute structures, given in Figure 4.1, were considered as candidate

structures. Among the three, S1 (i.e., structure 1) is the most stringent structure, and

S3 is the most liberal one. Accordingly, S1 allows only seven latent classes whereas 10
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Table 4.2: Misspecified Items and the Types of Misspecifications

True q-vectors QM DINA QM DINO

Type Item α1 α2 α3 α4 α5 α6 α1 α2 α3 α4 α5 α6 α1 α2 α3 α4 α5 α6

OS 8 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0
10 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0

US 8 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
10 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0

OUS 8 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0
10 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1

Note. OS = Overspecified q-vector; US=Underspecified q-vector; OUS=Over- and underspecified q-
vector; QM DINO = misspecified q-vectors for DINO; QM DINA = misspecified q-vectors for DINA.

and 14 latent classes are permissible under S2 and S3, respectively. The permissible

latent classes corresponding to these hierarchical structures are given in Appendix

4A. The sets of latent classes associated with the three hierarchical structures hold

the following relationships:

LLL1 ⊂ LLL2 ⊂ LLL3,

where LLL indicates the set of permissible latent classes. By employing each of the

misspecified and true Q-matrices, one structure was selected among the four candi-

dates (i.e., S1, S2, S3, and SU) where SU stands for independent attribute structure.

The LRT, AIC, and BIC model selection criteria were taken into consideration in the

structure (i.e., structured-model) selection.

Moreover, to examine the impact of a hierarchical attribute structure on Q-

matrix validation, each of the misspecified Q-matrix and the true Q-matrix were

validated with datasets generated based on unstructured and hierarchical (i.e., S2

in Figure 4.1) attribute structures. Unstructured attribute condition was used to

improve the comparability of validation results under hierarchical and independent

attribute structures. Another reason to include unstructured attribute conditions in

the fact that not all three methods were evaluated simultaneously in one study.
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Figure 4.1: Three Hypothetical Hierarchies

Attribute generation followed a uniform distribution of the permissible latent

classes. All three recognized empirical Q-matrix validation methods summarized ear-

lier were employed in a validation procedure to assess their viability under hierarchical

attribute structures. To control the impact of item quality and sample sizes, three

levels of item qualities (i.e., higher, mixed, and lower) and two levels of sample size

(i.e., N = 1000 and N = 500) were considered. All factors that were taken into

account are summarized in Table 4.3. In all conditions, data were generated using

the same Q-matrix (see Table 4.1).

The test length and number of attributes were fixed to twenty and six, respec-

tively. Throughout the study, the two parsimonious CDMs, namely, the DINA and

DINO models, were considered. For the purpose of data generation, the lowest and

highest success probabilities (i.e., P (000) and P (111)) were generated from U(0.05, 0.20)

and U(0.80, 0.95) for the higher-quality (HQ) item conditions. In other words, slip
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Table 4.3: Factors to Be Considered in Study III

CDM Sample Item Q-matrix Candidate Selection Validation
size quality structure criterion method

DINA 500 HQ QT S1 LRT δ
DINO 1000 MQ QU S2 AIC ς2

LQ QO S3 BIC RSS
QO&U SU

Note. CDM = cognitive diagnosis model; DINA = deterministic input, noisy “and” gate model; DINO
= deterministic input, noisy “or” gate model; HQ = higher quality; MQ= mixed quality; LQ = lower
quality; S1, S2, and S3 = hypothetical hierarchies given in Figure 4.1; SU = unstructured hierarchy;
LRT = likelihood ratio test; AIC = Akaike informatin criterion; BIC = Bayesian information criterion;
QT = true Q-matrix; QO = overspecified Q-matrix; QU = underspecified Q-matrix; QO&U = over-
and underspecified Q-matrix; δ=delta method; ς2=general Q-matrix validation method; and RSS=Q-
matrix refinement method.

and guessing parameters were drawn from U(.05, 0.20) for HQ items. For the lower-

quality (LQ) items, the highest and lowest success probabilities were drawn from

U(0.15, 0.30) and U(0.70, 0.85), respectively, so that the slip and guessing parame-

ters were drawn from U(0.15, 0.30). The mixed-quality items had item parameters

drawn from U(0.05, 0.30). For each condition, 100 data sets were generated and an-

alyzed. Data generation and all analyses except statistical refinement of Q-matrix

were performed using the OxMetrics programming language (Doornik, 2011). Q-

matrix validation based on statistical refinement was carried out using the R-package

NPCD version 1.0-7 (Zheng & Chiu, 2014).

4.5.2 Results

Results of Hierarchy Selection

Correct structure selection rates based on LRT, AIC, and BIC selection cri-

teria are reported in Table 4.4 in terms of null hypothesis rejection rates for various

conditions where either correctly specified Q-matrix or one of the misspecified Q-

matrices is employed. The results when the DINA model was fitted are presented in

the upper panel, whereas the corresponding results for the DINO are given in the
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lower panel of the table. For each of the misspecified Q-matrices, items 8 and 10

were manipulated so that 10% of the q-vectors in the Q-matrix were misspecified.

Scrolling across the rows of the table presents the results based on smaller and larger

sample sizes. Within them, LRT, AIC, and BIC results are given from left to right,

respectively. Scrolling down the columns shows results observed under three levels

of item qualities. Because generating hierarchy was S2, a correct structure selection

is observed when the model selection methods reject S1 in favor of S2 and retain S2

when it is compared with S3 and S4. For example, under the DINA model, higher

item quality, and 1000 examinees case, the null hypothesis of more parsimonious

model fits the data as well was always rejected when S1 and S2 compared when true

Q-matrix was used. Similarly, the null hypotheses were always retained when the

structured model based on S2 was compared against structured models of S3 and S4.

One of the apparent differences was observed between the DINA and DINO

model results. In the DINA case, all three model selection methods selected the true

structure at least 96% of the time regardless of the sample size and the Q-matrix

type. However, impact of sample size and Q-matrix type, as well as model selection

method, was substantial in the DINO model. This difference might be due to the

generating Q-matrix, which may be more informative for the DINA model. Because

the impact of studied factors are clearer in the DINO conditions, only the DINO

results will be examined in detail.

Proportion of time the true hierarchy (i.e., S2) was selected when it was com-

pared against S1, S3, and S4 are presented as bar-graphs in Figure 4.2. The upper

panel of the figures shows the results based on higher item quality conditions, whereas

the lower part consists of the results of lower item quality conditions. Results based

on LRT, AIC, and BIC are given from left to right in both panels. First of all, impact

of sample size was much stronger under lower item quality conditions. With larger

sample size, all three model selection methods tended to select more strict hierarchy
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(i.e, S1). One expected result was that all three model selection methods selected

the true hierarchy more often when the difference between the hierarchies, in terms

of latent class discrepancy, increased. In other words, LRT, AIC and BIC selected

the models based on S2 more often when it was compared against S4 than it was

compared against S3.

It is interesting to note that overspecified Q-matrix resulted in just a slight

decrease in correct hierarchy selection compared to the true Q-matrix. Yet, when an

underspecified Q-matrix was used, the correct hierarchical structure selection sub-

stantially decreased across all conditions. The decrease was in the range of .10 to

.25 in higher item quality conditions, whereas it varied from .20 to .80 under lower

item quality conditions. For example, under lower item quality and 1000 examinees,

LRT, AIC, and BIC have selected the true hierarchy among the all four candidates

about 98 %, 97%, and 92% with a true Q-matrix, respectively. These percentages

dropped down to 66%, 75%, and 12%, respectively, with employment of underspeci-

fied Q-matrix. Moreover, impact of over- and underspecified Q-matrix varied within

.05 to .15 under higher item quality conditions and within .07 to .45 for lower item

quality cases.

Although AIC was superior to LRT, correct attribute structure selection rates

of the both model selection methods were comparable. In general, correct hierarchy

selection rates of BIC were relatively lower. Nevertheless, BIC tended to select more

parsimonious model more often than LRT and AIC. For instance, when over- and

underspecified Q-matrix was used, under larger sample size and mixed item quality

condition, comparison of S1 and S2 resulted in selection of S2 in 95%, 96%, and 75%

based on LRT, AIC, and BIC, respectively. However, these percentages were 80%,

75%, and 96%, respectively, when S2 was compared against S3.
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Results of Q-matrix Validation

The Q-matrix validation results based on the DINA model are presented in

a 2 × 2 contingency tables in Table 4.5. The contingency tables report the true-

positive, true-negative, false-positive, and false-negative rates. False-negative and

false-positive rates are analogous to Type-I and Type-II error rates. The true-negative

rate shows the proportion of corrected misspecified elements or vectors in the Q-

matrix. Further, true-positives indicate the proportion of the correctly specified vec-

tors, which were retained. True-negative and true-positive rates are also referred to

as sensitivity and specificity, respectively (de la Torre & Chiu, 2016).

Although not presented here, the results obtained under the DINO model were

similar to the ones obtained under the DINA model. Also, smaller sample size (i.e.,

N = 500) caused substantial reduction in true-negative rates (i.e., sensitivity) of

the validation methods. This reduction was the smallest for the delta method and

the largest for the general Q-matrix validation method. Because impact of attribute

structure can clearly be seen from the DINA results with 1000 examinees given in

Table 4.5, only these results will be discussed in this section. Sensitivity and specificity

of the validation methods for hierarchical attribute structure conditions are given on

the left hand side of the table, whereas, corresponding rates when attributes are

independent are presented at the right hand side.

It should be noted here that these results are at the attribute-vector level.

When a suggested q-vector is in between the explicit and implicit counterparts of

the generating q-vector, item was counted toward true-positive. For example, for

explicit generating q-vector of 001000 under the DINA model, suggested q-vectors of

011000, 101000, and 111000 are counted toward true-positive (i.e., validation method

retained the q-vector 001000) as the first two attributes are prerequisites for the third

attribute. In other words, in order to retain a q-vector in the provisional Q-matrix,

the most complex independent attributes in the DINA model must be specified by
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the suggested q-vector. Similarly, a q-vector is retained as long as the most basic in-

dependent attribute(s) is/are specified by the suggested q-vector in the DINO model.

Comparison of results of the delta method under the hierarchical and unstruc-

tured attribute conditions showed that there was 5% to 10% reduction in the meth-

ods sensitivity. Observed reductions in over- and underspecified Q-matrix conditions

were relatively smaller than the ones observed when all misspecifications were the

same type (i.e., either underspecified or overspecified). In other respects, the ob-

served specificity of the delta method was at least .95 under both hierarchical and

unstructured attribute conditions. Table 4.5 also displays up to 8% reduction in the

sensitivity of the Q-matrix refinement method when attributes follow the hierarchy.

For this validation method, specificity was well over 90% and the gap between the

hierarchical and unstructured attribute conditions were about 2%.

In the general method of Q-matrix validation, when only overspecifications

occurred, sensitivity of the method slightly reduced. This reduction was augmented

by lower item quality (e.g., reduction up to 5%). When underspecified Q-matrix and

over- and underspecified Q-matrix were validated, the gap between the sensitivity

results of the unstructured and hierarchical attribute structures were much larger.

When underspecified Q-matrix was validated, observed sensitivity of the unstructured

attribute conditions were .79, .74, and .68 for the higher, mixed, and lower item

qualities, respectively. These sensitivity rates were .55, .42, and .31, respectively,

under the hierarchical attributes. As can be seen the reduction in the sensitivity

was augmented by the decrease in the item quality. Similar results were present for

validation of over- and underspecified Q-matrix.

When specificity was considered, reduction was observed only when over- and

underspecified Q-matrix was validated. Specifically, .09, .12, and .15 in the specificity

rates of general Q-matrix validation method were observed under higher, mixed, and
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Figure 4.3: Proportion of Sensitivity and Specificity

lower item qualities, respectively. In all other conditions, specificity rates of the hier-

archical and unstructured attributes did not differ much, where observed specificity

rates were about and over .95.

The sensitivity and specificity of the three validation methods were compared

in Figure 4.3. The figure consists of three sets of graphs created for three different

validation methods. Each of the graphs has six lines indicating the sensitivity and

specificity rates of validation method under the higher, mixed, and lower item quality

conditions. Based on these graphs we can conclude that impact of item quality was
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only substantial for the general Q-matrix validation method, where the reduction in

the sensitivity increased with the lower item quality. In all other conditions the lines

based on hierarchical and unstructured attributes appears to be parallel. The graphs

also show that specificity rates of the validation methods under the two attribute

structures were generally high, and not too different.

As depicted in the figure, the sensitivity rates of the validation methods were

not similar under two different attribute structures. For the delta method and statis-

tical refinement, hierarchical attribute structure resulted up to 10% reduction in the

sensitivity rates. The gap between the hierarchical and unstructured attributes was

even larger for the general Q-matrix validation method. However, the sensitivity of

the method when over-specified Q-matrix was used was high in both attribute struc-

tures – up to 37% and 44% reductions were observed under hierarchical attribute

conditions when under-specified and over- and under-specified Q-matrices were em-

ployed.

4.6 Conclusion and Discussion

This study was conducted to report on; (1) the impact of Q-matrix misspecifi-

cation on attribute hierarchy selection and (2) the performance of recently proposed

and well accepted Q-matrix validation methods under the hierarchical attribute struc-

tures. Two simulation studies were conducted to accomplish these purposes, and the

simulation results presented in the previous section. Results of the first simulation

study showed that underspecified Q-matrix substantially decreased the correct at-

tribute hierarchy selection rates under the DINO model. Although all three misspec-

ified Q-matrix types downgraded the correct hierarchy selection, negative impact of

overspecified Q-matrix was minimum. It was also noted that BIC’s performance was

relatively poor in comparison to LRT and AIC.
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In the light of the results of the second simulation study, it can be concluded

that performance of the Q-matrix validation methods were relatively poor when at-

tribute are hierarchically structured. Although the specificity of the methods did not

change much, their sensitivities, especially of the general Q-matrix validation method,

substantially reduced. Change in the methods’ sensitivity also varied across the types

of Q-matrix misspecifications. Reduction in the sensitivity caused by the hierarchical

attribute structure was minimum when the Q-matrix was over-specified.

Given the fact that Q-matrix correction performance of all three Q-matrix val-

idation methods are fully or partially affected under hierarchical attribute structure,

modifications to these methods to improve their performance under hierarchies might

be a potential future direction for Q-matrix validation research. It would be interest-

ing to see whether their performance increases when the search algorithms described

in de la Torre (2008) and de la Torre & Chiu (2016) are modified so that only the

latent classes allowed by the hierarchical structures are used in the model estimation.

Moreover, the implementation of the Q-matrix refinement method can also be car-

ried out with a modification in the algorithm described in Chiu (2013). Modification

can be applied to Step 1 in the algorithm so that the nonparametric classification

method (Chiu & Douglas, 2013) estimates examinees’ class memberships using the

ideal response patterns corresponding only to the permissible latent classes.
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4.8 Appendices

Appendix 4A: Permissible Latent Classes for Three Hypothetical Structures

Attributes Structures Attributes Structures

LC A1 A2 A3 A4 A5 A6 S1 S2 S3 LC A1 A2 A3 A4 A5 A6 S1 S2 S3

α1 0 0 0 0 0 0 3 3 3 α33 1 0 0 0 0 0 3 3 3
α2 0 0 0 0 0 1 α34 1 0 0 0 0 1
α3 0 0 0 0 1 0 α35 1 0 0 0 1 0
α4 0 0 0 0 1 1 α36 1 0 0 0 1 1
α5 0 0 0 1 0 0 α37 1 0 0 1 0 0
α6 0 0 0 1 0 1 α38 1 0 0 1 0 1
α7 0 0 0 1 1 0 α39 1 0 0 1 1 0
α8 0 0 0 1 1 1 α40 1 0 0 1 1 1
α9 0 0 1 0 0 0 α41 1 0 1 0 0 0
α10 0 0 1 0 0 1 α42 1 0 1 0 0 1
α11 0 0 1 0 1 0 α43 1 0 1 0 1 0
α12 0 0 1 0 1 1 α44 1 0 1 0 1 1
α13 0 0 1 1 0 0 α45 1 0 1 1 0 0
α14 0 0 1 1 0 1 α46 1 0 1 1 0 1
α15 0 0 1 1 1 0 α47 1 0 1 1 1 0
α16 0 0 1 1 1 1 α48 1 0 1 1 1 1
α17 0 1 0 0 0 0 α49 1 1 0 0 0 0 3 3 3
α18 0 1 0 0 0 1 α50 1 1 0 0 0 1
α19 0 1 0 0 1 0 α51 1 1 0 0 1 0 3
α20 0 1 0 0 1 1 α52 1 1 0 0 1 1 3
α21 0 1 0 1 0 0 α53 1 1 0 1 0 0 3 3
α22 0 1 0 1 0 1 α54 1 1 0 1 0 1
α23 0 1 0 1 1 0 α55 1 1 0 1 1 0 3
α24 0 1 0 1 1 1 α56 1 1 0 1 1 1 3
α25 0 1 1 0 0 0 α57 1 1 1 0 0 0 3 3 3
α26 0 1 1 0 0 1 α58 1 1 1 0 0 1
α27 0 1 1 0 1 0 α59 1 1 1 0 1 0 3 3
α28 0 1 1 0 1 1 α60 1 1 1 0 1 1 3 3
α29 0 1 1 1 0 0 α61 1 1 1 1 0 0 3 3 3
α30 0 1 1 1 0 1 α62 1 1 1 1 0 1
α31 0 1 1 1 1 0 α63 1 1 1 1 1 0 3 3 3
α32 0 1 1 1 1 1 α64 1 1 1 1 1 1 3 3 3

Note. S1, S2, and S3 are three distinct structures; LC represents the possible latent classes; 3
shows the permissible latent classes; A1 through A6 indicate the six attributes.
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Appendix 4B: Ideal Response Patterns: DINA

Latent classes Ideal response patterns

Structure α1 α2 α3 α4 α5 α6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Linear 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Convergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Divergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1
1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1
1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1
1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note. DINA = deterministic input, noisy “and” gate model; and α1 through α6 are the attributes.
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Appendix 4C: Ideal Response Patterns: DINO

Latent classes Ideal response patterns

Structure α1 α2 α3 α4 α5 α6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Linear 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Convergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Divergent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0
1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0
1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0
1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note. DINO = deterministic input, noisy “or” gate model; and α1 through α6 are the attributes.
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Chapter 5

Summary

Cognitive model of task performance (Leighton & Gierl, 2007) based assss-

ments aim to identify the attribute mastery status of examinees. These assessments

are, in general, called cognitively diagnostic assessment (CDA; de la Torre & Minchen,

2014). CDAs are developed purposefully to serve as formative assessments that may

lead to modifications in teaching and learning activities (DiBello & Stout, 2007). Re-

cent political changes intensified the need for formative assessments and led to an

increase in the popularity of CDAs. As an offshoot, statistical models to extract

diagnostic information from CDAs were proposed. These models are referred to as

cognitive diagnosis models (CDMs) or diagnostic classification models (DCMs) (de la

Torre & Minchen, 2014).

Attributes assembled into CDA may have hierarchical structure such that mas-

tery of some attributes require mastery of more basic attributes (de la Torre, Hong,

& Deng, 2010; Leighton, Gierl, & Hunka, 2004; Templin & Bradshaw, 2014). When

this is the case, hierarchical structure needs to be taken into account; otherwise, cal-

ibration results of the conventional CDMs may be biased or less accurate, which in

turn may result in less accurate attribute mastery profiles. As such they may not be

appropriate and useful (Templin & Bradshaw, 2014).

With a general aim to address importance of consideration of hierarchical at-

tribute structure in cognitive diagnosis modeling framework, this dissertation studied

estimation approaches that can be employed under hierarchical attribute structures.

These estimation approaches are obtained by using structured (i.e., constrained) and
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unstructured (i.e., unconstrained) versions of a Q-matrix and prior distribution. To

determine the impact of structured Q-matrix and prior distribution on item parameter

estimation and examinee classification, a simulation study was carried out in the first

study. The results showed that more accurate and precise item parameter estimates

were obtained when either the Q-matrix or prior distribution was structured.

Furthermore, performance of estimation approaches on examinee classification

were also investigated in the first study. Although structured Q-matrix resulted in

higher attribute and vector-level attribute estimation in the DINO case, it yielded

lower attribute and vector level attribute estimation under the DINA model. Results

also indicated that both the structured and unstructured versions of the Q-matrix

yielded identical item parameter estimation and examinee classification when prior

distribution was structured. The highest attribute and vector-level correct classifica-

tion rates were obtained with structured prior distributions where only latent classes

allowed by the hierarchy were involved in estimation.

In the first study, prior distribution and Q-matrix were structured based on

known hierarchies. However, hierarchical structure of attributes may not be known

in real world applications although it needs to be correctly specified; otherwise, an

incorrect hierarchy may substantially degrade estimation accuracy. Deriving a hierar-

chy based on expert opinions and verbal data analyses are the current practices (Cui

& Leighton, 2009; Gierl, Zheng, & Cui, 2008). However, both approaches are sub-

jective so that they may result in multiple attribute hierarchies. The second study

of this dissertation addressed this subjectivity by proposing a model-fit based em-

pirical exhaustive search algorithm to identify hierarchical relationships among the

attributes. The viability of the model selection methods for hierarchy selection was

also examined in the second study.

Results of the second study showed that the LRT based exhaustive search

successfully generates an R-matrix that specifies all prerequisite relationships when
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more complex attributes have only one direct prerequisite attribute (e.g., in linear

or divergent hierarchies). However, when a more complex attribute is mastered as

long as one of its multiple prerequisites is mastered (e.g., convergent hierarchy), the

search algorithm yields in an R-matrix that allows some additional latent classes in

the estimation procedure. In other words, search algorithm produces a more liberal

hierarchy than the true one. Even in such cases, exhaustive search eliminates many

of the non-existing latent classes. It should be noted that likelihood-based exhaustive

search algorithm is a tool that can be used along with conventional hierarchy identifi-

cation methods. This study further showed that model selection based on LRT, AIC,

and BIC are potentially viable in the selection of the correct attribute hierarchy when

several alternative are available. Performance of LRT and AIC is sufficiently high;

in contrast, BIC works better in search algorithm, but it does poorly in hierarchy

selection.

CDM implementation requires construction of a Q-matrix that embodies the

cognitive specifications in test construction (Leighton et al., 2004). Q-matrix needs

to be correctly specified to obtain maximum information from a CDM estimation

(de la Torre, 2008). Construction of a Q-matrix heavily depends on content expert

opinions and this subjective process may result in misspecifications in the Q-matrix.

Empirical Q-matrix validation methods developed for Q-matrix correction have been

tested in variety of conditions using either simulated or real data sets. The third study

of this dissertation was carried out to report viability of validation methods under

hierarchical attribute structures. Based on the simulation results, it was observed that

performance of all examined Q-matrix validation methods was more or less lower

under hierarchical attribute structures. The sensitivity of the validation methods,

especially of the general Q-matrix validation method, significantly decreased. The

sensitivities were least affected when the Q-matrix was overspecified. In comparison,

there was not much difference in validation methods’ specificity across the conditions
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involving hierarchical and nonhierarchical attribute structures.

The second purpose of the third study was to report on the impact of Q-

matrix misspecification on attribute hierarchy selection. A simulation study was

conducted to accomplish this purpose. Results showed that although all types of Q-

matrix misspecifications decreased the correct hierarchy selection rates, the observed

drop was minimum when Q-matrix overspecified; whereas the maximum decrease was

observed with underspecified Q-matrix.

Considering the three studies as a whole, this dissertation showed the impor-

tance of taking attribute hierarchy into account in CDM implementations. The first

study demonstrated the extent to which a structured Q-matrix or prior distribution

was useful in hierarchical attribute cases; the second study showed that model-fit

based exhaustive search can be a useful tool in attribute hierarchy identification pro-

cedures; and the third study demonstrated that, when it is not taken into account,

hierarchical attribute structure not only harms item parameter estimation and exam-

inee classification, but also endangers Q-matrix validation practices.

Modifications to the Q-matrix validation methods to improve their perfor-

mances under hierarchies might be a direction for future Q-matrix validation studies.

For instance, search algorithms described in de la Torre (2008) and de la Torre &

Chiu (2016) can be modified so that only permissible latent classes defined by the

hierarchy are used in the model estimation procedure. Similarly, Q-matrix refinement

method can also be modified such that the nonparametric classification method (Chiu

& Douglas, 2013) estimates class-memberships based on ideal response patterns of the

permissible latent classes. Another future research direction is to extend these studies

to more general CDMs.
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