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ABSTRACT OF THE THESIS 

 

Reduced-Order Kalman Filter for a Class of Continuous- Time System with Slow and Fast 
Modes 

 

By SAIF ALMANSOURI 

 

Thesis Director: 

Professor Zoran Gajic 

 

 

In this thesis, complete decomposition of the Kalman filter into the reduced-order 

Kalman filter with slow and fast modes is addressed. First, we investigate the 

decomposition so that the slow and fast filters are completely separated with both of 

filters driven by the system measurements. The simulation results are presented for 

such a decomposition using an aircraft example. In the second part, this thesis presents 

the design of reduced order Kalman filters for systems with both slow and fast modes 

for the case of perfect measurement. The main advantage of the reduced order 

approach is moderating and reducing mathematical difficulties to obtain the optimal 

state estimation. This will facilitate the use of Kalman filter for a class of real-time 

physical systems. In this thesis, we explain the effectiveness of the proposed design 

through theoretical studies and simulation results. 
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Chapter 1 

Introduction 

 

1.1  Continuous - Time Kalman Filter Technique 

The Kalman filter is represented by mathematical equations that have been applied and 

utilized to reduce the mean and variance of the estimation error for linear dynamic 

stochastic systems. 

The standard Kalman filter is considered and treated as an optimal estimator for linear 

systems with Gaussian noise disturbing the system and its measurements. It is nonlinear 

suboptimal equivalent, the Extended Kalman filter (EKF) is the nonlinear version of the 

Kalman filter [3]. 

In this chapter, we present how the Kalman filter works and how it can be used under 

the Gaussian white noise assumptions. In addition, we present its dual counterpart, the 

linear-quadratic regulator (LQR), and consider both the Kalman filter and LQR for 

singularly perturbed linear systems. 

We consider the Kalman filter equation using the state-space model [1], [2]   

      (1.1) 

        (1.2) 

where:  
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x(t): is the state vector representing the variables of interest for the system (e.g., 

velocity, position) in time t. 

u(t): is the vector having the control inputs (braking force, throttle setting, steering 

angle)  

F(t): is the system state matrix. 

B(t): is the control input matrix.  

w(t): is the vector representing the system noise process. 

z(t): is the vector of measurements. 

H(t): is the transformation matrix that maps the parameters of the state vector into the 

measurements. 

v(t): is the vector having the measurement noise terms for every observation in the 

measurement vector.  

{v(t)}, {w(t)} are white Gaussian independent random processes that are both assumed 

to be zero-mean with covariances Q(t) and R(t) consequently. 

The white Gaussian noise statistics is given by   

v(t) ∼ (0,R) and w(t) ∼ (0,Q) 

The statistic for state initial conditions is  

          (1.3) 
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 and x(0), v(t) and w(t) are assumed to be uncorrelated. 

The Kalman filter includes two differential equations, [5] the first one for the state 

estimate and the second one for the covariance of the estimation error defined by: 

 

   (1.4) 

 

  (1.5) 

 

The Kalman gain K (t) is given by 

       (1.6) 

It can be seen form (1.6) that the measurement white noise intensity matrix R (t) must 

be nonsingular for every t. 

The Kalman filter innovation process is defined by [4]: 

       (1.7) 
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1.2 Continuous Time Linear-Quadratic Regulator Controller 

A dual counterpart to the Kalman filter is the linear quadratic regulator (LQR). In 

Chapter 2, we will use duality to find the Kalman filter gain K using the results for the 

corresponding linear-quadratic regulator (LQR) design [17]. 

Consider the system 

       (1.8) 

We look for control u(t) that minimizes the performance measure 

            (1.9) 

where  

          (1.10) 

 

are weighted matrices. If feedback control u(t) exists, it will have the form 

         (1.11) 

where K is a feedback gain matrix.  

Furthermore, the closed-loop system will be: 

        (1.12) 

The following assumption is imposed, [7]. 

Assumption 1: 

The pair (A;C) detectable and the pair (A;B) stabilizable.  
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Under such assumption, there exists a unique positive semi definitive stabilizing solution 

to the algebraic Riccati equation, [7] defined by 

      (1.13) 

The optimal feedback gain is given by [6] :  

         (1.14) 

 The closed loop system (1.12) is asymptotically stable [7]-[8].  

 

1.3 Decoupling Transformation for Singularly Perturbed Linear Systems 

Consider a singularly perturbed linear system without control input [9] 

   (1.15) 

where x(t) are n1 dimensional slow state variables ; z(t) are n2 dimensional fast state 

variables and ϵ is a small positive parameter. 

To analyze (1.15), the common method is to use the Chang transformation to convert 

the equation into a block-diagonal form where the slow and fast parts of (1.15) are 

entirely decoupled [20]. The Chang transformation is given by 

  (1.16) 
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and its inverse transformation is  

  (1.17) 

where H and L matrices satisfy algebraic equations 

     (1.18) 

and 

    (1.19) 

Matrices H and L can be solved using several methods. For example, the Newton 

method is given in [22]. The decoupled form of the system is given by: 

    (1.20) 

 

Now we present a brief summary of the classical method for feedback control of 

continuous time singularly perturbed linear systems [12]. Consider the controlled 

system 

   (1.21) 

where . 
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The system can decomposed into two sub-systems: 

 n1 - dimensional slow subsystem and n2 - dimensional fast subsystem, by setting ϵ = 0 

in (1.21). The slow approximate subsystem is 

     (1.22) 

      (1.23) 

where 

    (1.24) 

the vectors xs (t), us (t) and zs (t), reference to the slow subsystem parts of the 

variables x(t), u(t) and z(t).  

The fast approximate subsystem is 

   (1.25) 

where                                                and                                               denote the fast sub-

system part of the variables z(t) and u(t). A combined control law contains slow and fast 

parts  

        (1.26) 

it is known as composite control. 
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Chapter 2 

Kalman Filter for Linear Singularly Perturbed Stochastic Systems 

 

2.1 Introduction 

  In this chapter, we first present a technique which allows full decomposition of the 

optimal Kalman filter for a linear singularly perturbed system into pure-slow and pure-

fast optimal filters both driven by the system measurement. The method depends on 

the decomposition of the singularly perturbed system global algebraic Riccati equation 

in to pure-slow and pure-fast local algebraic Riccati equations. In the second part, we 

perform simulation of the pure slow and pure-fast Kalman filters using MATLAB, for an 

aircraft example [10]. 

2.2 Filtering for Singularly Perturbed Linear Systems  

Filtering for singularly perturbed continuous-time linear systems has been well 

considered in control theory [11]-[16]. In [11]-[13] the suboptimal slow and fast Kalman 

filters were built to generate an O(ϵ) accuracy of the approximate estimate for the state 

trajectories, where ϵ is a small singular perturbation positive parameter that shows the 

separation between the slow and fast state variables. In [14], [15] the local slow and fast 

Kalman filters were obtained with accuracy, that is O(𝜖P

 k
P), where k represents either the 

number of terms of the Taylor series expansions [14] or the number of the fixed-point 

iterations [15] utilized to calculate the coefficients of the reduce order filters. It is 

necessary to indicate that the slow and fast (local) Kalman filters in [14], [15] are driven 



9 
 

by the innovation process so that the extra communication channels are needed to form 

the innovation process.  

In the presented results, the Kalman filters will be driven by the system measurements. 

Furthermore, the optimal Kalman filter gains will be completely determined in terms of 

the exact pure-slow and exact pure-fast reduced-order algebraic Riccati equations [10]. 

 

2.3 Linear Continuous-Time Invariant Singularly Perturbed Stochastic Systems 

Consider the linear continuous-time invariant singularly perturbed stochastic control 

systems: 

     (2.1) 

     (2.2) 

with the corresponding measurements 

      (2.3) 

where                           and                           are  state  vectors.                              and 

                      are zero-mean, white Gaussian noise stochastic processes with intensities 

WR1R > 0, WR2R > 0 and are filter measurements.   

In the following ARiR, GRjR, CRjR, i   = 1, 2, 3, 4,   j = 1, 2, are constant matrices of appropriate 

dimensions.   
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We assume that the filter under consideration has the standard singularly perturbed 

form [21] so that it satisfies the following assumption: matrix A4 is nonsingular. 

The standard Kalman filter, corresponding to (2.1)-(2.3), driven by the innovation 

process is given by 

      (2.4) 

      (2.5)       

where the optimal Kalman filter gains K1 and K2 are given by [14] 

       (2.6) 

       (2.7)      

with matrix P and sub-matrices P1, P2, and P3 representing the positive semidefinite 

stabilizing solution of the Kalman filter algebraic Riccati equation 

      (2.8) 

where 

         (2.9) 

          (2.10) 
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         (2.11) 

         (2.12)  

For the decomposition and approximation of the singularly perturbed Kalman filter the 

Chang transformation [20] has been used in [14]-[16] 

         (2.13)  

which lead to  

      (2.14)  

        (2.15)  

In the following we will use duality with the linear-quadratic optimal control problem to 

design the slow and fast reduced-order independent Kalman filters driven by the system 

measurement. 

2.4 Linear Quadratic Optimal Control Problem for Singularly Perturbed Systems 

 Consider the linear-quadratic optimal control problem of (2.1), that is 

       (2.16) 

     (2.17) 
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         (2.18) 

where the control vector u(t) ∈ Rm should be chosen such that the performance 

criterion, J is minimized. The very will-known solution to this problem is given by 

     (2.19) 

where Pr, is the positive semidefinite solution of the regulator algebraic Riccati equation 

       (2.20)                            

with 

         (2.21) 

         (2.22) 

          (2.23) 

        (2.24) 

The algebraic Riccati equation of singularly perturbed control systems is completely and 

perfectly decomposed into two reduced-order algebraic Riccati equations corresponding 

to the slow and fast time scales in [19].  



13 
 

The pure-slow and pure-fast algebraic Riccati equations obtained in [19] are not 

symmetric equations. The Newton technique is very efficient for solving the non-

symmetric algebraic Riccati equations. A lot of real physical systems are singularly 

perturbed, for example: aircraft, robots, nuclear reactors, electrical machines, tunnel 

diode circuits, power electrical circuits, control system of a pendulum, chemical 

reactors, DC and induction motors, synchronous machines, and automobiles. 

The slow subsystem variables are represented by the eigenvalues that are near to the 

imaginary axis, on the other hand the fast system variables are represented by the 

eigenvalues that are far away from the imaginary axis [24]. 

Consider now the optimal closed-loop Kalman filter (2.4) driven by the measurements 

that is 

  (2.25) 

   (2.26) 

with the optimal filter gains K1 and K2 calculated from (2.6)-(2.7). By duality between 

the regulator and optimal filter, the filter Riccati equation [9] can be solved by using the 

same decomposition method for solving (2.20) with 
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        (2.27) 

By invoking results from [19], and using duality, the following matrices have to be 

formed (see also [10]) 

 

 

 

       (2.28) 

 

Since matrices T1, T2, T3, T4 correspond to the system matrices of a singularly 

perturbed system, then the slow-fast decomposition is achieved and completed by using 

the Chang decoupling method whose algebraic equations are given by [20] 

       (2.29) 

      (2.30)                

We solve (2.30) by using Newton method [22]. The algebraic equations in (2.30) are 

weakly nonlinear equations and a linear Lyapunov type equation. They play the crucial 

role in a method proposed for the solution.  

The existing methods for solving (2.30) are recursive type algorithms with a rate of 

convergence O(𝜖) so that the accuracy of O(𝜖P

2k) can be achieved after k iterations [15]. 
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In this section the method for solving (2.30) with a quadratic rate of convergence, that is 

O(𝜖P

2), will be presented. This method is based on the Newton type recursive scheme. It 

is a very well-known fact that the Newton method converges quadratically in the 

neighborhood of the sought solution and that its main problem is in the choice of the 

initial guess. The initial guess is easily obtained with the accuracy of O(𝜖), by setting 𝜖 = 

0 in (2.30), that is 

           (2.31) 

Thus, the Newton sequence will be O(𝜖P

2) ,O(𝜖P

4) ,O(𝜖P

6) ,O(𝜖P

8) ,…….,O(𝜖P

2k) close to the 

exact solution, respectively, in each iteration. 

The Newton type algorithm can be constructed by setting: 

         (2.32) 

This will produce a Lyapunov type equation of the form: 

       (2.33) 

with the initial condition given by  

        (2.34) 

where 

        (2.35) 

        (2.36) 

      (2.37) 

This implies 
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         (2.38) 

By using the permutation matrices dual to those from [15], (note E1) is different than 

the corresponding one from [19]. 

       (2.39) 

       (2.40) 

we can define  

         (2.41) 

 

       (2.42) 

 

Then, the desired transformation will be given by 

          (2.43) 

The transformation TR2R is applied to the filter variables as: 

            (2.44)        
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such that the complete closed-loop decomposition is achieved, that is: 

      (2.45) 

       (2.46) 

The matrices in (2.22) are given by: 

        (2.47) 

        (2.48) 

         (2.49) 

      (2.50) 

      (2.51)      

In addition, it can be shown that O(𝜖) perturbation of the first-order approximate slow 

algebraic Riccati equation obtained in [23] is symmetric, that is 

      (2.52) 

Having obtained a good initial guess, the Newton-type algorithm can be used very 

efficiently for solving, the pure slow and pure fast nonsymmetric algebraic Riccati 

equations [19]. 

The pure-slow equation can be solved by using the Newton-algorithm with an initial 

guess obtained from [19] 

  (2.53) 
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The pure-fast equation will be 

  (2.54) 

with 

 

We can now define the corresponding approximate (in the spirit of the theory of 

singular perturbations, [13]-[16]) pure-slow and pure-fast decoupled filters as 

 

      (2.55) 

      (2.56) 

 

       (2.57) 

       (2.58) 

         (2.59) 

         (2.60) 

          (2.61) 

 

             (2.62) 
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2.5 Slow - Fast for Kalman Filter Decoupling Result 

The proposed decomposition is such that the slow and fast filters are completely 

separated and both of filters are driven by the system measurement, see Figure 2.1.  

 

Figure 2.1: Filtering method from [19] 

 

2.6 Aircraft Example  

To demonstration this method we consider the example F-8 aircraft, the same example 

as the one that done in [13] - [15]. The matrices of the problem are given in the paper 

[10] 
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with  

   

The slow and fast reduced-order Kalman filters driven by the system measurements are 

given by: 
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2.6.1 Simulation Results 

The simulation result are obtained using the block diagram built in Simulink/ MATLAB 

 

 

 

Figure 2.2 - Aircraft position (true and estimated pure slow) 

 

The simulation result in Figure 2.2 shows the true and estimated aircraft position 

response using pure slow reduced-order Kalman filter. We can see from Figure 2.2 that 

estimated results are very closely following the actual results. 

 

 



22 
 

 

 

Figure 2.3 -Aircraft position pure slow without noise (deterministic system), aircraft 

position pure slow with noise 

 

We can see from Figure 2.3 that the noise is really small for the pure slow reduced-order 

Kalman filter. 
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Figure 2.4 - Aircraft position (true and estimated pure fast) 

 

The simulation result in Figure 2.4 shows the true and estimated aircraft position 

response using pure fast reduced-order Kalman filter.  
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Figure 2.5 -Aircraft position pure fast without noise (deterministic system), aircraft 

position pure fast with noise) 

 

We can see from Figure 2.5 that the noise is small for the pure fast reduced-order 

Kalman filter. 
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Figure 2.6 - Position error pure slow 

 

We can see from Figure 2.6 that the position estimation error is really small for pure 

slow reduced-order Kalman filter and it is value between 0.015 and - 0.015. 
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Figure 2.7 - Position error pure fast 
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Figure 2.8 - Velocity (true and estimated pure slow) 

 

Figure 2.8 shows the true and estimated velocity response using the pure slow reduced-

order Kalman filter. We can see from Figure 2.8 and Figure 2.10 later that the velocity 

result is very good and very close to actual results.  
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Figure 2.9 - Velocity (true and estimated pure fast) 
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Figure 2.10 - Velocity estimation error pure slow 

 

We can see from that the error value (noise) in pure slow reduced-order Kalman filter is 

really small and it is value between 0.005 and - 0.005. 
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Figure 2.11 - Velocity estimation error pure fast 

 

Figure 2.9 shows the true and estimated velocity response using pure fast reduced-

order Kalman filter. We can see from Figures 2.9 and 2.11 that result for velocity are 

very well and very close to true results with small noise. 

 

 

 

 

 



31 
 

2.7 Conclusion  

In this chapter we simulate the slow and fast reduced-order Kalman filter for singularly 

perturbed time-invariant systems developed in [10]. The simulation is done for an 

aircraft example. From the simulation results we can see that the aircraft position error 

in pure slow reduced-order Kalman filter is much smaller compared to the pure fast 

reduced-order Kalman filter. That is meaning the estimated result for aircraft position is 

very close to true results for pure slow reduced-order Kalman filter. 

The same with the velocity error the pure slow reduced-order Kalman filter is smaller 

than pure fast reduced-order Kalman filter. The pure slow reduced-order Kalman filters 

perform better (on average) than the pure fast reduced-order Kalman filter. 
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Chapter 3 

Reduced Order Kalman Filter for a Class of Systems with Slow and Fast 
Modes 

 

3.1 Introduction 

The Kalman filter is a dynamic system of the same order of the system whose state 

space variables are estimated. In some special cases the order of the continuous-time 

Kalman filter can be reduced [27]. The reduced-order Kalman filter has the obvious 

advantages over the full-order Kalman filter: 

a- Simplicity of implementation. 

b- Reduced processing. 

c- Increased accuracy. 

In this chapter we consider the continuous-time reduced-order Kalman filter of [27] for 

a special class linear system with slow and fast state variables (singularly perturbed 

systems). 

 

3.2 Reduced Order Kalman Filter for System with Slow – Fast State Variables 

The singular perturbation method has been used to study the reduced-order optimal 

Kalman filter by decoupling or breaking it down into two separate reduced-order filters 

operating in two different time scales. The particular mathematics for the reduced-

order Kalman filter utilized the results of Friedland [27]. 

Consider a linear continuous-time stochastic system disturbed by white noise  

       (3.1) 
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with perfect state measurements 

          (3.2) 

Assume that equation (3.1) has a singularly perturbed structure, that is 

 

       (3.3) 

 

        (3.4) 

where 

 are the state vectors.   

 are constant matrices. 

  is the control vector. 

  is the observation vector. 

w(t) is a zero mean white Gaussian noise with intensity (spectral density) W ≥ 0. 

𝜖  is a small positive singular perturbation parameter. 

We will use the results of [26]-[27] to derive the reduced-order Kalman filter for 

singularly perturbed linear systems. We consider two cases: (a) only slow state variables 

are perfectly measured, (b) only fast state variables are perfectly measured. 
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3.3 Main Results 

3.3.1 Case 1: Reduced Order Kalman Filter for Fast State Variables   

Assume that in (3.3) – (3.4) only the slow state variables are perfectly measured, that is: 

    (3.5) 

     (3.6)              

             (3.7) 

We will assume that the observation noise here is vacant, as is the basic presumption 

with the reduced-order Kalman filter [25]. It is also presumed that the state variables in 

the fast reduced-order Kalman filter have to be estimated. We assume that the first nR1R 

here are measured  

This will match dimensions to the partitioning of the state matrices and vectors. Hence, 

for this case we assume: 

        (3.8) 

where        is identity matrix of dimension nR1. 

is known at all times, the estimate of xR1R(t) is given by:  Since  

.          (3.9) 

We need to design the reduced-order Kalman filter to estimate xR2R(t). Information about 

xR2R(t) is carried in the derivation of y(t), that is  

    (3.10) 

The reduced-order Kalman filter for the fast state variables is given by: 

   (3.11)  
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with the corresponding measurements (3.10) that carry information about x2(t). 

The signal           is defined, by  

       (3.12) 

note that  

The general observation equation for xR2R

(t) in (3.11) can be converted into another form 

by eliminating           from (3.11), which leads to  

 

       (3.13) 

To eliminate the need for the derivative of y(t) , we will introduce a charge of variables 

as explained below. Bring the term to the left-hand side of (3.13), and 

arrange the right-hand side of (3.13) as follows 

 

   

              (3.14) 

           

where 

   (3.15) 

This leads to 

     

     (3.16) 

Note that   
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and the reduced-order Kalman filter for fast stat variables is given by 

 

        (3.17) 

Having obtained           from (3.16), we have from (3.15): 

       (3.18) 

When    , the approximate fast estimation can be obtained from (3.17) as  

       (3.19) 

in which case 

   

           (3.20) 

To find an expression for the estimation error we use the previous equation to form 

         (3.21) 

 

               

(3.22)                                     

which lead to 

   (3.23) 

or   

    (3.24) 
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Note that the mean value of e2(t) is zero at all times since the gain K2 to be obtain from 

the corresponding algebraic Riccati equation stabilizes the reduced-order Kalman filter 

derived in (3.17). 

The optimal gain matrix K2 of the reduced-order Kalman filter for the fast state 

variables can be obtained by using the result of [27]. The gain matrix  K2  is given by:  

       (3.25) 

where  

         (3.26) 

P matrix in (3.25) is the covariance of the error in estimating vector x2(t) and is given by 

the positive semi-definite stabilizing solution of the following algebraic Riccati equation: 

     (3.27) 

where 

       (3.28) 

      (3.29) 

This Reccati equation corresponds to the case when the state and measurement white 

noise processes are correlated which is expected since the system (3.5)-(3.6) and 

measurements (3.10) have the same noise. The estimation error covariance is given by:  

E2 = Var (e2)          (3.30) 

The variance of the estimation error satisfies the following algebraic Lyapunov equation 

obtained from (3.24) 
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       (3.31) 

 

It can be seen from this equation that                           where               stands for                           

with  being a bounded constant and   a real number. In the case when W=O(𝜖) then 

Var(e2(t)) =O(1). 

3.3.2 Case 2: Reduced Order Kalman Filter for Slow State Variables       

Consider the same singularly perturbed linear stochastic system as is section 3.3.1 

 

        

 

        (3.32) 

We will presume that the fast states variables are directly measured that is, C = [0 I] 

and the residual n – n2 have to be estimated using the reduce-order Kalman filter.  

Hence, we can write: 

         (3.33) 

The system and the measurement are now defined by  
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           (3.34) 

The fast variable estimate is given by: 

          (3.35) 

In the following we will construct the reduced-order filter for estimation of the slow 

state variables. We start with  

  (3.36)   

Note that the measurement defined in (3.36) carries information about x1(t). The 

corresponding reduced-order slow Kalman filter can be designed as follows  

            

                          (3.37) 

                                                  

with its measurement given by         

                                        (3.38)        

From equation (3.37) and (3.38) we have: 

 

    (3.39) 

Let 

         (3.40) 

then  

        (3.41) 
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so that 

  

     (3.42) 

and 

 

                             (3.43) 

This filter is also fast since it has        on the right hand side 

 

     (3.44) 

Let 

        (3.45) 

 

         (3.46) 

 

      (3.47) 
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                                                         (3.48) 

From the previous equation we have: 

     (3.49) 

then 

   (3.50) 

To find an expression for the estimation error we use the previous equation to form 

          (3.51) 

 

  

           (3.52) 

 

 

         

(3.53)                                     

which lead to 

   (3.54) 

or   
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   (3.55) 

 

The optimal gain matrix K1 of the reduced-order Kalman filter for the slow state 

variables can be obtained by using the result of [27]. 

The gain matrix  K1  is given by:  

       (3.56) 

where  

         (3.57) 

Note that the gain matrix  K1  exists under the assumption that the matrix V  is 

invertible. P matrix in (3.56) is the covariance of the error in estimating vector x1(t) and 

is given by the positive semi-definite stabilizing solution of the following algebraic 

Riccati equation: 

     (3.58) 

where 

       (3.59) 

      (3.60) 

This Reccati equation corresponds to the case when the state and measurement white 

noise processes are correlated. The estimation error covariance is given by:  

E1 = Var (e1)          (3.61) 
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The variance of the estimation error satisfies the following algebraic Lyapunov equation 

obtained from (3.55) 

 

    

             (3.62) 

 

3.4 Numerical Example 

3.4.1 Example 

In this section, we use a simple example to show the performance of the reduced 

Kalman order filters. Consider the system given by: 

 

            

We will set                 equal to zero and study the following equation  

          (3.63) 

for two cases: 

             (3.64) 

and 

             (3.65) 
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We assume, W = 0.1. 

 

3.4.2 Simulation Results 

The simulation result are obtained using Simulink/ MATLAB 

 

 

 

Figure 3.1: The reduced-order Kalman filter for fast state variable estimates 
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Figure 3.2: The of reduced-order Kalman filter for slow state variable estimates 
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3.5 Conclusion 

We have shown how to design the reduced order Kalman filters composed of slow and 

fast Kalman filters for the case of perfect respectively slow and fast measurements. The 

first subsystem is the reduced-order Kalman filter for slow state variables; the second 

subsystem is the reduced-order Kalman filter for fast state variables. Using these two 

will reduce calculations in real-time systems and it will decrease mathematical and 

computational requirements, which encourages using the reduced-order Kalman filter 

method. 
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Chapter 5 

Conclusion and Future Work 

 

5.1 Conclusion 

In the section, we summarize the contributions of the thesis. In the first part of the 

study, we demonstrate the process that depends on the pure-slow pure-fast 

decomposition method for finding a solution for the filter singularly perturbed algebraic 

Riccati equation. We use here the Chang transformation to convert the equation into a 

block-diagonal design where the slow and fast pieces of equation are entirely decoupled 

like compound control an approach. We perform simulation for such obtained pure-

slow and pure-fast Kalman filters. 

The next task of the thesis was to use the reduced-order method for slow and fast sub-

systems, and find the solution of the corresponding algebraic Riccati equation. This will 

facilitate the use of Kalman filter for real-time physical systems. 

Our results show improvement when compared to the other results available in the 

literature used for the same problem. All these methods provide a theoretical approach 

on how to design the reduced-order modeling Kalman filter for continuous- time system 

with slow and fast modes and perform corresponding simulation. 
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5.2 Future Work 

In the future work, we plan to use the results of this thesis to design an extended 

Kalman filter for singularly perturbed systems, and derive pure-slow pure-fast 

decomposition model and the corresponding reduced-order extended Kalman filter. We 

plan also to study the same problem for discrete-time systems. Based on the results 

obtained, this method can be applied to practical problems in mechanical systems 

industry, wireless communications, chemical, biology systems, and power systems, 

where reduced-order method need to be addressed.  
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