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ABSTRACT OF THE DISSERTATION

Two Problems on Cycles in Random Graphs

by Jacob D. Baron

Dissertation Director: Jeff Kahn

We prove three results.

First, an old conjecture of Zs. Tuza says that for any graph G, the ratio of the

minimum size, τ3(G), of a set of edges meeting all triangles to the maximum size,

ν3(G), of an edge-disjoint triangle packing is at most 2. Disproving a conjecture of R.

Yuster [40], we show that for any fixed, positive α there are arbitrarily large graphs G

of positive density satisfying τ3(G) > (1− o(1))|G|/2 and ν3(G) < (1 + α)|G|/4.

Second, write C(G) for the cycle space of a graph G, Cκ(G) for the subspace of C(G)

spanned by the copies of Cκ in G, Tκ for the class of graphs satisfying Cκ(G) = C(G),

and Qκ for the class of graphs each of whose edges lies in a Cκ. We prove that for every

odd κ ≥ 3 and G = Gn,p,

max
p

Pr(G ∈ Qκ \ Tκ)→ 0;

so the Cκ’s of a random graph span its cycle space as soon as they cover its edges. For

κ = 3 this was shown in [12].

Third, we extend the seminal van den Berg–Kesten Inequality [9] on disjoint occur-

rence of two events to a setting with arbitrarily many events, where the quantity of

interest is the maximum number that occur disjointly. This provides a handy tool for

bounding upper tail probabilities for event counts in a product probability space.
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Chapter 1

Introduction

The main content of this thesis is two results on cycles in random graphs.1 In the first,

we use a (partly) random construction to exhibit a family of graphs whose triangles are

clustered in a certain desired way. In the second, we determine for which p = p(n) the

standard Erdős–Rényi random graph Gn,p is likely to satisfy a certain property dealing

with its cycles of a fixed odd length. These results are detailed in Chapters 3 and 4,

respectively. Our third result, extending the van den Berg–Kesten Inequality [9] on

disjoint occurrence of events, was conceived as a lemma for our second; but since it is

quite general and likely to be of broader interest, we present it in Section 2.3, in our

chapter on preliminary tools. Here we just give a nontechnical overview of the three

results and how they relate, deferring detail to when we state them formally.

For a graph G, write τ3(G) for the minimum size of a set of edges meeting all

triangles, and ν3(G) for the maximum size of a set of edge-disjoint triangles. While

τ3(G) ≤ 3ν3(G) is trivial, a conjecture of Zsolt Tuza from 1981 [39] holds that the 3

can be improved to 2, which is tight for the complete graphs of orders 4 and 5. But

is it asymptotically tight for arbitrarily large graphs with quadratically many edges in

triangles?2 Raphael Yuster conjectured not (Conjecture 3.2 and (3.2); see [40]), at least

for graphs with τ3(G) > (1− o(1))|G|/2 (which by a routine exercise [3, Theorem 2.2.1]

is as large as τ3(G) can be). We disprove Yuster’s conjecture (Theorem 3.3), exhibiting,

for any α > 0, an infinite family of dense graphs for which τ3(G) > (1− o(1))|G|/2 and

ν3(G) < (1 + α)|G|/4.

1All graphs in this thesis are finite, simple and undirected.

2Without some requirement on the number of edges in triangles, the answer is obviously yes, because
nonedges and edges not in triangles are invisible to both τ3(G) and ν3(G).
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Write E(G) for the vector space FE(G)
2 (the edge space of G), C(G) for the subspace

of E(G) generated by the (indicators of) cycles (the cycle space of G), and Cκ(G) for

the subspace of C(G) generated by the κ-gons. It is not hard to see (Proposition 4.1)

that for any n ≥ κ,

Cκ(Kn) = C(Kn). (1.1)

Following a theme in combinatorics that has lately been prominent, we wondered to

what extent (1.1) remains true in a “sparse random” setting; or, to be precise, for which

p = p(n) (1.1) is likely to hold with Kn replaced by Gn,p. Let Tκ be the class of graphs

satisfying Cκ(G) = C(G), and Qκ the class of graphs each of whose edges lies in a κ-gon.

We prove (Theorem 4.4) that for every odd κ ≥ 3,

max
p

Pr(Gn,p ∈ Qκ \ Tκ)→ 0; (1.2)

so the κ-gons of a random graph span its cycle space as soon as they cover its edges.

Even the κ = 3 case of (1.2) (which was proved by DeMarco, Hamm and Kahn in [12])

had been open and of interest, being the first unsettled case of a conjecture of M. Kahle

(see [24, 25]) on the homology of the clique complex of Gn,p. In addition to wanting

to generalize the result of [12], we were motivated to study C(Gn,p) by a certain aspect

of our construction of the graphs disproving Yuster’s conjecture; see Section 4.1.1 for

elaboration.

In proving Theorem 4.4, at several points we needed a good bound on the upper tail

probability of a random variable on Gn,p that returns, for some set S of subgraphs of

Kn, the largest size of a set of pairwise edge-disjoint elements of S that appear in Gn,p.

We prove a stochastic domination result (Theorem 2.7) generalizing the van den Berg–

Kesten Inequality [9] that implies such a bound. Perhaps unsurprisingly, the bounds

this gives, at least those relevant to the present work, are not new; but the basic result

is very natural and seems of independent interest.
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Chapter 2

Preliminaries

Here we establish usage conventions in force throughout the thesis (usage specific to

certain sections will be introduced later as appropriate), and then give the tools we will

use in Chapters 3 and 4. Most of the tools are fairly standard, the notable exception

being Theorem 2.7, our extension of the van den Berg–Kesten Inequality advertised

earlier. (Lemma 2.18 extending Mantel’s Theorem is also new, but seems not worth

fussing over.)

Given a graph G, we will use V and E for V (G) and E(G) when the meaning is

clear. We will often identify graphs with their edge sets.

For v ∈ V and F ⊆ G we use NF (v) = {x : vx ∈ F} and dF (v) = |NF (v)|. For

disjoint A,B ⊆ V , ∇F (A,B) is the set of F -edges joining A and B, and we use ∇F (A)

for ∇F (A, V \ A)—these are the cuts of G—and ∇F (v) for ∇F ({v}). In all cases we

drop the subscript when F = G.

As usual α(G) and ∆(G) (or ∆G) denote independence number and maximum

degree of G. We will sometimes use vG and eG for the numbers of vertices and edges of

G. The eigenvalues of G are those of its adjacency matrix; see e.g. [10, Section VIII.2].

As defined in Chapter 1, the edge space of a graph G, denoted E(G), is the vector

space FE(G)
2 . Its elements are naturally identified with the (spanning) subgraphs of

G. The cycle space of G, denoted C(G), is the subspace of E(G) generated by the

(indicators of) cycles of G (see e.g. [13, Section 1.9] for an exposition).

We use [n] for {1, . . . , n} (for a positive integer n), log for ln and a = (1 ± b)c for

(1−b)c ≤ a ≤ (1+b)c. Asymptotic notation (∼, O(·), Ω(·) and so on) is standard, with

a � b and a � b replacing a = o(b) and a = Θ(b) when convenient. An asymptotic

probabilistic statement holds with high probability (w.h.p.) if it holds with probability
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tending to 1 as some specified parameter tends to infinity. We always assume parameters

that tend to infinity are large enough to support our various assertions, and usually

pretend large numbers are integers.

2.1 Deviation

Here we recall a few standard bounds on the probability that a random variable differs

by some specified amount from its mean.

Set

ϕ(x) = (1 + x) log(1 + x)− x (2.1)

for x > −1 and (for continuity) ϕ(−1) = 1. We use “Chernoff’s Inequality” in the

following form; see for example [23, Theorem 2.1].

Theorem 2.1. If X ∼ Bin(n, p) and µ = E[X] = np, then for t ≥ 0,

Pr(X ≥ µ+ t) ≤ exp [−µϕ(t/µ)] ≤ exp
[
−t2/(2(µ+ t/3))

]
, (2.2)

Pr(X ≤ µ− t) ≤ exp[−µϕ(−t/µ)] ≤ exp[−t2/(2µ)]. (2.3)

For larger deviations the following consequence of the finer bound in (2.2) will be

convenient.

Theorem 2.2. For X ∼ B(n, p) and any K, letting µ = E[X] = np,

Pr(X > Kµ) < exp[−Kµ log(K/e)].

(Of course this is only helpful if K > e.)

In fact the above bounds hold with X being any sum of independent Bernoullis (and

µ = E[X]); see [23, Theorem 2.8].

We will make substantial use of the following fundamental lower tail bound of Svante

Janson ([22] or [23, Theorem 2.14]), for which we need a little notation. Suppose

A1, . . . , Am are subsets of the finite set Γ. Let Γp be the random subset of Γ gotten
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by including each x (∈ Γ) with probability p, these choices made independently. For

j ∈ [m], let Ij be the indicator of the event {Γp ⊇ Aj}, and set X =
∑
Ij , µ = EX =∑

j EIj and

∆ =
∑∑

{EIiIj : Ai ∩Aj 6= ∅}. (2.4)

(Note this includes the diagonal terms.)

Theorem 2.3. With notation as above, for any t ∈ [0, µ],

Pr(X ≤ µ− t) ≤ exp[−ϕ(−t/µ)µ2/∆] ≤ exp[−t2/(2∆)].

This has an upper tail counterpart, but with the major restriction that the events

counted must be independent. It is proved in [22, 23] for events as in Theorem 2.3, but

either proof works, with a tiny modification, in the greater generality of:

Lemma 2.4 ([22, Lemma 2] or [23, Lemma 2.46]). For events A1, . . . , An in a proba-

bility space, and µ =
∑

Pr(Ai),

Pr(some µ+ t independent Ai’s occur) ≤ exp [−µϕ(t/µ)]

≤ exp
[
−t2/(2(µ+ t/3))

]
.

Note the bound here is the same as the one in (2.2), which is thus contained in this

lemma. The lemma implies the weaker but sometimes convenient

Proposition 2.5. For events A1, . . . , Ak in a probability space, and µ =
∑

Pr(Ai),

Pr(some l independent Ai’s occur) ≤ µl/l!, (2.5)

observed in [15] (or see [3, Lemma 8.4.1]). (An analogue of Theorem 2.2, this has no

content until l > eλ, whereas Lemma 2.4 gives a usable bound even when µ + t (= l)

= µ+ Ω(
√
µ).)
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2.2 Correlation

The setting for the next theorem is a finite product probability space Ω =
∏t
i=1 Ωi with

each factor linearly ordered. As usual an event A ⊆ Ω is increasing if its indicator is

a nondecreasing function (with respect to the product order on Ω) and decreasing if

its complement is increasing. The seminal “correlation inequality” is essentially due to

Harris [19]:

Theorem 2.6. If A,B ⊆ Ω are either both increasing or both decreasing, then

Pr(A ∩B) ≥ Pr(A) Pr(B);

if one is increasing and the other decreasing then the inequality is reversed.

2.3 Disjoint Occurrence

Here we discuss our third result advertised in the abstract and introduction.

Recall that for (real-valued) random variables X and Y , Y stochastically dominates

X (written X 4 Y ) if Pr(Y ≥ r) ≥ Pr(X ≥ r) ∀ r ∈ R. Recall also that a proba-

bility measure m on a partially ordered Γ is positively associated (PA) if m(A ∩ B) ≥

m(A)m(B) whenever both A and B ⊆ Γ are increasing (or, equivalently, whenever both

are decreasing), and note that any probability measure on a linearly ordered Γ is PA.

The setting for this section is a finite product probability space (Ω, µ) =
∏n
i=1(Ωi, µi)

with each Ωi partially ordered. Events A1, A2, . . . , Ak (⊆ Ω) are said to occur disjointly

at ω ∈ Ω if there are disjoint S1, . . . , Sk ⊆ [n] such that for each i ∈ [k] and ω′ ∈ Ω, we

have ω′ ∈ Ai whenever ω′ agrees with ω on Si. We write

�ki=1Ai = {ω ∈ Ω : A1, . . . , Ak occur disjointly at ω}.

The study of disjoint occurrence was initiated by van den Berg and Kesten [9], who
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showed

Pr(A�B) ≤ Pr(A) Pr(B) (2.6)

for increasing A,B ⊆ {0, 1}n (see also e.g. [18, Section 2.3]). The following extension

of this seminal “BK Inequality” is apparently new [8].

Theorem 2.7. Let (Ω, µ) =
∏n
i=1(Ωi, µi) be a finite product probability space with the

Ωi’s partially ordered and the µi’s PA. Given A1, A2, . . . , Ak ⊆ Ω, let

X = max{|I| : I ⊆ [k] and �i∈IAi occurs}.

Let Y1, . . . , Yk be independent Bernoullis with EYi = Pr(Ai), Y =
∑
Yi, and λ =

∑
EYi.

Then:

(a) If the Ai’s are all increasing, or all decreasing, then X 4 Y ;

(b) If the Ωi’s are linearly ordered, then for t ≥ 0,

Pr(X ≥ λ+ t) ≤ exp [−λϕ(t/λ)] ≤ exp
[
−t2/(2(λ+ t/3))

]
.

Remarks.

(i) Taking Ω = {0, 1}n, k = 2 and r = 2 in the definition of “X 4 Y ” recovers (2.6)

from (a).

(ii) The most spectacular of the developments growing out of [9] is Reimer’s proof

[32] of the “BK Conjecture” (of [9]) which says that (2.6) doesn’t require that

A,B be increasing. In contrast, trivial examples show this requirement (or some

requirement) to be necessary in (a); for instance if Ω = {0, 1} with uniform

measure, k = 2, A1 = {0} and A2 = {1}, then Pr(X ≥ 1) = 1 > 3/4 = Pr(Y ≥ 1).

(iii) For the same reason, (a) does not hold in the generality of Lemma 2.4 (even

modified to make sense there). In other words, if A1, . . . , Ak are events in an
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arbitrary probability space, Y is as in Theorem 2.7 and Z is the maximum number

of independent Ai’s that occur, then Z 4 Y does not hold in general, as the

example in (ii) also shows.

(iv) On the other hand, for increasing [or decreasing] Ai’s, (a) with Theorem 2.1

implies Lemma 2.4 (since independent increasing [or decreasing] events, if they

occur, necessarily occur disjointly, a standard observation easily extracted from

the usual proof of Theorem 2.6). In fact in this setting (a) is much stronger

than Lemma 2.4, because dependent events can easily occur disjointly—so X can

be much larger than the Z of (iii), even though the bounds given for the upper

tails of X and Z, by (a)+Chernoff and Lemma 2.4 respectively, are the same.

For example, if x1, . . . , xk, y1, . . . , yk are distinct vertices of Gn,p and, for i ∈ [k],

Ai = {there is an xiyi-path}, then Z ≤ 1 but X can be large.

Historical Note. As mentioned in Chapter 1, our motivation for Theorem 2.7 (a) was

to obtain something like Lemma 2.4, as in Remark (iv). We learned of the lemma about

a year after proving (a). Shortly thereafter, we realized the lemma’s proof (which is

quite different from our proof of (a)) could be tweaked to give (b).

The proof of Theorem 2.7 (a), which is similar to the original proof of [9], is not

hard but is a little awkward to write, and a few additional definitions will be helpful.

We prove it for increasing Ai’s; the decreasing case is of course analogous.

For Ω =
∏
i∈I Ωi and S ⊆ I, we take ΩS =

∏
i∈S Ωi and, for ω ∈ Ω, ωS = (ωi : i ∈ S).

For A ⊆ Ω and ω ∈ ΩJ for some J ⊆ I, S ⊆ J is said to witness ω ∈ A if ω′ ∈ A

whenever ω′ ∈ Ω and ω′S = ωS . (This is of course abusive since we can’t have ω ∈ A

unless J = I.) We then (that is, for ω ∈ ΩJ) say A1, . . . , Ak (⊆ Ω) occur disjointly

at ω if there are disjoint S1, . . . , Sk ⊆ J such that Sj witnesses ω ∈ Aj ∀j and, for

A = {A1, . . . , Ak}, set

XA(ω) = max{|R| : R ⊆ [k], the Aj ’s indexed by R occur disjointly at ω}.

Thus the X of Theorem 2.7 is XA evaluated at a random ω ∈ Ω.
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Proof of Theorem 2.7 (a). Say i ∈ [n] affects A ⊆ Ω if there are ω ∈ A and ω′ ∈ Ω \ A

with ω[n]\{i} = ω′[n]\{i}, and for a collection B of events in Ω, let ψ(B) be the number of

i ∈ [n] that affect at least two members of B.

We proceed by induction on ψ(A). If this number is zero then the laws of X and

Y agree (since the Aj ’s are independent). So we may assume ψ(A) 6= 0, say (without

loss of generality) the index 1 affects at least two of the Aj ’s.

Let (Ωn+j , µn+j), j ∈ [k], be copies of (Ω1, µ1), independent of each other and of

(Ω1, µ1), . . . , (Ωn, µn). Let (Ω∗, µ∗) =
∏n+k
i=2 (Ωi, µi) and (for j ∈ [k])

Bj = {ω ∈ Ω∗ : (ωn+j , ω2, . . . , ωn) ∈ Aj}.

Thus, apart from irrelevant variables, Bj is a copy of Aj gotten by replacing (Ω1, µ1)

by (Ωn+j , µn+j). In particular Pr(Bj) = Pr(Aj) and, with B = {B1, . . . , Bk}, we have

ψ(B) = ψ(A)−1 (since i ∈ [2, n] affects Bj iff it affects Aj , and n+ i affects Bj iff j = i

and 1 affects Ai). So by inductive hypothesis it is enough to show

µ(XA ≥ r) ≤ µ∗(XB ≥ r) (2.7)

for each positive integer r. Here it’s convenient to work with the stronger conditional

version:

Claim. For each y ∈ Ω[2,n] (with µi(yi) > 0 ∀ i ∈ [2, n]),

µ(XA(ω) ≥ r | ω[2,n] = y) ≤ µ∗(XB(ω) ≥ r | ω[2,n] = y). (2.8)

Proof. Since, for any y ∈ Ω[2,n] and ω ∈ Ω with ω[2,n] = y,

XB(y) = XA(y) ≤ XA(ω) ≤ XA(y) + 1,

we need only show (2.8) for y with XA(y) = r − 1 (since the left hand side of (2.8) is

zero if XA(y) ≤ r − 2 and both sides are 1 if XA(y) ≥ r).
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Given such a y, set F = {x ∈ Ω1 : XA(x, y) = r} and, for i ∈ [k], let Fi ⊆ Ω1 consist

of those x’s for which there are I ∈
(

[k]
r

)
containing i and disjoint Sj ’s in [n] (j ∈ I)

such that Sj witnesses (x, y) ∈ Aj (for j ∈ I) and 1 ∈ Si. Then, evidently,

◦ each Fi is increasing,

◦ F = ∪i∈[k]Fi,

◦ for ω ∈ Ω with ω[2,n] = y, XA = r iff ω1 ∈ F , and

◦ for ω ∈ Ω∗ with ω[2,n] = y, XB ≥ r iff ωn+j ∈ Fj for some j ∈ [k],

whence

µ(XA(ω) ≥ r | ω[2,n] = y) = µ1(F) = 1− µ1(∩j∈[k]F j)

≤ 1−
∏
j∈[k] µ1(F j) = µ∗(XB(ω) ≥ r | ω[2,n] = y),

where the inequality follows from that assumption that µ1 is PA.

For the proof of Theorem 2.7 (b) we need just one little observation, which follows

immediately from Reimer’s Theorem [32] by induction: for events {Ai}i∈I in a product

probability space with each factor linearly ordered,

Pr(�i∈IAi) ≤
∏
i∈I

Pr(Ai). (2.9)

Proof of Theorem 2.7 (b). For some to-be-determined integer r ≤ k and each I ⊆ [k]

of size r, let BI be the indicator of �i∈IAi. Let χ = r!
∑
BI , so that

Eχ = r!
∑
|I|=r

Pr(�i∈IAi) ≤ r!
∑
|I|=r

∏
i∈I

Pr(Ai) ≤ λr

(by (2.9)).

The rest of the proof follows [23, Lemma 2.46] verbatim, so we will be brief. If
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X ≥ λ+ t then χ ≥ (λ+ t)r =
∏r−1
i=0 (λ+ t− i), so by Markov,

Pr(X ≥ λ+ t) ≤ Pr(χ ≥ (λ+ t)r) ≤
λr

(λ+ t)r
=

r−1∏
i=0

λ

λ+ t− i
.

Setting r = t (to minimize the right hand side) yields

log Pr(X ≥ λ+ t) ≤
t−1∑
i=0

log(λ/(λ+ t− i)) ≤
∫ t

0
log(λ/(λ+ t− x)) dx,

which, with calculus, gives the stronger bound in Theorem 2.7 (b).

2.4 Path Counts

Here we discuss what can be said about the numbers of paths of various lengths joining

pairs of vertices in a random graph. Throughout the section we use G for Gn,p.

Notation. For l ≥ 1 and (distinct) x, y ∈ V , we use P l(x, y) for the set of Pl’s (l-edge

paths) in G joining x and y, τ l(x, y) for |P l(x, y)|, and σl(x, y) for the maximum size of a

collection of internally disjoint Pl’s of G joining x and y. (Though l = 1 is uninteresting,

it’s convenient to allow this.) These notations will show up again in Chapter 4. In this

section only, we use V (P ) for the set of internal vertices of a path P and write Γlx,y for

the graph on P l(x, y) with P ∼ Q iff V (P ) ∩ V (Q) 6= ∅.

Conveniently, most of what we need here has been worked out (in far greater gener-

ality) by Joel Spencer in [36] (see also [3, Section 8.5]), and we begin with two special

cases of what’s proved there.

Theorem 2.8. For any l ≥ 2 and ε > 0 there exists K such that if nl−1pl ≥ K log n,

then w.h.p.

τ l(x, y) = (1± ε)nl−1pl ∀ {x, y} ∈
(
V
2

)
. (2.10)
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Proposition 2.9. For any l ≥ 1 and δ > 0, if n2l−3p2l−1 < n−δ then w.h.p.

τ i(x, y)− σi(x, y) < C ∀ {x, y} ∈
(
V
2

)
, i ∈ [l], (2.11)

where C depends only on l and δ.

We note for use below that the assumption on p in Proposition 2.9 implies

nl−2pl−1 < n−ζ , (2.12)

with ζ = (1 + δ(l − 1))/(2l − 1) (= Ω(1)). Strictly speaking, the proposition is a

little stronger than what one gets from [36], where the assumption would be nl−1pl =

O(log n). (The n2l−3p2l−1 is more or less the expected number of non-edge-disjoint

pairs of paths joining a given x and y.)

Proposition 2.9, though not difficult, is a key point in Spencer’s proof of Theorem 2.8,

and from our perspective is in a sense the main point, since, as indicated in the remark

below, it easily gives the latter when combined with Theorem 2.3 and Lemma 2.4 (or

Theorem 2.7).

Since the proof of the proposition itself is not so easy to extract from Spencer’s

presentation (see his “third part” on p. 253), we next sketch an argument along lines

similar to his for the present situation.

Proof of Proposition 2.9. It is enough to handle i = l (since the assumption on p implies

a stronger assumption when we replace l by i < l). Noting that τ l(x, y) − σl(x, y) ≤

|E(Γlx,y)|, we find that (2.11) (with an appropriate C) holds at x, y provided

(i) the maximum number of vertices in a component of Γlx,y is O(1) and

(ii) the maximum size of an induced matching in Γlx,y is O(1);

so we want to say that w.h.p. these conditions hold for all x, y. (Of course replacing (i)

by an O(1) bound on degrees would also suffice.)
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For (i) we show that, for some fixed M , w.h.p. there do not exist x, y and a collection,

Q1, . . . , QM , of Pl’s joining x and y such that, for i ≥ 2, V (Qi) meets, but is not

contained in, ∪j<iV (Qj). This bounds (by (l−2)M+1) the number of internal vertices

(of G) in the paths belonging to a component of Γlx,y, so gives (i).

Suppose Q1, . . . , QM are Pl’s joining x and y, with Ri = ∪j≤iQj and, for i ≥ 2,

|E(Qi) \ E(Ri−1)| = bi and |V (Qi) \ V (Ri−1)| = ai ∈ [1, l − 2]. Then bi ≥ ai + 1 and

ai ≤ l − 2 imply naipbi ≤ nl−2pl−1 (for i ≥ 2) and

n|V (RM )|p|E(RM )| ≤ np(nl−2pl−1)M , (2.13)

which is thus an upper bound on the probability of finding, for a given x, y, (Q1, . . . , QM )

as above of a given isomorphism type (defined in the obvious way). So the probability

that there are such Qi’s for some x, y (and some isomorphism type) is

O(n3p(nl−2pl−1)M ) = O(n3pn−ζM ) (see (2.12)), so is o(1) for large enough M .

The argument for (ii) is similar. Here we want to rule out, again for some fixed

M , existence of Pl’s, say Q1, R1, . . . , QM , RM , joining some specified x, y, with V (Qi)∩

V (Ri) 6= ∅ and the V (Qi)’s and V (Ri)’s otherwise disjoint. A discussion like the

one above shows that for any such sequence, with | ∪i (E(Qi) ∪ (E(Ri))| = b and

| ∪i (V (Qi) ∪ (V (Ri))| = a, we have

napb < (n2l−3p2l−1)M < n−Mδ, (2.14)

which bounds the probability of existence by O(n2−Mδ).

Remark. The lower bound in Theorem 2.8 is given by Theorem 2.3 (a recent develop-

ment at the time). The main issue for the upper bound is handling p with nl−1pl � log n,

for which Proposition 2.9 allows replacing τ l by σl. Spencer’s nice observation is that, to

bound σl(x, y), one need only bound the probability of having a maximal disjoint family

(of Pl’s joining x, y) of a given size, and that one can use Theorem 2.3 to bound the

probability that a particular (disjoint) family is maximal. His uses of this device could

now be replaced by Lemma 2.4 (or Theorem 2.7), yielding (in the authors’ unbiased
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view) more natural arguments.

Theorem 2.8 and Proposition 2.9 (with bits of Section 2.1) easily imply the following

bounds on the τ l(x, y)’s for different ranges of p.

Corollary 2.10. W.h.p. for all (distinct) vertices x, y,

τ l(x, y) ∼ nl−1pl if nl−1pl = ω(log n), (2.15)

τ l(x, y) = O(log n) if nl−1pl = O(log n), (2.16)

τ l(x, y) = O(1) if nl−1pl < n−Ω(1). (2.17)

Proof. The first two items are easy consequences of Theorem 2.8: (2.15) is immediate

and (2.16) is given by the observation that, for K as in the theorem (for some specified

ε) and p0 defined by nl−1pl0 = K log n, the theorem implies that w.h.p.

τ l(x, y) ≤ (1 + ε)nl−1(max{p, p0})l ∀ {x, y} ∈
(
V
2

)
(2.18)

(since the probability of the event in (2.18) is increasing as p decreases below p0).

For (2.17), suppose nl−1pl < n−α, with α > 0 fixed. Since this implies n2l−3p2l−1 <

n−δ with δ = δα > 0 fixed, Proposition 2.9 says it suffices to show that for given x, y

and suitable fixed D (depending on α),

Pr(σl(x, y) > D) = o(n−2).

But Proposition 2.5 bounds this probability by

n−αD/D! < exp[−D log(nαD/e)],

which is o(n−2) for large enough D.

We will also sometimes need lower bounds on path counts, as summarized in the

next result, which again follows easily from what we already know.
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Corollary 2.11. For any l ≥ 2 there is a K such that if nl−1pl ≥ K log n, then w.h.p.

σl(x, y) = Ω(π) for all x, y, with π = π(n, p) equal to

nl−1pl if nl−2pl−1 < n−Ω(1), (2.19)

nl−1pl/ log n if n−o(1) < nl−2pl−1 = O(log n), (2.20)

np if nl−2pl−1 = ω(log n). (2.21)

(Of course in view of the routine Proposition 2.12, (1+o(1))np is a trivial upper bound.)

Proof. Let K be as in Theorem 2.8, for the given l and, say, ε = 1/2 (since we don’t

worry about constants). Since the theorem says that w.h.p. |V (Γlx,y)| > Ω(nl−1pl) for

all x, y, the present assertion(s) will follow if we show

w.h.p. ∆(Γlx,y) = O(nl−1pl/π) ∀x, y, (2.22)

where we use the the trivial α ≥ |V |/∆ (recall ∆ and α are maximum degree and

independence number and note σl(x, y) = α(Γlx,y)).

Now the degree in Γlx,y of a given vertex Q (that is, a Pl joining x and y) is at most

∑
v

∑
i τ

i(x, v)τ l−i(v, y) ≤ (l − 1)2 max{τ i(x, v)τ l−i(v, y)}, (2.23)

where the sums are over v ∈ V (Q) and i ∈ [l − 1], and the max is over i ∈ [l − 1]

and v ∈ V \ {x, y} (the initial (l − 1)2 is of course irrelevant). On the other hand,

Corollary 2.10 (with i in place of l) says that w.h.p. we have, for all u, v:

τ i(u, v) < O(1) if either i ≤ l− 2 and p is as in (2.19) or (2.20), or i = l− 1

and p is as in (2.19),

and τ i(u, v) < O(max{ni−1pi, log n}) in general; and combining these bounds with

(2.23) easily yields (2.22).
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2.5 Density

Here we review various density properties of Gn,p. Throughout the section we use G for

Gn,p and V for [n] = V (G). Theorems 2.1 and 2.2 easily imply the next two standardish

propositions, whose proofs we omit.

Proposition 2.12. For p� n−1 log n, w.h.p.

|G| ∼ n2p/2 and d(v) ∼ np ∀ v ∈ V .

(Of course the second conclusion implies the first, which just needs p� n−2.)

Proposition 2.13. (a) For any ε > 0 there is a K such that w.h.p. for all disjoint

S, T ⊆ V with |S|, |T | > Kp−1 log n

|∇G(S, T )| = (1± ε)|S||T |p

and

|G[S]| = (1± ε)
(|S|

2

)
p.

(b) For K > 3 w.h.p.

|G[S]| < K|S| log n for all S ⊆ V with |S| ≤ Kp−1 log n.

(c) For each ε > 0 there is a K such that if p > Kn−1 log n then w.h.p.

|∇G(S)| = (1± ε)|S|(n− |S|) ∀S ⊆ V .

Proposition 2.14. For fixed ε > 0 and p� 1/n, w.h.p.: if H ⊆ G satisfies

dH(v) > (1− ε)np/2 ∀ v ∈ V, (2.24)

then no component of H has size less than (1− 2ε)n/2.
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Proof. For a given W ⊆ V of size w < (1 − 2ε)n/2, let χ = |G[W ]|. Then µ := Eχ =(
w
2

)
p < w2p/2, while if W is a component of an H satisfying (2.24) then

χ ≥ |H[W ]| > w(1− ε)np/4 > (1−ε)n
2w µ =: Kµ.

But (since K > (1− ε)/(1− 2ε) = 1 + Ω(1)) Theorems 2.1 and 2.2 give

γw := Pr(χ > Kµ) <

 exp[−Ω(µ)] if K < e2 (say),

exp[−Kµ log(K/e)] otherwise.

Thus, with sums over w ∈ (0, (1−2ε)n/2), the probability that some H as in the lemma

admits a component of size less than (1− 2ε)n/2 is less than

∑(
n
w

)
γw <

∑
exp[w log(en/w)]γw,

which for p� 1/n is easily seen to be o(1).

Finally, we need to know a little about the eigenvalues of G. A version of (2.25)

below was proved in [16] (see also [2]) and (2.26) is shown (e.g.) in [30].

Proposition 2.15. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of G and v1, v2, . . . , vn

associated orthonormal eigenvectors, say with maxj v1,j > 0. If p � n−1 log n, then

w.h.p.

λ1 ∼ np and max{|λ2|, |λn|} < (2 + o(1))
√
np. (2.25)

If p > n−1 log6 n, then w.h.p.

max
j
v1,j < (1 + o(1)) min

j
v1,j . (2.26)

2.6 Expanders

We will want to say that good eigenvalues imply good density properties for a graph,

for which our (standard) tool is
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Lemma 2.16 (Expander Mixing Lemma [3, Cors. 9.2.5-6]). Let H be a d-regular

graph on t vertices for which every eigenvalue except d has absolute value at most λ.

Let A,B ⊆ V (H) be disjoint with |A| = a, |B| = b. Then

∣∣∣∣|∇(A,B)| − abd

t

∣∣∣∣ ≤ λ√ab,
and

∣∣∣∣|H[A]| − a2d

2t

∣∣∣∣ ≤ λa

2
.

2.7 Short Cycles

Recall that the distance between a pair of vertices in a graph is the number of edges in

a shortest path between them, and the diameter of a graph is the maximum distance

between a pair of its vertices.

We will want to say that the cycle space of any graph with low diameter is spanned

by short cycles.

Proposition 2.17. For any graph G of diameter D, C(G) is generated by the cycles of

G of length up to 2D + 1.

Proof. It suffices to show that any cycle of length at least 2D + 2 is the sum of two

shorter ones. Let x, y be vertices at maximum distance along such a cycle C, and let

P be a shortest xy-path, say with x = v0, . . . , vk = y being the vertices that P shares

with C (as ordered by P ). For some i ∈ [k], vi−1 and vi are closer along P than along

C, and we get the two desired shorter cycles by replacing each of the vi−1vi-paths in C

by the one in P .

Erratum. In [7], we gave an incorrect proof of this.
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2.8 Mantel

Here we prove a new strengthening of Mantel’s Theorem [29], which may be of inde-

pendent interest. Recall that Mantel’s Theorem is the first case of Turán’s Theorem

([38], or e.g. [13, Theorem 7.1.1]) and the first result in extremal graph theory, proved

in 1907.

Lemma 2.18 (Mantel’s Theorem for “Crossing Triangles”). Let K be the complete

graph on X ∪ Y , where X and Y are disjoint sets of size n. Let F be a subgraph of K

containing no (“crossing”) triangles meeting both X and Y . Then |F | ≤ n2.

Proof. We first claim that for any largest F containing no crossing triangles, F [X]

and F [Y ] are complete multipartite. For convenience set G = F [X]. If G is not

complete multipartite, then it has vertices x, y, z satisfying xy ∈ G and xz, yz /∈ G.

If dF (x) > dF (z), then replacing NF (z) by NF (x) strictly increases |F | without in-

troducing forbidden triangles. Thus we may assume dF (z) ≥ dF (x), and similarly

dF (z) ≥ dF (y). But then replacing both NF (x) and NF (y) by NF (z) strictly increases

|F | without introducing forbidden triangles. (This neighborhood-switching is a stan-

dard trick; see e.g. [13, Theorem 7.1.1]. We use it again in our proof of Theorem

3.3.)

So any largest F is complete multipartite in X with parts X1, X2, . . . , Xr of sizes

x1 ≥ x2 ≥ · · · ≥ xr, and in Y with parts Y1, Y2, . . . , Yr of sizes y1 ≥ y2 ≥ · · · ≥ yr (some

of the xi’s or yi’s being 0 if one of the partitions has more nonempty parts than the

other). Since F has no triangles meeting both X and Y , for any a ∈ Xi and b ∈ Yj we

have

ab ∈ F =⇒ NF (a) ∩ Y ⊆ Yj and NF (b) ∩X ⊆ Xi,

so by the so-called rearrangement inequality we have

|F | ≤
∑

1≤i<j≤r
(xixj + yiyj) +

r∑
i=1

xiyi

=
1

2

r∑
i=1

[xi(n− xi + yi) + yi(n− yi + xi)]
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=
1

2

r∑
i=1

[
n(xi + yi)− (xi − yi)2

]
= n2 − 1

2

r∑
i=1

(xi − yi)2.

2.9 Stability

The following statement is a small instance of a recent major result of Conlon and

Gowers [11]. As we will see in Section 4.4, it is the main (essentially only) ingredient

in the proof of one of our lemmas in Chapter 4 (Lemma 4.10).

Theorem 2.19. For each odd κ ≥ 3 and ε > 0 there is a C such that if p >

Cn−(κ−2)/(κ−1), then w.h.p. every Cκ-free subgraph of G = Gn,p of size at least |G|/2

can be made bipartite by deleting at most εn2p edges.

This (or the more general result of [11]) is a “sparse random” analogue of the Erdős-

Simonovits “Stability Theorem” [14, 35] that was conjectured by Kohayakawa et al. in

the seminal [26].

2.10 Regularity

Here we recall Szemerédi’s Regularity Lemma [37], or, more precisely, a generalization

thereof due to Kohayakawa [27] and Rödl (unpublished). Our presentation here follows

[23, Section 8.3].

Definitions 2.20 (for the Regularity Lemma). Given a graph H, a real number s ∈

(0, 1] (called a scaling factor), and disjoint U,W ⊆ V (H) =: V , the (s;H)-density

ds,H(U,W ) between U and W is

ds,H(U,W ) =
|∇H(U,W )|
s|U ||W |

.

For ε > 0, the pair U,W is called (s;H, ε)-regular if for all U ′ ⊆ U and W ′ ⊆ W with

|U ′| ≥ ε|U | and |W ′| ≥ ε|W | we have

|ds,H(U,W )− ds,H(U ′,W ′)| ≤ ε.
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A partition Π = (V0, V1, . . . , Vk) of V is called (ε, k)-equitable if |V1| = |V2| = · · · = |Vk|

and |V0| ≤ ε|V |, and it is called (s;H, ε, k)-regular if it is (ε, k)-equitable and all but at

most ε
(
k
2

)
of the pairs Vi, Vj (1 ≤ i < j ≤ k) are (s;H, ε)-regular. In such a partition,

V0 is called the exceptional part. If k′ > k and Π′ is an (ε, k′)-equitable partition of

V , then we say Π′ refines Π if every nonexceptional part of Π′ is contained in some

nonexceptional part of Π.

For b ≥ 1 and β > 0, H is called (s; b, β)-bounded if whenever U,W ⊆ V are disjoint

with |U |, |W | ≥ β|V | we have ds,H(U,W ) ≤ b. Intuitively, when H is sparse and s is

the (tiny) density of H, (s; b, β)-boundedness ensures that no substantial chunk of H

is much denser than it should be. ♦

Lemma 2.21 (Szemerédi Regularity Lemma, [23, Lemma 8.18]). For all ε > 0, b ≥ 1

and natural numbers m and r there exist β = β(ε, b,m, r) > 0 and M = M(ε, b,m, r) ≥

m such that the following holds. For every choice of scaling factors si (i ∈ [r]) and

(si; b, β)-bounded graphs Hi (i ∈ [r]) on the same vertex set V with |V | ≥ m, there

exists k ∈ [m,M ] and a partition Π of V that is (si;Hi, ε, k)-regular for all i ∈ [r].

Since the proof of the Regularity Lemma starts with any partition of V into m

nonexceptional parts of size b|V |/mc and repeatedly refines this partition so that at

each step each part is broken into the same number of subparts (see e.g. [27, 17] for

details), we may further assume that

(i) Π refines a specified partition of V with m nonexceptional parts of size b|V |/mc,

and

(ii) For any two nonexceptional parts Si, Sj of the starting partition we have |V0∩Si| =

|V0 ∩ Sj |, where V0 is the exceptional part of Π.

Observe also that since every graph is trivially (1; 1, β)-bounded for all β, taking

b = r = s1 = 1 in Lemma 2.21 recovers the usual Regularity Lemma, which on one

occasion (to prove Theorem 3.3) is all we will need from Lemma 2.21. Our other use

of Lemma 2.21 (to prove Lemma 3.10) will require its full power.
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Associated with the Regularity Lemma is the so-called Counting Lemma, which we

will use in the following unusual form.

Lemma 2.22 (Counting Lemma). Let H be a graph, ε ∈ (0, 1/2), s ∈ (0, 1], and

A,B,B′ pairwise disjoint subsets of V (H) each of size l. If the pairs A,B and A,B′

are (1;H, ε)-regular with (1;H)-density at least 2ε, and the pair B,B′ is (s;H, ε)-regular

with (s;H)-density at least 2ε, then H contains a triangle abb′ with a ∈ A, b ∈ B,

b′ ∈ B′.

Proof. Since d1,H(A,B) ≥ 2ε, we have |{a ∈ A | |∇(a,B)| < εl}| < εl, or else this

subset of A, along with B ⊆ B, would violate the (1;H, ε)-regularity of the pair A,B.

Similarly |{a ∈ A | |∇(a,B′)| < εl}| < εl. Thus since ε < 1/2, there exists a ∈ A

satisfying |N(a) ∩ B|, |N(a) ∩ B′| ≥ εl. Then since the pair B,B′ is (s;H, ε)-regular

with (s;H)-density at least 2ε, we have ∇(N(a)∩B,N(a)∩B′) 6= ∅, yielding a triangle

in H of the stated form.

2.11 Containers

Here we give a specialization, adequate for present purposes, of the celebrated recent

“container” theorems of [4, 34].

First we need a few definitions. Recall that a hypergraph, H, is simply a collection

of subsets (“edges”) of a set V of “vertices.” (We allow repeated edges, though we won’t

actually see any.) All our hypergraphs are r-uniform, i.e. have all edges of size r, and

finite, with |V| = N . An independent set of H is a subset of V containing no edges and

I(H) is the collection of such sets.

For σ ⊆ V, the degree of σ is d(σ) = dH(σ) = |{e ∈ H : σ ⊆ e}|, which we shorten to

d(v) if σ = {v}. We use d and ∆ for the average and maximum values of d(v) (v ∈ V)

and, for l ∈ [r],

∆l = max{d(σ) : |σ| = l}

(so ∆1 = ∆).

The next assertion is easily derivable from Theorem 2.2 of [4].
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Theorem 2.23. For all r, δ > 0 and b there is a B such that: if H is r-uniform with

∆l < bθl−1d ∀ l ∈ [r], (2.27)

then there exists C : 2V → 2V such that for each I ∈ I(H) there is a T ⊆ V with:

(a) |T | < BNθ,

(b) T ⊆ I ⊆ C(T ),

(c) |H[C(T )]| < δ|H|

(where H[X] = {E ∈ H : E ⊆ X}).
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Chapter 3

Tuza’s Conjecture is Asymptotically Tight for Dense

Graphs

3.1 Introduction

Following [40] we write τ3(G) for the minimum size of a triangle edge cover (set of

edges meeting all triangles) in a graph G and ν3(G) for the maximum size of a triangle

packing (collection of edge-disjoint triangles) in G. (In standard language these are the

matching and vertex cover numbers of the hypergraph with vertex set E(G) and edges

the triangles of G.)

While τ3(G) ≤ 3ν3(G) is trivial (for any G), a 35-year-old conjecture of Zsolt Tuza

[39] holds that this can be improved:

Conjecture 3.1. For any G, τ3(G) ≤ 2ν3(G).

(This is sharp for the complete graphs of orders 4 and 5.)

The best general result in this direction remains that of Haxell [20], who showed

τ3(G) ≤ (66/23)ν3(G).

On the other hand, as noted in [40], a combination of results of Krivelevich [28] and

Haxell and Rödl [21] implies that for any G,

τ3(G) < 2ν3(G) + o(n2)

(limits as n := |V (G)| → ∞). In particular, for any fixed β > 0 and G ranging over
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graphs satisfying τ3(G) ≥ βn2,

τ3(G) < (2 + o(1))ν3(G). (3.1)

That is, Tuza’s conjecture is asymptotically correct for such graphs.

The question of Raphael Yuster [40] that motivates us here is: is the constant 2 in

(3.1) optimal? That is, is Tuza’s conjecture still (asymptotically) tight for dense graphs

with no subquadratic triangle cover? Yuster suggested not, at least in the special case

where τ3(G) is nearly as large as possible:

Conjecture 3.2 ([40]). For fixed β > 0 and G ranging over graphs of density at least

β,

τ3(G) > (1− o(1))|G|/2 =⇒ ν3(G) > (1− o(1))|G|/3

(where density is |G|/
(
n
2

)
, and |G| = |E(G)|). This would of course (for the graphs con-

sidered) be a big improvement over (3.1), which promises only ν3(G) > (1−o(1))|G|/4.

Note that the inequalities τ3(G) < |G|/2 and ν3(G) ≤ |G|/3 are easy and trivial

(respectively), so Yuster’s conjecture says that if G is dense and τ3(G) is close to its

trivial upper bound, then so must be ν3(G).

Yuster also suggested weakening Conjecture 3.2 to say only that there is some fixed

α ∈ (0, 1/3) (not depending on β) such that

τ3(G) > (1− o(1))|G|/2 =⇒ ν3(G) > (1 + α)|G|/4, (3.2)

which would still significantly improve on (3.1) (when τ3(G) > (1−o(1))|G|/2). (Yuster

did show that (3.2) is true if we allow α to depend on β.)

Surprisingly it turns out that even the weaker conjecture is wrong:

Theorem 3.3. For all α > 0, there exist β > 0 and arbitrarily large graphs G satisfying

• |G| ≥ β
(
n
2

)
,

• τ3(G) > (1− o(1))|G|/2, and
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• ν3(G) < (1 + α)|G|/4

(limits as n→∞). Thus even for dense graphs—and moreover for dense graphs where

τ3(G) is near |G|/2—Tuza’s conjecture is essentially best possible.

Since what follows is not entirely easy, a little orientation may be helpful. Our

construction itself is not very difficult; in rough outline it does:

1. start with a triangle-free graph H with certain nice degree and eigenvalue proper-

ties (we use the well-known graphs described by Noga Alon in [1]—see Proposition

3.11);

2. join two disjoint copies of H by a complete bipartite graph to produce K;

3. replace each vertex of K by a large clique; and finally

4. take a suitable random subgraph of this blowup, yielding the graph Ga found in

the third paragraph of Section 3.3.

So again, there is nothing very exotic here. What seems most interesting in what follows

is how strange a route we needed to take to arrive at a proof that this relatively simple

construction actually works.

Also interesting is whether one could simplify our argument (or give an easier ex-

ample) if the goal were only to disprove the stronger Conjecture 3.2 (rather than (3.2)).

We don’t see how to do this, and in fact most of what follows was originally developed

with the lesser goal in mind.

The rest of this chapter is organized as follows. The next section gives a long string

of essential definitions, most of them nonstandard, leading up to the crucial Lemma

3.10. In Section 3.3 we prove Theorem 3.3 assuming Lemma 3.10. In Section 3.4, we

prove the lemma.

3.2 Definitions

A fractional triangle edge cover of a graph G is an assignment of nonnegative weights

to the edges of G such that the weight of each triangle (this being the sum of the
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weights of its edges) is at least 1. We denote by τ∗3 (G) the minimum total weight of

such a cover. Dually, a fractional triangle packing of G is an assignment of nonnegative

weights to the triangles of G such that the weight of each edge (the sum of the weights

of the triangles containing it) is at most 1. We denote by ν∗3(G) the maximum total

weight of such a packing. Note we have

ν3(G) ≤ ν∗3(G) = τ∗3 (G) ≤ τ3(G),

where the inequalities are trivial and the equality is by linear programming duality.

Given graphs G1, G2, the lexicographic product G1 · G2 is the graph on vertex set

V (G1) × V (G2) where (u1, u2) is adjacent to (v1, v2) iff either u1v1 ∈ G1, or u1 = v1

and u2v2 ∈ G2. Note that the lexicographic product is not commutative.

The following original definitions are critical to our arguments.

Definition 3.4 (double of a graph). For a graph H, the double of H, denoted KH,H , is

the graph K2·H. To be explicit, this is the graph whose vertex set is X∪Y , where X and

Y are disjoint sets of size |V (H)|, and whose edges satisfy KH,H [X] ' KH,H [Y ] ' H

and {xy | x ∈ X, y ∈ Y } ⊆ E(KH,H). The sets X and Y (we will always use these

names) are called the sides of KH,H .

Of course the notation KH,H is intended to suggest the notation Kt,t for a complete

bipartite graph. When the H is understood, we will frequently abbreviate KH,H by K.

We denote by E the copy of K2 on vertex set {b, s}. Here E is for “edge,” b is for

“big,” and s is for “small,” for reasons that will now become clear.

Definition 3.5 (compound vertex). Let G be a graph. Then G on compound vertices,

denoted G+, is the graph G · E. This term is intended to be suggestive—we imagine

G+ as G with each of its vertices v replaced by a new compound structure with a big

part (v, b) and a small part (v, s). We will always abbreviate, e.g., (v, b) by vb. For a

generic vertex of G+ we write vx, vy, etc., understanding x, y ∈ {b, s}.

Definition 3.6 (edge types). In the context of a given K = KH,H , an edge uw ∈ K is

called internal if u and w belong to the same side, and external otherwise. Similarly, an
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edge uxwy ∈ K+ with u 6= w is internal if uw ∈ K is internal and external if uw ∈ K

is external. An edge vbvs ∈ K+ is called a vertex edge.

Definition 3.7 (external triangles). Let H be a graph and K = KH,H . A triangle in

K or K+ is an external triangle if it contains an external edge. A subgraph F of K or

K+ is external triangle free (ETF ) if it contains no external triangles.

Definitions 3.8 (configurations and weight). Let H be a graph with t vertices and m

edges, and K = KH,H . A configuration on K is a pair (F, φ), where F ⊆ E(K+) and

φ : V (K+)→ [0, 1] satisfy the following conditions. Viewing F as a subgraph of K+, F

is ETF, contains all vertex edges of K+, and satisfies NF (vb)∩NF (vs) = ∅ ∀ v ∈ V (K);

and φ, which we call a mass function, satisfies φ(vb) ∈ [1
2 , 1] and φ(vs) = 1−φ(vb) ∀ v ∈

V (K). Given a configuration and c ∈ [0, 1], the configuration’s c-weight is

wc(F, φ) =
1− c
4m

∑
uxwy∈F
internal

φ(ux)φ(wy) +
1− c
2t2

∑
uxwy∈F
external

φ(ux)φ(wy) +
c

t

∑
v∈V (K)

φ(vb)φ(vs).

(3.3)

Here’s the idea behind c-weight. Given H, we think of the vertices and edges of

K as having weights attached, as follows. Each vertex weighs c
2t , each internal edge

weighs 1−c
4m , and each external edge weighs 1−c

2t2
, for a total of unit weight on K. Passing

to K+, an adversary tries to maximize the amount of this weight he can capture in a

configuration (F, φ). For each edge uw ∈ K, the fraction of that edge’s weight that he

captures is
∑

uxwy∈F φ(ux)φ(wy), because we think of the weight of uw ∈ K as being

split among the four corresponding edges of K+ with a φ(ux)φ(wy)-fraction residing in

the edge uxwy. For each vertex v ∈ V (K), the fraction of that vertex’s weight that our

adversary captures is 2φ(vb)φ(vs), because we think of the weight of a vertex in K as

being split up in K+ analogously to the way the weight of an edge in K is split up in

K+, with a φ(vb)2-fraction of the weight of v residing in vb, a φ(vs)2-fraction in vs,

and the remaining 2φ(vb)φ(vs)-fraction in the vertex edge vbvs. This 2 cancels the 1
2

in the vertex weight c
2t to yield the coefficient of the third sum in (3.3). To see that the

2 is natural, observe that it lets our adversary capture exactly half the weight of every
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vertex and edge of K by taking F = {ubws | uw ∈ K} ∪ {vbvs | v ∈ V (K)} and φ ≡ 1
2 .

We call this the näıve configuration.

Definition 3.9 (fairness). For c ∈ [0, 1], a graph H is called c-fair if

max
(
wc(F, φ)

)
= 1/2, (3.4)

where the max is over configurations (F, φ) on K.

Observe that the 1/2 in (3.4) is best possible, since the näıve configuration has c-

weight 1/2 for any c. This explains the term “fair”—our adversary can’t capture more

than half the weight of K, the amount to which he is näıvely entitled.

Observe also that increasing c can only make life harder for our adversary. That is,

if H is c-fair, then it is c′-fair for any c′ ∈ [c, 1]. To see this, notice that wc(F, φ) is a

convex combination of the nonnegative quantities

1

2m

∑
uxwy∈F
internal

φ(ux)φ(wy),
1

t2

∑
uxwy∈F
external

φ(ux)φ(wy) and
1

t

∑
v∈V (K)

φ(vb)φ(vs),

with coefficients 1−c
2 , 1−c

2 , c. Since the first two coefficients are decreasing in c and the

third quantity is at most 1/2 (note each of the 2t terms in its sum is at most 1/4),

increasing c cannot raise wc(F, φ) above 1/2. At the extremes, it is easy to see that no

graph is 0-fair and every graph is 1-fair. This, finally, motivates

Lemma 3.10. For any c ∈ (0, 1] and N ∈ N, there exists a triangle-free, d-regular,

c-fair graph H with d ≥ N .

3.3 Proof of Theorem 3.3

Fixing α > 0 (we may assume α < 1/3), our goal is to show there are arbitrarily

large graphs G of positive density satisfying τ3(G) > (1 − o(1))|G|/2 but nonetheless

ν3(G) < (1 + α)|G|/4. To do this, we use a probabilistic construction starting with a

graph promised by Lemma 3.10.
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Set c = α/6 and let H be a triangle-free, d-regular, c-fair graph on t vertices, where

d ≥ (2c)−1. Let p = 1−c
2cd and q = 1−c

2ct , noting that p, q ∈ (0, 1). Let K = KH,H , and

observe that K ·Ka is the graph obtained from K when each vertex is “blown up” to

a clique of size a. Call each of these Ka’s in K · Ka a block, and for each v ∈ V (K),

denote by Bv the block corresponding to v. Also, consistent with Definition 3.6, call an

edge xy ∈ K ·Ka an internal edge, external edge, or vertex edge according to whether

it comes from an internal edge, external edge, or vertex of K.

For each a ∈ N (think: large), let Ga be the random graph obtained from K ·Ka by

deleting each internal edge with probability 1−p and each external edge with probability

1−q, these choices made independently. Then since |∇Ga(Bu, Bw)| ∼ Bin(a2, p) for each

internal uw ∈ K and |∇Ga(Bu, Bw)| ∼ Bin(a2, q) for each external uw ∈ K, Theorem

2.1 says that each of these numbers |∇Ga(Bu, Bw)| is typically close to its expectation.

To be precise, for each uw ∈ K (internal or external), if we set Xuw = |∇Ga(Bu, Bw)|,

µuw = EXuw and x = a log a, then Theorem 2.1 gives P(|Xuw − µuw| ≥ x) = O(a−2) =

o(1) as a → ∞. Since |K| = t2 + td is fixed, µuw = Θ(a2) and x = o(a2), it holds

w.h.p. as a → ∞ that Xuw ∼ µuw for all uw ∈ K. We may thus assume Ga satisfies

this property, whence

|{xy ∈ Ga | xy internal}| ∼ tda2p =
a2t(1− c)

2c
; (3.5)

|{xy ∈ Ga | xy external}| ∼ t2a2q =
a2t(1− c)

2c
; (3.6)

|{xy ∈ Ga | xy vertex}| = 2t

(
a

2

)
∼ a2t. (3.7)

We claim that, w.h.p. as a → ∞, Ga meets the requirements of Theorem 3.3. The

first and third conditions are easy to check. For density, letting n = |V (Ga)| = 2ta and

m = |Ga|, we have

m ∼ a2t+ 2
a2t(1− c)

2c
=
a2t

c
= n2(4tc)−1, (3.8)

where (4tc)−1 < 1/2 is a constant.

To see that ν3(Ga) < (1+α)m/4, it suffices to find a fractional triangle edge cover of
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Ga of total weight less than (1 +α)m/4, since (recall) ν3(Ga) ≤ ν∗3(Ga) = τ∗3 (Ga). But

this is easy: simply placing weight 1 on all vertex edges and weight 1/2 on all external

edges yields a fractional triangle edge cover of Ga (here the triangle-freeness of H is

crucial) with total weight asymptotic to

a2t+
1

2

a2t(1− c)
2c

=
a2t

4c
(1 + 3c) = (1 + α/2± o(1))

m

4
< (1 + α)

m

4
.

The real work is showing that τ3(Ga) > (1− o(1))m/2. To this end let F ⊆ Ga be

triangle-free; we need to show |F | ≤ (1 + o(1))m/2. More precisely, we show that given

any δ > 0, we have |F | < (1 + δ)m/2 for large enough a. For this we apply the usual

Regularity Lemma—i.e. Lemma 2.21 with b = r = s1 = 1—to F . Pick (with foresight)

ε < δ/(48tc), and let 2tdε−1e be the “m” of the lemma. Let Π = (V0, V1, . . . , Vk) be

the partition given by the lemma. By comments (i) and (ii) after the lemma, we may

assume Π refines the partition of V (F ) = V (Ga) into blocks and splits each block into

exactly k/(2t) =: η nonexceptional parts plus some vertices in V0.

For a pair Vi, Vj ∈ Π with Vi ⊆ Bu and Vj ⊆ Bw, call the pair internal or external

if uw is an internal or external edge of K (respectively), and a vertex pair if u = w.

Consider the graph on [k] where ij is an edge iff Vi, Vj is an internal, external or vertex

pair. Notice that this graph is (isomorphic to) K ·Kη, with blocks B′v = {i ∈ [k] | Vi ⊆

Bv}, v ∈ V (K). Letting l = |V1|, observe also that

each


vertex

internal

external


edge uw ∈ K ·Kη corresponds to


exactly l2

about l2p

about l2q


edges of Ga, (3.9)

where just as in (3.5)–(3.7), each “about” in (3.9) hides an Õ(l) = Õ(n) = o(m)

Chernoff error as a→∞.

To account for the different quantities on the right side of (3.9), we assign weights to

the edges of K ·Kη: each vertex edge weighs c/(tη2), each internal edge pc/(tη2) = 1−c
2tdη2

,

and each external edge qc/(tη2) = 1−c
2t2η2

, so that the weight w(uw) of uw ∈ K · Kη is

c/(tη2l2) times the (approximate) number of corresponding edges in Ga. With these
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weights, the total weight of the edges corresponding to an internal uw ∈ K is 1−c
2td , the

total weight of the edges corresponding to an external uw ∈ K is 1−c
2t2

, and the total

weight of the edges in a block B′v is
(
η
2

)
c
tη2
. c

2t (where . means approximate equality

and ≤).

Leaving the topic of edge weights for a moment, we now let F ′ be the subgraph

of F obtained after we delete the following edges from F : edges incident to V0; edges

inside some Vi, i ∈ [k]; edges that join pairs that are not (1;F, ε)-regular; and edges

that join pairs with (1;F )-density less than 2ε. (This cleanup is of course a standard

concomitant of the Regularity Lemma.) Since l ≤ n/k, this deletes at most

εn2 + k

(
l

2

)
+ ε

(
k

2

)
l2 + 2εl2

(
k

2

)
≤ 3εn2 (3.10)

edges from F .

Let F̃ be the subgraph of K ·Kη with ij ∈ F̃ iff there is an edge joining Vi and Vj in

F ′. By Lemma 2.22 (with s = 1) and the triangle-freeness of F , F̃ is also triangle-free.

Let F ′′ be the subgraph of Ga defined by

∇F ′′(Vi, Vj) =


∇Ga(Vi, Vj) if ij ∈ F̃

∅ if ij /∈ F̃
.

With these definitions, (3.9), (3.10) and the calculations between them give

|F | ≤ |F ′|+ 3εn2 ≤ |F ′′|+ 3εn2 ∼ w(F̃ )/(c/(tη2l2)) + 3εn2, (3.11)

where (of course) w(F̃ ) =
∑

uw∈F̃ w(uw).

Our next goal is to massage F̃ until it resembles a configuration on K. For each

x ∈ V (F̃ ) = V (K ·Kη), let w(x) be the sum of the weights of its incident F̃ -edges.1 Fix

some order π of V (K), and for each v ∈ V (K), in the chosen order, do the following,

making changes to F̃ as necessary. We continue to write F̃ for the evolving graph.

1For the rest of the argument we use x, y, z and w, rather than i and j, for vertices of K ·Kη, since
we want several letters from the same part of the alphabet. We use u and v for vertices of K.
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1. Pick x ∈ B′v such that w(x) = maxy∈B′v w(y).

2. Set Sv = {y ∈ B′v | xy ∈ F̃} and Tv = B′v \ Sv.

3. For each y ∈ Tv \ {x}, replace NF̃ (y) by NF̃ (x).

4. Pick z ∈ Sv such that w(z) = maxw∈Sv w(w).

5. For each w ∈ Sv \ {z}, replace NF̃ (w) by NF̃ (z).

Let F̃ ′ ⊆ K ·Kη be the graph obtained from F̃ after performing these steps for each

v ∈ V (K). We make the following observations about F̃ ′:

(i) w(F̃ ′) ≥ w(F̃ );

(ii) F̃ ′ is triangle-free, since F̃ is—note in particular that Sv ⊆ NF̃ (x) implies F̃ [Sv] =

∅;

(iii) For each v ∈ V (K), F̃ ′[B′v] is the complete bipartite graph between Sv and Tv;

and

(iv) For each v ∈ V (K), z, w ∈ Sv, and x, y ∈ Tv, we have NF̃ ′(z) = NF̃ ′(w) and

NF̃ ′(x) = NF̃ ′(y).

The only tricky point here is (iv). Clearly for a given u ∈ V (K), the condition in (iv)

holds at u immediately after we perform steps 1–5 at u. But how do we know we don’t

violate the condition at u in the process of doing 1–5 at some other v ∈ V (K) coming

later in π? Assume we do, so that there exist x, y ∈ Ru ∈ {Su, Tu} and z ∈ B′v such that

xz ∈ F̃ ′ and yz /∈ F̃ ′. Just before we began 1–5 at v, z was F̃ -adjacent to either both

of x, y or neither, so we must have replaced NF̃ (z) in the course of doing 1–5 at v. So

there was some w ∈ B′v (whose F̃ -neighborhood replaced that of z) which, just before

beginning 1–5 at v, was F̃ -adjacent to exactly one of x, y. But this is a contradiction.

For each v ∈ V (K), let Rv be the larger of Sv, Tv, and Pv the smaller (choose

arbitrarily if they are the same size). Let F̂ be the subgraph of K+ obtained from F̃ ′

by collapsing each Rv to a vertex vb and each Pv to a vertex vs, and set φ(vb) = |Rv|/η

and φ(vs) = |Pv|/η = 1 − φ(vb) for each v ∈ V (K). Then (ii)–(iv) imply that (F̂ , φ)
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is a configuration on K, after adding vertex edges vbvs for those v ∈ V (K) for which

Pv = ∅ (if any).

Now since H is c-fair, we have wc(F̂ , φ) ≤ 1/2. By the weight calculations after

(3.9), we have wc(F̂ , φ) ≥ w(F̃ ′) (the only error here comes from the weight in a block

of K ·Kη being
(
η
2

)
c
tη2

instead of exactly c
2t). Thus by (3.11) and (i), using ηl ≤ n/(2t)

and ε < δ/(48tc), we have

|F | ≤ w(F̃ )

c/(tη2l2)
+ 3εn2 + o(m) ≤ w(F̃ ′)

c/(tη2l2)
+ 3εn2 + o(m)

≤ 1/2

c/(tη2l2)
+ 3εn2 + o(m)

< n2(8tc)−1 + n2δ(16tc)−1 + o(m)

< (1 + δ/2 + o(1))m/2

< (1 + δ)m/2,

where the penultimate inequality recalls (3.8) and the last holds for large enough a.

3.4 Proof of Lemma 3.10

We now turn to the proof of Lemma 3.10, that for any c > 0 there are triangle-free,

d-regular, c-fair graphs H with arbitrarily large d. Luckily we need not invent anything

here; rather we show—though not so easily—that for any fixed c, all sufficiently large

graphs from a well-known family are c-fair. The relevant family was described by Noga

Alon in [1]; since he proved therein that all graphs in this family are triangle-free and

regular, with degree going to infinity, this will prove Lemma 3.10. We first list the

relevant properties of these graphs.
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Proposition 3.11 ([1, Theorem 2.1]). For all t0 ∈ N, there exist t ≥ t0 and a triangle-

free graph Ht on t vertices satisfying

•Ht is d-regular, with d = Θ(t2/3), and (3.12)

• all eigenvalues λi of Ht, other than the largest, satisfy |λi| = O(
√
d) = O(t1/3).

(3.13)

Alon gives much more detailed information about these graphs, including a precise

formula for d and bounds on the eigenvalues, but the above properties are all we will

need. In fact, a weaker eigenvalue bound than (3.13) would suffice for our purposes. (We

need such a bound primarily to guarantee good density properties for H, for which our

(standard) tool is Lemma 2.16). It is probably not too hard—e.g. by random methods,

somewhat relaxing the regularity requirement of Lemma 3.10—to produce other families

of graphs, less nice than Alon’s, that would be adequate here. Recognizing this, we

nonetheless gladly use Alon’s graphs because they are convenient and they work.

Setup for the rest of this chapter. We fix c ∈ (0, 1] at the outset, and throughout

we let (F, φ) be a configuration on K = KH,H , where H = Ht for some t. We denote the

degree of H by d and its eigenvalues by d = λ1 > λ2 ≥ · · · ≥ λt, and set λ = maxi>1 |λi|.

Goal: To show that H is c-fair whenever t is sufficiently large. (3.14)

Each proposition in what follows is an asymptotic statement, making some claim about

H or (F, φ) as t grows to infinity; thus our asymptotic notation all refers to t → ∞.

Our usage here may be a little confusing, since we treat t as tending to infinity, whereas

the discussion in Section 3.3 calls for a fixed H = Ht depending on c (that is, on α).

But of course what we are showing here is that given c, Ht is c-fair for large enough t,

so that for our application in Section 3.3 we can fix such a t. We always assume (as we

may) that wc(F, φ) ≥ 1/2; we want to show that in fact wc(F, φ) = 1/2.

Though a configuration on K is defined via K+, it will be more convenient in what

follows to think of it in terms of K itself. We next set up some notation and terminology
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for this purpose.

Definitions 3.12 (edge classes, weight captured, gain/loss). Given a graph H = Ht

and a configuration (F, φ) on K = KH,H , we divide the edges of K into four classes.

An edge uw ∈ K is of

• class 1 if ubwb, usws ∈ F ,

• class 2 if ubwb ∈ F , usws /∈ F ,

• class 3 if ubws, uswb ∈ F , and

• class 4 otherwise.

For each uw ∈ K, we will say our configuration captures the fraction
∑

uxwy∈F φ(ux)φ(wy)

of the weight of the edge. This weight is 1−c
2td for internal edges and 1−c

2t2
for ex-

ternal edges. Similarly, we say our configuration captures the fraction 2φ(vb)φ(vs)

of the weight of each vertex v of K. This weight is c
2t . For v ∈ V (K), set δv =

φ(vb) − 1/2, so that δv measures how far from evenly the configuration splits the

mass of v. Then e.g. if uw ∈ K is of class 1, our configuration captures the frac-

tion (1/2 + δu)(1/2 + δw) + (1/2 − δu)(1/2 − δw) = 1/2 + 2δuδw of the weight of uw,

and if uw is of class 3 then it captures the fraction 1/2− 2δuδw. Similarly, it captures

the fraction 1/2− 2δ2
v of the weight of each vertex v.

Given uw ∈ K, we sometimes want to compare the fraction of the weight of uw

captured by our configuration to the fraction of the weight of uw captured by the

näıve configuration, namely 1/2. We call this difference
∑

uxwy∈F φ(ux)φ(wy) − 1/2 ∈

[−1/2, 1/2] the fractional gain at uw, and its negative the fractional loss at uw. (Either

of these can be positive or negative.) More often we want to weight the fractional gain

(loss) at an edge by the appropriate edge weight (1−c
2td or 1−c

2t2
); we call this product

simply the gain (loss) at the edge (no “fractional”). (Examples: if the fractional gain

at internal edge uw is .16, then the gain at uw is .16(1−c
2td ); if vz is an external edge of

class 3, then the loss at vz is 2δvδz(
1−c
2t2

).) We use analogous terminology for vertices:

the fractional loss at v is 2δ2
v , and the loss at v is cδ2

v/t.
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Write ζi (respectively ζe) for the average fraction of the weight of an internal (re-

spectively external) edge captured by our configuration—that is,

ζi =
1

td

∑
uxwy∈F
internal

φ(ux)φ(wy) and ζe =
1

t2

∑
uxwy∈F
external

φ(ux)φ(wy)

—and set γi = ζi − 1/2, γe = ζe − 1/2. Thus γi and γe represent the average fractional

gain of our configuration on internal and external edges of K, respectively. Lastly, write

δ for the average of the δv’s over V (K). ♦

With these definitions, notice that
(

1−c
2

)
(γi + γe) is the total gain over all edges of

K. So, to reiterate (3.14), our goal is to show that this is always counterbalanced by an

equal or larger loss in the vertices of K whenever t is sufficiently large. What follows

is a long string of propositions culminating in a proof of this.

Proposition 3.13. Let R be an ETF subgraph of K containing fractions ξi(R) and

ξe(R) of the internal and external edges of K, respectively. Then

ξi(R) + ξe(R) < 1 + o(1). (3.15)

Proof. We apply Lemma 2.21 with r = b = 2, ε arbitrarily small but fixed, m = 2dε−1e,

H1 = R[X] ∪R[Y ], H2 = ∇R(X,Y ), s1 = d/t, and s2 = 1.

We must first check that (for large enough t) H1 is (d/t; 2, β)-bounded and H2 is

(1; 2, β)-bounded, where β = β(ε, b,m, r) > 0 is given by the lemma (but of course

the statement is really that these hold for any fixed β and, again, sufficiently large

t). The second of these is trivial. For the first, letting U,W ⊆ V (K) be disjoint with
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|U |, |W | ≥ 2tβ, we have, using Lemma 2.16,

dd/t,H1
(U,W ) =

|∇H1(U,W )|
(d/t)|U ||W |

=
|∇H(U ∩X,W ∩X)|

(d/t)|U ||W |
+
|∇H(U ∩ Y,W ∩ Y )|

(d/t)|U ||W |

≤
|U ∩X||W ∩X|d/t+ λ

√
|U ∩X||W ∩X|

(d/t)|U ||W |

+
|U ∩ Y ||W ∩ Y |d/t+ λ

√
|U ∩ Y ||W ∩ Y |

(d/t)|U ||W |

≤
|U ||W |d/t+ λ

√
|U ||W |

(d/t)|U ||W |
≤ 1 + o(1),

which is at most 2 for large enough t.

Let Π = (V0, V1, . . . , Vk) be the partition given by Lemma 2.21. By comment (i)

following the lemma we may assume each nonexceptional part of Π is contained in

either X or Y , and by comment (ii) we may assume |V0 ∩X| = |V0 ∩ Y |, implying that

X and Y each contain exactly k/2 parts of Π. Given a pair of nonexceptional parts of

Π, we say the pair is external if exactly one of them is contained in X, and internal

otherwise.

We now delete the following edges from R: edges incident to V0; edges inside some

Vi, i ∈ [k]; edges that join (internal) pairs that are not (d/t;H1, ε)-regular; edges that

join (external) pairs that are not (1;H2, ε)-regular; edges that join internal pairs with

(d/t;H1)-density less than 2ε; and edges that join external pairs with (1;H2)-density

less than 2ε. The following table lists upper bounds for the numbers of edges deleted

from H1 and H2 in each of these categories. For convenience we set l := |V1| ≤ 2t/k.

H1 = R[X] ∪R[Y ] H2 = ∇R(X,Y )

edges incident to V0 ≤ d|V0| ≤ 2εtd ≤ t|V0| ≤ 2εt2

edges inside some Vi ≤ k
(
l2d
2t + λl

2

)
≤ 2td/k + tλ

≤ ε(td+ tλk) ≤ εtd(1 + o(1))

0

edges joining pairs that
are not (d/t;H1, ε)-regular

≤ ε
(
k
2

) (
l2d
t + λl

)
≤ ε(2td+ λtk)

≤ εtd(2 + o(1))

0

edges joining pairs that
are not (1;H2, ε)-regular

0 ≤ ε
(
k
2

)
l2 ≤ 2εt2

edges joining internal pairs
with (d/t;H1)-density less
than 2ε

≤ 2
(
k/2
2

)
(2εl2d/t) ≤ 2εdt 0
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edges joining external
pairs with (1;H2)-density
less than 2ε

0 ≤ (k/2)22εl2

≤ 2εt2

TOTAL ≤ (7 + o(1))εtd ≤ 6εt2

Let X̃ = {i ∈ [k] | Vi ⊆ X} and Ỹ = [k] \ X̃. Let R̃ be the graph on X̃ ∪ Ỹ where

ij ∈ R̃ iff there is an undeleted edge joining Vi and Vj in R. Then since R is ETF,

Lemma 2.22 gives that R̃ is as well (meaning, as usual, that it contains no triangles

meeting both X̃ and Ỹ ).

Now each internal edge of R̃ corresponds to a pair in Π whose R-edges contribute a

total of at most

l2d/t+ λl

td
≤ 4

k2
+

2λ

kd
= 4/k2 + o(1)

to the fraction ξi(R). Similarly each external edge of R̃ corresponds to a pair in Π

whose R-edges contribute a total of at most l2/t2 ≤ 4/k2 to the fraction ξe(R). By

Lemma 2.18 |R̃| ≤ k2/4, so the contribution to ξi(R) + ξe(R) from undeleted R-edges

is at most 1 + k2o(1) = 1 + o(1). And as computed in the table above, the contribution

to ξi(R) + ξe(R) from deleted R-edges is at most 13ε + o(1). Thus ξi(R) + ξe(R) ≤

1 + 13ε+ o(1). Since ε was arbitrarily small, the proposition is proved.

We now return to our configuration (F, φ).

Proposition 3.14. We have ζi + ζe < 1 + o(1), or equivalently,

γi + γe < o(1). (3.16)

Proof. Suppose that for each v ∈ V (K) we randomly choose one of vb, vs, with Pr(vx) =

φ(vx) and these choices made independently. This produces a random ETF subgraph

R of K in the obvious way: uw ∈ R iff uxwy ∈ F , where we chose ux ∈ {ub, us} and

wy ∈ {wb, ws}. Observe that Pr(uw ∈ R) is the fraction of the weight of uw captured
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by our configuration. With this observation, we calculate

ζi + ζe =
1

td

∑
uw∈K
internal

Pr(uw ∈ R) +
1

t2

∑
uw∈K

external

Pr(uw ∈ R)

= E[|R ∩ (K[X] ∪K[Y ])|/td] + E[|R ∩∇(X,Y )|/t2]

= E[ξi(R) + ξe(R)]

< 1 + o(1),

where the last inequality is given by Proposition 3.13.

Proposition 3.15. We have δ = o(1).

Proof. We simply calculate wc(F, φ) (which, recall, we assume is at least 1/2):

wc(F, φ) =
1− c

2
ζi +

1− c
2

ζe +
c

2t

∑
v∈V (K)

(1/2− 2δ2
v)

= 1/2 +

(
1− c

2

)
(γi + γe)−

c

t

∑
v∈V (K)

δ2
v

≤ 1/2 + o(1)− 2c

(
1

2t

∑
v∈V (K)

δv

)2

= 1/2− 2cδ2 + o(1),

where we used Proposition 3.14 and Cauchy-Schwarz between the second and third

lines.

From now on we call a vertex v of K balanced if δv <
√
δ, and unbalanced otherwise;

thus, in view of Proposition 3.15, all but a o(1)-fraction of the vertices ofK are balanced.

Also, we let G be the subgraph of K consisting of all edges of classes 1–3, and Γ the

subgraph of G consisting of edges of classes 1 and 2. Notice that since F is ETF,

Γ has even intersection with every external triangle in G. (3.17)

The next three facts say that in various senses, as t grows, G accounts for nearly all of
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K.

Proposition 3.16. The total loss on K \G is o(1).

Proof. The total gain on G is at most what it would be if all edges of K were of class 1.

Since at most o(t) vertices are unbalanced, the total weight of all edges of K incident

to unbalanced vertices is o(1), so this gain is at most

(1− c)2
√
δ

2
+ o(1)(1− c)2(1/2)2,

which is o(1) by Proposition 3.15. Thus if the loss on K \G were Ω(1), we would have

wc(F, φ) < 1/2 for sufficiently large t (since loss on vertices is always nonnegative).

Corollary 3.17. There are at most o(t2) class 4 edges in K.

Proof. Assume otherwise, so that |K \G| = Ω(t2). Then since at most a o(1)-fraction of

the edges of K are incident to unbalanced vertices, most class 4 edges join two balanced

vertices. The fractional loss at any such edge is Ω(1) (at least about 1/4, in view of

Proposition 3.15), so the total loss on K \G is Ω(1), contradicting Proposition 3.16.

Corollary 3.18. There are at most o(td) class 4 edges in each of K[X], K[Y ].

Proof. Assume for a contradiction that |(K \ G)[X]| = Ω(td) (the proof for Y is of

course the same). Then since at most o(td) edges of K[X] are incident to unbalanced

vertices, most class 4 edges in K[X] join two balanced vertices. The fractional loss at

any such edge is Ω(1) (at least about 1/4, in view of Proposition 3.15), so the total loss

on K \G is Ω(1), contradicting Proposition 3.16.

The next result concerns only H, not K or (F, φ).

Proposition 3.19. For any H ′ ⊆ H of size (1− o(1))|H|, there is a U ⊆ V (H) of size

o(t) such that H ′ − U is connected and C(H ′ − U) is spanned by cycles of length up to

11.
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Proof. By Proposition 2.17 (and noting that finite diameter implies connectedness), it

suffices to find a U of size o(t) such that H ′ − U has diameter at most 5. To this end,

let U1 = {v ∈ V (H) | dH\H′(v) ≥ d/3}. Then u1 := |U1| ≤ 2|H \ H ′|/(d/3) = o(t).

Let U2 = {v ∈ V (H) \ U1 | |N(v) ∩ U1| ≥ d/3}. We claim u2 := |U2| = o(t1/3)

(we just need o(d)). Indeed, applying Lemma 2.16 to H, we have (1/3 − o(1))u2d ≤

| |∇(U1, U2)| − u1u2d
t | ≤ λ

√
u1u2, which (since d = Θ(t2/3) and λ = O(t1/3)) gives

u2 ≤ O(t−2/3u1) = o(t1/3), as claimed.

Set U = U1 ∪ U2 and H ′′ = H ′ − U , and for each v ∈ V (H ′′) denote by N2(v) the

second neighborhood of v in H ′′; that is, the set of vertices at distance exactly 2 from

v in H ′′. We want to show that H ′′ has diameter at most 5. For this it suffices to

show that every v satisfies d2(v) := |N2(v)| = Ω(t), since for any S, T ⊆ V (H ′′) with

|S|, |T | = Ω(t) we have ∇H′′(S, T ) 6= ∅ (using Lemma 2.16 on H and the fact that

|H \H ′| = o(|H|)).

To see that (for any v) d2(v) = Ω(t), note first that dH′′(v) ≥ (1/3−o(1))d (= Ω(d)),

since v loses at most a third of its H-neighbors to H \ H ′, at most another third to

U1, and a o(1)-fraction to U2. Thus, since H is triangle-free, |∇H(NH′′(v), N2(v))| =

Ω(d2) = Ω(t4/3). On the other hand Lemma 2.16 gives |∇H(NH′′(v), N2(v))| ≤

dH′′(v)d2(v)d/t + λ
√
dH′′(v)d2(v) = O(t1/3)d2(v) + O(t2/3)

√
d2(v), implying d2(v) =

Ω(t) as claimed.

Corollary 3.20. Any H ′ ⊆ H of size (1 − o(1))|H| has a component with t − o(t)

vertices.

(This is strictly weaker than Proposition 3.19; we include it for easy reference later.)

We now return to K and our configuration (F, φ). The next result does most of the

heavy lifting for Lemma 3.10.

Proposition 3.21. There exist S ⊆ V (K) of size o(t) and a partition AtB of V (K)\S

such that Z := Γ4∇G(A,B) satisfies

Z ⊆ ∇(X,Y )
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and

dZ(v) = o(t) ∀ v ∈ V (K) \ S.

Proof. Let κ = |(K \ G) ∩ ∇(X,Y )|/t2, which is o(1) by Corollary 3.17. Let S0 =

{v ∈ V (K) | v is incident to at least t
√
κ external class 4 edges}. Then |S0|t

√
κ ≤

2κt2, implying |S0| = O(t
√
κ) = o(t). Now apply Proposition 3.19 to each of G[X \ S0]

and G[Y \ S0], which we may do by Corollary 3.18. Let S1 be the union of S0 and the

two deleted sets from Proposition 3.19, and set Ḡ = G−S1, X̄ = X \S1 and Ȳ = Y \S1.

Let T (Ḡ) be the subspace of C(Ḡ) generated by the external triangles of Ḡ. Then

we observe, crucially:

all cycles of G[X̄] and G[Ȳ ] of length up to 11 belong to T (Ḡ). (3.18)

To see this, let C = x1, . . . , xkx1 be a cycle, say in G[X̄], with k ≤ 11. If there exists

y ∈ Ȳ with xiy ∈ G ∀ i ∈ [k], then C ∈ T (Ḡ), because C is the sum of the triangles

xixi+1yxi, where of course we take subscripts mod k. But if there is no such y then for

some xi we have

|∇K\G(xi, Ȳ )| ≥ |Ȳ |/11,

implying xi ∈ S0, which it isn’t.

Now by (3.18) and our choice of S1, we have

Γ[X̄] = ∇G(X̄1, X̄2) and Γ[Ȳ ] = ∇G(Ȳ1, Ȳ2)

for some partitions X̄1tX̄2 of X̄ and Ȳ1t Ȳ2 of Ȳ , since Γ is orthogonal (over F2, recall)

to all external triangles in Ḡ (see (3.17)), and thus to all cycles in G[X̄] and G[Ȳ ] of

length up to 11 (by (3.18)), and thus to all cycles in G[X̄] and G[Ȳ ] (see Proposition

3.19).

By Corollary 3.20 we can find a U ⊆ X̄ ∪ Ȳ of size o(t) such that G[X̄ \ U ] and

G[Ȳ \ U ] are connected. Set S = S1 ∪ U , producing the S of the proposition. Finally,

set X ′1 = X̄1 \U , X ′2 = X̄2 \U and X ′ = X ′1 ∪X ′2 (= X̄ \U), and define Y ′1 , Y ′2 and Y ′
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similarly.

Now suppose x ∈ X ′. Since all but a o(1)-fraction of the external edges at x

belong to ∇G(x, Y ′), the subgraph of G induced by the corresponding vertices (that is,

G[NG(x)∩Y ′]) has a component of size t− o(t) (Corollary 3.20 again), say with vertex

set Y x
1 ∪ Y x

2 , where Y x
1 ⊆ Y ′1 and Y x

2 ⊆ Y ′2 . Since Γ[Y x
1 ∪ Y x

2 ] = ∇G(Y x
1 , Y

x
2 ), (3.17)

gives

yz ∈ ∇G(Y x
1 , Y

x
2 ) =⇒ |Γ ∩ {xy, xz}| = 1,

yz ∈ G[Y x
1 ] ∪G[Y x

2 ] =⇒ |Γ ∩ {xy, xz}| ∈ {0, 2}.

Thus the connectivity of G[Y x
1 ∪ Y x

2 ] implies that

∇Γ(x, Y x
1 ∪ Y x

2 ) ∈ {∇G(x, Y x
1 ),∇G(x, Y x

2 )}. (3.19)

Moreover, the connectivity of G[X ′] and the fact that any u,w ∈ X ′ have common

G-neighbors in (Y u
1 ∪Y u

2 )∩(Y w
1 ∪Y w

2 ) (in fact many, since u,w /∈ S0) imply “coherence”

of the choices in (3.19), meaning that u and w choose the same option iff they are

on the same side of X ′1 ∪ X ′2. Of course a similar analysis applies with the roles of

X and Y reversed. Assuming without loss of generality that each x ∈ X1 chooses

∇Γ(x, Y x
1 ∪ Y x

2 ) = ∇G(x, Y x
2 ) in (3.19), the proposition is proved, with A = X ′1 ∪ Y ′1

and B = X ′2 ∪ Y ′2 .

At long last we can accomplish the goal set forth in (3.14).

Proof of Lemma 3.10. Let S,A,B ⊆ V (K) and Z ⊆ ∇(X,Y ) be as in Proposition 3.21,

and set W = V (K) \ S (= A ∪B). We analyze K[W ] first, and edges meeting S later.

Set p = 1−c
2td and q = 1−c

2t2
. Let ϕ be the vector indexed by X ∪ Y with

ϕv =


δv if v ∈ A

−δv if v ∈ B

0 if v ∈ S

.
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Let C be the adjacency matrix of H, J the t× t matrix of 1’s, and I the 2t×2t identity

matrix. Lastly, let N be the weighted adjacency matrix of K, and T the adjacency

matrix of Z. These matrices look like this:

N =

X Y

X pC qJ

Y qJ pC

T =

X Y
o(t) 1’s

X 0 per row

o(t) 1’s
Y per row 0

.

On K[W ], the weight our configuration captures is at most what it would be if all

class 2 edges, as well as all class 4 edges in ∇(A,B), were instead class 1, and all class

4 edges in K[A] ∪ K[B] were instead class 3. In this case, our configuration’s overall

loss on K[W ] (edges and vertices) would be exactly

ϕᵀ(N − 2qT + (c/t)I)ϕ. (3.20)

To show that our configuration captures at most half the weight of K[W ] it would

suffice to show (3.20) to be nonnegative, but let’s instead show the stronger

ϕᵀMϕ ≥ 0, (3.21)

where M = N −2qT +(.66c/t)I. Thus we’re showing that the gain on edges of K[W ] is

at most (.66c/t)
∑

v∈W δ2
v , reserving the remaining vertex loss in W , (.34c/t)

∑
v∈W δ2

v ,

for use below in handling edges meeting S. For (3.21), we simply show M is positive

definite. We first treat the N term and then the T term, helping ourselves to a little

bit of the I term in each of these steps. As will be clear below, and as is perhaps hinted

by the constants .66 and .34, nothing in this argument is very delicate.

Let P and Q be the “pC” and “qJ” portions of N , respectively. Since P and Q

are symmetric and commute, they admit a common orthonormal basis of eigenvectors.

We seek to describe these eigenvectors and their corresponding eigenvalues in terms of
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the eigenvectors and eigenvalues of C, so let w1 = t−1/21, w2, . . . , wt be an orthonormal

eigenbasis for C with corresponding eigenvalues d = λ1 > λ2 ≥ · · · ≥ λt. Then a

common orthonormal eigenbasis for P and Q is

v1 = 2−1/2(w1, w1), v2 = 2−1/2(w1,−w1), . . . ,

v2t−1 = 2−1/2(wt, wt), v2t = 2−1/2(wt,−wt),

where (x, y) is the concatenation of x and y. These eigenvectors have corresponding

eigenvalues pd, pd, pλ2, pλ2, . . . , pλt, pλt for P and qt,−qt, 0, 0, . . . , 0 for Q, and therefore

pd + qt = 1−c
t , pd − qt = 0, pλ2, pλ2, . . . , pλt, pλt for N . Call these N -eigenvalues

µ1, . . . , µ2t (for use below). Now since |λt| ≤ O(t1/3) (see (3.13)), all eigenvalues of N

are at least −O(t−4/3) = −o(t−1). Thus (e.g.) N + (.33c/t)I is (eventually) positive

definite.

We now turn to the T term in M , which is easier. As every absolute row sum of T

is o(t), so is every eigenvalue of T . Thus every eigenvalue of −2qT is at least −o(t−1),

so (e.g.) −2qT + (.33c/t)I is (eventually) positive definite. Therefore M is positive

definite, as claimed.

Finally we deal with contributions involving S. For this let δ̄ = 〈δv | v ∈ V (K)〉,

δ̄′ = 1W ◦ δ̄ (where ◦ denotes componentwise product), αi = δ̄ · vi and α′i = δ̄′ · vi,

i ∈ [2t] (where · denotes the usual inner product). The total gain from edges meeting

S is at most what it would be if all these edges were class 1, which is exactly

δ̄tNδ̄ − (δ̄′)tNδ̄′ =

2t∑
i=1

µi(α
2
i − (α′i)

2)

= µ1(α2
1 − (α′1)2) +

2t∑
i=2

µi(α
2
i − (α′i)

2). (3.22)

In view of what we know about the µi’s, the sum in (3.22) is at most

pλ2

∑
v∈V (K)

δ2
v − (minµi)

∑
v∈W

δ2
v ≤ O(t−4/3)

 ∑
v∈V (K)

δ2
v +

∑
v∈W

δ2
v

 , (3.23)
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while, with ε defined by α′1 = (1− ε)α1, the first term in (3.22) is

µ1(2ε− ε2)α2
1 =

1− c
t

(2ε− ε2)
1

2t

( ∑
v∈V (K)

δv

)2

< εt−2

( ∑
v∈V (K)

δv

)2

(3.24)

≤ min

ε−1t−2

(∑
v∈S

δv

)2

, 2εt−1
∑

v∈V (K)

δ2
v

 (3.25)

(actually (3.24) is equal to the first expression in (3.25)).

On the other hand, we get to subtract from these gains

c

t

∑
v∈S

δ2
v +

.34c

t

∑
v∈W

δ2
v =

.66c

t

∑
v∈S

δ2
v +

.34c

t

∑
v∈V (K)

δ2
v

≥ .66c

t|S|

(∑
v∈S

δv

)2

+
.34c

t

∑
v∈V (K)

δ2
v . (3.26)

We need to say this is larger than the sum of the right hand sides of (3.23) and

(3.25), which is easy. For example, half the second term of (3.26) dominates the right

hand side of (3.23), while the right hand side of (3.25) is at most half the second term

of (3.26) if ε ≤ .17c/2 (to be unnecessarily precise), and otherwise, since |S| = o(t), is

dominated by the first term of (3.26).
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Chapter 4

The Cycle Space of Gn,p

4.1 Introduction

An issue of considerable interest in combinatorics over the last few decades has been

the extent to which various standard facts, for instance the classic theorems of Turán,

Ramsey and Szemerédi, remain true in a “sparse random” setting. Thus, for example,

one may ask for which p = p(n) a given (deterministic) assertion regarding the complete

graph Kn is likely to hold in the (“Bernoulli”) random graph Gn,p. The main result of

this chapter follows this theme.

Our underlying deterministic statement is Proposition 4.1 below, for which we need

a definition: for a fixed graph H, the H-space of G is the subspace of E(G) generated

by the copies of H in G; this will be denoted CH(G), or simply Cκ(G) if H = Cκ.

Proposition 4.1. If κ ≥ 3 is odd, then for any n ≥ κ, Cκ(Kn) = C(Kn).

(Below, in Theorem 4.5, we will characterize CH(Kn) for any fixed H and large enough

n.)

When, in terms of p (= p(n)), are the κ-gons of Gn,p likely to span its cycle space?

Let Tκ be the class of graphs G satisfying Cκ(G) = C(G) and let Qκ be the class of

nonempty graphs each of whose edges lies in a copy of Cκ. For any G, it’s easy to see

that G /∈ Tκ unless every edge of G that lies in a cycle in fact lies in a κ-gon. On the

other hand, if p > (1 + Ω(1)) log n/n then w.h.p. every edge of Gn,p does lie in a cycle

(see [23, p. 105]). So for such p, Gn,p ∈ Tκ w.h.p. at least requires Gn,p ∈ Qκ w.h.p.,

and we should first understand when this is true. Let

p∗κ = p∗κ(n) = [(κ/(κ− 1))n−(κ−2) log n]1/(κ−1) (4.1)
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(where we always use log for ln). Note Qκ is not an increasing property—that is, it

is not preserved by adding edges. Nonetheless, p∗κ is a sharp threshold for Qκ, in the

sense that:

Lemma 4.2. For any fixed κ ≥ 3 and ε > 0,

Pr(Gn,p ∈ Qκ)→


0 if p < (1− ε)p∗κ,

1 if p > (1 + ε)p∗κ.

(4.2)

(Throughout this chapter limits are taken as n→∞.) We prove this routine observation

in Section 4.3. The cases in (4.2) are called the 0-statement and the 1-statement

(respectively).

Given Lemma 4.2, one might hope that p∗κ is also a sharp threshold for Tκ, and it

essentially is, but for a small glitch in the 0-statement: for p < (1 − Ω(1))/n, we have

lim Pr(Gn,p ∈ Tκ) > 0 for the silly reason that the probability of having no cycles at all

is (asymptotically) positive (see e.g. [31, Theorem 1]). Thus we will show:

Theorem 4.3. For any fixed odd κ ≥ 3 and ε > 0,

Pr(Gn,p ∈ Tκ)→


0 if (1− o(1))/n < p < (1− ε)p∗κ,

1 if p > (1 + ε)p∗κ.

We actually prove the following stronger statement (see Section 4.3 for “stronger”),

which says that edges not in κ-gons are the obstruction to Tκ in a precise sense. This

is the main result of this chapter.

Theorem 4.4. For any fixed odd κ ≥ 3,

max
p

Pr(Gn,p ∈ Qκ \ Tκ)→ 0; (4.3)

equivalently,

∀ p = p(n), Pr(Gn,p ∈ Qκ \ Tκ)→ 0. (4.4)

(The (trivial) equivalence is given by the observation that (4.4) holds iff it holds when,



50

for each n, p = p(n) is a value achieving the maximum in (4.3) (and in this case the

two statements are the same).)

Theorems 4.3 and 4.4 for κ = 3 were proved in [12]; even the former had been open

and of interest, being the first unsettled case of a conjecture of M. Kahle (see [24, 25])

on the homology of the clique complex of Gn,p. Perhaps surprisingly, the argument of

[12] does not extend to κ ≥ 5, though, as discussed below, it does share a starting point

with what we do here.

What happens if we replace the Cκ of Proposition 4.1 by some other graph? With

D(G) = {D ∈ E(G) : |D| ≡ 0 (mod 2)}, the proposition generalizes neatly:

Theorem 4.5. For any graph H with at least one edge and n large enough with respect

to H,

CH(Kn) =



C(Kn) if H is Eulerian and |H| is odd,

C(Kn) ∩ D(Kn) if H is Eulerian and |H| is even,

E(Kn) if H is not Eulerian and |H| is odd,

D(Kn) if H is not Eulerian and |H| is even.

(4.5)

Here |H| = |E(H)| and “Eulerian” means degrees are even, but not that the graph is

necessarily connected. Of course the left-to-right containments (CH(Kn) ⊆ C(Kn) and

so on) are obvious.

The natural value of CH(G), which we will denote WH(G), is then what one gets by

replacing Kn by G in the appropriate expression on the right hand side of (4.5); e.g.

for H = Cκ,

WH(G) =

 C(G) if κ is odd,

C(G) ∩ D(G) if κ is even.
(4.6)

(We could instead set WH(G) = E(G)∩CH(Kn), which by Theorem 4.5 is the same for

all but a few values of n.) So we are interested in understanding when Gn,p is likely to

lie in

TH := {G : CH(G) =WH(G)}.
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(Again, CH(G) ⊆ WH(G) is trivial for any H and G.)

As before, membership in TH will (in non-silly cases) at least require that the copies

of H cover the edges of G := Gn,p, but when H is non-Eulerian there is a second

requirement: each vertex (of G) should have odd degree in some copy of H in G (since

for any v ∈ V (G), WH(G) will contain graphs in which v has odd degree). For example

if H is a pair of triangles joined by a slightly long path and n−1+ε < p � n−2/3 for a

suitable small ε depending on the length of the path, then (w.h.p.) all edges of G are

in copies of H, but most vertices fail to lie in triangles, so have even degree in every

copy.

Generalizing Qκ, let QH be the class of nonempty graphs G satisfying (i) each edge

of G is in a copy of H, and (ii) if H is not Eulerian, then each vertex of G has odd degree

in some copy of H; so we have just said that we “essentially” have TH ⊆ QH . Though

we hesitate to make it a conjecture, we don’t know that the following generalization of

Theorem 4.4 is wrong.

Question 4.6. Could it be that for each (fixed) H,

max
p

Pr(Gn,p ∈ QH \ TH)→ 0? (4.7)

Understanding when Gn,p ∈ QH w.h.p. is easier, so this would also tell us when TH is

likely to hold. (Note that in general we don’t expect a statement like Theorem 4.3, since

the “threshold” for QH itself may not be sharp.) Even if (4.7) is not true in general, it

seems likely to hold for reasonably nice H (even, say, edge-transitive to start, though

this should be much more than is needed). One could also relax (4.7) to an Erdős-Rényi-

like threshold statement; e.g. with pQH = min{p0 : Pr(Gn,p ∈ QH) ≥ 1/2 ∀p ≥ p0},

if p� pQH then Gn,p ∈ TH w.h.p.

Outline. The rest of this chapter is organized as follows. Section 4.1.1 digresses breifly

to discuss how Theorem 4.4 was inspired in part by the work of Chapter 3. Section 4.2
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recalls edge space preliminaries, outlines the main points (Lemmas 4.8–4.10) for the

proof of Theorem 4.4, and introduces the (standard) coupling critical to two of their

proofs. Section 4.3 proves Lemma 4.2 and gives the easy derivation of Theorem 4.3

from Theorem 4.4. The heart of the chapter is Sections 4.4–4.6, particularly the last

of these. They supply the proofs of the lemmas of Section 4.2, in ascending order of

difficulty. Section 4.7 gives the easy proof of Theorem 4.5, which we postpone as it is

unrelated to the rest of the chapter. Finally (and a bit tangentially), Section 4.8 gives

the proof of a theorem (Theorem 4.12) that takes a step towards settling Question 4.6

(see the remark after Lemma 4.10).

4.1.1 Digression: A Connection to Chapter 3

In Chapter 1, we mentioned that we were motivated to study C(Gn,p) in part by an

aspect of our construction of the graphs disproving Yuster’s conjecture. We are now in

a position to elaborate.

Recall that our construction started with a fixed, random-looking but triangle-free

graph H (see the paragraph after Theorem 3.3). We had this idea early on in the course

of developing the construction. Much later we realized that one of the properties we

would need from this H is (more or less) that its cycle space be spanned by short cycles

(see Proposition 3.19). This discovery, combined with the fact that we had earlier

considered taking as our H a de-triangled instance of Gn,p,
1 led us to wonder what we

could say generally about C(Gn,p).

Despite our historical link between Theorem 4.4 and the construction for Theorem

3.3, the former theorem is not directly relevant to the construction, for several reasons.

For one, as already mentioned, a starting H for the construction must be triangle-free.

For two, the property of H asserted in Proposition 3.19 is somewhat peculiar, dealing

with the cycle space of subgraphs of H in addition to that of H itself. For three, and

most importantly, Theorem 4.4 is overkill in the sense that Proposition 3.19 doesn’t

require any graph (H or any of its subgraphs) to be spanned by cycles of a fixed length,

1Recall we eventually settled on a better H—see Proposition 3.11 and the succeeding paragraph.
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but only by cycles up to a fixed length. This, as the first two lines of the proposition’s

proof indicate, is much easier.

4.2 Main Points for the Proof of Theorem 4.4

Before outlining the proof of Theorem 4.4, we need to review just a little more back-

ground.

4.2.1 Edge Space Basics

The edge space E(G) of a graphG (defined early in Chapter 2), being an F2-vector space,

comes equipped with a standard inner product: 〈J,K〉 =
∑

e∈E(G) J(e)K(e) = |J ∩K|,

where the sum and cardinality are interpreted mod 2. (The first expression thinks of J

andK as vectors, the second as subgraphs ofG.) With this, the orthogonal complement,

S⊥, of a subspace S of E(G) is defined as usual. Then C⊥(G), called the cut space of

G, consists of the (indicators of) cuts of G (which, note, includes ∅); (C(G) ∩ D(G))⊥

consists of cuts and their complements; and C⊥H(G) is the set of subgraphs of G having

even intersection with every copy of H (in G).

As mentioned earlier, CH(G) ⊆ WH(G) always; dually, W⊥H(G) ⊆ C⊥H(G). In partic-

ular, for odd κ ≥ 3,

C⊥(G) ⊆ C⊥κ (G), and equality here is the same as G ∈ Tκ. (4.8)

The next (trivial) observation will be useful at a few points.

Proposition 4.7. Let G be a graph and L ⊆ G, and suppose L′, L′′ are (respectively)

smallest and largest members of the coset L+ C⊥(G). Then

∀ v ∈ V dL′(v) ≤ dG(v)/2 ≤ dL′′(v).

(For example if dL′(v) > dG(v)/2, then L′ +∇(v) (∈ L+ C⊥(G)) is smaller than L′.)

In particular, if G /∈ Tκ, then since C⊥κ (G) \ C⊥(G) ⊇ L + C⊥(G) for any L ∈
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C⊥κ (G) \ C⊥(G), a smallest element F of C⊥κ (G) \ C⊥(G) satisfies

dF (v) ≤ dG(v)/2 ∀ v ∈ V. (4.9)

4.2.2 Structure of the Proof

From now through the end of Section 4.7 we fix an odd κ ≥ 5 (as mentioned earlier, the

case κ = 3 of Theorem 4.4 was proved in [12]), and set p∗ = p∗κ, Q = Qκ, T = Tκ and

G = Gn,p; so our objective, (4.3), becomes

max
p

Pr(G ∈ Q \ T )→ 0. (4.10)

As sometimes happens, though (4.10) should become “more true” as p (> p∗) grows,

some points in the proof run into difficulties for larger p, and it seems easiest to deal

first with smaller p and then derive the full statement from this restricted version. The

next two lemmas, the first of which is our main point, implement this plan.

Lemma 4.8. For any fixed K and p ≤ Kp∗,

Pr(G ∈ Q \ T )→ 0. (4.11)

(The interest here is really in p at least about p∗, smaller values being handled by

Lemma 4.2; see (4.28).)

Lemma 4.9. There exists K > 1 such that if p > q := Kp∗, then

Pr(G /∈ T ) < Pr(Gn,q /∈ T ) + o(1).

Applying Lemmas 4.9 and 4.8, together with (the 1-statement of) Lemma 4.2 to p′(n) :=

min{p(n),Kp∗(n)} then easily gives Theorem 4.4. (For n’s with p(n) > Kp∗, we have,
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using Lemma 4.9 for the first inequality and Lemmas 4.8 and 4.2 for the final o(1),

Pr(G ∈ Q \ T ) < Pr(Gn,p′ 6∈ T ) + o(1)

< Pr(Gn,p′ ∈ Q \ T ) + Pr(Gn,p′ 6∈ Q) + o(1) = o(1),

and for the remaining n’s we have p = p′ and Lemma 4.8 applies directly.)

The following device will play a central role in the proofs of both of these lemmas

(so in most of this chapter). For the rest of the chapter we fix some rule that associates

with each finite graph G a subgraph F (G) satisfying

F (G) =


∅ if G ∈ T ,

some smallest element of C⊥κ (G) \ C⊥(G) if G /∈ T .
(4.12)

(By (4.8), this makes sense.)

We will use this only with G, so set F (G) = F throughout. A crucial point is that

G determines F (see the paragraph preceding Proposition 4.11). That F is a minimizer

will be used only to say that it is small and has small degrees, as promised by (4.9).

Another useful observation (recalling the notation of Section 2.4):

xy ∈ F =⇒ |F | ≥ σκ−1(x, y) + 1. (4.13)

(Proof: Since F lies in C⊥κ (G), it must contain a second edge of each κ-gon of G

containing xy, and there is a set of σκ−1(x, y) such κ-gons that share no edges except

xy.)

With F thus defined we may replace the event {G /∈ T } by the more convenient {F 6=

∅}, which in particular allows us to tailor our treatment to the size of a hypothetical F .

As we will see, ruling out fairly large F ’s is easy—not from scratch, but with the help

of a powerful result from [11] (Theorem 2.19), which more or less immediately yields:
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Lemma 4.10. For fixed c > 0 and p� n−(κ−2)/(κ−1),

Pr(|F | > cn2p)→ 0. (4.14)

Thus the real problem in proving Lemma 4.8, and the most interesting part of the

whole business, is dealing with F ’s that are small relative to G (but nonempty). Thus

far—and a little further; see the preview following the statement of Lemma 4.14—our

structure mirrors that of [12]; but the (two-page) argument handling this main point

there offers no help here.

Remark. In connection with Question 4.6, it seems worth observing that Lemma 4.10, at

least, can be considerably extended. In fact we can prove a statement of this type with

the odd cycle Cκ replaced by a general H, though not always with the (conjecturally

correct) lower bound on p that would correspond to a positive answer to Question 4.6.

See Section 4.4 for a statement and Section 4.8 for a (sketchy) proof.

4.2.3 Coupling

A critical role in the proofs of Lemmas 4.8 and 4.9 is played by the usual coupling of

G (= Gn,p) and Gn,q, where p will always be the value we’re really interested in and

q < p will depend on what we’re trying to do.

So, from now on we set G0 = Gn,q.

A standard description: let λe, e ∈ E(Kn), be chosen uniformly and independently

from [0, 1] and set

G = {e : λe < p}, G0 = {e : λe < q}.

In particular G0 ⊆ G. Probabilities in the proofs of Lemmas 4.8 and 4.9 will refer to

the joint distribution of G and G0.

We will get most of our leverage from two alternate ways of viewing the choice of

the pair (G,G0):
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(A) Choose G first; thus we choose G in the usual way and let G0 be the (“(q/p)-

random”) subset of G gotten by retaining edges of G with probability q/p, these

choices made independently (a.k.a. percolation on G).

(B) Choose G0 first; that is, we choose G0 in the usual way, define p′ by (1−q)(1−p′) =

1−p, and letG be the random superset ofG0 gotten by adding each edge ofKn\G0

to G0 with probability p′, these choices again made independently.

We will often refer to these as “coupling down” and “coupling up” (respectively).

The proof of Lemma 4.9 is based naturally (or inevitably) on the viewpoint in (A);

namely, we show that (with p, q as in the lemma) if G is “bad” (meaning G 6∈ T ) then

the coupled G0 is likely to be bad as well. For the proof of Lemma 4.8, viewpoint (B)

is the primary mover, though the smaller role of (A) is also crucial.

With reference to the setup introduced at (4.12), when working with G and G0 as

above, we set F0 = G0 ∩ F (a (q/p)-random subset of F ; note this has nothing to do

with F (G0), which will play no role here). Then automatically

F0 ∈ C⊥κ (G0), (4.15)

since F0 ∩ C = F ∩ C for any κ-gon C of G0.

We will want to say that certain features of (G,F ) are reflected in (G0, F0). A simple

but crucial point here is that there is no summing (of probabilities) over possible F ’s,

since there is just one F for each G. The following proposition will be sufficient for our

purposes.

Proposition 4.11. With the above setup, for any p, q and g = g(n) = ω(1), w.h.p.

|F0| ∼ |F |q/p if |F | > gp/q

and

dF0(v)

 ∼ dF (v)q/p ∀ v with dF (v) > (g log n)p/q,

< 3g log n ∀ v with dF (v) ≤ (g log n)p/q.
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(This is true for any rule that specifies a particular subgraph (in place of F ) for each

graph; but we will only use it with F (= F (G)), so just give the statement for this

case.)

Proof. These are straightforward applications of Theorems 2.1 and 2.2, so we will be

brief. For the first assertion we want to say that for any fixed ε > 0,

Pr
(
{|F | > gp/q} ∧ {|F0| 6= (1± ε)|F |q/p}

)
→ 0.

But the probability here is less than

Pr
(
|F0| 6= (1± ε)|F |q/p | |F | > gp/q

)
,

which by Theorem 2.1 is less than exp[−Ω(ε2g)].

The second assertion (pair of assertions) is similar, following from

∑
v

Pr
(
dF0(v) 6= (1± ε)dF (v)

∣∣ dF (v) > (g log n)p/q
)
< n exp[−Ω(ε2g log n)]

= o(1)

for any fixed ε > 0, and (now switching to Theorem 2.2)

∑
v

Pr
(
dF0(v) > 3g log n

∣∣ dF (v) ≤ (g log n)p/q
)
< n exp[−(3g log n) log(3/e)]

= o(1).

4.3 Two Simple Points

Here we dispose of Lemma 4.2 and the derivation of Theorem 4.3 from Theorem 4.4.

(Recall we are using G for Gn,p and V for V (G).)

Proof of Lemma 4.2. We begin with the 1-statement, a typical application of Theo-

rem 2.3. We assume p > (1 + ε)p∗ and p = O(p∗) (as we may, since for larger p, the
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1-statement is contained in Theorem 2.8). Given x, y ∈ V , let the Ai’s (in the para-

graph preceding Theorem 2.3) be the (edge sets of) the (κ − 1)-paths joining x and y

in Kn; so X = τκ−1(x, y), µ ∼ nκ−2pκ−1 and ∆ = µ+O(µnκ−3pκ−2) ∼ µ. Thus (note

ϕ(−1) = 1) Theorem 2.3 gives

Pr(τκ−1(x, y) = 0) ≤ exp[−(1− o(1))µ]. (4.16)

So the probability that Q (= Qκ) fails—that is, that there is some xy in G with

τκ−1(x, y) = 0—is less than

(
n
2

)
pe−(1−o(1))µ < exp[log(n2p)− (1− o(1))µ] = o(1)

(since µ > (1− o(1))(1 + ε)κ−1(κ/(κ− 1)) log n ∼ (1 + ε)κ−1 log(n2p)).

For the 0-statement we use the second moment method (see e.g. [3, Chapter 4]) and,

again, Theorem 2.3. Let Zxy be the indicator of the event {xy ∈ G} ∧ {τκ−1(x, y) = 0}

(x, y ∈ V ) and Z =
∑
Zxy. Theorem 2.6 gives Pr(τκ−1(x, y) = 0) > (1 − pκ−1)n

κ−2
>

exp[−µ− o(1)] (µ as above), whence

E[Zxy] > p exp[−µ− o(1)]. (4.17)

In particular E[Z] = ω(1) (using p < (1− ε)p∗ and ignoring the rather trivial case p =

O(n−2)), so for EZ2 ∼ E[Z]2 (which gives the 0-statement via Chebyshev’s Inequality),

it’s enough to show

E[ZxyZuv] < (1 + o(1))E[Zxy]
2

for distinct {x, y},{u, v} ∈
(
V
2

)
, which in view of (4.17) follows from

E[ZxyZuv] ≤ p2 Pr(τκ−1(x, y) = τκ−1(u, v) = 0)

≤ p2 exp[−(1−O(nκ−3pκ−2))2µ] = p2 exp[−2µ+ o(1)].

Here the first inequality is given by Theorem 2.6 (since the events {xy, uv ∈ G} and
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{τκ−1(x, y) = τκ−1(u, v) = 0} are increasing and decreasing respectively), and the

second by Theorem 2.3, where the Ai’s are the (κ− 1)-edge paths joining either x and

y or u and v, for which EX ∼ 2µ (recall X is the number of Ai’s that occur) and it’s

easy to see that ∆− µ = O(n2κ−5p2κ−3) = O(nκ−3pκ−2)µ (= o(µ)).

Proof that Theorem 4.4 implies Theorem 4.3. This is routine and we aim to be brief.

Lemma 4.2 gives the 1-statement (which is the interesting part). For the 0-statement,

it is enough to say that for p in the stated range, G w.h.p. contains an edge lying in a

cycle but not in a Cκ. This is again given by Lemma 4.2 if p is large enough that all

edges are in cycles (w.h.p), which is true if p > (1 + Ω(1)) log n/n (see [23, p. 105]).

For smaller p, w.h.p. G contains cycles of length ω(1) if p > (1− o(1))/n and of length

Ω(n3/10) (say) if p ≥ 1/n (see e.g. [23, Theorem 5.18(i)]). On the other hand, since the

expected number of Cκ’s in G is less than (np)κ, the number of edges in Cκ’s is w.h.p.

less than ω(np)κ for any ω = ω(1); so in the range under discussion, the Cκ’s w.h.p.

don’t cover even one longest cycle in G.

4.4 Proof of Lemma 4.10

Here we give the easy proof of Lemma 4.10 and then state the extension to general H

mentioned in the remark after the lemma.

For the lemma it’s enough to show that the conclusions of Proposition 2.12, The-

orem 2.19 and Proposition 2.13 (c), the latter two with ε = c/3, imply |F | < cnp2

(deterministically).

Let F ′ be a largest element of F + C⊥(G). Then |F ′| ≥ |G|/2 (by Proposition 4.7),

so, since F ′ is Cκ-free, the conclusion of Theorem 2.19 gives an A ⊆ V with

|F ′ \ ∇G(A)| < εn2p. (4.18)

It then remains to observe that (under our assumptions), (4.18) implies

(|F | ≤) |F ′4∇G(A)| < 3εn2p.
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But the conclusion of Proposition 2.13 (c) gives |∇G(A)| < (1 + ε)n2p/4, whence

|∇G(A) \ F ′| ≤ (1 + ε)n2p/4− (|G|/2− εn2p) < 2εcn2p

(where we again used Proposition 2.12 to say |G| ∼ n2p/2).

Generalization. For this discussion we restrict to H with eH ≥ 2. For such an H, set

m2(H) = max

{
eK − 1

vK − 2
: K ⊆ H, vK ≥ 3

}
. (4.19)

This parameter plays a central role in various contexts, in particular in results more or

less related to (the general version of) Theorem 2.19; see e.g. [33] for an overview.

Theorem 4.12. For any fixed H with eH ≥ 2, the following is true. For any ε > 0

there is an M such that if p > Mn−1/m2(H) then w.h.p.: for each F ∈ C⊥H(G) there is

an X ∈ W⊥H(G) with |F∆X| < εn2p; in particular, if CH(G) 6=WH(G), then

min{|F | : F ∈ C⊥H(G) \W⊥H(G)} < εn2p.

This is proved in Section 4.8.

Remarks. Notice that Theorem 4.12 contains an extension of Lemma 4.10, whereas

in the preceding discussion we did need a few lines to get from Theorem 2.19 to the

lemma. But the two theorems live in somewhat different worlds, since Theorem 2.19

assumes only that F is Cκ-free, which is much weaker than requiring that it have odd

intersection with every Cκ.

As mentioned in Section 2.9, the value n−1/m2(H) is not necessarily what’s needed

for Question 4.6. For instance, if H is two triangles joined by a Pl, then m2(H) = 2

(take K to be one of the triangles), but the range where the question is most interesting

(the point at which QH becomes likely) is at p � n−2/3 log1/3 n, corresponding to all

vertices being in triangles. On the other hand, in many (or most) natural cases—e.g.

the (“balanced”) H’s for which K = H achieves the max in (4.19)—Theorem 4.12 does

give what should be the correct extension of Lemma 4.10. (It would be interesting to
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see if one could push the theorem to give the correct extension in general; with our

current approach this would mainly require a fairly significant extension of what we are

getting from “containers,” and we haven’t yet thought about plausibility.)

4.5 Proof of Lemma 4.9

By Corollary 2.11 with l = κ− 1, there is a K > 1 such that if p > Kp∗, then w.h.p.

every {x, y} ∈
(
V
2

)
satisfies σκ−1(x, y) = Ω(π) (4.20)

(where π = π(n, p) is as in the corollary). We work in the coupling framework of

Section 4.2.3, taking q = Kp∗.

For Lemma 4.9 it is of course enough to show

Pr({G /∈ T } ∧ {G0 ∈ T })→ 0. (4.21)

Note that G0 ∈ T implies F0 ∈ C⊥(G0), since we always have F0 ∈ C⊥κ (G0) (see (4.15));

thus (4.21) will follow from

Pr({F 6= ∅} ∧ {F0 ∈ C⊥(G0)})→ 0. (4.22)

So it will be enough to show that

F0 /∈ C⊥(G0) (4.23)

follows (deterministically) from

F 6= ∅ (4.24)

combined with various statements that we already know to hold w.h.p. This is not hard,

but is more circuitous than one might wish. Roughly we show that, barring occurrence

of some low probability event, (i) presence of even one edge in F forces F to be large

enough (not very large) that F0 6= ∅, and (ii) F0 is not substantial enough to meet all
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xy-paths in G0 − xy for an xy ∈ F0, so any such xy is contained in a cycle witnessing

(4.23).

A convention. To slightly streamline the presentation we agree that in this argument,

appeals to a probabilistic statement X—e.g. “X implies” or “by X”—actually refer

to the conclusion of X, which conclusion will always be something that X asserts to

hold w.h.p. See the references to (4.20), Lemma 4.10 and Proposition 4.11 in the next

paragraph for first instances of this.

If (4.24) holds, then (4.20) and (4.13) (for the lower bound) together with Lemma

4.10 (for the upper) imply that

Ω(π) < |F | < n2p/10. (4.25)

Since πq/p � 1, the lower bound in (4.25) and the first part of Proposition 4.11 give

|F0| ∼ |F |q/p, so

0 6= |F0| < (1 + o(1))n2q/10. (4.26)

In addition, Proposition 2.12, (4.9) and the second part of Proposition 4.11 give

dF0(v) < (1 + o(1))nq/2 ∀ v ∈ V.

Thus, setting H0 = G0 \ F0 and recalling the approximate (nq)-regularity of G0 given

by Proposition 2.12, we have

dH0(v) > (1− o(1))nq/2 ∀ v ∈ V. (4.27)

Now choose an xy ∈ F0 (recall (4.26) says F0 6= ∅) and let X,Y be the H0-

components of x and y. By (4.27) and Proposition 2.14 (applied to G0), we have

|X|, |Y | > n/3, which implies X = Y : otherwise X and Y are disjoint and we have the

contradiction

(1− o(1))n2q/9 < |∇G0(X,Y )| ≤ |F0| < (1 + o(1))n2q/10,
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where the first inequality is given by Proposition 2.13 (a) (applied to G0), the second

holds because ∇G0(X,Y ) ⊆ F0, and the third is given by (4.26).

But this (i.e. X = Y ) gives an xy-path in H0, and adding xy to this path produces

a cycle meeting F0 only in xy; so we have (4.23).

4.6 Proof of Lemma 4.8

Here we introduce the two main assertions, Lemmas 4.13 and 4.14, underlying Lemma

4.8, and prove the latter assuming them. The supporting lemmas are proved in Sections

4.6.1 and 4.6.2.

Note that for the proof of Lemma 4.8, Lemma 4.2 allows us to restrict attention to

the range

(1− ε)p∗ < p < Kp∗ (4.28)

(for any fixed ε > 0), and recall that, as observed following (4.14), it’s enough to show

that for a given λ = λ(n)→ 0,

Pr({G ∈ Q} ∧ {0 < |F | < λn2p})→ 0. (4.29)

We again work with the coupling of Section 4.2.3, now taking q = ϑp with a fixed

ϑ ∈ (0, 1) small enough to support the discussion below (the rather mild constraints on

ϑ are at (4.40) and (4.47)). Define the random variables α and α0 by

|F | = αn2p/2 and |F0| = α0n
2q/2. (4.30)

Definitions. Henceforth a path (with length unspecified) is a Pκ−1 (and an xy-path is a

path whose endpoints are x and y). Our paths will always lie in G and often in G0. We

now write σ(x, y) for σκ−1(x, y) (recall from Section 2.4 that this is the maximum size

of a set of internally disjoint xy-paths in G), and σ0(x, y) for the analogous quantity

in G0. For S ⊆ G, a path P is S-central if it contains an odd number of edges of S,
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at least one of which is internal. Let σ(x, y;S) be the maximum size of a collection

of internally disjoint S-central xy-paths, and σ0(x, y;S) the corresponding quantity in

G0. An (S, t)-rope is a Pt whose terminal edges lie in S. Set

R(S) = {{x, y} ∈
(
V
2

)
: σ0(x, y;S) > .25nκ−2qκ−1} (4.31)

and define events

R = {|F ∩R(F0)| ≥ .12αn2p}

and

P = {0 < |F | < λn2p}

(the second conjunct in (4.29)).

Lemma 4.13. There is a fixed ε > 0 such that for p as in (4.28), w.h.p.

G ∈ Q ∧ P =⇒ G ∈ R. (4.32)

(In other words, Pr(G ∈ Q ∧ P ∧R)→ 0. Of course R holds trivially if F = ∅, so it’s

only the upper bound in P that’s of interest here.)

Remarks. For {x, y} ∈
(
V
2

)
, σ0(x, y) should be around nκ−2qκ−1. Lemma 4.13 says that,

provided G ∈ Q ∧ P, it’s likely that for a decent fraction of the edges xy of F , even

σ0(x, y;F0) is of this order of magnitude—which is unnatural if F0 is small relative to

G0 (since then paths should typically avoid F0). Viewed from Lemma 4.13 the parity

requirement in the definition of “central” may look superfluous, since a path of G0

joining ends of an edge of F necessarily has odd intersection with F0; but this extra

condition will later play a brief but important role in justifying (4.36).

For the next lemma we temporarily expand the range of q and G0, assuming only

what’s needed for the proof (though we will use the lemma only with q and G0 as

above).

Lemma 4.14. For fixed t ≥ 3, q = q(n) > n−1 log6 n and G0 = Gn,q, w.h.p.: for



66

S ⊆ G0, say with |S| = βn2q/2, the number of (S, t)-ropes in G0 is

O(max{β2nt+1qt, βnt/2+2qt/2+1}). (4.33)

Remarks. Note this is of interest only when β � 1, since Proposition 2.12 bounds

(w.h.p.) the number in question by (1 + o(1))nt+1qt; see Section 4.6.2 for a little more

on the bounds in (4.33). The bound is also correct, but more trivial, when t = 2. The

lemma doesn’t actually require S ⊆ G0: the proof shows that, for any S ⊆ E(Kn) (of

the stated size) with ∆S = O(nq) (where ∆ is maximum degree), we have the same

bound for the number of Pt’s with terminal edges in S and internal edges in G0.

Preview. The proof of Lemma 4.8, which we are about to give, is based mainly on

“coupling up”: using information about (G0, F0) to constrain what happens when we

choose G\G0. (To this extent our strategy is similar to that of [12], but the resemblance

ends there.) On the other hand, the proof of the crucial Lemma 4.13 in Section 4.6.1 is

based on “coupling down”: most of the work there is devoted to the proof of a similar

statement (Lemma 4.15) involving only G (not G0), from which the desired hybrid

statement follows easily via coupling. In sum, we couple down to show that R is likely

(precisely, the conjunction of its failure with Q∧P is unlikely), and couple up to show

it is unlikely. A little more on the latter:

We would like to say that if G0 is sufficiently nice—as it will be w.h.p.—then P ∧R

is unlikely; this gives (4.29) via Lemma 4.13. The main point we need to add to

Lemmas 4.13 and 4.14 is a deterministic one: if G0 enjoys relevant genericity properties,

together with the conclusion of Lemma 4.14, then, for each S ⊆ G0, R(S) is fairly small

(depending on |S|; see (4.37)). Combined with F 6= ∅ (from P), this will allow us to

say that the lower bound on |G ∩ R(F0)| (= |F ∩ R(F0)|) in R is larger by a crucial

factor α−Ω(1) than |R(F0)|p—its natural value when we “couple up”—which ought to

make R unlikely. But of course F0 depends on G, so, given G0, we are forced to sum the

probability of this supposedly unlikely event over possible values S of F0. This turns

out to mean that the whole argument would collapse if we were to replace the above
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α−Ω(1) by α−o(1). (Here we again use P, in this case to say α is small.)

A word on presentation. We prove the desired

Pr(Q∧ P) = o(1) (4.34)

(= (4.29)) by producing a list of unlikely events and showing that at least one of these

must hold if Q ∧ P does. A more intuitive formulation might, for example, begin:

“By Lemma 4.13 (since we assume Q ∧ P), we may assume R.” But note this would

really mean, not that we condition on R (which is not something we could hope to

understand), but that we need only bound probabilities Pr(S ∧ R) for S’s of interest,

and for a formal discussion this seems most clearly handled by something like the

present approach.

We need two additional events (supplementing P,Q,R above). The first of these is

simply

S = {α0 ∼ α}

(i.e. for any η > 0, α0 = (1 ± η)α for large enough n; recall α, α0 were defined in

(4.30)). The second, which we call T , is the conjunction of a few properties of G0 that

we already know hold w.h.p., namely: |G0| ∼ n2q/2 (see Proposition 2.12); (2.15) and

(2.16) for l ∈ [κ− 1, 2κ− 6] (meaning, in view of (4.28), (2.16) if l = κ− 1 and (2.15)

otherwise); and the conclusion of Lemma 4.14 for t ≤ κ− 1 (actually we only need this

for even t). We first outline and then fill in details.

We have Pr(Q ∧ R) = o(1) (by Lemma 4.13; this is the only role Q plays in the

present argument), and will show

Pr(R∧ {F 6= ∅} ∧ S) = o(1). (4.35)

(This is easy and a secondary use of R. Note {F 6= ∅} is implied by P.)
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We will also show that, deterministically,

R∧ {F 6= ∅} ∧ S =⇒ |(G \G0) ∩R(F0)| > .1αn2p (4.36)

provided ϑ is sufficiently small (this is again easy), and, as mentioned in the preview,

T =⇒ |R(S)| = O(α1+δ
S n2) (4.37)

for some fixed δ > 0 and all S ⊆ G0, where we set αS = 2|S|/(n2q). Thus the

conjunction of P,R,S and T implies (again, deterministically), the event—call it U—

that |G0| < n2q (say) and there is an S ⊆ G0 (namely the one that will become F0)

satisfying (say):

αS < 2.1λ, |R(S)| = O(α1+δ
S n2), and |(G \G0) ∩R(S)| > .09αSn

2p. (4.38)

Thus, finally, for (4.29) it is enough to show (by a routine calculation)

Pr(U) = o(1). (4.39)

(Because: since U implies P ∨R ∨ S ∨ T , (4.39) implies

Pr(Q∧ (P ∨R ∨ S ∨ T )) = Pr(Q)− o(1);

but the left hand side here is at most

Pr(Q∧ P) + Pr(Q∧ P ∧R) + Pr(P ∧R ∧ S) + Pr(T ) = Pr(Q∧ P) + o(1)

(the second and third terms on the left being bounded by Lemma 4.13 and (4.35)

respectively), so we have Pr(Q∧ P) = Pr(Q)− Pr(Q∧ P) = o(1).)

Proof of (4.35). If F 6= ∅ (i.e. α > 0) and R holds, then F ∩ R(F0) 6= ∅, while by
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(4.13), for any xy ∈ F ∩R(F0),

|F | > σ(x, y) ≥ σ0(x, y) > .25nκ−2qκ−1 = Ω(log n).

But then (since log n � p/q) Proposition 4.11 says that w.h.p. |F0| ∼ ϑ|F |, which is

the same as S.

Proof of (4.36). Note it is always true that G0 ∩R(F0) ⊆ F0, since the endpoints of an

xy ∈ (G0∩R(F0))\F0 would be joined by a path (many paths) having odd intersection

with F0, and adding xy to such a path would produce a Cκ having odd intersection

with F0. (As mentioned earlier, this is the reaon for “odd” in the definition of central.)

So if R, S and {F0 6= ∅} hold (and ϑ is slightly small) then

|(G \G0) ∩R(F0)| > .12αn2p− (1 + o(1))αn2q/2 > .1αn2p. (4.40)

Proof of (4.37). Set c = (κ − 3)/2. For l ∈ [c] and ∅ 6= S ⊆ G0 (for S = ∅ there

is nothing to show), call an xy-path (S, l)-central if it is S-central and at least one

of its S-edges is at distance l (along the path) from one of x, y. (So a path may be

(S, l)-central for several l’s.) Let σ0(x, y;S, l) be the maximum size of a collection of

internally disjoint (S, l)-central xy-paths in G0 and

Rl(S) = {{x, y} ∈
(
V
2

)
: σ0(x, y;S, l) > (.25/c)nκ−2qκ−1}, (4.41)

and notice that

R(S) ⊆ ∪l∈[c]Rl(S). (4.42)

Supposing temporarily (through (4.46)) that S and l have been specified, we abbre-

viate σ0(x, y;S, l) = ς(x, y), Rl(S) = Rl and use simply “rope” for “(S, 2l + 2)-rope”
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(defined before Lemma 4.13). Set |Rl| = ρln
2 and

r = 2(κ− 1)− 2(l + 1) = 2(κ− l)− 4 ∈ [κ− 1, 2κ− 6]. (4.43)

We next show that if G0 satisfies

T := maxu,v τ
r(u, v) = O(nr−1qr) (4.44)

(as implied by (2.15) and (2.16), so by T ), then

the number of ropes is Ω(ρln
2l+3q2l+2). (4.45)

Proof. Say a rope P = (ul+1, . . . , u1, z, v1, . . . , vl+1) is generated by {x, y} if there are in-

ternally disjoint paths (z, u1, . . . , uκ−2, w) and (z, v1, . . . , vκ−2, w) with {z, w} = {x, y}.

Each {x, y} ∈
(
V
2

)
generates at least 2

(bς(x,y)/2c
2

)
such ropes (since a set of a internally

disjoint (S, l)-central xy-paths, each with an S-edge at distance l from x, produces
(
a
2

)
of them), while the number of pairs generating a given rope is at most T (since in the

scenario above, the complement of P in the cycle (z, u1, . . . , uκ−2, w, vκ−2, . . . , v1, z) is

a path of length r (see (4.43)) centered at w, so with P determines {x, y}). Thus the

number of ropes is at least

T−1
∑
{x,y}∈Rl 2

(bς(x,y)/2c
2

)
= Ω(|Rl|(nκ−2qκ−1)2/T ) = Ω(ρln

2l+3q2l+2).

If we now also assume the conclusion of Lemma 4.14 for t = 2l + 2 (again, this is

contained in T ), then combining that upper bound with the lower bound in (4.45) gives

ρl = O(max{α2
S , αS(nq)−l}) = O(α1+δ

S ), (4.46)

with δ > 0 depending only on κ. (Here we use αS ≥ n−2, valid since S 6= ∅.)

So, now letting l vary, it follows that if G0 satisfies T (and so all relevant instances

of (4.44) and (4.33)), then (4.46) holds for all l ∈ [c], which in view of (4.42) bounds
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|R(S)| as in (4.37).

(It may be worth noting that for l = 0 the above argument gives only ρl = O(αS),

which loses the crucial δ in (4.46); thus the insistence on central paths in R and

Lemma 4.13.)

Proof of (4.39). Given G0, S, we have |(G\G0)∩R(S)| ∼ Bin(m, p′), with m ≤ |R(S)|

and p′ < p defined by (1− q)(1− p′) = 1− p (as in (B) of Section 4.2.3). So for |R(S)|

as in (4.38), Theorem 2.2 gives

Pr(|(G \G0) ∩R(S)| > .09αSn
2p) < exp[−Ω(αSn

2p log(1/αS))],

where the implied constant depends on δ but not on ϑ. Thus, assuming |G0| < n2q (as

given by U), setting αs = 2s/(n2q) (where s will be |S|, so αs = αS), and summing

over s < 2.1λn2q, we have

Pr(U | G0) <
∑

s

(
n2q
s

)
exp[−Ω(αsn

2p log(1/αs))]

<
∑

s exp[αsn
2p{(ϑ/2) log(2e/αs)− Ω(log(1/αs)}], (4.47)

which is o(1) for small enough ϑ (implying (4.39) since

Pr(U) =
∑
{Pr(G0) Pr(U | G0) : |G0| < n2q}).

4.6.1 Proof of Lemma 4.13

Fix ε > 0 (as in (4.28)) small enough to support the proofs of Propositions 4.17 and

4.20 below; these are our only constraints on ε, and it will be clear they are satisfiable.

We continue to assume that p is as in (4.28).

Most of our effort here is devoted to proving the following variant of Proposition 4.13

in which we replace σ0(x, y, F0) by σ(x, y, F ) and q by p.
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Lemma 4.15. W.h.p.

G ∈ Q ∧ P =⇒ |{xy ∈ F : σ(x, y;F ) > .26nκ−2pκ−1}| ≥ .13αn2p. (4.48)

“Coupling down” will then easily get us to Lemma 4.13 itself. (The extra .01’s, relative

to the pretty arbitrary .25 and .12 in (4.31) and (4.32), leave a little room for this.)

Preview. The proof of Lemma 4.15 breaks into two parts, roughly (w.h.p.): (a) if G ∈ Q

(here we don’t need to assume G ∈ P), then σ(x, y) is close to its natural value for

most xy ∈ F (see the paragraph following the proof of Proposition 4.19); (b) a decent

fraction of the paths produced in (a) are F -central (shown by limiting the number that

are not; this is based on Proposition 4.20 and does assume G ∈ P).

Definitions. It will be convenient to set

Λ = nκ−2pκ−1,

since this quantity—essentially the typical number of paths in G joining a given pair of

vertices—will appear repeatedly below. We write Q ∼ Q′ when Q,Q′ are distinct Cκ’s

sharing at least one edge. For edges e, f of G, we take

e ∼ f ⇔ [some Cκ of G contains both e and f ], (4.49)

e ≈ f ⇔ [there are Cκ’s Q ∼ Q′ of G with e ∈ Q and f ∈ Q′], (4.50)

S(e) = {f ∈ G : e ∼ f}, and T (e) = {f ∈ G : e ≈ f}. For γ ∈ (0, 1), let

L(γ) = {{x, y} ∈
(
V
2

)
: σ(x, y) < γΛ}

and F (γ) = F ∩ L(γ). Finally, with C as in Proposition 2.9 for l = κ − 1 (and, say,

δ = 1/κ), let S be the event that G satisfies (2.11) (so not the S used above).

Fix ζ = .01. Our goal in the next four propositions is to show that F (1 − ζ) is

small, accomplishing (a) of our outline above. We do this by showing separately (in
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Propositions 4.18 and 4.19, using the tools provided by Propositions 4.16 and 4.17) that

F (ζ) and F (1− ζ) \ F (ζ) are small.

Proposition 4.16. For γ ∈ (0, 1) and distinct {x1, y1}, . . . , {xc, yc} ∈
(
V
2

)
,

Pr(S ∧ {{xi, yi} ∈ L(γ) ∀ i ∈ [c]}) ≤ n−(c−o(1))(κ/(κ−1))(1−ε)κ−1ϕ(γ−1). (4.51)

(Recall ϕ(x) was defined in (2.1).) Note the bound here is natural, being, for p at

the lower bound in (4.28) (and up to the o(1)), what Theorem 2.1 would give for the

probability that c independent binomials, each of mean Λ, are all at most γΛ.

Proof. Since S gives τ(x, y) ≤ σ(x, y) + C < (1 + o(1))γΛ for {x, y} ∈ L(γ), the event

in (4.51) implies that X :=
∑

i∈[c] τ(xi, yi) < (1 + o(1))cγΛ; so we just need to bound

the probability of this.

In the notation of Theorem 2.3, with A1, . . . , Am the edge sets of the various xiyi-

paths (in Kn), we have µ ∼ cΛ and ∆ = µ+O(Λ2/(np)) ∼ µ. (If two of our paths, say

P and Q, share l ∈ [1, κ− 2] edges, then at least l internal vertices of P are vertices of

Q; so the contribution of such pairs to ∆ is less than

c2n2(κ−2)−lp2(κ−1)−l = O(Λ2/(np)) = o(1)

(using the upper bound in (4.28) for the o(1))). Thus Theorem 2.3 gives

Pr(X < (1 + o(1))cγΛ) < exp [−(1− o(1))ϕ(γ − 1)cΛ] ,

which, since Λ > (1−ε)κ−1(κ/(κ−1)) log n, is less than the right hand side of (4.51).

Proposition 4.17. W.h.p.

if Q1 ∼ Q2 ∼ Q3 ∼ Q4 are Cκ’s of G then |(∪Qi) ∩ L(ζ)| ≤ 1. (4.52)
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Also, there is a fixed M such that w.h.p.

|S(e) ∩ L(1− ζ)| < M ∀ e ∈ G. (4.53)

(Note the Qi’s in (4.52) need not be distinct.)

Proof. Write ηγ for the quantity n−(1−o(1))(κ/(κ−1))(1−ε)κ−1ϕ(γ−1) appearing in (4.51)

(here without the c).

Since S occurs w.h.p., it suffices to show that the probability that it holds while

either (4.52) or (4.53) fails is o(1). Thus in the case of (4.52) we want to bound

the probability that S ∧ {J ⊆ G} ∧ {|J ∩ L(ζ)| ≥ 2} holds for some J ⊆ Kn of the

form ∪i∈[4]Qi, where the Qi’s are Cκ’s sharing edges as appropriate. With T (J) =

S ∧ {|J ∩ L(ζ)| ≥ 2}, this probability is at most

∑
Pr({J ⊆ G} ∧ T (J)) ≤

∑
Pr(J ⊆ G) Pr(T (J))

≤ O(n4κ−6p4κ−3η2
ζ ) = o(1).

Here the first inequality is an instance of Theorem 2.6 (since {J ⊆ G} and T (J) are

increasing and decreasing respectively), Proposition 4.16 gives Pr(T (J)) = O(η2
ζ ) (for

any J), and the o(1) holds (for small enough ε) since n4κ−6p4κ−3 = Θ̃(nκ/(κ−1)). The

argument for ∑
Pr(J ⊆ G) = O(n4κ−6p4κ−3) (4.54)

is similar to the proof of Proposition 2.9; briefly: if Q1, . . . , Q4 are Cκ’s, with Ri =

∪j≤iQj and, for i ≥ 2, |E(Qi) \E(Ri−1)| = bi ≤ κ− 1 and |V (Qi) \V (Ri−1)| = ai, then

naipbi ≤ Λ for i ≥ 2 (since bi = ai = 0 or bi ≥ ai + 1), yielding n|V (R4)|p|E(R4)| ≤ n2pΛ4

and (4.54).

Treatment of (4.53) is similar. Here J runs over subsets of Kn of the form ∪i∈[M ]Qi,

where the Qi’s are Cκ’s with a common edge, and, with T (J) = S∧{|J∩L(1−ζ)| ≥M},
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the probability that S holds while (4.53) fails is at most

∑
Pr({J ⊆ G} ∧ T (J)) ≤ O(n2pΛMηM1−ζ) = o(1).

This is shown as above, with n|V (J)|p|E(J)| ≤ n2pΛM given by the passage following

(4.54) (with M in place of 4) and the o(1) valid for large enough M because n2pΛM <

nκ/(κ−1)O(logM/(κ−1) n).

The next assertion is the only place where we use the condition {G ∈ Q} of (4.32)

(and (4.29)).

Proposition 4.18. W.h.p.

G ∈ Q =⇒ |F (ζ)| = o(|F |). (4.55)

Proof. By the first part of Proposition 4.17 it is enough to show that the right hand

side of (4.55) follows (deterministically) from the conjunction of {G ∈ Q} and (4.52).

But these imply that |T (e)∩F | ≥ ζΛ for each e ∈ F (ζ): {G ∈ Q} gives at least one Cκ

containing e; this Cκ contains a second edge, xy, of F (since F ∈ C⊥κ ), which by (4.52)

is not in L(ζ); and T (e) contains at least ζΛ (distinct) F -edges lying on xy-paths.

Moreover, again by (4.52), T (e) ∩ F (ζ) = {e} ∀e ∈ F (ζ) and T (e) ∩ T (f) = ∅ for

distinct e, f ∈ F (ζ). Thus |F (ζ)| < |F |/(ζΛ) (= o(|F |)), as desired.

Proposition 4.19. W.h.p.

|F (1− ζ) \ F (ζ)| = o(|F |). (4.56)

Proof. It’s enough to show that (4.53) implies (4.56) (since Proposition 4.17 says (4.53)

holds w.h.p.). This is again easy: Set B = F (1 − ζ) \ F (ζ) and consider the graph

with vertex set F and adjacency as in (4.49). Each e ∈ B has degree at least ζΛ

in this graph, while (4.53) says no vertex has more than M neighbors in B. Thus

|B|(ζΛ−M) ≤ |F \B|M , which (since Λ� 1) gives (4.56).
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Combining Propositions 4.18 and 4.19 completes part (a) of the preview following

the statement of Lemma 4.15:

w.h.p. G ∈ Q =⇒ |F (1− ζ)| = o(|F |). (4.57)

The next assertion, an echo of Section 2.4, provides technical support for part (b)

(getting from (4.57) to Lemma 4.15 by controlling non-F -central paths).

For v ∈ V and S ⊆ ∇G(v), let TS(v) be the set of Cκ’s using two edges of S and

τS(v) = |TS(v)|. (We could write simply TS , τS , but keep the v as a reminder).

Proposition 4.20. For each fixed θ > 0 there exists Cθ such that w.h.p.: for all v ∈ V

and S ⊆ ∇G(v), with |S| = γnp and µ = γ2nκ−1pκ/2,

τS(v) <

 (1 + θ)µ if γ > γθ = Cθ log logn/ log n,

o(µ/γ) in general.
(4.58)

Proof. We first observe that there is a fixed B such that w.h.p. no v lies in more than

B Cκ’s that meet N(v) more than twice (basically because—here we omit the routine

details—the expected number of such Cκ’s at a given v is O(nκ−1pκ+1) = n−Ω(1)). It

is thus enough to prove Proposition 4.20 with T and τ replaced by T ′ and τ ′, where

T ′S(v) = {Q ∈ TS(v) : |Q ∩N(v)| = 2} and τ ′S(v) = |T ′S(v)|.

Here we use a reduction similar to the one given by Proposition 2.9 (though, as

will appear below, we can’t expect to do quite as well as in (2.11)). Let σS(v) be

the maximum size of a collection of Cκ’s from T ′S(v) that are disjoint outside N(v) :=

{v} ∪N(v). Set ψ(S) = min{|S|, log2 n}.

Proposition 4.21. There exists D such that w.h.p. for all v and S ⊆ ∇G(v),

τ ′S(v)− σS(v) < Dψ(S). (4.59)

Proof. For fixed v and S ⊆ ∇G(v), let Γ = ΓS be the graph on T ′S(v) with Q ∼ R if

Q and R share a vertex not in N(v). Since τ ′S(v)− σS(v) ≤ |E(Γ)|, (4.59) holds (for a
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suitable D) provided

(i) the sizes of the components of Γ are O(1) and

(ii) the sizes of the induced matchings of Γ are O(ψ(S));

so we would like to say that w.h.p. (i) and (ii) hold for all v and S. Here (and only

here) we use V (Q) for the set of vertices of Q not in N(v).

Of course (i) holds for all S (at v) iff it holds for S = ∇G(v), so we just consider

this case. Here we again (as in Proposition 2.9) want, for large enough M , (probable)

nonexistence of Q1, . . . , QM ∈ T ′S(v) such that, for i ≥ 2, V (Qi) meets, but is not

contained in, ∪j<iV (Qj). Arguing as for (2.13) we find that the total numbers, say a

and b, of vertices (other than v) and edges used by such Q1, . . . , QM satisfy

napb ≤ nκ−1pκ(nκ−3pκ−2)M−1. (4.60)

(Note here we do count neighbors of and edges at v. The bound says napb is largest when

each new Qi meets what precedes it in a P2 starting at v.) Since nκ−1pκ = Θ(np log n)

and nκ−3pκ−2 = Θ̃(n−1/(κ−1)), the bound in (4.60) is o(1/n) for slightly large M , as is

the probability of seeing such Qi’s at v.

For (ii), it will help to condition on ∇G(v). Using ν ′ for the maximum size of an

induced matching and invoking Proposition 2.12, we find that it’s enough to show that,

for a given v, R ⊆ ∇(v) of size less than 2np (say) and large enough D,

Pr(∃S ⊆ R, ν ′(ΓS) > Dψ(S) | ∇G(v) = R) = o(1/n). (4.61)

So assume we have conditioned on {∇G(v) = R}, with R as above. An easy verification

(again similar to those in the proof of Proposition 2.9) gives, for any S ⊆ R (and, again,

γS = γ and ΓS = Γ),

µ̃ = µ̃S := E|E(Γ)| = O(
(|S|

2

)
nκ−3pκ−2|S|nκ−4pκ−3)

= O(γ3n2(κ−2)p2(κ−1)) = O(γ3 log2 n); (4.62)
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say µ̃ < Cγ3 log2 n (with C fixed). On the other hand, with {Qi, Ri} the possible edges

of Γ and Ai = {Qi ∪Ri ⊆ G}, ν ′(Γ) ≥ l implies occurrence of some l independent Ai’s,

an event whose probability Proposition 2.5 bounds by µ̃l/l! < (eµ̃/l)l. (Here we could

replace Proposition 2.5 by Lemma 2.4 (or Theorem 2.7), actually getting a slightly

better bound, but it seems preferable to make clear that the more elementary result is

all that’s needed.)

This leaves us with the union bound arithmetic. Here we first note that for ν ′(ΓS) <

D log2 n ∀S we just need to check S = R, for which, in view of (4.62), we have (eµ̃/l)l =

o(1/n) for l = D log2 n with a suitable D (D > Ce is enough). We then need to say

(again, for suitable D) that with probability 1− o(1/n),

ν ′(ΓS) < D|S| for all S with |S| < log2 n. (4.63)

But with s = γnp, µ̃ = µ̃s < Cγ3 log2 n and sums over s ∈ [1, log2 n], the probability

that (4.63) fails is at most

∑(|R|
s

) ( eµ̃
Ds

)Ds
<
∑

exp
[
γnp

{
log(2e/γ) +D log

(
Ceγ3 log2 n
Dγnp

)}]
,

which, since we are in the range γnp ∈ [1, log2 n], is easily o(1/n).

We continue with the proof of Proposition 4.20, which, by Proposition 4.21, we now

need only prove with τS(v) replaced by σS(v). Here it will help to have a concrete o(·)

in (4.58). Set h = h(n) = (log log n)1/2 (we need 1� h� log logn) and, with Cθ (and

thus γθ) TBA, set

Kγ =

 1 + θ if γ > γθ,

(hγ)−1 otherwise.

Given v and S ⊆ ∇G(v) of size γnp (so we condition on {S ⊆ G}), Lemma 2.4 (or

Theorem 2.7) gives

σS(v) 4 Y ∼ Bin(m, pκ−2),

with m = γ2nκ−1p2/2 (so EY is the µ of Proposition 4.20). On the other hand,
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Theorems 2.1 and 2.2 give, writing K for Kγ ,

Pr(Y > Kµ) <

 exp[−θ2µ/3] if γ > γθ,

exp[−Kµ log(K/e)] otherwise.
(4.64)

Thus, with ξγ denoting the appropriate bound in (4.64), the probability of violating

the σS-version of (4.58) with an S of size γnp is less than

n
(
n
γnp

)
pγnpξγ < exp[log n+ γnp log(e/γ)] · ξγ (4.65)

(where the terms preceding ξγ correspond to summing Pr(S ⊆ G) over v ∈ V and

S ⊆ ∇(v) of size γnp).

Finally, we should make sure the bound in (4.65) is small. Recalling (4.28), we have

(for slightly small ε) Λ > (1− ε)κ−1κ/(κ− 1) log n > log n and

µ (= (γ2np/2)Λ) > (γ2np/2) log n. (4.66)

Thus for γ > γθ the bound in (4.65) is less than

exp[γnp · {log(e/γ)− θ2γ log n/6}+ log n],

which is tiny (exp[−nΩ(1)]) for fixed Cθ > 6θ−2.

For γ ≤ γθ, noting that (γKγ/2) log(Kγ/e) ∼ log(1/γ)/(2h) = ω(1) (and γnp ≥ 1),

and again using (4.66), we find that the right hand side of (4.65) is less than

exp[γnp · {log(e/γ)− (γKγ/2) log(Kγ/e) log n}+ log n] = n−ω(1).

And of course summing these bounds over γ gives what we want.

Proof of Lemma 4.15. Fix θ = .005 and let C = Cθ and γθ be as in Proposition 4.20.

Set γv = dF (v)/(np), and let ϕv be the number of Cκ’s of G using two F -edges at v.

Let σ∗(x, y) be the number of xy-paths having F -edges at one or both of x, y. Write
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∑′ and
∑′′ for sums over v with γv > γθ and γv ≤ γθ respectively. We have, w.h.p.,

∑
xy∈F σ

∗(x, y) ≤ 2
∑

v∈V ϕv

≤ nκ−1pκ · [(1 + θ)
∑′ γ2

v +
∑′′ o(γv)], (4.67)

where the first inequality comes from considering how many times each side counts the

various Cκ’s of G, and the second is given by Proposition 4.20.

Since
∑
γv = αn, the second sum in (4.67) is o(αn). For the first, let B = {v ∈

V : γv > θ}. If we now assume α = o(1) (as given by P), then we have |B| = o(n); so

Proposition 2.13 (parts (a) and (b)) gives (w.h.p.)

|G[B]| � |B|θnp <
∑

v∈B dF (v) ≤ αn2p,

whence
∑

v∈B γvnp ≤ 2|G[B]|+ |∇F (B)| < (1 + o(1))αn2p/2,

∑
v∈B γv < (1 + o(1))αn/2

and (recalling dF (v) ≤ dG(v)/2 ∀v; see (4.9))

∑
v∈B γ

2
v ≤ maxv γv

∑
v∈B γv < (1 + o(1))αn/4. (4.68)

Thus (since also
∑

v∈V \B γ
2
v ≤ θ

∑
v γv = θαn) we find that the expression in square

brackets in (4.67) is less than (1/4 + 2θ)αn, whence

∑
xy∈F σ

∗(x, y) ≤ (1/4 + 2θ)αnκpκ = .26αnκpκ. (4.69)

(To avoid confusion we note that the .26 here, which is more or less forced by the

essentially tight bound in (4.68), has nothing to do with the .26 in (4.48).)

Now let F ∗ = {xy ∈ F : σ(x, y) ≥ (1 − ζ)Λ} (= F \ F (1 − ζ)). By (4.57),

|F ∗| ∼ αn2p/2, w.h.p. provided Q holds. Note that (recall ζ = .01) xy ∈ F ∗ has

σ(x, y;F ) > .26Λ (as in (4.48)) unless σ∗(x, y) > .73Λ. (As noted earlier, xy-paths
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necessarily have odd intersection with F , so the only real requirement for such a path

to be central is that it have an internal edge in F .) It thus follows from (4.69) that for

F̃ := {xy ∈ F ∗ : σ(x, y;F ) ≤ .26Λ}, we have

|F̃ | ≤ .26αnκpκ

.73Λ
≤ .36αn2p,

whence |F ∗ \ F̃ | ≥ .13αn2p, implying (4.48).

Proof of Lemma 4.13. As mentioned earlier, Lemma 4.13 follows easily from Lemma

4.15 via “coupling down” (viewpoint (A) of Section 4.2.3): it is enough to show that

if G satisfies the right hand side of (4.48) then w.h.p. it also satisfies R; that is,

|F ∩R(F0)| ≥ .12αn2p.

For xy ∈ F ′ := {xy ∈ F : σ(x, y;F ) > .26Λ} (see (4.48)), Theorem 2.1 gives

Pr(σ0(x, y;F0) ≤ .25nκ−2qκ−1) < exp[−Ω(nκ−2qκ−1)] = n−Ω(1),

since members of a set of σ(x, y;F ) internally disjoint, F -central xy-paths survive in G0

(and become F0-central) independently, each with probability ϑκ−1. So by Markov’s

Inequality, w.h.p.

|{xy ∈ F ′ : σ0(x, y;F0) ≤ .25nκ−2qκ−1}| = o(|F ′|).

The lemma follows.

4.6.2 Proof of Lemma 4.14

This is a simple consequence of Proposition 2.15, but for perspective a brief comment

on the bounds may helpful. The first bound—corresponding to a β2-fraction of all Pt’s

having their ends in S—is the generic value, and will be the truth if q is large enough

that (w.h.p.) all τ t−2(x, y)’s are about the same. For smaller q one can sometimes do

better by, e.g. (for even t), taking S to consist of all edges at distance t/2−1 from some

small set of “centers,” producing something like the second bound.
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Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the adjacency matrix, A, of G0,

with associated orthonormal eigenvectors v1, v2, . . . , vn, say with maxj v1,j > 0. Let

M = At−2 (so M has eigenvalues λt−2
i (i ∈ [n]), with eigenvectors vi), and f = (dS(x) :

x ∈ V ) =
∑
βivi.

The number of (S, t)-ropes is w.h.p. less than

fMfT =
∑

λt−2
i β2

i

≤ λt−2
1 β2

1 + max {|λ2|, |λn|}t−2 ‖f‖22

< (1 + o(1))
[
(nq)t−2β2

1 + (4nq)(t−2)/2‖f‖22
]
, (4.70)

where we used
∑
β2
i = ‖f‖22 and the second inequality is given by (2.25). We then need

bounds on β2
1 and ‖f‖22, both of which are easy: w.h.p.

β1 = 〈f, v1〉 ∼ n−1/2
∑
dS(v) = 2n−1/2|S| = βn3/2q

(using (2.26)) and

‖f‖22 =
∑

d2
S(x) ≤ ∆S

∑
x

dS(x) < (1 + o(1))nq · 2|S| ∼ βn3q2.

The lemma follows.

4.7 Proof of Theorem 4.5

In what follows we set E(Kn) = E , CH(Kn) = CH and so on. We prove (sketchily)

Theorem 4.5 for n ≥ vH + 2—which is best possible e.g. if H = Kκ with κ ≥ 4 (e.g.

since for n ≤ κ + 1, C⊥H ⊇ C ∩ D)—and add a note at the end to cover H = Cκ and

n ≥ κ.

We first note that CH = E if |H| = 1 (trivially) and CH = D if |H| = 2. (Since each

of P2, 2K2 (a 2-edge matching) is the sum of two copies of the other, the copies of an

H of size 2 span all 2-edge subgraphs, and so all even subgraphs, of Kn.) Moreover,

if H is a matching then CH is easily seen to contain (all copies of) K2 if |H| is odd or
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2K2 if |H| is even, so is equal to E or D as appropriate.

We may thus restrict attention to H containing a vertex x of degree at least 2, and

observe that in this case CH ⊇ C4. (The sum of two copies of H that differ only in the

copy of x is a K := K2,d(x), and repeating this with K and one of its divalent vertices

produces a C4.)

Since clearly C4 = C ∩ D, we’re done if H is in the second case of (4.5). Otherwise

let H̃ be a copy of H in Kn and let F be a smallest element of H̃ + C4. Evidently F is

in the same case of (4.5) as H. Moreover, we claim F is either a triangle or the disjoint

union of a matching and star (so possibly just a matching or just a star). Note this is

enough, as the copies of F are then easily seen to generate the desired subspace of E :

if H is Eulerian then F = K3; otherwise we may add two copies of F to produce a P2,

so the generated space contains D. (Minor note: |V (F )| ≤ |V (H)| + 1 since all odd

vertices of F must also be odd in H̃.)

For the claim we observe that F cannot contain a P3 (since adding a C4 containing

such a P3 reduces |F |); disjoint P2’s (reduce by adding a C6); or K3 + K2 (convert to

P4 and then reduce to P2).

Finally, for H = Cκ and n ≥ κ ≥ 4 (for κ = 3 there is nothing to show), it is enough

to observe that the sum of two copies of H on the same vertex set and sharing a Pκ−3

is a C4; so CH = C ∩ D if κ is even, while for odd κ, C ∩ D ( CH ⊆ C implies CH = C.

4.8 Proof of Theorem 4.12

Here, finally, we prove Theorem 4.12. Since we make no use of this material we strive for

brevity (albeit with little success), and will sometimes allow considerably less formality

than elsewhere.

The proof of the theorem is based on Theorem 2.23, a “container” theorem, along

with Lemma 4.22, an anologue of the “Erdős-Simonovits Stability Theorem” [14, 35].

(Theorems 2.19 and 4.12 may be thought of as “sparse random” analogues of Erdős-

Simonovits. Our use of Lemma 4.22 below is analogous to the use of Erdős-Simonovits

in the proofs of Theorem 2.19 in [4, 34].)
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We may assume—as we do throughout—that H has no isolated vertices, because,

clearly, letting H ′ be a copy of H with any isolated vertices removed, we have CH(L) =

CH′(L) for any graph L with vL ≥ vH . Recall we are also assuming eH ≥ 2.

For any H and F ⊆ J ⊆ E(Kn), let τH(F, J) be the number of copies of H in J (say

unlabelled, though it doesn’t matter) having odd intersection with F , and abbreviate

this to τH(F ) if J = E(Kn).

Lemma 4.22. For any fixed graph H and ε > 0, there is a δ > 0 such that if F ⊆ E(Kn)

satisfies τH(F ) < δnvH , then there is an X ∈ W⊥H(Kn) with |F∆X| < εn2.

We will actually apply the following simple extension of Lemma 4.22, which is proved,

together with the lemma itself, at the end of this section.

Corollary 4.23. For any fixed H and ε > 0, there is a δ > 0 such that if F ⊆ J ⊆

E(Kn) satisfy |J | > (1 − δ)n2/2 and τH(F, J) < δnvH , then there is an X ∈ W⊥H(Kn)

with |F∆X| < εn2.

Proof of Theorem 4.12. For the rest of this discussion we take vH = κ. The hypergraph

H (= Hn) to which we will apply Theorem 2.23 is as follows. Let K be a copy of Kn

and V = E(K) × {0, 1}; thus N := |V| = n(n − 1). Let λi be the natural bijection

(e 7→ (e, i)) from E(K) to Vi = {(e, i) : e ∈ E(K)} (i ∈ {0, 1}). Finally, let H be the

eH -uniform hypergraph on V whose edges are the E’s satisfying

◦ |E| = eH ,

◦
⋃1
i=0 λ

−1
i (E ∩ Vi) is (the edge set of) a copy of H in K, and

◦ |E ∩ V0| ≡ 1 mod 2.

In what follows, for X ⊆ V, we set Xi = X ∩ Vi, Xi = λ−1
i (Xi) and X̃ = X0 ∪X1.

(So we may think of X̃ as a subgraph of K underlying X.) For orientation we note

immediately that for any F ⊆ G ⊆ Kn,

F ∈ C⊥H(G) ⇐⇒ λ0(F ) ∪ λ1(G \ F ) ∈ I(H). (4.71)
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(Recall from Section 2.11 that I(H) is the set of independent sets of H.)

For the remainder of our discussion we set θ = n−1/m2(H) (recall the definition

of m2(H) at (4.19)). We first need to check that H and θ satisfy the hypotheses of

Theorem 2.23. Clearly d = ∆ (by symmetry), and d � nκ−2 follows from

|H| = (n)κ2eH−1/|Aut(H)|, (4.72)

so we want to show that for any σ ⊆ V of size l,

d(σ) = O(nκ−2−(l−1)/m2(H)). (4.73)

For σ ⊆ V let Kσ be the graph with edge set σ̃ and vertices those vertices of K incident

with edges of σ̃, and set vσ = |V (Kσ)|, eσ = |E(Kσ)|. Notice that d(σ) = 0 unless

|σ̃| = |σ| (i.e. σ0 ∩ σ1 = ∅) and Kσ is (isomorphic to) a subgraph of H; so we may

assume these are true. But in this case we have d(σ) � nκ−vσ , so (4.73) follows from

vσ ≥ 2 + (eσ − 1)/m2(H),

which is the same as m2(H) ≥ (eσ − 1)/(vσ − 2) and is true by the definition of m2

(since Kσ ⊆ H). ♦

Let δ′ be the δ given by Corollary 4.23 with ε/4 in place of ε, and

δ = min{δ′, ε/4}/ (eH2eH ) . (4.74)

Choose b so that (2.27) holds (with r = eH and the present H and θ) and let B and C

be as in Theorem 2.23. Noting that the assumption of Theorem 4.12 is now p > Mθ,

we will prove the theorem with M significantly larger than ε−2δ−1B log(eM/B), say

M > 3β−1ε−2δ−1B log(eM/B), (4.75)

with β as in (4.81).
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In view of (4.71), F ∈ C⊥H(G) implies existence of some T ⊆ V with

|T | < BNθ, (4.76)

T ⊆ λ0(F ) ∪ λ1(G \ F ) ⊆ C(T ) (4.77)

and

|H[C(T )]| < δ|H|. (4.78)

For T satisfying (4.76) write QT for the event that there is an F ∈ C⊥H(G) satisfying

both (4.77) and

min{|F∆X| : X ∈ W⊥H(G)} ≥ εn2p. (4.79)

We will show (for any T )

Pr(QT ) < p|T | exp[−Ω(ε2δn2p)] = p|T | exp[−Ω(ε2δNp)], (4.80)

where the implied constants depend on neither T nor ε (so nor δ). This easily gives

Theorem 4.12, as follows. By the above discussion (sentence containing (4.76)–(4.78)),

failure of the theorem’s conclusion is contained in the event ∪QT (union over T as in

(4.76)), so the probability of this failure is less than

∑
Pr(QT ) <

∑
t

(
N
t

)
pt exp[−βε2δn2p] (4.81)

for a suitable fixed β > 0 (where the second sum ranges over t ≤ BNθ). On the other

hand, (
N
t

)
pt < exp[t log(eNp/t)] ≤ exp[BNθ log(eNp/(BNθ))];

so the bound in (4.81) is less than

BNθ exp[BNθ log(ep/(Bθ))− βε2δn2p], (4.82)

which is small by our choice of M (recall p > Mθ). ♦
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Proof of (4.80). Set R = (C(T ))0, S = (C(T ))1, t = |T̃ | (= |T |—see the first inclusion

in (4.77)) and c =
(
n
2

)
− |R∪S|. Notice first that existence of an F as in (4.77) implies

T̃ ⊆ G ⊆ R ∪ S,

which has probability pt(1− p)c. This already gives (4.80) unless

c < δn2, (4.83)

which we may therefore assume.

We next show that

τH(R,R ∪ S) ≤ |H[C(T )]| (4.84)

and

|R ∩ S| ≤ |H[C(T )]||Aut(H)|n−(κ−2) + 2eHδn
2 (4.85)

< δn2(2eH−1 + 2eH) < εn2/4. (4.86)

(The content in (4.85)–(4.86) is the first inequality; the second is given by (4.78) and

(4.72), and the third by (4.74).)

Proof of (4.84). For any copy X ∪ Y of H with X ⊆ R, Y ⊆ S \R and |X| odd (these

are the copies counted by τH(R,R ∪ S)), we have λ0(X) ∪ λ1(Y ) ∈ H[C(T )]. ♦

Proof of (4.85). For each xy ∈ K, by double counting,

there are

(
(n)κ

|Aut(H)|

)
eH(
n
2

) copies of H in K containing xy. (4.87)

Thus there are at least |R ∩ S|nκ−2/|Aut(H)| copies of H meeting R ∩ S, at most

2eHcn
κ−2/|Aut(H)| < 2eHδn

κ/|Aut(H)| of which are not contained in R∪S. But each

of the at least (|R ∩ S| − 2eHδn
2)nκ−2/|Aut(H)| copies of H that meet R ∩ S and are

contained in R ∪ S underlies at least one member of H[C(T )]: for such a copy, say H̃,

containing xy ∈ R ∩ S, we may partition H̃ \ {xy} = L ∪M with L ⊆ R and M ⊆ S,
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and then H[C(T )] contains λ0(L∪{xy})∪λ1(M) if |L| is even and λ0(L)∪λ1(M∪{xy})

if |L| is odd. Thus |H[C(T )]| ≥ (|R ∩ S| − 2eHδn
2)nκ−2/|Aut(H)|, implying (4.85). ♦

We may now apply Corollary 4.23 to R ⊆ R∪S with ε/4 in place of ε (recall the line

preceeding (4.74); the hypotheses of the corollary are verified in (4.83), (4.84), (4.78),

(4.74) and (4.72).) This yields some Y ∈ W⊥H(Kn) with

|R∆Y | < εn2/4. (4.88)

We will show that, barring occurrence of some event(s) with probability as in (4.80),

each F as in (4.77) is close to X := G ∩ Y (∈ W⊥H(G)). Given F as in (4.77), we have

F∆X = F∆(G ∩ Y ) = (F∆(G ∩R))∆((G ∩R)∆(G ∩ Y ))

= (F∆(G ∩R))∆(G ∩ (R∆Y )

⊆ (F∆(G ∩R)) ∪ (G ∩ (R∆Y ),

which, since F ⊆ G ∩R ⊆ F ∪ (G ∩ (R ∩ S)), implies

|F∆X| ≤ |G ∩R ∩ S|+ |G ∩ (R∆Y )|.

So we have

|F∆X| < εn2p

unless

max{|G ∩R ∩ S|, |G ∩ (R∆Y )|} > εn2p/2. (4.89)

Thus, finally, for (4.80) we just need to show

Pr((4.89) holds | T̃ ⊆ G) < exp[−Ω(ε2δn2p)]. (4.90)

(Because: QT =⇒ (4.89) ∧ {T̃ ⊆ G}, so Pr(QT ) ≤ Pr(T̃ ⊆ G) Pr((4.89) | T̃ ⊆ G).)

But (4.90) is easy: by (4.86) and (4.88), the conditional expectation of each of

|G ∩ R ∩ S|, |G ∩ (R∆Y )| given {G ⊇ T̃} is less than εn2p/4 + t, which in view of
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(4.76) and our choice of M (see (4.75)) is less than εn2p/3. So (4.90) follows from

Theorem 2.1.

Proof of Lemma 4.22. This will be rather sketchy and thoroughly informal, foregoing

epsilons and deltas in favor of qualitative language. Thus, to begin, we use “most” to

mean for all but a small fraction of relevant possibilities, where “small” can be made

less than any desired (positive) constant via an appropriate choice of δ. For example,

“most x, y” means the number of exceptions is less than δεn
2 for a suitable δε. Similarly

we say sets A and B are “close,” and write A ≈ B, if |A4B| is at most small fraction

of what it might have been (e.g. n2 if A,B are sets of edges, or n if A,B are sets of

edges at a given vertex). And so on.

Let V (H) = {u1, . . . , uκ}, say with uκ−1uκ ∈ H and NH(uκ−1)\{uκ} = {ui : i ∈ I}.

Say a κ-tuple (x1, . . . , xκ) of vertices of Kn is even if, for ϕ : V (H)→ V (Kn) given by

ϕ(ui) = xi (for i ∈ [κ]), |ϕ(E(H))∩F | is even (where, of course, ϕ(uiuj) = ϕ(ui)ϕ(uj)).

We now use x, y, z, possibly subscripted, for vertices of Kn and N(x) for NF (x).

Claim 1. There is an x such that for most y, N(y) is close to either N(x) or N(x)

(:= V (Kn) \N(x)). (In fact this is true of most choices of x.)

Proof. Simple averaging, using the fact that τH(F ) is small, shows that most choices

of x, y satisfy

(∗) for most choices of x1, . . . , xκ−2 and z,

both (x1, . . . , xκ−2, x, z) and (x1, . . . , xκ−2, y, z) are even. (4.91)

So we may fix an x for which (∗) holds for most y. If (∗) holds for x, y then there is a

fixed (x1, . . . , xκ−2) such that (4.91) holds for most z, and for each such z we have

|N(z) ∩ {x, y}| ≡ |N(x) ∩ {xi : i ∈ I}|+ |N(y) ∩ {xi : i ∈ I}| (mod 2); (4.92)

thus, since there is no z on the right hand side of (4.92), N(y) is close to one of N(x),

N(x) whenever y satisfies (∗) (with our fixed x). ♦
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Claim 2. For x as in Claim 1, F is close to either ∇(N(x)) or its complement.

Proof. Set A = N(x), B = A, S = {y : N(y) ≈ A} and T = {y : N(y) ≈ B}. We first

observe that Claim 2 will follow if we show that

one of I := (A ∩ S) ∪ (B ∩ T ), J := (A ∩ T ) ∪ (B ∩ S) is small. (4.93)

Suppose for example that I is small. It is easy to see that if e ∈ F4∇(A) then e either

meets I ∪ S ∪ T or lies in ∇F (y)4∇(y,B) for some y ∈ A ∩ T or in ∇F (z)4∇(z,A)

for some z ∈ B ∩ S. But the number of such e’s is small, since we assume I and S ∪ T

are small (the latter by our choice of x), while y ∈ T implies ∇F (y) ≈ ∇(y,B), and

similarly z ∈ S implies ∇F (z) ≈ ∇(z,A). Thus in this case F ≈ ∇(A). (Showing that

J small implies F ≈ ∇(A) is of course similar.) ♦

For (4.93) it is enough to show that A ∩ S and A ∩ T cannot both be large, and

similarly for the pairs (A ∩ S,B ∩ S), (A ∩ T,B ∩ T ), (B ∩ S,B ∩ T ); there is little

difference between these and we just show the first. The set ∇F (A ∩ S,A ∩ T ) is

small since any z ∈ A ∩ T (or just T ) has few neighbors in A. But we also have

|∇F (A ∩ S,A ∩ T )| ≈ |A ∩ S||A ∩ T |, since, for each y ∈ A ∩ S, the set (A ∩ T ) \N(y)

(or even A \N(y)) is small. So it must be that one of A ∩ S, A ∩ T is small. ♦

The four flavors of Lemma 4.22 (corresponding to the possibilities for WH(Kn) in

(4.5)) now follow easily. If H is even Eulerian then Claim 2 is what we want (since

W⊥H(Kn) consists precisely of cuts and their complements). If H is odd (not necessarily

Eulerian), then F cannot be close to the complement of a cut, since the edges of Kn

contained in the larger side of the cut would contain Ω(nκ) copies ofH that are contained

in F. So F is close to a cut, which for Eulerian (odd) H is again what we want.

For non-Eulerian H (briefly): If F is close to a cut ∇(X,Y ) with both X and Y

large, then there are many odd copies of H with one odd vertex in (say) X and all

other vertices in Y , so F cannot be close to such a cut. In particular this says that for

odd (non-Eulerian) H, F must be close to ∅ (since being close to a cut with a small

side is being close to ∅, and we have already said that F is not close to the complement
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of a cut). Finally, if H is even (non-Eulerian) then F is either close to ∅ (if close to

a cut with a small side) or to E(Kn) ∈ W⊥H(Kn) (if close to the complement of such a

cut).

Proof of Corollary 4.23. Given ε, let δ be as in Lemma 4.22, and δ′ = δ/(2eH). Then,

recalling (4.87), |J | > (1−δ′)n2/2 implies that the number of copies of H not contained

in J is at most (δ′n2/2)
(

(n)κ
|Aut(H)|

)
eH
(n2)

< δnκ/2, which, with τH(F, J) < δ′nκ < δnκ/2,

implies τH(F ) < δnκ, the hypothesis of Lemma 4.22.
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