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ABSTRACT OF THE DISSERTATION

Two Problems on Cycles in Random Graphs

by Jacob D. Baron

Dissertation Director: Jeff Kahn

We prove three results.

First, an old conjecture of Zs. Tuza says that for any graph G, the ratio of the
minimum size, 73(G), of a set of edges meeting all triangles to the maximum size,
v3(G), of an edge-disjoint triangle packing is at most 2. Disproving a conjecture of R.
Yuster [40], we show that for any fixed, positive « there are arbitrarily large graphs G
of positive density satisfying 73(G) > (1 — 0(1))|G|/2 and v3(G) < (1 + «)|G|/4.

Second, write C(G) for the cycle space of a graph G, C,(G) for the subspace of C(G)
spanned by the copies of Cy in G, T, for the class of graphs satisfying C.(G) = C(G),
and Q, for the class of graphs each of whose edges lies in a C'x,. We prove that for every
odd k > 3 and G = Gy, p,

mpax Pr(G € Qx\ Tx) — 0;

so the Cy’s of a random graph span its cycle space as soon as they cover its edges. For
k = 3 this was shown in [12].

Third, we extend the seminal van den Berg—Kesten Inequality [9] on disjoint occur-
rence of two events to a setting with arbitrarily many events, where the quantity of
interest is the maximum number that occur disjointly. This provides a handy tool for

bounding upper tail probabilities for event counts in a product probability space.
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Chapter 1

Introduction

The main content of this thesis is two results on cycles in random graphs.! In the first,
we use a (partly) random construction to exhibit a family of graphs whose triangles are
clustered in a certain desired way. In the second, we determine for which p = p(n) the
standard Erdés-Rényi random graph G, ;, is likely to satisfy a certain property dealing
with its cycles of a fixed odd length. These results are detailed in Chapters 3 and 4,
respectively. Our third result, extending the van den Berg—Kesten Inequality [9] on
disjoint occurrence of events, was conceived as a lemma for our second; but since it is
quite general and likely to be of broader interest, we present it in Section 2.3, in our
chapter on preliminary tools. Here we just give a nontechnical overview of the three
results and how they relate, deferring detail to when we state them formally.

For a graph G, write 73(G) for the minimum size of a set of edges meeting all
triangles, and v3(G) for the maximum size of a set of edge-disjoint triangles. While
73(G) < 3v3(G) is trivial, a conjecture of Zsolt Tuza from 1981 [39] holds that the 3
can be improved to 2, which is tight for the complete graphs of orders 4 and 5. But
is it asymptotically tight for arbitrarily large graphs with quadratically many edges in
triangles?? Raphael Yuster conjectured not (Conjecture 3.2 and (3.2); see [40]), at least
for graphs with 73(G) > (1 —0(1))|G|/2 (which by a routine exercise [3, Theorem 2.2.1]
is as large as 73(G) can be). We disprove Yuster’s conjecture (Theorem 3.3), exhibiting,
for any o > 0, an infinite family of dense graphs for which 73(G) > (1 —0(1))|G|/2 and
r3(G) < (1+ a)|G|/4.

LAll graphs in this thesis are finite, simple and undirected.

2Without some requirement on the number of edges in triangles, the answer is obviously yes, because
nonedges and edges not in triangles are invisible to both 73(G) and v3(G).



Write £(G) for the vector space FE(G) (the edge space of G), C(G) for the subspace
of £(G) generated by the (indicators of) cycles (the cycle space of G), and C.(G) for
the subspace of C(G) generated by the k-gons. It is not hard to see (Proposition 4.1)

that for any n > k,
Cx(Ky) =C(Ky). (1.1)

Following a theme in combinatorics that has lately been prominent, we wondered to
what extent (1.1) remains true in a “sparse random” setting; or, to be precise, for which
p =p(n) (1.1) is likely to hold with K, replaced by Gy, . Let 7T, be the class of graphs
satisfying C.(G) = C(G), and Q,, the class of graphs each of whose edges lies in a k-gon.

We prove (Theorem 4.4) that for every odd x > 3,
max Pr(G,, € Q. \ Tx) = 0; (1.2)
P

so the k-gons of a random graph span its cycle space as soon as they cover its edges.
Even the x = 3 case of (1.2) (which was proved by DeMarco, Hamm and Kahn in [12])
had been open and of interest, being the first unsettled case of a conjecture of M. Kahle
(see [24, 25]) on the homology of the clique complex of Gy, p. In addition to wanting
to generalize the result of [12], we were motivated to study C(Gy ;) by a certain aspect
of our construction of the graphs disproving Yuster’s conjecture; see Section 4.1.1 for
elaboration.

In proving Theorem 4.4, at several points we needed a good bound on the upper tail
probability of a random variable on G, ,, that returns, for some set S of subgraphs of
K, the largest size of a set of pairwise edge-disjoint elements of S that appear in G, ;.
We prove a stochastic domination result (Theorem 2.7) generalizing the van den Berg—
Kesten Inequality [9] that implies such a bound. Perhaps unsurprisingly, the bounds
this gives, at least those relevant to the present work, are not new; but the basic result

is very natural and seems of independent interest.



Chapter 2

Preliminaries

Here we establish usage conventions in force throughout the thesis (usage specific to
certain sections will be introduced later as appropriate), and then give the tools we will
use in Chapters 3 and 4. Most of the tools are fairly standard, the notable exception
being Theorem 2.7, our extension of the van den Berg-Kesten Inequality advertised
earlier. (Lemma 2.18 extending Mantel’s Theorem is also new, but seems not worth
fussing over.)

Given a graph G, we will use V and FE for V(G) and E(G) when the meaning is
clear. We will often identify graphs with their edge sets.

For v € V and F C G we use Np(v) = {z : v € F} and dp(v) = |Np(v)|. For
disjoint A, B CV, Vp(A, B) is the set of F-edges joining A and B, and we use V(A)
for Vp(A,V \ A)—these are the cuts of G—and Vg (v) for Vr({v}). In all cases we
drop the subscript when F' = G.

As usual a(G) and A(G) (or Ag) denote independence number and maximum
degree of G. We will sometimes use vg and e for the numbers of vertices and edges of
G. The eigenvalues of G are those of its adjacency matrix; see e.g. [10, Section VIIL.2].

As defined in Chapter 1, the edge space of a graph G, denoted £(G), is the vector
space F;E(G). Its elements are naturally identified with the (spanning) subgraphs of
G. The cycle space of G, denoted C(G), is the subspace of £(G) generated by the
(indicators of) cycles of G (see e.g. [13, Section 1.9] for an exposition).

We use [n] for {1,...,n} (for a positive integer n), log for In and a = (1 £ b)c for
(I1-=b)c <a < (1+b)e. Asymptotic notation (~, O(-), Q(-) and so on) is standard, with
a < band a < b replacing a = o(b) and a = ©(b) when convenient. An asymptotic

probabilistic statement holds with high probability (w.h.p.) if it holds with probability



tending to 1 as some specified parameter tends to infinity. We always assume parameters
that tend to infinity are large enough to support our various assertions, and usually

pretend large numbers are integers.

2.1 Deviation

Here we recall a few standard bounds on the probability that a random variable differs
by some specified amount from its mean.
Set

o) =1+=x)log(l+z)—=x (2.1)

for z > —1 and (for continuity) ¢(—1) = 1. We use “Chernoft’s Inequality” in the

following form; see for example [23, Theorem 2.1].

Theorem 2.1. If X ~ Bin(n,p) and pn = E[X] = np, then fort >0,

Pr(X > p+1t) < exp[—pp(t/p)] < exp [—t7/(2(u+1/3))] (2.2)

Pr(X < p—t) < exp[—pp(—t/p)] < exp[~t*/(2u)]. (2.3)

For larger deviations the following consequence of the finer bound in (2.2) will be

convenient.

Theorem 2.2. For X ~ B(n,p) and any K, letting p = E[X] = np,
Pr(X > Kpu) < exp[—Kplog(K/e)].

(Of course this is only helpful if K > e.)

In fact the above bounds hold with X being any sum of independent Bernoullis (and

= E[X]); see [23, Theorem 2.8].

We will make substantial use of the following fundamental lower tail bound of Svante
Janson ([22] or [23, Theorem 2.14]), for which we need a little notation. Suppose

Ay, ..., Ay, are subsets of the finite set I'. Let I'), be the random subset of I' gotten



by including each x (€ I') with probability p, these choices made independently. For
J € [m], let I be the indicator of the event {I', D A;}, and set X =) I;, p =EX =
>_; ElI; and

A=Y"SA{ELIL;: Ain A; # o}. (2.4)

(Note this includes the diagonal terms.)

Theorem 2.3. With notation as above, for any t € [0, ],
Pr(X < p—t) < exp[—p(—t/p)u*/A] < exp[—*/(24)].

This has an upper tail counterpart, but with the major restriction that the events
counted must be independent. It is proved in [22, 23] for events as in Theorem 2.3, but

either proof works, with a tiny modification, in the greater generality of:
Lemma 2.4 ([22, Lemma 2] or [23, Lemma 2.46]). For events Ai,..., A, in a proba-

bility space, and u = "> Pr(4;),

Pr(some p + t independent A;’s occur) < exp [—up(t/u)]

< exp [~#2/(2(n+1/3))]

Note the bound here is the same as the one in (2.2), which is thus contained in this

lemma. The lemma implies the weaker but sometimes convenient

Proposition 2.5. For events Ai,..., Ay in a probability space, and =Y Pr(4;),
Pr(some | independent A;’s occur) < u'/l!, (2.5)

observed in [15] (or see [3, Lemma 8.4.1]). (An analogue of Theorem 2.2, this has no

content until [ > e\, whereas Lemma 2.4 gives a usable bound even when pu +t (= 1)

= p+Q(/n).)



2.2 Correlation

The setting for the next theorem is a finite product probability space 2 = Hle Q; with
each factor linearly ordered. As usual an event A C € is increasing if its indicator is
a nondecreasing function (with respect to the product order on ) and decreasing if
its complement is increasing. The seminal “correlation inequality” is essentially due to

Harris [19]:

Theorem 2.6. If A, B C Q2 are either both increasing or both decreasing, then
Pr(ANn B) > Pr(A) Pr(B);
if one is increasing and the other decreasing then the inequality is reversed.

2.3 Disjoint Occurrence

Here we discuss our third result advertised in the abstract and introduction.

Recall that for (real-valued) random variables X and Y, Y stochastically dominates
X (written X < Y) if Pr(Y > r) > Pr(X > r) Vr € R. Recall also that a proba-
bility measure m on a partially ordered I" is positively associated (PA) if m(AN B) >
m(A)m(B) whenever both A and B C T are increasing (or, equivalently, whenever both
are decreasing), and note that any probability measure on a linearly ordered I' is PA.

The setting for this section is a finite product probability space (2, ) = [ 17, (€, 1)
with each §2; partially ordered. Events A1, As, ..., Ax (C Q) are said to occur disjointly
at w € Q if there are disjoint S, ..., Sk C [n] such that for each i € [k] and W’ € Q, we

have w’ € A; whenever w’ agrees with w on S;. We write
OF JA; ={weQ: A,..., Ay occur disjointly at w}.

The study of disjoint occurrence was initiated by van den Berg and Kesten [9], who



showed

Pr(AOB) < Pr(A) Pr(B) (2.6)
for increasing A, B C {0,1}" (see also e.g. [18, Section 2.3]). The following extension
of this seminal “BK Inequality” is apparently new [8].
Theorem 2.7. Let (2, 1) = [, (%, i) be a finite product probability space with the
Q;’s partially ordered and the p;’s PA. Given Ay, As, ..., A CQ, let

X =max{|I|: I C [k] and O;c1A; occurs}.
LetYq,..., Yy be independent Bernoullis with EY; = Pr(A;), Y =Y Y, and A = > EY;.
Then:
(a) If the A;’s are all increasing, or all decreasing, then X Y

(b) If the Q;’s are linearly ordered, then fort >0,

Pr(X > A+1t) < exp[-Ap(t/N)] <exp [-t2/(2(A+/3))] .

Remarks.

(i) Taking Q ={0,1}", k =2 and r = 2 in the definition of “X < Y recovers (2.6)

from (a).

(ii) The most spectacular of the developments growing out of [9] is Reimer’s proof
[32] of the “BK Conjecture” (of [9]) which says that (2.6) doesn’t require that
A, B be increasing. In contrast, trivial examples show this requirement (or some
requirement) to be necessary in (a); for instance if Q@ = {0,1} with uniform

measure, k =2, A} = {0} and Ay = {1}, then Pr(X >1)=1>3/4=Pr(Y > 1).

(iii) For the same reason, (a) does not hold in the generality of Lemma 2.4 (even

modified to make sense there). In other words, if Aj,..., Ay are events in an



arbitrary probability space, Y is as in Theorem 2.7 and Z is the maximum number
of independent A;’s that occur, then Z < Y does not hold in general, as the

example in (ii) also shows.

(iv) On the other hand, for increasing [or decreasing] A;’s, (a) with Theorem 2.1
implies Lemma 2.4 (since independent increasing [or decreasing] events, if they
occur, necessarily occur disjointly, a standard observation easily extracted from
the usual proof of Theorem 2.6). In fact in this setting (a) is much stronger
than Lemma 2.4, because dependent events can easily occur disjointly—so X can
be much larger than the Z of (iii), even though the bounds given for the upper
tails of X and Z, by (a)+Chernoff and Lemma 2.4 respectively, are the same.
For example, if z1,...,2, Y1, ...,y are distinct vertices of G,, ), and, for i € [k],

A; = {there is an z;y;-path}, then Z < 1 but X can be large.

Historical Note. As mentioned in Chapter 1, our motivation for Theorem 2.7 (a) was
to obtain something like Lemma 2.4, as in Remark (iv). We learned of the lemma about
a year after proving (a). Shortly thereafter, we realized the lemma’s proof (which is

quite different from our proof of (a)) could be tweaked to give (b).

The proof of Theorem 2.7 (a), which is similar to the original proof of [9], is not
hard but is a little awkward to write, and a few additional definitions will be helpful.
We prove it for increasing A;’s; the decreasing case is of course analogous.

For Q = [[;c; Qi and S C I, we take Qg = [[;c¢ 2 and, forw € Q, wg = (w; : i € 5).

i€S
For A C Q and w € Qy for some J C I, S C J is said to witness w € Aif w' € A
whenever w’ € Q and wiy = wg. (This is of course abusive since we can’t have w € A
unless J = I.) We then (that is, for w € Q) say Ai,...,Ar (C Q) occur disjointly
at w if there are disjoint Si,...,S; € J such that S; witnesses w € A; Vj and, for

A= {Al,...,Ak}, set

X 4(w) = max{|R| : R C [k], the A;’s indexed by R occur disjointly at w}.

Thus the X of Theorem 2.7 is X 4 evaluated at a random w € 2.



Proof of Theorem 2.7 (a). Say i € [n] affects A C 2 if there are w € A and W' € Q\ A
with Wy (i) = wfn]\{i}, and for a collection B of events in €, let 1(B) be the number of
i € [n] that affect at least two members of B.

We proceed by induction on 9(.A). If this number is zero then the laws of X and
Y agree (since the A;’s are independent). So we may assume (. A) # 0, say (without
loss of generality) the index 1 affects at least two of the A;’s.

Let (4, fintj), J € [k], be copies of (€21, p1), independent of each other and of

(Ql7u1)7 R (Qnalu”n) Let <Q*7:u’*) = Hzn:ék(QZ:MZ) and (fOI'j € [k])
B ={w e Q" : (wntj,w2,...,wn) € Aj}.

Thus, apart from irrelevant variables, B; is a copy of A; gotten by replacing (€1, 111)
by (44, in+j)- In particular Pr(B;) = Pr(A4;) and, with B = {By,..., By}, we have
(B) = ¢(A) —1 (since ¢ € [2,n] affects B iff it affects A;, and n+i affects B; iff j =i

and 1 affects A;). So by inductive hypothesis it is enough to show
wXazr) < p(Xp=r) (2.7)

for each positive integer r. Here it’s convenient to work with the stronger conditional

version:

Claim. For each y € Q) (with p;(y:) >0 Vi € [2,n]),

pXaw) =1 |wpn =y) < p(Xpw) =7 wpn =9) (2.8)

Proof. Since, for any y € Qg ,,) and w € Q with wpp ) = v,

Xp(y) = Xaly) < Xa(w) < Xaly) +1,

we need only show (2.8) for y with X 4(y) = r — 1 (since the left hand side of (2.8) is

zero if X 4(y) < r — 2 and both sides are 1 if X 4(y) > 7).



10

Given such a y, set F = {z € Q; : X 4(z,y) = r} and, for ¢ € [k], let F; C  consist
of those x’s for which there are I € (Uﬂ) containing ¢ and disjoint S;’s in [n] (j € I)

such that S; witnesses (z,y) € A; (for j € I) and 1 € S;. Then, evidently,

(@]

each F; is increasing,

o

F = Ui Fis

o

for w € Q with wpp ) =y, Xa =7 iff w) € F, and

(@]

for w € QO with wyp ;) = y, X > 1 iff wy4; € F; for some j € [K],
whence

w(Xa(w) 27| wop =y) = p(F) =1 = p(Njep Fs)

< 1= [ljep m(F) = n (Xpw) = 1| won =),

where the inequality follows from that assumption that uq is PA. O

For the proof of Theorem 2.7 (b) we need just one little observation, which follows
immediately from Reimer’s Theorem [32] by induction: for events {4;};cs in a product

probability space with each factor linearly ordered,
Pr(0icsA;) < J[Pr(4)). (2.9)

Proof of Theorem 2.7 (b). For some to-be-determined integer r < k and each I C [k]

of size r, let By be the indicator of O;c;A;. Let x = r!>_ By, so that

Ex = r! Z Pr(Oierd;) <! Z HPr(AZ-) <\

[1|=r |I|=r i€l

(by (2.9)).

The rest of the proof follows [23, Lemma 2.46] verbatim, so we will be brief. If
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X > A+t then x> (A+1t), = [[}Zg(A+t—1i), so by Markov,

r—1
A" A
Pr(X > A+1) <Pr(x > (A+1),) < =1l
r(X = A+t) <Pr(x = ( +))—()\+t)r il_!))\—l-t—i

Setting r = ¢ (to minimize the right hand side) yields

t—1

t
log Pr(X > A+1) <3 log(\ /(A +1 1)) < / log(A/(A + t — 2)) dz,
=0 0
which, with calculus, gives the stronger bound in Theorem 2.7 (b). O

2.4 Path Counts

Here we discuss what can be said about the numbers of paths of various lengths joining

pairs of vertices in a random graph. Throughout the section we use G for G, p.

Notation. For | > 1 and (distinct) z,y € V, we use P'(z,y) for the set of P’s (I-edge
paths) in G joining = and y, 7(x, y) for | P!(z,y)|, and o' (z, y) for the maximum size of a
collection of internally disjoint P;’s of G joining x and y. (Though [ = 1 is uninteresting,
it’s convenient to allow this.) These notations will show up again in Chapter 4. In this
section only, we use V' (P) for the set of internal vertices of a path P and write I‘ﬁc,y for

the graph on P!(z,y) with P ~ Q iff V(P) NV (Q) # @.

Conveniently, most of what we need here has been worked out (in far greater gener-
ality) by Joel Spencer in [36] (see also [3, Section 8.5]), and we begin with two special

cases of what’s proved there.

Theorem 2.8. For anyl > 2 and ¢ > 0 there exists K such that if n'~p! > Klogn,

then w.h.p.

Tl(a;,y) =1+ E)nlilpl V{z,y} € (‘2/) (2.10)
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Proposition 2.9. For any 1> 1 and § > 0, if n?*=3p?~1 < n=% then w.h.p.
T'(2,y) —o'(z,y) <O V{z,y} € (3), i€l (2.11)

where C' depends only on | and J.

We note for use below that the assumption on p in Proposition 2.9 implies
n!=2p=t <7, (2.12)

with ¢ = (1 +0(l —1))/(2l — 1) (= Q(1)). Strictly speaking, the proposition is a
little stronger than what one gets from [36], where the assumption would be n!~!p! =
O(logn). (The n?=3p? =1 is more or less the expected number of non-edge-disjoint

pairs of paths joining a given x and y.)

Proposition 2.9, though not difficult, is a key point in Spencer’s proof of Theorem 2.8,
and from our perspective is in a sense the main point, since, as indicated in the remark
below, it easily gives the latter when combined with Theorem 2.3 and Lemma 2.4 (or
Theorem 2.7).

Since the proof of the proposition itself is not so easy to extract from Spencer’s
presentation (see his “third part” on p. 253), we next sketch an argument along lines

similar to his for the present situation.

Proof of Proposition 2.9. 1t is enough to handle ¢ = [ (since the assumption on p implies
a stronger assumption when we replace I by i < [). Noting that 7!(z,y) — o'(z,y) <

\E(I‘fr’y)|, we find that (2.11) (with an appropriate C') holds at z,y provided
(i) the maximum number of vertices in a component of Fémy is O(1) and
(ii) the maximum size of an induced matching in le,y is O(1);

so we want to say that w.h.p. these conditions hold for all z,y. (Of course replacing (i)

by an O(1) bound on degrees would also suffice.)
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For (i) we show that, for some fixed M, w.h.p. there do not exist x, y and a collection,
Q1,...,Qn, of P’s joining x and y such that, for i > 2, V(Q;) meets, but is not

contained in, Uj«;V'(Q;). This bounds (by (I —2)M +1) the number of internal vertices

l

‘1“7y’

(of ) in the paths belonging to a component of I'; . so gives (i).
Suppose Q1,...,Qn are P’s joining z and y, with R; = U;<;Q; and, for 7 > 2,
‘E(Ql) \ E(RZ_1)| = b; and |V(QZ) \ V(Rl_l)‘ =a; € [1,l — 2]. Then b; > a; + 1 and

a; <1 —2imply n%pl < n!=2p=1 (for i > 2) and
nlVEMIEEM]L < (gl =2pl=1)M (2.13)

which is thus an upper bound on the probability of finding, for a given x, y, (Q1, ..., Q)
as above of a given isomorphism type (defined in the obvious way). So the probability
that there are such @;’s for some xz,y (and some isomorphism type) is

O(n3p(n!=2p"=1)M) = O(n3pn=M) (see (2.12)), so is o(1) for large enough M.

The argument for (ii) is similar. Here we want to rule out, again for some fixed
M, existence of P’s, say Q1, R1,...,Qu, Ry, joining some specified x, y, with V(Q;)N
V(R;) # @ and the V(Q;)’s and V(R;)’s otherwise disjoint. A discussion like the
one above shows that for any such sequence, with | U; (E(Q;) U (E(R;))| = b and

| Ui (V(Qs) U (V(R;))| = a, we have
napb < (n21—3p2l—1)M < n—M(S’ (214)

which bounds the probability of existence by O(n?~M?), O

Remark. The lower bound in Theorem 2.8 is given by Theorem 2.3 (a recent develop-
ment at the time). The main issue for the upper bound is handling p with n!~'p' =< logn,
for which Proposition 2.9 allows replacing ¢ by o!. Spencer’s nice observation is that, to
bound o'(z,y), one need only bound the probability of having a mazimal disjoint family
(of P’s joining x,y) of a given size, and that one can use Theorem 2.3 to bound the
probability that a particular (disjoint) family is maximal. His uses of this device could

now be replaced by Lemma 2.4 (or Theorem 2.7), yielding (in the authors’ unbiased
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view) more natural arguments.

Theorem 2.8 and Proposition 2.9 (with bits of Section 2.1) easily imply the following

bounds on the 7!(x,%)’s for different ranges of p.

Corollary 2.10. W.h.p. for all (distinct) vertices x,y,

(,y) ~ 0/t if nt Tl = w(logn), (2.15)
'z, y) = O(logn) if nt~pt = O(logn), (2.16)
e, y) =01) if ntlph < 20, (2.17)

Proof. The first two items are easy consequences of Theorem 2.8: (2.15) is immediate
and (2.16) is given by the observation that, for K as in the theorem (for some specified

¢) and pg defined by nl_lpé = K logn, the theorem implies that w.h.p.

(z,y) < 1+ e)n'H(max{p,po})! V{z,y} € (}) (2.18)

(since the probability of the event in (2.18) is increasing as p decreases below py).

-1, «

pl<n” 20-3,21-1 <

For (2.17), suppose n , with o > 0 fixed. Since this implies n“~°p

n~% with 6 = 8, > 0 fixed, Proposition 2.9 says it suffices to show that for given z,y

and suitable fixed D (depending on «),
Pr(c!(z,y) > D) = o(n™?).
But Proposition 2.5 bounds this probability by
n~P /D! < exp[—Dlog(n®D/e)],
which is o(n~2) for large enough D. O

We will also sometimes need lower bounds on path counts, as summarized in the

next result, which again follows easily from what we already know.
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Corollary 2.11. For any | > 2 there is a K such that if n'~'pt > Klogn, then w.h.p.

ol(z,y) = Q(n) for all z,y, with © = w(n,p) equal to

Tt i R < 70, (2.19)
't logn  if n°W < nt2pi=t = O(logn), (2.20)
np if nt7pt = w(logn). (2.21)

(Of course in view of the routine Proposition 2.12, (140(1))np is a trivial upper bound.)

Proof. Let K be as in Theorem 2.8, for the given [ and, say, ¢ = 1/2 (since we don’t
worry about constants). Since the theorem says that w.h.p. [V(I'} )| > Q(n!~1p!) for

all z,y, the present assertion(s) will follow if we show
w.h.p. A(le,y) =01 /r) Ya,y, (2.22)

where we use the the trivial o > |[V|/A (recall A and « are maximum degree and
independence number and note o' (x,y) = a(Fé’y)).

Now the degree in Féyy of a given vertex @ (that is, a P} joining = and y) is at most

Yo D (2, v) T (v, y) < (1 —1)2max{7(x,v)7 (v, y)}, (2.23)

where the sums are over v € V(Q) and i € [l — 1], and the max is over i € [l — 1]
and v € V \ {z,y} (the initial (I — 1)? is of course irrelevant). On the other hand,

Corollary 2.10 (with 7 in place of 1) says that w.h.p. we have, for all u, v:

7t (u,v) < O(1) if either i <I—2 and p is as in (2.19) or (2.20), or i = —1

and p is as in (2.19),

and 7¢(u,v) < O(max{n*~!p’ logn}) in general; and combining these bounds with

(2.23) easily yields (2.22). O
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2.5 Density

Here we review various density properties of G, ,. Throughout the section we use G for
Gppand V for [n] = V(G). Theorems 2.1 and 2.2 easily imply the next two standardish

propositions, whose proofs we omit.

Proposition 2.12. For p > n~tlogn, w.h.p.
|G| ~n%p/2 and d(v) ~npVuveV.

(Of course the second conclusion implies the first, which just needs p > n=2.)

Proposition 2.13. (a) For any € > 0 there is a K such that w.h.p. for all disjoint
S, T CV with |S|,|T| > Kp~tlogn

IVa(S,T)| = (1£2)|S][T]p

and

GIS]| = (1 +&)(5)p.

(b) For K > 3 w.h.p.
|G[S]| < K|S|logn for all S CV with |S| < Kp~!logn.
(c) For each & > 0 there is a K such that if p > Kn~'logn then w.h.p.

IVa(S) =1 =x¢)|S|(n—1S|) VSCV.

Proposition 2.14. For fired ¢ > 0 and p > 1/n, w.h.p.: if H C G satisfies
dp(v) > (1 —¢e)np/2 VveV, (2.24)

then no component of H has size less than (1 — 2e)n/2.
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Proof. For a given W C V of size w < (1 —2¢)n/2, let x = |G[W]|. Then p :=Ex =

(7“2”)]9 < w?p/2, while if W is a component of an H satisfying (2.24) then

x> [HW]| >w(l—e)np/4 > Ao — Kp.

2w

But (since K > (1 —¢)/(1 —2¢) =1+ Q(1)) Theorems 2.1 and 2.2 give

exp|—Q if K < e? (say),
e K < 4 P (say)
exp[—Kplog(K/e)] otherwise.

Thus, with sums over w € (0, (1—2¢)n/2), the probability that some H as in the lemma

admits a component of size less than (1 — 2¢)n/2 is less than

S (M < > explwlog(en/w)]u,

which for p > 1/n is easily seen to be o(1). O

Finally, we need to know a little about the eigenvalues of G. A version of (2.25)

below was proved in [16] (see also [2]) and (2.26) is shown (e.g.) in [30].

Proposition 2.15. Let Ay > Ao > ... > X\, be the eigenvalues of G and vi,vs,..., v,
associated orthonormal eigenvectors, say with max;vi; > 0. If p > n~'logn, then

w.h.p.
M ~np  and  max{|A2|,|\n|} < (2+ 0(1))y/np. (2.25)
If p>n—1log®n, then w.h.p.
max vy, < (1+0(1)) In]m U1 (2.26)

2.6 Expanders

We will want to say that good eigenvalues imply good density properties for a graph,

for which our (standard) tool is
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Lemma 2.16 (Expander Mixing Lemma [3, Cors. 9.2.5-6]). Let H be a d-regular
graph on t vertices for which every eigenvalue except d has absolute value at most A.

Let A, B C V(H) be disjoint with |A| = a,|B| =b. Then

Ivia.5) - 22| < v,

and
a’d Aa
It - 57| < 5

2.7 Short Cycles

Recall that the distance between a pair of vertices in a graph is the number of edges in
a shortest path between them, and the diameter of a graph is the maximum distance
between a pair of its vertices.

We will want to say that the cycle space of any graph with low diameter is spanned

by short cycles.

Proposition 2.17. For any graph G of diameter D, C(G) is generated by the cycles of

G of length up to 2D + 1.

Proof. 1t suffices to show that any cycle of length at least 2D + 2 is the sum of two
shorter ones. Let x,y be vertices at maximum distance along such a cycle C, and let
P be a shortest xy-path, say with z = vg,...,vy = y being the vertices that P shares
with C' (as ordered by P). For some i € [k], v;_; and v; are closer along P than along
C, and we get the two desired shorter cycles by replacing each of the v;_jv;-paths in C'
by the one in P. O

Erratum. In [7], we gave an incorrect proof of this.
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2.8 DMantel

Here we prove a new strengthening of Mantel’s Theorem [29], which may be of inde-
pendent interest. Recall that Mantel’s Theorem is the first case of Turdan’s Theorem
([38], or e.g. [13, Theorem 7.1.1]) and the first result in extremal graph theory, proved
in 1907.

Lemma 2.18 (Mantel’s Theorem for “Crossing Triangles”). Let K be the complete
graph on X UY |, where X and Y are disjoint sets of size n. Let F' be a subgraph of K

containing no (“crossing”) triangles meeting both X and Y. Then |F| < n?.

Proof. We first claim that for any largest F' containing no crossing triangles, F[X]
and F[Y] are complete multipartite. For convenience set G = F[X]. If G is not
complete multipartite, then it has vertices x,y, z satisfying zy € G and zz,yz ¢ G.
If dp(z) > dp(z), then replacing Np(z) by Np(x) strictly increases |F'| without in-
troducing forbidden triangles. Thus we may assume dp(z) > dp(z), and similarly
dr(z) > dp(y). But then replacing both Np(x) and Np(y) by Np(z) strictly increases
|F'| without introducing forbidden triangles. (This neighborhood-switching is a stan-
dard trick; see e.g. [13, Theorem 7.1.1]. We use it again in our proof of Theorem
3.3.)

So any largest F' is complete multipartite in X with parts X1, Xo,..., X, of sizes
X1 > x9 >+ > xp, and in Y with parts Y1, Ys, ..., Y, of sizes y1 > yo > -+ > y, (some
of the x;’s or y;’s being 0 if one of the partitions has more nonempty parts than the
other). Since F' has no triangles meeting both X and Y, for any a € X; and b € Y} we
have

abe ' = Np(a)NY CY; and Np(b)NnX C X,

so by the so-called rearrangement inequality we have

.
Fl < Y (s +viyy) + > wiys

1<i<j<r i=1

1 T
=3 > fwiln — zi+yi) + yiln — yi + 23))
i=1
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2.9 Stability

The following statement is a small instance of a recent major result of Conlon and
Gowers [11]. As we will see in Section 4.4, it is the main (essentially only) ingredient

in the proof of one of our lemmas in Chapter 4 (Lemma 4.10).

Theorem 2.19. For each odd k > 3 and € > 0 there is a C such that if p >
Cn~ =2/ then w.h.p. every Cy-free subgraph of G = Gnp of size at least |G|/2

can be made bipartite by deleting at most en’p edges.

This (or the more general result of [11]) is a “sparse random” analogue of the Erdés-
Simonovits “Stability Theorem” [14, 35] that was conjectured by Kohayakawa et al. in

the seminal [26].

2.10 Regularity

Here we recall Szemerédi’s Regularity Lemma [37], or, more precisely, a generalization
thereof due to Kohayakawa [27] and R6dl (unpublished). Our presentation here follows
[23, Section 8.3].

Definitions 2.20 (for the Regularity Lemma). Given a graph H, a real number s €
(0,1] (called a scaling factor), and disjoint U,W C V(H) =: V, the (s; H)-density
ds, 1 (U, W) between U and W is

ITALS]
B

For € > 0, the pair U, W is called (s; H, €)-regular if for all U’ C U and W’ C W with
|U'| > €|U| and |W'| > ¢|W| we have

|ds. it (U, W) —ds g (U, W)| <.
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A partition I = (Vp, V1,..., Vi) of V is called (¢, k)-equitable if |Vi| = |Va| = --- = |V}
and |Vp| < €|V, and it is called (s; H, €, k)-regular if it is (e, k)-equitable and all but at
most e(g) of the pairs V;,V; (1 <i < j < k) are (s; H,€)-regular. In such a partition,
Vo is called the exceptional part. If k' > k and II' is an (e, k’)-equitable partition of
V', then we say II' refines II if every nonexceptional part of II' is contained in some
nonexceptional part of II.

For b>1and g > 0, H is called (s;b, 8)-bounded if whenever U, W C V are disjoint
with |U|,|W| > S|V| we have ds g (U, W) < b. Intuitively, when H is sparse and s is
the (tiny) density of H, (s;b, #)-boundedness ensures that no substantial chunk of H

is much denser than it should be. O

Lemma 2.21 (Szemerédi Regularity Lemma, [23, Lemma 8.18]). For all e > 0,b > 1
and natural numbers m and r there exist B = B(e,b,m,r) >0 and M = M(e,b,m,r) >
m such that the following holds. For every choice of scaling factors s; (i € [r]) and
(si; b, B)-bounded graphs H; (i € [r]) on the same vertex set V with |V| > m, there

exists k € [m, M| and a partition I1 of V' that is (s;; H;, €, k)-regular for all i € [r].

Since the proof of the Regularity Lemma starts with any partition of V into m
nonexceptional parts of size [|V|/m] and repeatedly refines this partition so that at
each step each part is broken into the same number of subparts (see e.g. [27, 17] for

details), we may further assume that

(i) II refines a specified partition of V' with m nonexceptional parts of size ||V|/m],

and

(i) For any two nonexceptional parts S;, S; of the starting partition we have |[VyN.S;| =

|Vo N S|, where Vj is the exceptional part of II.

Observe also that since every graph is trivially (1;1, 8)-bounded for all 3, taking
b=17r =35 =1 in Lemma 2.21 recovers the usual Regularity Lemma, which on one
occasion (to prove Theorem 3.3) is all we will need from Lemma 2.21. Our other use

of Lemma 2.21 (to prove Lemma 3.10) will require its full power.
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Associated with the Regularity Lemma is the so-called Counting Lemma, which we

will use in the following unusual form.

Lemma 2.22 (Counting Lemma). Let H be a graph, ¢ € (0,1/2), s € (0,1], and
A, B, B’ pairwise disjoint subsets of V(H) each of size l. If the pairs A, B and A, B’
are (1; H, €)-regqular with (1; H)-density at least 2¢, and the pair B, B' is (s; H, €)-regular
with (s; H)-density at least 2¢, then H contains a triangle abb’ with a € A, b € B,
vV eB.

Proof. Since dy g(A,B) > 2¢, we have [{a € A | |V(a,B)| < €l}| < €l, or else this
subset of A, along with B C B, would violate the (1; H, ¢)-regularity of the pair A, B.
Similarly |[{a € A | |V(a,B’)| < €el}| < el. Thus since ¢ < 1/2, there exists a € A
satisfying |N(a) N B|,|N(a) N B’| > €el. Then since the pair B, B" is (s; H, €)-regular
with (s; H)-density at least 2¢, we have V(N (a) N B, N(a)NB') # @, yielding a triangle

in H of the stated form. O

2.11 Containers

Here we give a specialization, adequate for present purposes, of the celebrated recent
“container” theorems of [4, 34].

First we need a few definitions. Recall that a hypergraph, H, is simply a collection
of subsets (“edges”) of a set V of “vertices.” (We allow repeated edges, though we won’t
actually see any.) All our hypergraphs are r-uniform, i.e. have all edges of size r, and
finite, with |V| = N. An independent set of H is a subset of V containing no edges and
Z(H) is the collection of such sets.

For o C V, the degree of o is d(o) = dy (o) = |{e € H : ¢ C e}|, which we shorten to
d(v) if o = {v}. We use d and A for the average and maximum values of d(v) (v € V)
and, for [ € [r],

A; = max{d(o) : |o| =1}

(so A; = A).

The next assertion is easily derivable from Theorem 2.2 of [4].
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Theorem 2.23. For all v, 6 > 0 and b there is a B such that: if H is r-uniform with

Ay <b8td Yielr], (2.27)

then there exists C : 2¥ — 2V such that for each I € T(H) there is a T C V with:

(a) |T| < BN,
(b) TCICC(T),
(c) [H[C(D)]| < 6[H]|

(where H[X|={E € H:ECX}).



24

Chapter 3

Tuza’s Conjecture is Asymptotically Tight for Dense
Graphs

3.1 Introduction

Following [40] we write 73(G) for the minimum size of a triangle edge cover (set of
edges meeting all triangles) in a graph G and v3(G) for the maximum size of a triangle
packing (collection of edge-disjoint triangles) in G. (In standard language these are the
matching and vertex cover numbers of the hypergraph with vertex set F(G) and edges
the triangles of G.)

While 73(G) < 3v3(G) is trivial (for any G), a 35-year-old conjecture of Zsolt Tuza

[39] holds that this can be improved:
Conjecture 3.1. For any G, 13(G) < 2v3(G).

(This is sharp for the complete graphs of orders 4 and 5.)

The best general result in this direction remains that of Haxell [20], who showed

73(G) < (66/23)v3(G).

On the other hand, as noted in [40], a combination of results of Krivelevich [28] and

Haxell and R6dl [21] implies that for any G,

m3(G) < 2u3(G) + o(n?)

(limits as n := |V(G)| — o0). In particular, for any fixed § > 0 and G ranging over
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graphs satisfying 73(G) > n?,

73(G) < (24 0o(1))v3(G). (3.1)

That is, Tuza’s conjecture is asymptotically correct for such graphs.

The question of Raphael Yuster [40] that motivates us here is: is the constant 2 in
(3.1) optimal? That is, is Tuza’s conjecture still (asymptotically) tight for dense graphs
with no subquadratic triangle cover? Yuster suggested not, at least in the special case

where 73(G) is nearly as large as possible:

Conjecture 3.2 ([40]). For fized f > 0 and G ranging over graphs of density at least

B,
13(G) > (1-0(1))IG]/2 = w(G)>(1-0(1))|G|/3

(where density is |G|/ (5), and |G| = |E(G)|). This would of course (for the graphs con-
sidered) be a big improvement over (3.1), which promises only v3(G) > (1—o0(1))|G|/4.

Note that the inequalities 73(G) < |G|/2 and v3(G) < |G|/3 are easy and trivial
(respectively), so Yuster’s conjecture says that if G is dense and 73(G) is close to its
trivial upper bound, then so must be v3(G).

Yuster also suggested weakening Conjecture 3.2 to say only that there is some fixed

a € (0,1/3) (not depending on ) such that

73(G) > (1 -0(1))|G|/2 = wu(G) > (1+a)|G|/4, (3.2)

which would still significantly improve on (3.1) (when 73(G) > (1—0(1))|G|/2). (Yuster
did show that (3.2) is true if we allow « to depend on f3.)

Surprisingly it turns out that even the weaker conjecture is wrong;:
Theorem 3.3. For all o > 0, there exist 8 > 0 and arbitrarily large graphs G satisfying
° |G = B(3),

e 13(G) > (1—0(1))|G|/2, and
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e 13(G) < (1+a)|G|/4

(limits as n — o0). Thus even for dense graphs—and moreover for dense graphs where
73(G) is near |G|/2—Tuza’s conjecture is essentially best possible.
Since what follows is not entirely easy, a little orientation may be helpful. Our

construction itself is not very difficult; in rough outline it does:

1. start with a triangle-free graph H with certain nice degree and eigenvalue proper-
ties (we use the well-known graphs described by Noga Alon in [1]—see Proposition

3.11);
2. join two disjoint copies of H by a complete bipartite graph to produce K;
3. replace each vertex of K by a large clique; and finally

4. take a suitable random subgraph of this blowup, yielding the graph G, found in

the third paragraph of Section 3.3.

So again, there is nothing very exotic here. What seems most interesting in what follows
is how strange a route we needed to take to arrive at a proof that this relatively simple
construction actually works.

Also interesting is whether one could simplify our argument (or give an easier ex-
ample) if the goal were only to disprove the stronger Conjecture 3.2 (rather than (3.2)).
We don’t see how to do this, and in fact most of what follows was originally developed
with the lesser goal in mind.

The rest of this chapter is organized as follows. The next section gives a long string
of essential definitions, most of them nonstandard, leading up to the crucial Lemma
3.10. In Section 3.3 we prove Theorem 3.3 assuming Lemma 3.10. In Section 3.4, we

prove the lemma.

3.2 Definitions

A fractional triangle edge cover of a graph G is an assignment of nonnegative weights

to the edges of G such that the weight of each triangle (this being the sum of the
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weights of its edges) is at least 1. We denote by 73(G) the minimum total weight of
such a cover. Dually, a fractional triangle packing of GG is an assignment of nonnegative
weights to the triangles of G such that the weight of each edge (the sum of the weights
of the triangles containing it) is at most 1. We denote by v3(G) the maximum total

weight of such a packing. Note we have

v3(G) <v3(G) = 73(G) < 13(G),

where the inequalities are trivial and the equality is by linear programming duality.

Given graphs G1, Ga, the lexicographic product G1 - G2 is the graph on vertex set
V(G1) x V(G2) where (u,us2) is adjacent to (vi,ve) iff either ujv; € G, or up = vy
and ugve € Go. Note that the lexicographic product is not commutative.

The following original definitions are critical to our arguments.

Definition 3.4 (double of a graph). For a graph H, the double of H, denoted Ky p, is
the graph Ky-H. To be explicit, this is the graph whose vertex set is X UY, where X and
Y are disjoint sets of size |V (H)|, and whose edges satisfy Ky g[X]| ~ Ky u[Y] ~ H
and {zy |z € X,y € Y} C E(Kpy u). The sets X and Y (we will always use these

names) are called the sides of K g.

Of course the notation Ky p is intended to suggest the notation K;; for a complete
bipartite graph. When the H is understood, we will frequently abbreviate Ky g by K.
We denote by E the copy of Ko on vertex set {b,s}. Here E is for “edge,” b is for

“big,” and s is for “small,” for reasons that will now become clear.

Definition 3.5 (compound vertex). Let G be a graph. Then G on compound vertices,
denoted G, is the graph G - E. This term is intended to be suggestive—we imagine
GT as G with each of its vertices v replaced by a new compound structure with a big
part (v,b) and a small part (v,s). We will always abbreviate, e.g., (v,b) by v®. For a

generic vertex of GT we write v*, v¥, etc., understanding x,y € {b, s}.

Definition 3.6 (edge types). In the context of a given K = Ky g, an edge vw € K is

called internal if u and w belong to the same side, and external otherwise. Similarly, an
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edge v*wY € KT with u # w is internal if vw € K is internal and external if uw € K

is external. An edge v®v® € KT is called a vertex edge.

Definition 3.7 (external triangles). Let H be a graph and K = Ky g. A triangle in
K or K is an external triangle if it contains an external edge. A subgraph F of K or

KT is external triangle free (ETF) if it contains no external triangles.

Definitions 3.8 (configurations and weight). Let H be a graph with ¢ vertices and m
edges, and K = Ky . A configuration on K is a pair (F,¢), where F C F(K™) and
¢: V(KT) —0,1] satisfy the following conditions. Viewing F' as a subgraph of KT, F
is ETF, contains all vertex edges of KT, and satisfies Np(v°)NNp(v?) = @ Vv € V(K);
and ¢, which we call a mass function, satisfies ¢(v°) € [3,1] and ¢(v®) = 1—¢(v®) Vv €

V(K). Given a configuration and ¢ € [0, 1], the configuration’s c-weight is

1-—- 1-—
welF) === D o) + 5 Y due(w’) +5 D s()e(v).
Tnternal external eV

(3.3)

Here’s the idea behind c-weight. Given H, we think of the vertices and edges of

Cc

K as having weights attached, as follows. Each vertex weighs g,

each internal edge
weighs %, and each external edge weighs %, for a total of unit weight on K. Passing
to KT, an adversary tries to maximize the amount of this weight he can capture in a
configuration (F, ¢). For each edge uw € K, the fraction of that edge’s weight that he
captures is Y <, vcp @(u*)P(w?), because we think of the weight of uw € K as being
split among the four corresponding edges of K+ with a ¢(u*)¢(w?)-fraction residing in
the edge u*wY. For each vertex v € V(K), the fraction of that vertex’s weight that our
adversary captures is 2¢(v°)¢(v®), because we think of the weight of a vertex in K as
being split up in K analogously to the way the weight of an edge in K is split up in
K+, with a ¢(vP)2-fraction of the weight of v residing in vP, a ¢(v®)3-fraction in v%,
and the remaining 2¢(v°)¢(v®)-fraction in the vertex edge v®v®. This 2 cancels the %

in the vertex weight 3; to yield the coefficient of the third sum in (3.3). To see that the

2 is natural, observe that it lets our adversary capture exactly half the weight of every
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vertex and edge of K by taking F' = {uPw® | uw € K} U{v®v® |v € V(K)} and ¢ = %

We call this the naive configuration.

Definition 3.9 (fairness). For ¢ € [0, 1], a graph H is called c-fair if

max (WC(F, (;S)) =1/2, (3.4)

where the max is over configurations (F, ¢) on K.

Observe that the 1/2 in (3.4) is best possible, since the naive configuration has c-
weight 1/2 for any c. This explains the term “fair”—our adversary can’t capture more
than half the weight of K, the amount to which he is naively entitled.

Observe also that increasing ¢ can only make life harder for our adversary. That is,
if H is c-fair, then it is ¢/-fair for any ¢ € [c,1]. To see this, notice that w.(F,¢) is a

convex combination of the nonnegative quantities

1 1 1
o XZ Su)p(w’), XZ S()p(w?) and  — B 6(0")(v7),
Yol el veV(K)

with coefficients %, %, c. Since the first two coefficients are decreasing in ¢ and the

third quantity is at most 1/2 (note each of the 2¢ terms in its sum is at most 1/4),
increasing ¢ cannot raise w.(F, ¢) above 1/2. At the extremes, it is easy to see that no

graph is O-fair and every graph is 1-fair. This, finally, motivates

Lemma 3.10. For any ¢ € (0,1] and N € N, there exists a triangle-free, d-regular,

c-fair graph H with d > N.

3.3 Proof of Theorem 3.3

Fixing @ > 0 (we may assume a < 1/3), our goal is to show there are arbitrarily
large graphs G of positive density satisfying 73(G) > (1 — o(1))|G|/2 but nonetheless
v3(G) < (14 a)|G|/4. To do this, we use a probabilistic construction starting with a

graph promised by Lemma 3.10.
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Set ¢ = /6 and let H be a triangle-free, d-regular, c-fair graph on ¢ vertices, where
d> (2c)71. Let p = % and ¢ = %, noting that p,q € (0,1). Let K = Ky g, and
observe that K - K, is the graph obtained from K when each vertex is “blown up” to
a clique of size a. Call each of these K,;’s in K - K, a block, and for each v € V(K),
denote by B, the block corresponding to v. Also, consistent with Definition 3.6, call an
edge xy € K - K, an internal edge, external edge, or vertex edge according to whether
it comes from an internal edge, external edge, or vertex of K.

For each a € N (think: large), let G, be the random graph obtained from K - K, by
deleting each internal edge with probability 1—p and each external edge with probability
1—g, these choices made independently. Then since |V, (By, Bw)| ~ Bin(a?, p) for each
internal uw € K and |Vg, (Bu, Bw)| ~ Bin(a?, q) for each external uw € K, Theorem
2.1 says that each of these numbers |V, (By, By)| is typically close to its expectation.
To be precise, for each uw € K (internal or external), if we set Xy = |V, (Bu, Bw)|,
puw = EXy and o = aloga, then Theorem 2.1 gives P(| Xyw — fuw| > 2) = O(a™2) =
o(1) as @ — oo. Since |K| = t? + td is fixed, iy = O(a?) and x = o(a?), it holds
w.h.p. as a — oo that Xy ~ pyy for all uw € K. We may thus assume G, satisfies

this property, whence

2t(1 —
{zy € G, | zy internal}| ~ tda®p = a(260); (3.5)
(1 —
[{zy € G4 | zy external}| ~ t?aq = a(%c); (3.6)
Hzy € G, | xy vertex}| = 2t (;) ~ a’t. (3.7)

We claim that, w.h.p. as a — 0o, G, meets the requirements of Theorem 3.3. The
first and third conditions are easy to check. For density, letting n = |V (G,)| = 2ta and

m = |G|, we have

2t(1 - 2t
m ~ a2t + 2a(26) =20 = n2(4ate) (3.8)
C C

where (4tc)™! < 1/2 is a constant.

To see that v3(G,) < (1+a)m/4, it suffices to find a fractional triangle edge cover of
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G, of total weight less than (1 + a)m/4, since (recall) v3(G,) < v3(G,) = 75(Gy). But
this is easy: simply placing weight 1 on all vertex edges and weight 1/2 on all external
edges yields a fractional triangle edge cover of G, (here the triangle-freeness of H is

crucial) with total weight asymptotic to

1a?t(1—c) a%t m m
2

pp PO T s = (1 a/2+0(1) D < (14 a) 2.
a 5 5 46( 3c) =1+ a/2+of ))4 < ( a)4

The real work is showing that 73(G,) > (1 — o(1))m/2. To this end let F' C G, be
triangle-free; we need to show |F| < (14 0(1))m/2. More precisely, we show that given
any d > 0, we have |F| < (1+ 0)m/2 for large enough a. For this we apply the usual
Regularity Lemma—i.e. Lemma 2.21 with b = r = s; = 1—to F'. Pick (with foresight)
€ < §/(48tc), and let 2t[¢1] be the “m” of the lemma. Let I = (Vy,Vq,..., Vi) be
the partition given by the lemma. By comments (i) and (ii) after the lemma, we may
assume II refines the partition of V(F') = V(G,) into blocks and splits each block into
exactly k/(2t) =: n nonexceptional parts plus some vertices in V.

For a pair V;,V; € Il with V; C B, and V; C B,, call the pair internal or external
if uw is an internal or external edge of K (respectively), and a vertex pair if u = w.
Consider the graph on [k] where ij is an edge iff V;, V; is an internal, external or vertex
pair. Notice that this graph is (isomorphic to) K - K,, with blocks B} = {i € [k] | V; C

By}, v € V(K). Letting [ = |Vi|, observe also that

vertex exactly 12

each < internal ¢ edge uw € K - K, corresponds to ¢ about [2p p edges of G4, (3.9)

external about 1%q

where just as in (3.5)-(3.7), each “about” in (3.9) hides an O(l) = O(n) = o(m)
Chernoff error as a — oo.

To account for the different quantities on the right side of (3.9), we assign weights to

the edges of K - K,: each vertex edge weighs ¢/ (tn?), each internal edge pc/(tn?) = 2}557702 )

and each external edge qc/(tn?) = 219;77‘32, so that the weight w(uw) of uw € K - K, is

¢/(tn*1?) times the (approximate) number of corresponding edges in G,. With these
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weights, the total weight of the edges corresponding to an internal uw € K is %, the
total weight of the edges corresponding to an external uw € K is %, and the total

weight of the edges in a block B) is (g)tn% < 57 (where < means approximate equality
and <).

Leaving the topic of edge weights for a moment, we now let F’ be the subgraph
of F' obtained after we delete the following edges from F': edges incident to Vj; edges
inside some V;, i € [k]; edges that join pairs that are not (1; F, ¢€)-regular; and edges

that join pairs with (1; F')-density less than 2e. (This cleanup is of course a standard

concomitant of the Regularity Lemma.) Since [ < n/k, this deletes at most

en’ + k <é) +e <I;) 1% 4 2¢l? <I;> < 3en? (3.10)

edges from F.

Let F be the subgraph of K - K, with ij € F iff there is an edge joining V; and Vj in
F’. By Lemma 2.22 (with s = 1) and the triangle-freeness of F, F is also triangle-free.
Let F” be the subgraph of G, defined by

Ve (Vi Vy) ifijeF
Ve (Vi, Vj) = B
%) ifij ¢ F

With these definitions, (3.9), (3.10) and the calculations between them give

|F| < |F'| + 3en? < |F"| + 3en® ~ w(F)/(c/(tn*1?)) + 3en?, (3.11)

where (of course) w(F) = > wwep W(uw).

Our next goal is to massage I until it resembles a configuration on K. For each
€ V(F)=V(K-K,),let u(z) be the sum of the weights of its incident F-edges.! Fix
some order m of V(K), and for each v € V(K), in the chosen order, do the following,

making changes to F as necessary. We continue to write F' for the evolving graph.

'For the rest of the argument we use z,v, z and w, rather than 4 and j, for vertices of K - K,,, since
we want several letters from the same part of the alphabet. We use v and v for vertices of K.
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1. Pick x € By, such that w(z) = maxyep; w(y).

2. Set Sy, ={ye B, |zyc F}and T, = B, \ S,.
3. For each y € T;, \ {z}, replace Nz (y) by Nz (x).
4. Pick z € S, such that w(z) = maxy,es, w(w).

5. For each w € S, \ {z}, replace Nz(w) by Nz(z2).

Let I/ C K - K, be the graph obtained from F after performing these steps for each

v € V(K). We make the following observations about F:

(i) w(F") = w(F);

(ii) F’is triangle-free, since F is—mote in particular that S, C N () implies F[S,] =
iii) For each v € , g is the complete bipartite graph between S, and T;
iii) Fi h V(K), F'[B) h lete b h b S, d T,

and

(iv) For each v € V(K), z,w € Sy, and x,y € T, we have Nz (2) = Np (w) and

Nii(x) = N (y)-

The only tricky point here is (iv). Clearly for a given u € V(K), the condition in (iv)
holds at u immediately after we perform steps 1-5 at u. But how do we know we don’t
violate the condition at u in the process of doing 1-5 at some other v € V(K) coming
later in 77 Assume we do, so that there exist z,y € R,, € {S,, T} and z € B}, such that
zz € F' and yz ¢ F'. Just before we began 1-5 at v, z was F-adjacent to either both
of x,y or neither, so we must have replaced Nj(z) in the course of doing 1-5 at v. So
there was some w € B] (whose F -neighborhood replaced that of z) which, just before
beginning 1-5 at v, was F-adjacent to exactly one of z,y. But this is a contradiction.

For each v € V(K), let R, be the larger of S,,T;,, and P, the smaller (choose
arbitrarily if they are the same size). Let F Dbe the subgraph of Kt obtained from F’
by collapsing each R, to a vertex v® and each P, to a vertex v%, and set ¢(v°) = |R,|/n

and ¢(v®) = |P,|/n = 1 — ¢(v®) for each v € V(K). Then (ii)-(iv) imply that (F,¢)
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is a configuration on K, after adding vertex edges v®vS for those v € V(K) for which
P, = @ (if any).

Now since H is c-fair, we have w.(F,$) < 1/2. By the weight calculations after
(3.9), we have w.(F,¢) > w(F’) (the only error here comes from the weight in a block
of K - K, being (g)m% instead of exactly 57). Thus by (3.11) and (i), using nl < n/(2t)

and € < ¢/(48tc), we have

w(F")

W

FI<———— 2 < — 7 2

|F| < (22 +3en” 4+ o(m) < o (12 + 3en” + o(m)
1/2

< -5 2
S ) + 3en” + o(m)

< n?(8tc) ™t + n25(16tc) ! 4 o(m)
<(1+d/2+0(1))m/2

< (140)m/2,
where the penultimate inequality recalls (3.8) and the last holds for large enough a. [

3.4 Proof of Lemma 3.10

We now turn to the proof of Lemma 3.10, that for any ¢ > 0 there are triangle-free,
d-regular, c-fair graphs H with arbitrarily large d. Luckily we need not invent anything
here; rather we show—though not so easily—that for any fixed ¢, all sufficiently large
graphs from a well-known family are c-fair. The relevant family was described by Noga
Alon in [1]; since he proved therein that all graphs in this family are triangle-free and
regular, with degree going to infinity, this will prove Lemma 3.10. We first list the

relevant properties of these graphs.
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Proposition 3.11 ([1, Theorem 2.1}). For all ty € N, there exist t > tg and a triangle-

free graph H; on t vertices satisfying

e H, is d-regular, with d = ©(t*/?), and (3.12)

e all eigenvalues \; of Hy, other than the largest, satisfy |\;| = O(\/g) = O(t1/3).
(3.13)

Alon gives much more detailed information about these graphs, including a precise
formula for d and bounds on the eigenvalues, but the above properties are all we will
need. In fact, a weaker eigenvalue bound than (3.13) would suffice for our purposes. (We
need such a bound primarily to guarantee good density properties for H, for which our
(standard) tool is Lemma 2.16). It is probably not too hard—e.g. by random methods,
somewhat relaxing the regularity requirement of Lemma 3.10—to produce other families
of graphs, less nice than Alon’s, that would be adequate here. Recognizing this, we

nonetheless gladly use Alon’s graphs because they are convenient and they work.

Setup for the rest of this chapter. We fix ¢ € (0, 1] at the outset, and throughout
we let (F, ¢) be a configuration on K = Kp g, where H = H; for some t. We denote the

degree of H by d and its eigenvalues by d = Ay > A\ > -+ > A\, and set A = max;~1 |\;|.

Goal: To show that H is c-fair whenever t is sufficiently large. (3.14)

Each proposition in what follows is an asymptotic statement, making some claim about
H or (F,¢) as t grows to infinity; thus our asymptotic notation all refers to t — oo.
Our usage here may be a little confusing, since we treat t as tending to infinity, whereas
the discussion in Section 3.3 calls for a fired H = H; depending on ¢ (that is, on «).
But of course what we are showing here is that given ¢, H; is c-fair for large enough ¢,
so that for our application in Section 3.3 we can fix such a t. We always assume (as we
may) that w.(F,¢) > 1/2; we want to show that in fact w.(F,¢) = 1/2.

Though a configuration on K is defined via K™, it will be more convenient in what

follows to think of it in terms of K itself. We next set up some notation and terminology
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for this purpose.

Definitions 3.12 (edge classes, weight captured, gain/loss). Given a graph H = H;
and a configuration (F,¢) on K = Kp y, we divide the edges of K into four classes.

An edge uw € K is of
e class 1 if uPw®, uSw® € F,
o class 2 if uPw® € F, uw® ¢ F,
o class 3 if uPw®, uSw® € F, and
e class 4 otherwise.

For each uw € K, we will say our configuration captures the fraction ) .,y p ¢(u*)p(w¥)

of the weight of the edge. This weight is ﬁ for internal edges and % for ex-
ternal edges. Similarly, we say our configuration captures the fraction 2¢(v®)g(v)

of the weight of each vertex v of K. This weight is For v € V(K), set 0, =

5
#(vP) — 1/2, so that §, measures how far from evenly the configuration splits the
mass of v. Then e.g. if uw € K is of class 1, our configuration captures the frac-
tion (1/2 + 64)(1/2 4 ) + (1/2 — 6,)(1/2 — §y) = 1/2 4 20,0, of the weight of uw,
and if ww is of class 3 then it captures the fraction 1/2 — 26,d,,. Similarly, it captures
the fraction 1/2 — 262 of the weight of each vertex v.

Given uw € K, we sometimes want to compare the fraction of the weight of uw
captured by our configuration to the fraction of the weight of uw captured by the
naive configuration, namely 1/2. We call this difference ) ., yep @(u*)d(w¥) —1/2 €
[—1/2,1/2] the fractional gain at uw, and its negative the fractional loss at uvw. (Either
of these can be positive or negative.) More often we want to weight the fractional gain

1—c 1—c

(loss) at an edge by the appropriate edge weight (57 or 5=

5td ); we call this product

simply the gain (loss) at the edge (no “fractional”). (Examples: if the fractional gain
at internal edge ww is .16, then the gain at uw is .16(%); if vz is an external edge of
class 3, then the loss at vz is 251,52(%).) We use analogous terminology for vertices:

the fractional loss at v is 202, and the loss at v is ¢d2/t.
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Write (; (respectively (.) for the average fraction of the weight of an internal (re-

spectively external) edge captured by our configuration—that is,

G=a 3 6w and G== 3 o)

urwYeF wrwYeF
internal external

—and set v; = ¢; — 1/2, v¢ = (. — 1/2. Thus ~; and . represent the average fractional
gain of our configuration on internal and external edges of K, respectively. Lastly, write

d for the average of the d,’s over V(K). O

With these definitions, notice that (%) (i + 7e) is the total gain over all edges of
K. So, to reiterate (3.14), our goal is to show that this is always counterbalanced by an
equal or larger loss in the vertices of K whenever t is sufficiently large. What follows

is a long string of propositions culminating in a proof of this.

Proposition 3.13. Let R be an ETF subgraph of K containing fractions & (R) and

&(R) of the internal and external edges of K, respectively. Then
&(R)+ & (R) <14 o(1). (3.15)

Proof. We apply Lemma 2.21 with 7 = b = 2, € arbitrarily small but fixed, m = 2[e"!],
H, = R[X]URI|Y], Hy =Vg(X,Y), s1 =d/t, and s9 = 1.

We must first check that (for large enough t) H; is (d/t;2, 8)-bounded and Hs is
(1;2, B)-bounded, where § = B(e,b,m,r) > 0 is given by the lemma (but of course
the statement is really that these hold for any fixed 5 and, again, sufficiently large

t). The second of these is trivial. For the first, letting U,W C V(K) be disjoint with
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|U|, |[W| > 2t3, we have, using Lemma 2.16,

Vi (UW) VU nX,WnX)| |[Vag(UNY,WnY)|
~ @mulw] (d/t)[U]|W] (d/0)[U[|W]
- UNX||WNX|d/t +X\/|[UNX[[WNX]
- (d/)|U[|W]
N UNY|[WNYld/t + \\/JUNY[[WNY]
(d/O)|U||W]

U[Wd/t + A/[TT]
ST oy <ol

dd/t,Hl (U’ W)

which is at most 2 for large enough ¢.

Let II = (Vp, Vi,..., Vi) be the partition given by Lemma 2.21. By comment (i)
following the lemma we may assume each nonexceptional part of II is contained in
either X or Y, and by comment (ii) we may assume |V N X| = [Vp NY|, implying that
X and Y each contain exactly k/2 parts of II. Given a pair of nonexceptional parts of
II, we say the pair is external if exactly one of them is contained in X, and internal
otherwise.

We now delete the following edges from R: edges incident to Vj; edges inside some
Vi, i € [k]; edges that join (internal) pairs that are not (d/t; Hi, €)-regular; edges that
join (external) pairs that are not (1; He, €)-regular; edges that join internal pairs with
(d/t; Hy)-density less than 2¢; and edges that join external pairs with (1; Hy)-density

less than 2e. The following table lists upper bounds for the numbers of edges deleted

from H; and Hj in each of these categories. For convenience we set [ := |V;| < 2t/k.

y H, = RIX]UR[Y] | Hy =Vg(X)Y) |
edges incident to Vp < d|Vp| < 2etd < Vo] < 2¢t?
edges inside some V; <k (lg—f + %) < 2td/k + tA 0

< e(td + tAk) < etd(1 + o(1))
edges joining pairs that < e(g) (ﬁTd + )\l) < €(2td + Atk) 0
are not (d/t; Hy, €)-regular | < etd(2 + o(1))
edges joining pairs that 0 < 6(5)[2 < 2et?

are not (1; Ha, €)-regular
edges joining internal pairs | < 2(k22) (2eld/t) < 2edt 0
with (d/t; Hy)-density less
than 2e
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edges joining external 0 < (k/2)?2¢l?
pairs with (1; H2)-density < 2¢t?
less than 2e

| TOTAL | < (T+o0(1))etd | < 6et? |

Let X ={i€[k]|V; C X} and Y = [k] \ X. Let R be the graph on X UY where
ij € R iff there is an undeleted edge joining V; and V; in R. Then since R is ETF,
Lemma 2.22 gives that R is as well (meaning, as usual, that it contains no triangles
meeting both X and Y).

Now each internal edge of R corresponds to a pair in II whose R-edges contribute a
total of at most
4 2

12d/t + Ml
/tdg 2t g = 4K o))

to the fraction & (R). Similarly each external edge of R corresponds to a pair in II
whose R-edges contribute a total of at most [2/t?> < 4/k? to the fraction ¢ (R). By
Lemma 2.18 |R| < k?/4, so the contribution to &(R) + & (R) from undeleted R-edges
is at most 14 k20(1) = 1+0(1). And as computed in the table above, the contribution
to &(R) 4 &e(R) from deleted R-edges is at most 13e 4+ o(1). Thus &;(R) + & (R) <

1+ 13¢ + o(1). Since € was arbitrarily small, the proposition is proved. O
We now return to our configuration (F, ¢).

Proposition 3.14. We have (; + (. < 1+ 0o(1), or equivalently,
Vi + Ve < o(1). (3.16)

Proof. Suppose that for each v € V(K) we randomly choose one of v°, v%, with Pr(v*) =
¢(v*) and these choices made independently. This produces a random ETF subgraph
R of K in the obvious way: uw € R iff u*w? € F, where we chose u* € {u®,u®} and

wY € {w®, ws}. Observe that Pr(uw € R) is the fraction of the weight of uw captured
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by our configuration. With this observation, we calculate

C¢+Ce=% Z Pr(uw€R)+tl2 Z Pr(uw € R)

uweK uweK
internal external

= E[|[RN (K[X]UK[Y])|/td] + E[|[RN V(X,Y)|/#*]
= E[6i(R) + & (R)]
<14 o0(1),
where the last inequality is given by Proposition 3.13. 0

Proposition 3.15. We have § = o(1).

Proof. We simply calculate w.(F, ¢) (which, recall, we assume is at least 1/2):

1—-c¢ 1-c c
Wo(FL0) = —5—Git Gt g D (1/2-20)
veV(K)
1-c c 9
12+ () it - S &
veV(K)
1 2
<1/2+0(1) — 2c<2t > 5v)
veV(K)

=1/2 —2¢6% + o(1),
where we used Proposition 3.14 and Cauchy-Schwarz between the second and third
lines. O

From now on we call a vertex v of K balanced if &, < /8, and unbalanced otherwise;
thus, in view of Proposition 3.15, all but a o(1)-fraction of the vertices of K are balanced.
Also, we let G be the subgraph of K consisting of all edges of classes 1-3, and I" the

subgraph of GG consisting of edges of classes 1 and 2. Notice that since F' is ETF,

I' has even intersection with every external triangle in G. (3.17)

The next three facts say that in various senses, as t grows, G accounts for nearly all of
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K.
Proposition 3.16. The total loss on K \ G is o(1).

Proof. The total gain on G is at most what it would be if all edges of K were of class 1.
Since at most o(t) vertices are unbalanced, the total weight of all edges of K incident

to unbalanced vertices is o(1), so this gain is at most
2
(1—¢)2V5 +o(1)(1 - ¢)2(1/2)?,

which is o(1) by Proposition 3.15. Thus if the loss on K \ G were (1), we would have

we(F, ¢) < 1/2 for sufficiently large ¢ (since loss on vertices is always nonnegative). [
Corollary 3.17. There are at most o(t?) class 4 edges in K.

Proof. Assume otherwise, so that | K\ G| = Q(t?). Then since at most a o(1)-fraction of
the edges of K are incident to unbalanced vertices, most class 4 edges join two balanced
vertices. The fractional loss at any such edge is (1) (at least about 1/4, in view of

Proposition 3.15), so the total loss on K\ G is Q(1), contradicting Proposition 3.16. [
Corollary 3.18. There are at most o(td) class 4 edges in each of K[X], K[Y].

Proof. Assume for a contradiction that |(K \ G)[X]| = Q(td) (the proof for Y is of
course the same). Then since at most o(td) edges of K[X] are incident to unbalanced
vertices, most class 4 edges in K[X] join two balanced vertices. The fractional loss at
any such edge is (1) (at least about 1/4, in view of Proposition 3.15), so the total loss

on K\ G is Q(1), contradicting Proposition 3.16. O
The next result concerns only H, not K or (F,¢).

Proposition 3.19. For any H' C H of size (1 —0(1))|H|, there is a U C V(H) of size
o(t) such that H — U is connected and C(H' — U) is spanned by cycles of length up to
11.
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Proof. By Proposition 2.17 (and noting that finite diameter implies connectedness), it
suffices to find a U of size o(t) such that H' — U has diameter at most 5. To this end,
let Uy = {v € V(H) | dg\gr(v) > d/3}. Then uy := |Uy| < 2|H \ H'|/(d/3) = o(t).
Let Uy = {v € V(H)\U; | IN(v) N Uy| > d/3}. We claim ug = |Us| = o(t"/?)
(we just need o(d)). Indeed, applying Lemma 2.16 to H, we have (1/3 — o(1))uad <
||[V(U1, Up)| — %24 < X\ /ujugz, which (since d = O(t¥3) and A = O(t!/3)) gives
uy < O(t2/3uy) = o(t/3), as claimed.

Set U = U; UUy and H” = H' — U, and for each v € V(H") denote by Na(v) the
second neighborhood of v in H”; that is, the set of vertices at distance exactly 2 from
v in H”. We want to show that H” has diameter at most 5. For this it suffices to
show that every v satisfies d2(v) := |Na(v)| = Q(t), since for any S,T7 C V(H") with
|S], |T| = Q(t) we have Vyn(S,T) # @ (using Lemma 2.16 on H and the fact that
H\ | = of|H])).

To see that (for any v) do(v) = (t), note first that dg»(v) > (1/3—0(1))d (= Q(d)),
since v loses at most a third of its H-neighbors to H \ H’, at most another third to
Ui, and a o(1)-fraction to Us. Thus, since H is triangle-free, |V g (Ng»(v), Na(v))| =
Qd?) = Q(t4/3). On the other hand Lemma 2.16 gives |Vg(Ny»(v), Nao(v))| <

dppn (v)do(v)d/t + A\/dgn (v)da(v) = O(t/3)do(v) + O(t*/3)\/ds(v), implying do(v) =

Q(t) as claimed. O

Corollary 3.20. Any H' C H of size (1 — o(1))|H| has a component with t — o(t)

vertices.

(This is strictly weaker than Proposition 3.19; we include it for easy reference later.)
We now return to K and our configuration (F, ¢). The next result does most of the

heavy lifting for Lemma 3.10.

Proposition 3.21. There exist S C V(K) of size o(t) and a partition ALB of V(K)\S
such that Z :=T A Va(A, B) satisfies

Z CV(X,Y)
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and

dz(v) =o(t) Vv e V(K)\ S.

Proof. Let k = |(K \ G) N V(X,Y)|/t?, which is o(1) by Corollary 3.17. Let Sy =
{v € V(K) | visincident to at least ty/k external class 4 edges}. Then |Sp|t\/k <
2kt2, implying |So| = O(ty/k) = o(t). Now apply Proposition 3.19 to each of G[X \ Sp)
and G[Y \ Sp|, which we may do by Corollary 3.18. Let S; be the union of Sy and the
two deleted sets from Proposition 3.19, and set G = G— 51, X = X\ S;and Y =Y\ S;.

Let T(G) be the subspace of C(G) generated by the external triangles of G. Then

we observe, crucially:
all cycles of G[X] and G[Y] of length up to 11 belong to T(G). (3.18)

To see this, let C = 21,...,zxz1 be a cycle, say in G[X], with k& < 11. If there exists
y € Y with 2;y € G Vi € [k], then C € T(G), because C' is the sum of the triangles
ZiT;+1YTi, where of course we take subscripts mod k. But if there is no such y then for

some x; we have

Vi@, Y)| > [Y]/11,

implying z; € Sp, which it isn’t.

Now by (3.18) and our choice of S, we have
F[X] = VG(Xl,Xg) and F[Y] = VG(Y/I, }72)

for some partitions X; L1 X5 of X and Y1 UY5 of Y, since I' is orthogonal (over Fa, recall)
to all external triangles in G (see (3.17)), and thus to all cycles in G[X] and G[Y] of
length up to 11 (by (3.18)), and thus to all cycles in G[X] and G[Y] (see Proposition
3.19).

By Corollary 3.20 we can find a U C X UY of size o(t) such that G[X \ U] and
G[Y \ U] are connected. Set S = S; U U, producing the S of the proposition. Finally,

set X; =X1\U, X, =Xo\U and X' = X]U X} (= X\ U), and define Y/, Y and Y’
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similarly.

Now suppose x € X’. Since all but a o(1)-fraction of the external edges at z
belong to Vg (x,Y”), the subgraph of G induced by the corresponding vertices (that is,
G[Ng(z) NY']) has a component of size t — o(t) (Corollary 3.20 again), say with vertex
set ¥ UYY, where Y{* C Y/ and Y5 C Yy. Since I'[Y{* UYY| = V(Y7 YY), (3.17)

gives

yz € Va(Y",Yy) = [I'n{zy,zz}| =1,

yz € GV GYY] = [T {zy,xz}| € {0,2}.
Thus the connectivity of G[Y{" U Y5| implies that
Vr(z, Yi* UYy) € {Va(z, YT"), Valz, Y3} (3.19)

Moreover, the connectivity of G[X'] and the fact that any u,w € X’ have common
G-neighbors in (Y*UY5)N(YPUY5Y) (in fact many, since u, w ¢ Sp) imply “coherence”
of the choices in (3.19), meaning that u and w choose the same option iff they are
on the same side of X| U X). Of course a similar analysis applies with the roles of
X and Y reversed. Assuming without loss of generality that each x € X chooses
Vr(z, YFUYY) = Va(z,Ys) in (3.19), the proposition is proved, with A = X] UY/

and B = X, UYJ. O
At long last we can accomplish the goal set forth in (3.14).

Proof of Lemma 3.10. Let S;A, B C V(K) and Z C V(X,Y) be as in Proposition 3.21,
and set W =V(K)\ S (= AU B). We analyze K[W] first, and edges meeting S later.

Set p = % and ¢ = % Let ¢ be the vector indexed by X UY with

O ifve A
Yv=19y—-9, ifveB-:

0 ifvesS
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Let C be the adjacency matrix of H, J the ¢ x t matrix of 1’s, and I the 2¢ x 2t identity

matrix. Lastly, let N be the weighted adjacency matrix of K, and T the adjacency

matrix of Z. These matrices look like this:

X Y X Y
o(t) s
X| pC qJ X 0 per row
N = T =
o(t) I's
Y qJ pC' Y| per row 0

On K[W], the weight our configuration captures is at most what it would be if all
class 2 edges, as well as all class 4 edges in V(A, B), were instead class 1, and all class
4 edges in K[A] U K[B] were instead class 3. In this case, our configuration’s overall

loss on K[W] (edges and vertices) would be exactly

©T(N —2qT + (¢/t)])p. (3.20)

To show that our configuration captures at most half the weight of K[W] it would

suffice to show (3.20) to be nonnegative, but let’s instead show the stronger

"M >0, (3.21)

where M = N —2¢T + (.66¢/t)I. Thus we're showing that the gain on edges of K[W] is
at most (.66¢/t) >, oy 02, reserving the remaining vertex loss in W, (.34¢/t) >, ey 02,
for use below in handling edges meeting S. For (3.21), we simply show M is positive
definite. We first treat the N term and then the T' term, helping ourselves to a little
bit of the I term in each of these steps. As will be clear below, and as is perhaps hinted
by the constants .66 and .34, nothing in this argument is very delicate.

Let P and @ be the “pC” and “qJ” portions of N, respectively. Since P and @)
are symmetric and commute, they admit a common orthonormal basis of eigenvectors.

We seek to describe these eigenvectors and their corresponding eigenvalues in terms of
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the eigenvectors and eigenvalues of C', so let wy = t~Y21, wy, ..., w; be an orthonormal
eigenbasis for C with corresponding eigenvalues d = Ay > Ao > -+ > A;. Then a

common orthonormal eigenbasis for P and @ is

v = 271/2(101,1111)7 vy = 271/2(1017 —wi), ...,

Vop_1 = 2_1/2(71%7 we), Uy = 2_1/2(107:, —wy),

where (z,y) is the concatenation of x and y. These eigenvectors have corresponding
eigenvalues pd, pd, pAa, pAa, ..., pAs, pA for P and gt, —qt, 0,0, ..., 0 for @, and therefore
pd + gt = ;C, pd — qt = 0, pAa,pAo,...,pA,pA¢ for N. Call these N-eigenvalues
pi1, - . ., poe (for use below). Now since |\;| < O(tY/3) (see (3.13)), all eigenvalues of N
are at least —O(t%/3) = —o(t™!). Thus (e.g.) N + (.33¢c/t)I is (eventually) positive
definite.
We now turn to the 7" term in M, which is easier. As every absolute row sum of T
is o(t), so is every eigenvalue of 7. Thus every eigenvalue of —2¢T is at least —o(t 1),
o (e.g.) —2¢T + (.33¢/t)I is (eventually) positive definite. Therefore M is positive
definite, as claimed.
Finally we deal with contributions involving S. For this let 6 = (J, | v € V(K)),
8" = 1w o J (where o denotes componentwise product), a; = § - v; and o = § - v;
€ [2t] (where - denotes the usual inner product). The total gain from edges meeting

S is at most what it would be if all these edges were class 1, which is exactly
§'NS — (0')INY = Z e H?)
2t
= pi(af = (a1)*) + Y pilaf — (a))?). (3.22)
i=2

In view of what we know about the p;’s, the sum in (3.22) is at most

Ay Y 02— (minp) Y 62 < O )| > s+ D> 6], (3.23)

vGV(K veW veV(K) veW
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while, with e defined by o = (1 — ¢)ay, the first term in (3.22) is

1—c 1 2
(26 — e%)ai = r (2552)%< > 5v>

<5t_2< > 5v>2 (3.24)

veV(K)

2
< min 5_1t_2<25v>, 2et™! Z 62 (3.25)

vES veV (K

(actually (3.24) is equal to the first expression in (3.25)).

On the other hand, we get to subtract from these gains

E 252 340 Z (52 .66¢ 262 346 Z 52
t v

vES veW veS veV(K)

-66¢ 2 34c 2
We need to say this is larger than the sum of the right hand sides of (3.23) and
(3.25), which is easy. For example, half the second term of (3.26) dominates the right
hand side of (3.23), while the right hand side of (3.25) is at most half the second term
of (3.26) if ¢ < .17¢/2 (to be unnecessarily precise), and otherwise, since |S| = o(t), is

dominated by the first term of (3.26). O
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Chapter 4

The Cycle Space of G,

4.1 Introduction

An issue of considerable interest in combinatorics over the last few decades has been
the extent to which various standard facts, for instance the classic theorems of Turan,
Ramsey and Szemerédi, remain true in a “sparse random” setting. Thus, for example,
one may ask for which p = p(n) a given (deterministic) assertion regarding the complete
graph K, is likely to hold in the (“Bernoulli”) random graph G, ,. The main result of

this chapter follows this theme.

Our underlying deterministic statement is Proposition 4.1 below, for which we need
a definition: for a fixed graph H, the H-space of G is the subspace of £(G) generated
by the copies of H in G; this will be denoted Cx(G), or simply Cx(G) if H = C,.

Proposition 4.1. If k > 3 is odd, then for any n > k, Cx(K,) = C(K,).

(Below, in Theorem 4.5, we will characterize Cg(K,,) for any fixed H and large enough

When, in terms of p (= p(n)), are the s-gons of G, likely to span its cycle space?
Let T, be the class of graphs G satisfying C.(G) = C(G) and let Q,. be the class of
nonempty graphs each of whose edges lies in a copy of Cx. For any G, it’s easy to see
that G ¢ 7T, unless every edge of G that lies in a cycle in fact lies in a x-gon. On the
other hand, if p > (14 Q(1))logn/n then w.h.p. every edge of G, does lie in a cycle
(see [23, p. 105]). So for such p, G, € T, w.h.p. at least requires G, € Q. w.h.p.,

and we should first understand when this is true. Let

Pk = pa(n) = [(+/(x — 1))n " log ]/ (4.1)
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(where we always use log for In). Note Q, is not an increasing property—that is, it
is not preserved by adding edges. Nonetheless, pj; is a sharp threshold for Q,, in the

sense that:

Lemma 4.2. For any fized k > 3 and € > 0,

0 ifp<(1—e)pj,
Pr(Gnp € Qu) — (4.2)

1 ifp>(1+e)pk.

(Throughout this chapter limits are taken as n — co.) We prove this routine observation
in Section 4.3. The cases in (4.2) are called the 0-statement and the I-statement
(respectively).

Given Lemma 4.2, one might hope that p, is also a sharp threshold for 7, and it
essentially is, but for a small glitch in the O-statement: for p < (1 — (1))/n, we have
lim Pr(G,,, € Ti) > 0 for the silly reason that the probability of having no cycles at all

is (asymptotically) positive (see e.g. [31, Theorem 1]). Thus we will show:
Theorem 4.3. For any fized odd k > 3 and € > 0,

0 if (1—o(1))/n<p<(l-e)p,
Pr(Gnp € Ts) —

1 ifp>(1+¢)pi.

We actually prove the following stronger statement (see Section 4.3 for “stronger”),
which says that edges not in k-gons are the obstruction to 7, in a precise sense. This

is the main result of this chapter.

Theorem 4.4. For any fixed odd k > 3,
max Pr(G,p € Qx \ Tx) = 0; (4.3)
2

equivalently,

Vp=pn), Pr(Gppe Qx\Ts)—0. (4.4)

(The (trivial) equivalence is given by the observation that (4.4) holds iff it holds when,
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for each n, p = p(n) is a value achieving the maximum in (4.3) (and in this case the
two statements are the same).)

Theorems 4.3 and 4.4 for kK = 3 were proved in [12]; even the former had been open
and of interest, being the first unsettled case of a conjecture of M. Kahle (see [24, 25])
on the homology of the clique complex of G, ;,. Perhaps surprisingly, the argument of
[12] does not extend to k > 5, though, as discussed below, it does share a starting point
with what we do here.

What happens if we replace the Cy of Proposition 4.1 by some other graph? With
D(G) ={D € £(G) : |D| =0 (mod 2)}, the proposition generalizes neatly:

Theorem 4.5. For any graph H with at least one edge and n large enough with respect

to H,
C(Ky) if H is Eulerian and |H| is odd,
C(K,)ND(K,) if H is Eulerian and |H| is even,
Cr(Ky) = (4.5)
E(Ky) if H is not Eulerian and |H| is odd,
D(K,) if H is not Eulerian and |H| is even.

Here |H| = |E(H)| and “Eulerian” means degrees are even, but not that the graph is
necessarily connected. Of course the left-to-right containments (Cp (k) C C(K,) and
so on) are obvious.

The natural value of Cy(G), which we will denote Wy (G), is then what one gets by

replacing K, by G in the appropriate expression on the right hand side of (4.5); e.g.

for H = CY,

C(@G) if x is odd,
Wi (G) = (4.6)
C(G)ND(G) if k is even.

(We could instead set Wy (G) = £(G)NCx(K,,), which by Theorem 4.5 is the same for
all but a few values of n.) So we are interested in understanding when G,, , is likely to
lie in

Ta :={G :Cu(G) =Wu(G)}.
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(Again, Cy(G) € Wg(G) is trivial for any H and G.)

As before, membership in 7z will (in non-silly cases) at least require that the copies
of H cover the edges of G := Gy, p, but when H is non-Eulerian there is a second
requirement: each vertex (of G) should have odd degree in some copy of H in G (since
for any v € V(G), Wy (G) will contain graphs in which v has odd degree). For example
if H is a pair of triangles joined by a slightly long path and n™ 17 < p < n=2/3 for a
suitable small € depending on the length of the path, then (w.h.p.) all edges of G are
in copies of H, but most vertices fail to lie in triangles, so have even degree in every
copy.

Generalizing Q,, let Qp be the class of nonempty graphs G satisfying (i) each edge
of G is in a copy of H, and (ii) if H is not Eulerian, then each vertex of G has odd degree
in some copy of H; so we have just said that we “essentially” have Ty C Og. Though
we hesitate to make it a conjecture, we don’t know that the following generalization of

Theorem 4.4 is wrong.

Question 4.6. Could it be that for each (fixed) H,

max Pr(Gn,p € Qp\Tu) — 07 (4.7)
p

Understanding when G,,, € Qf w.h.p. is easier, so this would also tell us when 7T is
likely to hold. (Note that in general we don’t expect a statement like Theorem 4.3, since
the “threshold” for Qp itself may not be sharp.) Even if (4.7) is not true in general, it
seems likely to hold for reasonably nice H (even, say, edge-transitive to start, though
this should be much more than is needed). One could also relax (4.7) to an Erd6s-Rényi-

like threshold statement; e.g. with pg,, = min{pg : Pr(G,, € Qn) > 1/2 Vp > po},

if p>> pg,, then G, , € Ty w.h.p.

Owutline. The rest of this chapter is organized as follows. Section 4.1.1 digresses breifly

to discuss how Theorem 4.4 was inspired in part by the work of Chapter 3. Section 4.2
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recalls edge space preliminaries, outlines the main points (Lemmas 4.8-4.10) for the
proof of Theorem 4.4, and introduces the (standard) coupling critical to two of their
proofs. Section 4.3 proves Lemma 4.2 and gives the easy derivation of Theorem 4.3
from Theorem 4.4. The heart of the chapter is Sections 4.4-4.6, particularly the last
of these. They supply the proofs of the lemmas of Section 4.2, in ascending order of
difficulty. Section 4.7 gives the easy proof of Theorem 4.5, which we postpone as it is
unrelated to the rest of the chapter. Finally (and a bit tangentially), Section 4.8 gives
the proof of a theorem (Theorem 4.12) that takes a step towards settling Question 4.6

(see the remark after Lemma 4.10).

4.1.1 Digression: A Connection to Chapter 3

In Chapter 1, we mentioned that we were motivated to study C(G, ) in part by an
aspect of our construction of the graphs disproving Yuster’s conjecture. We are now in
a position to elaborate.

Recall that our construction started with a fixed, random-looking but triangle-free
graph H (see the paragraph after Theorem 3.3). We had this idea early on in the course
of developing the construction. Much later we realized that one of the properties we
would need from this H is (more or less) that its cycle space be spanned by short cycles
(see Proposition 3.19). This discovery, combined with the fact that we had earlier
considered taking as our H a de-triangled instance of Gn,p,l led us to wonder what we
could say generally about C(G,p).

Despite our historical link between Theorem 4.4 and the construction for Theorem
3.3, the former theorem is not directly relevant to the construction, for several reasons.
For one, as already mentioned, a starting H for the construction must be triangle-free.
For two, the property of H asserted in Proposition 3.19 is somewhat peculiar, dealing
with the cycle space of subgraphs of H in addition to that of H itself. For three, and
most importantly, Theorem 4.4 is overkill in the sense that Proposition 3.19 doesn’t

require any graph (H or any of its subgraphs) to be spanned by cycles of a fized length,

'Recall we eventually settled on a better H—see Proposition 3.11 and the succeeding paragraph.
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but only by cycles up to a fixed length. This, as the first two lines of the proposition’s

proof indicate, is much easier.

4.2 Main Points for the Proof of Theorem 4.4

Before outlining the proof of Theorem 4.4, we need to review just a little more back-

ground.

4.2.1 Edge Space Basics

The edge space £(G) of a graph G (defined early in Chapter 2), being an Fa-vector space,
comes equipped with a standard inner product: (J, K) =} cpq) J(e)K(e) = [JN K],
where the sum and cardinality are interpreted mod 2. (The first expression thinks of J
and K as vectors, the second as subgraphs of G.) With this, the orthogonal complement,
S+, of a subspace S of £(G) is defined as usual. Then C*(G), called the cut space of
G, consists of the (indicators of) cuts of G (which, note, includes @); (C(G) N D(G))*
consists of cuts and their complements; and C3(G) is the set of subgraphs of G having
even intersection with every copy of H (in G).

As mentioned earlier, Cy(G) € Wi (G) always; dually, Wi (G) C C#(G). In partic-

ular, for odd k > 3,
CH(G) C CH(G), and equality here is the same as G € T. (4.8)

The next (trivial) observation will be useful at a few points.

Proposition 4.7. Let G be a graph and L C G, and suppose L', L" are (respectively)

smallest and largest members of the coset L +C+(G). Then
VoeV dp(v) <dg(v)/2 <dp(v).

or example 1t dy/(v) > dg(v)/2, then L' + V(v) (€ L + 1s smaller than L.
F le if d d 2, then L' + V L+CH@))i ller than L'

In particular, if G ¢ T, then since C:(G) \ C+(G) 2 L + C+(G) for any L €
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CH(G)\ CH(G), a smallest element F of C-(G) \ C*(G) satisfies
dr(v) <dg(v)/2 YveV. (4.9)

4.2.2 Structure of the Proof

From now through the end of Section 4.7 we fix an odd k > 5 (as mentioned earlier, the
case k = 3 of Theorem 4.4 was proved in [12]), and set p* = pk, Q = Q,, T =T, and

G = Gy, p; so our objective, (4.3), becomes
max Pr(G € Q\T) — 0. (4.10)
P

As sometimes happens, though (4.10) should become “more true” as p (> p*) grows,
some points in the proof run into difficulties for larger p, and it seems easiest to deal
first with smaller p and then derive the full statement from this restricted version. The

next two lemmas, the first of which is our main point, implement this plan.

Lemma 4.8. For any fixred K and p < Kp*,
Pr(Ge Q\T)—0. (4.11)

(The interest here is really in p at least about p*, smaller values being handled by

Lemma 4.2; see (4.28).)

Lemma 4.9. There exists K > 1 such that if p > q := Kp*, then
Pr(G¢T)<Pr(Gng ¢ T)+o(1).

Applying Lemmas 4.9 and 4.8, together with (the 1-statement of ) Lemma 4.2 to p'(n) :=

min{p(n), Kp*(n)} then easily gives Theorem 4.4. (For n’s with p(n) > Kp*, we have,
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using Lemma 4.9 for the first inequality and Lemmas 4.8 and 4.2 for the final o(1),

Pr(Ge Q\T)<Pr(Gnpy €T)+o0(1)

< Pr(Gy € Q\T) + Pr(Gry ¢ Q) +o(1) = o(1),

and for the remaining n’s we have p = p’ and Lemma 4.8 applies directly.)

The following device will play a central role in the proofs of both of these lemmas
(so in most of this chapter). For the rest of the chapter we fix some rule that associates

with each finite graph G a subgraph F(G) satisfying

@ ifGeT,
F(G) = (4.12)

some smallest element of C:-(G) \ CH(G) ifG¢T.

(By (4.8), this makes sense.)

We will use this only with G, so set F'(G) = F throughout. A crucial point is that
G determines F' (see the paragraph preceding Proposition 4.11). That F' is a minimizer
will be used only to say that it is small and has small degrees, as promised by (4.9).

Another useful observation (recalling the notation of Section 2.4):

rye F = |F|>o" Yax,y)+1. (4.13)

(Proof: Since F' lies in C;-(G), it must contain a second edge of each xk-gon of G
containing zy, and there is a set of 0" ~!(z,y) such s-gons that share no edges except
xy.)

With F thus defined we may replace the event {G ¢ T} by the more convenient {F' #
@}, which in particular allows us to tailor our treatment to the size of a hypothetical F'.
As we will see, ruling out fairly large F’s is easy—not from scratch, but with the help

of a powerful result from [11] (Theorem 2.19), which more or less immediately yields:
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Lemma 4.10. For fized ¢ > 0 and p > n~(v=2)/(x=1)

Pr(|F| > en’p) — 0. (4.14)

Thus the real problem in proving Lemma 4.8, and the most interesting part of the
whole business, is dealing with F’s that are small relative to G' (but nonempty). Thus
far—and a little further; see the preview following the statement of Lemma 4.14—our
structure mirrors that of [12]; but the (two-page) argument handling this main point

there offers no help here.

Remark. In connection with Question 4.6, it seems worth observing that Lemma 4.10, at
least, can be considerably extended. In fact we can prove a statement of this type with
the odd cycle C); replaced by a general H, though not always with the (conjecturally
correct) lower bound on p that would correspond to a positive answer to Question 4.6.

See Section 4.4 for a statement and Section 4.8 for a (sketchy) proof.

4.2.3 Coupling

A critical role in the proofs of Lemmas 4.8 and 4.9 is played by the usual coupling of
G (= Gy p) and Gy, 4, where p will always be the value we're really interested in and
g < p will depend on what we’re trying to do.

So, from now on we set Go = Gy, 4.

A standard description: let A, e € F(K,,), be chosen uniformly and independently
from [0, 1] and set

G={e: e <p}, Go={e: A <q}.

In particular Gy C G. Probabilities in the proofs of Lemmas 4.8 and 4.9 will refer to
the joint distribution of G and Gp.

We will get most of our leverage from two alternate ways of viewing the choice of

the pair (G, Go):



57

(A) Choose G first; thus we choose G in the usual way and let Gy be the (“(¢/p)-
random”) subset of G gotten by retaining edges of G with probability ¢/p, these

choices made independently (a.k.a. percolation on G).

(B) Choose Gy first; that is, we choose Gy in the usual way, define p’ by (1—¢q)(1—p') =
1—p, and let G be the random superset of G gotten by adding each edge of K,,\ Gy

to Gy with probability p’, these choices again made independently.

We will often refer to these as “coupling down” and “coupling up” (respectively).

The proof of Lemma 4.9 is based naturally (or inevitably) on the viewpoint in (A);
namely, we show that (with p, ¢ as in the lemma) if G is “bad” (meaning G ¢ T') then
the coupled Gy is likely to be bad as well. For the proof of Lemma 4.8, viewpoint (B)
is the primary mover, though the smaller role of (A) is also crucial.

With reference to the setup introduced at (4.12), when working with G and Gq as
above, we set Fy = Go N F (a (¢/p)-random subset of F'; note this has nothing to do

with F'(Gp), which will play no role here). Then automatically

Fy € Cir(Go), (4.15)

since Fp NC = FNC for any x-gon C of Gg.

We will want to say that certain features of (G, F') are reflected in (Go, Fp). A simple
but crucial point here is that there is no summing (of probabilities) over possible F’s,
since there is just one F' for each G. The following proposition will be sufficient for our

purposes.

Proposition 4.11. With the above setup, for any p, ¢ and g = g(n) = w(1), w.h.p.

|[Fol ~ |Flq/p if |F|> gp/q

and

~dp(v)q/p Yv with dp(v) > (glogn)p/q,
dFo(v)

< 3glogn Vv with dp(v) < (glogn)p/q.
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(This is true for any rule that specifies a particular subgraph (in place of F') for each
graph; but we will only use it with F' (= F(G)), so just give the statement for this

case.)

Proof. These are straightforward applications of Theorems 2.1 and 2.2, so we will be

brief. For the first assertion we want to say that for any fixed € > 0,

Pr ({|F| > gp/a} ANMIFo| # (1 £)|Fla/p}) — 0.

But the probability here is less than

Pr (|Fy| # (L+¢)|Flg/p | |F| > gp/q),

which by Theorem 2.1 is less than exp[—£(c2g)].

The second assertion (pair of assertions) is similar, following from
> Pr(dr(v) # (1 £e)dr(v) | dp(v) > (glogn)p/q) < nexp[-Q(c’glogn)]
= o(1)
for any fixed € > 0, and (now switching to Theorem 2.2)

> Pr(dm,(v) > 3glogn | dp(v) < (glogn)p/q) < nexp[—(3glogn)log(3/e)]

= o(1). O

4.3 Two Simple Points

Here we dispose of Lemma 4.2 and the derivation of Theorem 4.3 from Theorem 4.4.

(Recall we are using G for G, , and V for V(G).)

Proof of Lemma 4.2. We begin with the 1-statement, a typical application of Theo-

rem 2.3. We assume p > (1 + ¢)p* and p = O(p*) (as we may, since for larger p, the
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1-statement is contained in Theorem 2.8). Given z,y € V, let the A;’s (in the para-
graph preceding Theorem 2.3) be the (edge sets of) the (k — 1)-paths joining = and y
in Ky,; 80 X =7 Yz,y), p~n"2p"~Land A = p+ O(un"*3p*~2) ~ . Thus (note
¢(—1) = 1) Theorem 2.3 gives

Pr(r* ! (2,y) = 0) < exp[—(1 — o(1))]. (4.16)

So the probability that Q@ (= Q) fails—that is, that there is some zy in G with

H—l(

7 (x,y) = 0—is less than

(5)pe” 1M < expllog(n®p) — (1 — o(1))u] = o(1)

(since g > (1 —o(1))(1 +&)* 1(x/(k — 1)) logn ~ (1 + )" Llog(n?p)).

For the O-statement we use the second moment method (see e.g. [3, Chapter 4]) and,

again, Theorem 2.3. Let Z,, be the indicator of the event {zy € G} A {7" !(x,y) = 0}

K—2

(z,y € V) and Z =Y Z,,. Theorem 2.6 gives Pr(r* (z,y) =0) > (1 —p~~ 1)~ >

exp[—u — o(1)] (u as above), whence
E[Zzy] > pexp[—p — o(1)]. (4.17)

In particular E[Z] = w(1) (using p < (1 — ¢)p* and ignoring the rather trivial case p =
O(n2)), so for EZ? ~ E[Z]? (which gives the O-statement via Chebyshev’s Inequality),
it’s enough to show

E(ZuyZuw) < (1 + 0(1))E[Z,]?

for distinct {x,y},{u,v} € (‘2/), which in view of (4.17) follows from

E[ZyZu] < p? PI"(TH_l(.CL‘, y) = T“_l(u,v) =0)

< p?exp[—(1 — O(n"*p"?))2u] = p” exp[—2p + o(1)].

Here the first inequality is given by Theorem 2.6 (since the events {zy,uv € G} and
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{r""Y(x,y) = 7 1(u,v) = 0} are increasing and decreasing respectively), and the
second by Theorem 2.3, where the A;’s are the (k — 1)-edge paths joining either x and
y or u and v, for which EX ~ 2u (recall X is the number of A;’s that occur) and it’s

easy to see that A — = O(n*5p*=3) = O(n"3p"2)u (= o(u)). O

Proof that Theorem 4.4 implies Theorem 4.3. This is routine and we aim to be brief.
Lemma 4.2 gives the 1-statement (which is the interesting part). For the O-statement,
it is enough to say that for p in the stated range, G w.h.p. contains an edge lying in a
cycle but not in a Cy. This is again given by Lemma 4.2 if p is large enough that all
edges are in cycles (w.h.p), which is true if p > (1 4+ Q(1))logn/n (see [23, p. 105]).
For smaller p, w.h.p. G contains cycles of length w(1) if p > (1 —o(1))/n and of length
Q(n3/10) (say) if p > 1/n (see e.g. [23, Theorem 5.18(i)]). On the other hand, since the
expected number of Cy’s in G is less than (np)”, the number of edges in Cy’s is w.h.p.
less than w(np)” for any w = w(1); so in the range under discussion, the Cy.’s w.h.p.

don’t cover even one longest cycle in G. O

4.4 Proof of Lemma 4.10

Here we give the easy proof of Lemma 4.10 and then state the extension to general H
mentioned in the remark after the lemma.

For the lemma it’s enough to show that the conclusions of Proposition 2.12, The-
orem 2.19 and Proposition 2.13 (c), the latter two with ¢ = ¢/3, imply |F| < cnp?
(deterministically).

Let I’ be a largest element of F' + C+(G). Then |F’| > |G|/2 (by Proposition 4.7),

so, since F’ is Cy-free, the conclusion of Theorem 2.19 gives an A C V with

|F'\ Vg (A)| < en?p. (4.18)

It then remains to observe that (under our assumptions), (4.18) implies

(IF| <) [F'AVG(A)| < 3enp.
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But the conclusion of Proposition 2.13 (c) gives |Vg(4)| < (1 + €)n?p/4, whence

IVG(A)\ F'| < (14 e)n’p/4 — (|G|/2 — en?p) < 2een’p

(where we again used Proposition 2.12 to say |G| ~ n’p/2). O

Generalization. For this discussion we restrict to H with e > 2. For such an H, set

e — 1
mao(H) :maX{vK_2

:KQH,UKZB}. (4.19)

This parameter plays a central role in various contexts, in particular in results more or

less related to (the general version of) Theorem 2.19; see e.g. [33] for an overview.

Theorem 4.12. For any fivred H with e > 2, the following is true. For any e > 0
there is an M such that if p > Mn=Y/™2H) then w.h.p.: for each F € C#(G) there is

an X € Wg(G) with |FAX| < en?p; in particular, if Cy(G) # Wg(G), then
min{|F|: F € C(G) \ WH(G)} < en’p.

This is proved in Section 4.8.

Remarks. Notice that Theorem 4.12 contains an extension of Lemma 4.10, whereas
in the preceding discussion we did need a few lines to get from Theorem 2.19 to the
lemma. But the two theorems live in somewhat different worlds, since Theorem 2.19
assumes only that I’ is Ck-free, which is much weaker than requiring that it have odd
intersection with every Cl.

—1/m2(H) ig not necessarily what’s needed

As mentioned in Section 2.9, the value n
for Question 4.6. For instance, if H is two triangles joined by a P;, then mo(H) = 2
(take K to be one of the triangles), but the range where the question is most interesting
(the point at which Qp becomes likely) is at p =< n=2/3 logl/ 3 n, corresponding to all
vertices being in triangles. On the other hand, in many (or most) natural cases—e.g.

the (“balanced”) H’s for which K = H achieves the max in (4.19)—Theorem 4.12 does

give what should be the correct extension of Lemma 4.10. (It would be interesting to
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see if one could push the theorem to give the correct extension in general; with our
current approach this would mainly require a fairly significant extension of what we are

getting from “containers,” and we haven’t yet thought about plausibility.)

4.5 Proof of Lemma 4.9

By Corollary 2.11 with [ = k — 1, there is a K > 1 such that if p > Kp*, then w.h.p.
every {z,y} € (‘2/) satisfies 0" 1(z,y) = Q(7) (4.20)

(where m = m(n,p) is as in the corollary). We work in the coupling framework of
Section 4.2.3, taking ¢ = Kp*.

For Lemma 4.9 it is of course enough to show
Pr{G¢T} N {GyeT}) —0. (4.21)

Note that Gy € T implies Fy € C+(Gy), since we always have Fy € C-(Go) (see (4.15));

thus (4.21) will follow from
Pr({F # @} A {Fy € Ct(Gp)}) = 0. (4.22)
So it will be enough to show that
Fy ¢ CH(Go) (4.23)

follows (deterministically) from

F+#o (4.24)

combined with various statements that we already know to hold w.h.p. This is not hard,
but is more circuitous than one might wish. Roughly we show that, barring occurrence
of some low probability event, (i) presence of even one edge in F' forces F' to be large

enough (not very large) that Fy # @, and (ii) Fj is not substantial enough to meet all
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zy-paths in Gy — zy for an xzy € Fp, so any such zy is contained in a cycle witnessing

(4.23).

A convention. To slightly streamline the presentation we agree that in this argument,
appeals to a probabilistic statement X—e.g. “X implies” or “by X”—actually refer
to the conclusion of X, which conclusion will always be something that X asserts to
hold w.h.p. See the references to (4.20), Lemma 4.10 and Proposition 4.11 in the next

paragraph for first instances of this.

If (4.24) holds, then (4.20) and (4.13) (for the lower bound) together with Lemma

4.10 (for the upper) imply that

Q(7) < |F| < n*p/10. (4.25)

Since mq/p > 1, the lower bound in (4.25) and the first part of Proposition 4.11 give
[Fol ~ |Flq/p, so
0 # |Fo| < (14 o(1))n?q/10. (4.26)

In addition, Proposition 2.12, (4.9) and the second part of Proposition 4.11 give

dr,(v) < (14 o0(1))ng/2 Yve V.

Thus, setting Hy = Go \ Fj and recalling the approximate (ng)-regularity of Gy given

by Proposition 2.12, we have

dp,(v) > (1 —0o(1))ng/2 YveV. (4.27)

Now choose an xy € Fy (recall (4.26) says Fy # @) and let X,Y be the Hp-
components of x and y. By (4.27) and Proposition 2.14 (applied to Gg), we have
|X|, Y| > n/3, which implies X =Y otherwise X and Y are disjoint and we have the

contradiction

(1= o(1))n*q/9 < |V, (X, Y)| < |Fy| < (1 + o(1))n?q/10,
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where the first inequality is given by Proposition 2.13 (a) (applied to Gg), the second
holds because Vg, (X,Y) C Fy, and the third is given by (4.26).
But this (i.e. X =Y) gives an xy-path in Hy, and adding zy to this path produces

a cycle meeting Fy only in xy; so we have (4.23).

4.6 Proof of Lemma 4.8

Here we introduce the two main assertions, Lemmas 4.13 and 4.14, underlying Lemma
4.8, and prove the latter assuming them. The supporting lemmas are proved in Sections
4.6.1 and 4.6.2.

Note that for the proof of Lemma 4.8, Lemma 4.2 allows us to restrict attention to

the range

(1—-¢e)p* <p< Kp* (4.28)

(for any fixed € > 0), and recall that, as observed following (4.14), it’s enough to show

that for a given A = A\(n) — 0,

Pr({G € Q} A {0 < |F| < An®p}) — 0. (4.29)

We again work with the coupling of Section 4.2.3, now taking ¢ = Jp with a fixed
¥ € (0, 1) small enough to support the discussion below (the rather mild constraints on

¥ are at (4.40) and (4.47)). Define the random variables o and g by

|F| = an?p/2 and |Fy| = agn?q/2. (4.30)

Definitions. Henceforth a path (with length unspecified) is a P,;,—1 (and an xy-path is a
path whose endpoints are z and y). Our paths will always lie in G and often in Gy. We
now write o(x,y) for o5 1(x,y) (recall from Section 2.4 that this is the maximum size
of a set of internally disjoint zy-paths in G), and og(z,y) for the analogous quantity

in Gg. For S C G, a path P is S-central if it contains an odd number of edges of S,
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at least one of which is internal. Let o(z,y;S) be the maximum size of a collection
of internally disjoint S-central zy-paths, and og(z,y; S) the corresponding quantity in

Go. An (S,t)-rope is a P; whose terminal edges lie in S. Set
R(S) = {{z,y} € (}) : o0(z,y; S) > .25n"2¢" 1} (4.31)

and define events

R = {|F N R(Fy)| > .12an*p}

and

P ={0< |F| < An?*p}
(the second conjunct in (4.29)).

Lemma 4.13. There is a fized € > 0 such that for p as in (4.28), w.h.p.
GeQANP = GeR. (4.32)

(In other words, Pr(G € Q AP AR) — 0. Of course R holds trivially if F' = @, so it’s

only the upper bound in P that’s of interest here.)

Remarks. For {z,y} € (‘2/), oo(z,y) should be around n*~2¢*~!. Lemma 4.13 says that,
provided G € Q A P, it’s likely that for a decent fraction of the edges xy of F, even
oo(x,y; Fp) is of this order of magnitude—which is unnatural if Fy is small relative to
Gy (since then paths should typically avoid Fp). Viewed from Lemma 4.13 the parity
requirement in the definition of “central” may look superfluous, since a path of Gy
joining ends of an edge of F' necessarily has odd intersection with Fp; but this extra

condition will later play a brief but important role in justifying (4.36).

For the next lemma we temporarily expand the range of ¢ and Gy, assuming only
what’s needed for the proof (though we will use the lemma only with ¢ and Gy as

above).

Lemma 4.14. For fired t > 3, ¢ = q(n) > n~"'log®n and Gy = Gnq, w.h.p.: for
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S C Gy, say with |S| = Bn2q/2, the number of (S,t)-ropes in Gy is

O(max{ﬁQntht, ﬁnt/2+2qt/2+1}). (433)

Remarks. Note this is of interest only when 8 < 1, since Proposition 2.12 bounds
(w.h.p.) the number in question by (1 + o(1))nf*1q’; see Section 4.6.2 for a little more
on the bounds in (4.33). The bound is also correct, but more trivial, when ¢ = 2. The
lemma doesn’t actually require S C Gg: the proof shows that, for any S C E(K,,) (of

the stated size) with Ag = O(ngq) (where A is maximum degree), we have the same

bound for the number of P,’s with terminal edges in S and internal edges in Gj.

Preview. The proof of Lemma 4.8, which we are about to give, is based mainly on
“coupling up”: using information about (G, Fp) to constrain what happens when we
choose G\ Gy. (To this extent our strategy is similar to that of [12], but the resemblance
ends there.) On the other hand, the proof of the crucial Lemma 4.13 in Section 4.6.1 is
based on “coupling down”: most of the work there is devoted to the proof of a similar
statement (Lemma 4.15) involving only G (not Gy), from which the desired hybrid
statement follows easily via coupling. In sum, we couple down to show that R is likely
(precisely, the conjunction of its failure with Q A P is unlikely), and couple up to show
it is unlikely. A little more on the latter:

We would like to say that if G is sufficiently nice—as it will be w.h.p.—then PAR
is unlikely; this gives (4.29) via Lemma 4.13. The main point we need to add to
Lemmas 4.13 and 4.14 is a deterministic one: if Gy enjoys relevant genericity properties,
together with the conclusion of Lemma 4.14, then, for each S C Gg, R(S) is fairly small
(depending on |S|; see (4.37)). Combined with F' # & (from P), this will allow us to
say that the lower bound on |G N R(Fy)| (= |F N R(Fp)|) in R is larger by a crucial
factor a1 than |R(Fp)|p—its natural value when we “couple up”—which ought to
make R unlikely. But of course Fjy depends on G, so, given G, we are forced to sum the
probability of this supposedly unlikely event over possible values S of Fy. This turns

out to mean that the whole argument would collapse if we were to replace the above



67

oW by a2, (Here we again use P, in this case to say a is small.)

A word on presentation. We prove the desired

Pr(QAP) =o(1) (4.34)

(= (4.29)) by producing a list of unlikely events and showing that at least one of these
must hold if @ AP does. A more intuitive formulation might, for example, begin:
“By Lemma 4.13 (since we assume Q A P), we may assume R.” But note this would
really mean, not that we condition on R (which is not something we could hope to
understand), but that we need only bound probabilities Pr(S A R) for S’s of interest,
and for a formal discussion this seems most clearly handled by something like the

present approach.

We need two additional events (supplementing P, Q, R above). The first of these is
simply
S ={ap ~a}

(i.e. for any n > 0, a9y = (1 £ n)a for large enough n; recall a, oy were defined in
(4.30)). The second, which we call T, is the conjunction of a few properties of G that
we already know hold w.h.p., namely: |Go| ~ n?q/2 (see Proposition 2.12); (2.15) and
(2.16) for | € [k — 1,2k — 6] (meaning, in view of (4.28), (2.16) if { = x — 1 and (2.15)
otherwise); and the conclusion of Lemma 4.14 for t < k — 1 (actually we only need this
for even t). We first outline and then fill in details.

We have Pr(Q A R) = o(1) (by Lemma 4.13; this is the only role Q plays in the

present argument), and will show

Pr(RA{F # 2} AS) = o(1). (4.35)

(This is easy and a secondary use of R. Note {F # @} is implied by P.)



68

We will also show that, deterministically,
RA{F#2}ANS = |(G\ Go) NR(Fy)| > .lan’p (4.36)
provided ¢ is sufficiently small (this is again easy), and, as mentioned in the preview,
T = |R(S)| = O(ain?) (4.37)

for some fixed § > 0 and all S C Gy, where we set ag = 2|S|/(n?q). Thus the
conjunction of P,R,S and 7 implies (again, deterministically), the event—call it U—
that |Go| < n?q (say) and there is an S C Gg (namely the one that will become Fp)

satisfying (say):

as < 21X, |R(S)| = O(ay™n?), and |(G\ Go)NR(S)| > .09asn?p.  (4.38)
Thus, finally, for (4.29) it is enough to show (by a routine calculation)

Pr(U) = o(1). (4.39)
(Because: since U implies PV RV SV T, (4.39) implies
Pr(QA(PVRVSVT))=Pr(Q) —o(l);
but the left hand side here is at most
Pr(QAP)+Pr(QAPAR)+Pr(PARAS)+Pr(T)=Pr(QAP)+o(1)

(the second and third terms on the left being bounded by Lemma 4.13 and (4.35)

respectively), so we have Pr(Q A P) = Pr(Q) — Pr(QAP) = o(1).)

Proof of (4.35). If FF # @ (i.e. @« > 0) and R holds, then F' N R(Fy) # <, while by
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(4.13), for any zy € F'N R(Fp),
|F| > o(z,y) > oo(z,y) > 250" %¢"~" = Q(logn).

But then (since logn > p/q) Proposition 4.11 says that w.h.p. |Fy| ~ ¥|F|, which is

the same as S. O

Proof of (4.36). Note it is always true that Go N R(Fp) C Fy, since the endpoints of an
xy € (GoNR(Fp)) \ Fp would be joined by a path (many paths) having odd intersection
with Fj, and adding xy to such a path would produce a C\ having odd intersection
with Fp. (As mentioned earlier, this is the reaon for “odd” in the definition of central.)

Soif R, S and {Fy # @} hold (and 9 is slightly small) then
(G\ Go) N R(Fy)| > .12am?p — (1 4+ o(1))an?q/2 > .1an’p. (4.40)

O]

Proof of (4.37). Set ¢ = (k —3)/2. Forl € [c] and @ # S C Gy (for S = & there
is nothing to show), call an xy-path (S,1)-central if it is S-central and at least one
of its S-edges is at distance [ (along the path) from one of z,y. (So a path may be
(S,1)-central for several I’'s.) Let og(z,y;S,1) be the maximum size of a collection of

internally disjoint (.9, [)-central zy-paths in Gy and
Ri(S) = {{z,y} € (%) : o0z, y; S,1) > (:25/c)n""2¢" 1}, (4.41)

and notice that

R(S) € Urelg Ri(S). (4.42)

Supposing temporarily (through (4.46)) that S and [ have been specified, we abbre-

viate oo(z,y; 5,1) = <(z,y), Ri(S) = R; and use simply “rope” for “(S,2l + 2)-rope”
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(defined before Lemma 4.13). Set |R;| = pyn? and

r=2rk—1)—-2(1l+1)=2(k—-1)—4€[x—1,2c—6]. (4.43)

We next show that if G satisfies

T = maxy,, 7" (u,v) = O(n""1q") (4.44)

(as implied by (2.15) and (2.16), so by 7)), then

the number of ropes is Q(pn?+3¢%+2). (4.45)
Proof. Say arope P = (uji1,...,u1,2,01,...,0+1) is generated by {x,y} if there are in-
ternally disjoint paths (z,u1,...,us—2,w) and (z,v1,...,v5—2,w) with {z,w} = {z, y}.

Each {z,y} € (‘2/) generates at least 2(L§(I’§/)/ 2J) such ropes (since a set of a internally
disjoint (S, 1)-central xy-paths, each with an S-edge at distance [ from z, produces (g)
of them), while the number of pairs generating a given rope is at most 7' (since in the
scenario above, the complement of P in the cycle (z,u1, ..., Ux—2, W, Vs—2,...,01,2) is
a path of length r (see (4.43)) centered at w, so with P determines {z,y}). Thus the

number of ropes is at least
T—l Z{x,y}ERl 2(L<(x,§/)/2J) — Q(|Rl|(nn—2qm—1)2/T) — Q(pln2l+3q21+2). 0

If we now also assume the conclusion of Lemma 4.14 for ¢t = 2] + 2 (again, this is

contained in 7'), then combining that upper bound with the lower bound in (4.45) gives
o1 = O(max{a3, ag(ng)~'}) = O(alt?), (4.46)

with 6 > 0 depending only on . (Here we use ag > n~2, valid since S # @.)

So, now letting [ vary, it follows that if G satisfies 7 (and so all relevant instances

of (4.44) and (4.33)), then (4.46) holds for all [ € [¢], which in view of (4.42) bounds
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IR(S)| as in (4.37). O

(It may be worth noting that for [ = 0 the above argument gives only p; = O(ag),
which loses the crucial § in (4.46); thus the insistence on central paths in R and

Lemma 4.13.)

Proof of (4.39). Given Gy, S, we have |(G\ Go) N R(S)| ~ Bin(m,p’), with m < |R(S)|
and p’ < p defined by (1 —¢)(1 —p') =1 —p (as in (B) of Section 4.2.3). So for |R(S5)|

as in (4.38), Theorem 2.2 gives
Pr(|(G\ Go) N R(S)| > .09asn?p) < exp[-Q(asn’plog(1/as))],

where the implied constant depends on ¢ but not on . Thus, assuming |G| < n?q (as
given by U), setting as = 2s/(n%q) (where s will be |S|, so as = ag), and summing

over s < 2.1An?q, we have

Pr(U | Go) < >, (nzq) exp[—Q(asn?plog(1/as))]

< >, explasn®p{(9/2) log(2e/a;) — Q(log(1/ )}, (4.47)

which is o(1) for small enough ¢ (implying (4.39) since
Pr(Ud) = {Pr(Go) Pr(U | Go) : |Go| < n’q}). O

4.6.1 Proof of Lemma 4.13

Fix € > 0 (as in (4.28)) small enough to support the proofs of Propositions 4.17 and
4.20 below; these are our only constraints on €, and it will be clear they are satisfiable.
We continue to assume that p is as in (4.28).

Most of our effort here is devoted to proving the following variant of Proposition 4.13

in which we replace o¢(x,y, Fy) by o(z,y, F') and ¢ by p.
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Lemma 4.15. W.h.p.
GeQAP = |{aye F:o(x,y; F) > 260" 2p" 1} > .13an’p. (4.48)

“Coupling down” will then easily get us to Lemma 4.13 itself. (The extra .01’s, relative

to the pretty arbitrary .25 and .12 in (4.31) and (4.32), leave a little room for this.)

Preview. The proof of Lemma 4.15 breaks into two parts, roughly (w.h.p.): (a)if G € Q
(here we don’t need to assume G € P), then o(x,y) is close to its natural value for
most zy € F' (see the paragraph following the proof of Proposition 4.19); (b) a decent
fraction of the paths produced in (a) are F-central (shown by limiting the number that

are not; this is based on Proposition 4.20 and does assume G € P).

Definitions. It will be convenient to set

since this quantity—essentially the typical number of paths in G joining a given pair of
vertices—will appear repeatedly below. We write Q ~ Q" when @, Q' are distinct C,’s

sharing at least one edge. For edges e, f of GG, we take
e~ f < [some Cy of G contains both e and f], (4.49)

e~ f < |[there are Cy’s Q ~ Q' of G with e € Q and f € @Q'], (4.50)

Se)={feG:e~f},and T(e) ={f € G:e~ f}. For v € (0,1), let

L(v) = {{z,y} € (5)  o(z,y) <yA}
and F(y) = F N L(y). Finally, with C' as in Proposition 2.9 for [ = x — 1 (and, say,
d =1/k), let S be the event that G satisfies (2.11) (so not the S used above).

Fix ¢ = .01. Our goal in the next four propositions is to show that F(1 — () is

small, accomplishing (a) of our outline above. We do this by showing separately (in
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Propositions 4.18 and 4.19, using the tools provided by Propositions 4.16 and 4.17) that

F(¢) and F(1 — () \ F(¢) are small.

Proposition 4.16. For v € (0,1) and distinct {x1,y1},...,{Zc,yc} € (‘2/),

rk—1

Pr(S A {{zi,yi} € L(7) Vi € [d]}) < n~(emoM)(/(r=1))(1=€)""Tp(y=1) (4.51)

(Recall p(z) was defined in (2.1).) Note the bound here is natural, being, for p at
the lower bound in (4.28) (and up to the o(1)), what Theorem 2.1 would give for the

probability that ¢ independent binomials, each of mean A, are all at most yA.

Proof. Since S gives 7(z,y) < o(x,y) + C < (14 o(1))yA for {z,y} € L(v), the event
in (4.51) implies that X := Zie[c} T(zi,yi) < (14 0(1))eyA; so we just need to bound
the probability of this.

In the notation of Theorem 2.3, with A4,..., A,, the edge sets of the various z;y;-
paths (in K,,), we have u ~ cA and A = i+ O(A?/(np)) ~ . (If two of our paths, say
P and @, share | € [1,k — 2] edges, then at least [ internal vertices of P are vertices of

Q; so the contribution of such pairs to A is less than
An2=D=L20= D=1 — O(A2/(np)) = o(1)
(using the upper bound in (4.28) for the o(1))). Thus Theorem 2.3 gives
Pr(X < (1+o(1))evA) < exp[—(1 — o(1))p(y — 1)eA],

which, since A > (1—¢)*~1(k/(k—1))logn, is less than the right hand side of (4.51). [

Proposition 4.17. W.h.p.

if Q1 ~ Q2 ~ Q3 ~ Qq are Cy’s of G then |(UQ;) N L(¢)| < 1. (4.52)



74

Also, there is a fized M such that w.h.p.
IS(e)NL(1—-¢)| <M Veed. (4.53)

(Note the @;’s in (4.52) need not be distinct.)

Proof. Write n, for the quantity n~(1—oM)(x/(x=1))(1=)""to(y-1) appearing in (4.51)
(here without the c).

Since S occurs w.h.p., it suffices to show that the probability that it holds while
either (4.52) or (4.53) fails is o(1). Thus in the case of (4.52) we want to bound
the probability that S A {J C G} A {|J N L(¢)| > 2} holds for some J C K, of the
form Ujc4)Qi, where the @);’s are C)’s sharing edges as appropriate. With TJ) =

SA{|JNL(¢)| > 2}, this probability is at most

SSPr({J C G} AT(J)) < S Pr(J C G)Pr(T(J))

IN

O(n4n76p4n73ng) — 0(1).

Here the first inequality is an instance of Theorem 2.6 (since {J C G} and T (J) are
increasing and decreasing respectively), Proposition 4.16 gives Pr(7(J)) = O(ng) (for
any J), and the o(1) holds (for small enough ¢) since n**~Sp =3 = @(n"/(v~1)) The
argument for

ZPr(J C G) = O(nr5pin=3) (4.54)

is similar to the proof of Proposition 2.9; briefly: if Qq,...,Q4 are Cy’s, with R; =
UjSin and, fOI‘ 7 Z 2, ’E(QZ)\E(Rz_l)‘ = bi S x—1 and ‘V(Qz)\V(RZ_l)’ = Qy, then
n%pb < A for i > 2 (since b; = a; = 0 or b; > a; + 1), yielding n!V(E)lplBR)l < 2 A4

and (4.54).

Treatment of (4.53) is similar. Here J runs over subsets of K, of the form U;c(3nQ;,

where the Q;’s are C,;’s with a common edge, and, with 7(J) = SA{|JNL(1-¢)| > M},
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the probability that S holds while (4.53) fails is at most
S Pr({J S GYAT(T) < Om*pAMnil ) = o(1).

This is shown as above, with n!V(DIplEWl < n2pAM given by the passage following
(4.54) (with M in place of 4) and the o(1) valid for large enough M because n?pAM <
n/ =D O (logM/(F=1) p). O

The next assertion is the only place where we use the condition {G € Q} of (4.32)
(and (4.29)).

Proposition 4.18. W.h.p.
GeQ = [F(Q)|=o(F]). (4.55)

Proof. By the first part of Proposition 4.17 it is enough to show that the right hand
side of (4.55) follows (deterministically) from the conjunction of {G € Q} and (4.52).
But these imply that |T'(e) N F| > CA for each e € F((): {G € Q} gives at least one Cj,
containing e; this C,, contains a second edge, xy, of I (since F € C1), which by (4.52)
is not in L(¢); and T'(e) contains at least (A (distinct) F-edges lying on zy-paths.
Moreover, again by (4.52), T'(e) N F(¢) = {e} Ve € F(¢) and T'(e) NT(f) = @ for
distinct e, f € F(¢). Thus |F(¢)| < |F|/(CA) (= o(|F])), as desired. O

Proposition 4.19. W.h.p.
[F(1 =)\ F(CQ)| = ol|FI). (4.56)

Proof. Tt’s enough to show that (4.53) implies (4.56) (since Proposition 4.17 says (4.53)
holds w.h.p.). This is again easy: Set B = F(1 — () \ F(¢) and consider the graph
with vertex set F' and adjacency as in (4.49). Each e € B has degree at least (A
in this graph, while (4.53) says no vertex has more than M neighbors in B. Thus
|B|(CA — M) < |F\ B|M, which (since A > 1) gives (4.56). O
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Combining Propositions 4.18 and 4.19 completes part (a) of the preview following

the statement of Lemma 4.15:

whp. GeQ = |F(1-0)|=o(F). (4.57)

The next assertion, an echo of Section 2.4, provides technical support for part (b)

(getting from (4.57) to Lemma 4.15 by controlling non-F-central paths).

For v € V and S C Vg(v), let Ts(v) be the set of Cy’s using two edges of S and

7s(v) = |Ts(v)|. (We could write simply Ts, 7g, but keep the v as a reminder).
Proposition 4.20. For each fized 0 > 0 there exists Cy such that w.h.p.: for allv € V
and S C Vg(v), with |S| = ynp and p = v*n~~1p~/2,

146 if v > v9 = Cyloglogn/logn,
rs() < (L+60)u ify> 9= Cploglogn/log (4.58)

o(p/v)  in general.

Proof. We first observe that there is a fixed B such that w.h.p. no v lies in more than
B Cy’s that meet N(v) more than twice (basically because—here we omit the routine
details—the expected number of such C,’s at a given v is O(n* 1p*t1) = n=2M) It
is thus enough to prove Proposition 4.20 with T and 7 replaced by 7" and 7/, where
Te(v) ={Q € Ts(v) : |Q N N(v)| =2} and 75(v) = |T§(v)|.

Here we use a reduction similar to the one given by Proposition 2.9 (though, as
will appear below, we can’t expect to do quite as well as in (2.11)). Let og(v) be

the maximum size of a collection of Cy’s from T%(v) that are disjoint outside N(v) :=

{v} UN(v). Set 1(S) = min{|S|,log?n}.

Proposition 4.21. There exists D such that w.h.p. for all v and S C Vg(v),

T5(v) — o5(v) < DY(S). (4.59)

Proof. For fixed v and S C V(v), let I' = T's be the graph on T§(v) with @ ~ R if
@ and R share a vertex not in N (v). Since 74(v) — og(v) < |[E(T)], (4.59) holds (for a
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suitable D) provided

(i) the sizes of the components of I' are O(1) and
(i) the sizes of the induced matchings of I" are O(v(S));

so we would like to say that w.h.p. (i) and (ii) hold for all v and S. Here (and only
here) we use V(Q) for the set of vertices of Q not in N(v).

Of course (i) holds for all S (at v) iff it holds for S = Vg (v), so we just consider
this case. Here we again (as in Proposition 2.9) want, for large enough M, (probable)
nonexistence of Q1,...,Qum € T§(v) such that, for i > 2, V(Q;) meets, but is not
contained in, U;<;V (Q;). Arguing as for (2.13) we find that the total numbers, say a

and b, of vertices (other than v) and edges used by such Q1, ..., Qs satisfy
napb < n/{flpn(nn73p/{72)M71. (460)

(Note here we do count neighbors of and edges at v. The bound says n®p? is largest when

lpf = O(nplogn)

each new Q; meets what precedes it in a P, starting at v.) Since n"~
and n"3p"=2 = (n~Y/(#=1), the bound in (4.60) is o(1/n) for slightly large M, as is
the probability of seeing such @);’s at v.

For (ii), it will help to condition on V¢g(v). Using v/ for the maximum size of an

induced matching and invoking Proposition 2.12, we find that it’s enough to show that,

for a given v, R C V(v) of size less than 2np (say) and large enough D,
Pr(3S C R,V (T's) > Dy(S) | Va(v) = R) = o(1/n). (4.61)

So assume we have conditioned on {V¢(v) = R}, with R as above. An easy verification
(again similar to those in the proof of Proposition 2.9) gives, for any S C R (and, again,

vs =« and I'g =T),

o= fis = E|B(D)| = O((3)n" *p" 2|8 |n"~p"?)

= O(y*n*"=Dp*Y) = O(y* log? n); (4.62)
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say ji < Cy3log?n (with C fixed). On the other hand, with {Q;, R;} the possible edges
of T'and 4; = {Q; UR; C G}, V/(T') > [ implies occurrence of some [ independent A;’s,
an event whose probability Proposition 2.5 bounds by ji!/I! < (efi/l)!. (Here we could
replace Proposition 2.5 by Lemma 2.4 (or Theorem 2.7), actually getting a slightly
better bound, but it seems preferable to make clear that the more elementary result is
all that’s needed.)

This leaves us with the union bound arithmetic. Here we first note that for v/(T'g) <
Dlog®n VS we just need to check S = R, for which, in view of (4.62), we have (efi/l)! =
o(1/n) for I = Dlog®n with a suitable D (D > Ce is enough). We then need to say

(again, for suitable D) that with probability 1 — o(1/n),
V' (T's) < D|S| for all S with |S| < log?n. (4.63)

But with s = ynp, it = /iy < Cv*log?n and sums over s € 1, log? n], the probability

that (4.63) fails is at most

-\ Ds 31002
Z (“j) (%) < Zexp [Wnp {log(26/7) + Dlog (706’2)712}% ") H ,
which, since we are in the range ynp € [1,log?®n], is easily o(1/n). O

We continue with the proof of Proposition 4.20, which, by Proposition 4.21, we now
need only prove with 7¢(v) replaced by og(v). Here it will help to have a concrete o(-)
in (4.58). Set h = h(n) = (loglogn)'/? (we need 1 < h < loglogn) and, with Cy (and
thus 79) TBA, set

1+60 if vy >,

(hy)~!  otherwise.

Given v and S C V(v) of size ynp (so we condition on {S C G}), Lemma 2.4 (or
Theorem 2.7) gives

o5(v) < Y ~ Bin(m, p"2),

with m = 7?n*"1p?/2 (so EY is the p of Proposition 4.20). On the other hand,
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Theorems 2.1 and 2.2 give, writing K for K,

exp[—6211/3 if v > g,
Pr(y = i) < 1 CPOH/ T (4.64)

exp[—Kplog(K/e)] otherwise.

Thus, with &, denoting the appropriate bound in (4.64), the probability of violating

the og-version of (4.58) with an S of size ynp is less than

n( " )p""E, < expllogn + ynplog(e/y)] - & (4.65)

(where the terms preceding &, correspond to summing Pr(S C G) over v € V and
S C V(v) of size ynp).
Finally, we should make sure the bound in (4.65) is small. Recalling (4.28), we have

(for slightly small ) A > (1 —¢)* 1k/(k — 1)logn > logn and

p (= (¥*np/2)A) > (v’np/2)logn. (4.66)

Thus for v > 7y the bound in (4.65) is less than

explynp - {log(e/v) — 6%vlogn/6} + logn],

which is tiny (exp[—nS(M]) for fixed Cy > 662,
For v < 7y, noting that (vK,/2)log(K,/e) ~log(1/v)/(2h) = w(1) (and ynp > 1),

and again using (4.66), we find that the right hand side of (4.65) is less than

explynp - {log(e/v) — (YK, /2) log(K,/e)logn} +logn] = n~*W.

And of course summing these bounds over « gives what we want. O

Proof of Lemma 4.15. Fix § = .005 and let C' = Cy and ~y be as in Proposition 4.20.
Set v, = dp(v)/(np), and let ¢, be the number of Cy’s of G using two F-edges at v.

Let o*(z,y) be the number of xy-paths having F-edges at one or both of x,y. Write
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S and >_" for sums over v with 7, > v and 7, < g respectively. We have, w.h.p.,

ZﬂcyEF 0" (T, y) <23 ey Po

< lpt - [(1+0) 08 + 32 o), (4.67)

where the first inequality comes from considering how many times each side counts the
various Cy’s of G, and the second is given by Proposition 4.20.

Since )7, = an, the second sum in (4.67) is o(an). For the first, let B = {v €
V i, > 6}, If we now assume o = o(1) (as given by P), then we have |B| = o(n); so

Proposition 2.13 (parts (a) and (b)) gives (w.h.p.)
|G[B]| < |Blonp <, cpdr(v) < an?p,
whence 35 ,c 5 yonp < 2/G[B]| + [V (B)| < (1+ o(1))an’p/2,
Y oven Yo < (L+o(1))an/2
and (recalling dp(v) < dg(v)/2 Yv; see (4.9))

Yven Ve Smaxy W ,ep o < (1+0(1)an/4. (4.68)

Thus (since also 3, oy p 72 <03, v = Oan) we find that the expression in square

brackets in (4.67) is less than (1/4 4+ 26)an, whence
Y ayer 07 (2,y) < (1/4+20)an™p® = 26an"p". (4.69)
(To avoid confusion we note that the .26 here, which is more or less forced by the

essentially tight bound in (4.68), has nothing to do with the .26 in (4.48).)

Now let F* = {zy € F : o(xz,y) > (1 — A} (= F\ F(1 —()). By (4.57),
|F*| ~ an®p/2, w.h.p. provided Q holds. Note that (recall ¢ = .01) zy € F* has

o(xz,y; F') > .26A (as in (4.48)) unless o*(x,y) > .73A. (As noted earlier, zy-paths
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necessarily have odd intersection with F', so the only real requirement for such a path
to be central is that it have an internal edge in F'.) It thus follows from (4.69) that for
F = {xy € F*: o(x,y; F) < .26A}, we have

_ KK
Pl < 26an"p

<. 2
7] < 3N T 36anp,

whence |F*\ F| > .13an?p, implying (4.48). O

Proof of Lemma 4.13. As mentioned earlier, Lemma 4.13 follows easily from Lemma
4.15 via “coupling down” (viewpoint (A) of Section 4.2.3): it is enough to show that
if G satisfies the right hand side of (4.48) then w.h.p. it also satisfies R; that is,
|F N R(Fy)| > .12an?p.

For zy € F' :={ay € F : o(z,y; F) > .26A} (see (4.48)), Theorem 2.1 gives
Pr(oo(x, y; Fo) < .25n"2¢" 1) < exp[—Q(n"2¢" 1)) = =Y,

since members of a set of o(x, y; F') internally disjoint, F-central xy-paths survive in Gy
(and become Fy-central) independently, each with probability ¥%~!. So by Markov’s

Inequality, w.h.p.
{zy € F': oo(w, y; Fo) < 250" %¢" '} = o(|F']).
The lemma follows. ]

4.6.2 Proof of Lemma 4.14

This is a simple consequence of Proposition 2.15, but for perspective a brief comment
on the bounds may helpful. The first bound—corresponding to a 3?-fraction of all P,’s
having their ends in S—is the generic value, and will be the truth if ¢ is large enough
that (w.h.p.) all 772(z,y)’s are about the same. For smaller ¢ one can sometimes do
better by, e.g. (for even t), taking S to consist of all edges at distance ¢/2— 1 from some

small set of “centers,” producing something like the second bound.
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Proof. Let Ay > Ay > ... > A\, be the eigenvalues of the adjacency matrix, A, of Gy,
with associated orthonormal eigenvectors vq,vs,...,v,, say with max;vy; > 0. Let
M = A2 (so M has eigenvalues \. ™2 (i € [n]), with eigenvectors v;), and f = (dg() :
xeV)=> Biv.

The number of (S, t)-ropes is w.h.p. less than

FMPT =Y NP
< AT2B7 4+ max { o, A} 21113

< (1+0(1)) [ (na) =28 + (4nq) =272 3] (4.70)

where we used > 87 = || f||3 and the second inequality is given by (2.25). We then need

bounds on 32 and || f||3, both of which are easy: w.h.p.
B = (f.von) ~ 072 ds(v) = 207 12|8] = Bn?P2g
(using (2.26)) and

I£15 = dé(x) < Ag D ds(z) < (14 0(1))ng - 2|S| ~ pnPq’.
The lemma follows. O

4.7 Proof of Theorem 4.5

In what follows we set £(K,) = &, Cu(Ky) = Cy and so on. We prove (sketchily)
Theorem 4.5 for n > vy + 2—which is best possible e.g. if H = K,; with k > 4 (e.g.
since for n < Kk + 1, Cﬁ O CND)—and add a note at the end to cover H = C};, and
n> kK.

We first note that Cy = € if |[H| = 1 (trivially) and Cy = D if |H| = 2. (Since each
of Py, 2K (a 2-edge matching) is the sum of two copies of the other, the copies of an
H of size 2 span all 2-edge subgraphs, and so all even subgraphs, of K,.) Moreover,

if H is a matching then Cy is easily seen to contain (all copies of) Ky if |H| is odd or
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2K if |H| is even, so is equal to £ or D as appropriate.

We may thus restrict attention to H containing a vertex x of degree at least 2, and
observe that in this case Cy 2 C4. (The sum of two copies of H that differ only in the
copy of z is a K := Ky 4(,), and repeating this with K and one of its divalent vertices
produces a Cy.)

Since clearly C4 = C N'D, we're done if H is in the second case of (4.5). Otherwise
let H be a copy of H in K,, and let F be a smallest element of H + C4. Evidently F is
in the same case of (4.5) as H. Moreover, we claim F' is either a triangle or the disjoint
union of a matching and star (so possibly just a matching or just a star). Note this is
enough, as the copies of F' are then easily seen to generate the desired subspace of &:
if H is Eulerian then F = K3; otherwise we may add two copies of F' to produce a Ps,
so the generated space contains D. (Minor note: |V(F)| < |[V(H)| + 1 since all odd
vertices of F' must also be odd in H.)

For the claim we observe that F' cannot contain a Ps (since adding a Cy containing
such a P3 reduces |F|); disjoint P»’s (reduce by adding a Cg); or K3 + Ky (convert to

Py and then reduce to P).

Finally, for H = Cy; and n > k > 4 (for k = 3 there is nothing to show), it is enough
to observe that the sum of two copies of H on the same vertex set and sharing a P,;_3

isa Cy; 80 Cp =CNDif k is even, while for odd x, CND C Cyx C C implies Cy =C.

4.8 Proof of Theorem 4.12

Here, finally, we prove Theorem 4.12. Since we make no use of this material we strive for
brevity (albeit with little success), and will sometimes allow considerably less formality
than elsewhere.

The proof of the theorem is based on Theorem 2.23, a “container” theorem, along
with Lemma 4.22, an anologue of the “Erdés-Simonovits Stability Theorem” [14, 35].
(Theorems 2.19 and 4.12 may be thought of as “sparse random” analogues of Erdds-
Simonovits. Our use of Lemma 4.22 below is analogous to the use of Erd6s-Simonovits

in the proofs of Theorem 2.19 in [4, 34].)
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We may assume—as we do throughout—that H has no isolated vertices, because,
clearly, letting H' be a copy of H with any isolated vertices removed, we have Cy (L) =
Cg/ (L) for any graph L with vy, > vy. Recall we are also assuming ey > 2.

For any H and F' C J C E(K,), let 7y (F, J) be the number of copies of H in J (say
unlabelled, though it doesn’t matter) having odd intersection with F', and abbreviate

this to 7 (F) if J = E(K,).

Lemma 4.22. For any fized graph H and e > 0, there is a 6 > 0 such that if F C E(K,,)

satisfies T (F) < 6n®H | then there is an X € Wi (K,,) with |[FAX| < en?.

We will actually apply the following simple extension of Lemma 4.22, which is proved,

together with the lemma itself, at the end of this section.

Corollary 4.23. For any fired H and € > 0, there is a 6 > 0 such that if F C J C
E(K,) satisfy |J| > (1 —8)n?/2 and tu(F,J) < dn"", then there is an X € Wx(Ky,)
with |FAX| < en?.

Proof of Theorem 4.12. For the rest of this discussion we take vy = k. The hypergraph
H (= H,) to which we will apply Theorem 2.23 is as follows. Let K be a copy of K,
and V = E(K) x {0,1}; thus N := |V| = n(n — 1). Let \; be the natural bijection
(e = (e,i)) from E(K) to V; = {(e,i) : e € E(K)} (i € {0,1}). Finally, let H be the

em-uniform hypergraph on V whose edges are the E’s satisfying
o |E|=emq,
o Ui_o A H(ENV;) is (the edge set of) a copy of H in K, and
o |[ENVy| =1 mod 2.

In what follows, for X C V, we set X; = X N V;, X’ = A7 1(X;) and X = XU X
(So we may think of X as a subgraph of K underlying X.) For orientation we note

immediately that for any F' C G C K,

FeCh(G) < XMN(F)UMG\F)eI(H). (4.71)
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(Recall from Section 2.11 that Z(#) is the set of independent sets of H.)

For the remainder of our discussion we set § = n~'/"2(H) (recall the definition
of ma(H) at (4.19)). We first need to check that H and 6 satisfy the hypotheses of

Theorem 2.23. Clearly d = A (by symmetry), and d < n"~? follows from
H| = (n)2°7 " /| Aut(H)], (4.72)
so we want to show that for any o C V of size [,

d(0) = O(ns=2-1-1)/ma()y (4.73)

For o C V let K, be the graph with edge set & and vertices those vertices of K incident
with edges of &, and set v, = |V(K,)|, e = |E(K,)|. Notice that d(c) = 0 unless
|6| = |o| (i.e. 6 No! = @) and K, is (isomorphic to) a subgraph of H; so we may

assume these are true. But in this case we have d(o) < n"~", so (4.73) follows from

which is the same as ma(H) > (es — 1)/(v, — 2) and is true by the definition of mq

(since K, C H). O

Let 0’ be the § given by Corollary 4.23 with /4 in place of ¢, and

§ = min{d’,e/4}/ (eg2°7). (4.74)

Choose b so that (2.27) holds (with » = ey and the present H and 6) and let B and C
be as in Theorem 2.23. Noting that the assumption of Theorem 4.12 is now p > M¥,

we will prove the theorem with M significantly larger than e =26~ Blog(eM/B), say
M >33 e 25 ' Blog(eM/B), (4.75)

with 3 as in (4.81).
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In view of (4.71), F € C#;(G) implies existence of some 7' C V with

|T| < BNS, (4.76)
T C ME)UMG\F) € C(T) (4.77)

and
|H[C(T)]| < §|H|. (4.78)

For T satisfying (4.76) write Qr for the event that there is an F' € C;(G) satisfying
both (4.77) and
min{| FAX|: X € W§(G)} > en?p. (4.79)

We will show (for any T')
Pr(Qr) < plTlexp[—Q(26n?p)] = plT! exp[—Q (26N p)], (4.80)

where the implied constants depend on neither 7" nor € (so nor §). This easily gives
Theorem 4.12, as follows. By the above discussion (sentence containing (4.76)—(4.78)),
failure of the theorem’s conclusion is contained in the event UQ7 (union over 7' as in

(4.76)), so the probability of this failure is less than

> Pr(9r) <, (]X)pt exp[—Be26n?p] (4.81)

for a suitable fixed 8 > 0 (where the second sum ranges over ¢t < BN6). On the other
hand,
(})p" < expltlog(eNp/t)] < exp[BNOlog(eNp/(BNY))];

so the bound in (4.81) is less than
BN exp[BNO log(ep/(B0)) — Be25n?p), (4.82)

which is small by our choice of M (recall p > M6). O
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Proof of (4.80). Set R = (C(T))°, S = (C(T))', t = |T| (= |T|—see the first inclusion

in (4.77)) and ¢ = (;) —|RU S|. Notice first that existence of an F as in (4.77) implies
TCGCRUS,

which has probability pt(1 — p). This already gives (4.80) unless

c < on?, (4.83)
which we may therefore assume.
We next show that
(R, RUS) < |H[C(T)]| (4.84)
and
IRNS| < \H[C(T)]||Aut(H)|n_("_2) + 2ep0m> (4.85)
< on?(2¢H 7Y 4 %epy) < en?/4. (4.86)

(The content in (4.85)—(4.86) is the first inequality; the second is given by (4.78) and
(4.72), and the third by (4.74).)

Proof of (4.84). For any copy X UY of H with X C R, Y C S\ R and | X| odd (these
are the copies counted by 77 (R, RUS)), we have A\o(X) U (Y) € H[C(T)]. O

Proof of (4.85). For each zy € K, by double counting,

(n)n ) € . . L.
there are < v copies of H in K containing xy. (4.87)
|Aut(H)|/) (3)

Thus there are at least |R N S|n"~2/|Aut(H)| copies of H meeting R N S, at most
2eyen™ 2 /|Aut(H)| < 2eydn”/|Aut(H)| of which are not contained in RUS. But each
of the at least (|RN S| — 2eydn?)n"~2/|Aut(H)| copies of H that meet RN S and are
contained in R U S underlies at least one member of H[C(T)]: for such a copy, say H,

containing zy € RN S, we may partition H \{zy} = LUM with L C Rand M C S,



88

and then H[C(T")] contains A\g(LU{zy})UA (M) if |L| is even and Ag(L) U\ (M U{xy})
if |L| is odd. Thus [H[C(T)]| > (|RN S| — 2ez6n?)n~~2 /|Aut(H)|, implying (4.85). O

We may now apply Corollary 4.23 to R C RUS with £/4 in place of € (recall the line
preceeding (4.74); the hypotheses of the corollary are verified in (4.83), (4.84), (4.78),

(4.74) and (4.72).) This yields some Y € Wj;(K,,) with

|RAY| < en?/4. (4.88)

We will show that, barring occurrence of some event(s) with probability as in (4.80),

each F as in (4.77) is close to X := GNY (€ Wx(G)). Given F as in (4.77), we have

FAX = FA(GNY) = (FA(GNR)A(GNR)AGNY))
= (FA(GN R)A(GN (RAY)

C (FA(GNR))U(GN (RAY),

which, since FCGNRC FU(GN(RNS)), implies

IFAX| <|GNRNS|+|GN(RAY)|.

So we have

|FAX| < en?p

unless

max{|G N RN S|,|GN(RAY)|} > en’p/2. (4.89)

Thus, finally, for (4.80) we just need to show

Pr((4.89) holds | T C G) < exp[—Q(e20np)]. (4.90)

(Because: Qr = (4.89) A {T C G}, so Pr(Qr) < Pr(T C G)Pr((4.89) | T C G).)
But (4.90) is easy: by (4.86) and (4.88), the conditional expectation of each of
IGNRNS|,|GN (RAY)| given {G D T} is less than en?p/4 + t, which in view of
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(4.76) and our choice of M (see (4.75)) is less than en?p/3. So (4.90) follows from
Theorem 2.1. O

Proof of Lemma 4.22. This will be rather sketchy and thoroughly informal, foregoing
epsilons and deltas in favor of qualitative language. Thus, to begin, we use “most” to
mean for all but a small fraction of relevant possibilities, where “small” can be made
less than any desired (positive) constant via an appropriate choice of §. For example,
“most x,y” means the number of exceptions is less than d.n? for a suitable 6,. Similarly
we say sets A and B are “close,” and write A ~ B, if |[AAB| is at most small fraction
of what it might have been (e.g. n? if A, B are sets of edges, or n if A, B are sets of

edges at a given vertex). And so on.

Let V(H) = {u,...,ux}, say with u,_1u, € H and Ny (ug—1)\{ux} ={w; : i € I'}.
Say a k-tuple (z1,...,x;) of vertices of K, is even if, for ¢ : V(H) — V(K,,) given by
o(u;) = x; (for i € [k]), |p(E(H))NF|is even (where, of course, p(u;u;) = p(u;)e(u;)).
We now use z,y, z, possibly subscripted, for vertices of K, and N(x) for Np(x).

Claim 1. There is an z such that for most y, N(y) is close to either N(z) or N(z)
(:=V(K,)\ N(x)). (In fact this is true of most choices of z.)

Proof. Simple averaging, using the fact that 7y (F') is small, shows that most choices

of x,y satisfy

(x) for most choices of z1,...,z4_2 and z,

both (z1,...,Tk—2,2,2) and (x1,...,Tk—2,y, 2) are even. (4.91)

So we may fix an x for which (%) holds for most y. If (%) holds for z,y then there is a

fixed (z1,...,zx—2) such that (4.91) holds for most z, and for each such z we have

IN(z) N{z,y}| = |N(x)N{x; :iel}|+|N(y)N{z; : i €I}| (mod2); (4.92)

thus, since there is no z on the right hand side of (4.92), N(y) is close to one of N(x),

N(x) whenever y satisfies (%) (with our fixed x). O
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Claim 2. For x as in Claim 1, F is close to either V(N (x)) or its complement.

Proof. Set A= N(x), B=A,S={y:N(y)~ A} and T = {y : N(y) ~ B}. We first

observe that Claim 2 will follow if we show that

oneof I:=(ANS)U(BNT), J:=(ANT)UJ(BNS) issmall. (4.93)

Suppose for example that I is small. It is easy to see that if e € FAV(A) then e either
meets I USUT or lies in Vr(y)AV(y, B) for some y € ANT or in Ve(2)AV(z, A)
for some z € BN S. But the number of such e’s is small, since we assume I and SUT
are small (the latter by our choice of x), while y € T implies Vp(y) = V(y, B), and
similarly z € S implies Vg (2) &~ V(z, A). Thus in this case F' ~ V(A4). (Showing that

J small implies F' ~ V(A) is of course similar.) O

For (4.93) it is enough to show that A NS and AN T cannot both be large, and
similarly for the pairs (AN S,BNS), (ANT,BNT), (BNS,BNT); there is little
difference between these and we just show the first. The set Vp(AN S,ANT) is
small since any z € ANT (or just T) has few neighbors in A. But we also have
IVE(ANS,ANT)| = |ANS||ANT)|, since, for each y € AN S, the set (ANT)\ N(y)

(or even A\ N(y)) is small. So it must be that one of ANS, ANT is small. O

The four flavors of Lemma 4.22 (corresponding to the possibilities for Wg (k) in
(4.5)) now follow easily. If H is even Eulerian then Claim 2 is what we want (since
W4 (K, consists precisely of cuts and their complements). If H is odd (not necessarily
Eulerian), then F' cannot be close to the complement of a cut, since the edges of K,
contained in the larger side of the cut would contain 2(n") copies of H that are contained
in F. So F' is close to a cut, which for Eulerian (odd) H is again what we want.

For non-Eulerian H (briefly): If F' is close to a cut V(X,Y) with both X and Y
large, then there are many odd copies of H with one odd vertex in (say) X and all
other vertices in Y, so F' cannot be close to such a cut. In particular this says that for
odd (non-Eulerian) H, F' must be close to @ (since being close to a cut with a small

side is being close to @, and we have already said that F' is not close to the complement
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of a cut). Finally, if H is even (non-Eulerian) then F is either close to @ (if close to
a cut with a small side) or to E(K,,) € Wx(K,) (if close to the complement of such a

cut). O

Proof of Corollary 4.23. Given ¢, let 6 be as in Lemma 4.22, and ¢’ = 6/(2ep). Then,
recalling (4.87), |J| > (1—4")n?/2 implies that the number of copies of H not contained
in J is at most (6'n?/2) (%) (ETH) < 0n®/2, which, with 75 (F, J) < §'n" < on"/2,
implies 7 (F') < on", the hypothesis of Lemma 4.22. O
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