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Quartz, composted of Silicon and Oxygen (Silicon Dioxide SiO2), has been the material 

of choice for stable resonators in wide applications of modern electronics. Due to 

decrease in the size of modern electronic devices, the nonlinearities of piezoelectric 

materials become more pronounced. Extensive study of the nonlinear behaviors of 

piezoelectric material is required. Three dimensional FEM modes are developed to 

calculate the effect of nonlinearities on the thickness shear mode resonant frequency. The 

intrinsic nonlinearities affecting the quartz resonators at high frequencies are acceleration 

sensitivity, force-frequency effect, and frequency-temperature behavior.  

 A detailed study of the acceleration sensitivity of a rectangular AT-cut quartz plate is 

presented. For AT-cut quartz resonators with the crystal digonal X-axis perpendicular to 

plate X-axis, the in-plane acceleration sensitivity is found to be negligible compared to 

the out-of-plane (Y-axis) acceleration sensitivity. When the crystal digonal X-axis is 

parallel to plate X-axis, the Y-axis acceleration sensitivity is rectified. A DC bias field 

with an appropriate DC voltage could potentially yield a reduction of acceleration 

sensitivity in Y-axis direction of about two orders of magnitude. 

 The behaviors of vibrating crystal plates under the action of external forces in 

fundamental mode and third overtone mode are studied. The plates were respectively 
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subjected to diametrical compression forces and flexural bending in different 

configurations. Finite element models were developed using theory of small deformation 

superposed on finite initial deformation in Lagrangian formulation. The model results 

showed consistent trend with the experimental results by Fletcher and Mingins et al.   

 The electrode stresses can be used to improve the frequency-temperature (f-T) 

behavior of ultra-high frequency (UHF) quartz resonators. The use of chromium-

aluminum electrodes yields improved f-T behavior compared to the case where 

aluminum electrodes are used alone. The UHF quartz resonators must be treated as 

composite plates of quartz and electrode film since the ratio of electrode thickness to 

quartz plate thickness is significant. The quartz-aluminum composite plate rotates the f-T 

curve clockwise while the quartz-chromium composite plate rotates the f-T curve 

counter-clockwise.  
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Chapter 1 Introduction 

1.1 Classification of Acoustic Waves and Devices 

A wave can be described as a disturbance that travels through a medium from one 

location to another. There are different types of waves that can be categorized as 

mechanical waves or non-mechanical waves. Mechanical waves are defined as waves 

which required medium for propagation. The propagation of waves takes place because 

of elasticity and inertial property of medium. Non-mechanical waves do not require any 

medium for propagation such as electromagnetic wave. In vacuum, electromagnetic wave 

travel with light velocity unlike mechanical wave where wave velocity depends on 

material medium. 

 In solid material, there are two basic types of mechanical waves shown in Figure 1.1 

The first type of wave is a longitudinal wave also known as compression wave, in which 

the displacement is parallel to the direction of wave propagation. This wave is similar to 

sound wave in air, though the physics is rather different. The velocity of the wave 

depends on the material medium usually in the range of 5000 to 10000 m/s [1]. The 

second basic type of wave is the shear wave also known as transverse wave, in which the 

displacement is perpendicular to the direction of wave propagation. The velocity of shear 

wave is generally slower in the range of 3000 to 6000m/s [1]. In general, wave motion 

can be resolved into longitudinal and shear component. Seismic wave that travels through 

the earth during earthquake can have combination of P-wave (longitudinal wave) and S-

wave (shear wave) known as Rayleigh wave. The principle operation of microwave 

acoustic devices utilizes mechanical or acoustic wave as the sensing mechanism. As the 

wave propagates through or on the surface of the material, any changes to the 
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characteristic of the propagation affect the velocity and the amplitude of wave which can 

then be correlated to the corresponding physical quantity that is being measured. 

 
Figure 1.1: Types of mechanical wave. 

 

 Microwave acoustic devices use two different technologies depending on how the 

acoustic wave propagates through the piezoelectric material: Surface Acoustic Wave 

(SAW) and Bulk Acoustic Wave (BAW) devices. Figure 1.2 shows the schematic view 

of SAW and BAW resonators. 

 
Figure 1.2: Schematic view of SAW resonator and BAW resonator. 
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 For SAW devices, surface acoustic waves are excited by interdigital transducers (IDT) 

and propagate on the surface of the piezoelectric substrate [2, 3]. These are often known 

as Rayleigh waves due to both longitudinal and shear component of wave motion that 

decreases exponentially in amplitude as distance from the surface increases. The SAW 

waves are strongly confined, with about 90% of the energy propagating within one 

wavelength from the surface. SAW resonators are limited in their achievable operating 

frequency due to the separation of each finger in the IDT and the limit is around 2.5 GHz. 

Moreover, SAW devices are generally manufactured using Lithium Tantalate (LiTaO3) or 

Lithium Niobate (LiNbO3) crystal substrate [4], which are not compatible with the 

standard integrated circuits (IC) technology process. 

 For BAW devices, waves propagate through the bulk in the thickness direction and 

the frequency of operation depends on the thickness of piezoelectric substrate [5, 6, 7]. 

The operating frequency of BAW resonator is limited to around 10 GHz [8]; this is an 

approximate limit, although some of works found in the literature have mention 

application above 5 GHz [9, 10]. The commonly used piezoelectric materials for BAW 

devices are quartz (α-SiO2), aluminum nitride (AlN) [11] and zinc oxide (ZnO) [12]. 

BAW resonators are compatible with standard integrated circuits technology process, 

which resulted in more compact and smaller size devices at low cost. The quality factor 

(Q) in BAW resonators is much higher than SAW resonators as demonstrated in [13].  

Lastly, BAW resonators have a significant advantage over SAW that they have high 

power handling capability, therefore less dependence of the resonant frequencies with 

temperature under high-power conditions. Table 1.1 summarizes the main characteristics 

of SAW and BAW technologies. Both SAW and BAW have specific strengths and 
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limitations, and in the most of the cases they complement each other instead compete 

against each other. 

 
Table 1.1: Comparison of SAW and BAW technology [14]. 

 

1.2 Applications of SAW and BAW Devices 

The use of microwave acoustic devices for different applications begins in the early 

1960’s at Bell Telephone Laboratories [15], most of the devices developed were 

amplifiers and oscillators at low frequencies around 100 MHz. The rapid revolution in 

microelectronics has been the driver in the recent evolution of microwave acoustic. 

Applications of microwave acoustic devices include wireless local area network (WLAN), 

Bluetooth, multimedia, global positioning systems (GPS), cellular mobile systems, 

satellite communications, and other military applications. The applications space for 

SAW and BAW where the technology cross over occurs as SAW moves to temperature 

compensated SAW (TC-SAW) and on to BAW devices as shown in Figure 1.3. BAW is 

preferred in high frequency and power applications due to its ability to satisfy the 

requirement of high performance devices while SAW is limited to applications at around 

2.5 GHz due to low power handling capability and greater dependence of the resonant 

frequencies with temperature. 
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Figure 1.3: The applications space for SAW and BAW [16]. 

 

 The demand for SAW devices has led to commercial market producing multi-million 

SAW devices every month. Specific SAW applications include convolvers, duplexers, 

filters and delay lines for the mobile telecommunications. Highlights of SAW based 

device applications are given in Table 1.2. On the other hand, BAW applications include 

resonators in precision clock oscillators, front-end GPS filters, and thin-film solidly 

mounted resonator (SMR) [1]. From the above, it is clear that telecommunication 

industry is largest user of microwave acoustic devices. There are some emerging 

applications for acoustic wave devices as sensors in automotive applications (torque and 

tire pressure sensor), medical applications (biosensors) and industrial and commercial 

applications (temperature and vapor chemical sensors). Figure 1.4 illustrates different 

types of acoustic wave sensor. These acoustic sensors are sensitive to acceleration, 

temperature, vibration and shocks. This thesis therefore focuses mainly on the 
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acceleration sensitivity, force-frequency effect, and frequency-temperature behavior of 

BAW resonator. 

 
Table 1.2: Representative applications of SAW devices [17]. 

 

 
Figure 1.4: Different types of acoustic wave sensors [18]. 
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1.3 General Overview of Quartz (BAW) Resonator  

BAW resonator usually consists of a piezoelectric material sandwiched between two 

conducting electrode films and the resonator is precisely dimensioned and oriented with 

respect to the crystallographic axes. The basic principle of operation for a piezoelectric 

crystal resonator is a traveling wave combined with confinement structure to produce a 

standing wave whose frequency is determined jointly by the velocity of the traveling 

wave and the dimension of the confinement structure. The most commonly used 

piezoelectric material is quartz crystal which dates back as far as World War I, where 

sonar systems used quartz crystal to generate sound beams to detect under water objects. 

Because quartz is piezoelectric, an electric charge develops in the materials as a result of 

an applied mechanical stress, and this effect converts a mechanical stress in a crystal to a 

voltage and vice versa. This property is known as piezoelectricity. The direct 

piezoelectric effect and the inverse piezoelectric effect are shown in Figure 1.5. The word 

piezo-electricity takes its name from the Greek piezein “to press”, which literally means 

pressure electricity [19]. The direct piezoelectric effect was discovered by the Curie 

brother in 1880 and the piezoelectric effect is the key to the operation and theory behind 

BAW resonators. 

 For many years quartz has been the material of choice for satisfying needs in precise 

frequency control applications such as automotive, aerospace, telecommunications and 

consumer electronics. Compared to other piezoelectric resonators such as mechanical 

resonators, ceramic resonators and single crystal material, quartz resonator has proved to 

be superior by having a unique combination of properties. It is piezoelectric and has low 

intrinsic losses, which results in a quartz resonator having extremely high quality factor 
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(Q). The high Q allows its vibration to be driven with very little electrical power thus 

provides long operating life. The material properties of quartz resonator are extremely 

stable and highly repeatable. It is abundant in nature and easy to grow in large quantities 

at low cost. These unique combinations of properties have make quartz the most sought 

material in designing and manufacturing ultra-stable high frequency resonators.  

 
Figure 1.5: (a) Direct piezo-effect, (b) Inverse piezo-effect. 

 

1.4 Literature Reviews  

Quartz resonators are an indispensable component of modern electronics, they are used to 

generate frequencies to control and manage all communication system. They serve as 

GHz range passband filters allowing the appropriate range of frequencies to receive and 

transmit its communication signals and blocking out the unwanted frequencies. In high 

precision frequency controlled devices, the resonator should be stable in the order of parts 

per million. The performance of resonator is ultimately determined by the frequency 

stability of the resonator under force effect, temperature stability and acceleration. In this 

section, temperature stability and acceleration sensitivity of resonator are reviewed. 
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1.4.1 Temperature Stability 

When a resonator is subject to temperature variation, the changes of resonator include: 

thermal expansion of the material, material elastic property, and dimensional change. All 

these changes will cause resonance frequency of the device to shift. The study of 

temperature stability has become an important aspect for the application of the resonators. 

There are two types of frequency-temperature behavior proposed by Ballato and Vig [20]. 

The first type is static frequency-temperature behavior in which heat exchange is slow 

enough so the resonator is in thermal equilibrium, the effects of temperature gradients is  

negligible (Isothermal changes). The second type is the dynamic frequency-temperature 

behavior in which the resonator is not in thermal equilibrium, the temperature 

surrounding produces thermal gradients where heat flows to or from active area of the 

resonator. This usually occurs during warm-up period where there is significant thermal 

transient effect in the resonator.  

 The static thermal behavior due to temperature influence is introduced by temperature 

coefficient of elastic constants and thermal expansion coefficients. The temperature 

coefficient of frequency (Tf 
(n)

) was measured by Bechmann and Ballato [21] using 

various orientations and thickness modes of double rotated quartz plates. Using the 

known relation between the temperature coefficient of stiffness (Tcλμ
(n)

) and the 

temperature coefficient of frequency, Bechmann and Ballato [22] derived the temperature 

coefficient of stiffness of alpha-quartz. Figure 1.6 shows the frequency-temperature 

behaviors of various type of cut obtained by Bechmann and Ballato using the newly 

calculated values of temperature coefficients of stiffness of alpha quartz. Sinha and 

Tiersten [23] computed the temperature derivative of the fundamental elastic constant 
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using temperature coefficient of stiffness. Later, Lee and Yong derived linear equations 

of motion for small vibrations superposed on thermally induced deformation by steady 

and uniform temperature changes from the nonlinear field equations of thermoelasticity 

in Lagrangian formulation. From the solutions of these equations, they were able to 

calculate the temperature derivative of elastic stiffness and effective 2
nd

 and 3
rd

 

temperature derivative of elastic stiffness. The frequency-temperature behaviors obtained 

using this theory is in very good agreement with experimental results. 

 In this dissertation, finite element analysis is used to study static frequency-

temperature behavior of quartz resonators using different angles of cut of the crystal 

plates with respect to the crystallographic axes. A small change in the angle of cut can 

significantly change the frequency-temperature characteristics. Moreover, the stresses of 

the electrodes can also affect the frequency-temperature characteristics of crystal. By 

using different electrodes material in composite layer can help improve the frequency-

temperature characteristics. 
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Figure 1.6: Frequency temperature behaviors of various types of cuts [24]. 

 

1.4.2 Acceleration Sensitivity 

When a piezoelectric quartz crystal is subjected to external force or vibration, the 

resulting quasi-static stresses and strain on the crystal cause the resonant frequency to 

shift. Frequency shift in acceleration occurs primarily as result of resonator deformation 

because the nonlinear elastic behavior changes the acoustic velocity. Since the frequency 

of resonator is function of acoustic velocity and the dimensions of the quartz plate, the 

forces change the frequency.  

 The study of acceleration sensitivity is closely related with force-frequency effect 

which was first reported by Bottom [25]. The first attempt at an analytical solution to the 

force-frequency effect was by Mingins, Barcus and Perry in 1962 [26, 27]. They use a 
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perturbation technique with linear elastic coefficients. In 1973, Lee, Wang, and 

Markenscoff [28, 29] calculated the force-frequency coefficient (Ratajski Coefficient) as 

function of azimuth using general theory of incremental elastic deformation superposed 

on finite initial deformation. In 1978, Janiaud, Nissim and Gagnepain [30] obtained 

analytic solution for the biasing stress in singly and doubly rotated plate subject to 

diametrical forces. Those results allow them to calculate the in-plane acceleration 

sensitivity.  

 Under acceleration, the body forces in the quartz plate are balanced by reaction forces 

from the mounting structure. Lee and Wu [31, 32, 33] extended the work to consider 

resonators with three and four point mounts and to study the influence of support 

configurations on the acceleration sensitivity. In addition to the above, there is an 

ongoing effort by Lee and Tang [34, 35] to use finite element analysis to accurately 

model the acceleration effects. There are several papers that reported experimental results 

on the force frequency effect [26, 36, 37] and the effects of bending moments [27, 38]. 

The results agree fairly well with the theoretical analyses. 

 Since the driving factor behind acceleration induced frequency shift is the 

deformation of resonator as it reacts against its mounting structure. The efforts to reduce 

the sensitivity of individual resonators under the effect of acceleration have been 

emphasized on the support structure. Lukaszek and Ballato [39] proposed a plate 

geometry that would assure the proper support configuration to reduce the force-

frequency effect. Besson, Gagnepain, Janiaud and Valdois [40] proposed a support 

structure that insured symmetry with the median plane of the resonator plate. The lack of 

progress to reduce the acceleration sensitivity below 10
-10

/g level has resulted in several 
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new compensation techniques. Ganepain and Wall [41] used the passive method of 

mechanically arranging two resonators such that the components of the acceleration 

normal to the plates were antiparallel. Ballato suggested a method for compensation 

using a resonator pair made of enantiomorphs. Przyjemski [42], Emmons [43], and Rosati 

[44] used an active method, where they sense the acceleration magnitude with an 

accelerometer then fed the signal into a tuning circuit in order to counter the acceleration-

induced frequency changes. From the above, progress has been made in understanding 

the causes of acceleration sensitivity, but more work is needed to reduce the level of 

acceleration sensitivity. 

 In this dissertation, finite element analysis is used to study the acceleration sensitivity 

of quartz resonator subjected to In-Plane and Out of Plane body forces. We present a new 

method using edge electrodes in which a DC bias field is employed could potentially 

reduce the acceleration sensitivity in the Y-axis direction by about two orders of 

magnitude. Moreover, we studied the behavior of vibrating crystal plate under the action 

of external forces in fundamental mode and third overtone mode due to compressional 

forces and bending moments which would help to reduce force-frequency effect. 

 

1.5 Research Motivations and Focus 

Since the early 20
th

 century, quartz sensors have been used to measure physical 

parameters such as temperature, pressure and acceleration. Because of their compact size 

and rugged characteristics, quartz resonator has been used for the majority of the last 

century and its capability has not been fully realized. The frequency instabilities of 

resonators due to temperature variation and external forces have been the utmost concern 
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in high frequency controlled devices and the primary reason is because of the complex 

anisotropic and nonlinear nature of the quartz crystal. The nonlinear elastic constants are 

the source of the instabilities in crystal resonator such as acceleration sensitivity, the 

thermal expansion effect and the force-frequency effect. Frequency control and stability 

of these quartz resonators are one of the most important criteria in the design of 

resonators. The design of ultra-stable resonators are determined by various parameters 

such as the type of quartz cut, angle of the quartz cut, mode of operation and the 

dimensions of the quartz blank. 

 In this dissertation, an accurate three dimensional finite element method for the 

frequency behavior of quartz with respect to temperature, force, pressure, acceleration 

and electric fields are studied for applications to high stability resonators. The nonlinear 

materials properties are incorporated into the 3-D equations of linear piezoelectric with 

quasi-electrostatic approximation which include losses due to mechanical damping in the 

solid [45]. The goal of current work will establish a valuable tool to efficiently explore 

the insight into the modeling of nonlinear multi-physical phenomena. 

 

1.6 Dissertation Outline 

 Chapter 1 presents the difference between BAW and SAW technology as well 

as the application of these devices. Literature review of acceleration 

sensitivity and temperature stability. 

 Chapter 2 consists of the derivation of the piezoelectric governing equations 

and constitutive equations. These equations are implemented in the 
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succeeding chapters to study the frequency-temperature behavior of quartz 

and the acceleration sensitivity in quartz resonators. 

 Chapter 3 briefly introduces quartz crystallography with system of notation 

for the orientation of crystalline plates and Butterworth Van Dyke (BVD) 

equivalent circuit model. 

 Chapter 4 evaluates the acceleration sensitivity in quartz resonators by 

implementing the incremental field equations and the use of DC bias effect to 

actively reduce acceleration sensitivity.  

 Chapter 5 investigates the effect of external forces on the fundamental and 

third overtone of AT-cut and SC-cut crystal plates. Finite element modes are 

developed and the results are compared with experimental measured data. 

 Chapter 6 presents the analysis of frequency-temperature behavior of quartz 

resonators. Finite element models for the temperature dependence of quartz 

resonators are developed with the use of electrode stresses for improving 

frequency-temperature behavior of quartz resonators. 

 Chapter 7 presents conclusion of this study and possible future works. 
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Chapter 2 Theory of Piezoelectricity 

2.1 Introduction 

The first attempt to derive the theory of piezoelectricity was made by Voigt in 1910. The 

small vibrations of piezoelectric bodies are governed by the equations of the linear theory 

of piezoelectricity in which the quasi-static electric field is coupled to the dynamic 

mechanical motion. The piezoelectricity is the coupling phenomenon between electrical 

and mechanical behavior. The direct piezoelectric effect occurs when an applied stress 

produces an electric polarization. The inverse piezoelectric effect occurs when an applied 

electric field produces a strain. In linear piezoelectricity theory, the full electromagnetic 

equations are not usually needed. The quasi-electrostatic approximation is adequate 

because the phase velocity of acoustic wave is approximately five orders of magnitude 

less than the velocities of electromagnetic waves. Under these circumstances the 

magnetic effect can be shown to be negligible compared to electric effects. In general the 

linear theory of piezoelectricity has been the foundation for most of the analytical work 

carried out in the design and analysis of piezoelectric materials. In this chapter, we 

introduce the equations which describe electromechanical properties of piezoelectric 

material. The presentation is based on the IEEE standard of piezoelectricity [46] which is 

widely accepted as being a good representation of piezoelectric material properties.  

 

2.2 Governing Equations of Piezoelectricity 

The general mechanical equations of motion for a continuum satisfying balance of linear 

momentum are given as follow: (Note: A comma followed by an index denotes partial 
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derivative with respect to a space coordinate and an over-dot quantity denotes time 

derivative) 

 Stress equations of motion: 

            ̈ ,         (2.1) 

        ,          (2.2) 

where     are the components of Cauchy stress tensor, and the stress tensor     is 

symmetric,    are components of body forces,    are the components of displacement 

fields and   is the mass density of the material.  

Displacement gradient: 

      
   

   
⁄ ,         (2.3) 

             ,          (2.4) 

Strain tensor: 

     
 

 
(         ),        (2.5) 

 Rotation tensor: 

     
 

 
(         ),        (2.6) 

since      is a second rank tensor with nine terms, we can decompose it into its symmetric 

and anti-symmetric parts. The symmetric part of displacement gradient determines the 

strain tensor    . The strain is the deformation per unit length and hence a dimensionless 

quantity. The anti-symmetric part of displacement gradient determines the infinitesimal 

rigid body rotation tensor    . 

 The electromagnetic equations in a region with no charges and no currents are given 

as follow: (source-free      and      
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 Maxwell’s equations: 

           ̇ ,         (2.7) 

            ̇ ,         (2.8) 

       ,          (2.9) 

       ,          (2.10) 

where    are the electric displacement components,    are the magnetic flux components,  

   are the electric field components,    are the magnetic field components,      are the 

components of permutation tensor and: 

           ,        (2.11) 

        ,          (2.12) 

where    are the component of electric polarization vector,    and    are the permittivity 

and permeability of vacuum given by: 

                   ⁄  , 

               ⁄  . 

 As mention earlier the quasi-static approximation [47] is adequate because the 

velocity of the elastic waves is much smaller than the velocity of electromagnetic waves. 

Therefore the magnetic field due to the elastic wave is negligible, thus time derivative of 

the magnetic flux can be neglected without loss of accuracy and this leads to 

  ̇    
  ⁄   ,         (2.13) 

this means that the electric field    is derived from a scalar potential 

        .          (2.14) 

The term   denotes scalar potential. In quasi-static approximation, the Maxwell 

equations reduce to just the charge equation of electrostatics and electric field: 

       ,          (2.15) 
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        .          (2.16) 

The solution of piezoelectric vibration problems involves the simultaneous solutions of 

mechanical equations (2.1) through (2.6) and the Maxwell equations (2.15) through 

(2.16). Therefore, a set of constitutive equations relating the quantities            and    

is required. 

 

2.3 Piezoelectric Constitutive Equations 

The physics involved in piezoelectric theory may be regarded as coupling between 

Maxwell’s equations of electromagnetism and elastic stress equations of motion. The 

coupling takes place through the piezoelectric constitutive equations. The general 

constitutive relations for piezoelectric continuum are developed from the first law of 

thermodynamics [48] [49]. 

 For a general piezoelectric material, the total internal energy   is given by the sum of 

the mechanical and electrical work done in differential form: 

  ̇      ̇      ̇ ,         (2.17) 

where   is the internal energy,     is the mechanical stress,     is the strain,    is the 

electric field and    is the electric displacement and for the piezoelectric continuum. The 

electric enthalpy   is defined by: 

         .         (2.18) 

Then differentiating with respect to time yields 

  ̇   ̇     ̇   ̇   ,        (2.19) 

which with (2.17) yields 

  ̇      ̇    ̇   .         (2.20) 
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Equation (2.20) implies that the electric enthalpy is a thermodynamic potential in which 

the independent variables are the strain deformation     and the electric field    , we 

assume 

            ,         (2.21) 

differentiating (2.21) with respect to time yields 

  ̇    
    

⁄  ̇     
   

⁄  ̇ ,       (2.22) 

and substituting from (2.20), we have 

 (      
    

⁄ )  ̇   (     
   

⁄ )  ̇   .     (2.23) 

Since equation (2.23) is an identity which must hold for arbitrary  ̇   and  ̇  which are 

consistent with the condition  ̇    ̇    and    
    

⁄    
    

⁄  , we have 

       
    

⁄           (2.24) 

       
     

⁄          (2.25) 

 In linear piezoelectric theory, we construct a quadratic form of  : 

   
 

 
     

                  
 

 
   

     ,      (2.26) 

      
       

       
       

 , 

          , 

    
     

 , 

where      
       and    

  are second order elastic, piezoelectric, and dielectric constants 

respectively. In general there are 21 independent elastic constants, 18 independent 

piezoelectric constants, and 6 independent dielectric constants. From equations (2.24)-

(2.26) we obtain the linear piezoelectric constitutive equations: 
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           ,        (2.27) 

               
   .         (2.28) 

Note that upon substituting equations (2.18) and (2.28) into equation (2.26) yields the 

stored energy function  : 

   
 

 
     

        
 

 
   

     .        (2.29) 

 The stress-charge form of piezoelectric constitutive equations (2.27) and (2.28) show 

coupling between electrical and mechanical quantities are implemented in finite element 

analysis. The nonlinear piezoelectric constitutive equations derived by Shiv P. Joshi [50] 

and Yasuo Cho [51] are rather complicated and lengthy. The details of derivation are not 

presented in this section. Interested readers should consult reference [50] for complete 

derivation of nonlinear piezoelectric constitutive equations. The alternative forms of 

linear and nonlinear constitutive equations are listed in Appendix A. 

 In order to write elastic and piezoelectric tensors in matrix form, the Piola-Voigt 

compact matrix notation can be employed. This compact notation replaces the subscripts 

of    and    by   and   according to Table 2.1. As shown in Table 2.1,       and   take 

the values from 1 to 3; but   and   take the values from 1 to 6. It should be noted that 

when the compact matrix notation is used, the transformation properties of the tensors 

become unclear. Hence, the tensor indices must be employed when coordinate 

transformations are to be made. 
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Table 2.1: Compact matrix notation. 

 

2.4 Differential Equations of Piezoelectricity 

The basic differential equation and boundary conditions governing the behavior of the 

linear piezoelectric continuum are developed from fundamental continuum concept. The 

differential equations of piezoelectricity can be derived using the constitutive equations 

along with stress equations of motion, the charge equation of electrostatics, strain 

displacement relations and the electric field-electric potential relations. The derivation is 

shown below.  

 Upon further substitution of equations (2.5) and (2.14) into equations (2.27) and 

(2.28), then equations (2.27) and (2.28) into equations (2.1) and (2.10) yields the 

differential equations for the linear piezoelectric continuum: 

      
                     ̈ ,       (2.30) 

              
       .        (2.31) 

 We now have a system of equations that can be solved with the proper mechanical 

and electrical boundary conditions which we have yet to determine.  

At traction-free surface, we have  
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        ,          (2.32) 

where    denotes the components of the unit normal to the surface. 

At a displacement-free surface (fixed), we have 

     .          (2.33) 

At an air-dielectric interface (unelectroded surface), we have 

       .          (2.34) 

For shorted electrodes (equal potential), we have 

    .          (2.35) 

These appropriate boundary conditions must be adjoined to the differential equations 

(2.30) and (2.31) of the linear piezoelectric continuum for a unique solution. 

 In an electrode region, the current   out of the upper electrode and into the lower 

electrode is given by: 

    
  
   ̇         ,         (2.36) 

where the   depends on the orientation of the coordinate axes,   is the admittance and 

the voltage   is related to the potential difference given by: 

                 .       (2.37) 

 

2.5 Variation Principle for a Nonlinear Piezoelectric Continuum 

Since quartz is the primary interested piezoelectric material, and has low 

electromechanical coupling factor less than 10% for rotated Y-cuts. The third order 

piezoelectric constants, electrostrictive, and third order dielectric constants will no longer 

considered here because they appear negligible in the electroelastic effect. The 

fundamental variational equation of electro-elasticity is a generalization of the 

Hamilton’s principle and can be deduced from the principle of virtual work. The 
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variational principle for a piezoelectric continuum is derived using the principle of virtual 

work: 

    
 

  
           

 

  
,       (2.38) 

where   is the time,   is the Largrangian which contains all physical information 

concerning the system and    is the work done by surface traction, surface charge and 

body force through varied displacement. 

 Considered a piezoelectric body subject to prescribe surface tractions  , surface 

charge  , and body force  . The virtual work per unit area done by the prescribed surface 

tractions in a small virtual displacement of the surface is       . The electrical analog of 

the virtual work per unit area done by the prescribed surface charge   in a small variation 

of electrical potential is –     . The virtual work per unit volume done by the body force 

through small virtual displacement is       . We will show that the variational principle 

presented here yields the nonlinear equations of piezoelectricity in Lagrangian 

forumulation.  

 The Lagrangian for this piezoelectric medium is defined by  

     
 

  
  ̇  ̇               ,       (2.39) 

          = 
 

 
     

        
 

 
       

                     
 

 
   

     ,  (2.40) 

where        
  is the third order elastic constants, and 

            
                  

 
.     (2.41) 

Hence, the variational principle takes the form 

       
 

  
  ̇  ̇                

 

  
 

              
            

 

  
         
 

  
 

  
,  (2.42) 
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where    and   are prescribed and all variations vanish at    and  . From the relations: 

      
 

 
 (                  )           , 

       
      

⁄        
     

⁄   
  ⁄   

    ⁄  

we examined the expression (2.42)  term by term. 

First term: 

      
 

  
  ̇  ̇    

 

  
 =        ̇    ̇    

 

 

  
       

  =         ⁄  
 

 

  
  ̇            ̈          

  =        ̈        
 

 

  
,       (2.43) 

since     is zero at    and  . 

Second term: 

                
   

 

  
 =        

    
⁄      

 

 

  

  
   

⁄          (2.44) 

and 

              ,            , 

where     is the initial deformation gradient given by 

             .         (2.45) 

Rewrite expression (2.44) with the use of divergence theorem yield 

       
 

     
 

  
                  

 

 

  
           

  =                     

 

  
          

                       
 

 

  
          .   (2.46) 

After substituting the expression (2.46) and (2.43) back into (2.42) and rearranging the 

terms we have 
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                        ̈      
    

 

  
           
 

 

                       
 

         
         .  (2.47) 

Since (2.47) holds for arbitrary volume and surface, the volume and surface integral 

vanish separately. The nonlinear stress equations of motion and charge equations of 

electrostatics are obtained from (2.47) and the simplified version of nonlinear constitutive 

equations are obtained from (2.40) using (2.24) and (2.25).  

Stress equations of motion: 

                      ̈          ,      (2.48) 

   =                         ,       (2.49)     

Charge equation of electrostatics: 

               ,        (2.50) 

                   ,        (2.51) 

Constitutive equations: 

          
     

 

 
       

              ,      (2.52)   

               
   .         (2.53)   

 

2.6 Summary of Equations 

The general governing equations of linear and nonlinear piezoelectricity are listed in this 

section. These equations are implemented in COMSOL Multiphysics finite element 

analysis software to study the acceleration sensitivity, force frequency effect, and 

frequency-temperature behavior of quartz crystal in the succeeding chapters.  
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2.6.1 Linear Piezoelectricity 

 Strain-displacement relation: 

      
 

 
 (         ),        (2.54) 

Stress equations of motion: 

            ̈ ,         (2.55) 

        ,         (2.56) 

 Electric field-potential relation: 

         ,         (2.57) 

 Charge equation of electrostatics: 

       ,         (2.58) 

Constitutive equations: 

          
            ,       (2.59)  

               
   .        (2.60) 

 

2.6.2 Nonlinear Piezoelectricity 

 Strain-displacement relation: 

      
 

 
                     ,      (2.61) 

 Stress equations of motion: 

                      ̈ ,       (2.62) 

        ,         (2.63) 

 Electric field-potential relation: 

         ,         (2.64) 

Charge equation of electrostatics: 

       ,         (2.65) 
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Constitutive equations: 

          
            

 

 
       

        
 

 
                     ,  (2.66) 

               
    

 

 
             

 

 
    

                .   (2.67)  
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Chapter 3 Crystallography Applied to Piezoelectric Crystal 

3.1 General 

The purpose of this chapter is to relate the fundamental theory of piezoelectric solids 

using the theoretical concepts of continuum mechanics, as presented in Chapter 2, and the 

application of the equations to particular piezoelectric materials by a branch of science 

called crystallography. The guidelines are based on the IEEE standard of piezoelectricity 

published in 1987 [46] which are widely accepted as a good representation of 

piezoelectric material properties. Most piezoelectric materials of interest for 

technological applications are crystalline solids. These can be single crystals, either 

formed in nature or formed by synthetic processes. Since the theoretical principles 

developed in Chapter 2 are presented with the generality of tensor formulations, 

connection to the theory in Chapter 2 with real piezoelectric material is required as a first 

step in the definition of crystal axes within the different crystallographic point groups and 

the association of the crystal axes with Cartesian coordinate axes used in mathematical 

analysis. 

 

3.2 Basic Terminology of Crystal Systems 

The term crystal is applied to a solid in which the atoms are arranged in a single pattern 

repeated throughout the body. The atoms are arranged in a regular manner forming a 

body with specific geometrical characteristics. Each group of atoms in a crystal forms a 

virtual three-dimensional grid as bounded by a parallelepiped, and each parallelepiped 

regarded as one of the ultimate building blocks of the crystal. The crystal is formed by 
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stacking the basic parallelepiped together without any spaces between them called a unit 

cell. The edges of a unit cell correspond to axes in a three-dimensional grid called a point 

lattice. Since the choice of a particular set of atoms to form a unit cell is arbitrary, it is 

evident that there is a wide range of choices in the shape and dimensions of the unit cell. 

In practice, the unit cell is selected which is most simply related to the actual crystal faces 

and X-ray reflections, and which has the symmetry of the crystal itself. 

 In crystallography the properties of a crystal are described in terms of the natural 

coordinate system. The symbols  ,  ,  , are used for this natural system;   ,   , and    

refer to the dimensions of the unit cell along these axes In a cubic crystal, these axes are 

of equal length and mutually perpendicular, while in a triclinic crystal they are unequal 

lengths and no two axes are mutually perpendicular. The face of any crystal are all 

parallel to planes whose intercepts on the   ,   ,   axes are small multiples of unit 

distances or infinity so that their reciprocals, when multiplied by a small common factor 

are small integers or zero. These are the indices of the planes. In this nomenclature we 

have, for example, face [100], [010], [001], also called the  ,  ,   faces, respectively. In 

the orthorhombic, tetragonal and cubic systems, these faces are normal to the  ,  ,   axes. 

Even in the monoclinic and triclinic systems these faces contain respectively, the   and  , 

  and  , and   and   axes. As referred to the set of rectangular axes X, Y, Z, these indices 

are in general irrational except for cubic crystals. 

 Depending on their degrees of symmetry, crystals are commonly classified into seven 

systems: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal and cubic. 

The seven systems are divided into 32 point groups (classes) according to their symmetry 

with respect to a point given in Table 3.1. Of the 32 crystallographic point groups, those 
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highlighted in magenta possess a center of inversion and are called centrosymmetric, 

while those highlighted in red possess no improper rotations are termed enantiomorphic. 

A third type highlighted in bold type is referred to as polar in which every symmetry 

operation leaves more than one point unmoved. 

 
Table 3.1: Crystallographic point groups. 

 

 Out of 32 classes, 12 classes contain too high degree of symmetry to show 

piezoelectric properties, thus 20 classes can be piezoelectric. Every system contains at 

least one piezoelectric class. The symbols used for the 32 crystal class are those 

recommended by the International Union of Crystallography (also known as the Herman-

Mauguin symbols). In this system, an axis of rotation is indicated by one of the 

number          . The number indicates how many full rotations about the axis which is 

required to bring the crystal into an equivalent position in regard to its internal structural 

properties. The number 1 indicates no symmetry at all, since any structure must coincide 

after a complete rotation (360˚ rotation), while 2 indicates a two-fold axis of rotation. 
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When a rotation axis is followed by a slash and an  , then this mirror is perpendicular to 

the rotation axis.  The point groups of the trigonal crystal system possess a three-fold axis, 

while those of the tetragonal and hexagonal crystal systems possess a four-fold and six-

fold axis respectively. The cubic point groups all have multiple three-fold axes and the 

orthorhombic point groups have two-fold symmetry either 2 or   with respect to each of 

the X, Y, Z, directions of an orthogonal axis system. The monoclinic point groups are 

limited to two-fold symmetry with respect to a single axis direction and lastly, the 

triclinic point groups can only have an axis of order 1. A convenient summary of the 32 

point groups with examples is given in Table 3.2. 
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Table 3.2: Examples of the 32 crystal classes [52]. 

 

3.3 The Trigonal Systems 

The primary piezoelectric material of interest is this dissertation is quartz and it is 

member of class 32, trigonal-trapezohedral. Quartz has a three-fold rotational symmetry 

on the   axis and a two-fold rotational symmetry on another axis. The commonly used 

system for quartz is the Bravais-Miller system; this system has four axes coordinate 
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system as shown in Figure 3.1. According to the Bravais-Miller axial system, there are 

three equivalent secondary axes   ,   , and   , lying 120 degrees apart in a plane normal 

to  . These axes are chosen as being either parallel to a two-fold axis or perpendicular to 

a plane of symmetry, or if there are neither two-fold axes perpendicular to   nor planes of 

symmetry parallel to  , the   axes are chosen so as to give the smallest unit cell. 

 
Figure 3.1: Bravais-Miller system of axis. 

 

 The Z axis is parallel to  . The X axis coincides in direction with any one of the   

axes. The Y axis is perpendicular to both Z and X, so oriented to form a right handed 

system. Positive-sense rules for +Z, +X, and +Y are listed in Table 3.3 for the trigonal and 

hexagonal crystals. To characterize a piezoelectric crystal, a set of piezoelectric constants 

is needed; and in order to clearly express them a sign convention is necessary for both the 

constants and the axis. There are two standards used in the literature: the IEEE 1978 

standard and the IRE 1949 Standard, and the material properties take different forms 

within the two standards. The quartz material properties are commonly defined within the 

older 1949 IRE standard while other materials are usually defined using the 1978 IEEE 
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standard. Crystallographic axes defined for quartz within the 1978 IEEE standard (solid 

lines) and 1949 standard (dashed lines). The conventions of this standard are shown in 

Figure 3.2 for right-handed and left-handed quartz.  As a result, the signs of the material 

properties for both right-handed and left-handed quartz can change depending on the 

particular standard employed. Table 3.4 summaries the different signs that occur for the 

quartz material properties. Table 3.5 shows representative values of the constants in the 

elasto-piezo-dielectric matrices for right- and left-handed quartz in IEEE 1978 standard. 

A complete presentation of the elaso-piezo-dielectric matrix for all seven crystal and 32 

point groups using Hermann-Mauguin’s notation and Schoenflies’s notation is shown in 

Table 3.6. The number of independent elastic constant range from 21 for triclinic crystal 

down to 3 for cubic crystal and the number of independent piezoelectric constant range 

from 18 down to zero for various point groups due to piezoelectric effect disappears for 

certain symmetry groups. The number of independent dielectric constant depends on the 

symmetry and range from 6 to 1 for various symmetry groups. 

 
Table 3.3: Positive sense rules for Z, X, and Y for trigonal and hexagonal crystals [46]. 
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Figure 3.2: Left-handed and right handed quartz crystals [53]. 
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Table 3.4: IRE 1949 standard and IEEE 1978 standard for right-handed and left-handed 

quartz [53]. 
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Table 3.5: Elasto-piezo-dielectric matrices for right-handed and left-handed quartz IEEE 

1978 standard [46]. (Errors in    ,    ,    ,     have being corrected) 
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Continue; 
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Table 3.6: Elasto-piezo-dielectric matrices for the 32 crystal classes [46]. 
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3.4 Notation for the Orientation of Quartz Plates 

A quartz crystal plate cut from a single-crystal staring material can have an arbitrary 

orientation relative to the three orthogonal crystal axes X, Y, and Z. The rotational symbol 

provides a method in which the plate of arbitrary orientation can be specified. The 

rotational symbol provides a starting reference for plates with thickness along X, Y, or Z, 

and then carries through successive rotations about coordinate axes, fixed in the reference 

plate, to reach the final orientation. 

 The orientation of the cut, with respect to the crystal axes, is specified by a series of 

rotations. The symbols  ,  , and   denote the length, width and thickness of the plate. We 

use the notations  , ,  to denote the orthogonal coordinate axes fixed in the reference 

plate. The rotational symbol is defined by the convention that the first letter (X, Y, or Z) 

indicates the initial orientation of the thickness direction and the second letter (X, Y, or Z) 

indicates the initial orientation of the length direction. The remaining letters of the 

rotational symbol indicate the edge of the plate used as successive rotation axes. The 

third letter ( ,  , or  ) denotes which of the three orthogonal coordinate axes in the plate 

is the axis of the first rotation, the fourth letter ( ,  , or  )  is the  axis of the second 

rotation, and the fifth letter ( ,  , or  ) the axis of third rotation. Consequently, if one 

rotation is needed to describe the final orientation of the plate, there are only three letters 

in the symbol, and if two rotations are needed, there are four letters in the symbol.  

Clearly, no more than five letters are ever needed to specify the most general orientation 

of a plate relative to the crystal axes by means of rotational symbol. The symbol is 

followed by a list of rotation angles Φ,Θ,Ψ, each angle corresponding to the successive 

rotation axes  ,  ,  . The specification of negative rotation angles consists of the 
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magnitude of the angle preceded by a negative sign. An angle is positive if the rotation 

follows right handed rule. Thus an example of the rotation symbol for the most general 

type of rotation might be (YX  ) Φ/Ψ which means that initially the thickness and length 

of the plate are along the Y and X axes, respectively, the first rotation Φ= -51˚ is about   

axis and the second rotation Ψ= -45˚ about   axis as shown in Figure 3.3. 

 
Figure 3.3: GT-cut quartz plate IEEE 1978 standard [53]. 

 

 Most of the commonly used flexural and extensional mode quartz resonator may be 

obtained by a single rotation of the (XY) plate. The commonly used thickness-shear and 

face-shear mode (except the SC-cut) quartz resonator may be obtained by a single 

rotation of the (YZ) plate. Figures 3.4 and 3.5 show an example of a singly rotated AT-cut 

and BT-cut. For doubly rotated plate, the rotation symbol has four letters followed by two 

angles. Figure 3.6 shows an example of doubly rotated SC-cut quartz plate. 
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Figure 3.4: AT-cut quartz plate (YX ) -35˚ IEEE 1978 standard [46]. 

 

 
Figure 3.5: BT-cut quartz plate (YX ) 49˚ IEEE 1978 standard [46]. 
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Figure 3.6: SC-cut quartz plate (YX  ) 22.4˚/ -33.88˚ IEEE 1978 standard [46]. 

 

3.5 Modes of Vibration 

The vibration modes of the quartz crystal units are grouped into flexure, extension, face 

shear and thickness shear modes. The schematic of the vibration modes are shown in 

Figure 3.7. Properly oriented electrodes excite the desired mode of vibration, almost all 

quartz resonator use the thickness shear mode for high frequency applications. The 

fundamental frequency of thickness shear mode is inversely proportional to its thickness, 

the thinner the crystal; the higher the frequency is given by the expression: 

      
  ⁄                 .       (3.1) 

where   is the wave speed and it is constant in a given medium,    is thickness of the 

plate. There are addition resonances at the 3
rd

, 5
th

 etc. harmonic overtones whose 

frequencies are approximate but not exact odd multiples of the fundamental resonance 

frequency. In this dissertation, the thickness shear mode is the main mode of research that 

is used to study the nonlinear acceleration sensitivity and frequency-temperature behavior 

of quartz resonator. 
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Figure 3.7: Modes of vibration of a quartz resonator. 

 

3.6 Butterworth Van Dyke (BVD) Equivalent Circuit 

The well-known Butterworth Van Dyke equivalent circuit used to represent a quartz 

resonator in the vicinity of the main mode of vibration is shown in Figure 3.8. The circuit 

is formed by two parallel branches: the static branch only contains capacitances    

represents the static capacitance of the electrodes. The motional branch   ,    and    

represent the electrical equivalent of the mechanically resonant mode. Here the motional 

inductance    reflects the mass inertia,    stands for elastic stiffness, and the resonance 

resistance    describes the total damping of the resonance [54]. Away from the main 

mode there are other resonances that can be similarly represented by the parallel addition 

of motion arms. 
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   : The shunt capacitance of a crystal is due in part to the thickness of the wafer. This 

is the measure capacitance while not vibrating.  

   : The motional capacitance of a crystal is determined by the stiffness of the quartz. 

As a general rule, if a fundamental design is used on an overtone, the    will divide by 

the square of the overtone. 

   : The motional inductance of the crystal is determined by the mechanical mass of 

quartz in motion. The    and    are related by Thomson’s formula: 

     
         

⁄ .         (3.2) 

   : The motional resistance of the crystal is determined by the internal loss of the 

mechanical vibrating system of the crystal. 

 
Figure 3.8: Butterworth Van Dyke equivalent circuit of piezoelectric resonator [55]. 

 

 The BVD equivalent parameters are obtained from finite element eigenvalue analysis. 

The static capacitance    is obtained from electrostatic analysis by applying 1 volt of DC 

voltage on the driving electrodes, and then the total surface charge accumulated on the 

driving electrode is the static capacitance   . The electrical parameters   ,    and    can 

be obtained from the eigenvalue analysis.  

   :  is the real part of resonance frequency. 
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   : is the imaginary part of resonance frequency.  

  : is the total surface charge. 

     : is the kinetic energy. 

  : is the quality factor. 

  : is the admittance of the equivalent circuit. 

    | 
         

     |,        (3.3) 

      
  

 

 
⁄  

  
         ,        (3.4) 

   
  

   
⁄ ,         (3.5) 

    
  

    
⁄ ,          (3.6) 

     
   

    
⁄ ,         (3.7) 

     
       ⁄ ,         (3.8)   

              
                 ⁄⁄ .    (3.9) 

 The capacitance ratio     ⁄  is a measure of the inter-conversion between electrical 

energy and mechanical energy stored in the crystal, i.e. piezoelectric coupling factor  . 

    
        

   
⁄                    (3.10) 

The piezoelectric coupling factor is about 8.8% for AT-cut and 4.99% for SC-cut. When a 

dc voltage is applied to the electrodes of a resonator, the capacitance ratio     ⁄  is a 

measure of the ratio of electrical energy stored in the capacitor formed by the electrodes 

to the energy stored elastically in the crystal due to the lattice strains produced by the 

piezoelectric effect.  
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 The use of load capacitor    in series or parallel to the crystal shifts the working 

frequency of the crystal by an amount depending upon the value of    and the value    

and   . Figure 3.9 show the series and parallel connections respectively. 

 
Figure 3.9: Series and parallel connection. 

 

When    is in series to the crystal,    is not affected but    moves up to a frequency   . 

When    is parallel to the crystal, the resonance frequency    is not affected but the anti-

resonance    shifts down to the frequency   . When a load capacitor is connected in 

series with the crystal,     can be obtained by: 

          
  

        
⁄  ,       (3.11) 

 
  

  
⁄  

  
        

⁄ .        (3.12) 

A load capacitor    changes not only the frequency, but also the frequency vs. 

temperature characteristic. Figure 3.10 shown the   vs.   characteristic of the same 

resonator with and without a   . The load capacitor rotates the    vs.   curve counter-
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clockwise. Table 3.7 shows the calculated equivalent circuit parameters for the 1 GHz 

AT-cut resonator. 

Frequency (GHz) 1.048809 

C1 (F) 1.0876E-15 

R1 (Ω) 10.8394 

C0 (F) 2.0237E -13 

L1 (H) 2.1172E-5 

Table 3.7: Equivalent circuit parameters for the 1 GHz AT-cut resonator. 

 

 
Figure 3.10: Effect of load capacitance on   vs.   for 1 GHz resonator. 
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Chapter 4 Acceleration Sensitivity in Quartz Resonators 

4.1 Introduction 

Acceleration sensitivity remains one of the most complicated and difficult problems 

faced by resonator designers, for example in sophisticated communication systems. Many 

modern communication systems operate on mobile platforms such as helicopters, 

unmanned air vehicles and fighter jets, and satellites. When quartz resonators operate on 

mobile platforms, the effects of vibration induced phase noise is typically greater than all 

the other noise sources. The quartz resonator then becomes the most acceleration 

sensitive component in frequency sources [56]. A reduction in acceleration sensitivity 

from 10
-10

/g to 10
-12

/g is needed in order to maintain purity of signals in modern 

communications and navigation systems [57]. 

Piezoelectric quartz resonators are high Q mechanical vibrators that operate at a 

specific resonant frequency. The resonant frequency is affected by certain external factors 

including external force fields, and acceleration that cause initial deformations of the 

crystal. When a piezoelectric quartz crystal is subjected to external fields such as 

gravitational fields, the resulting quasi-static stresses and strains on the crystal cause the 

natural resonant frequency to shift [58]. Frequency shift in acceleration occurs primarily 

as a result of resonator deformation due to constrained supports (ex. resonator cantilever 

mounted).  The initial deformations distort the quartz plate and the nonlinear elastic 

behaviors change the acoustic wave velocity [59]. The frequency of a resonator is 

function of wave velocity and thickness of quartz plate, any small change on the plate 

dimensions or propagation of wave velocity in the anisotropic medium will cause a 

frequency shift. 
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 In this chapter we (1) formulate the piezoelectric incremental equations for small 

deformations superposed on finite deformations; (2) verify the accuracy of the 

piezoelectric incremental equations using COMSOL FEA by comparing the results on the 

effects of a pair of diametrical forces on circular AT-cut quartz resonators with 

experimental data, (3) perform a detailed study of the cantilevered rectangular AT-cut 

quartz plate resonator to determine the factors that influence acceleration sensitivity and 

(4) propose using two pairs of electrodes along the plate edges in order to reduce bending 

and hence acceleration sensitivity. Our study is based on two UHF resonators at nominal 

frequencies of 500 MHz and 1 GHz respectively. 

 

4.2 Equations of Piezoelectricity for Small Deformation Superposed on Finite 

Deformations 

Piezoelectric equations for small deformations superposed on finite deformations are 

needed for the study of active reduction of acceleration sensitivity. The active reduction 

of acceleration sensitivity in quartz resonators uses electric fields to create countervailing 

forces on the quartz plate to reduce the initial strains caused by acceleration. The 

nonlinear piezoelectric equations derived in chapter 2 in Lagrangian formulation was 

employed at the final and initial state, respectively. The process of superposing small 

vibrations on acceleration-induced deformations due to body force in a crystal can be 

described by three consecutive states shown in Figure 4.1. By taking the difference of the 

field equations between the final state and the initial state, a set of piezoelectric 

incremental field equations for small vibrations superposed on initial deformations are 

obtained. 
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Figure 4.1: Position vector of a material point at reference, initial and final states. 

 

1)Reference State:  

 The crystal is in an undeformed state in which material particles are stationary and 

experience no displacement, strain and stress. The crystal is also free of electric fields 

with reference to a rectangular Cartesian frame. 

2) Initial State:  

 In this state the crystal is deformed under the action of body force and carries static 

electric fields (biasing fields). The position of the material particles are moved due to 

acceleration from   to  . The nonlinear equations of the initial state in Lagrangian 

formulation are as follow: 

Initial displacements:  

        ,         (4.1) 

Initial strains: 

                         
 ,      (4.2) 
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Initial stresses (Piola Kirchhoff 2nd kind): 

         
            

     
           ,     (4.3) 

Initial electric displacements: 

              
   ,        (4.4) 

Initial stress equations of motion: 

                      ̈         ,      (4.5) 

Initial charge equations of motion: 

              ,        (4.6) 

where      
  and        

  are second and third order elastic constants of quartz,      is the 

piezoelectric constants,    
  is the electrical permittivity,    is the electric field, ρ is the 

mass density at reference room temperature and    is the body force. 

3) Final State: 

 In this state the crystal is subjected to small incremental deformations and electric 

fields in addition to the initial deformations imposed in the initial state. The position of 

the material particles are further displaced from    to   . All the total fields in the final 

state are to be denoted by the “barred” quantities. The nonlinear equations for the final 

state in Lagrangian formulation are as follow: 

Final displacements: 

 ̅       ,         (4.7) 

Final strains: 

  ̅    ̅    
   ̅     ̅    ̅    ,      (4.8) 

Final stresses (Piola-Kirchhoff 2
nd

 kind): 

 ̅        
   ̅         

   ̅   ̅  
       ̅ ,     (4.9)   
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Final electric displacements: 

 ̅        ̅     
  ̅ ,        (4.10) 

Final stress equations of motion: 

  ̅    ̅   ̅         ̅    ̈̅         ,      (4.11) 

Final charge equations of motion: 

 ̅             .        (4.12) 

Piezoelectric incremental field equations due to small amplitude vibrations are obtained 

by taking the difference between the final state and the initial state. They are shown in 

Table 4.1. This set of equations is linear when the initial state is known.  

 
Table 4.1: Incremental piezoelectric equations. 

 

Incremental displacements: 

    ̅    ,         (4.13) 

Incremental strains: 

                                  
 ,     (4.14) 

Incremental stresses: 

    (     
         

    )          ,     (4.15) 

Incremental electric displacements: 
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   ,        (4.16) 

Incremental stress equations of motion: 

                      ̈         ,      (4.17) 

Incremental charge equations of motion: 

              .        (4.18) 

In equations (4.14) and (4.15), higher order terms            and         are neglected as 

compared to the first order term      and     for small amplitude vibrations. These 

equations are used to study the acceleration sensitivity of quartz crystal resonators.  

 A similar set of incremental piezoelectric equations by Tiersten, Yang [60], and 

others uses the Piola-Kirchhoff stress tensor of the first kind. Because the piezoelectric 

equations in COMSOL are defined in terms of Piola-Kirchhoff of the second kind, it was 

easier to implement the incremental piezoelectric equations in Piola-Kirchhoff of the 

second kind. 

 

4.3 Comparison of Measured Data with 3-D Finite Element Model Using the 

Piezoelectric Incremental Equations 

The accuracy and validation of the piezoelectric incremental field equations (Eqns. 

(4.13)-(4.18)) in Lagrangian formulation is established by comparing a 3-D finite element 

model (FEA) results with the experiment results by Ballato [37] and Mingins [26]. In 

reference [37], an AT cut circular disk of diameter d and thickness 2b, is subjected to a 

pair of diametrical forces F at an angle ψ (azimuth angle) with the   -axis as shown in 

Figure 4.2. 
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 The resonator plate dimensions modeled are from Fletcher and Douglas’s 

experimental setup [38] with d = 12mm, centered silver electrodes of diameter 4mm  

with thickness giving a relative frequency change due to mass loading of 0.5% and ψ 

varying from 0° to 90°. The relative magnitude of the mass loading is expressed in terms 

of the ratio R, which is the electrode mass per unit area to the mass per unit area of the 

resonator 

   
    

   
⁄ ,         (4.19) 

where   and    are the density and thickness of electrode, and    and   are the density 

and thickness of quartz plate. The fundamental thickness shear mode is considered.  In 

FEA simulations, equivalent boundary conditions are used due to difficulty in achieving 

perfectly symmetric forces during meshing. The plate is fixed at one edge, with 

compressive force F on the opposite edge with prescribed displacements       

  shown in Figure 4.3. These equivalent boundary conditions have the same effects as the 

pair of diametrical compressive forces shown in Figure 4.2. 

 
Figure 4.2: Experimental setup of circular disk subjected to diametrical forces [37]. 
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Figure 4.3: Finite element mode of AT-cut with diameter 12mm, thickness 0.1655mm, 

and electrode diameter 4mm, thickness 1045Å. 

 

 The results of frequency change were computed according to Ratajski’s force 

sensitivity coefficient, Kf [61], 

     
  

  
 

 

 
 

 

  
.        (4.20) 

The force sensitivity coefficient as a function of the azimuth angle ψ were computed 

using FEA for the Fletcher and Douglas [38] plate, and compared with the measured 

results of Ballato [37] and Mingins et al. [26]. The results are shown in Figures 4.4 and 

4.6 for the AT-cut and BT-cut, respectively. In Figure 4.4 the solid blue line is the FEA 

model result which compares well with the measured results of  [37]. 

 In Figure 4.6, according to Ballato [37], the authors did not specify whether the 

measured results for the BT-cut plate were for the slow or fast shear mode shown in 

Figure 4.5 when the azimuth angle ψ was varied from 0
o
 to 90

o
. Therefore we show our 

model results for both the slow shear mode (purple line) and fast shear mode (blue line). 

Our model results for the slow shear mode (purple line) compare well with the measured 

results for angles ψ = 0
o
 to 70

o
.  From 70

o
 to 90

o
 the measured results fall between our 

model results for slow and fast shear modes. In summary, Figures 4.4 and 4.6 validate 
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our FEA model that employs the piezoelectric incremental equations for small vibrations 

superposed on initial deformations. 

 
Figure 4.4: Comparison of force sensitivity coefficient Kf  as a function of the azimuth 

angle ψ for AT-cut (θ= 35.25°) with measured data by Ballato [37] and Mingins [26]. 

 

 

 
Figure 4.5: (a) BT-cut slow shear, (b) BT-cut fast shear. 
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Figure 4.6: Comparison of force sensitivity coefficient Kf  as a function of the azimuth 

angle ψ for BT-cut (θ= -49°) with measured data by Ballato [37] . 

 

4.4 The Acceleration Effect Due to Body Forces on Quartz Resonators 

The use of finite element model has great flexibility in analyzing acceleration sensitivity 

due to body force. We study two rectangular AT-cut quartz resonators with frequencies of 

1 GHz and 500 MHz respectively. Figure 4.7 shows a rectangular 1GHz AT-cut quartz 

plate resonator (l=235μm, w=105μm, t=1.5μm) with aluminum electrodes 

(150x50x0.04μm). The 500 MHz AT cut quartz plate resonator has plate dimensions 

l=470μm, w=210μm, t=3μm and aluminum electrode dimensions (300x100x0.08μm), 

maintaining the same aspect ratio (length to thickness and width ratios) as the 1 GHz 

resonator plate. The electrode is treated as added mass per unit area determined by the 

density of aluminum and thickness of the electrodes. Both resonators were cantilever 
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mounted on one edge and subjected to g body force in the Y-axis direction and in the X-Z 

plane. Let define Γ as the acceleration sensitivity vector: 

  √    
     

  ,        (4.21) 

where Γ is the total acceleration sensitivity (per g),      and     are respectively, the 

components of out-of-plane and in-plane acceleration sensitivity. 

 The fractional change of frequency       is computed for the plate resonator as a 

function of the azimuth angles    and   . The azimuth angle    is the angle between the 

crystal digonal X-axis and plate X-axis, while the azimuth angle    is the angle of the in-

plane body force with the plate X-axis, as in Figure 4.7. The resonant mode used is the 

fundamental thickness shear mode shown in Figure 4.8. 

 

Figure 4.7: Rectangular 1 GHz AT-cut plate, cantilever mounted.    is the angle of the 

crystal digonal X-axis with the plate X-axis.    is the angle of the in-plane body force 

with the plate X-axis. 
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Figure 4.8: Fundamental thickness shear mode of 1 GHz AT-cut quartz plate, f0 = 1.0488 

GHz. 

 

4.4.1 Effects of out-of-plane Body Force (g Body Force in the Y-axis direction) 

To study the effects of g body force in the out-of-plane Y-axis direction, the fractional 

frequency change       is computed for both positive and negative 1 g body force for 

the 1 GHz resonator (blue and red lines) and the 500 MHz resonator (green and purple 

lines) respectively in Figure 4.9. We observed that the acceleration sensitivity is ‘rectified’ 

when     = 0
o
 and 180

o
, that is,       was always positive regardless of the sign of the 

body force. The maximum acceleration sensitivity occurred at    equal 90
o
 and 270

o
. 

The magnitude of fractional change of frequency for the 500 MHz resonator is about 

twice as the 1 GHz resonator and this is in line with Kosinski’s [62] finding that there is a 

net 
 

 
 dependence of the acceleration sensitivity for plates with the same aspect ratios, that 

is, the higher the resonator frequency, the lower the acceleration sensitivity. Although 

Kosinski’s finding has not been proved experimentally, our FEA simulations shown good 

agreement with his finding. 

 The acceleration sensitivity due to Y-axis g body force was further analyzed with 

respect to the magnitude and sign of the body force shown in Figures 4.10 and 4.11 for 
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the 1 GHz and 500MHz plates respectively. When    = 0
o
 the acceleration sensitivity is a 

nonlinear parabolic curve (blue line). As the angle    is increased from 0
o
 to 45

o
 and 90

o
, 

the acceleration sensitivity as a function of body force g becomes increasingly linear as 

shown by the red line (   = 45
o
) and green line (   = 90

o
) for both the 1 GHz and 500 

MHz plates. This linear relationship between the acceleration sensitivity and the body 

force g at    = 90
o 

is very useful for the practical application of a DC bias to reduce or 

control acceleration sensitivity. 

 Regarding     dependence of active reduction of acceleration sensitivity, note that 

when     = 0
o
 the acceleration sensitivity is rectified (blue curve) and therefore it is not 

possible to use active reduction of acceleration sensitivity because the plate is insensitive 

to the sign of the DC bias. Also for large body forces (>-30 g for the 1 GHz plate and >-

20 g for the 500 MHz plate) the rectified acceleration sensitivity (    = 0
o
) is greater than 

the acceleration sensitivity for    = 90
o
. 
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Figure 4.9: Frequency change as a function of azimuth angle     for the 1 GHz and 500 

MHz AT-cut rectangular plates for 1 g out-of-plane body force. 

 

 

 



64 

 

 

 
Figure 4.10: Fractional frequency change for the 1 GHz plate as a function of g 

acceleration for AT-cut rectangular plate at    = 0, 45, and 90 degrees. 

 

 

Figure 4.11: Fractional frequency change for the 500 MHz plate as a function of g 

acceleration for AT-cut rectangular plate at    = 0, 45, and 90 degrees. 
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4.4.2 Effects of in-plane Body Force (g Body Force in the X-Z plane) 

For the effects of g body force in the X-Z plane (in-plane body force), the azimuth angle 

   is defined as the angle of the body force with respect to the plate X-axis. The 

fractional frequency change is computed when the quartz crystal X-axis (digonal axis) is 

parallel with the plate X-axis or at 90 degrees to the plate X-axis. The fractional change of 

frequency is computed for both positive and negative 1 g body force for the 1 GHz 

resonator (blue and red lines) and the 500 MHz resonator (green and purple lines) 

respectively in Figures 4.12 and 4.13. In Figure 4.12 where the crystal digonal X-axis is 

parallel to the plate X-axis (    = 0
o
), the body force g in the X-Z plane has negligible 

acceleration sensitivity at     = 90
o
 and 270

o
. Again, the magnitude of fractional change 

of frequency for the 500 MHz resonator is twice the 1 GHz resonator. Remarkably in 

Figure 4.13 when the crystal digonal X-axis is at 90
o
 to the plate X-axis (   = 90

o
), the 

acceleration sensitivity decreased by about 1.5 orders of magnitude from Figure 4.12.  
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Figure 4.12: Fractional frequency change as a function of azimuth angle    for the 1 

GHz and 500 MHz AT-cut rectangular plates subjected to 1 g in-plane body force. (    = 

0°) 

 

 

Figure 4.13: Fractional frequency change as a function of azimuth angle    for the 1 

GHz and 500 MHz AT-cut rectangular plates subjected to 1 g in-plane body force. (    = 

90°) 
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4.4.3 Effects of in-plane and out-of-plane Body Forces (Quartz Digonal X-axis 

is at 90
o
 to the Plate X-axis) 

When the quartz resonator digonal X-axis is at 90
o
 to the plate X-axis, the resonator is 

practically insensitive to g body force in the X-Z plane while being highly sensitivity to 

the out-of-plane body force. This is shown in Figures 4.14 and 4.15 for the 1 GHz 

resonator and 500 MHz resonator respectively. We see in both figures that the in-plane 

acceleration sensitivity for both resonators were negligible compared to the out-of-plane 

acceleration sensitivity. 

 
Figure 4.14: Fractional frequency change as a function of azimuth angle    for the 1 

GHz AT-cut rectangular plates subjected to both 1 g in-plane body force and 1 g out-of-

plane body force. (   = 90°) 
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Figure 4.15: Fractional frequency change as a function of azimuth angle    for the 500 

MHz AT-cut rectangular plates subjected to both 1 g in-plane body force and 1 g out-of-

plane body force. (   = 90°) 

 

4.5 Acceleration Sensitivity Rectification in AT-cut Quartz Resonators 

In our study of cantilever mounted resonators (1 GHz and 500 MHz) subjected to both 

positive and negative g body force in the Y-axis direction, we found that the acceleration 

sensitivity was rectified at    = 0
o
 and 180

o
. The acceleration sensitivity is ‘rectified’ 

when the fractional change in frequency       is always positive regardless of the sign 

of the body force. 

 The phenomenon of acceleration sensitivity rectification in an AT cut quartz resonator 

has never been fully discussed in previous literature on acceleration sensitivity of quartz 

resonators. Although the phenomenon has been observed in experiments, it has not 

received attention. As was noted in the previous section, the rectified acceleration 
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sensitivity becomes the most dominant acceleration sensitivity for large g forces due to 

nonlinearity of the parabolic curve (blue curve in Figures 4.10 and 4.11). Therefore it is 

instructive that we understand this phenomenon. 

 The cause of rectification is the initial bending of the plate in the X-Y plane by an out-

of-plane g body force in the Y-axis direction. The effect of rectification in a cantilever 

mounted plate at   = 0
o
 can be demonstrated with a relatively simple equation that was 

derived by Lee and Tang [63]. We employ the equation for thickness shear vibrations in 

an infinite plate subjected to homogeneous initial deformations. The fractional change of 

thickness shear frequency in an infinite plate subjected to initial deformations is: 

 
  

  
 

 

 
  ̅     ,        (4.22) 

where 

                                 (4.23) 

              
  (             )   

             
  

   (             )   
            

  (             )   
  . (4.24) 

Deformation gradient: 

             ,        (4.25) 

Modified elastic constant: 

    
     

      
   ,        (4.26) 

where     is the Kronecker delta,      is the initial strain,    
  the 2

nd
 order linear elastic 

constant,     
  is the 3

rd
 order nonlinear elastic constant and    is the initial strain tensor. 

Upon expanding     in (4.21) using (4.22) to (4.25), and neglecting small quantities of 

higher order terms, we obtain 
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 ) .       (4.27) 

 The first two terms on the right of (4.26) are linear initial strain while the third term is 

a nonlinear square of the initial bending strain      of the plate in the X-Y plane due to the 

g body force in the direction of Y-axis. When the azimuth angle    = 0
o
, the fractional 

change of thickness shear frequency in (4.26) is dominated by the third term 
   

   
    

  in 

the expression on the right. Since the term 
   

   
    

  is always positive, the fractional 

change in frequency       is always positive regardless of the sign of the body force, 

hence the acceleration sensitivity is ‘rectified’, see the blue parabolic curves of Figures 

4.10 and 4.11. 

 When the azimuth angle    = 90
o
, the fractional change of thickness shear frequency 

in (4.26) is linear and not rectified because the nonlinear term 
   

   
    

  on the right drops 

out due to lack of coupling of the thickness shear mode with the initial bending strain      

along the plate X-axis, see the green linear curves of Figures 4.10 and 4.11. When the 

azimuth angle    = 90
o
, Eq. (4.26) becomes linear: 

 
  

  
 

 

 
(      

      

   
)                 equals              (4.28)  

 

4.6 Experimental Results on Acceleration Sensitivity Rectification  

Vibration tests were carried out using two different samples of AT-cut quartz plate 

resonators namely the S1 and the V4 resonator with the crystal digonal X-axis at 0° and 

90° to the plate X-axis respectively. Since the sample resonators are limited, we only 

performed one test for each type of resonator to confirm the rectification of acceleration 

sensitivity in AT-cut quartz resonators. The resonators were cantilever mounted and 
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subjected to 0.5 g sinusoidal vibration at 20 Hz in the Y-axis direction using a shaker 

shown in Figure 4.16. The shaking motion translates directly into phase noise for the 

system. The phase noise was measured using an Agilent E5052B Signal Source Analyzer. 

Figure 4.17 shows the phase noise for a resonator (S1, dimensions l=235μm, w=105μm, 

t=2μm) with the crystal digonal X-axis parallel to plate X-axis (   = 0
o
), while Figure 

4.18 shows the phase noise for a resonator (V4, dimensions l=295μm, w=165μm, t=2μm) 

with crystal digonal X-axis at 90° to plate X-axis (   = 90
o
). In both cases the aluminum 

electrodes are of thickness 0.08m.  Although the resonators are not of identical design, 

measured data supports the developed theory.  

 Observe from Figure 4.17, the S1 resonator shows peaks in phase noise at offset 

frequency of 20 Hz and 40 Hz, and also at 60 Hz which represents power line feed 

through. The peak at 20 Hz is associated with the shaker excitation frequency. The 

presence of the peak at 40 Hz verifies that acceleration sensitivity of the S1 resonator is 

rectified when the crystal digonal X-axis is parallel to the plate X-axis (   = 0
o
). Figure 

4.18, the larger V4 resonator again shows a peak in phase noise at offset frequency of 20 

Hz due to the shaker excitation, however, there is no peak in phase noise at 40 Hz. This 

verifies that the acceleration sensitivity in the V4 resonator is not rectified when the 

crystal digonal X-axis was at 90° to the plate X-axis (   = 90
o
). 

 The above phase noise measurements validate our model results for acceleration 

sensitivity that is either rectified or not rectified depending on the angle of the crystal 

digonal X-axis with respect to the plate X-axis. 
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Figure 4.16: Resonator mounted on a shaker. 

 

 

 
Figure 4.17: Phase noise of the S1 resonator (    = 0°) with carrier frequency of 705 

MHz. 
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Figure 4.18: Phase noise of the V4 resonator (    = 90°) with carrier frequency of 837 

MHz. 

 

4.7 Active Reduction of Acceleration Sensitivity by Two Pairs of Edge 

Electrodes 

Our analyses of the 1 GHz and 500 MHz AT-cut plates have shown that when     = 90°, 

the acceleration sensitivity is predominantly due to out-of-plane body forces in the Y-axis 

direction. We show in this section active reduction of the acceleration sensitivity for out-

of-plane vibration. Active reduction of acceleration sensitivity due to in-plane forces is 

not needed because the in-plane body forces have minimal effects when     = 90°. 

 A cantilever rectangular plate bends under a body force in the Y-axis direction. Figure 

4.19 shows the deformed shape of the 1 GHz plate subjected to -1 g body force in the Y-

axis direction. The bending deformation causes initial strains in the energy trapped area 
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under the main electrodes that in turn causes fractional frequency change in the plate 

resonator. 

 
Figure 4.19: Total displacement of 1 GHz plate subjected to -1 g body force in Y-axis 

direction. (    = 90°) 

 

We can reduce the initial strains in the energy trapped area of the plate resonator by 

applying a potential to two pairs of edge electrodes shown in Figure 4.7. The edge 

electrodes on the plate bottom surface are grounded while the two top edge electrodes are 

subjected to opposite polarity electric potential, that is, when one top edge electrode is 

applied with a positive electric potential, the other top edge electrode on the opposite 

edge is applied with a negative potential. Figure 4.20 shows the upward bending resulting 

from the applied potentials. 

 
Figure 4.20: Total displacement of 1 GHz plate subjected to DC bias field in the edge 

electrodes. (   = 90°) 
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 Since deformation of the resonator caused by edge electrodes can bend the plate in 

the opposite direction to that caused by an out-of-plane body force, we can therefore use 

the edge electrodes to actively reduce the fractional change in frequency of the plate 

resonator. Figures 4.10 and 4.11 shown the linear relationship (green line) between the 

fractional frequency change and the body force in the Y-axis direction for the 1 GHz and 

500 MHz plate resonator respectively. Figures 4.21 and 4.22 show the same linear 

relationship exists between the fractional frequency change and the electric potential of 

the edge electrodes for the 1 GHz and 500 MHz plate resonator respectively. The effect 

of a DC bias voltage applied to the edge electrodes on       is presented for 1 GHz 

(Figure 4.21) and 500 MHz (Figure 4.22) plates respectively.   

 For the 1 GHz resonator, +/- 0.5 V changes       by about +/- 15 ppb, while for the 

500 MHz resonator, +/- 1.4 V changes       by about +/- 20 ppb. Since the slope of the 

line in Figures 4.21 and 4.22 is positive while the slope of the green line in Figures 4.10 

and 4.11 is negative, we could in principle actively reduce the acceleration sensitivity of 

the    = 90°, cantilever mounted AT-cut plate resonator. 
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Figure 4.21: Effect of DC bias at edge electrodes on fractional frequency change of the 1 

GHz AT-cut plate resonator. (   = 90°) 

 

 
Figure 4.22: Effect of DC bias at edge electrodes on fractional frequency change of the 

500 MHz AT-cut plate resonator. (   = 90°) 
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4.8 Conclusions 

Incremental piezoelectric equations for small vibrations superposed on initial 

deformations were presented. The equations were implemented in COMSOL finite 

element models. The model was validated by comparing simulated results for the force 

sensitivity coefficient Kf of a circular quartz plate subjected to a pair of diametrical forces, 

with measured data. The model results were found to be very accurate.  

 The effects of in-plane and out-of-plane body forces on the cantilever mounted, 1 

GHz and 500 MHz AT-cut plate resonators as a function of the     angle were studied. 

The     angle was defined as the angle between crystal digonal X-axis and resonator plate 

X-axis. A summary of our findings are as follow: 

1) The acceleration sensitivity due to in-plane body force is about 50 times smaller when 

   = 90° than when     = 0°. 

2) The acceleration sensitivity due to out-of-plane body force is independent of the sign of 

the body force when     = 0°, that is, the acceleration sensitivity is ‘rectified’. The 

rectification is due to the square of the initial bending strains in the X-Y plane.  

3) The rectified acceleration sensitivity as a function of the magnitude of out-of-plane 

body force follows a nonlinear parabolic curve so that the sensitivity is small when 

body force is small but then grows nonlinearly for larger body forces. 

4) Phase noise measurement of two resonators with     = 0° and     = 90° respectively 

showed the acceleration sensitivity was rectified for     = 0° and not rectified for     = 

90°. The measurements were consistent with the model results.  
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5) Active reduction of acceleration sensitivity could be employed for the plate resonator 

with     = 90° because  

a) the effects of in-plane body forces are negligible compared to the effects of the out-

of-plane body forces,  

b) the fractional frequency change due to out-of-plane body force varies linearly with 

the magnitude of body force, and 

c) the fractional frequency change due to DC bias at two pairs of edge electrodes 

varies linearly with the magnitude of electric potential.  

6) The FEA acceleration sensitivity due to +-1 g of body force in the Y-axis direction for 

the 1 GHz  and 500 MHz resonator  

a) at     = 0°, are 5.44e-12/g and 2.18e-11/g respectively, and 

b) at     = 90°, are -+1.73e-10/g and -+3.47e-10/g respectively. 

The body force in the Y-axis direction could be detected and measured using an 

accelerometer. The deflection of the cantilever plate resonator could also be measured by 

a change in capacitance by methods used in MEMS devices. The measured values of Y-

axis acceleration or deflection could be calibrated with respect to the DC-bias voltage of 

the edge electrodes. In turn the fractional change in frequency of the resonator could be 

actively reduced by applying a DC-bias voltage at the edge electrodes.   
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Chapter 5 Effects of External Forces on the Fundamental and Third 

Overtone Frequency of Quartz Crystal Plates 

5.1 Introduction 

Frequency shift in quartz crystal resonators due to applied external forces or vibration 

have been studied extensively by various researchers such as Ballato, Mingins and 

Fletcher et al. [37, 26, 27, 38] to investigate methods leading to the design of quartz 

resonators that are stable with respect to mechanically induced vibration and acceleration. 

The study of vibrating crystal plate under the action the external forces is important. It 

provides means of understanding in the frequency deviations experience by vibration and 

acceleration. In the previous chapter, the acceleration sensitivity of 1 GHz resonator and 

500 MHz resonator were studied using incremental piezoelectric equations for small 

vibration superposed on initial deformations. The initial strains in these acceleration 

sensitivity problems were computed using linear three-dimensional equations of elasticity. 

 In this chapter, effects of external forces on the fundamental and third overtone 

frequency of crystal plates are studied. Circular plates of quartz crystals are respectively 

subjected to compressional stress applied diametrically to the edges of plate and flexural 

bending in different configurations as function of azimuth angle ψ. Three types of 

bending arrangement have been used (a) a clamped cantilever, (b) a cantilever with 

displaced knife edges, and (c) a dual support symmetric bending. FEA results matched 

extremely well with experimental data for both the in-plane compressional stress on the 

edge of quartz plate and flexural bending of crystal plate in different configurations in 

fundamental thickness shear mode and the third overtone mode. We have found that the 

initial strains computed using linear equations of elasticity are accurate only for 
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acceleration sensitivity in the case of in-plane forces or vibrations. For acceleration 

sensitivity in the case of out-of-plane forces or vibrations the linear equations of elasticity 

are not accurate. We have found that for accurate predictions of frequency deviation due 

to external forces, the nonlinear terms in the initial stresses/strains must be retained in 

order to fully capture the out-of-plane deformations in resonators.  

 

5.2 Geometric Nonlinearity 

Nonlinearity occurs in many practical applications of engineering. The underlying 

principle of nonlinear behavior is that cause and effect relationships are not proportional 

unlike the linear system. Nonlinear behavior can be grouped into two general behaviors: 

material nonlinearity and geometric nonlinearity. Material nonlinearity arises when the 

material exhibits nonlinear stress-strain relationship. Geometric nonlinearity arises when 

a system undergoes large deformation in which there are finite changes in the geometry 

of deforming body. 

 Normally it is small strains which define whether a problem is geometrically linear. 

However, there are geometric nonlinear problems that are small strains but with finite 

rotations and bending deflections. Geometric nonlinearity should be used whenever there 

is finite bending, where the linear strain tensor is replaced by the Green-Lagrange strain 

tensor, and the Cauchy stress tensor is replaced by the second Piola-Kirchhoff stress 

tensor. The strain-displacement equations for the linear strain tensor and Green-Lagrange 

strain tensor are: 

Linear strain tensor: 

                 
 ,        (5.1) 
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Green-Lagrange strain tensor: 

                          
 .      (5.2) 

 

 In the previous chapter, linear initial strains were used for the acceleration sensitivity 

of 1 GHz and 500 MHz resonators. We have found that the initial strains computed using 

linear equations of elasticity are accurate only for acceleration sensitivity in the case of 

in-plane forces or vibrations shown in Figure 5.1. In Figure 5.1, the solid blue line (linear 

model) and the dashed purple line (nonlinear model) match the measured data very well. 

For acceleration sensitivity in the case of out-of-plane forces or vibrations, the linear 

equations of elasticity are not accurate and they are shown in Figures 5.2. The linear 

model (blue line) overestimates the fractional frequency change as compared to the 

nonlinear mode (purple line) for large out-of-plane accelerations. However, our analyses 

of 1 GHz resonator and 500 MHz resonator due to 1 g of body force using the linear 

strains are adequate because for low accelerations of less than 5 g, the nonlinear model 

yields the same results as the linear model shown in Figure 5.3. 
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Figure 5.1: Force sensitivity coefficient Kf as a function of the azimuth angle ψ for the 

AT-cut crystals with measured data by Ballato [37] and Mingins [26].  

 

 
Figure 5.2: Fractional frequency change for the 1 GHz plate as a function of g 

acceleration for AT-cut rectangular plate at    = 0. 
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Figure 5.3: Frequency change as a function of azimuth angle     for the 1 GHz AT-cut 

rectangular plates for 1 g out-of-plane body force. 

 

5.3 Equations of Incremental Motion Superposed on Finite Deformations 

For our study of acceleration sensitivity of quartz resonators we employ the Lagrangian 

three-dimensional equations of motion for incremental vibrations superposed on finite 

deformations [64]. The Lagrangian formulation is employed as the governing equations 

for fields at the initial state and the final state. By taking the difference between the final 

state and the initial state shown in Table 5.1, incremental field equations due to small 

amplitude of vibrations are obtained. For simplicity here we write only the mechanical 

equations of incremental motion superposed on finite deformations since the electro-

mechanical coupling of quartz is small. Our COMSOL models and results have included 

the piezoelectric effects. These equations are employed to study the effects of external 

forces on the circular crystal resonator in the next section. 
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Table 5.1: Incremental field equations. 

 

Incremental displacements: 

     ̅    ,         (5.3) 

Incremental strains: 

                                   
 ,     (5.4) 

Incremental stresses: 

     (     
         

    )   ,      (5.5) 

Incremental stress equations of motion: 

                       ̈         ,      (5.6) 

      (           )       .       (5.7) 

 

5.4 Effects of External Forces on the Fundamental Frequency 

In this section the effect of external forces on the fundamental thickness shear mode is 

studied. Circular plates of quartz crystals are respectively subjected to compressional 

stress applied diametrically to the edges of plate and flexural bending in different 

configurations as function of azimuth angle ψ. 
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5.4.1 Circular Disk Subjected to Diametrical Forces (Fundamental Mode) 

The effect of compressional stress applied diametrically to the edge of a circular quartz 

crystal was demonstrated by comparing 3-D finite element method results with those 

experiment results by Mingins [26]. An AT-cut quartz crystal of diameter d and thickness 

2b, subjected to a pair of diametrical forces F at an angle ψ (azimuth angle) with the   -

axis as shown in Figure 5.4. The frequency change was measured as a function of the ψ 

angle. The crystal plate dimensions were diameter d=0.5 inch, with gold electrode 

buttons of 0.25 inch in the center with thickness giving a relative frequency change due to 

mass loading of 0.5% and azimuth angle ψ varying from 0° to 180. The results are shown 

in Figures 5.5 and 5.6.  

 Figures 5.5 and 5.6 showed the effects of compressive force (500 grams) on the 

fundamental thickness shear mode of an AT-cut plate as a function of the azimuth angle ψ 

at frequency of 6.17 Mc/s and 8.22 Mc/s respectively. In Figure 5.5, the solid red and the 

solid green curves are our FEA mode results using the linear initial strains and the 

nonlinear initial strains respectively. Both results showed good agreement with the 

measured results of Mingins et al. [26]. We concluded that the linear initial strains were 

sufficient for accurate prediction of plate resonator under compressional stresses and 

deformations. We observed that at ψ=65° and 115°, the applied compressional force 

produces no frequency change at these two angles and the maximum negative frequency 

shift occurs at ψ=90°. It was quite obvious that the frequency change curve is symmetric 

at ψ=90°, meaning that the axis of symmetry is about   -axis. In Figure 5.6, frequency 

change as function of ψ for the 8.22 Mc/s plate exhibits same behavior as in Figure 5.5. 
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Figure 5.4: Circular disk subjected to diametrical forces [37]. 

 

 
Figure 5.5: Frequency change as function of ψ for compression stress at fundamental 

frequency of 6.17 Mc/s for AT-cut circular plate. 
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Figure 5.6: Frequency change as function of ψ for compression stress at fundamental 

frequency of 8.22 Mc/s for AT-cut circular plate. 

 

5.4.2 Two Grams Force Cantilever Bending  

The effects of bending moment on the fundamental frequency of the 10 MHz AT-cut and 

SC-cute circular plate resonators were studied. The crystal plate dimensions were 

d=12mm, silver electrodes of 4mm in the center with thickness giving a relative 

frequency change due to mass loading of 0.5%. The bending was applied on either the 

cantilever mounted plate or the symmetrically mounted plate. The experimental apparatus 

for applying bending forces and cantilever bending are shown in Figures 5.7 and 5.8. 

 In order to study the effects of bending force on the AT-cut plate mounted in the 

cantilever configuration, the crystal was clamp at one end, and 2 grams force was applied 

at the diametrically opposite end to create an upward bending of the crystal shown in 

Figure 5.9. The angle ψ was the angle between the X-axis of the clamped edge to the 

crystal   -axis. The model results of frequency change due initial strains from either the 
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linear strain equation (5.1) or the nonlinear strain equation (5.2) were compared to the 

Fletcher and Douglas [38] experimental results in Figure 5.10. The solid green curve is 

the frequency change due to linear initial strains while the solid red curve is the 

frequency change due to nonlinear initial strains. We observed that the solid red curve 

compared well with the experimental data while solid green curve did not compare well. 

Therefore, for out-of-plane bending the nonlinear initial strains must be used for accurate 

modeling. The frequency change due to linear initial strains was accurate only at two 

angles ψ = 90° and 270°. 

 The linearity of frequency change with the applied cantilever force is of fundamental 

interest because it determines whether the principle of superposition is applicable. Figure 

5.11 shows the frequency change as a function of the applied cantilever force from 0 to 

10 grams-force. Measured results from Fletcher and Douglas [38] showed that the 

frequency change with applied cantilever force was linear when the azimuth angle ψ was 

270° and nonlinear when ψ was 220°. Our COMSOL model results using nonlinear initial 

strains matched well the experimental results for the azimuth angle ψ = 270°. For the 

azimuth angle ψ = 220° the model results was good only for applied cantilever force up 

to 2 grams-force. 

 



89 

 

 

 

Figure 5.7: Apparatus for applying bending forces to a crystal Fletcher and Douglas [38]. 

 

 
Figure 5.8: Cantilever bending by Fletcher and Douglas [38]. 

 

 
Figure 5.9: Cantilever bending of AT-cut circular plate. 



90 

 

 

 
Figure 5.10: Frequency change as a function of azimuth angle ψ for the cantilever 

bending of AT-cut circular plate resonator. 

 

 
Figure 5.11: Frequency change as a function of applied cantilever force on the AT-cut 

circular plate resonator for two azimuth angles ψ = 220° and 270°. 
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 The 10 MHz SC-cut plate was also studied in cantilever configuration, and good 

comparisons with the measured results could only be obtained when the nonlinear initial 

strains were used. The results of both the linear and the nonlinear initial strains models 

were compared with Fletcher and Douglas [38] measured data shown in Figure 5.12. We 

have found that our nonlinear model results (solid red curve) matched well with the 

measured data when our model’s azimuth angle ψ was shifted +90°. Since the plate was 

circular, Fletcher and Douglas might have erred in starting their measured data at ψ = 90° 

instead of 0°. The frequency change using linear initial strains (solid green curve) was 

accurate only at ψ angles 0° and 180°, respectively. 

 The linearity of frequency change with applied cantilever force with respect to the 

SC-cut crystals was also studied. The results shown in Figure 5.13 for azimuth angle ψ = 

40° are linear and the principle of superposition is therefore applicable. Our model results 

(solid red line) using nonlinear initial strains were also linear although the slope of the 

line was less than the measured results of Fletcher & Douglas. 
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Figure 5.12: Frequency change as a function of azimuth angle ψ for cantilever bending of 

SC-cut crystal. 

 

 
Figure 5.13: Frequency change as a function of applied cantilever force on the SC-cut 

circular plate resonator for azimuth angle ψ = 40°. 
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5.4.3 Five Grams Force Symmetrical Bending  

Fletcher and Douglas also measured the effects of bending force in a symmetrical 

configuration shown in Figure.5.14. The crystal was clamped at one end, a knife edge 

placed over the top at the midway point to the opposite edge, and a line load of 5 grams 

force was applied at the opposite edge. Figure 5.15 shows our model of the symmetric 

bending configuration. Figure 5.16 shows our model results using nonlinear initial strains 

in comparison with the measured data by Fletcher and Douglas [38]. Our model results 

(red curve) showed a trend similar to the measured data (blue curve) although the 

magnitude of frequency changes were off at some azimuth angles ψ such as 105°, 150°, 

and 225°. 

 The linearity of frequency change with applied bending force for symmetrical 

bending at ψ = 90° was also studied. Figure 5.17 shows the measured data in comparison 

with our model results using nonlinear initial strains. Both measured data and model 

results have similar trends with slightly nonlinear curves although the slope of our model 

results (red line) was less than that of the measured. 

 

Figure 5.14: Symmetrical bending by Fletcher and Douglas [38]. 
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Figure 5.15: Symmetrical bending of SC-cut circular plate. 

 

 
Figure 5.16: Frequency change as a function of azimuth angle ψ for symmetrical bending 

of SC-cut circular plate resonator. 
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Figure 5.17: Frequency change as a function of applied force for symmetrical bending of 

SC-cut circular plate resonator for azimuth angle ψ = 90°. 

 

5.5 Rectification in AT-cut and SC-cut Resonators in Cantilever Bending 

The phenomenon of rectified acceleration sensitivity had been addressed in chapter 4 for 

the 1 GHz resonator in which the sign of frequency change    is independent of the sign 

of applied force or acceleration. For our study of cantilever plate bending in AT-cut and 

SC-cut circular plate resonators, the bending force was applied in both positive and 

negative Y-axis direction, and the results were shown in Figures 5.18 and 5.19 

respectively. We found that for the AT-cut crystal, the frequency change was rectified at 

ψ = 0
o
 and 180

o
, while for the SC-cut crystal, the frequency change was rectified at ψ 

~140
o
, and ~320

o
. (Please note that although the red curve (+2 grams-force) and blue 

curve (-2 grams-force) appear to intersect at frequency change      , they in fact 

intersect at small values of     .) 
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Figure 5.18: Frequency change as a function of azimuth angle ψ for cantilever bending of 

AT-cut circular plate resonator. 

 

 
Figure 5.19: Frequency change as a function of azimuth angle ψ for cantilever bending of 

SC-cut circular plate resonator. 
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5.6 Effects of External Forces on the Third Overtone Frequency 

In this section, the effect of external forces on the third overtone thickness shear mode is 

studied. Circular plates of quartz crystals are respectively subjected to compressional 

stress applied diametrically to the edges of plate and flexural force in different 

configurations as function of azimuth angle ψ. 

5.6.1 Circular Disk Subjected to Diametrical Forces (Third Overtone Mode) 

The experimental setup for circular disk subjected to diametrical forces was discussed in 

section 5.4, the diameter of plate and the electrodes diameters used in this section are 

kept the same as before. Here, we will skipped the general discussion and focus on the 

effects of compressional forces on the third overtone frequency in thickness shear mode. 

 Figure 5.20 shows the effect of a compressive force (500 grams) on the third overtone 

thickness shear mode of an AT-cut plate as a function of ψ at frequency of 12.36 

Mc/s(fundamental f0=4.12 Mc/s). We observed that the solid red curve compared well 

with the measured results of Mingins [26]. FEA simulations on the third overtone 

indicated that the total frequency change for a given force is proportional to overtone 

shown in Figure 5.21. The solid purple curve and the solid green curve were FEA 

simulations of frequency change as function of ψ for the third overtone (30.7 Mc/s) and 

the fundamental mode (10.22 Mc/s) respectively. The solid green curve seemed to match 

the measured results at the fundamental frequency, and the solid purple curve deviated 

from the measured results at overtone frequency. 
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Figure 5.20: Frequency change as function of ψ for compression stress at 3

rd
 overtone 

frequency of 12.36 Mc/s for AT-cut circular plate. (fundamental f0=4.12 Mc/s). 

 

 
Figure 5.21: Frequency change as function of ψ for compression stress at fundamental 

frequency of 10.22 Mc/s and 3
rd

 overtone frequency of 30.7 Mc/s for AT-cut circular 

plate. 
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5.6.2 Clamped Cantilever Bending  

In clamped cantilever, the plate was flexed as cantilever clamped near the edge and 

stressed by a force diametrically opposite the support. The effect of flexural bending on 

the third overtone thickness shear mode was studied. The crystal plate dimensions were 

d=0.5 inch, gold electrodes of 0.25 inch in the center. The plate was clamped at one end 

with a bending force of 50 grams of weight applied at a point near the opposite end 

shown in Figure 5.22. The fractional change in frequency (Δf/f0) as function of ψ at 3
rd

 

overtone frequency of 25.2 Mc/s were compared with Mingins [27] measured results 

shown in Figure 5.23. Our model results (red curve) showed a trend similar to the 

experimental data (blue curve) although the magnitude of frequency change were slightly 

off at some azimuth angles such as 160°,180°,330° and 360°. 

 Next, we consider the case when the crystal was inverted so that the face which was 

underneath is now on the top. These results are shown in Figure 5.24 at third overtone 

frequency of 21.3 Mc/s; the blue curve and the green curve were the experimental 

measured results due to bending force of 50 grams of weight in the downward direction 

and 56 grams of weight in the upward direction respectively. The red curve and the 

purple curve were the FEM results of 50 grams of weight and 56 grams of weight in the 

downward and upward direction respectively. There is strong evident that an opposite 

effect exists on the frequency change as function of ψ, and it depends on the direction of 

applied bending force. The results of positive or negative bending forces showed that 

both of the negative Δf regions have the similar configuration and this is true for both of 

the positive Δf regions as well. We also found that for AT-cut crystal, it was rectified at ψ 
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= 0
o
 and 180

o
 meaning    was always positive regardless of the sign of the applied 

bending force. 

 
Figure 5.22: Clamped cantilever bending of AT-cut circular plate. 

 

 
Figure 5.23: Frequency change as a function of azimuth angle ψ for cantilever bending at 

3
rd

 overtone frequency of 25.2 Mc/s for AT-cut circular plate. (d/h=60.5) 
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Figure 5.24: Frequency change as a function of azimuth angle ψ for cantilever bending at 

3
rd

 overtone frequency of 21.3 Mc/s for AT-cut circular plate. (d/h=54) 

 

5.6.3 Knife Edge Cantilever Bending 

In this section, we studied the effect of third overtone frequency change as function of ψ 

with knife edge cantilever support. The traditional clamped support was replaced with 

two knife edges one on the top and one on the bottom with bending force applied on the 

opposite end shown in Figure 5.25. The 21.3 Mc/s AT-cut plate with knife edge cantilever 

support and applied bending force of 85 grams of weight is studied and the result is 

shown in Figure 5.26. We have found that our FEA model (red curve) matched well with 

the measured results by Mingins (blue curve). The general shape of the frequency change 

curve was very similar to the frequency change curve of clamped cantilever support. The 

maximum frequency change occurred at ψ= 270°, same as the clamped cantilever 
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configuration. Therefore, we believed that the knife edge supports produce similar 

bending effect as the clamped support. 

 
Figure 5.25: Knife edge cantilever bending of AT-cut circular plate. 

 

 
Figure 5.26: Frequency change as a function of azimuth angle ψ for knife edge cantilever 

bending at 3
rd

 overtone frequency of 21.3 Mc/s for AT-cut circular plate. (d/h=54) 

 

 



103 

 

 

5.6.4 Dual Support (Symmetric) Bending 

In dual support mounting, a bending force was applied so as to produce a maximum 

deflection in the middle while the plate was supported near the ends of diameter. In order 

to carry out symmetrical bending about a diameter of plate, the lower knife edge support 

was moved to a position under the center of the plate. The central section of the knife 

edge is ground away so that it does not touch the plated electrode area in the center of the 

plate. This should give a direct result on the effect of frequency change due to symmetric 

bending. Figure 5.27 shows our model of symmetric bending configuration. Initially the 

plate was subjected to bending force of 150 grams of weight on the top face (A side) then 

on the bottom face (B side) shown in Figure 5.28. The plate is turned over so that the face 

which was underneath is now on the top. 

 The results of 3
rd

 overtone frequency change as function of ψ is shown in Figure 5.29 

for an AT-cut circular plate. The blue curve and the green curve were experimental 

measured results due to bending force of 150 grams of weight on the A side and B side 

respectively. Our model results (red curve and the purple curve) showed a trend similar to 

the measured results although the magnitude of frequency changes were off at ψ= 180° 

and 270°. Note that only the purple curve could be seen in the graph because it 

overlapped the red curve. According to Mingins [27], this “turn over” should produce 

two identical curves because of the perfect symmetry in dual support mounting and such 

“turn over” must be a rotation about the X-axis. Our FEA simulation showed good 

agreement with his finding although actual experimental results shown variations due 

inaccurate measurement of ψ with respect to X-axis upon inversion of the plate. 
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Figure 5.27: Symmetric bending of AT-cut circular plate. 

 

 

 
Figure 5.28: Symmetrical bending of circular plate by Mingins [27]. 
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Figure 5.29: Frequency change as a function of azimuth angle ψ for symmetric bending at 

3
rd

 overtone frequency of 18.4 Mc/s for AT-cut circular plate. (d/h=46) 

 

 We also examined the scenario when the lower knife edge was progressively moved 

from the center of the plate to positions near the top of knife edge, where the mount 

would become more of the cantilever configuration shown in Figure 5.30. “X” is the 

distance between the two knife edges. It was reduced from the center 0.25 inch to 0.04 

inch in several steps. Figures 5.31 and 5.32 shown the change in frequency as function of 

ψ at knife edge position X= 0.132 inch and X=0.097 inch respectively. In Figure 5.31, 

our model results (red curve) showed a trend similar to the measured results (blue curve) 

with some variation at azimuth angles such as 80° and 270˚. At knife edge position 

X=0.132 inch, the overall trends of the Δf curve has the same characteristics as the Δf 

curve of the symmetric bending in Figure 5.29. Figure 5.32 shows our model result at 

knife edge position X=0.097 inch (purple curve) with the measured results by Mingins 

(green curve). The two curves exhibit variation, with the measured Δf curve resembles 
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the symmetric bending plot in Figure 5.29, while the FEA model results resemble the Δf 

curve of knife edge cantilever bending plot in Figure 5.26. This leads to the conclusion 

that as “X” diminishes, the shape of the frequency change curve tends toward a typical 

cantilever bending plot. 

 
Figure 5.30: Transition from dual support to cantilever. 

 

 
Figure 5.31: Frequency change as a function of azimuth angle ψ for knife edge position 

x=0.132 inch at 3
rd

 overtone frequency of 18.4 Mc/s for AT-cut circular plate. (d/h=46) 
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Figure 5.32: Frequency change as a function of azimuth angle ψ for knife edge position 

x=0.097 inch at 3
rd

 overtone frequency of 18.4 Mc/s for AT-cut circular plate. (d/h=46) 

 

5.7 Summary of Analysis 

Incremental equations for small vibration superposed on initial deformation were 

implemented in COMSOL to study the effect of external forces on the frequency of 

circular plate subjected to compressional forces and bending moments. The model results 

using nonlinear initial strains showed good agreement with measured results of Mingins 

[26, 27] and Fletcher [38] when the plate is subjected to bending, while linear initial 

strains is only good for plate subjected to diametrical forces. We concluded that the 

present nonlinear model is effective and suitable for studying effect of external forces on 

the frequency of crystal plate. 

A summary of our finding are as follow: 
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1) The assumptions of linear initial stresses/strains are only adequate for in-plane 

compressional forces while for out-of-plane bending the nonlinear initial 

stresses/strains are needed. 

2) Rectified acceleration sensitivity for the AT-cut crystal was found at ψ = 0
o
 and 180

o
; 

while for the SC-cut crystal, the rectified acceleration sensitivity was found at ψ ~140
o
, 

and ~320
o
. 

3) For AT-cut, the critical angles for frequency insensitive to compressional force have 

been found when azimuth angle ψ is around 65° and 115°. Also the total frequency 

change for a given force is proportional to overtone.  

4) The “turn over test” of crystal plate in dual support bending showed that X-axis is an 

axis of symmetry for AT-cut plate. 

5) By varying the position of the lower knife edge support, the transition from the dual 

support configuration to the cantilever is resulted. 
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Chapter 6 Effect of Thermal Stresses on the Frequency-Temperature 

Behavior of Quartz Resonators 

6.1 Introduction 

The temperature behavior of a quartz resonator is one of the most important technical 

parameters. Temperature change creates thermal strains which caused the resonant 

frequencies to change. There are two types of temperature effects. The first type is static 

frequency-temperature behavior in which heat exchange is slow enough so the resonator 

is in thermal equilibrium, the effects of temperature gradients is negligible (Isothermal 

changes). The static   vs.   characteristics of crystal are determined primarily by the 

angle of cut of the crystal plates with respect to the crystallographic axes of quartz. The 

second type is the dynamic frequency-temperature behavior in which the resonator is not 

in thermal equilibrium, the temperature surrounding produces thermal gradients where 

heat flows to or from active area of the resonator. This usually occurs during warm-up 

period where there is significant thermal transient effect in the resonator. In this 

dissertation, we will focus only the static   vs.   behavior of quartz resonator. 

 A quartz resonator usually consists of a quartz plate sandwiched between two 

electrode films. Currently, quartz resonators are analyzed and designed by assuming the 

electrode films as mass loading films. This assumption however is only valid for the 

lower frequency resonators in the high frequency (HF) and VHF ranges. For the ultra-

high frequency (UHF) quartz resonators, the effect of electrode stress is quite significant. 

Electrode stresses on the surface of the quartz resonator causes shifts in the resonant 

frequencies through third order elastic constant effects in the quartz [65]. Stresses in thin 

films are a common occurrence for all metallization processes due to differences in 
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thermal expansion coefficients between the electrode films and the quartz. The electrodes 

would expand/contract thermally at different rate as to quartz and thus would induce 

thermal stresses and strains. 

 Although temperature stable quartz resonators are made of quartz plates with cut 

angles known to have stable frequencies over a range of temperature, other factors such 

as mounting stresses, and thermal stresses and strains in the plate could cause the 

resonant frequency to change [66]. Since in many cases the electrodes are deposited on 

the quartz, the effects of thermal stresses are transmitted from the electrode films to the 

quartz plate, and then redistributed over the entire volume of the quartz plate. In this 

chapter, we present a new method in which the electrode stress can be used to improve 

the frequency-temperature behavior of UHF quartz resonator. We study the UHF 

thickness shear quartz resonator as a composite plate wherein not only the mass loading 

effect but the electrode films material properties such as linear, nonlinear elastic 

constants, temperature derivatives of elastic constants and thermal expansion coefficient 

are incorporated into our COMSOL model for the vibrations of a composite plate 

superposed on initial strains. 

 

6.2 Equations of Incremental Motion Superposed on Thermally Induced 

Deformations 

The governing equations for small vibrations superposed on initial stresses and strains 

were derived by Lee, Wang and Markenscoff [28] where the Piola-Kirchhoff stress tensor 

of the second kind was employed in a Lagrangian formulation. Past studies of 

acceleration sensitivity and force-frequency effects have employed these governing 
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equations for small vibration superposed on initial stresses and strains without the 

temperature effects. The same set of equations (5.3-5.7) could be employed for the 

frequency-temperature effects since the thermal stresses and strains could be treated as 

initial stresses and strains in the resonator.  

Incremental displacements: 

     ̅    ,         (6.1) 

Incremental strains: 

                                   
 ,     (6.2) 

Incremental stresses: 

     (     
         

    )   ,      (6.3) 

Incremental stress equations of motion: 

                   ̈           ,      (6.4) 

      (           )       ,        (6.5) 

where      
  and        

  are the second and third order elastic stiffness of the crystal. The 

term      and     are respectively the initial displacement gradients and initial strains. 

 The governing equations for the static f-T model could be written in the same form as 

equations (6.1-6.5), when the resonator is allowed to freely expand with temperature. 

Initial thermal strain: 

        
  

 

 
   

    
 ,         (6.6) 

    
      

   
       

   
        

   
   ,       (6.7) 

       ,          (6.8) 

where    
   

,    
   

, and    
   

 are respectively the first, second and third order thermal 

expansion coefficient and   is the temperature increment with respect to reference 
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temperature      °C. The quadratic terms in equation (6.6) is neglected and we equate 

thermal strains to the mechanical strains for the stress-free temperature behavior 

        
      .         (6.9)

 
 

Hence incremental equations (6.2-6.5) can be written in terms of thermal strains for 

stress-free case. 

Modified incremental strains: 

     
 

 
(             

         
     ),      (6.10) 

Modified incremental stress: 
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Modified stress equation of motion: 

            
       ̈         ,       (6.13) 

      (          
 )       ,        (6.14) 

For resonator under thermal stress condition, incremental equation (6.2-6.5) can be 

written as follow: 

Modified incremental strains: 

     
 

 
(                           ),      (6.15) 

Modified incremental stress: 

           
          

        ,       (6.16) 
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Modified stress equation of motion: 

                   ̈         ,       (6.18) 
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113 

 

 

where      
  is modified second order elastic constants,      

   
,  ̃    

   
, and  ̃    

   
 are 

respectively first, effective second and effective third temperature derivative of the elastic 

constants. Equations (6.15-6.19) containing temperature derivatives of elastic stiffness as 

well as the second and third order temperature derivative of piezoelectric and dielectric 

constants are used in the finite element model to study frequency-temperature behavior of 

quartz plates with mass loading and as composite plates with electrode films in the next 

section. 

 

6.3 Comparison of Sekimoto Measured Data with 3-D FEM Results 

Rectangular AT-cut quartz plate resonators have been widely used in frequency 

applications. The frequency stability of the resonators is sensitive to temperature change. 

We studied the frequency-temperature behavior of a rectangular AT-cut quartz plate with 

a length of 13.964mm, a thickness of 1.737mm, and a width of 7mm at 25°C shown in 

Figure 6.1. The plate undergoes uniformed thermal expansion or contraction while 

resonant frequencies of certain modes are being measured. The accuracy of the 

Lagrangian formulation and the material constants of quartz are demonstrated by 

comparing some 3-D FEM results with measured results by Sekimoto [67].  

 The fundamental thickness shear frequency is about 0.956 MHz shown in Figure 6.2. 

Figures 6.3 shows a comparison of measured thickness shear f-T curve with f-T curve 

obtained using FEM and the comparison is quite good. The resonance at 1.003 MHz is 

the thickness flexural vibration strongly coupled with thickness shear mode shown in 

Figure 6.4. The f-T behavior of thickness flexural mode is shown in Figure 6.5. Overall, 
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the f-T curves obtained using the static f-T model is in very good agreement with the 

measured results. 

 
Figure 6.1: Sekimoto rectangular AT-cut quartz plate. 

 

 
Figure 6.2: Thickness shear mode 0.956 MHz. 
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Figure 6.3: Thickness shear (0.956 MHz) frequency-temperature curve. 

 

 
Figure 6.4: Thickness flexural mode 1.003 MHz. 
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Figure 6.5: Thickness flexural (1.003 MHz) frequency-temperature curve.  

 

6.4 The Origin of Electrode Film Stresses 

There are intrinsic and extrinsic stresses in electrode films. Intrinsic stress comes from 

defects such as dislocations of atoms in the films during deposition. The origin of 

extrinsic stress in a thin film comes mainly from adhesion of electrodes to the quartz [68]. 

Thermal stresses and strains are induced due to differences in thermal expansion 

coefficients between the electrode films and the quartz. 

 Let us consider an aluminum film on a quartz substrate in order to illustrate the 

stresses and strains induced by differences in thermal expansion coefficients. The 

coefficient of thermal expansion of aluminum (23.1x10
-6

/ C) is about twice that of quartz. 

When aluminum is deposited on to quartz at elevated temperature and then cooled to 

room temperature, the aluminum film will shrink more than quartz. The quartz substrate 

will restrict the aluminum film from doing so. Hence in cooling, the aluminum is under 
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tension while the quartz is under compression. Assuming much of this stress relaxes after 

sitting in room temperature for several days, the stresses reverse upon heating up. The 

aluminum expands more than quartz, and again it is restricted by the quartz substrate. The 

aluminum is under compression while quartz is under tension. The stress due to 

differential thermal expansion experienced by the thin film is biaxial shown in Figure 6.6. 

The stresses act along the two principal axes in the plane of the film. There is negligible 

stress in the direction normal to the film free-surface but there is strain in the normal 

direction. 

 

 
Figure 6.6: Stresses in thin film (a) tensile stress in film; (b) compressive stress in film. 

 

6.5 Frequency-Temperature Behavior of High Frequency Resonators 

A stable frequency-temperature behavior of a resonator is an important operational 

parameter in electronic devices. The stress effect has been a concern to many 



118 

 

 

investigators in the MEMS community. We first demonstrate the effect of electrode 

stresses on frequency-temperature behavior of a circular 10 MHz fundamental mode AT-

cut resonator. The resonator is 12mm in diameter with plate thickness of 0.1655mm, and 

aluminum electrodes of 4mm in diameter at the center as shown in Figure 6.7. The f-T 

curves were obtained by treating the electrode films as mass loading films and composite 

plate effects, respectively. The results are shown in Figure 6.8. 

 In Figure 6.8, the f-T curve for the case of mass loading (purple line) is one in which 

the plate resonator is initially stress-free and undergoes homogeneous thermal 

expansion/contraction with uniform temperature change. For the aluminum-quartz 

composite plate (blue line) and chromium-aluminum-quartz composite plate (red line), 

stresses occur in the plate resonator when the temperature is different from the reference 

temperature T0=25°C. The f-T curves look very similar between the mass loading effect 

and the composite plate effect at temperature between 5°C to 55°C. There are differences 

in the curves between the mass loading effect and composite effect near the two 

temperature extremes. The composite plate effect tends to rotate the f-T curve clockwise 

from the curve with mass loading effect. Since the ratio of electrode film thickness to 

quartz plate thickness is small, the mass loading assumption is valid. Overall, the f-T 

curve for the 10 MHz mass loading case and the composite plate case is within +-7 ppm. 
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Figure 6.7: Thickness shear mode of 10 MHz AT-cut resonator. 

 

 
Figure 6.8: f-T curve for the 10 MHz AT-cut resonator (θ = 35.25°). 
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6.6 Frequency-Temperature Behavior of Ultra-High Frequency Resonators 

For ultra-high frequency quartz resonator, the effect of electrode stress is quite significant. 

We consider a rectangular 1 GHz AT-cut quartz plate resonator (l=235μm, w=105μm, 

t=1.5μm) with aluminum electrodes (150x50x0.04μm). For simulation purposes, the 

resonator was cantilever mounted to an absorbing strip of silicon rubber shown in Figure 

6.9.  

 
Figure 6.9: Rectangular 1 GHz AT-cut plate cantilever mounted. 

 

 Since the properties of quartz depend strongly on the cut angles of the crystal plate, 

frequency change as function of temperature for the 1 GHz AT-cut resonator (quartz-

aluminum composite) with their cut angles differ slightly is shown in Figure 6.10. Figure 

6.10 shows the angles at which the crystal are cut have large influence on the f-T 

behavior. As the cut angle increases, it tends to rotate the f-T curve in the clock-wise 

direction. When using the most appropriate cut angle, the f vs. T curve will stay within 

±10 ppm over a temperature range of -35 °C to 85 °C. Since quartz manufactures don’t 

usually carry all angles for AT-cut, the cost of these specific crystals is relative high. 

 Thermally induced mounting stresses in the 1 GHz AT-cut quartz resonator (mass 

loading films) have been modeled and its effect on the f-T behavior is analyzed. 

Increasing the mounting stiffness of silicon rubber from E=2E8 Pa to E=2E12 Pa 
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produces a slight counter-clockwise rotation of the f-T curve shown in Figures 6.11 and 

6.12. In a properly mounted resonator, negligible amount of thermal stress is induced in 

the active region. 

 The effects of stresses in the electrode films on the frequency-temperature curve can 

be demonstrated. We can impose bi-axial stresses in the thin films by treating the film 

stresses as initial stresses in addition to the induced thermal stress. Figure 6.13 shows the 

1 GHz AT-cut resonator subjected respectively to tensile and compressive stress in the 

electrode films. The blue line is the case without initial stress; the red line and the green 

line have initial tensile stress of 10 Mpa and -10 Mpa respectively. A positive tensile 

stress in the electrode film shifts the f-T curve upward while a negative tensile stress in 

the electrode film shifts the f-T curve downward. 

 

 
Figure 6.10: Family of frequency-temperature curves for 1 GHz AT-cut resonator. 
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Figure 6.11: f-T characteristic of 1 GHz AT-cut resonator (θ = 35.25°) with different 

mounting stiffness. (Frequency deviation in ppm) 

 

 
Figure 6.12: f-T characteristic of 1 GHz AT-cut resonator (θ = 35.25°) with different 

mounting stiffness. (Variation in Frequency) 
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Figure 6.13: f-T curve for 1 GHz AT-cut resonator subjected to initial tensile and 

compressive stress in the electrode films. 

 

 The f-T curves for the 1 GHz AT-cut resonator with different electrode film metals 

are shown in Figures 6.14-6.16. We see in Figure 6.14 the plate with electrode mass 

loading yields a different f-T curve from the plate with composite layers of quartz plate 

and aluminum films. The composite plate with aluminum electrodes rotates the f-T curve 

clockwise from the f-T curve of the plate with aluminum mass loading. The f-T curve of 

the composite plate is more accurate since the UHF resonator is in effect a composite 

plate. 

 We see in Figure 6.15 the effect of chromium on the composite plate shows rotation 

of the f-T curve opposite to that of the quartz-aluminum composite plate. The quartz-

chromium composite plate rotates the f-T curve counter-clockwise from the f-T curve of 

the plate with mass loading. This finding is in line with Shearman’s study [69] of various 

metals that aluminum has the greatest positive shift while chromium has the greatest 
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negative shift. Both aluminum and chromium bond aggressively to quartz. Although 

aluminum and chromium are chemically related, they have different mechanical 

properties. Aluminum has low elastic modulus and high thermal expansion coefficient 

while chromium has high modulus and low thermal expansion coefficients. The linear 

thermal expansion coefficient of aluminum is about twice of quartz and about four times 

of chromium. In Figure 6.16, the effect of quartz-titanium composite plate also rotates the 

f-T curve counter clockwise but not as much as the quartz-chromium composite plate. 

The small effect of the titanium electrode film shows that titanium is a good candidate as 

an electrode metal for quartz resonators. 

 Since the aluminum and chromium films have opposite effects on the f-T behavior of 

quartz resonators, we could use them to adjust and improve the f-T curves. For example, 

in Figure 6.17, we could improve the f-T curve of aluminum composite plate by adding a 

thin layer of chromium film that will rotate the f-T curve counter-clockwise to reduce the 

1
st
 temperature coefficient of the f-T curve. The purple line is the aluminum mass loading 

case, the blue line is the quartz-aluminum composite plate, the green line is the quartz- 

chromium-aluminum composite plate, and the red line is the quartz-titanium-aluminum 

composite plate. 



125 

 

 

 
Figure 6.14: f-T curve for 1 GHz AT-cut resonator with aluminum electrodes. 

 

 
Figure 6.15: f-T curve for 1 GHz AT-cut resonator with chromium electrodes. 
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Figure 6.16: f-T curve for 1 GHz AT-cut resonator with titanium electrodes. 

 

 
Figure 6.17: f-T curve for 1 GHz AT-cut resonator with different electrode metals. 
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6.7 Summary of Analysis 

Our FEM model employing the equations for incremental vibrations superposed on 

thermally induced deformation was used to study the frequency-temperature behavior of 

composite plates with different electrode metals. (1) UHF quartz resonators must be 

treated as composite plates of quartz and electrode film since the ratio of electrode 

thickness to quartz plate thickness is significant. (2) The quartz-aluminum composite 

plate rotates the f-T curve clockwise while the quartz-chromium composite plate rotates 

the f-T curve counter-clockwise. (3) The titanium is an excellent electrode metal due to 

its small effect on the f-T curve. (4) The frequency-temperature behavior of quartz-

aluminum composite plate can be improved by adding a thin layer of chromium film that 

will rotate the f-T curve counter-clockwise. 

 

 

 

 

 

 

 

 



128 

 

 

Chapter 7 Conclusions and Future Works 

7.1 Conclusions 

In this dissertation, we studied the nonlinear behaviors of quartz resonators using finite 

element method. The nonlinear behaviors that affect the stability of quartz resonators at 

high frequencies are: 

(1) Acceleration Sensitivity 

(2) Force-Frequency Effect and 

(3) Frequency-Temperature Behavior. 

In high frequency resonator, the effects of nonlinearities in quartz become more 

pronounced. Acceleration changes the resonance frequencies. The acceleration can be a 

form of vibration, external force or acoustic noise. The amount of frequency change 

depends on the magnitude and direction of acceleration. Temperature change creates 

thermal strains which caused the resonant frequencies to change. Factors that can affect 

the        characteristics of crystal include the stresses in the electrode, stains in the 

quart material, and stresses in the mounting structure. The conclusions of the work 

proposed in this thesis are summarized in the following for each chapter. 

 In chapter 1, we briefly presented the difference between BAW and SAW 

technologies as well as the applications of these devices. Literature reviews on 

acceleration sensitivity and temperature stability were presented. In chapter 2, 

piezoelectric governing equations and constitutive equations were derived using variation 

principle of virtual work. These equations are implemented in the succeeding chapters to 

study the frequency-temperature behavior and the acceleration sensitivity in quartz 

resonators. Next, quartz crystallography with system of notation for the orientation of 
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crystalline plates and Butterworth Van Dyke (BVD) equivalent circuit model are 

introduced in chapter 3. The equivalent circuit relates the mechanical properties of the 

resonators to the electrical parameters   ,    and    using eigenvalue analysis. 

 Chapter 4 presents the study of acceleration sensitivity of 1GHz resonator subjected 

to both in-plane and out-of-plane body forces using the newly derived incremental 

piezoelectric equations in Lagrangian formulation. When the crystal digonal X-axis is at 

90
o
 to the plate X-axis (   = 90

o
), the in-plane acceleration sensitivity is negligible when 

compared to the out-of-plane acceleration sensitivity. The acceleration sensitivity is 

rectified for     = 0° and not rectified for     = 90°. The acceleration sensitivity is 

predominantly due to out-of-plane body forces in the Y-axis direction when      = 90°  

and we proposed an active reduction of the acceleration sensitivity for out-of-plane 

vibration using pairs of edge electrodes with DC bias field to demonstrate the reduction 

of acceleration sensitivity. 

 In chapter 5, a circular plate subjected to diametrical compression forces and flexural 

bending of different configurations in both fundamental mode and third overtone mode to 

study force-frequency effects. Incremental field equations were implemented to calculate 

the change in the thickness shear frequency for different support configurations such as 

in-plane compression, cantilever bending and symmetric bending and compared with the 

measured results. The comparison showed a good agreement of the finite element model 

results with the measured results by Fletcher [38] and Mingins [26, 27]. The assumptions 

of linear initial stresses/strains are only adequate for in-plane compressional forces while 

for out-of-plane bending the nonlinear initial stresses/strains are needed. For AT-cut, the 

critical angles for frequency insensitive to compressional forces have been found when 
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azimuth angle ψ is around 65° and 115°, and the total frequency change for a given force 

is proportional to overtone. 

  Static frequency-temperature model was used to accurately predict the f-T behavior 

of quartz resonator over a range of temperature in chapter 6. Lagrangian equations for 

small vibrational superposed on thermally induced stresses and strains were employed. 

FEM results were compared with the experimental measured results by Sekimoto [67] for 

1 MHz rectangular AT-cut quartz plate. Good comparisons between the measured results 

and FEM numerical results were found. For UHF quartz resonator, the ratio of electrode 

thickness to quartz plate thickness is significant; the assumption of mass loading films is 

no longer valid, the quartz plate and the electrodes films must be treated as composite 

plate. The electrode film stresses in the composite plate can be used to improve the f-T 

behavior of UHF quartz resonator. The quartz-aluminum composite plate rotates the f-T 

curve clockwise while the quartz-chromium composite plate rotates the f-T curve 

counter-clockwise. The f-T behavior of quartz-aluminum composite plate can be 

improved by adding a thin layer of chromium film that will rotate the f-T curve counter-

clockwise. 

  

7.2 Future works 

Finite element method developed for different nonlinear behaviors in quartz resonators 

showed good agreement with the measured results. The models developed can be used to 

predict new design of ultra-stable quartz resonators at high frequencies. Since the 

nonlinear elastic constants are the source for some of the nonlinear behaviors in quartz 

resonator, the fourth-order elastic constant of quartz (although not fully defined), the 
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third-order piezoelectric constant, third-order dielectric constant and electrostrictive 

constants of quartz could be included in the FEM model. This will help to improve the 

model accuracy and extend its applications. Moreover, we should explore other types of 

crystal cut such as AK-cut, a double rotated cut with better frequency-temperature 

characteristics than AT-cut. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 

 

 

Bibliography 

 

[1]  R. Weigel, D. Morgan, J. Owens, A. Ballato, K.M.Lakin, K. Hashimoto and 

C.C.W.Ruppel, "Microwave Acoustic Material, Devices and Applications," IEEE 

Transaction on Microwave Theory and Techniques, vol. 50, pp. 738-748, March 

2002.  

[2]  T. Kojim and H. Obara, "Two-Port Saw Resonator Using Series Connect IDTS," 

IEEE Ultrasonic Symposium, vol. 1, pp. 81-86, 1998.  

[3]  M. Ueda and Y. Satoh, "FBAR and SAW Technologies and Their Applications for 

Mobile Communications," in Asia-Pacific Microwave Conference Workshops, 2006.  

[4]  Y. Satoh, O. Ikata and T. Miyashita, "RF SAW Filters," in International Symposium 

on Acoustic Devices for Future Mobile Communication Systems, 2001.  

[5]  R. Aigner, "MEMS in RF Filter Applications: Thin-Film Bulk Acoustic Wave 

Technology," Wiley InterScience: Sensorys Update, vol. 12, pp. 175-210, 2003.  

[6]  J. Kaitila, "Review of Wave Propagation in BAW Thin Film Devices Progress and 

Prospects," IEEE Ultrasonic Symposium, pp. 120-129, 2007.  

[7]  K. Lakin, "Fundamental Properties of Thin Film Resonators," IEEE 45th Annual 

Symposium on Frequency Control, pp. 201-206, 1991.  

[8]  M. Hara, T. Yokoyama, M. Ueda and Y. Satoh, "X-Band Filters Utilizing AIN Thin 

Film Bulk Acoustic Resonators," IEEE Ultrasonics Symposium, pp. 1152-1155, 

2007.  

[9]  T. Nishihara, T. Yokoyama, T. Miyashita and Y. Satoh, "High Performance and 

Miniature Thin Film Bulk Acoustic Wave Filters for 5 GHz," IEEE Ultrasonics 

Symposium, pp. 969-972, 2002.  

[10]  G. Fattinger, J. Kaitila, R. Aigner and W. Nessler, "Thin Film Bulk Acoustic Wave 

Devices for Applications at 5.2 GHz," IEEE Ultrasonics Symposium, pp. 174-177, 

2003.  

[11]  G. Carlotti, F. Hickernell, H.M.Liaw, L. Palmieriri, G. Socino and E. Verona, "The 

Elastic Constant of Sputtered Aluminum Nitride Films," IEEE Ultrasonics 

Symposium, pp. 353-356, 1995.  

[12]  J. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Artech House, 1988.  

[13]  R. Ruby, "Review and Comparsion of Bulk Acoustic Wave FBAR, SMR 

Technology," IEEE Ultrasonics Symposium, pp. 1029-1040, 2007.  

[14]  J. V. Tirado, Bulk Acoustic Wave Resonators and Their Application to Microwave 

Devices, Barcelona: Universitat Autonoma de Barcelona, 2010.  

[15]  F. Hicknernell, "The Piezoelectric Semiconductor and Acoustoelectronic Device 

Development in the Sixties," IEEE Transactions on Ultransonics, Ferroelectrics and 

Frequency Control, vol. 52, no. 5, pp. 737-745, 2005.  

[16]  R. Aigner, "SAW, BAW and the Future of Wireless," 6 May 2013. [Online]. 

Available: http://www.edn.com/design/wireless-networking/4413442/SAW--BAW-

and-the-future-of-wireless. 



133 

 

 

[17]  C. K. Campbell, "Applications of Surface Acoustic and Shallow Bulk Acoustic 

Wave Devices," Proceedings of the IEEE, pp. 1453-1484, 1989.  

[18]  V. Ferrari and R. Lucklum, "Oview of Acoustic-Wave Microsensors," in 

Piezoelectric Transducers and Applications, Berlin Heidelberg, Springer, 2008, p. 

41. 

[19]  C. Acar and A. Shkel, MEMS Vibratory Gyroscopes Structure Approaches to 

Imporve Robustness, New York: Springer Verlag, 2009, pp. 4-5. 

[20]  A. Ballato and J. Vig, "Static and Dynamic Frequency-Temperature Behavior of 

Singly and Doubly Rotated Oven-Controlled Quartz Resonators," Proceedings of the 

32nd Annual Symposium on Frequency Control, pp. 180-188, 1978.  

[21]  R. Bechmann, A. Ballato and T. Lukaszek, "Frequency-Temperature Behavior of 

Thickness Modes of Double-Rotated Quartz Plates," Proceedings of the 15th Annual 

Symposium on Frequency Control, pp. 22-48, 1961.  

[22]  R. Bechmann, A. Ballato and T. Lukaszek, "Higher-Order Temperature Coefficient 

of the Elastic Stiffness and Compliance of Alpha-Quartz," Proceedings of The IRE, 

pp. 1812-1822, 1962.  

[23]  B. Sinha and H. Tiersten, "First Temperature Derivatives of the Fundamental Elastic 

Constants of Quartz," Journal of Applied Physics, vol. 50, no. 4, pp. 2732-2739, 

1979.  

[24]  R. Bechmann, A. Ballato and T. Lukaszek, "Frequency Temperature Characteristic 

of Quartz Resonators Derived from Temperature Behavior of the Elastic Constants," 

Proceedings of the 16th Annual Symposium on Frequency Control, pp. 77-109, 

1962.  

[25]  V. Bottom, "Note on the Anomalous Thermal Effect in Quartz Oscillator," Amer 

Mineralogist, vol. 32, pp. 590-591, 1947.  

[26]  C. Mingins, L. Barcus and R. Perry, "Effect of External Forces on the Frequency of 

Vibrating Crystal Plates," Proceedings of the 16th Annual Symposium on Frequency 

Control, pp. 46-76, 1962.  

[27]  C. Mingins, L. Barcus and R. Perry, "Reactions of a Vibrating Piezoelectric Crystal 

Plate to Externally Applied Forces," Proceedings of the 17th Annual Symposium on 

Frequency Control, pp. 51-87, 1963.  

[28]  P. Lee, Y. Wang and X. Markenscoff, "High Frequency Vibrations of Crystal Plate 

Under Initial Stresses," Journal Acoustic Society of America, vol. 57, no. 1, pp. 95-

105, 1975.  

[29]  P. Lee, Y. S. Wang and X. Markenscoff, "Elastic Waves and Vibrations in 

Deformed Crystal Plates," Proceedings of the 27th Annual Symposium on Frequency 

Control, pp. 1-6, 1973.  

[30]  D. Janiaud, L. Nissim and J. Gagnepain, "Analytical Calculation of Initial Stress 

Effects on Anisotropic Crystals Application to Quartz Resonator," Proceedings of 

the 32nd Annual Symposium on Frequency Control, pp. 169-179, 1978.  

[31]  P. Lee and K. M. Wu, "Effect of Acceleration on the Resonance Frequencies of 

Crystal Plates," Proceedings of the 30th Annual Symposium on Frequency Control, 

pp. 1-7, 1976.  



134 

 

 

[32]  P. Lee and K. Wu, "The Influence of Support Configuration on the Acceleration 

Sensitivity of Quartz Resonator Plates," Proceedings of the 31st Annual Symposium 

on Frequency Control, pp. 29-34, 1977.  

[33]  P. Lee and K. Wu, "In-Plane Accelerations and Forces on Frequency Changes in 

Doubly Rotated Quartz Plates," Journal Acoustical Society of America, pp. 1105-

1117, 1984.  

[34]  P. Lee and M. Tang, "Acceleration Effect on the Thickness Vibrations of Doubly 

Rotated Crystal Resonators," Proceedings of the 41st Annual Symposium on 

Frequency Control, pp. 277-281, 1987.  

[35]  P. Lee and M. Tang, "Acceleration Insensitivity of Thickness Frequencies of Doubly 

Rotated Quartz Crystal Disks," Proceedings of the 42nd Annual Symposium on 

Frequency Control, pp. 14-18, 1988.  

[36]  J. M. Ratajski, "The Force Sensitivity of AT-cut Quartz Crystals," Proceedings of 

the 20th Annual Symposium on Frequency Control, pp. 33-48, 1966.  

[37]  A. Ballato, "Effects of Initial Stress on Quartz Plates Vibrating in Thickness 

Modes," Proceedings of the 14th Annual Symposium on Frequency Control, pp. 89-

114, 1960.  

[38]  E. Fletcher and A. Douglas, "A Comparsion of the Effects of Bending Moments on 

the Vibrations of AT and SC Cuts of Quartz," Proceedings of the 33rd Annual 

Symposium on Frequency Control, pp. 346-350, 1979.  

[39]  T. Lukaszek and A. Ballato, "Resonators for Severe Environments," Proceedings of 

the 33rd Annual Symposium of Frequency Control, pp. 311-321, 1979.  

[40]  R. Besson, J. Gagnepain, D. Janiaud and M. Valdois, "Design of a Bulk Wave 

Quartz Resonator Insensitive to Acceleration," Proceedings of the 33rd Annual 

Symposium on Frequency Control, pp. 37-345, 1979.  

[41]  J. Gagnepain and F. Walls, "Quartz Crystal Oscillators With Low Acceleration 

Sensitivity," National Bureau of Standards, pp. 77-885, 1977.  

[42]  J. Przyjemski, "Improvement in System Performance Using a Crystal Oscillator 

Compensated for Acceleration Sensitivity," Proceedings of the 32nd Annual 

Symposium of Frequency Control, pp. 426-431, 1978.  

[43]  D. Emmons, "Acceleration Sensitivity Compensation in High Performance Crystal 

Oscillators," in 10th PTTI Conference, 1978.  

[44]  V. Rosati, "Suppression of Vibration Effects on Piezoelectric Crystals Resonators". 

United States Patent 4453141, 1984. 

[45]  P. Lee, N.H.Liu and A.Ballato, "Thickness Vibrations of Piezoelectric Plate with 

Dissipation," IEEE Transactions UFFC, vol. 51, pp. 52-62, January 2004.  

[46]  "IEEE Standard on Piezoelectricity," The Institude of Electrical and Electronics 

Engineers, New York, 1987. 

[47]  C. Desai, E. Krempl, G. Frantziskonis and H. Saadatmanesh, Constitutive Laws for 

Engineering Materials: Recent Advances and Industrial and Infrastructure 

Applications, New York: ASME, 1991, pp. 605-608. 

[48]  H. Tiersten, "Hamilton's Principle for Linear Piezoelectric Media," Proceedings of 

IEEE, vol. 55, no. 8, pp. 1523-1524, 1967.  



135 

 

 

[49]  H.F.Tiersten, Linear Piezoelectric Plate Vibrations, New York: Plenum Press, 1969.  

[50]  S. P. Joshi, "Non-Linear Constitutive Relations for Piezoceramic Materials," Smart 

Mater.Struct. 1, pp. 80-83, 1992.  

[51]  Y. Cho and F. Matsuno, "The Relation Between the Constants of Electrostrictive 

Materials and Some Examples of Their Application to Piezoelectric Ceramics," 

Trans. Inst. Electron. Info. & Comun. Eng., Vols. J75-A, pp. 875-882, 1992.  

[52]  R. E. Newnham, Properties of Materials, New York: Oxford University Press, 2005.  

[53]  J. Ransley, "COMSOL BLOG," 2 October 2014. [Online]. Available: 

https://www.comsol.com/blogs/piezoelectric-materials-understanding-standards/. 

[54]  M. Schmid, E. Benes, W. Burger and V. Kravchenko, "Motional Capacitance of 

Layered Piezoelectric Thickness-Mode Resonator," IEEE Trans. Ultrasonics, 

Ferroelectric Frequency Control, vol. 38, no. 3, pp. 199-206, 1991.  

[55]  J. R. Vig, "Introduction to Quartz Frequency Standards," U.S. Army Electronics 

Technology and Devices Laboratory, Fort Monmouth, 1992. 

[56]  R. Filler, "The Acceleration Sensitivity of Quartz Crystal Oscillators: A Review," 

IEEE Transactions on Ultransonics, Ferroelectrics and Frequency Control, vol. 35, 

pp. 297-305, 1988.  

[57]  V. Rosati and R. Filler, "Reduction of the Effect of Vibration on SC-cut Quartz 

Crystal Oscillators," Proceedings of the 35th Annual Symposium on Frequency 

Control, pp. 117-121, 1981.  

[58]  Y. Yong and M. Patel, "Application of a DC-bias to Reduce Acceleration Sensitivity 

in Quartz Resonators," International Journal of Applied Electromagnetics and 

Mechanics, vol. 22, pp. 69-82, 2005.  

[59]  M. Valdois, J. Besson and J. Gagnepain, "Influence of Enviroment Conditions on a 

Quartz Resonator," Proceedings of the 28th Annual Symposium on Frequency 

Control, pp. 19-32, 1978.  

[60]  J. Yang, Analysis of Piezoelectric Devices, Singapore: World Scientific, 2006.  

[61]  J. Ratajski, "Force Frequency Coefficient of Singly Rotated Vibrating Quartz 

Crystal," IBM Journal of Research and Development, vol. 12, no. 1, pp. 92-99, 1968.  

[62]  J. Kosinski, "Designing for Low Acceleration Sensitivity," IEEE Transactions on 

Ultrasonics, Ferroelectrics and Frequency Control, vol. 40, no. 5, pp. 532-537, 

1993.  

[63]  P. Lee and M. Tang, "Thickness Vibrations of Doubly Rotated Crystal Plates Under 

Initial Deformations," IEEE Transactions on Ultrasonics, Ferroelectrics, and 

Frequency Control, vol. 34, no. 6, pp. 659-666, 1987.  

[64]  P. Lee, Y. Wang and X. Markenscoff, "Nonlinear Effect of Initial Bending on the 

Vibrations of Crystal Plates," Journal Acoustic Society of America, vol. 59, no. 1, 

pp. 90-96, 1976.  

[65]  E. ErNisse, "Quartz Resonator Frequency Shifts Arising from Electrode Stress," 

Proceedings of the 29th Annual Symposium on Frequency Control, pp. 1-4, 1975.  

[66]  J. Laconte, D. Flandre and J.-P. Raskin, "Micromachined Thin-Film Sensor for SOI-

CMOS Co-Integration," Netherlands, Springer, 2006, pp. 53-56. 



136 

 

 

[67]  H. Sekimoto, S. Goka, A. Ishizaki and Y. Watanabe, "Frequency-Temperature 

Behavior of Spurious Vibrations of Rectangular AT-cut Quartz Plate," IEEE 

Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, no. 4, 

pp. 1017-1021, 1998.  

[68]  Y. Yong, M. Patel and M. Tanaka, "Effect of Thermal Stresses on the Frequency-

Temperature Behavior of Piezoelectric Resonators," Journal of Thermal Stresses, 

vol. 30, pp. 639-661, 2007.  

[69]  J. Sherman, "Temperature Coefficient of the Frequency Shift Arising from Electrode 

Film Stress," IEEE Transaction on Sonics and Ultrasonics, vol. 30, no. 2, pp. 104-

110, 1983.  

[70]  R. Bechmann, "Elastic and Piezoelectric Constants of Alpha-Quartz," Physical 

Review, vol. 110, no. 5, pp. 1060-1061, 1958.  

[71]  R. Thurston, H. McSkimin and P. Andreatch, "Third Order Elastic Coefficients of 

Quartz," Journal of Applied Physics, vol. 37, no. 1, pp. 267-275, 1966.  

[72]  P. Lee and Y. Yong, "Frequency-Temperature Behavior of Thickness Vibrations of 

Doubly Rotated Quartz Plates Affected by Plate Dimensions and Orientations," 

Journal of Applied Physics, pp. 2327-2342, 1986.  

[73]  Y. Yong and W. Wei, "Lagrangian Temperature Coefficients of The Piezoelectric 

Stress Constants and Dielectric Permittivity of Quartz," IEEE International 

Frequency Control Symposium, pp. 364-372, 2000.  

[74]  J. Lamb and J. Richter, "Anisotropic Acoustic Attenuation with New Measurements 

for Quartz at Room Temperatures," Proceedings of the Royal Society of London 

Series A, Mathematical and Physical, vol. 293, pp. 479-492, 1966.  

[75]  J. Kosinski, J. Gualtieri and A. Ballato, "Thermal Expansion of Alpha Quartz," 

Proceedings of the 45th Annual Symposium on Frequency Control, pp. 22-28, 1991.  

[76]  C. Hruska and P. Ng, "Material Nonlinearities in Quartz Determined by the Transit-

Time Method Using Direct Current Field Interactions," Journal Acoustic Society of 

America, vol. 93, pp. 1426-1430, 1993.  

[77]  J. Neighbours and G. Alers, "Elastic Constants of Silver and Gold," Physical 

Review, vol. 111, no. 3, pp. 707-712, 1958.  

[78]  Y. Chang and L. Himmel, "Temperature Dependence of the Elastic Constant of Cu, 

Ag and Au About Room Temperature," Journal of Applied Physics, vol. 37, no. 9, 

pp. 3567-3572, 1966.  

[79]  Y. Hiki and A. Granato, "Anharmonicity in Noble Metal Higher Order Elastic 

Constants," Physical Review, vol. 144, no. 2, pp. 411-419, 1966.  

[80]  F. Nix and D. MacNair, "The Thermal Expansion of Pure Metals: Copper, 

Aluminum, Nickel and Iron," Physical Review, vol. 60, pp. 597-605, 1941.  

[81]  International Critical Tables of Numberical Data Physics, Chemistry and 

Technology, New York: McGraw-Hill Book Company, 1929.  

[82]  R. Hearmon, "Temperature Dependence of the Elastic Constants of Aluminum," 

Solid State Communications, vol. 37, pp. 915-918, 1981.  

[83]  J. Thomas, "Third Order Elastic Constants of Aluminum," Physicsl Review, vol. 175, 

no. 3, pp. 955-962, 1968.  



137 

 

 

[84]  D. Bolef and J. Klerk, "Anomalies in the Elastic Constants and Thermal Expansion 

of Chromium Single Crystals," Physical Review, vol. 129, no. 3, pp. 1063-1067, 

1963.  

[85]  S. Palmer and E. Lee, "The Elastic Constants of Chromium," Philosophical 

Magazine, vol. 24, no. 188, pp. 311-318, 1971.  

[86]  S. Mathur and Y. Sharma, "Second and Third Order Elastic Constants of Cr, Mo, 

and W," Physica Status Solidi B, vol. 41, no. 1, pp. K51-5, 1970.  

[87]  E. Fisher and C. Renken, "Single-Crystal Elastic Moduli and the hcp to bcc 

Transformation in Ti, Zr, and Hf," Physical Review, vol. 135, pp. 482-494, 1964.  

[88]  R. Rao and C. Menon, "Lattice Dynamics, Third-Order Elastic Constants and 

Thermal Expansion of Titanium," Physical Review , vol. 7, no. 2, pp. 644-650, 1973.  

[89]  P. Hidnert, "Thermal Expansion of Titanium," Journal of Research of the National 

Bureau of Standards, vol. 30, pp. 101-105, 1943.  

 

  



138 

 

 

Appendix A.   Constitutive Equations 

A1. Alternative Forms of Linear Piezoelectric Constitutive Equations 

 

Stress-Charge form 

          
                     

               
      

Stress-Voltage form 

          
                     

                
      

Strain-Charge form 

          
              

               
     

Strain-Voltage form 
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A2. Alternative Forms of Nonlinear Piezoelectric Constitutive Equations  

Stress-Charge form 

          
            

 

 
       

        
 

 
                     

               
    

 

 
             

 

 
    

                    

Stress-Voltage form 
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Strain-Voltage form 
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Appendix B.  Quartz  Material Properties 

The mass density of Quartz is 2649 
  

  ⁄ . 

B1. Y-Cut Quartz 

Y-cut quartz is a trigonal crystal with    as the trigonal axis and     as digonal axis. The 

thickness coordinate of a Y-cut quart plate is   . Values of material constants for left-

handed Y-cut quartz (IRE 1949 standard) have been determined by R. Bechmann [70], R. 

Thurston, H. McSkimin and P. Andreatch [71], Y. Yong and P. Lee [72] [73], J. Lamb 

and J. Richter [74], J. Kosinski, J. Gualtieri, and A. Ballato [75], and C.K. Hruska and P. 

Ng [76]. 

 

Second-order elastic constants: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 8.674 0.698 1.191 -1.791 0 0 
2 0.698 8.674 1.191 1.791 0 0 
3 1.191 1.191 10.72 0 0 0 
4 -1.791 1.791 0 5.794 0 0 
5 0 0 0 0 5.794 -1.791 
6 0 0 0 0 -1.791 3.998 

 

Viscosity constants: (10
-3

 N-sec/m
2
) 

   npg    
               q    
  p     1 2 3 4 5 6 

1 1.37 0.73 0.71 0.01 0 0 
2 0.73 1.37 0.71 -0.01 0 0 
3 0.71 0.71 0.96 0 0 0 
4 0.01 -0.01 0 0.36 0 0 
5 0 0 0 0 0.36 0.01 
6 0 0 0 0 0.01 0.32 
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First temperature derivatives of elastic constants: (10
6
 N/(m

2
*°C)) 

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 1.5976 -8.5518 -2.1983 0.91675 0 0 
2 -8.5518 1.5976 -2.1983 -0.91675 0 0 
3 -2.1983 -2.1983 -6.5255 0 0 0 
4 0.91675 -0.91675 0 -5.378 0 0 
5 0 0 0 0 -5.378 0.91675 
6 0 0 0 0 0.91675 5.0747 

 

Effective second temperature derivatives of elastic constants: (10
3
 N/(m

2
* (°C )

2
)) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 -12.989 -35.121 -18.806 4.2849 0 0 
2 -35.121 -12.989 -18.806 -4.2849 0 0 
3 -18.806 -18.806 -20.835 0 0 0 
4 4.2849 -4.2849 0 -26.505 0 0 
5 0 0 0 0 -26.505 4.2849 
6 0 0 0 0 4.2849 11.066 

 

Effective third temperature derivatives of elastic constants: (N/(m
2
*(°C )

3
)) 

   C
(3)

pq    
               q    
  p     1 2 3 4 5 6 

1 -38.145 73.503 -8.9302 85.773 0 0 
2 73.503 -38.145 -8.9302 -85.773 0 0 
3 -8.9302 -8.9302 46.255 0 0 0 
4 85.773 -85.773 0 -20.468 0 0 
5 0 0 0 0 -20.468 85.773 
6 0 0 0 0 85.773 -55.824 

 

Third-order elastic constants: (10
10

 N/m
2
) 

p =1   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -21 -34.5 1.2 -16.3 0 0 
2 -34.5 -22.3 -29.4 -1.5 0 0 
3 1.2 -29.4 -31.2 0.2 0 0 
4 -16.3 -1.5 0.2 -13.4 0 0 
5 0 0 0 0 -20 -10.4 
6 0 0 0 0 -10.4 -5.775 
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p =2   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -34.5 -22.3 -29.4 -1.5 0 0 
2 -22.3 -33.2 1.2 19.3 0 0 
3 -29.4 1.2 -31.2 -0.2 0 0 
4 -1.5 19.3 -0.2 -20 0 0 
5 0 0 0 0 -13.4 -7.4 
6 0 0 0 0 -7.4 6.425 

 

p =3   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 1.2 -29.4 -31.2 0.2 0 0 
2 -29.4 1.2 -31.2 -0.2 0 0 
3 -31.2 -31.2 -81.5 0 0 0 
4 0.2 -0.2 0 -11 0 0 
5 0 0 0 0 -11 0.2 
6 0 0 0 0 0.2 15.3 

 

p =4   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -16.3 -1.5 0.2 -13.4 0 0 
2 -1.5 19.3 -0.2 -20 0 0 
3 0.2 -0.2 0 -11 0 0 
4 -13.4 -20 -11 -27.6 0 0 
5 0 0 0 0 27.6 -3.3 
6 0 0 0 0 -3.3 -1.5 

 

p =5   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 -20 -10.4 
2 0 0 0 0 -13.4 -7.4 
3 0 0 0 0 -11 0.2 
4 0 0 0 0 27.6 -3.3 
5 -20 -13.4 -11 27.6 0 0 
6 -10.4 -7.4 0.2 -3.3 0 0 
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p =6   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 -10.4 -5.775 
2 0 0 0 0 -7.4 6.425 
3 0 0 0 0 0.2 15.3 
4 0 0 0 0 -3.3 -1.5 
5 -10.4 -7.4 0.2 -3.3 0 0 
6 -5.775 6.425 15.3 -1.5 0 0 

 

Piezoelectric constants: (10
-2

 C/m
2
) 

   eij    
            j    
  i     1 2 3 4 5 6 

1 17.1 -17.1 0 -4.067 0 0 
2 0 0 0 0 4.067 -17.1 
3 0 0 0 0 0 0 

 

First temperature derivatives of piezoelectric constants: (10
-6

 C/(m
2
*°C)) 

   e
(1)

ij    
            j    
  i     1 2 3 4 5 6 

1 -1.37002 1.37002 0 3.12403 0 0 
2 0 0 0 0 -3.12403 1.37002 
3 0 0 0 0 0 0 

 

Second temperature derivatives of piezoelectric constants: (10
-10

 C/(m
2
*(°C)

2
)) 

   e
(2)

ij    
            j    
  i     1 2 3 4 5 6 

1 -7.48887 7.48887 0 26.0005 0 0 
2 0 0 0 0 -26.0005 7.48887 
3 0 0 0 0 0 0 

 

Third temperature derivatives of piezoelectric constants: (10
-12

 C/(m
2
*(°C)

3
)) 

   e
(3)

ij    
            j    
  i     1 2 3 4 5 6 

1 1.955179 -1.955179 0 -4.69238 0 0 
2 0 0 0 0 4.69238 -1.955179 
3 0 0 0 0 0 0 
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Dielectric permittivity: (10
-12

 C/(V*m)) 

   εip    
            p   
  i     1 2 3 

1 39.215 0 0 
2 0 39.215 0 
3 0 0 41.038 

 

First temperature derivatives of dielectric permittivity: (10
-15

 C/(V*m*°C )) 

   ε
(1)

ip    
            p   
  i     1 2 3 

1 `1.5902 0 0 
2 0 1.5902 0 
3 0 0 5.46123 

 

Second temperature derivatives of dielectric permittivity: (10
-18

 C/(V*m*(°C )
2
)) 

   ε
(2)

ip    
            p   
  i     1 2 3 

1 5.37723 0 0 
2 0 5.37723 0 
3 0 0 0.1894809 

 

Third temperature derivatives of dielectric permittivity: (10
-21

 C/(V*m*(°C )
3
)) 

   ε
(3)

ip    
            p   
  i     1 2 3 

1 5.105736 0 0 
2 0 5.105736 0 
3 0 0 -9.230945 

 

First-order thermal expansion coefficients: (10
-6

 1/°C) 

   α
(1)

ij    
            j   
  i     1 2 3 

1 13.71 0 0 
2 0 13.71 0 
3 0 0 7.48 
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Second-order thermal expansion coefficients: (10
-9

 1/(°C)
2
) 

   α
(2)

ij    
            j    
  i     1 2 3 

1 6.5 0 0 
2 0 6.5 0 
3 0 0 2.9 

 

Third-order thermal expansion coefficients: (10
-12

 1/(°C)
3
) 

   α
(3)

ij    
             j    
  i     1 2 3 

1 -1.9 0 0 
2 0 -1.9 0 
3 0 0 -1.5 

 

Electrostrictive constants: (10
-11

 C/(V*m)) (IEEE 1978 Standard right-handed quartz) 

   lpg    
               q    
  p     1 2 3 4 5 6 

1 4.27657 -7.3755 12.6084 -5.2151 0 0 
2 -7.3755 4.27657 12.6084 5.2151 0 0 
3 2.05417 2.05417 -2.9573 0 0 0 
4 -1.275 1.275 0 -0.65521 0 0 
5 0 0 0 0 -0.65521 -1.275 
6 0 0 0 0 -5.2151 5.82606 

 

Third-order piezoelectric constants: (C/m
2
) (IEEE 1978 Standard right-handed quartz) 

p =1   epqr    
               r    
  q     1 2 3 4 5 6 

1 -2.14 0.51 0.54 -0.24 0 0 
2 0.51 1.12 -0.54 -0.76 0 0 
3 0.54 -0.54 0 -1.63 0 0 
4 -0.24 -0.76 -1.63 -0.09 0 0 
5 0 0 0 0 0.09 -0.26 
6 0 0 0 0 -0.26 0.51 
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p =2   epqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 0.76 0.305 
2 0 0 0 0 0.24 1.325 
3 0 0 0 0 1.63 -0.54 
4 0 0 0 0 -0.09 0.26 
5 0.76 0.24 1.63 -0.09 0 0 
6 0.305 1.325 -0.54 0.26 0 0 

 

p =3   epqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 0.89 0 
2 0 0 0 0 -0.89 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 -0.89 
5 0.89 -0.89 0 0 0 0 
6 0 0 0 -0.89 0 0 

 

Third-order dielectric permittivity:     
           

 

 
  (IEEE 1978 Standard right-

handed quartz) 
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B2. AT-Cut Quartz  

AT-cut of quartz is obtained by rotating Y-cut of quartz (YX ) 35.25˚. (IRE 1949 standard) 

Second-order elastic constants: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 8.674 -0.826054 2.715054 -0.365487 0 0 
2 -0.826054 12.97663 -0.741847 0.570042 0 0 
3 2.715054 -0.741847 10.28306 0.992128 0 0 
4 -0.365487 0.570042 0.992128 3.861153 0 0 
5 0 0 0 0 6.880699 0.253357 
6 0 0 0 0 0.253357 2.901301 

 

Viscosity constants: (10
-3

 N-sec/m
2
) 

   npg    
               q    
  p     1 2 3 4 5 6 

1 1.37 0.732764 0.707235 0.006088 0 0 
2 0.732764 1.338593 0.595410 -0.052711 0 0 
3 0.707235 0.595410 1.220585 -0.143868 0 0 
4 0.006088 -0.052711 -0.143868 0.245410 0 0 
5 0 0 0 0 0.337249 0.022190 
6 0 0 0 0 0.022190 0.342750 

 

First temperature derivatives of elastic constants: (10
6
 N/(m

2
*°C)) 

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 1.5976 -5.571304 -5.178796 3.300554 0 0 
2 -5.571304 -6.921529 2.750886 -3.361525 0 0 
3 -5.178796 2.750886 -7.904742 -0.773078 0 0 
4 3.300554 -3.361525 -0.773078 -0.428814 0 0 
5 0 0 0 0 -2.760408 -4.620557 
6 0 0 0 0 -4.620557 2.457108 
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Effective second temperature derivatives of elastic constants: (10
3
 N/(m

2
* (°C )

2
)) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 -12.989 -25.6474 -28.2796 9.119927 0 0 
2 -25.6474 -45.38299 6.936393 -9.537211 0 0 
3 -28.2796 6.936393 -39.92379 4.4089 0 0 
4 9.119927 -9.537211 4.4089 -0.763607 0 0 
5 0 0 0 0 -18.02935 -16.27766 
6 0 0 0 0 -16.27766 2.590353 

 

Effective third temperature derivatives of elastic constants: (N/(m
2
 *(°C )

3
)) 

   C
(3)

pq    
               q    
  p     1 2 3 4 5 6 

1 -38.145 126.898 -62.32517 -10.22086 0 0 
2 126.898 -141.8306 42.01561 30.41957 0 0 
3 -62.32517 42.01561 48.04903 -19.27172 0 0 
4 -10.22086 30.41957 -19.27172 30.47781 0 0 
5 0 0 0 0 -113.0982 45.29563 
6 0 0 0 0 45.29563 36.80615 

 

Third-order elastic constants: (10
10

 N/m
2
) 

p =1   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -21 -37.97351 4.673509 11.3851 0 0 
2 -37.97351 -40.10915 -15.78084 -6.287149 0 0 
3 4.673509 -15.78084 -40.62917 1.658446 0 0 
4 11.3851 -6.287149 1.658446 0.219159 0 0 
5 0 0 0 0 -5.45823 -10.17613 
6 0 0 0 0 -10.17613 -20.31677 

 

p =2   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -37.97351 -40.10915 -15.78084 -6.287149 0 0 
2 -40.10915 -63.66979 19.94753 -25.98164 0 0 
3 -15.78084 19.94753 -47.29024 -0.472669 0 0 
4 -6.287149 -25.98164 -0.472669 -13.29065 0 0 
5 0 0 0 0 19.12278 -0.095247 
6 0 0 0 0 -0.095247 2.260826 
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p =3   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 4.673509 -15.78084 -40.62917 1.658446 0 0 
2 -15.78084 19.94753 -47.29024 -0.472669 0 0 
3 -40.62917 -47.29024 -59.00208 -4.799653 0 0 
4 1.658446 -0.472669 -4.799653 -15.05206 0 0 
5 0 0 0 0 -21.37168 -24.04783 
6 0 0 0 0 -24.04783 -2.686924 

 

p =4   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 11.3851 -6.287149 1.658446 0.219159 0 0 
2 -6.287149 -25.98164 -0.472669 -13.29065 0 0 
3 1.658446 -0.472669 -4.799653 -15.05206 0 0 
4 0.219159 -13.29065 -15.05206 9.893701 0 0 
5 0 0 0 0 5.786958 3.967928 
6 0 0 0 0 3.967928 8.239542 

 

p =5   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 -5.45823 -10.17613 
2 0 0 0 0 19.12278 -0.095247 
3 0 0 0 0 -21.37168 -24.04783 
4 0 0 0 0 5.786958 3.967928 
5 -5.45823 19.12278 -21.37168 5.786958 0 0 
6 -10.17613 -0.095247 -24.04783 3.967928 0 0 

 

p =6   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 -10.17613 -20.31677 
2 0 0 0 0 -0.095247 2.260826 
3 0 0 0 0 -24.04783 -2.686924 
4 0 0 0 0 3.967928 8.239542 
5 -10.17613 -0.095247 -24.04783 3.967928 0 0 
6 -20.31677 2.260826 -2.686924 8.239542 0 0 
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Piezoelectric constants: (10
-2

 C/m
2
) 

   eij    
            j    
  i     1 2 3 4 5 6 

1 17.1 -15.23777 -1.862228 6.701992 0 0 
2 0 0 0 0 10.77188 -9.487187 
3 0 0 0 0 -7.612813 6.704881 

 

First temperature derivatives of piezoelectric constants: (10
-6

 C/(m
2
*°C)) 

   e
(1)

ij    
            j    
  i     1 2 3 4 5 6 

1 -1.37002 3.858511 -2.488491 0.397103 0 0 
2 0 0 0 0 -2.729145 -0.558749 
3 0 0 0 0 1.928769 0.394884 

 

Second temperature derivatives of piezoelectric constants: (10
-10

 C/(m
2
*(°C)

2
)) 

   e
(2)

ij    
            j    
  i     1 2 3 4 5 6 

1 -7.48887 29.5035 -22.01463 5.149485 0 0 
2 0 0 0 0 -20.86948 -7.260222 
3 0 0 0 0 14.749 5.131018 

 

Third temperature derivatives of piezoelectric constants: (10
-12

 C/(m
2
*(°C)

3
)) 

   e
(3)

ij    
            j    
  i     1 2 3 4 5 6 

1 1.955179 -5.727148 3.771969 -0.644832 0 0 
2 0 0 0 0 4.050881 0.9177 
3 0 0 0 0 -2.862879 -0.641499 

 

Dielectric permittivity: (10
-12

 C/(V*m)) 

   εip    
            p   
  i     1 2 3 

1 39.215003 0 0 
2 0 39.822232 0.859217 
3 0 0.859217 40.430762 
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First temperature derivatives of dielectric permittivity: (10
-15

 C/(V*m*°C )) 

   ε
(1)

ip    
            p   
  i     1 2 3 

1 1.590199 0 0 
2 0 2.879627 1.824496 
3 0 1.824496 4.171802 

 

Second temperature derivatives of dielectric permittivity: (10
-18

 C/(V*m*(°C )
2
)) 

   ε
(2)

ip    
            p   
  i     1 2 3 

1 5.377229 0 0 
2 0 3.649208 -2.445093 
3 0 -2.445093 1.917502 

 

Third temperature derivatives of dielectric permittivity: (10
-21

 C/(V*m*(°C )
3
)) 

   ε
(3)

ip    
            p   
  i     1 2 3 

1 5.105736 0 0 
2 0 0.330236 -6.757175 
3 0 -6.757175 -4.455445 

 

First-order thermal expansion coefficients: (10
-6

 1/°C) 

   α
(1)

ij    
            j   
  i     1 2 3 

1 13.71 0 0 
2 0 11.63481 -2.936328 
3 0 -2.936328 9.555192 

 

Second-order thermal expansion coefficients: (10
-9

 1/(°C)
2
) 

   α
(2)

ij    
            j    
  i     1 2 3 

1 6.5 0 0 
2 0 5.300852 -1.696755 
3 0 -1.696755 4.099148 
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Third-order thermal expansion coefficients: (10
-12

 1/(°C)
3
) 

   α
(3)

ij    
             j    
  i     1 2 3 

1 -1.9 0 0 
2 0 -1.766761 0.188528 
3 0 0.188528 -1.633239 
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B3. BT-Cut Quartz 

BT-cut of quartz is obtained by rotating Y-cut of quartz (YX ) -49˚. (IRE 1949 standard) 

Second-order elastic constants: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 8.674 2.752376 -0.863376 0.005157 0 0 
2 2.752376 9.823789 -0.566985 -1.279583 0 0 
3 -0.863376 -0.566985 13.08618 0.017279 0 0 
4 0.005157 -1.279583 0.017279 4.036015 0 0 
5 0 0 0 0 2.991757 -0.644953 
6 0 0 0 0 -0.644953 6.790243 

 

Viscosity constants: (10
-3

 N-sec/m
2
) 

   npg    
               q    
  p     1 2 3 4 5 6 

1 1.37 0.708705 0.731294 0.00851 0 0 
2 0.708705 1.274928 0.581444 0.125265 0 0 
3 0.731294 0.581444 1.312183 0.079131 0 0 
4 0.00851 0.125265 0.079131 0.231444 0 0 
5 0 0 0 0 0.347119 -0.02119 
6 0 0 0 0 -0.02119 0.33288 

 

First temperature derivatives of elastic constants: (10
6
 N/(m

2
*°C)) 

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 1.5976 -5.84076 -4.90934 -3.273421 0 0 
2 -5.84076 -7.391306 3.071626 1.79254 0 0 
3 -4.90934 3.071626 -8.076445 2.35707 0 0 
4 -3.273421 1.79254 2.35707 -0.108074 0 0 
5 0 0 0 0 1.483546 5.047901 
6 0 0 0 0 5.047901 -1.786846 
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Effective second temperature derivatives of elastic constants: (10
3
 N/(m

2
 (°C )

2
)) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 -12.989 -30.0714 -23.8556 -8.674455 0 0 
2 -30.0714 -40.72559 8.704817 0.516639 0 0 
3 -23.8556 8.704817 -48.12004 3.964525 0 0 
4 -8.674455 0.516639 3.964525 1.005817 0 0 
5 0 0 0 0 -0.861864 18.00634 
6 0 0 0 0 18.00634 -14.57714 

 

Effective third temperature derivatives of elastic constants: (N/(m
2
* (°C )

3
)) 

   C
(3)

pq    
               q    
  p     1 2 3 4 5 6 

1 -38.145 -58.38811 122.9609 28.87819 0 0 
2 -58.38811 56.60685 29.32932 22.58347 0 0 
3 122.9609 29.32932 -125.0159 -52.43548 0 0 
4 28.87819 22.58347 -52.43548 17.79152 0 0 
5 0 0 0 0 44.33196 -29.4325 
6 0 0 0 0 -29.4325 -120.624 

 

Third-order elastic constants: (10
10

 N/m
2
) 

p =1   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -21 1.975609 -35.27561 -15.40776 0 0 
2 1.975609 -40.75605 -14.72592 1.081501 0 0 
3 -35.27561 -14.72592 -42.09211 3.506117 0 0 
4 -15.40776 1.081501 3.506117 1.274081 0 0 
5 0 0 0 0 -22.19642 8.490682 
6 0 0 0 0 8.490682 -3.578581 

 

p =2   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 1.975609 -40.75605 -14.72592 1.081501 0 0 
2 -40.75605 -57.68343 -45.97307 -0.515213 0 0 
3 -14.72592 -45.97307 22.94787 8.548442 0 0 
4 1.081501 -0.515213 8.548442 -16.45884 0 0 
5 0 0 0 0 -9.363171 25.88292 
6 0 0 0 0 25.88292 -17.03574 
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p =3   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -35.27561 -14.72592 -42.09211 3.506117 0 0 
2 -14.72592 -45.97307 22.94787 8.548442 0 0 
3 -42.09211 22.94787 -77.94096 20.74527 0 0 
4 3.506117 8.548442 20.74527 -7.566363 0 0 
5 0 0 0 0 4.105421 -2.042817 
6 0 0 0 0 -2.042817 19.61849 

 

p =4   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -15.40776 1.081501 3.506117 1.274081 0 0 
2 1.081501 -0.515213 8.548442 -16.45884 0 0 
3 3.506117 8.548442 20.74527 -7.566363 0 0 
4 1.274081 -16.45884 -7.566363 -8.136764 0 0 
5 0 0 0 0 -7.820395 0.877658 
6 0 0 0 0 0.877658 -1.394659 

 

p =5   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 -22.19642 8.490682 
2 0 0 0 0 -9.363171 25.88292 
3 0 0 0 0 4.105421 -2.042817 
4 0 0 0 0 -7.820395 0.877658 
5 -22.19642 -9.363171 4.105421 -7.820395 0 0 
6 8.490682 25.88292 -2.042817 0.877658 0 0 

 

p =6   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 8.490682 -3.578581 
2 0 0 0 0 25.88292 -17.03574 
3 0 0 0 0 -2.042817 19.61849 
4 0 0 0 0 0.877658 -1.394659 
5 8.490682 25.88292 -2.042817 0.877658 0 0 
6 -3.578581 -17.03574 19.61849 -1.394659 0 0 
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Piezoelectric constants: (10
-2

 C/m
2
) 

   eij    
            j    
  i     1 2 3 4 5 6 

1 17.1 -3.33265 -13.76735 -7.900775 0 0 
2 0 0 0 0 -6.7163 -9.37378 
3 0 0 0 0 -7.72622 -10.7833 

 

First temperature derivatives of piezoelectric constants: (10
-6

 C/(m
2
*°C)) 

   e
(1)

ij    
            j    
  i     1 2 3 4 5 6 

1 -1.37002 -2.503952 3.873972 0.243562 0 0 
2 0 0 0 0 -0.666281 2.136489 
3 0 0 0 0 -0.766468 2.457749 

 

Second temperature derivatives of piezoelectric constants: (10
-10

 C/(m
2
*(°C)

2
)) 

   e
(2)

ij    
            j    
  i     1 2 3 4 5 6 

1 -7.48887 -22.52415 30.01302 0.089424 0 0 
2 0 0 0 0 -7.48297 16.09704 
3 0 0 0 0 -8.608173 18.51753 

 

Third temperature derivatives of piezoelectric constants: (10
-12

 C/(m
2
*(°C)

3
)) 

   e
(3)

ij    
            j    
  i     1 2 3 4 5 6 

1 1.955179 3.805179 -5.760358 -0.315022 0 0 
2 0 0 0 0 1.051588 -3.164892 
3 0 0 0 0 1.209713 -3.640792 

 

Dielectric permittivity: (10
-12

 C/(V*m)) 

   εip    
            p   
  i     1 2 3 

1 39.215 0 0 
2 0 40.25336 -0.902629 
3 0 -0.902629 39.99964 
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First temperature derivatives of dielectric permittivity: (10
-15

 C/(V*m*°C )) 

   ε
(1)

ip    
            p   
  i     1 2 3 

1 1.5902 0 0 
2 0 3.795086 -1.916678 
3 0 -1.916678 3.256344 

 

Second temperature derivatives of dielectric permittivity: (10
-18

 C/(V*m*(°C )
2
)) 

   ε
(2)

ip    
            p   
  i     1 2 3 

1 5.37723 0 0 
2 0 2.422358 2.568631 
3 0 2.568631 3.144353 

 

Third temperature derivatives of dielectric permittivity: (10
-21

 C/(V*m*(°C )
3
)) 

   ε
(3)

ip    
            p   
  i     1 2 3 

1 5.105736 0 0 
2 0 -3.060245 7.098579 
3 0 7.098579 -1.064964 

 

First-order thermal expansion coefficients: (10
-6

 1/°C) 

   α
(1)

ij    
            j   
  i     1 2 3 

1 13.71 0 0 
2 0 10.16148 3.084685 
3 0 3.084685 11.02852 

 

Second-order thermal expansion coefficients: (10
-9

 1/(°C)
2
) 

   α
(2)

ij    
            j    
  i     1 2 3 

1 6.5 0 0 
2 0 4.449488 1.782483 
3 0 1.782483 4.950512 
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Third-order thermal expansion coefficients: (10
-12

 1/(°C)
3
) 

   α
(3)

ij    
             j    
  i     1 2 3 

1 -1.9 0 0 
2 0 -1.672165 -0.198053 
3 0 -0.198053 -1.727835 
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B4. SC-Cut Quartz 

SC-cut of quartz is obtained by rotating Y-cut of quartz (YX  ) 21.9˚/ 33.9˚. (IRE 1949 

standard) 

Second-order elastic constants: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 8.674 0.168975 1.720025 -0.050249 -1.354848 -0.91042 
2 0.168975 11.57169 -0.387834 0.88862 0.090451 1.881621 
3 1.720025 -0.387834 10.97998 0.337021 1.264397 -0.971201 
4 -0.050249 0.88862 0.337021 4.215165 -0.971201 0.090451 
5 -1.354848 0.090451 1.264397 -0.971201 5.914577 0.557584 
6 -0.91042 1.881621 -0.971201 0.090451 0.557584 3.867423 

 

Viscosity constants: (10
-3

 N-sec/m
2
) 

   npg    
               q    
  p     1 2 3 4 5 6 

1 1.37 0.727588 0.712411 -0.007703 0.007564 0.005083 
2 0.727588 1.350791 0.597855 -0.047856 -0.000505 -0.010505 
3 0.712411 0.597855 1.203497 -0.143501 -0.007059 0.005422 
4 -0.007703 -0.047856 -0.143501 0.247855 0.005422 -0.000505 
5 0.007564 -0.000505 -0.007059 0.005422 0.343746 0.020072 
6 0.005083 -0.010505 0.005422 -0.000505 0.020072 0.336253 

 

First temperature derivatives of elastic constants: (10
6
 N/(m

2
*°C)) 

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 1.5976 -6.226066 -4.524034 3.083802 0.693499 0.466012 
2 -6.226066 -5.906951 2.430031 -3.651665 -0.046298 0.963135 
3 -4.524034 2.430031 -8.27761 -0.251347 -0.6472 0.497123 
4 3.083802 -3.651665 -0.251347 -0.749669 0.497123 -0.04629 
5 0.693499 -0.046298 -0.6472 0.497123 -2.475668 -4.696381 
6 0.466012 0.963135 0.497123 -0.04629 -4.696381 2.172368 
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Effective second temperature derivatives of elastic constants: (10
3
 N/(m

2
* (°C )

2
)) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 -12.989 -28.41315 -25.51385 8.219035 3.241424 2.178146 
2 -28.41315 -41.21203 5.343709 -11.12288 -0.216401 -4.501708 
3 -25.51385 5.343709 -40.91139 6.824447 -3.025022 2.323562 
4 8.219035 -11.12288 6.824447 -2.355291 2.323562 -0.216401 
5 3.241424 -0.216401 -3.025022 2.323562 -16.45 -16.7267 
6 2.178146 -4.501708 2.323562 -0.216401 -16.7267 1.011014 

 

Effective third temperature derivatives of elastic constants: (N/(m
2
* (°C )

3
)) 

   C
(3)

pq    
               q    
  p     1 2 3 4 5 6 

1 -38.145 80.54 -15.9672 -24.82466 64.88521 43.60105 
2 80.54 -80.02972 26.52935 16.04522 -4.331813 -90.11296 
3 -15.9672 26.52935 17.22062 9.689945 -60.5534 46.51191 
4 -24.82466 16.04522 9.689945 14.99155 46.51191 -4.331813 
5 64.88521 -4.331813 -60.5534 46.51191 -64.14682 29.70412 
6 43.60105 -90.11296 46.51191 -4.331813 29.70412 -12.14518 

 

Third-order elastic constants: (10
10

 N/m
2
) 

p =1   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -31.134 -22.62338 -0.542613 9.300966 -12.04792 -13.60865 
2 -22.62338 -43.2447 -18.70427 -3.830494 -4.412174 8.356306 
3 -0.542613 -18.70427 -41.78429 4.199624 3.146121 -3.694275 
4 9.300966 -3.830494 4.199624 -2.70427 -0.695123 0.051034 
5 -12.04792 -4.412174 3.146121 -0.695123 -8.459917 -12.89371 
6 -13.60865 8.356306 -3.694275 0.051034 -12.89371 -7.181081 

 

p =2   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -22.62338 -43.24117 -18.70427 -3.830494 -4.412174 8.356306 
2 -43.24117 -58.58039 7.84314 -18.79839 -17.58501 0.008722 
3 -18.70427 7.84314 -30.02743 -7.918034 22.88604 10.1255 
4 -3.830494 -18.79839 -7.918034 -10.91781 -11.1316 -7.76404 
5 -4.412174 -17.58501 22.88604 -11.1316 3.782885 -3.682876 
6 8.356306 0.008722 10.1255 -7.76404 -3.682876 -4.287647 
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p =3   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -0.542613 -18.70427 -41.78429 4.199624 3.146121 -3.694275 
2 -18.70427 7.84314 -30.02743 -7.918034 22.88604 10.1255 
3 -41.78429 -30.02743 -69.43275 -4.4771 -13.60705 -15.97513 
4 4.199624 -7.918034 -4.4771 -12.26647 2.282819 8.601863 
5 3.146121 22.88604 -13.60705 2.282819 -14.24355 -14.09813 
6 -3.694275 10.1255 -15.97513 8.601863 -14.09813 1.939314 

 

p =4   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 9.300966 -3.830494 4.199624 -2.70427 -0.695123 0.051034 
2 -3.830494 -18.79839 -7.918034 -10.91781 -11.1316 -7.76404 
3 4.199624 -7.918034 -4.4771 -12.26647 2.282819 8.601863 
4 -2.70427 -10.91781 -12.26647 6.987146 2.158604 -3.802761 
5 -0.695123 -11.1316 2.282819 2.158604 6.200746 -1.3889 
6 0.051034 -7.76404 8.601863 -3.802761 -1.3889 7.768445 

 

p =5   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -12.04792 -4.412174 3.146121 -0.695123 -8.459917 -12.89371 
2 -4.412174 -17.58501 22.88604 -11.1316 3.782885 -3.682876 
3 3.146121 22.88604 -13.60705 2.282819 -14.24355 -14.09813 
4 -0.695123 -11.1316 2.282819 2.158604 6.200746 -1.3889 
5 -8.459917 3.782885 -14.24355 6.200746 14.64885 10.03354 
6 -12.89371 -3.682876 -14.09813 -1.3889 10.03354 4.812536 

 

p =6   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -13.60865 8.356306 -3.694275 0.051034 -12.89371 -7.181081 
2 8.356306 0.008722 10.1255 -7.76404 -3.682876 -4.287647 
3 -3.694275 10.1255 -15.97513 8.601863 -14.09813 1.939314 
4 0.051034 -7.76404 8.601863 -3.802761 -1.3889 7.768445 
5 -12.89371 -3.682876 -14.09813 -1.3889 10.03354 4.812536 
6 -7.181081 -4.287647 1.939314 7.768445 4.812536 8.556751 
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Piezoelectric constants: (10
-2

 C/m
2
) 

   eij    
            j    
  i     1 2 3 4 5 6 

1 7.036896 -8.613377 1.576481 1.720949 8.692455 -12.93574 
2 -12.93574 8.911694 4.024044 -5.98841 6.059467 -2.965103 
3 8.692455 -5.98841 -2.704046 4.024044 -4.071793 1.992467 

 

First temperature derivatives of piezoelectric constants: (10
-6

 C/(m
2
*°C)) 

   e
(1)

ij    
            j    
  i     1 2 3 4 5 6 

1 -0.563782 3.280849 -2.717066 0.919391 -0.696423 1.036387 
2 1.036387 -0.713988 -0.322398 0.47978 -2.413203 -1.057822 
3 -0.696423 0.47978 0.216643 -0.322398 1.621605 0.710827 

 

Second temperature derivatives of piezoelectric constants: (10
-10

 C/(m
2
*(°C)

2
)) 

   e
(2)

ij    
            j    
  i     1 2 3 4 5 6 

1 -3.081778 26.1962 -23.11442 8.397386 -3.806823 5.66515 
2 5.66515 -3.902837 -1.762313 2.622598 -19.33894 -9.91345 
3 -3.806823 2.622598 1.184225 -1.762313 12.99523 6.661562 

 

Third temperature derivatives of piezoelectric constants: (10
-12

 C/(m
2
*(°C)

3
)) 

   e
(3)

ij    
            j    
  i     1 2 3 4 5 6 

1 0.804584 -4.898831 4.094247 -1.400502 0.993877 -1.479046 
2 -1.479046 1.018945 0.460101 -0.684702 3.605147 1.617974 
3 0.993877 -0.684702 -0.309175 0.460101 -2.422558 -1.087233 

 

Dielectric permittivity: (10
-12

 C/(V*m)) 

   εip    
            p   
  i     1 2 3 

1 39.215 0 0 
2 0 39.7821 0.843931 
3 0 0.843931 40.4709 
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First temperature derivatives of dielectric permittivity: (10
-15

 C/(V*m*°C )) 

   ε
(1)

ip    
            p   
  i     1 2 3 

1 1.5902 0 0 
2 0 2.7944 1.79204 
3 0 1.79204 4.25703 

 

Second temperature derivatives of dielectric permittivity: (10
-18

 C/(V*m*(°C )
2
)) 

   ε
(2)

ip    
            p   
  i     1 2 3 

1 5.37723 0 0 
2 0 3.76343 -2.40159 
3 0 -2.40159 1.80328 

 

Third temperature derivatives of dielectric permittivity: (10
-21

 C/(V*m*(°C )
3
)) 

   ε
(3)

ip    
            p   
  i     1 2 3 

1 5.10574 0 0 
2 0 0.645887 -6.63696 
3 0 -6.63696 -4.7711 

 

First-order thermal expansion coefficients: (10
-6

 1/°C) 

   α
(1)

ij    
            j   
  i     1 2 3 

1 13.71 0 0 
2 0 11.77197 -2.884087 
3 0 -2.884087 9.418026 

 

Second-order thermal expansion coefficients: (10
-9

 1/(°C)
2
) 

   α
(2)

ij    
            j    
  i     1 2 3 

1 6.5 0 0 
2 0 5.380113 -1.666567 
3 0 -1.666567 4.019887 
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Third-order thermal expansion coefficients: (10
-12

 1/(°C)
3
) 

   α
(3)

ij    
             j    
  i     1 2 3 

1 -1.9 0 0 
2 0 -1.775568 0.185174 
3 0 0.185174 -1.624432 
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Appendix C.  Electrodes Material Properties 

C1. Gold 

The mass density of gold is 19300 
  

  ⁄ . 

Values of material constants for gold have been determined by J.Neighbours and G. Alers 

[77], Y. Chang and L. Himmel [78], Y. Hiki and A. Granato [79], and F. Nix and D. 

MacNair [80]. 

 

Second-order elastic constants: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 19.25 16.311 16.311 0 0 0 
2 16.311 19.25 16.311 0 0 0 
3 16.311 16.311 19.25 0 0 0 
4 0 0 0 4.2073 0 0 
5 0 0 0 0 4.2073 0 
6 0 0 0 0 0 4.2073 

 

Viscosity constants: (10
-8

 N-sec/m
2
) [81]. 

   npg    
               q    
  p     1 2 3 4 5 6 

1 12.39 8.925 8.925 0 0 0 
2 8.925 12.39 8.925 0 0 0 
3 8.925 8.925 12.39 0 0 0 
4 0 0 0 1.7 0 0 
5 0 0 0 0 1.7 0 
6 0 0 0 0 0 1.7 
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First temperature coefficients of elastic constants: (10
7
 N/m

2
/°C) 

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 -3.4354 -2.6674 -2.6674 0 0 0 
2 -2.6674 -3.4354 -2.6674 0 0 0 
3 -2.6674 -2.6674 -3.4354 0 0 0 
4 0 0 0 -1.0991 0 0 
5 0 0 0 0 -1.0991 0 
6 0 0 0 0 0 -1.0991 

 

Second temperature coefficients of elastic constants: (10
3
 N/m

2
/ (°C )

2
) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 0.63567 -1.4816 -1.4816 0 0 0 
2 -1.4816 0.63567 -1.4816 0 0 0 
3 -1.4816 -1.4816 0.63567 0 0 0 
4 0 0 0 1.9374 0 0 
5 0 0 0 0 1.9374 0 
6 0 0 0 0 0 1.9374 

 

Third temperature coefficients of elastic constants: (N/m
2
/ (°C )

3
) 

   C
(3)

pq    
               q    
  p     1 2 3 4 5 6 

1 -6.8639 20.282 20.282 0 0 0 
2 20.282 -6.8639 20.282 0 0 0 
3 20.282 20.282 -6.8639 0 0 0 
4 0 0 0 -24.268 0 0 
5 0 0 0 0 -24.268 0 
6 0 0 0 0 0 -24.268 

 

Third-order elastic constants: (10
11

 N/m
2
) 

p =1   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -17.29 -9.22 -9.22 0 0 0 
2 -9.22 -9.22 -2.33 0 0 0 
3 -9.22 -2.33 -9.22 0 0 0 
4 0 0 0 -0.13 0 0 
5 0 0 0 0 -6.48 0 
6 0 0 0 0 0 -6.48 
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p =2   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -9.22 -9.22 -2.33 0 0 0 
2 -9.22 -17.29 -9.22 0 0 0 
3 -2.33 -9.22 -9.22 0 0 0 
4 0 0 0 -6.48 0 0 
5 0 0 0 0 -0.13 0 
6 0 0 0 0 0 6.48 

 

p =3   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -9.22 -2.33 -9.22 0 0 0 
2 -2.33 -9.22 -9.22 0 0 0 
3 -9.22 -9.22 -17.29 0 0 0 
4 0 0 0 -6.48 0 0 
5 0 0 0 0 -6.48 0 
6 0 0 0 0 0 -0.13 

 

p =4   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 -0.13 0 0 
2 0 0 0 -6.48 0 0 
3 0 0 0 -6.48 0 0 
4 -0.13 -6.48 -6.48 0 0 0 
5 0 0 0 0 0 -0.12 
6 0 0 0 0 -0.12 0 

 

p =5   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 -6.48 0 
2 0 0 0 0 -0.13 0 
3 0 0 0 0 -6.48 0 
4 0 0 0 0 0 -0.12 
5 -6.48 -0.13 -6.48 0 0 0 
6 0 0 0 -0.12 0 0 
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p =6   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 0 -6.48 
2 0 0 0 0 0 -6.48 
3 0 0 0 0 0 -0.13 
4 0 0 0 0 -0.12 0 
5 0 0 0 -0.12 0 0 
6 -6.48 -6.48 -0.13 0 0 0 

 

First-order thermal expansion coefficients: (10
-5

 1/°C) 

   α
(1)

ij    
            j   
  i     1 2 3 

1 1.4027 0 0 
2 0 1.4027 0 
3 0 0 1.4027 

 

Second-order thermal expansion coefficients: (10
-9

 1/(°C)
2
) 

   α
(2)

ij    
            j    
  i     1 2 3 

1 5.1324 0 0 
2 0 5.1324 0 
3 0 0 5.1324 

 

Third-order thermal expansion coefficients: (10
-12

 1/(°C)
3
) 

   α
(3)

ij    
             j    
  i     1 2 3 

1 -1.3196 0 0 
2 0 -1.3196 0 
3 0 0 -1.3196 
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C2. Aluminum 

The mass density of gold is 2700 
  

  ⁄ . 

Values of material constants for aluminum have been determined by R. Hearmon [82], J. 

Thomas [83], and F. Nix and D. MacNair [80]. 

 

Second-order elastic constants: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 11.218 6.5697 6.5697 0 0 0 
2 6.5697 11.218 6.5697 0 0 0 
3 6.5697 6.5697 11.218 0 0 0 
4 0 0 0 2.7836 0 0 
5 0 0 0 0 2.7836 0 
6 0 0 0 0 0 2.7836 

 

Viscosity constants: (10
-8

 N-sec/m
2
) [81]. 

   npg    
               q    
  p     1 2 3 4 5 6 

1 9.852 4.853 4.853 0 0 0 
2 4.853 9.852 4.853 0 0 0 
3 4.853 4.853 9.852 0 0 0 
4 0 0 0 2.55 0 0 
5 0 0 0 0 2.55 0 
6 0 0 0 0 0 2.55 

 

 

First temperature coefficients of elastic constants: (10
7
 N/m

2
/°C) 

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 -5.5568 -2.771 -2.771 0 0 0 
2 -2.771 -5.5568 -2.771 0 0 0 
3 -2.771 -2.771 -5.5568 0 0 0 
4 0 0 0 -1.3131 0 0 
5 0 0 0 0 -1.3131 0 
6 0 0 0 0 0 -1.3131 
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Second temperature coefficients of elastic constants: (10
3
 N/m

2
/ (°C )

2
) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 -41.252 -24.93 -24.93 0 0 0 
2 -24.93 -41.252 -24.93 0 0 0 
3 -24.93 -24.93 -41.252 0 0 0 
4 0 0 0 -5.5849 0 0 
5 0 0 0 0 -5.5849 0 
6 0 0 0 0 0 -5.5849 

 

Third temperature coefficients of elastic constants: (N/m
2
/ (°C )

3
) 

   C
(3)

pq    
               q    
  p     1 2 3 4 5 6 

1 27.052 11.467 11.467 0 0 0 
2 11.467 27.052 11.467 0 0 0 
3 11.467 11.467 27.052 0 0 0 
4 0 0 0 3.7558 0 0 
5 0 0 0 0 3.7558 0 
6 0 0 0 0 0 3.7558 

 

Third-order elastic constants: (10
11

 N/m
2
) 

p =1   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -10.8 -3.15 -3.15 0 0 0 
2 -3.15 -3.15 0.36 0 0 0 
3 -3.15 0.36 -3.15 0 0 0 
4 0 0 0 -0.23 0 0 
5 0 0 0 0 -3.4 0 
6 0 0 0 0 0 -3.4 

 

p =2   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -3.15 -3.15 0.36 0 0 0 
2 -3.15 -10.8 -3.15 0 0 0 
3 0.36 -3.15 -3.15 0 0 0 
4 0 0 0 -3.4 0 0 
5 0 0 0 0 -0.23 0 
6 0 0 0 0 0 -3.4 
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p =3   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -3.15 0.36 -3.15 0 0 0 
2 0.36 -3.15 -3.15 0 0 0 
3 -3.15 -3.15 -10.8 0 0 0 
4 0 0 0 -3.4 0 0 
5 0 0 0 0 -3.4 0 
6 0 0 0 0 0 -0.23 

 

p =4   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 -0.23 0 0 
2 0 0 0 -3.4 0 0 
3 0 0 0 -3.4 0 0 
4 -0.23 -3.4 -3.4 0 0 0 
5 0 0 0 0 0 -0.3 
6 0 0 0 0 -0.3 0 

 

p =5   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 -3.4 0 
2 0 0 0 0 -0.23 0 
3 0 0 0 0 -3.4 0 
4 0 0 0 0 0 -0.3 
5 -3.4 -0.23 -3.4 0 0 0 
6 0 0 0 -0.3 0 0 

 

p =6   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 0 -3.4 
2 0 0 0 0 0 -3.4 
3 0 0 0 0 0 -0.23 
4 0 0 0 0 -0.3 0 
5 0 0 0 -0.3 0 0 
6 -3.4 -3.4 -0.23 0 0 0 

 

First-order thermal expansion coefficients: (10
-5

 1/°C) 

   α
(1)

ij    
            j   
  i     1 2 3 

1 2.314 0 0 
2 0 2.314 0 
3 0 0 2.314 
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Second-order thermal expansion coefficients: (10
-9

 1/(°C)
2
) 

   α
(2)

ij    
            j    
  i     1 2 3 

1 25.2 0 0 
2 0 25.2 0 
3 0 0 25.2 

 

Third-order thermal expansion coefficients: (10
-12

 1/(°C)
3
) 

   α
(3)

ij    
             j    
  i     1 2 3 

1 -30.87 0 0 
2 0 -30.87 0 
3 0 0 -30.87 
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C3. Chromium 

The mass density of gold is 7190 
  

  ⁄ . 

Values of material constants for chromium have been determined by D. Bolef and J. 

Klerk [84], S. Palmer and E. Lee [85], and S. Mathur and Y. Sharma [86].  

 

Second-order elastic constants: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 35.554 7.3753 7.3753 0 0 0 
2 7.3753 35.554 7.3753 0 0 0 
3 7.3753 7.3753 35.554 0 0 0 
4 0 0 0 10.083 0 0 
5 0 0 0 0 10.083 0 
6 0 0 0 0 0 10.083 

 

 

First temperature coefficients of elastic constants: (10
7
 N/m

2
/°C) 

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 -5.0244 0.1859 0.1859 0 0 0 
2 0.1859 -5.0244 0.1859 0 0 0 
3 0.1859 0.1859 -5.0244 0 0 0 
4 0 0 0 -0.81286 0 0 
5 0 0 0 0 -0.81286 0 
6 0 0 0 0 0 -0.81286 

 

Second temperature coefficients of elastic constants: (10
3
 N/m

2
/ (°C )

2
) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 1301.7 1321.6 1321.6 0 0 0 
2 1321.6 1301.7 1321.6 0 0 0 
3 1321.6 1321.6 1301.7 0 0 0 
4 0 0 0 7.6702 0 0 
5 0 0 0 0 7.6702 0 
6 0 0 0 0 0 7.6702 
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Third temperature coefficients of elastic constants: (10
2 

N/m
2
/ (°C )

3
) 

   C
(3)

pq    
               q    
  p     1 2 3 4 5 6 

1 -118.84 -105.48 -105.48 0 0 0 
2 -105.48 -118.84 -105.48 0 0 0 
3 -105.48 -105.48 -118.84 0 0 0 
4 0 0 0 -2.7236 0 0 
5 0 0 0 0 -2.7236 0 
6 0 0 0 0 0 -2.7236 

 

Third-order elastic constants: (10
11

 N/m
2
) 

p =1   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -8.036 -1.399 -1.399 0 0 0 
2 -1.399 -1.399 -1.836 0 0 0 
3 -1.399 -1.836 -1.399 0 0 0 
4 0 0 0 -1.836 0 0 
5 0 0 0 0 -1.399 0 
6 0 0 0 0 0 -1.399 

 

p =2   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -1.399 -1.399 -1.836 0 0 0 
2 -1.399 -8.036 -1.399 0 0 0 
3 -1.836 -1.399 -1.399 0 0 0 
4 0 0 0 -1.399 0 0 
5 0 0 0 0 -1.836 0 
6 0 0 0 0 0 -1.399 

 

p =3   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -1.399 -1.836 -1.399 0 0 0 
2 -1.836 -1.399 -1.399 0 0 0 
3 -1.399 -1.399 -8.036 0 0 0 
4 0 0 0 -1.399 0 0 
5 0 0 0 0 -1.399 0 
6 0 0 0 0 0 -1.836 
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p =4   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 -1.836 0 0 
2 0 0 0 -1.399 0 0 
3 0 0 0 -1.399 0 0 
4 -1.836 -1.399 -1.399 0 0 0 
5 0 0 0 0 0 -1.836 
6 0 0 0 0 -1.836 0 

 

p =5   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 -1.399 0 
2 0 0 0 0 -1.836 0 
3 0 0 0 0 -1.399 0 
4 0 0 0 0 0 -1.836 
5 -1.399 -1.836 -1.399 0 0 0 
6 0 0 0 -1.836 0 0 

 

p =6   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 0 -1.399 
2 0 0 0 0 0 -1.399 
3 0 0 0 0 0 -1.836 
4 0 0 0 0 -1.836 0 
5 0 0 0 -1.836 0 0 
6 -1.399 -1.399 -1.836 0 0 0 

 

First-order thermal expansion coefficients: (10
-5

 1/°C) 

   α
(1)

ij    
            j   
  i     1 2 3 

1 0.8039 0 0 
2 0 0.8039 0 
3 0 0 0.8039 

 

Second-order thermal expansion coefficients: (10
-9

 1/(°C)
2
) 

   α
(2)

ij    
            j    
  i     1 2 3 

1 18.49 0 0 
2 0 18.49 0 
3 0 0 18.49 
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Third-order thermal expansion coefficients: (10
-12

 1/(°C)
3
) 

   α
(3)

ij    
             j    
  i     1 2 3 

1 6.5 0 0 
2 0 6.5 0 
3 0 0 6.5 
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C4. Titanium 

The mass density of gold is 4506 
  

  ⁄ . 

Values of material constants for titanium have been determined by E. Fisher and C. 

Renken [87], R. Rao and C. Menon [88], and P. Hidnert [89]. 

 

Second-order elastic constants: (10
10 

N/m
2
) 

    Cpq    
               q    
  p     1 2 3 4 5 6 

1 16.24 9.194 6.9 0 0 0 
2 9.194 16.24 6.9 0 0 0 
3 6.9 6.9 18.06 0 0 0 
4 0 0 0 4.67 0 0 
5 0 0 0 0 4.67 0 
6 0 0 0 0 0 3.523 

 

 

First temperature coefficients of elastic constants: (10
7
 N/m

2
/°C) 

   C
(1)

pq    
               q    
  p     1 2 3 4 5 6 

1 -6.04 2.204 0.523 0 0 0 
2 2.204 -6.04 0.523 0 0 0 
3 0.523 0.523 -4.24 0 0 0 
4 0 0 0 -1.917 0 0 
5 0 0 0 0 -1.917 0 
6 0 0 0 0 0 -4.122 

 

Second temperature coefficients of elastic constants: (10
3
 N/m

2
/ (°C )

2
) 

   C
(2)

pq    
               q    
  p     1 2 3 4 5 6 

1 -8.973 -32.33 7.23 0 0 0 
2 -32.33 -8.973 7.23 0 0 0 
3 7.23 7.23 -10.73 0 0 0 
4 0 0 0 -1.74 0 0 
5 0 0 0 0 -1.74 0 
6 0 0 0 0 0 11.68 
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Third temperature coefficients of elastic constants: (N/m
2
/ (°C )

3
) 

   C
(3)

pq    
               q    
  p     1 2 3 4 5 6 

1 197.6 50.08 -134 0 0 0 
2 50.08 197.6 -134 0 0 0 
3 -134 -134 81.22 0 0 0 
4 0 0 0 63.62 0 0 
5 0 0 0 0 63.62 0 
6 0 0 0 0 0 73.77 

 

Third-order elastic constants: (10
11

 N/m
2
) 

p =1   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -16.66 -8.87 1.03 0 0 0 
2 -8.87 -3.43 -1.93 0 0 0 
3 1.03 -1.93 -4.36 0 0 0 
4 0 0 0 -1.67 0 0 
5 0 0 0 0 0.78 0 
6 0 0 0 0 0 -6.0275 

 

p =2   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 -8.87 -3.43 -1.93 0 0 0 
2 -3.43 -22.1 1.03 0 0 0 
3 -1.93 1.03 -4.36 0 0 0 
4 0 0 0 0.78 0 0 
5 0 0 0 0 -1.67 0 
6 0 0 0 0 0 -0.5875 

 

p =3   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 1.03 -1.93 -4.36 0 0 0 
2 -1.93 1.03 -4.36 0 0 0 
3 -4.36 -4.36 -15.14 0 0 0 
4 0 0 0 -4.36 0 0 
5 0 0 0 0 -4.36 0 
6 0 0 0 0 0 1.48 
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p =4   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 -1.67 0 0 
2 0 0 0 0.78 0 0 
3 0 0 0 -4.36 0 0 
4 -1.67 0.78 -4.36 0 0 0 
5 0 0 0 0 0 1.225 
6 0 0 0 0 1.225 0 

 

p =5   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 0.78 0 
2 0 0 0 0 -1.67 0 
3 0 0 0 0 -4.36 0 
4 0 0 0 0 0 1.225 
5 0.78 -1.67 -4.36 0 0 0 
6 0 0 0 1.225 0 0 

 

p =6   Cpqr    
               r    
  q     1 2 3 4 5 6 

1 0 0 0 0 0 -6.0275 
2 0 0 0 0 0 -0.5875 
3 0 0 0 0 0 1.48 
4 0 0 0 0 1.225 0 
5 0 0 0 1.225 0 0 
6 -6.0275 -0.5875 1.48 0 0 0 

 

First-order thermal expansion coefficients: (10
-5

 1/°C) 

   α
(1)

ij    
            j   
  i     1 2 3 

1 0.8591 0 0 
2 0 0.8591 0 
3 0 0 0.8591 

 

Second-order thermal expansion coefficients: (10
-9

 1/(°C)
2
) 

   α
(2)

ij    
            j    
  i     1 2 3 

1 11.09 0 0 
2 0 11.09 0 
3 0 0 11.09 
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Third-order thermal expansion coefficients: (10
-12

 1/(°C)
3
) 

   α
(3)

ij    
             j    
  i     1 2 3 

1 -33.29 0 0 
2 0 -33.29 0 
3 0 0 -33.29 

 


