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The process of adsorption – in particular physisorption – occurs when the molecules of a fluid 

accumulate upon a solid surface.  Adsorption is influenced by temperature, pressure, and adsorbate 

composition – as well as the adsorbate-adsorbent interactions, which are dependent on the 

chemistry and topology of the adsorbent.  The influence of these factors is reflected in the 

adsorption behavior – the quantitative and qualitative interactions between the adsorbed species 

and the adsorbent.  The unique features of adsorption have led to its widespread use for the 

characterization of porous materials.  Of particular interest is the class of materials with pores which 

have a characteristic dimension on the order of nanometers, termed nanoporous materials. This 

dissertation focuses on the accurate modeling of adsorption through analytical, computational and 

simulation techniques and the application of adsorption modeling to characterization of nanoporous 

materials.  Analytical and computational models were developed to predict the specific behavior of 

simple fluids (N2, Ar, Kr, CO2) and complex fluids (polymers) interacting with nanoporous 

materials and transferrable tools were created to facilitate adsorbent characterization based upon 

adsorption behavior.  The tools and models presented in this dissertation aid one to understand the 

peculiarities of adsorption behavior, in particular the phenomena of capillary hysteresis, scanning 

hysteresis, and the so-called “critical conditions” of adsorption and to exploit these peculiarities to 
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derive useful information about nanoporous materials.  In particular: a suite  of analytical models 

was developed for the analysis of scanning isotherms, suitable for any simple nonpolar fluid, from 

which pore size distributions and pore domain correlation/connectivity may be derived.  A set of 

adsorption isotherm kernels was developed using Quenched Solid density functional theory to 

analyze adsorption isotherms of Ar and CO2 on micro-mesoporous carbons, capable of 

distinguishing slit, cylindrical, and spherical pore geometries.  A new criterion for the critical 

conditions of polymer adsorption on surfaces – the incremental chemical potential – has been 

demonstrated and applied to the case of liquid polymer chromatography.  An expression for the 

overall partition coefficient was developed which takes into account adsorbent geometry and 

column porosity. It was shown that the adsorption and elution behavior of polymers can be 

predicted for nonporous and porous column substrates using this partition coefficient, with minimal 

parameterization. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

The process of adsorption – in particular physisorption – occurs when the molecules of a fluid 

accumulate on a solid surface, or within the pores of a porous solid.  Adsorption is influenced by 

temperature, pressure, and adsorbate composition as well as the adsorbate-adsorbent interactions, 

which are dependent on the chemistry and topology of the adsorbent.  The influence of these factors 

is reflected in the adsorption behavior – the quantitative and qualitative interactions between the 

adsorbed species and the adsorbent. The unique features of adsorption have led to its widespread 

use for the characterization of porous materials.  Of particular interest is the class of materials with 

pores which have characteristic dimension of nanometers, termed nanoporous materials. This 

dissertation focuses on the accurate modeling of adsorption through analytical, computational and 

simulation techniques and the application of adsorption modeling to the characterization of 

nanoporous materials.  Analytical and computational models were developed to predict the 

adsorption behavior of simple fluids, such as N2, Ar, Kr, CO2 and complex fluids (in particular, 

polymers) interacting with nanoporous materials and tools were created to facilitate adsorbent 

characterization based upon adsorption behavior.  The tools and models presented in this 

dissertation aid our understanding of the peculiarities of adsorption behavior, in particular the 

phenomena of capillary hysteresis, scanning hysteresis, and the so-called “critical conditions” of 

adsorption.  This knowledge enables us to exploit these peculiarities to derive useful information 

about the adsorbent.   

This dissertation is divided into two parts.  In PART 1 a suite of analytical models and 

computational tools is developed for the analysis of adsorption isotherms of simple fluids 

interacting with silica and carbons.  These tools enable one to determine the textural properties of 
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a material, including the pore size distribution, surface area, volume and pore domain 

correlation/connectivity. In Chapter 2, the phenomena of capillary and scanning hysteresis are 

described in detail, and three models are presented that distinguish the characteristics of the porous 

domains within a material, based solely on information derived from adsorption isotherms.  These 

methods are applied to nanoporous materials which exhibit several characteristic pore topologies, 

including parallel cylindrical pores, inkbottle pores, and disordered networks.  In Chapter 3 a set 

of eight high-resolution adsorption isotherm kernels was developed using Quenched Solid density 

functional theory [1, 2] to analyze adsorption isotherms of CO2 and Ar on micro-mesoporous 

carbons.  These kernels are tailored to specific pore geometries including: slit, cylindrical, and 

spherical pores, and take into account the atomistically rough surface of amorphous carbons.  PART 

2 of this dissertation applies the fundamentals of adsorption to the description of polymer 

interactions with porous materials. In Chapter 4 a new criterion for the critical conditions of 

polymer adsorption on surfaces – the equality of incremental chemical potentials – is demonstrated 

and the scaling of the incremental chemical potential and chain radii of gyration with the adsorption 

potential is investigated.  This criterion is then applied to the case of liquid polymer 

chromatography in Chapters 5-6.  In Chapter 5, it is illustrated for the first time that critical 

conditions (as well as the size exclusion and interaction chromatography regimes) are observable 

for experimental liquid polymer chromatography on nonporous substrates.  A simple model of 

chain retention is developed based upon the overall partition coefficient for chains interacting with 

nonporous surfaces, and Monte Carlo simulations are performed to estimate the partition 

coefficient, which is a function of the incremental chemical potential.  This model is extended in 

Chapter 6 to the case of porous substrates, where three mechanisms of chain adsorption are 

distinguished: adsorption on the external surface, confinement to pores and partial confinement to 

pores.  Lastly, it is argued that the critical conditions of polymer adsorption are identical for porous 

and nonporous substrates, provided that these three mechanisms of adsorption are taken into 

account. 
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1.2 Background 

1.2.1 Adsorption Isotherms  

An adsorption isotherm is a graph of the amount of adsorbate present on an adsorbent as a 

function of external pressure p, at constant temperature, T.  The shape and quantity of an adsorption 

isotherm can tell one much about the properties of both the adsorbent and adsorbate, and acts as a 

“fingerprint” of the porous material. These features have led to adsorption’s widespread use for the 

characterization of porous media, since the pioneering works of van Bemmelen published in 1897 

[3] and of Zsigmondy [4] in 1911.  

 There are several common methods of measuring adsorption isotherms; the two most 

prominent methods being the gravimetric and manometric techniques.  A gravimetric experiment 

consists of repeated weighing a sample adsorbent exposed to ambient pressure of the adsorbate.  

The gravimetric method is very useful for isotherms which may be assessed at or near room 

temperature, such as water vapor adsorption. However, the gravimetric technique becomes 

impractical for other analysis gasses such as Ar and N2, which are typically measured near their 

boiling temperatures (87 and 77 K, respectively).  For such systems, it is common to use the 

manometric adsorption technique, in which the sample adsorbent is closed in a cell and repeatedly 

exposed to the adsorbate at increasing external pressure, while submerged in an appropriate 

temperature bath.  Adsorption of these vapors (N2, Ar, Kr etc…) is normally measured at discrete 

intervals below the saturation pressure (p0), and thus isotherms are often plotted in terms of relative 

pressure – p/p0. 

The mechanism of adsorption and its reverse process – desorption – varies greatly and 

depends on the properties of the adsorbent and adsorbate. One major factor which influences the 

adsorption process is the pore size. The pores of an adsorbent are classified based upon their 

characteristic dimension (typically, the width of the pore mouth): micropores (< 2nm), mesopores 
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(2 - 50 nm) and macropores (> 50 nm).  Due to their small size, adsorption in micropores is 

controlled mainly by the interactions of the adsorbate molecules with the pore walls.  Molecules 

pack into micropores at low relative pressures, and may make up a significant amount of the 

adsorbed volume.  In contrast, adsorption in meso- and macropores is a function of both the 

adsorbate-adsorbent and adsorbate-adsorbate interactions.  As pores become larger than a few 

molecular diameters, it is possible for films of adsorbate to form along the pore walls.  As the 

external pressure increases, adsorbate molecules will continue to layer on top of the primary film, 

until the pores eventually fill completely with adsorbate.  One feature distinguishing mesopores is 

that pore filling occurs at pressures less than the saturation pressure (p0) of the vapor.  This effect, 

called capillary condensation, occurs due to enhanced attraction caused by the fluid-wall 

interactions (the attractive potential and curvature) and fluid-fluid interactions (surface tension).  

Adsorption and condensation in macropores occur at or near the saturation pressure, as the 

adsorbate properties approach those of a bulk fluid.  The analysis of adsorption behavior in 

macropores is beyond the scope of this work, which deals primarily with micro-mesoporous 

phenomena.  

 Adsorption isotherms are classified based upon their shapes, which in general are 

indicative of the presence of micro, meso, and macropores.  Fig. 1.1 below is a reproduction of the 

IUPAC classification of adsorption isotherms [5].  
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Fig. 1.1 IUPAC classification of adsorption isotherms. 

Isotherms of type I are typical of adsorbents comprised primarily of micropores. Depending on the 

pore size range and distribution, the filling transition (plateau) of the isotherm occurs at different 

relative pressures.  Type I(a) isotherms occur when the material has a narrow range of micropores, 

no larger than a few the molecular diameters.  Pores fill at low relative pressures, due to the strong 

adsorbate-adsorbent interactions present in small micropores.  Type I(b) isotherms are the product 

of microporous adsorbents with a wider distribution of micropores and additionally, may contain 

some small mesopores (~ 2nm).  Type IV isotherms are typical of mesoporous adsorbents and 

relatively strong adsorbent-adsorbate interactions.  Type IV isotherms are distinguished by their 
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concave shape and plateau region at low relative pressures due to monolayer formation on the pore 

walls and a distinctive capillary condensation transition at high relative pressure.  Type IV 

isotherms often exhibit capillary hysteresis, which is discussed below.  Isotherms of types III and 

V are indicative of weak adsorbent-adsorbate interactions. Type III/V isotherms do not exhibit 

monolayer formation; rather, adsorption is mediated by the presence of beneficial adsorption sites 

from which adsorption nucleation events occur.  Type II and type VI isotherms are commonly 

displayed by nonporous or macroporous adsorbents, where the surface area is comparably low 

relative to micro-mesoporous materials. One (II) or more (VI) distinctive layering transitions may 

occur in these isotherms related to the ordering of adsorbate molecules in layers on the surface of 

the adsorbent.  These materials do not exhibit plateau regions near the saturation pressure, due to 

the lack of mesopores and only partial filling of macropores. 

1.2.2. Capillary Hysteresis in Mesopores 

  As mentioned above, an important aspect of the adsorption-desorption process in 

mesoporous materials is that the amount adsorbed along the path of increasing pressure is not 

necessarily the same as the amount adsorbed while pressure decreases.  It was recognized early on 

that this phenomenon, called hysteresis, could provide valuable information about the adsorbent[6-

9]. There are several general types of hysteresis, given common labels under IUPAC classification 

[5], reproduced here in Fig. 1.2.   
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Fig. 1.2 IUPAC classification of adsorption hysteresis. 

Hysteresis loops of Type H1 indicate an array of narrow uniform mesopores, and are common for 

mesoporous silica and other “designer” materials such as templated carbons for which the fluid in 

the pores acts independently of its neighboring pores (more below). Type H2 loops arise due to 

more complex, connected pore structures.  Type H2(a) hysteresis is characterized by a sharp 

desorption “knee” which arises due to the pore blocking effect – a phenomenon by which 

evaporation of fluid in large pores is delayed, and relies on the evaporation of smaller, connected 

pores.  The more gradual slope of H2(b) hysteresis occurs when the distribution of the connector 

pores is broader than in H2(a), and is also controlled by pore-blocking.  Hysteresis behavior of 

Type H3 is typical for non-rigid aggregates comprised of flakes or sheets such as ash, and certain 

geological materials (clays etc…) which may reorient themselves upon increasing pressure, and 

then collapse upon decreasing pressure. Type H3 is also indicative of partially filled macropores 

which may also be present in the same materials.  Hysteresis of type H4 is found in many 

aggregated crystals of zeolites, some mesoporous zeolites, and micro-mesoporous carbons. Type 
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H5 hysteresis is common in mesoporous materials with very narrow “necks” or windows between 

pores.  Hysteresis of types H3-H5 are further characterized by a distinctive step on the desorption 

branch, which is caused by the stretching and snapping of the liquid film and formation of vapor 

bubbles in large pores which are blocked by small neighboring pores during desorption. This 

phenomenon is known as cavitation.  Cavitation occurs at a characteristic range of relative 

pressures per adsorbate.  For N2 @ 77K, this occurs between p/p0 = 0.4 – 0.5.  A detailed discussion 

of cavitation is beyond the scope of this dissertation.  For an excellent introduction to the subject, 

the reader is referred to the Doctoral Dissertation of Dr. Christopher Rasmussen (published 

online)[3]. Two of these primary types of hysteresis (H1 and H2) are further discussed in Chapter 

2. These types are observed for the rigidly-structured materials that I studied, which have limited 

internal flexibility, such as SBA-15, KIT-6, Vycor porous glass, and various carbons. 

1.2.3. Adsorption and Pore Size 

The adsorption of specific adsorbents in porous materials has been investigated heavily 

and a voluminous literature exists on the topic.  It is beyond the scope of this short introduction to 

survey even a fraction of the extant literature on gas adsorption.  Instead, the reader is referred to 

several important books on the topic [10-12]. It is however pertinent to mention briefly the most 

common analytical and simulation-based methods to describe the relationship between adsorption 

behavior of these adsorbates and the properties of the porous adsorbent, as well as the common 

pore models that are assumed.  These models and methodologies are central to our current 

understanding of the phenomenon of adsorption in porous media and form the basis upon which 

this dissertation is founded. 

1.2.3.1. Pore Models 

 A discussion of the topic of pore models must begin with mentioning the concept of 

independent domains, as discussed in Everett [10].  Essentially, the assumption of independent 
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domains states that an adsorbent can be described as a collection of many individual ‘domains’ or 

pore bodies, none of which interacts directly with another.  In the context of an 

adsorption/desorption experiment, this means that the filling and emptying of one pore body does 

not affect the filling/emptying of another – i.e. these pore bodies behave independently.  This 

assumption has important consequences for the application of the analytical and simulation based 

methods described below; virtually every model in widespread use assumes independent domains 

when determining adsorbent properties such as pore size distributions (PSDs).  

The most common adsorption models are based upon the behavior of fluid in single pores 

or on surfaces of specific geometry: planar surfaces, cylinders, slit pores, and spheroids.  Assuming 

independent domains, the adsorption and desorption from any one of these pores is dependent only 

upon the individual pore geometry and adsorbate properties.  Using the methods below, adsorption 

from such simple pores can be aggregated to produce a coherent picture of the total porosity in an 

adsorbent.  

At the next level of complexity are pore models that include the interaction between the 

fluid in adjacent pores, or pores of different sizes.  The simplest of these models is the inkbottle 

pore, which has two or more principle radii of different widths.  The filling and emptying of such 

a pore is determined in conjunction with a correlative equation, such as the Kelvin-Laplace-Cohan 

theory, which captures the physical-chemical relationship between a pore’s principle diameter and 

the pressure at which the pore fills or empties (more below). Beyond inkbottle pores are the fractal 

and network models, which seek to describe the adsorption/desorption process based on a collection 

of pores and their connectivity. In particular, the percolation theory has proved effective in 

describing the degree of connectivity and disorder in a porous material. (See Chapter 2). 

 

 



                                                                                                                                                                                                                        10 
 

                                                                            

1.2.3.2. Methods for Simple Fluids in Single Pores 

The simplest equation describing the relationship between adsorption and pore size in a 

single pore is the Kelvin-Laplace-Cohan Equation: 𝑅𝑇 ln (
𝑝

𝑝0
) =

−𝛾𝑉𝑚

(𝑟−ℎ)
.  This equation states the 

equality of the chemical potentials of the vapor phase (LHS) and liquid phase (RHS) adsorbate 

during pore filling. Here, the relative pressure p/p0 is inversely related to the effective pore diameter 

r-h, where r is the pore diameter and h is the fluid film thickness along the pore wall. The fluid 

properties are defined by the surface tension 𝛾 and molar volume of the vapor Vm and the 

temperature of the system T.  During desorption, equilibrium between the condensed vapor and 

external pressure alters the relationship slightly: 𝑅𝑇 ln (
𝑝

𝑝0
) =

−2𝛾𝑉𝑚

(𝑟−ℎ)
 ; the factor of 2 arising from 

the assumption of a vapor-liquid interface at both ends of the pore. Thus, for a pore of any size, it 

is possible to determine the relative pressure at which that pore will fill with condensed vapor and 

the corresponding pressure at which it will evaporate.  Applying the K-L-C equation to an 

experimental isotherm, it is possible to approximate the mesoporous PSD of the material by 

identifying the relative pressure at which the vapor condenses in the adsorbent.  This method was 

first discussed by Barrett, Joyner and Halenda (BJH) [13].  A further development of this theory 

came with the work of Derjaguin [14], and Broekhoff & de Boer[15], who modified the K-L-C 

equations to include an additional contribution from the so-called disjoining pressure: RTln (
𝑝

𝑝0
) =

−𝛾𝑉𝑚

(𝑟−ℎ)
+ Π(ℎ)𝑉𝑚.  The disjoining pressure Π(ℎ) represents a force exerted on the walls of the 

adsorbent by the adsorbate, which may act to constrict or dilate the pore.  For many simple fluids 

such as nitrogen and argon, there exist explicit equations for the disjoining pressure which  utilize 

reference isotherms such as that of Frenkel, Halsey, and Hill given in ref. [11] 

 Analytical methods, such as the ones described above work reasonably well for model 

systems consisting of regular structures in the range of mesopores.  However, as pores become 

smaller or the geometry becomes more complex, we must rely on simulation and computation to 
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determine the relationship between pore size and adsorption. The simulation of adsorption for 

simple molecules had been explored for many geometries and adsorbent/adsorbate combinations.  

Fluid models have varied vastly, from hard-spheres to multi-centered Lennard-jones molecules, to 

sophisticated models including dipole interactions.  One prominent group of computational 

methods is that of Density Functional Theory (DFT), which has proven an incredibly powerful tool 

for predicting the pattern of adsorption in a wide range of pore sizes. Several recent papers [16-24] 

utilized the combination of experimental N2 and Ar adsorption and DFT to calculate pore properties 

for various materials, including various silicas[22], activated [20], 3DOm[21], and CMK[24] 

carbons.  In each of these cases there is a regular, ordered (hierarchical) mesoporous domain 

consisting of spherical, cylindrical or slit shaped pores.  Additionally, these materials all exhibit a 

significant contribution to adsorption from micropores, necessitating such a broadly accurate 

predictive method.  The DFT method hinges on the determination of the most-likely density profile 

of a fluid within an adsorbing pore.  This is accomplished by minimization of the grand potential 

Ω[𝜌(𝐫)], which is a functional of the fluid density 𝜌(𝐫): 

Ω[𝜌(𝐫)] = 𝐹[𝜌(𝐫)] + 𝑓[𝜌(𝐫),Φ𝑎𝑡𝑡𝑟(|𝐫 − 𝐫′|)] 

Here, 𝐹[𝜌(𝐫)] is the Helmholtz free energy of adsorbate confined to the adsorbing pore, and 𝑓 is a 

function of the intermolecular potentials between adsorbate atoms (and the adsorbent atoms, in 

more modern versions of DFT[16]).  The minimization of Ω[𝜌(𝐫)] furnishes the equilibrium 

adsorption at a single pressure.  This calculation is then repeated at many pressures to produce an 

adsorption isotherm.  These isotherms may then be grouped together to produce an isotherm 

‘kernel’, from which PSDs may be calculated.  In Chapter 3, a formulation of the Nonlocal and 

Quenched Solid density functional theories are described in detail, as they are applied to the 

adsorption of Ar and CO2 in micro-mesoporous carbons. 
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1.2.4. Polymer adsorption  

 Liquid polymer adsorption is a ubiquitous phenomenon, occurring in myriad natural and 

man-made processes involving interactions between polymers and solid phases.  Polymer 

adsorption plays an important role in biological [25] as well as industrial and consumer 

applications; in particular, polymers are crucial components of many separation processes [26]. For 

more than half a century, researchers have sought to model the complex behavior of polymers near 

surfaces using first theoretical and later, simulation based techniques, with the goal of predicting 

adsorption behavior as it applies to these aforementioned applications. What follows is a very brief 

overview of several important polymer models used both historically and at the present, as well as 

a summary of the concepts in polymer adsorption germane to this dissertation. These concepts are 

further developed and discussed at length in PART II of this dissertation. 

1.2.4.1. Chain Models 

The course of the past eighty years has witnessed an evolution in the popularity and 

prevalence of polymer chain models beginning from the most simplistic representation - namely 

random-walks or ‘flights’ to the most complex representations, which take into account various 

inter- and intra- chain interactions.  Broadly, chain models can be classified as either ideal 

‘statistical’ models or real models -  i.e. models which account for excluded volume. The theoretical 

underpinnings of both ideal and real chain models and their application to adsorption were 

developed between the 1930’s and 1950’s.  The brief discussion below is meant as a cursory 

introduction to chain models as they pertain to Monte Carlo simulations of adsorption.  Detailed 

descriptions of these models can be found elsewhere [27, 28]. 

Ideal Chains 

The earliest model polymer is the ‘random coil’ model, which was first conceived as an 

application of the random walk.  A random coil consists of a series of segments,  described as points 
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𝒓𝟏, 𝒓𝟐 … , 𝒓𝑵 each separated by a discreet distance b, known as the Kuhn length. Chain 

conformations 𝒓⃗ (𝑵) are determined by random configurations of these points, with an average end-

to-end distance 𝒓𝟏,𝑵 obeying the Gaussian distribution (see Fig. 1.3 below). 

 

 

Fig. 1.3 Schematic of an ideal Gaussian chain 

In the 1950s Simha, Frisch and Eirich [29] expanded upon the early attempt of Broda and 

Mark [30] to describe adsorption of polymers. In this case, the adsorbent surface was defined as a 

planar “reflecting” surface, meaning that chains were confined to one side of the interface.  They 

developed the adsorption probability P(N) - the probability that N chain segments will be adsorbed 

to the surface - as a function of the Gaussian distribution and were the first to describe the 

thermodynamic properties of chain monolayer formation.  The adsorption of ideal chains was 

investigated heavily in the 1960s, with key contributions from Silberberg [31], Forsman and 

Hughes [32] and Rubin [33].  These works were mainly concerned with the adsorption behavior of 

ideal chains in the “dilute solution limit” – i.e. single chains with no chain-chain interactions.   

The first Monte Carlo simulations of ideal chains were undertaken by Di Marzio and 

McCrackin [34]. The primary goal of this and subsequent works prior to the 1980’s was to revisit 

the theoretical results of the Gaussian chain model – mainly single chain behavior near surfaces 
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and the physics of monolayer formation – in order to understand the limits and applicability of ideal 

chains.  Further simulation studies and theoretical models describing ideal chain adsorption were 

proposed in the next two decades, most notably the grand canonical formulation of Birshtein [35] 

in 1979 and the scaling formulation of Eisenriegler, Kremer and Binder [36] in 1982, who coupled 

Monte Carlo simulations of ideal chains with his scaling theory (discussed further below). 

Real Chains 

 Simple Models of Excluded Volume 

At the next level of complexity beyond ideal chain models are the models which introduce 

the concept of excluded volume.  Excluded volume models all share in common the property that 

two chain segments cannot occupy the same physical space at the same time.  This distinguishes 

excluded volume chains from ideal chains, in which chain segments are allowed to overlap 

completely. Perhaps the earliest mention of excluded volume effects in the context of polymers can 

be attributed to Kuhn [37]. Building on this and other early attempts[38, 39], Flory, was the first to 

describe in detail excluded volume chains by statistical methods[40]. Flory was followed by 

Montroll [41], Debye & Rubin [42] , and Zimm et. al [43] who described the statistics of real chains 

in terms of Markov Processes. 

The simplest implementation of excluded volume is the self-avoiding walk (SAW). In the 

SAW model, segments are “grown” in any direction with equal probability, however two segments 

cannot share the same coordinates. As such, SAW chains behave differently than ideal chains in 

the same volume. SAW chains are often confined to a (cubic) lattice for ease of computation, with 

chain segments corresponding to the vertices of the lattice.  In the absence of special growth 

techniques such as Configurational Bias MC [44] simulations of SAWs are confined to short chains 

or dilute solutions, due to the frequency with which the end of the chain will grow into itself. A 

schematic of several SAW chains on a cubic lattice is illustrated in Fig. 1.4 below.   
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Fig. 1.4. Schematic of a SAW chains. Arrows indicate possible directions for placement of 

subsequent segments. 

Off lattice real chains 

With the emergence of high-speed computing in the late 1990s and early 2000s, the 

simulation of off-lattice chains with complex self-interaction potentials became feasible.  These 

chains, known as “real chains” were studied extensively and in particular the adsorption behavior 

of end-tethered real chains was compared with earlier results for ideal chains, with general 

agreement [45-47] (more below). Real chain models encompass a wide range of complexities, from 

atomistic models to coarse-grained representations.  Monte Carlo chain models are typically coarse, 

consisting of a “pearl necklace” of spherical chain segments connected variously by hard bonds or 

harmonic potentials. Non-neighbor segments likewise vary in interaction, ranging from hard-sphere 

to Lennard-Jones type interactions. Real, off lattice coarse-grained representations of polymer 

chains (such as in Fig. 1.5 below) are used throughout PART II of this dissertation. 
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Fig. 1.5 Real chain model used in this dissertation.  Spherical chain segments (beads) are connected 

by harmonic bonds and interact with non-nearest neighbor beads via the Lennard-Jones potential. 

1.2.4.2. The adsorption transition and critical adsorption  

Broadly, the one of the main challenges in polymer adsorption is to accurately describe the 

qualitative behavior of chains near plane surfaces. Over the past several decades, prime importance 

was given to the determination of the adsorption transition and critical adsorption of polymer 

chains. It was observed as early as Silberberg[31], Rubin [33] and DeGennes [48], that there exists 

a “critical” transition point c of the attractive surface potential for which the number of adsorbed 

monomers scales with the molecular weight of the chain.  At this point, the chain transitions from 

having most segments free, to having most segments adsorbed.  The behavior of chains near this 

transition point is often characterized in the language of a first order phase transition, and obeys 

the scaling law 𝑀 = 𝑁𝜙𝑓(𝜏𝑁𝜙) in the limit of long chains (see Chapter 4 and Appendix C for 

details). The so-called crossover exponent was first predicted theoretically as equal to 0.5, 

following the mean-field approximation. This number has been confirmed by simulations, within 

a certain degree of accuracy (see Chapter 4). 
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Identical to the critical transition (above) is the critical point of adsorption or CPA, defined 

here as the point at which entropic (confinement) and enthalpic (adsorption) forces on a chain are 

perfectly balanced. The CPA for ideal chains has been studied rigorously using simulations.  In 

general, these studies have focused on the behavior of chains tethered to plane surfaces, since the 

CPA for tethered chains is associated with a geometrical transition from a three-dimensional coil 

(weak adsorption) to a two-dimensional coil (strong adsorption) which coats the adsorbent surface.  

The position of this transition was shown to be chain length independent by Eisenriegler, Kremer 

and Binder [36] and later by Meirovitch and Livne [49], who formulated the behavior of end-

tethered polymers using theory borrowed from analogous phenomenon found in electromagnetic 

materials. The geometrical transition has been used extensively since these formative works as a 

litmus test of the critical adsorption potential.  However, recently new criteria have been developed 

for determining the CPA using a thermodynamic instead of geometrical criterion.  Two such criteria 

are the chain length independence of the chain free energy used by Wang[50] and the equality of 

incremental chemical potentials, developed in this dissertation (see Chapter 4 and applications in 

Chs. 5-6.) 

1.2.4.3. The Partition Coefficient 

Apart from the problem of monolayer formation and the adsorption transition, another 

typical quantifier of polymer adsorption is the partition coefficient, K.  The partition coefficient is 

the ratio between the concentrations of adsorbed and non-adsorbed polymer chains, and it is heavily 

dependent on chain chemistry/topology, the chain-solution and chain-surface interactions. Exact 

equations for the partition coefficient for ideal chains were developed by Casassa and coworkers 

in the 1960s for a broad range of adsorbent geometries, from plane surfaces to slit, cylindrical or 

square channels, and also to spherical confinements both in the presence and absence of attractive 

interactions [51, 52].  In these equations, the partition coefficient is a function of the aspect ratio  

between the polymer radius of gyration in free solution, Rg, and the characteristic dimension of the 
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confinement – i.e. slit width or cylindrical diameter, etc. It was shown that there are significant 

effects on the partition coefficient depending on the effective adsorption potential and polymer 

concentration [53]. By the 1980s and early 1990s, these theoretical results for ideal chains were 

tested against experimental observations and illustrated using Monte Carlo simulations, reviewed 

in [54]. Of particular importance are the results of Davidson, Suter and Deen [55], who were some 

of the first to simulate chains in three-dimensional confinement and calculate the associated  

partition coefficient.  Davidson et. al calculated the partition coefficient for freely jointed ideal 

chains confined to a cylindrical pore using a primitive form of chain insertion.  One random walk 

at a time was generated using Monte Carlo (random point generation) and then the center of mass 

(COM) was placed at various positions within the cylindrical pore.  If the entire chain fell within 

the pore, then a success was recorded.  The fractional success rate as a function of the chain COM 

position p(r) was calculated by integrating along the radial position r = 0 to R, the pore radius. 

They defined the partition coefficient K as: 

𝐾 = ∫ 𝑝(𝐫)𝐫𝑑𝐫
𝑅

0

/∫ 𝐫𝑑𝐫
𝑅

0

 

 This procedure was repeated for different pore-to-chain length ratios for pores with purely 

steric walls and also pores with a square well potential of width b ~ segment length.  Chain 

configurations existing within the attractive well were Boltzmann weighted to calculate p(r) in 

order t correctly account for energetic interactions.The partition coefficient as a function of pore 

size for different chain lengths was fitted to an empirical relationship and compared with earlier 

scaling and theoretical results from Casassa [51]. The partition coefficient was found to be very 

sensitive to the potential energy of the well. This effect is most dramatic at large values of the 

molecule-to-pore size aspect ratio, . For example, at  =1.0 the partition coefficient for a 50-mass-

point chain in a pore with  = 0.2 is 18 times larger than when there is no attractive interaction. 

Thus, they showed that chemically different polymers of similar size can be separated based on 

their relative attraction for the porous medium.  This principle is exploited experimentally in 
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separation processes such as interaction liquid polymer chromatography and ion exchange 

chromatography. 

Later, Cifra, Bleha and coworkers[53, 56, 57] as well as Yethiraj & Hall[58] and Wang & 

coworkers [50] to name the most seminal, investigated the equilibrium partitioning of NRRW and 

SAW chains in pores with adsorption potentials.  Of particular import are the results of Gong & 

Wang  [50], who, building on the work of Cifra and Bleha [57] , proved that the partition coefficient 

for SAW chains confined to pores cannot become chain length independent, while the partition 

coefficients for NRRWs can.  This discovery was controversial, due to the fact that the critical 

conditions of polymer adsorption had been observed experimentally for porous materials in the 

context of polymer chromatography[59-63].  In contrast to SAW and NRRW, the partition behavior 

of real chains in pores remained an open question, most studies being performed exclusively on 

SAW lattice chains [64]. Indeed, most of the work done in the past decade on real chains has 

focused on special cases of polymer adsorption, with large strides being made in the topics of 

polymer translocation [65] and adsorption of copolymers and branched/brush polymers on surfaces 

of variable adsorption potential [66-69].  

Partial Confinement/Flower Conformations 

In all of the work mentioned above, adsorption in pores is limited to the case of complete 

confinement, i.e. all segments of the chain confined to the pore.  This approach was justified by 

experimental observation, that the vast majority of surface area – and therefore the available space 

for polymer adsorption – was provided by the pores themselves.   As such, adsorption in pores and 

the associated partition coefficient could be treated ignoring the effect of the outer surface of porous 

materials.  It was shown [50] that critical conditions do not exist for excluded volume polymers 

confined to pores.  This finding is in direct conflict with the general experimental observation that 

critical conditions are found on porous materials.  The explanation given for this contradiction was 
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the following – that the observation of critical conditions in experiments is only an apparent one, 

the product of the limits of experimental resolution [50].   

However, there is an alternate explanation for this contradiction, which requires the 

relaxation of our assumption of complete confinement.  Instead, chains must be allowed to explore 

not only the pore volume, but also the external surface area of the adsorbent. The addition of 

adsorption to the external surface greatly increases the overall conformational entropy of adsorbed 

chains, especially when the aspect ratio  is ≤ 1.  The relationship between the adsorption potential 

on the external surface and in confinement, as well as the relative importance of each mechanism 

of adsorption remain open questions.  In several landmark works, the groups of Hermsen [70, 

71]and Neimark[72, 73] explored the partitioning of chains between pores and the external surface 

of adsorbents.  Hermsen was the first to calculate the free energy of chains as a function of an order 

parameter – the center of mass position – along the axis of a cylindrical pore perforating a plane 

surface.  Using the bond-fluctuation model (a type of SAW), Hermsen measured the free-energy 

as a function of this order parameter for chains of finite length, and found that there is a significant 

barrier to chain insertion within pores, relative to the external surface [70, 71].  In the work of 

Neimark et. al [72], this free energy barrier was explored for the case of real chains adsorbed 

partially within in a spherical pore and partially on the external surface in what are called flower 

conformations.   In this work (ibid.) it was assumed that the adsorption potential was only present 

within the pore.  They found that there is a critical value of the free energy (as a function of the 

number of chain segments within the pore) for which the free energy is a minimum.  They 

calculated the translocation probability or, likelihood that the entire chain would enter the pore, 

based upon this free energy as a function of the adsorption potential.  In [73], the concept of flower 

conformations (partial confinement)  was extended using the self-consistent field theory of 

DeGennes [48] to explore the contributions to adsorption and partitioning of chains by three 

adsorption mechanisms – adsorption on the external surface, complete confinement, and partial 
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confinement.   A combined partition coefficient was developed, which includes contributions from 

each mechanism.  Importantly, it was illustrated that critical conditions (i.e. the chain length 

independence of the partition coefficient exist for ideal and excluded volume chains adsorbed on 

the external surface, and that critical conditions do not exist for real chains when confined 

completely to pores.  Furthermore, the relative contribution of adsorption from partial and complete 

confinement was measured for pores of different sizes, and it was shown that as pore size decreases, 

the relative importance of partial confinement increases dramatically. In PART II of this 

dissertation the work of [72, 73] is revisited, and it is shown using a real chain model and Monte 

Carlo simulations, that the critical conditions of polymer adsorption exist when all three modes of 

adsorption are taken into account. 
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1.3 Brief Summary of Tasks and Outcomes 

The work of this dissertation is divided into research tasks with the following outcomes.  

Task 1: Development of a comprehensive methodology to distinguish and characterize the 

topology of porous materials utilizing scanning adsorption/desorption isotherms.  

Outcomes for Task 1:  A methodology was developed for the analysis of adsorption isotherms of 

simple fluids interacting with micro-mesoporous materials.  This methodology enables one to 

distinguish three general mesopore topologies: uncorrelated pores, partially correlated pores, and 

disordered networks of pores, derived entirely from information provided by scanning adsorption 

isotherms. In addition, these tools enable one to determine the pore and neck size distributions and 

the pore network connectivity. 

Task 2: Development of DFT adsorption isotherm kernels for argon and carbon dioxide adsorption 

on micro-mesoporous carbons. 

Outcomes for Task 2:  A set of eight high-resolution adsorption isotherm kernels was developed 

using quenched solid density functional theory [1, 2] to analyze adsorption isotherms of CO2 and 

Ar on micro-mesoporous carbons.  These kernels take into account the atomistically rough surface 

of amorphous carbons and are tailored to specific pore geometries, including slit, cylindrical, and 

spherical pores.  For the first time, hybrid NLDFT and QSDFT CO2 kernels have been developed 

which enable the distinction of both micro- and mesopores by using high pressure adsorption.  Ar 

kernels have been and CO2 kernel will be implemented into gas adsorption analysis software 

developed by Quantachrome Instruments, Boynton Beach, FL. 

Task 3: Development of a Monte Carlo simulation model for the description of adsorption and 

chromatography of polymers on porous surfaces. 
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Outcomes for Task 3:  As part of this task, a new criterion for the critical conditions of polymer 

adsorption on surfaces – the equality of incremental chemical potentials – was demonstrated and 

was proven using scaling arguments and a simple Monte Carlo model.  This methodology was next 

applied to the case of polymers interacting with nonporous surfaces. It was found for the first time 

that critical conditions (as well as the size exclusion and interaction chromatography regimes) are 

observable for experimental liquid polymer chromatography on nonporous substrates.  The overall 

partition coefficient, which describes the chain retention, was derived for chains interacting with 

nonporous surfaces. Later, this model was extended to the case of porous substrates, where three 

mechanisms of chain adsorption were distinguished: adsorption on the external surface, 

confinement to pores and partial confinement to pores.  Using real-life examples and Monte Carlo 

simulations, it was shown that the critical conditions of polymer adsorption are identical for porous 

and nonporous substrates. The results of modeling are in agreement with the experiments 

performed at DuPont Experimental Station. 
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CHAPTER 2 

Experimental and Theoretical Studies of Scanning Adsorption-Desorption Isotherms 

2.1 Introduction  

Capillary condensation hysteresis is one of the longest-studied and still enigmatic 

phenomena in adsorption science [74-77]. It is well documented, both experimentally and 

theoretically, that during the adsorption-desorption cycle, capillary condensation in mesopores 

(larger than ~4 nm in diameter) occurs generally at a higher pressure of adsorbing gas then 

evaporation. As such, adsorption and desorption isotherms form a pronounced hysteresis loop that 

is repeatable in subsequent cycles. A better understanding of the specifics of hysteretic behavior of 

adsorption and desorption isotherms is important for practical problems of pore structure 

characterization. The shape of the hysteresis loop contains information about the pore structure. 

The adsorption and desorption isotherms provide primary information about porosity, surface area, 

and pore size distribution, which are calculated from the experimental data using various empirical 

and theoretical methods [78, 79].  

Starting from the seminal work of Zsigmondy [4] published in 1913 and elaborated by 

Kraemer [80], McBain [6], Cohan [7, 9], Schofield [81], de Boer [82], Dubinin [83] and Everett 

[74] among other prominent physico-chemists, capillary condensation hysteresis has been studied 

based on the classical Kelvin-Laplace theory of capillarity using model cylindrical and ink-bottle 

pores. The main hysteresis mechanisms were recognized: delayed condensation due to the 

formation of metastable adsorption films, initiation of capillary condensation upon condensation 

in neighboring smaller pores, pore blocking resulting in the delay of evaporation from the pores 

blocked by smaller ones, and cavitation in metastable condensed fluid at the tensile stress limit.  

The theory of capillary hysteresis in individual pores culminated in the independent domain 

theory (IDT) developed by Everett and coauthors in the 1950s and discussed in detail in his seminal 

review[74] .  This review can be considered as a watershed between what we will call the classical 



                                                                                                                                                                                                                        25 
 

                                                                            

period of capillary hysteresis theory, which was based on the interfacial thermodynamics and 

simple geometrical models of pores, and the modern period of investigations related to the 

applications of methods of statistical physics of random networks and Monte Carlo simulations. 

Arising from interplay of geometrical, topological, and thermodynamic factors, the 

characteristic features of capillary condensation hysteresis are quite distinct for different types of 

porous materials. Experimentally, these distinct features of adsorption hysteresis are prominently 

displayed in the behavior of scanning isotherms, which provide additional information about the 

pore network geometry, including its connectivity and pore size distribution that cannot be revealed 

from the main adsorption and desorption branches. Scanning isotherms are measured by reversing 

the direction of the gas pressure variation in the adsorption or desorption process. Scanning 

behavior has been studied extensively starting from the truly exceptional work of van Bemmelen 

published in 1897 [3] throughout the mid-20th century, furnishing an abundance of experimental 

data [74, 84]. Theoretically, it has been well understood since the seminal works of Everett that the 

description of scanning isotherms cannot be achieved based on the models of adsorption in 

individual pores [74]; it is necessary to take into account a cooperative nature of capillary 

condensation and desorption processes in three dimensional pore networks with distributed 

geometrical parameters of individual pores. 

Fig. 2.1. Characteristic types of hysteresis behavior, H1 (left) and H2 (right). A and C are the lower 

and upper points of closure of the hysteresis loop; B and E correspond to the onsets of capillary 

condensation and evaporation, respectively. Figure taken from Neimark [85]. 
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Two characteristic types of hysteresis behavior are distinguished in hysteresis loops of type 

H1 and H2 by IUPAC classification [78] (Fig. 2.1). In materials with pore networks formed by 

channels with unimodal pore size distributions, the scanning isotherms form closed loops crossing 

the main hysteresis loop of type H1. This behavior is observed in ordered structures like MCM-41, 

SBA-15, and controlled porous glasses (CPG). In materials consisting of pore channels with 

alternating enlargements (voids) and constrictions (necks), the scanning isotherms approach the 

upper and lower points of closure of the main hysteresis loop of type H2. This behavior is observed 

in disordered structures like Vycor and silica gel. The IUPAC classification reflects ideal structures, 

yet it is useful for revealing the main mechanisms of capillary phenomena in pore networks. 

Application of the percolation theory to capillary condensation hysteresis in pore networks 

originates from the pioneering works of Wall and Brown [86]  Neimark [87, 88] and Neimark and 

Kheifets [89]  and Mason [90, 91]. Wall and Brown[86] performed Monte Carlo simulations to 

account for the pore blocking effects during desorption. Neimark et al. [87, 89] considered the pore 

blocking effects during desorption, as well as for initiated capillary condensation during adsorption, 

in pore networks with an uncorrelated distribution of pore sizes using the bond percolation model 

in the Bethe approximation. The Bethe network model of pores connected by necks was employed 

by Mason [90, 91] and Neimark  [92] to describe the capillary hysteresis of xenon (Xe) on Vycor 

glass to improve the independent domain theory model of Everett[74]. Neimark [92] and later 

Mason [93] and Parlar and Yortsos [94] suggested very similar theories of scanning adsorption and 

desorption isotherms utilizing the Bethe network model with different coordination numbers. The 

cavitation mechanism of desorption was incorporated in the percolation model by Parlar and 

Yortsos [95].   

Wilkinson and Willemsen [96] introduced the model of invasion percolation to describe 

the propagation of the interface between wetting and non-wetting phases into the pore network in 

the process of wetting. However, the invasion percolation model does not account for the volatility 

of wetting liquid and is not directly applicable to vapor adsorption. It should be noted that starting 
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from the initial papers [86, 89]it was understood the percolation model offers a unified description 

of the desorption of condensed wetting fluid and the intrusion of non-wetting fluid. The percolation 

theory of scanning mercury intrusion-extrusion cycles was developed by Neimark [97, 98]. 

Modeling of adsorption and desorption processes in three-dimensional (3D) pore networks 

was performed in many further works by using various computational algorithms [99-103]. One of 

the most advanced is the dual pore-site network model suggested Mayagoitia, Rojas, and 

Kornhauser [104]. This model implies direct simulation of the capillary condensation and 

desorption processes in 3D networks with randomly distributed pore and neck sizes, which 

determine the conditions of pore filling and emptying. Within the dual pore-site model, Cordero et 

al [105] and Rojas et al [106] simulated both scanning adsorption and desorption isotherms for 

various 3D networks.   Although the primary goal of the percolation models was the development 

of improved methods for pore size analysis [99, 100, 107], there were no successful attempts to 

incorporate into the characterization methods  the information contained in the scanning isotherms.    

This Chapter of the dissertation aims to lay the groundwork for developing a practical 

methodology for calculating the network connectivity and pore size distributions from the scanning 

isotherms.  This aim is especially topical now due to the recent advances in high-precision 

automated measurements of scanning isotherms [108] and the necessity to characterize the pore 

structure of novel designer porous materials, the list of which has been increasing exponentially 

during last two decades  [75, 109-111]. In Section 2.2, we present a series of scanning isotherms 

measured on selected samples of SBA-15 silica, KIT-6 silica, and 3DOm carbon materials. SBA-

15 example and the literature data on Xe adsorption on Vycor [74] represent case-study systems 

for evaluation of the limits of applicability of the independent pore models, which are discussed in 

Section 2.3. After analysis of the conventional deterministic and uncorrelated models, we suggest 

a partial correlation model (PCM) and show that this model provides a quantitative test for 

networking effects. We show that while the PCM provides a reasonable quantitative description of 

scanning adsorption isotherms for all systems considered, the deviation between theoretical and 
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experimental scanning desorption isotherms points toward the importance of accounting for the 

pore blocking effects in 3D networks of Vycor, KIT-6, and 3DOm structures. The percolation 

models of scanning hysteresis loops are discussed in Section 2.4. Here, we first elaborate on the 

earlier work of Neimark [92] and formulate the theory of scanning isotherms using the Bethe 

approximation. Then, we perform direct modeling of scanning desorption isotherms using Monte 

Carlo simulation on the 3D cubic lattice. We compare the theoretical and experimental results for 

selected systems. Section 2.5 is devoted to the formulation of the practical methodology for 

calculating the network connectivity defined as an effective coordination number linked to the 

percolation threshold and the neck size distribution from the main and scanning desorption 

isotherms. Thus the determined neck size distribution complements the pore size distribution 

calculated from the main adsorption isotherm. This methodology is verified on Vycor and applied 

to 3DOm samples. The main conclusions are summarized in Section 2.6, where we justify and 

suggest the proposed methodology for advanced characterization of mesoporous materials. 

             2.2 Experimental studies. 

2.2.1 SBA-15  and KIT-6 silicas 

As typical examples of H1 hysteresis behavior, we have chosen SBA-15 and KIT-6 silicas. 

SBA-15 is a silica material with a hexagonally ordered 2D array (p6m symmetry) of cylindrical 

channels [112]. SBA-15 samples are often used for reference measurements due to their simple 

pore geometry in order to validate the theoretical models [113] [114]. It is commonly assumed that 

adsorption and desorption processes occur in the SBA-15 channels independently providing a case-

study system for the IDT model (See Fig. 2.1 in Appendix A for DFT pore analysis of SBA-15). 

The pore network in KIT-6 silica represents 3D gyroidal structure of cubic (Ia3d) symmetry [115, 

116] exhibiting network effects [117].  Adsorption-desorption isotherms on both samples, Fig. 2.2, 

form a prominent H1 hysteresis loop. Scanning isotherms cross the main hysteresis loop as 

expected in the schematics of Fig. 2.1(left). 
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Fig. 2.2. Nitrogen (77 K) primary (black) and scanning adsorption (red) and desorption (blue) 

isotherms on SBA-15 (left) and KIT-6 (right) samples. Note the closed loop structure, associated 

with H1 type materials.   

 

2.2.2 3DOm carbon  

Recently discovered 3D ordered mesoporous carbons (3DOm) are obtained by hard 

templating of silica spherical nanoparticle colloidal crystals [118]. The pore network geometry in 

3DOm carbons is composed of spherical voids, or cages formed in place of silica nanoparticles, 

which are connected by narrow windows, or necks.  Four samples produced from nanoparticles of 

different size, 10, 20, 30, and 40 nm, were studied. For the cage-like pore network geometry, one 

would expect to get an H2 hysteresis loop, as in Fig. 2.1(right). However, as shown in Fig. 2.3, the 

adsorption-desorption isotherms presented are of H1 type, and the behavior of scanning isotherms, 

especially for samples with smaller pores, is similar to that on SBA-15 and KIT-6. As the pore size 
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progresses up to 40 nm, the hysteretic behavior becomes more complex and reflects the existence 

of some secondary pore structure. Also, it was shown that the isotherms on the 40 nm sample are 

affected by a secondary pore structure displayed by a prominent inflexion of the main adsorption 

branch at P/Po~0.85 (Fig. 2.3 bottom right). In earlier work [108], 3DOm carbons were analyzed 

by N2 and Ar gas adsorption, and it has been suggested that the pore blocking mechanism plays an 

important role in the desorption process.  
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Fig. 2.3 Argon (87 K) primary (black) and scanning adsorption (red) and desorption (blue) 

isotherms on four 3DOm carbons templated on colloidal crystals of 10 , 20 , 30  and 40 nm silica 

nanoparticles (top to bottom). Note the following characteristic features: the boundary hysteresis 

loop for all samples is of type H1; while the scanning isotherms on the10 nm sample are 

qualitatively similar to those on SBA-15 and KIT-6 (Fig. 2.2), as the pore size increases the 

desorption scanning isotherms tend to bend; the isotherms on the 40 nm sample are affected by a 

secondary pore structure displayed by a prominent inflexion of the main adsorption branch at 

P/Po~0.85.  

 

2.2.3. Vycor glass  

Vycor glass is siliceous compound, which is formed by the thermal spinodal decomposition 

of a two-phase alkali-borosilicate – silica solution upon cooling.  During the decomposition, the 

phases separate and the borosilicate is dissolved away, leaving a highly disordered silica matrix 

that possesses a network of pores with alternating enlargements and constrictions [119]. Detailed 

simulation of the pore structure formation during spinodal decomposition was performed using 
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molecular simulations by Gelb and Gubbins [120]. Vycor glass has been playing an extremely 

important role in the theory of adsorption as a case-study example of disordered pore networks due 

to availability of high-resolution experimental data and a consensus among the researchers about 

the specifics of its pore system geometry. The experimental data on xenon (151 K) adsorption and 

desorption scanning on Vycor collected by Brown in 1963 and presented in the review of Everett 

[74, 84], served as a benchmark for many theories of capillary condensation, starting from the IDT 

of Everett to percolation models of Mason [91, 93] Neimark [88, 92], Parlar and Yortsos [94] and 

Seaton et. al [100] to lattice DFT models of Monson, Kierlik, and Rosinberg [121] , among the 

others. This data re-plotted in Fig. 2.4 represents a typical H2 hysteresis behavior in compliance 

with the schematic of Fig. 2.1(right). The main hysteresis loop has a prominent triangular shape. 

The scanning isotherms converge at the closure points of the hysteresis loop rather that crossing 

the loop as in the case of H1 hysteresis.  
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Fig. 2.4. Xenon (151 K) adsorption (left) and desorption (right) scanning isotherms on Vycor glass. 

Note typical H2 type hysteresis behavior; the scanning isotherms converge at the closure points of 

the hysteresis loop. Data reprinted and units converted from Everett [74]. 

 

The hysteresis behavior shown in Fig. 2.4 for xenon adsorption is typical for other adsorbates on 

Vycor. In Fig. 2.5, experimental data for N2 (77 K) adsorption is presented that have the same 

features. 

 

Fig. 2.5. N2 (77 K) primary (black) and scanning adsorption (blue) and desorption (red) isotherms 

on Vycor glass. Note the typical scanning behavior for H2 type hysteresis similar to that of xenon 

shown in Fig. 2.4. 

 

2.3. Models of independent pores 

 The IDT model of adsorption proposed by Everett [74, 122, 123] is based on an 

assumption that the pore space may be subdivided into individual regions or ‘domains’, which are 

non-interacting and adsorb and desorb independently of one another.  This assumption of pore 

independence is explicitly or implicitly used in all conventional methods of pore structure 

characterization from BJH to DFT methods, which ignore the cooperative mechanisms of capillary 

condensation and desorption due to pore networking effects. At the same time, DFT based 

independent pore models can correctly determine the underlying mechanism of condensation, i.e. 
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the existence of metastable pore fluid associated with condensation, and when applicable, provide 

the most straightforward methods for practical applications.  

Following Everett [74], each pore treated as an independent domain is characterized by 

two parameters, the relative pressures of condensation 𝜒+ and desorption 𝜒−. These pressures 

depend on the pore size and shape. Standard methods of calculating pore size distributions often 

assume that pores are cylindrical and the pore diameter 𝑑𝑝 determines the pressures of condensation 

and desorption, 𝜒+(𝑑𝑝) and 𝜒−(𝑑𝑝). As such, there exists a one-to-one correspondence between 

adsorption and desorption pressures for a particular pore: for every relative pressure 

point 𝜒𝑎 = 𝜒+(𝑑𝑝) along the adsorption boundary curve there exists a companion point on the 

desorption boundary curve,  𝜒𝑑 = 𝜒−(𝑑𝑝). We will call a model, which is based on this 

assumption, a deterministic model. The alternative approach within the independent pore models, 

which also dates back to Everett [74]  and was accepted in earlier works on percolation models [85, 

86, 90-93, 107], is to assume that the pressures of condensation 𝜒+ and desorption 𝜒− in a given 

pore are not correlated: the former is determined by the pore size 𝑑𝑝 as  𝜒+(𝑑𝑝) and the latter is 

determined by the neck size 𝑑𝑛 as 𝜒−(𝑑𝑛). In case of multiple necks, 𝑑𝑛 represents the size of the 

largest neck. This assumption is equivalent to the assumption of the absence of correlation between 

the pore and neck sizes, and is called an uncorrelated model. 

Below, we propose a partial correlation model within the independent domain theory, as 

a compromise between the deterministic and uncorrelated models, and suggest a method for 

assessing the significance of networking effects. However, first, we have to introduce a method 

how to convert the experimentally measured adsorption isotherms, which represent the adsorbed 

amount measured in experiments, into the fractions of filled and unfilled pores, which are required 

for modeling the adsorption process in a network of pores. 

2.3.1 Reference isotherms and fractions of filled and unfilled pores. 
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In the process of gas adsorption, an individual pore may exist in two states, unfilled, when 

the pore walls are covered by adsorption films and the pore center is occupied by vapor-like 

adsorbate, and filled, when the whole pore volume is occupied by liquid-like, condensed adsorbate. 

The transitions between these states are associated with the capillary condensation and capillary 

evaporation (desorption) transitions. Consequently, one calls the adsorbate state in unfilled pores 

vapor-like and the adsorbate state in filled pores liquid-like. In order to relate the processes of pore 

filling and emptying to measured adsorption and desorption isotherms, it is necessary to separate 

the adsorption in unfilled and filled pores. To this end, we introduce the reference isotherms in 

unfilled and filled pores, 𝑉𝑠(𝜒) and 𝑉𝑐(𝜒). The former represents an interpolation of the reversible 

adsorption isotherm to the hysteresis region and reflects the build-up of the adsorption film.  The 

film isotherm 𝑉𝑠(𝜒) is modeled as 

𝑉𝑠(𝜒) =  𝑆 ∙ ℎ(𝜒)                                                           (2.1) 

where 𝑆 is the surface area of the adsorbent and ℎ(𝜒) is the effective thickness of the 

adsorbed layer that is proportional the reference adsorption isotherm on a non-porous surface of 

the same origin. Eq. 2.1 is a standard approximation that does not take into account the pore wall 

curvature. The film reference isotherm is commonly modeled with the Frenkel-Halsey-Hill (FHH) 

equation with specific adsorbent-adsorbate parameters 𝐾 and 𝑚: 

ℎ(𝜒) = (
𝐾

− ln𝜒
)

1

𝑚
                                                            (2.2) 

Parameters 𝐾 and 𝑚 are chosen such that the effective thickness is in Ångstroms. Below, 

we employ the recommended parameters used for validation of the NLDFT models [124]: for 

nitrogen-silica adsorption, 𝐾 = 44.54 and 𝑚 = 2.241; for argon-silica adsorption, 𝐾 = 73.17 

and 𝑚 = 2.665. The specific surface area, 𝑆, can be determined in several ways. In the examples 

considered below, 𝑆 was found by aligning the boundary adsorption isotherm with the reference 

isotherm, using 𝑆 as a fitting parameter.  The BET surface area may serve as a starting point for 
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such fitting.  We found that in general, the BET and fitted surface areas differed by 15 % or less 

for all sample materials. (See Appendix A for details)  

The reference desorption isotherm 𝑉𝑐(𝜒) reflects compressibility of condensed fluid in 

filled pores and related effects. 𝑉𝑐(𝜒) should be determined by extrapolation of the reversible part 

(upper plateau) of the desorption isotherm starting from the upper closure point C of the main 

hysteresis loop. In the first approximation, it can be modeled by a tangent to the desorption isotherm 

at the capillary condensation pressure, 𝜒𝑐, as   

𝑉𝑐(𝜒) = (
𝑑𝑉

𝑑𝜒
) |𝜒𝑐

(𝜒 − 𝜒𝑐) + 𝑉(𝜒𝑐)                                          (2.3) 

Using the reference isotherms 𝑉𝑠(𝜒) and 𝑉𝑐(𝜒) , the experimental isotherm 𝑉(𝜒) may be 

presented through the fraction of unfilled pores at the relative pressure 𝜒, 𝑄(𝜒), as 

 𝑉(𝜒) = 𝑉𝑠(𝜒) ∙ 𝑄(𝜒) + (1 − 𝑄(𝜒)) ∙ 𝑉𝑐(𝜒)                                  (2.4) 

From this equation, the fraction of unfilled pores 𝑄(𝜒) is estimated in the region of 

hysteresis as 

𝑄(𝜒) =  
𝑉𝑐(𝜒)−𝑉(𝜒)

𝑉𝑐(𝜒)−𝑉𝑠(𝜒)
                                                      (2.5)            

Beyond the hysteresis region, 𝑄(𝜒) =  0, 𝜒 < 𝜒𝐴 ;  1, 𝜒 > 𝜒𝐶 

The fractions of unfilled pores on the main adsorption or desorption isotherms are 

determined from Eq. 2.5, as 

𝑄+(𝜒) =  
𝑉𝑐(𝜒)−𝑉+(𝜒)

𝑉𝑐(𝜒)−𝑉𝑠(𝜒)
                   𝑄−(𝜒) =  

𝑉𝑐(𝜒)−𝑉−(𝜒)

𝑉𝑐(𝜒)−𝑉𝑠(𝜒)
                                  (2.6)               

The transition from the hysteresis loop formed by the experimental adsorption-desorption 

isotherms to the hysteresis loop formed by the fractions of unfilled pores is illustrated in Fig. 2.6 

with the example of the SBA-15 isotherm given in Fig. 2.2(left). The positions of points A, B, C, 

and E were determined by expert choice with accuracy of ~2% with respect to the deviations 

between the corresponding isotherms. (See Appendix A for details.) 



                                                                                                                                                                                                                        37 
 

                                                                            

 

Fig. 2.6. Top - Main hysteresis loop for the nitrogen adsorption-desorption cycle on SBA-15. 

Bottom – The main hysteresis loop recalculated via Eq.6 in terms of the fractions of unfilled pores 

along the adsorption and desorption isotherms, 𝑄+ and 𝑄_.   

 

Eq. 2.4 is applicable for any isotherm. For the scanning adsorption 𝑉+(𝜒, 𝜒𝑑) and 

desorption isotherms 𝑉−(𝜒, 𝜒𝑎) it reads: 

𝑉+(𝜒, 𝜒𝑑) = 𝑉𝑠(𝜒) ∙ 𝑄+(𝜒, 𝜒𝑑) + (1 − 𝑄+(𝜒, 𝜒𝑑)) ∙ 𝑉𝑐(𝜒)                     (2.7) 

𝑉−(𝜒, 𝜒𝑎) = 𝑉𝑠(𝜒) ∙ 𝑄−(𝜒, 𝜒𝑎) + (1 − 𝑄−(𝜒, 𝜒𝑎)) ∙ 𝑉𝑐(𝜒)                     (2.8) 

Here and below, we use the denotations (𝜒, 𝜒𝑎/𝑑) to define the scanning isotherms that originate 

from points 𝜒𝑎/𝑑 on main adsorption or desorption isotherms. 

The uncorrelated model implies that the fraction of unfilled pores during scanning 

adsorption, 𝑄+(𝜒, 𝜒𝑑), decreases from its initial value 𝑄−(𝜒𝑑), as   

𝑄+(𝜒, 𝜒𝑑) =  𝑄−(𝜒𝑑) ∙ (1 − 𝑄+(𝜒))                                                      (2.9) 
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This equation states that the probability of a pore that was unfilled at 𝜒 = 𝜒𝑑 to be filled at 

the current relative pressure 𝜒 is equal to the fraction of filled pores, 1 − 𝑄+(𝜒), on the main 

adsorption isotherm at 𝜒. Similarly, the fraction of unfilled pores during scanning desorption, 

𝑄−(𝜒, 𝜒𝑎), increases from its initial value 𝑄+(𝜒𝑎) as the pressure decreases, as 

𝑄−(𝜒, 𝜒𝑎) =  𝑄+(𝜒𝑎) + (1 − 𝑄+(𝜒𝑎))𝑄−(𝜒)                                      (2.10)                   

This equation states that the probability of a pore that was filled at 𝜒 = 𝜒𝑎 to be unfilled at 

the current relative pressure 𝜒 is equal to the fraction of unfilled pores, 𝑄−(𝜒) on the main 

desorption isotherm at 𝜒. The scanning isotherms are determined by Eq. 2.8 with the fractions of 

unfilled pores calculated with Eq. 2.9 and 2.10. The theoretical scanning isotherms in the 

uncorrelated model implies that the scanning isotherms approach the closure points of the main 

hysteresis loop, as for the H2 type hysteresis in Fig. 2.1 (right). It was shown [88, 92] that the 

uncorrelated model describes with Eqs. 7, 8 and 9 almost quantitatively the scanning adsorption 

isotherms on Vycor glass, but it fails to predict the shape of scanning desorption isotherms shown 

in Fig. 2.4. This inconsistency was interpreted by the importance of pore blocking percolation 

effects, which make desorption a cooperative process in a sense that the evaporation events in 

different pores occur in a correlated manner. 

2.3.2. Partial correlation model 

The uncorrelated model implies that the scanning isotherms converge at the points of closure of the 

main hysteresis loop. In order to extend the independent pore model to more general situations, 

when the scanning adsorption-desorption isotherms form closed loops intersecting the main 

hysteresis loop, we introduce a partial correlation model (PCM). The PCM is based on experimental 

observation that in the absence of networking effects the shape of the scanning isotherm resembles 

the shape of the main isotherm. As such, the PCM implies that the fraction of unfilled pores 

𝑄−(𝜒, 𝜒𝑎) along the scanning desorption isotherm is a linear function of the fraction of unfilled 
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pores 𝑄−(𝜒) along the main desorption isotherm. For scanning desorption starting at 𝜒 = 𝜒𝑎 and 

approaching the boundary desorption branch at 𝜒 = 𝜒𝑑, 

𝑄−(𝜒, 𝜒𝑎) = 𝑄+(𝜒𝑎) + (𝑄−(𝜒𝑑) − 𝑄+(𝜒𝑎))(𝑄−(𝜒)/𝑄−(𝜒𝑑))                       (2.11) 

 

Similarly, the fraction of unfilled pores 𝑄+(𝜒, 𝜒𝑑) along the scanning adsorption isotherm is 

assumed to be a linear function of the fraction of unfilled pores 𝑄+(𝜒) along the main adsorption 

isotherm. For scanning adsorption starting at 𝜒 = 𝜒𝑑 and approaching the boundary adsorption 

branch at 𝜒 = 𝜒𝑎, 

 𝑄+(𝜒, 𝜒𝑑) = 𝑄−(𝜒𝑑) − (𝑄−(𝜒𝑑) − 𝑄+(𝜒𝑎)) (( 1 − 𝑄+(𝜒))/(1 − 𝑄+(𝜒𝑎)))      (2.12) 

Note that Eq. (2.11) is reduced to Eq. 2.9 of the uncorrelated model at 𝜒𝑑 → 𝜒𝐴 and, 

respectively, Eq. (2.12) is reduced to Eq. 2.10 of the uncorrelated model at 𝜒𝑎 → 𝜒𝐶. 

As shown in Fig. 2.7, the PCM, Eqs. (11) and (12), is in reasonable agreement with 

experimental scanning isotherms, both adsorption and desorption, on SBA-15 and KIT-6 samples 

with the characteristic H1 hysteresis loops.  In the case of H2 hysteresis, the PCM predictions agree 

with the scanning adsorption data and strongly deviate from the scanning desorption, Fig. 2.10.  

Deviations from the predictions of the independent pore model point towards the importance of the 

networking effects, which are more pronounced during desorption due to the pore blocking effect. 

In this way, the PCM serves as a test of the pore blocking effects, which in particular are 

pronounced in disordered pore networks like that of Vycor glass during desorption. 
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Fig. 2.7: Comparison of PCM with experiments for N2 adsorption on SBA-15 (top) and KIT-6 

(bottom). 
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Fig. 2.8: Comparison of the PCM with experiments for Xe adsorption on Vycor glass; scanning 

desorption (top), scanning adsorption (bottom). Experimental data taken from Everett [74]. 

 

The PCM has the following interpretation in the ink-bottle pore model: within the 

assumption of independent pores, the pressure of condensation 𝜒+ in a given pore is determined by 

the size 𝑑𝑝 of the pore and the pressure of desorption 𝜒− is determined by the size 𝑑𝑛 of the largest 

neck. Let us suppose that larger pores have a higher probability to have larger necks, particularly, 

that the pores larger than 𝑑𝑝 have at least one neck larger than 𝑑𝑛 = 𝑔(𝑑𝑝), where g is a certain 

monotonic function. In this case, the scanning desorption isotherm, 𝑉−(𝜒, 𝜒𝑎), that originates 

at  𝜒 = 𝜒𝑎 = 𝜒+(𝑑𝑝) must merge with the main desorption isotherm at 𝜒 =  𝜒𝑑 = 𝜒−(𝑑𝑛). The 

fraction 𝑄+ (𝜒𝑎(𝑑𝑝)) of unfilled pores in the beginning of scanning desorption at  𝜒𝑎 = 𝜒+(𝑑𝑝) 

represents the fraction of pores larger than 𝑑𝑝 and these pores have necks larger than 𝑑𝑛. Along the 

main desorption isotherm at 𝜒 =  𝜒𝑑 = 𝜒−(𝑑𝑛), the fraction of unfilled pores 
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𝑄−(𝜒𝑑(𝑑𝑛)) includes the fraction of pores larger than 𝑑𝑝, 𝑄+ (𝜒𝑎(𝑑𝑝)), plus the fraction of pores 

that are smaller than 𝑑𝑝 but have necks larger than 𝑑𝑛.  The fraction of this latter group of pores 

equals 𝑄−(𝜒𝑑) − 𝑄+(𝜒𝑎). These are the pores from which the condensed adsorbate evaporates 

along the scanning desorption path 𝑉−(𝜒, 𝜒𝑎) initiated at  𝜒𝑎 = 𝜒+(𝑑𝑝), so that the scanning and 

the main desorption isotherms should meet at 𝜒 =  𝜒𝑑 = 𝜒−(𝑑𝑛), and 𝑉−(𝜒, 𝜒𝑎)|𝜒= 𝜒𝑑 =𝜒−(𝑑𝑛) =

𝑉−(𝜒)|𝜒= 𝜒𝑑 =𝜒−(𝑑𝑛). Respectively, the scanning adsorption isotherm that originates at 𝜒𝑑 =

𝜒−(𝑑𝑛) should merge with the boundary adsorption isotherm at  𝜒𝑎 = 𝜒+(𝑑𝑝), forming a closed 

scanning hysteresis loop.  

2.4. Percolation models  

The networking effects are most prominently displayed during the desorption process, which occurs 

in a cooperative fashion as the condition of evaporation from a given pore depends on the 

neighboring pores. When the pore is not blocked and condensed fluid has an interface with the 

vapor phase, evaporation occurs at the equilibrium relative pressure 𝜒𝑒 which is determined by the 

pore size. If the pore is blocked by narrower pores, the condensed fluid cannot evaporate at 𝜒 =

𝜒𝑒and becomes metastable at 𝜒 < 𝜒𝑒. These pores we call metastable at given 𝜒. Evaporation may 

occur only when the pore is connected to the vapor phase by a series of metastable pores. Only 

when this condition is met, the vapor-liquid interface, or meniscus, may percolate through the 

network and initiate evaporation of the metastable fluid at a relative pressure that is smaller than 

the equilibrium one. This mechanism is called in the literature the pore-blocking or percolation 

mechanism.  

When the size of blocking pores is so small that the condensed fluid approaches the limit 

of metastability and evaporates spontaneously even so the neighboring pores are still filled, one 

deals with the cavitation mechanism. Cavitation, as was recently shown  [125, 126], takes place in 

the range of relative pressures 0.50-0.42 for nitrogen adsorption at 77.4K and is characterized by 

the abrupt step on the desorption isotherm.  In the following percolation model, we do not consider 



                                                                                                                                                                                                                        43 
 

                                                                            

the cavitation mechanism, since it is not relevant for the systems considered in this work. It is worth 

noting that the cavitation mechanism was introduced in the percolation model of Parlar and Yortsos 

[95]. 

2.4.1. Desorption from a pore network as a percolation process. 

The following discussion is based the ideas put forward in earlier works of Neimark [88, 

92]. Let us consider the desorption process in a network comprised of pores connected by narrower 

necks, Fig. 2.1 (right). In this model, the pores represent the network sites and the necks represent 

the network bonds. We assume that desorption is controlled by the size of necks, and the condensed 

fluid is “ready” to evaporate from any pore at given relative pressure 𝜒 provided that the condition 

of the vapor-liquid interface formation is met. This condition along the scanning desorption 

isotherm 𝑉−(𝜒, 𝜒𝑎) is met in two cases schematically illustrated in Fig. 2.9. The pore must be 

connected by a continuous chain of metastable necks either with the external surface of the sample, 

or with an initially unfilled pore, in which the interface existed in the beginning of desorption at 

𝜒 = 𝜒𝑎. In other words, in order to trigger desorption, the meniscus must percolate to the pore 

either from the external surface, or from an initially unfilled pore.  

        
Fig. 2.9. Two pathways for evaporation: pore i is connected with the external surface by metastable 

necks (left) and pore i is connected with an initially unfilled pore (colored white) by metastable 

necks. Stable necks are crossed, filled pores are blue, unfilled pores are gray. 
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To account for this condition, we introduce a probability factor 𝛼(𝑞(𝜒), 𝑄+(𝜒𝑎)) which 

depends upon the fraction of metastable necks 𝑞(𝜒) and the fraction of unfilled pores in the 

beginning of scanning, 𝑄+(𝜒𝑎). This factor has the interpretation of a probability of finding a path 

of metastable necks by which a randomly chosen pore is connected to the vapor-liquid interface. 

As such, the fraction of unfilled pores along the scanning isotherm is the sum of the fraction of 

initially unfilled pores and the fraction of initially filled pores multiplied by the probability of the 

existence of a metastable pathway: 

𝑄−(𝜒, 𝜒𝑎) =  𝑄+(𝜒𝑎) + (1 − 𝑄+(𝜒𝑎)) ∙ 𝛼(𝑞(𝜒), 𝑄+(𝜒𝑎))                  (2.13)  

For the main desorption branch (𝑄+ = 0), meniscus percolation originates from the 

external surface only, and the probability of desorption 𝛼(𝑞, 0) reduces to the percolation 

probability 𝑄𝑝(𝑞) in the classical bond percolation problem[88], 𝛼(𝑞, 0) =  𝑄𝑝(𝑞), and  

𝑄−(𝜒) =  𝑄𝑝(𝑞(𝜒)) .                                                            (2.14) 

The percolation probability for a macroscopically large network is a step-wise function. 

Below the percolation threshold 𝑞𝑐, 𝑄𝑝(𝑞) = 0 at 𝑞 < 𝑞𝑐. This means that until the fraction of 

metastable pores is below the percolation threshold, evaporation may occur only from the pores 

located near the external surface of the porous body, since the probability that the pore in the bulk 

of the body is connected with the external surface by a chain of metastable necks is zero. The 

percolation probability rapidly increases above the percolation threshold, as 𝑄𝑝(𝑞) ∝ (𝑞 − 𝑞𝑐)
𝛽 . 

For 3D networks, 𝛽 ≈ 0.46 [127]. As such, in the framework of the percolation theory, the onset 

of desorption from a fully saturated network indicated as point E in Figs. 2.1-10 corresponds to the 

percolation threshold,   

𝑞(𝜒𝐸) = 𝑞𝑐.                                                                 (2.15) 

The process of evaporation of condensed fluid along the scanning desorption isotherm 

begins at 𝜒 > 𝜒𝐸 provided that 𝑞(𝜒) > 0. The probability factor 𝛼(𝑞, 𝑄+) monotonically increases 

with 𝑞 at given 𝑄+ > 0. A general analytical expression for 𝛼(𝑞, 𝑄+) for three-dimensional 
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networks does not exist. It depends on the pore connectivity, or the network coordination number 

𝑧, and also on the network topology. Below, we use two approaches to determine 𝛼(𝑞, 𝑄+).  

 

 

2.4.1.1 Bethe approximation  

The Bethe approximation was employed in early works on percolation models of capillary 

phenomena [87-91] and it was shown to provide a qualitatively correct description of the 

percolation process. The Bethe approximation neglects the topological correlations of the 

distribution of network elements caused by the existence of cycles in real networks that makes 

possible the ability to obtain an analytical solution.  The percolation probability 𝑄𝑝(𝑞) in the Bethe 

network with the coordination number 𝑧 is defined from the following system of algebraic 

equations, 

𝑄𝑝(𝑞) =  1 − 𝑦𝑧 ,      𝑦 = (1 − 𝑞) + 𝑞𝑦𝑧−1                                               (2.16) 

where 𝑦 is the probability that the desired path through the metastable necks does not exist 

provided that the first step is taken towards one of 𝑧 neighboring sites . The percolation probability 

𝑄𝑝(𝑞) vanishes below the percolation threshold 

𝑞𝑐 = 1/(𝑧 − 1) .                                                                 (2.17) 

The problem of desorption from a partially saturated pore network is a bond-site 

percolation problem [92] since the probability 𝛼 of desorption from an initially filled site depends 

on both the fraction 𝑞 of the metastable bonds and the fraction 𝑄+ of the initially unfilled sites. The 

probability factor 𝛼(𝑞, 𝑄+) fulfills the system of algebraic equations, similar to (2.16),  

 𝛼(𝑞, 𝑄+)  =  1 − 𝑦𝑧   ,     𝑦 = (1 − 𝑞) + 𝑞(1 − 𝑄+) ∙ 𝑦𝑧−1                              (2.18) 

Eq. (2.18) considers that the probability y is equal to the sum of probabilities of the 

following events: 1) the chosen neck is stable (probability 1-q) and 2) the chosen neck is metastable 

(probability q) and leads to an initially filled site (probability 1 − 𝑄+) but all z-1 paths from this 
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site fail to connect it with an initially unfilled site (probability 𝑦𝑧−1). The function 𝛼(𝑞, 𝑄+) for the 

Bethe network with the coordination number z=6 is presented in Fig. 2.12 together with the 

respective fraction 𝑄−(𝑞, 𝑄+) of unfilled pores along the primary and scanning desorption 

isotherms determined by Eq. 2.13 . 

 

 

Fig. 2.10. The fraction 𝑄−(𝑞, 𝑄+) of unfilled pores (right) along the main (𝑄+ = 0) and scanning 

desorption isotherms; values of 𝑄+ = 0.05, 0.12, 0.34, 0.55, 0.78 correspond to the desorption 

isotherms of Xe on Vycor glass shown in Fig.2.4 (top). Coordination number z=6. Bethe 

approximation (top), percolation threshold 𝑞𝑐 = 0.2. MC simulation on the cubic lattice of 

200x200x200 sites (bottom) percolation threshold 𝑞𝑐 ≈ 0.25. The rounding of the percolation 

probability at the threshold is caused by the boundary effects. 

 

2.4.1.2. 3D lattice simulation 

The bond-site percolation process can be directly simulated on a 3D network to determine 

the fraction of unfilled pores 𝑄−(𝑞, 𝑄+)  along primary and scanning desorption curves as a 
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function of the fractions of metastable necks 𝑞 and of initially unfilled pores 𝑄+.  The implemented 

algorithm draws heavily from the one Newman and Ziff [128]  suggested for modeling classical 

bond or site percolation problems.  We considered a 3D cubic lattice of LxLxL sites with the outer 

bonds connected to vapor phase, mimicking the external surface of the porous body. The details of 

the algorithm can be found in Appendix A. The calculations were performed for the lattice size 

L=200. This size was chosen as a compromise between the speed of calculations and the inaccuracy 

caused by the boundary effects. As shown in Appendix A, the results with L=200 and L=275 are 

barely distinguishable, Fig. A.2. The simulation results are shown in Fig. 2.10 (bottom). The 

rounding of the percolation probability (𝑄+ = 0) at the threshold, 𝑞𝑐 ≈ 0.25, is caused by the 

boundary effects. It is worth noting that the simulation data for the percolation threshold 𝑞𝑐 of 3D 

networks decreases with the coordination number 𝑧 in accord with the following approximate 

relationship, 

𝑞𝑐 ≈ 1.5/𝑧                                                                             (2.19) 

Although the percolation threshold predicted by the Bethe approximation, Eq. 2.17, is 

smaller than that for the real 3D network with same coordination number, the qualitative behavior 

of the calculated dependencies is quite similar except for the vicinity of the percolation threshold. 

2.5. Use of scanning isotherms for pore structure characterization  

Scanning isotherms contain additional information about the specifics of pore structure 

compared with the primary adsorption and desorption isotherms. As suggested above, the PCM 

may be used to distinguish the materials for which networking effects are present and, as in the 

example with Vycor glass (Fig. 2.8), to call for the application of percolation models.  

 

2.5.1. Network connectivity  

The network connectivity is characterized by its coordination number z, which determines 

the percolation threshold 𝑞𝑐 according to the Eqs. 2.17 or 2.19, depending on the type of the 
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network model. The percolation concept implies that the onset of desorption along the primary 

desorption isotherm (point E) corresponds to the percolation threshold, however the value of the 

percolation threshold cannot be determined without additional information. We suggest to 

determine the coordination number using the scanning desorption isotherm. Indeed, the network 

connectivity can be estimated from equality of the theoretical fraction of unfilled pores at 𝜒 = 𝜒𝐸  

along the scanning isotherm,  

𝑄−(𝜒𝐸 , 𝜒𝑎) =  𝑄+(𝜒𝑎) + (1 − 𝑄+(𝜒𝑎)) ∙ 𝛼(𝑞𝑐 , 𝑄+(𝜒𝑎))                           (2.20) 

The fractions of unfilled pores 𝑄+(𝜒𝑎) and 𝑄−(𝜒𝐸 , 𝜒𝑎) are defined from Eq. 2.9 and 2.10, 

as  

𝑄+(𝜒𝑎) =  
𝑉𝑐(𝜒𝑎)−𝑉+(𝜒𝑎)

𝑉𝑐(𝜒𝑎)−𝑉𝑠(𝜒𝑎)
       and       𝑄−(𝜒𝐸 , 𝜒𝑎) =  

𝑉𝑐(𝜒𝐸)−𝑉−(𝜒𝐸|𝜒𝑎)

𝑉𝑐(𝜒𝐸)−𝑉𝑠(𝜒𝐸)
              (21) 

Solution of the algebraic equation (20) with respect to 𝑞𝑐 for given scanning desorption isotherm 

𝑉−(𝜒|𝜒𝑎) is straightforward in the Bethe approximation, when the function 𝛼(𝑞𝑐 , 𝑄+)is defined by 

Eqs. 2.17 and 2.18.  

 

Table 2.1. Coordination number z and percolation threshold 𝑞𝑐 determined in the Bethe model 

from scanning isotherms. The fraction of unfilled pores 𝑄+(𝜒𝑎) at the onset of scanning at 𝜒 = 𝜒𝑎 

is shown in the 3rd column. For Vycor glass, two scanning isotherms were used to show the 

difference between the results obtained with different scanning isotherms.  

 

Using the Bethe model, we calculated the percolation threshold and the coordination 

number for the samples of Vycor glass and 3DOm carbons from the scanning isotherms given in 

Figs. 2.3 and 2.4. This data are presented in Table 2.1. 

For Vycor glass, we used two scanning isotherms originating from 𝜒𝑎= 0.34 and 0.12 to 

determine the connectivity that produced comparable results. For 3DOm carbons, the scanning 

isotherm with the largest 𝑄+(𝜒𝑎) was used for each sample. Due to the imprecise definition of the 
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percolation threshold (no sharp knee is present) for these materials, the point E positions were 

determined by “squaring up” the edges of the primary desorption isotherms. The obtained values 

of coordination numbers for all the samples are around 𝑧 = 6, which points towards the possibility 

to employ a simple cubic network as a reasonable 3D model of the pore networks in these samples.  

The predictions of the scanning desorption isotherms using the probability factors 𝛼(𝑞, 𝑄+) 

determined with the chosen value of the coordination number z =6.6 for Vycor glass are presented 

in Fig. 2.11. In stark contrast to Fig. 2.8, the theoretical desorption scanning isotherms agree well 

with the experimental data with exception of the lowest scanning isotherm, confirming the 

consistency of the proposed percolation model. 

 

Fig. 2.11. Experimental and predicted scanning isotherms for Xe adsorption on Vycor glass, 

using the Bethe approximation and fitted the coordination number 𝑧=6.6.  Experimental data from 

Everett [74] 
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Fig. 2.12. The main adsorption and desorption isotherms and the scanning isotherm used for 

determining the network connectivity and neck size distribution calculations of 3DOm carbons.  

Vertical lines are drawn at at 𝜒 = 𝜒𝐸; intersection with the scanning isotherm represents the point 

at which Eq. 20 is solved to determine the coordination number. Coordination numbers determined 

in the Bethe approximation are listed in Table 2.1. Upper raw: 10 nm, 20 nm, Bottom raw: 30 nm, 

40 nm.  

 

The main adsorption and desorption isotherms together with the scanning isotherm that 

was used for calculations of connectivity of 3ODm carbons are shown in Fig. 2.12. The scanning 

isotherm calculated with the determined coordination number z determined from the experimental 

value at 𝜒 = 𝜒𝐸 agrees with the experimental data points in the range: 𝜒𝐸 ≤ 𝜒 < 𝜒𝐶.  

2.5.2. Pore neck size distribution  

Once the coordination number of the pore network is determined, one can determine the 

dependence of the fraction of metastable necks on the relative pressure, 𝑞(𝜒), as follows. The 

fraction of metastable necks at 𝜒 = 𝜒𝐸  equals the percolation threshold, 𝑞(𝜒𝐸) = 𝑞𝑐. Above the 

threshold, for 𝜒𝐴 < 𝜒 < 𝜒𝐸 , the fraction of metastable necks 𝑞(𝜒) is determined by the primary 

desorption isotherm via the percolation probability function  𝑄𝑝(𝑞) by solving Eq. 2.16. with 

respect to 𝑞, 

𝑞(𝜒) = 𝑄𝑝
−1 (

𝑉𝑐(𝜒)−𝑉−(𝜒)

𝑉𝑐(𝜒)−𝑉𝑠(𝜒)
) at 𝜒𝐴 < 𝜒 < 𝜒𝐸                                   (2.22) 

where 𝑄𝑝
−1 is the inverse function to  𝑄𝑝(𝑞), which depends on the coordination number. 

Below the threshold, for 𝜒𝐸 ≤ 𝜒 < 𝜒𝐶 , the fraction of metastable necks 𝑞(𝜒) is determined from 
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the scanning desorption isotherm via the probability factor 𝛼(𝑞, 𝑄+(𝜒𝑎)) by solving Eq. 2.18  with 

respect to 𝑞.  

𝑞(𝜒) = 𝛼−1 (
𝑄−(𝜒,𝜒𝑎)−𝑄+(𝜒𝑎)

1−𝑄+(𝜒𝑎)
, 𝑄+(𝜒𝑎)) at 𝜒𝐸 ≤ 𝜒 < 𝜒𝐶                  (2.23) 

where 𝛼−1 is the inverse function to 𝛼(𝑞, 𝑄+(𝜒𝑎), the fraction of unfilled pores 𝑄+(𝜒𝑎) and 

𝑄−(𝜒, 𝜒𝑎) are defined respectively by (6) and from (10), as  

𝑄−(𝜒, 𝜒𝑎) =  
𝑉𝑐(𝜒)−𝑉−(𝜒,𝜒𝑎)

𝑉𝑐(𝜒)−𝑉𝑠(𝜒)
                                                  (2.24) 

The fraction of the metastable necks as a function of the relative pressure, 𝑞(𝜒), determined 

according to the above scheme for Vycor glass is presented in Fig. 2.13 for two percolation models, 

the Bethe approximation on the left panel, and 3D cubic lattice simulation on the right panel. It the 

former case, the two parts of the  𝑞(𝜒) function determined from the main desorption isotherm at 

𝜒𝐴 < 𝜒 < 𝜒𝐸  and from the scanning isotherm at 𝜒𝐸 ≤ 𝜒 < 𝜒𝐶  merge at 𝜒 = 𝜒𝐸, since the condition 

𝑞(𝜒𝐸) = 𝑞𝑐 is fulfilled for both Eqs. 2.22 and 2.23 due to the choice of the coordination number z 

from Eq. 2.19. For the cubic lattice model with the predetermined coordination number z=6 and 

percolation threshold of 0.25, there is a step at  𝜒 = 𝜒𝐸, due to a mismatch of data derived from the 

main and the scanning isotherms. However, this step is minor, and it does not affect the neck size 

distribution derived from the 𝑞(𝜒) function significantly, as shown below. The same approach for 

determining the fractions of metastable necks 𝑞(𝜒) was applied for 3DOm carbons. The isotherms 

used for calculations are shown in Fig. 2.12. The calculated PSDs are presented in Fig. 2.16 in the 

same style used for Vycor glass in Fig. 2.15. In all cases, the difference between the results obtained 

from the Bethe approximation and from the 3D cubic lattice simulation is insignificant for practical 

applications. 
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Fig. 2.13.  The fraction of the metastable necks as a function of the relative pressure, 𝑞(𝜒), for 

Vycor glass [74], calculated using the scanning isotherm with 𝑄+(𝜒𝑎) = 0.125. Bethe 

approximation (left) and 3D cubic lattice MC simulation (right).  
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Fig. 2.14. The fraction of the metastable necks, 𝑞(𝜒), as a function of the relative pressure for 

3DOm Carbons. using the 3D cubic lattice MC simulation (left) and Bethe approximation with 

fitted coordination number (right). From top to bottom: 10 nm, 𝑄+(𝜒𝑎) = 0.24; 20 nm, 𝑄+(𝜒𝑎) =

0.27; 30 nm, 𝑄+(𝜒𝑎) = 0.68; 40 nm, 𝑄+(𝜒𝑎) = 0.09.   

  

The pore neck distribution is obtained by using a certain correlation between the neck size 

d𝑛 and the relative pressure 𝜒−(d𝑛), at which fluid in this pore becomes metastable. The function 

𝑞(𝜒) determines the integral number distribution function, 𝜙𝑛(d𝑛), which represents the fraction 

of necks smaller than 𝑑𝑛, as 

  𝜙𝑛(d𝑛) = 1 − 𝑞(𝜒−(d𝑛))                                                 (2.25) 

Let us introduce another distribution function, which has a more direct relevance to the 

evaporation process. Indeed, the condition of evaporation from an individual pore is mainly 

determined by the size of the largest neck. As such, the probability, 𝜙𝑚(d𝑛), that the largest neck 

is smaller than d𝑛, and the number distribution, 𝜙𝑛(d𝑛), are related via the balance of probabilities, 
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𝜙𝑚(d𝑛) = (𝜙𝑛(d𝑛))
𝑧
                                                  (2.26) 

The second term in the RHS of Eq. 2.26 equals the probability that all z necks of the pore are 

smaller than d𝑛. The neck size distributions 𝜙𝑛(d𝑛) and the pore distribution by the largest neck, 

𝜙𝑚(d𝑛) complement the pore size distribution, 𝜙𝑝(d𝑝). The latter is determined from the main 

adsorption isotherm, assuming that the fraction of unfilled pores 𝑄+(𝜒) gives the fraction of pores 

larger than d𝑝, condensation in which does not occur at the relative pressure 𝜒 = 𝜒+(𝑑𝑝), 

 𝜙𝑝(d𝑝) = 1 − 𝑄+ (𝜒+(𝑑𝑝)).                                       (2.27) 

Note that thus defined 𝜙𝑝(d𝑝) is the integral number distribution function. 

The integral and differential distribution functions for pore and neck diameters for Vycor 

glass are presented in Fig. 2.15. In this case, we used the Kelvin equation for Xenon at 225K to 

correlate the pore and neck size and the relative pressures of condensation and desorption, 𝜒+(𝑑𝑝) 

and 𝜒−(d𝑛). Although the Kelvin equation underestimates the pore size at the nanoscale [129] this 

choice is dictated by unavailability of more advanced methods for Xe adsorption.  

 

Fig. 2.15. Integral (left) and differential (right) distributions for Vycor [74]. Pore size distribution 

(PSD), 𝜙𝑝(d𝑝),  calculated from Eq.27 (blue curves). Neck size distribution (NSD), 𝜙𝑛(d𝑛), and 

largest neck size distribution (LNSD), 𝜙𝑚(d𝑛), were calculated using the Bethe model,  (purple 

curves) and using  the 3D cubic lattice simulation (red curves). Note the striking similarity in the 

neck size distributions obtained with the two methods. 
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For calculations of PSDs in 3DOm carbons, we used the QSDFT relationships for spherical 

(pore) and cylindrical (neck) pore geometries for argon on carbon derived in Ref.[108] to correlate 

the pore and neck size and the relative pressures of condensation and desorption, 𝜒+(𝑑𝑝) and 

𝜒−(d𝑛). The neck side distributions were calculated using the proposed percolation models, the 

Bethe approximation and the 3D cubic lattice MC simulation. The pore size distribution was 

calculated from the adsorption isotherm by the QSDFT method [108], rather than via Eq. 2.27. The 

results of thus calculated differential pore and neck size distributions are presented in Fig. 2.16; the 

same style and denotations are used as in Fig. 2.15 (right).  

 

 

 

Fig. 2.16. Differential PSDs for 3DOm carbons; (top left to bottom right) 10 nm, 20 nm, 30 nm, 

and 40 nm carbons. Pore size distribution (PSD), 𝜙𝑝(d𝑝) (orange curves), calculated by the QSDFT 

method from the main adsorption isotherm [108]. Neck size distribution (NSD), 𝜙𝑛(d𝑛), and 

largest neck size distribution (LNSD), 𝜙𝑚(d𝑛), were calculated from the main and scanning 

desorption isotherms shown in Fig. 2.14 using the percolation method; the Bethe model  (purple 

curves) and the 3D cubic lattice MC simulation (red curves). Note the striking similarity in the neck 

size distributions obtained with the two methods for all the samples. 
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Two conclusions can be drawn from Figs. 2.15 and 2.16. First, the neck size distributions, 

𝜙𝑛(d𝑛), and largest neck size distributions, 𝜙𝑚(d𝑛), calculated using the Bethe model and the 3D 

cubic lattice simulation are very similar, almost indistinguishable for any practical application. As 

such, one can use the Bethe approximation for practical calculations of the network connectivity 

and the neck size distribution using experimental data on the main and scanning desorption 

isotherms. Secondly, the distribution of the pores by the largest neck size better reflects the 

structural features of pore networks than the distribution of neck sizes, and can be recommended 

as a complement to the pore size distribution to be used in establishing the structure-property 

relations. 

2.6. Summary 

Although the phenomenon of adsorption hysteresis has been attracting a lot of attention 

among both experimental and theoretical communities for several generations of researchers, its 

adequate description, despite major progress achieved in recent years, is still lacking for complex 

porous systems.  Indeed, the interplay between the thermodynamic and geometrical factors gives 

rise to distinct features of hysteresis in different materials. Experimentally, these distinct features 

are prominently displayed in the behavior of scanning isotherms, which provide additional 

information about the pore network geometry, including its connectivity and pore size distribution, 

which cannot be revealed from the main adsorption and desorption branches. Theoretically, it has 

been well understood since the seminal works of Everett [74] that the description of scanning 

isotherms cannot be achieved based on the models of adsorption in individual pores; it is necessary 

to take into account a cooperative nature of capillary condensation and desorption processes in 

three dimensional pore networks with distributed geometrical parameters of individual pores.  

In this chapter of the dissertation, we analyze adsorption and desorption scanning isotherms 

on porous materials of different yet well characterized structure: regular hexagonal array of pore 

channels in SBA-15 silica, cubically ordered three dimensional gyroid structure in KIT-6 silica, 
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ordered three dimensional network of spheroidal cages in 3DOm carbons. The classical system of 

Xenon adsorption on disordered pore network of Vycor porous glass [84] is served as a reference 

system.  

Firstly, we analyze the limitations of the models of individual pores and suggest an original 

partial correlation model (PCM) to distinguish the importance of the pore blocking effects. We 

show that while the PCM satisfactory describes the behavior of scanning isotherms on SBA-15 

silica with independent pore channels, the deviation between the experimental and theoretical 

scanning desorption isotherms found for other samples and especially for Vycor glass point towards 

the necessity to account for the pore blocking effects. As such, the PCM applied to scanning 

desorption isotherms is suggested as a test for the pore blocking effects. 

Secondly, we revisit and advance the percolation model of adsorption hysteresis put 

forward earlier by Neimark [92] for simulation the scanning desorption process in the pore and 

neck networks. Two percolation models were implemented: an analytical Bethe approximation and 

a Monte Carlo simulation on 3D cubic lattice. We show that both models reasonably describe the 

behavior of scanning desorption isotherms. We formulate a method for determining the effective 

pore network coordination number z from the consistency condition of the Bethe approximation 

applied to the main desorption and scanning desorption isotherms. The network coordination 

number characterizes the connectivity of the pore structure. Interestingly, the coordination numbers 

for Vycor glass and four different samples of 3DOm carbons were found in the range between 5 

and 7 that justifies the use of the 3D cubic lattice with z=6 as a structural model of pore structures 

in these materials. 

Thirdly, we suggest a percolation method for calculating the distributions of pore neck 

sizes using experimental data on the main adsorption and desorption isotherms and one scanning 

desorption isotherm. The proposed method is illustrated on the Vycor glass and 3ODm samples. 

As such, we attempted to lay groundwork for developing a practical methodology for 

calculating the network connectivity and pore size distributions from the scanning isotherms.  With 
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the current accuracy of high-resolution adsorption measurements, which provides an opportunity 

of measuring scanning isotherms in automated regimes of commercial instruments, this desired 

methodology becomes feasible. It may provide new useful information about the geometrical 

specifics of pore networks in novel designer nanomaterials.  
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CHAPTER 3 

Characterization of Micro-Mesoporous Carbons by High Pressure CO2 Adsorption 

3.1 Introduction  

Porous carbon materials are ubiquitous in both industrial and consumer applications.  

Prized for their large surface area, porous carbons are excellent candidates for applications such as 

CO2 capture and sequestration[130], filtration processes[131] and as templates for catalyst 

growth[132, 133].  More recently, advanced templating procedures have been developed that 

enable one to tailor the porosity of carbons to exhibit hierarchical structures composed of micro-, 

meso-, and macropores [118, 134, 135].  The pore structure of these carbons is determined by the 

precursor (template) material, such as bare silica spheres[118], SBA- [112]and MCM-type 

silica[136].   

 Knowledge of the textural properties of carbon materials [137] (the geometry and topology 

of the pore structure) is integral to understanding their behavior in applications.  Traditionally, 

adsorption of N2 vapor at its boiling point (77K) has been used as a molecular probe for porous 

materials characterization.  However, the strong interaction of N2 with carbon surfaces makes N2 

diffusion into the smallest carbon micropores difficult[138], and necessitates the use of 

turbomolecular pumps capable of rarefying gas to a high extent (p/p0 ~ O(10-7)). More recently, 

Argon gas is increasingly being used to supplement N2 adsorption measurements.  Argon gas (Ar) 

is capable of resolving smaller micropores (0.7-1 nm) at higher relative pressures than N2 due to 

Ar’s minimal interaction with carbon surfaces. However, the pore volume of carbon materials often 

contains significant contributions from ultramicropores (<0.7nm), and access to these micropores 

by Ar is restricted by diffusion limitations.  To better access these pores, CO2 at 273K was proposed 

as a probe molecule [138-140]. Due to the linear shape of CO2 molecules and the high temperature 

adsorption, diffusion of CO2 @ 273K is much faster than N2 or Ar at their respective boiling points 
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(77K and 87K); thus CO2 adsorption @ 273K enables the resolution of ultramicropores at elevated 

pressures (p/p0 ~ O(10-3)) relative to N2 or Ar [141]. 

 Conventional adsorption analyzers utilized for nanoporous materials characterization are 

limited to pressures below 1 atm which corresponds to a maximum relative pressure for 

measurements with CO2 at 273 K of p/p0 ~ 3 x 10-2 (ambient pressure). At these conditions, only 

pores < 1 nm can be explored and thus CO2 adsorption could only be used for accessing the 

micropores of nanoporous carbons. Until recently, low pressure CO2 adsorption had to be coupled 

with N2 and Ar adsorption [138, 142] in order to obtain the complete micro-mesopore size 

distribution of the carbon material.  However, recent improvements in adsorption instrumentation 

and technology have led to the development of commercially available high pressure adsorption 

analyzers capable of pressures that exceed the saturation pressure of CO2 at 273K. In the present 

work, we have investigated the possibility of utilizing CO2 high pressure adsorption at 273 K up to 

the saturation pressure of CO2 (ca.35 bar) for assessing both micro and mesopores in a single 

adsorption experiment. 

 Several data reduction methods are available for porous materials characterization that use 

as their primary input adsorption isotherms[143].  Of these, density functional theory methods [144] 

are particularly useful for their ability to provide pore size, surface area, and volume distributions 

for a material in both micro- and mesopores based on adsorption data from a single isotherm.  Many 

formulations of density functional theory exist, tailored to specific applications. One of the most 

common formulations is Non-Local Density Functional Theory (NLDFT), which has been used 

extensively for the characterization of porous carbons[145, 146].  While NLDFT is well-suited to 

description of carbon mesopores where surface roughness is less significant, it is less suited to 

carbon micropores due to the presence of distinctive layering transitions which are a consequence 

of the smooth pore-wall model.  In recent years, DFT methods which account for surface roughness 

have been introduced that overcome this limitation[147, 148]. 
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  One such method is Quenched Solid Density Functional Theory (QSDFT), which was 

developed by one of the authors[2].  QSDFT accounts for surface roughness by introducing a 

tunable roughness parameter [149].  QSDFT has been used extensively for the analysis of N2 and 

Ar adsorption on carbon materials [150]. Isotherm analysis by QSDFT or indeed any DFT method 

works by fitting an “adsorption kernel” of theoretical isotherms to an experimental isotherm.  As 

mentioned above, until recently, the range of CO2 adsorption was limited to micropores (< 2nm) 

and pressures p/p0 < 0.03 (~1 bar).  As such, pre-existing DFT kernels for CO2 adsorption were 

also limited to micropores, where adsorption is described well by NLDFT.  With the introduction 

of high pressure CO2 adsorption experiments, the need arose for kernels that extend into the 

mesopore range to be used for adsorption isotherm analysis up to CO2 saturation pressure (34.85 

bar). These kernels must take into account micropores as well as the expanded range of pore 

structures and surface roughness that arise in mesoporous templated carbons. To this end, a new 

hybrid set of DFT kernels was calculated that includes both NL- and QSDFT isotherms, in the full 

range of relative pressures p/p0 ≤ 1.  These kernels are shown to produce pore size distributions and 

pore volume estimates that are comparable with N2 [151] and Ar kernels, and may provide a faster 

and more efficient means of characterizing the porosity of micro- and mesoporous carbons which 

can supplement traditional measurements. 

The remainder of this chapter is structured as follows.  In Section 3.2, the experimental 

methodology for measuring CO2 adsorption at 273K is described along with the new adsorption 

measurement equipment capable of performing these measurements.  Section 3.3 describes the 

computational DFT methodology needed to generate adsorption isotherm kernels for 

characterization of high pressure CO2 isotherms.  Section 3.4 presents three novel hybrid 

adsorption kernels which may be used to analyze high pressure CO2 isotherms, along with 

recommendations for their appropriate usage. Section 3.5 presents the high-pressure CO2 

adsorption results on several characteristic porous carbons, along with complimentary N2 and Ar 
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adsorption isotherms. Section 3.6 illustrates the application of the kernels from Section 3.4 to the 

experimental isotherms from Section 3.5. In Section 3.7, the unique features of CO2 adsorption 

measurements and the application of the adsorption kernels are discussed, and it is proposed that 

CO2 adsorption offers a complimentary measurement technique that can be used in conjunction 

with N2 or Ar adsorption for studying porous carbons.  Conclusions are drawn in Section 3.8. 

3.2 Experimental Methodology – High Pressure CO2 adsorption at 273K 

Measurements of Ar adsorption at 87K and N2 adsorption at 77K were performed using a 

high resolution low pressure manometric adsorption analyzer (Autosorb IQ-MP, Quantachrome 

Instruments, Boynton Beach, USA). CO2 adsorption at 273K was measured using a manometric 

high pressure adsorption instrument (iSorb, Quantachrome Instruments, Boynton Beach, USA). 

Both instruments were coupled with Quantachrome’s cryo-cooler to maintain constant temperature 

in the sample cell.  Adsorption isotherms for all three analysis gases were measured on three micro-

mesoporous carbons, synthesized according to the methods given by Ryoo et al,[152] and Froeba  

et al.[153] and hereafter referred to as CMK-3 a, b, and c. Prior to the adsorption experiments, the 

carbon samples were outgassed at 423 K overnight under turbomolecular pump vacuum.  

3.3 Computational Methodology – NL and QSDFT kernels 

 Until the present, DFT kernels for CO2 adsorption were tailored to analysis of the 

micropores (< 2nm) of nanoporous carbons [145, 154] reflecting the experimental limitation to low 

pressures (p/p0 < 0.03, 1 bar).  In this chapter of the dissertation, we extend the experimental and 

analytical pressure range to p/p0 = 1, necessitating the creation of a new model which can describe 

CO2 adsorption in pores much larger than 2nm. This model must include information about the 

assumed pore geometry and surface heterogeneity present at the mesoscale, while still 

incorporating the existing micropore information.  This was accomplished by hybridizing the 
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QSDFT for mesopores with an extant NLDFT model [145, 154] for micropores which has been 

readily applied to carbon-CO2 systems[149, 155], to create hybrid kernels termed NL/QSDFT. 

 The development of the NL/QSDFT kernels requires a set of theoretical isotherms for a 

wide range of pore sizes and relative pressures.  This set (kernel) of isotherms, which takes into 

account the pore geometry, CO2-CO2 and CO2-carbon interactions may then be used to analyze 

experimental adsorption isotherms.  The methodology for calculating the theoretical isotherms is 

described in detail below. 

 DFT Approach 

 The adsorption process is considered here within the Grand Canonical ensemble at a given 

temperature T and chemical potential 𝜇. The conditions of adsorption equilibrium are determined 

by the grand potential of the system, which is a functional of the solid and fluid density.  In NLDFT 

the grand potential 𝛺𝑓 is only applied to the fluid[146, 156], while the solid interactions are 

represented by an external potential Uext: 

𝛺𝑓[𝜌𝑓(𝐫)] = 𝐹𝑓[𝜌𝑓(𝐫)] − ∫d𝐫𝜌𝑓(𝐫)[𝜇𝑓 − 𝑈𝑒𝑥𝑡(𝐫)]                               (3.1) 

In Eq. 3.1, r is the n-dimensional position vector describing distance from the pore center.  The 

fluid density profile across the pore is 𝜌𝑓(𝐫) and 𝜇𝑓 is the fluid chemical potential.  𝐹𝑓 is the intrinsic 

Helmholtz free energy of the fluid, expressed as a sum of ideal 𝐹𝑖𝑑 and excess hard sphere 𝐹𝑒𝑥
𝐻𝑆 

terms, as well as an attractive term which is calculated via the mean-field approximation: 

𝐹𝑓[𝜌𝑓(𝐫)] = 𝐹𝑖𝑑[𝜌𝑓(𝐫)] + 𝐹𝑒𝑥
𝐻𝑆[𝜌𝑓(𝐫)] +

1

2
∫∫d𝐫d𝐫′𝜌𝑓(𝐫)𝜌𝑓(𝐫′)𝑢𝑓𝑓(|𝐫 − 𝐫′|)         (3.2) 

Here, 𝑢𝑓𝑓is the fluid-fluid interaction potential.  The optimal density profile occurs when the grand 

thermodynamic potential Eq. 3.1 is at a minimum.   



                                                                                                                                                                                                                        64 
 

                                                                            

 The adsorption predictions of NLDFT are well-suited for micro- and ultramicropores (pore 

openings ≤ 2nm), where the continuum approximation breaks down and the assumption of 

molecularly smooth surfaces is reasonable.  At this level, pores are no more than a few CO2 

molecules wide and the layering transitions which are inherent in both experimental isotherms and 

NLDFT can be understood to correspond to the packing of adsorbate molecules within small 

confinements.  However, as amorphous or semi-crystalline carbon pores approach the mesopore 

range, there are no longer pronounced adsorption layering steps displayed by the experimental 

adsorption isotherms [147, 154, 157].  This indicates a significant level of surface roughness 

(heterogeneity), which must be accounted for by the model.  The QSDFT model has been shown 

to accurately account for surface heterogeneity by introducing molecular roughness and is utilized 

here for carbon mesopores. 

 Within the QSDFT method, the grand thermodynamic potential is a function of both the 

solid and the fluid.  As such, 𝛺 in QSDFT is represented as a functional of fluid and solid densities 

𝜌𝑓(𝐫) and 𝜌𝑠(𝐫) respectively. The solid is composed of hardcore spheres, which interact with the 

fluid molecules via a pairwise, attractive potential.  The grand potential 𝛺𝑠𝑓 for QSDFT is 

analogous to Eq. 3.1 and is given by: 

𝛺𝑠𝑓[𝜌𝑓(𝐫), 𝜌𝑠(𝐫)] = 𝐹𝑠𝑓[𝜌𝑓(𝐫), 𝜌𝑠(𝐫)] − 𝜇𝑓 ∫d𝐫𝜌𝑓(𝐫) − 𝜇𝑠 ∫d𝐫𝜌𝑠(𝐫)                   (3.3) 

Here, 𝜇𝑠 is the chemical potential of the solid molecules, and 𝐹𝑠𝑓 is the Helmholtz free energy 

containing ideal, excess hard sphere and attractive terms for both the solid and fluid: 

𝐹𝑠𝑓[𝜌𝑓(𝐫), 𝜌𝑠(𝐫)] = 𝐹𝑖𝑑[𝜌𝑓(𝐫)] + 𝐹𝑖𝑑[𝜌𝑠(𝐫)] + 𝐹𝑒𝑥[𝜌𝑓(𝐫), 𝜌𝑆(𝐫)] +

1

2
∫∫d𝐫d𝐫′𝜌𝑓(𝐫)𝜌𝑓(𝐫′)𝑢𝑓𝑓(|𝐫 − 𝐫′|) +

1

2
∫∫d𝐫d𝐫′𝜌𝑠(𝐫)𝜌𝑠(𝐫′)𝑢𝑠𝑠(|𝐫 − 𝐫′|) +

∫∫d𝐫d𝐫′𝜌𝑠(𝐫)𝜌𝑓(𝐫′)𝑢𝑠𝑓(|𝐫 − 𝐫′|)                                                                                               

(3.4) 
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In Eq. 3.4, 𝑢𝑠𝑠 and 𝑢𝑠𝑓 represent the pairwise attractive potentials of the solid-solid and solid-fluid 

interactions, respectively.  The key term in Eq. 3.4 is the excess Helmholtz free 

energy𝐹𝑒𝑥[𝜌𝑓(𝐫), 𝜌𝑆(𝐫)].  To calculate this term, we employ Rosenfeld’s Fundamental Measure 

Theory (FMT) [149, 158, 159], which is consistent with the Percus-Yevick equation of state for a 

bulk hard sphere fluid[149]. 

 The term “quenched” in QSDFT is related to the quality of the solid density by which it is 

considered constant throughout the optimization of the grand potential  𝛺𝑠𝑓.  This simplification 

greatly reduces the computational intensity of the QSDFT calculations, wherein only the fluid 

density is allowed to vary.  The optimal density profile in QSDFT is found by taking the derivative 

of 𝛺𝑠𝑓 in fluid density and setting it equal to zero: 

(
𝜕𝛺𝑠𝑓[𝜌𝑓(𝐫),𝜌𝑠(𝐫)]

𝜕𝜌𝑓(𝐫)
)
𝜌𝑠(𝐫)

= 0                                                            (3.5) 

the solution of Eq. 3.5 leads to the Euler-Lagrange equation for fluid density: 

𝜌𝑓(𝐫) = 𝛬𝑓
−3 exp {𝑐(1)(𝐫, [𝜌𝑓 , 𝜌𝑠]) − 𝛽 ∫𝑑𝐫′𝜌𝑓(𝐫)𝑢𝑓𝑓(|𝐫 − 𝐫′|) + 𝛽𝜇𝑓

− 𝛽 ∫𝑑𝐫′𝜌𝑠(𝐫)𝑢𝑠𝑓(|𝐫 − 𝐫′|)} 

(3.6) 

where c(1) is the direct correlation function : 𝑐(1)(𝐫, [𝜌𝑓 , 𝜌𝑠]) = −𝛽𝜕𝐹𝑒𝑥[𝜌𝑓(𝐫), 𝜌𝑠(𝐫)]/𝑑𝜌𝑓(𝐫) and 

depends on both the fluid and solid densities.  Here and throughout, 𝛽 = (𝑘𝐵𝑇)−1, where 𝑘𝐵 is 

Boltzmann’s constant, T is the absolute temperature and 𝛬𝑓
−3 = ℎ/(2𝜋𝑚𝑘𝑇)

1

2 is the thermal de 

Broglie wavelength of the fluid, h is Planck’s constant, and m is the mass of the fluid molecule. 

Parameters of the model 

 Fluid-fluid interaction parameters 
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The CO2-CO2 molecular interaction parameters are presented as Lennard-Jones potentials 

of single spheres, with the following parameters: fluid-fluid interaction energy 𝜖𝑓𝑓 =

239.94 𝑘𝐵 [K], fluid molecule radius 𝜎𝑓𝑓 = 0.3454 nm and hard sphere diameter dHS = 0.3495 nm.  

It is well-known that CO2 is not a spherical molecule, and as such, the LJ model is limited in its 

ability to reproduce the thermodynamic properties of CO2.  For the current parameterization, the 

bulk vapor and liquid densities and surface tension of the liquid-vapor interface in CO2 @ 273K 

are accurately reproduced [160-162] (see Appendix B part A. for details).  However, the saturation 

pressure of CO2 at high temperature (experimentally 34.85 bar @ 273K) using a one-center LJ fluid 

is not sufficiently accurate(p0
DFT = 38.9 bar) [145].  In previous works, the parameterization was 

valid for the low relative pressure range (< 0.03 p/p0), where the fluid is primarily confined to 

micropores and solid-fluid interactions dominate. However, in larger mesopores, the fluid-fluid 

interactions supersede the solid-fluid, and the exact value of the saturation pressure becomes more 

important – most notably for the correct determination of the pressures of capillary condensation 

and evaporation.  As such, in this work the saturation pressure was taken as an additional parameter.  

The value of p0 by which isotherms were normalized was chosen to generate the best agreement 

with  pore size predictions for the selected carbons in Section 3.3, as derived from conventional 

analysis gases (Ar and N2) and validated by XRD analysis [152]  [153]  (See Appendix B part B. 

for details of model saturation pressure). 

 Solid-fluid interaction parameters 

The parameters for the solid-fluid interactions are the same as those previously used for 

CO2-carbon interactions in both NLDFT[145, 154] and QSDFT [155], and are tailored to the DFT 

methods used.  For the NLDFT isotherms which are of exclusively slit geometry, the external 

potential Uext takes the form of the 1-dimensional Steele potential [163] 

𝑈𝑆𝑡𝑒𝑒𝑙𝑒 = 2𝜋𝜌𝑠
0𝛥𝜎𝑠𝑓

2 𝜖𝑠𝑓 [(
2

15
) (

𝜎𝑠𝑓

𝐳
)
10

− (
𝜎𝑠𝑓

𝐳
)
4
−

𝜎𝑠𝑓
4

3𝛥(0.61𝛥+𝐳)3
]                       (3.7) 
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 which is a sum of the interactions of  CO2 fluid molecules with two parallel, attractive walls: 

𝑈𝑒𝑥𝑡(z) = 𝑈𝑆𝑡𝑒𝑒𝑙𝑒(z) + 𝑈𝑆𝑡𝑒𝑒𝑙𝑒(𝐷 − z)                                         (3.8) 

Here, z is the dimensionless distance from the edge of the pore and D is the pore width, measured 

as internal width. The interlayer distance 𝛥 is 0.335 nm, the bulk density of carbon is 𝜌𝑠
0 is 114 nm-

3, 𝜎𝑠𝑓= 0.343 nm, and 𝜖𝑠𝑓 = 81.5 𝑘𝐵. 

 For the QSDFT isotherms, the CO2-carbon interactions usf are presented as a 9-3 Lennard-

Jones potential, with the same 𝜎𝑠𝑓 and 𝜖𝑠𝑓 as for the NLDFT Steele potential: 

𝑢𝑠𝑓 =
2𝜋

3
𝜖𝑠𝑓𝜌𝑠𝜎𝑠𝑓

3 [(
2

15
) (

𝜎𝑠𝑓

z
)
9
− (

𝜎𝑠𝑓

z
)
3
]                                   (3.9) 

 However, the solid density 𝜌𝑠 is no longer constant. Instead, the solid density 𝜌𝑠(𝑧) is a function 

of the distance along the pore width axis z. The solid density profile is represented by a linear ramp: 

𝜌𝑠(𝑧) = {

𝜌𝑠
0 0 ≤ 𝑧 < ℎ0

0.75𝜌𝑠
0 (1 −

𝑧−ℎ0

2𝛿
) ℎ0 ≤ 𝑧 < ℎ0 + 2𝛿

0 ℎ0 + 2𝛿 < 𝑧

                     (3.10) 

where h0 = 2x0.34 nm is the thickness of the solid wall and 𝛿 = 0.13 nm is the roughness parameter 

[2, 149].    This density profile (3.10) is applied in pores of both slit and cylindrical geometry 

(discussed below in Section 3.4) whenever the computational method is QSDFT. The increased 

complexity of this hybrid NL/QSDFT surface model (containing micropores with smooth walls, 

and mesopores with rough walls) represents an improvement over the simple pore structures 

previously used for characterizing adsorbents by DFT. It is a more realistic representation of the 

surface roughness as a whole, which may vary depending on pore size.  

 Recovery of the PSD by DFT 

 The pore size distribution (PSD) f(D) is calculated using an experimental isotherm 

Nexp(p/p0) by solving the integral adsorption equation (Eq. 3.11).  The experimental isotherm is 
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represented as the convolution of the DFT kernel NDFT(p/p0, D), which consists of a set of 

theoretical isotherms in a series of pores within a range of pore sizes D=Dmin … Dmax 

𝑁𝑒𝑥𝑝(𝑝/𝑝0 ) = ∫ 𝑁𝐷𝐹𝑇(𝑝/𝑝0 , 𝐷)𝑓(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
                           (3.11) 

where Dmin and Dmax are the minimum and maximum pore sizes provided by the kernel.  Inversion 

and solution of Eq. 3.10 is obtained using the quick non-negative least square method [164].  In 

this method Eq. 3.10 is represented as a matrix equation, solved using the discrete Tikhonov 

regularization method and combined with the non-negative least square algorithm [165]. 

3.4. High Pressure NL/QSDFT CO2 Kernels for Micro-Mesoporous Carbons 

 Theoretical isotherms of CO2 adsorption were calculated for slit and cylindrical carbon 

pores within the complete range of micro and mesopore sizes (0.36 to 50.2 nm) that can be probed 

experimentally with high-resolution CO2 adsorption measurements. The adsorption of CO2 in 

micropores of carbon is assumed to be completely reversible, and as such only equilibrium 

isotherms are calculated in the micropore range (<2nm).  In contrast to argon and nitrogen 

adsorption at 77 and  87 K, CO2 adsorption and desorption isotherms at 273 K are fully reversible 

(see discussion)  Here, it is suitable to calculate only the equilibrium isotherms for CO2 at this 

temperature and range of pressures.   The relative pressure range of the kernels extends over a wide 

range p/p0 =1x10-9 to 1, and is divided into a logarithmic grid of 600 pressure points.  Details of the 

developed kernels, which reflect a variety of possible adsorbent morphologies in micro-

mesoporous carbon coupled with various degrees of  surface roughness/heterogeneity are outlined 

below: 

(K1)  Hybrid kernel of NLDFT and QSDFT equilibrium isotherms in slit pores ranging 

from 0.356 to 50.232 nm, referred to as the slit pore kernel.  NLDFT is used to calculate adsorption 

in pores < 2.0 nm and QSDFT is used for the remainder of the kernel.  
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(K2)  Hybrid kernel of QSDFT equilibrium isotherms in cylindrical pores ranging from 

0.356 to 50.232 nm, referred to as the cylindrical pore kernel.  Isotherms for the smallest micropores 

< 0.5175 nm are slit NLDFT isotherms with the remainder (0.5175-50.232 nm) being cylindrical 

equilibrium isotherms. 

(K3)  Hybrid kernel of NLDFT and QSDFT equilibrium isotherms in slit and cylindrical 

pores ranging from 0.356 to 50.232 nm, called the slit-cylindrical kernel.  Pores of width < 2 nm 

are of slit geometry and pores > 2nm are of cylindrical geometry.  NLDFT is used to calculate 

adsorption in pores < 2 nm and QSDFT is used for the remainder of the kernel.   

 The choice of isotherm kernels for characterizing micro-mesoporous carbons and 

calculating the PSD should be made based on the first principles knowledge of the adsorbent 

material and the pore geometries for micro-and mesopores.  For the examples discussed in this 

work, the templating or synthesis procedure used to manufacture the adsorbent sample determines 

the shape of the mesopores (slit-like or cylindrical structures) and activation determines the model 

best-suited for micropores.  An important but alone not sufficient criterion is the degree of fitting 

of the PSD to the experimental isotherm. Improper choice of pore geometry generally leads to 

poorly fitted isotherms and can serve as a good indication of the applicability of a different model 

geometry. (See Appendix B part C for fitting example).   
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3.5. Experimental Results 

 

Fig. 3.1 Experimental isotherms of Ar (blue), N2(red) and CO2 (black) adsorption at 87, 77, and 

273K respectively for CMK-3 samples a, b and c.  Plotted values of Ar and N2 are in terms of 

excess adsorption, CO2 – absolute adsorption. Bottom right – adsorption (filled) and desorption 

(open) branches of CO2 isotherm on CMK-3 b. 

Figure 3.1 illustrates the adsorption of the three adsorbates – Ar @ 87K, N2 @ 77K, and 

CO2 @ 273K on the CMK-3 carbons labeled a, b, and c, respectively. The adsorption isotherms 

were measured using the methods and techniques described above in Section 3.2. The adsorption 

data in Fig. 3.1 are presented in terms of the adsorbed amount. The absolute adsorbed amount is 

not always straightforward; indeed, it is necessary to take into account both information about the 

analysis gas and the behavior of the experimental isotherm. In Section 3.7 we discuss the necessary 

conversion of the high surface excess data into adsorbed amount.   
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The CMK-3 a and b isotherms (Fig. 3.1) clearly indicate the presence of three distinct pore 

domains across all analysis gases.  Characteristic of N2 and Ar adsorption at 77 and  87 K, 

respectively, there is a steep micropore filling transition present in both samples below p/p0 = 0.1.   

For CO2 (273 K) the micropore filling region is shifted to higher relative pressures , as to be 

expected due to the closer vicinity to the bulk critical temperature TC  = 304K of CO2 (T/TC, N2 = 

0.61, T/TC, Ar = 0.58 T/TC CO2 = 0.9 ).  Analogous to micropore filling, capillary condensation 

into the primary mesopores occurs for CO2 at higher relative pressures (i.e. around p/p0 = 0.75) as 

compared to nitrogen and argon (around p/p0 = 0.5). Additionally, both samples exhibit a secondary 

mesopore domain as evidenced by capillary condensation of N2 and Ar in the relative pressure 

range from 0.75 – 0.9, which again is shifted to even higher relative pressures for CO2 adsorption 

- i.e very close to the saturation pressure   Interestingly, while nitrogen and argon capillary 

condensation are accompanied by hysteresis, mesopore filling with CO2 is in all cases reversible as 

clearly illustrated in Fig. 3.1 (bottom, right).  This figure shows the complete adsorption-desorption 

loop for CMK-3 b, in which the adsorption branch (filled circles) totally coincides with the 

desorption branch (open circles).  This feature is present in the isotherms of all three carbons (not 

shown, for clarity), indicating that CO2 at these conditions behaves as a near-critical fluid. In a 

manner similar to CMK-3 a and b, the Ar/N2 isotherms of CMK-3 c indicate significant 

microporosity, as well as well-defined mesopores as indicated by type H1 hysteresis loop. Similar 

as in case of CMK-3 a and b, pore filling of both the mico-and mesopores is shifted to higher 

relative pressures for CO2. 
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3.6. Application of Hybrid Kernels to Experimental Adsorption Isotherms 

 

Fig. 3.2. (Left) Differential pore size distributions for CMK-3 a generated from experimental Ar 

@87K, N2 @ 77K, and CO2 @273K isotherms using slit-cylindrical equilibrium kernels.  (Right) 

Primary mesopore size distributions for all three CMK-3 samples. 

As shown before, CMK-3 [21] consists of ordered mesopores, but also exhibits some 

disordered microporosity giving rise a characteristic bimodal distribution of micropores ~ 1nm and 

mesopores ~ 5nm.  The differential pore size distributions of CMK-3 a, b and c were calculated for 

CO2 @ 273K using the hybrid slit-cylindrical kernel (K3) described in detail above.  Using this 

kernel, the PSD of CO2 can be directly compared with the results derived from that of Ar or N2 

adsorption, for which comparable adsorbent models exist (see [151] for N2 and Appendix B part 

E. for Ar kernels).  The micro-mesopore CO2 pore size predictions for CMK-3 a are in reasonably 

good agreement with the Ar/N2 results, illustrated in Fig. 3.2 (left). CO2 adsorption correctly 

captures the bimodal pore size distribution of the CMK-3 materials and Fig. 3.2 (right) illustrates 

the ability of the CO2 kernel to differentiate between the primary mesopore sizes of these three 

samples. The cumulative pore volumes of the two smaller-pore CMK-3s (a & b) show striking 

similarity across all three analysis gases, plots of which are shown below in Fig. 3.3.    
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Fig 3.3. Cumulative pore volume V(D) as a function of pore width D for CMK-3 a and b.  

Measurements for Ar @ 87K – blue, N2 at 77K – red and CO2 @273K – black (absolute adsorption).  

 Fig. 3.3 compares the DFT cumulative pore volume plots as obtained from N2,  Ar and 

CO2 adsorption   and  demonstrates  reasonably good  agreement between of N2, Ar and the 

cumulative CO2 pore volumes obtained from the high pressure adsorption isotherms coupled with 

the application of the novel hybrid CO2 DFT kernel. Furthermore, the pore volume (referring to 

micro- and primary mesopores) are in good agreement with the pore volumes which can be obtained 

by applying the classical Gurvich rule as shown in Table 3.1. 

 

Table 3.1. Comparison of cumulative pore volume estimates from DFT and the Gurvich Rule, as 

measured by CO2. For samples with secondary mesoporosity (a,b) Gurvich volume is assessed 

from the plateau of the primary mesopore (p/p0 ~ 0.85) 

3.7. Discussion 

The ability of CO2 to accurately capture the pore size and volume of the CMK-3 samples 

described indicates that CO2 offers an efficient alternative method for the assessment of porosity 
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in carbons.  At the present, standard adsorption techniques [138, 143, 166] rely on N2 and 

increasingly, Ar adsorption at cryogenic temperatures. While these methods are extremely accurate, 

adsorption below 100K requires relatively long equilibration times [138], and consequently very 

long measurement times (1-2 days).  CO2 adsorption at high temperature (273K) increases the speed 

of gas diffusion in the pores of the sample, allowing CO2 to reach and fill ultramicropores at relative 

pressures much larger than cryogenic adsorbates (p/p0 =1x10-3 as opposed to 1x10-7), shortening 

total measurement times to several hours.  

 The high temperature and pressures involved in CO2 adsorption experiments also lead to 

unusual adsorbate behavior, particularly in mesopores.  As mentioned above, hysteresis – the 

quality of non-reversibility in an adsorption-desorption isotherm, is not observed for CO2 at this 

temperature.  According to standard theory[167], hysteresis should arise in fluid confined to 

mesopores due to the differing states of equilibrium that occur on the adsorption and desorption 

branches of an isotherm.  Upon adsorption, vapor-phase adsorbate adheres reversibly to the surface 

of pores, forming a “liquid like” phase on the surface which is in equilibrium with the vapor.  As 

external pressure p increases, this adsorbed layer becomes a film of increasing thickness, which 

grows until coming into contact with the liquid film from the opposite pore wall. At this point, the 

fluid condenses and forms a meniscus which is in equilibrium with the bulk vapor phase outside 

the pores.  Upon desorption, this meniscus recedes into the pore until the fluid “snaps” apart, 

becoming again a film on the pore walls.  In the case of conventional adsorbates, this produces two 

distinct branches on the adsorption isotherm corresponding to 1.) the film growth and condensation 

(adsorption branch) and 2.) the receding meniscus and fluid evaporation (desorption branch).  It is 

hypothesized that the absence of hysteresis in CO2 is indicative of the fact that the fluid is very near 

the critical point (304K, 75bar).  In this case, the pore fluid does not behave as distinct vapor and 

liquid phases, but as a semi-critical fluid.  This behavior is most pronounced in moderately sized 

(4-6nm) mesopores, where the condensation pressure is depressed significantly relative to the bulk.  
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The semi-criticality of the fluid in these mesopores may lead to large density fluctuations, which 

cannot be captured by conventional DFT based on mean-field approximations.  More sophisticated 

3-center fluid models [168, 169] of CO2, in concert with a Monte Carlo approach may yield 

isotherms which are more characteristic in the mid-mesopore range.  

 As mentioned above, it is important to remember that adsorption characterization methods 

such as DFT for high-pressure CO2 adsorption must utilize the absolute amount adsorbed.  Several 

methods exist for approximating the absolute adsorption amount, based on the fluid properties and 

assumptions about the pore volume.  A general expression for the absolute amount adsorbed na is 

given by: 

𝑛𝑎 = 𝑛𝑠 (1 −
𝜌𝑣

𝜌𝑙
)
−1

[1 + (
𝜌𝑣

𝜌𝑙
) (

𝑉Σ

𝑉𝑓𝑖𝑙𝑙𝑒𝑑
− 1)]                               (3.12) 

where ns is the excess amount adsorbed, 𝜌𝑣 and  𝜌𝑙 are the bulk liquid and vapor densities of the 

adsorbate, Vis the total pore volume of the sample, and Vfilled is the volume of those pores which 

are entirely filled with adsorbate.  For cryogenic gases Ar & N2, it is straightforward to determine 

the pressure at which micropores and mesopores fill completely – both transitions being marked 

by well-defined points along the experimental isotherm.  As such, the volume of filled pores at any 

pressure between these points (or after capillary condensation) can be approximated by either the 

micropore or mesopore volume.  However, the pressure of micropore filling in CO2 adsorption 

isotherms on micro-mesoporous materials is often indistinguishable, as shown in Fig. 3.1. Here, 

the only clearly defined pressure for CO2 isotherms is the capillary condensation point.  After this 

pressure, it is suitable to assume that Vfilled  = Vthereby reducing Eq. (3.12) to  

𝑛𝑎 = 𝑛𝑠 (1 −
𝜌𝑣

𝜌𝑙
)
−1

                                               (3.13) 

Here, we utilize a definition Eq. (3.13) to estimate the absolute amount adsorbed.  This equation, 

which relies solely on the bulk fluid properties, has been shown (Fig. 3.3) to provide an accurate 
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estimate of the absolute amount adsorbed for micro- and mesoporous carbons when the pore 

domains are relatively small.  Using this value of the absolute adsorption, CO2 pore volume 

measurements agree with measurements from other adsorbates and with the estimates ascertained 

from the Gurvich rule. 

3.8. Summary 

In this chapter of the dissertation, we propose a new tool for characterization of porous 

materials – namely high pressure CO2 adsorption at 273K, which may be used in concert with 

traditional adsorbents N2 and Ar to obtain a more complete picture of the structure of porous 

carbons in a single measurement.  The adsorption of CO2 at high temperature allows for fast 

diffusion to micropores, meaning quicker and more efficient measurements and equilibration times 

than are present for N2 or Ar adsorption, or CO2 at cryogenic temperatures. To accurately measure 

CO2 adsorption @ 273K, new adsorption equipment capable of withstanding the high pressures 

and temperatures of CO2 at saturation (34.85+ bar) has been developed and tested on several 

characteristic carbon adsorbents.  It was found that the adsorption of CO2 at high temperature 

produces reversible isotherms, which in general extend from p/p0 = 1x10-3 to 1, with pore filling 

occurring over a wider range of relative pressures than are present in adsorption at cryogenic 

conditions.   

 To analyze these adsorption isotherms, novel high-pressure hybrid NL/QSDFT kernels of 

absolute adsorption isotherms for several pore geometries were developed with pore sizes ranging 

from the ultramicropores (0.36nm, or one CO2 molecule wide) to the limit of experimental CO2 

pore size measurements ~ 50nm.  These kernels were tested on two standard hierarchical CMK-3 

carbons as well as one larger-mesopore CMK-3 carbon with a disordered pore structure.  The CO2 

pore size distributions were compared to the results from N2 and Ar adsorption using analogous 

kernels.  It was found that CO2 measurements of pore size and pore volume are in general agreement 
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with N2 or Ar.  In some cases, CO2 adsorption has been shown to be more sensitive to the presence 

of ultramicropores than N2 or Ar, leading to a more complete picture of the total pore volume. 
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CHAPTER 4 

Thermodynamic analysis of critical conditions of polymer adsorption 

4.1 Introduction 

Polymer adsorption to solid surfaces is a ubiquitous phenomenon with a wide range of 

technological and healthcare applications. Behavior of chain molecules at a surface is determined 

by competition between attraction due to adsorption and repulsion due to entropic penalty of the 

impermeable surface. Depending on the adsorption energy and temperature, the polymer assumes 

qualitatively different conformations: from a 3d solvated coil with one or few adsorbed monomers 

at weak adsorption and high temperature to a 2d chain with most monomers attached to the surface 

at strong adsorption and low temperature, as illustrated in Fig. 4.1. The transition between the 

regimes of weak and strong adsorption is quite sharp, and in the limit of “infinite” chain length, 

can be treated as a critical phenomenon[170]. The respective value of the adsorption energy Uc at 

given temperature T is called the critical point of adsorption (CPA). Alternatively, the critical 

condition of adsorption is characterized by the critical temperature Tc at given adsorption energy 

U. 

 

Fig. 4.1. Characteristic conformations of tethered chains. Adsorbed monomers are marked in red, 

solvated – in blue. Snapshots from MC simulations of freely-jointed chains composed of 200 

Lennard-Jones particles. (a) reduced adsorption energy, U = 0 (fully solvated coil at non-adsorbing 

wall), (b) -5.4 (CPA), (c) -7 (moderate adsorption), (d) -10 (strong adsorption).  
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The phenomenon of polymer adsorption attracted close attention of theoreticians starting 

from the 1930s when Broda and Mark[171] suggested the first statistical mechanical description of 

polymer adsorption. In the 1950s, Simha, Frisch and Eirich[29] modified the ideal Gaussian chain 

model for polymers to describe adsorption at a planar interface. The problem was then investigated 

heavily in the 1960’s[31, 33, 34, 172-175]. One of the earliest discussions of the transition between 

solvated and adsorbed chains may be found in the work of Higuchi[172], and Rubin[33] may be 

credited with introducing the term ‘critical energy’ with respect to ideal and excluded volume 

chains.  DeGennes in his landmark review[170] showed the existence of the CPA using the self-

consistent field theory[173].  Later on, there was much research to quantify the CPA using 

enumerative and self-consistent field theories, scaling theory and Monte Carlo simulations [35, 36, 

49, 176-179] the results of which were reviewed in [52, 180-182].  Due to the relative ease of 

simulation and reduced number of configurations possible, these methods were most often applied 

to lattice models of single chains end-tethered to a flat adsorbing surface, with notable exceptions 

[46, 183]. The CPA for tethered chains has been defined using geometrical and thermodynamic 

criteria. The geometrical approach is based on the scaling relationships for the fraction of adsorbed 

monomers and the chain gyration radii in normal and longitudinal directions [36]. The 

thermodynamic approach is based on the definition of the CPA from chromatographic experiments 

as the condition at which the partition coefficient between free and adsorbed chains is independent 

of the degree of polymerization.  The earliest proponents of this method were Skvortsov and 

Gorbunov[184] and much recent work using this method has been published by Gong and 

Wang[50] and others [64]. 

4.2 Definition of the Critical Point of Adsorption (CPA) 

In this chapter of the dissertation, we present a new thermodynamic method for 

determining the CPA that provides a link between the thermodynamic and geometrical approaches 
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for characterizing polymer adsorption. We propose to define the CPA from the equality of the 

incremental chemical potentials of adsorbed (tethered) and free chains, 

𝜇𝑖𝑛𝑐𝑟
𝑎𝑑 = 𝜇𝑖𝑛𝑐𝑟

𝑓𝑟𝑒𝑒
                                                                  (4.1) 

 The incremental chemical potential μincr(N) is defined as the difference in the excess free 

energies of chains composed of N and N+1 monomers, μincr(N) = Fex(N + 1) − Fex(N). As such, the 

free energy Fex(N) is determined by the summation of the incremental chemical potentials for each 

degree of polymerization from 0 (monomer) to N-1, 𝐹𝑒𝑥(𝑁) =  ∑ 𝜇𝑖𝑛𝑐𝑟(𝑖)
𝑁−1
𝑖=0 .   Noteworthy here 

is the principal difference between the definition of CPA from the condition of equality of 

incremental chemical potentials, μincr(N) , that we use in Eq. 4.1, and the condition of equality of 

the chain chemical potentials or the excess chain free energy, Fex(N), used in the previously 

published papers[184]-[64]. The proposed thermodynamic method is based on the experimental 

definition of the CPA in polymer chromatography, where the CPA separates the regimes of so-

called size exclusion chromatography (SEC) and liquid adsorption chromatography (LAC) [185-

187].  

The elution time at the CPA is chain length independent. This property is utilized in the 

so-called liquid chromatography at critical conditions (LCCC) for separation of polymers by their 

functionalities and morphology rather than by the molecular weight.  To fulfill this requirement, 

the partition coefficient, which is determined by the difference of the chain free energies in 

adsorbed and free states, 𝐾(𝑁) ∝ exp (−𝛽 (𝐹𝑒𝑥
𝑎𝑑(𝑁) − 𝐹𝑒𝑥

𝑓𝑟𝑒𝑒(𝑁))), must be chain length 

independent  [184]. Thus, the condition (Eq. 4.1) of the equality of the incremental chemical 

potentials is equivalent to the condition, 𝜕𝐾 𝜕𝑁⁄ = 0. 

Moreover, the “chain increment ansatz”[188] implies that the incremental chemical 

potential μinc(N) for sufficiently long chains is constant and does not depend on the chain length N. 

This ansatz holds for ideal chains. However, its extension to real chains has been a subject of 
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intense discussions [188, 189]. One recent detailed MC study[189] confirmed that the chain 

increment ansatz holds for free chains (N>>10) with Lennard-Jones non-bonded monomer-

monomer interactions at good solvent conditions, which are considered here. Below, we show that 

this ansatz holds also for tethered chains, and the proposed CPA definition (Eq. 4.1) can be read as 

the equality of two length independent constants. The critical value of adsorption energy Uc can be 

determined by calculating the incremental chemical potential 𝜇𝑖𝑛𝑐𝑟
𝑎𝑑  for different values of N and U 

and utilizing the fact that the plots 𝜇𝑖𝑛𝑐𝑟
𝑎𝑑  versus U at different N should intersect at U = Uc, as shown 

in Fig. 4.2 (a). 

4.3 Simulation Methodology  

The proposed thermodynamic method of definition of the CPA from the equality of 

incremental chemical potentials (Eq. 4.1) is illustrated drawing on the classical case study example 

of polymer chains tethered at the adsorbing plane surface. We performed MC simulations of freely 

joined chains of Lennard-Jones (LJ) particles of LJ diameter 𝜎𝑓𝑓 bound by harmonic bonds. Non-

bonded interactions were modeled with LJ potential with the cutoff distance of 𝑟𝑐 = 10𝜎𝑓𝑓 and no 

shift or tail correction added to the potential. The monomers interacted with the surface via the 

square well potential of width 𝜎𝑓𝑓 and depth –U measured in the units of the LJ interaction energy 

𝜖𝑓𝑓. The chain terminal bead was tethered at the surface at the distance of 0.5𝜎𝑓𝑓, in the center of 

the adsorption well.  The simulation box dimensions are of sufficient size, such that it is impossible 

for the polymer chain to “wrap around” the box and interfere with itself.  In this way, we ensure 

we are examining the dilute solution limit, with no influence from neighboring polymers. 

Equilibration of the system included displacement, configurational bias regrowth [190], and 

particle insertion/deletion moves.  

The free energies were calculated with the incremental gauge cell method (IGCM) 

proposed by our group recently.[188]  The IGCM is based on the Gauge Cell methodology,[191, 
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192] and assumes that a simulation cell of  volume VP  and a polymer of length NP is in 

thermodynamic equilibrium with a finite-volume ‘gauge cell’ VG of NG monomers which behave 

as ideal gas.  Gauge cell monomers may be added to/removed incrementally from the free end of 

the polymer, and the composite system (VP + VG = V, and NP+NG = N) is immersed in a constant 

temperature bath, T. The free energy for the polymer is given by the Helmholtz free energy, 

𝐹𝑃(𝑁) = −𝑘𝑇ln(𝑄(𝑁, 𝑉, 𝑇)) and the incremental chemical potential  𝜇𝑖𝑛𝑐𝑟(𝑁) is defined as the 

difference in free energy of a polymer of NP and NP+1 monomers 𝜇𝑖𝑛𝑐𝑟(𝑁𝑃) =  𝐹𝑃(𝑁𝑃 + 1) −

𝐹𝑃(𝑁𝑃).  Making use of the equilibrium between the gauge and simulation cells, the incremental 

chemical potential is determined from the average number of monomers in the gauge cell, and the 

ratio P(N) of the probabilities to observe NG and NG-1 monomers in the gauge cell over the course 

of a simulation:[188]  𝜇𝑖𝑛𝑐𝑟(𝑁𝑃) =  𝑘𝑇ln(
𝑃𝑁𝐺

𝑃𝑁𝐺−1
) –  𝑘𝑇ln(

𝑉𝐺

𝛬3𝑁𝐺
).  

4.4 Results 

 

Fig. 4.2. (a) Dependence of the incremental chemical potential on the adsorption energy U for 

tethered chains of different length N from 25 to 200. The intersection point corresponds to the CPA 

at Uc=-5.4 +/- 0.05 for the free jointed LJ chain model. Calculations performed with the IGCM. 

(b) Chain length dependence of the incremental chemical potential. Calculations support the chain 

increment ansatz: for sufficiently large N the incremental chemical potential is constant 

 Figure 4.2 (a) shows the IGGC incremental chemical potential obtained in 

simulations for the chains of different lengths for N varying from 30 to 200 in multiples of 10. The 

CPA of Uc = -5.4 +/- 0.05 is determined from the point of intersection, which is clearly defined.  
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Noteworthy, we define here the CPA not from the condition of intersection of the free energies 

𝐹𝑒𝑥(𝑁), as was done in earlier works [184]-[64], but from the condition of intersection of the 

incremental chemical potentials μincr(N) in accord with Eq. 4.1.  Additional calculation data is 

presented in the Appendix C. The chain length dependence of the incremental chemical potential 

(reduced by the respective free chain incremental chemical potential) is shown in Fig. 4.2 (b). In 

the repulsion and weak adsorption regime, U>Uc, the chains are extended and the difference 

𝜇𝑖𝑛𝑐𝑟
𝑎𝑑 − 𝜇𝑖𝑛𝑐𝑟

𝑓𝑟𝑒𝑒
 vanishes for large N (> 100). At the CPA, U = Uc=-5.4, the equality (1) holds starting 

from the chain length of N=25. In the adsorption regime, the asymptotic value of the incremental 

chemical potential is constant in conjunction with chain increment ansatz, but it depends 

progressively on U. The linearity of the length dependence of the chain free energy is also 

demonstrated, and the reader is directed to the supplementary material for details. 

   4.5 Scaling Analysis of Tethered Chains near the CPA 

The proposed thermodynamic definition of the CPA complies with the geometrical 

definitions employed in earlier works. DeGennes defined the CPA from the criterion that below 

the CPA, the probability Pa of adsorption for a monomer distanced from the tethered end by n 

monomers decreases to 0 as n increases. Above the CPA, this probability approaches a finite limit 

as 𝑛 →  ∞. Furthermore, it was suggested and confirmed in lattice and off-lattice simulations [36, 

183] that the chain adsorption behavior near the CPA is determined by a scaling relationship 

between the number of adsorbed monomers M, chain length N, and dimensionless deviation of the 

adsorption energy U from the CPA energy Uc,  𝜏 =
𝑈−𝑈𝑐

𝑈𝑐
   in the form 

𝑀 = 𝑁𝜙𝑓(𝜏𝑁𝜙)                                                           (4.2) 

Most of the published values of the crossover exponent 𝜙 fall into the interval between 

0.52 and 0.48 [36, 47, 49, 50, 183, 193, 194]. As determined in MC simulations of self-avoiding 

chains [183], the crossover exponent 𝜙 = 0.5 +/- 0.02 that coincides with its mean field value of 
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0.5 [181, 183]. In the following scaling analysis, we adopt the value of  𝜙 = 0.5 that is sufficient 

with respect of the statistical accuracy of our simulation data. To secure that the fraction of adsorbed 

monomers M/N does not depend on N in the limit of large N, the scaling equation (4.2) implies that 

in the limit of 𝑥 = 𝜏𝑁𝜙 → −∞ , the scaling function 𝑓(𝑥) ∝ |𝑥|
1

𝜙
−1

. As such, assuming 𝜙 = 0.5, 

𝑀/𝑁 ∝ |𝜏|
1

𝜙
−1

= |𝜏|, provided that 𝑁 ≫ |𝜏|−2. At the CPA in the limit of |𝜏| ≪ 𝑁−1/2, the fraction 

of adsorbed monomers decreases with the chain length as 
𝑀

𝑁
∝ 𝑁𝜙−1 = 𝑁−1/2. Based on this 

scaling ansatz (4.2), the CPA and crossover exponent can be evaluated from simulations by 

counting the fraction of adsorbed monomers and fitting the results to equation (4.2). Extrapolation 

of the linear asymptote in the adsorption regime gives the CPA of Uc = -5.4 +/- 0.05 in compliance 

with the proposed thermodynamic method. DeGennes’ method and that of equation (4.2) are 

illustrated for chains of length N=200 in the supplementary material, and show clear 

correspondence with the IGCM value of the CPA. 

The scaling ansatz implies also that the chain gyration radii in the normal 𝑅⊥ and parallel 

𝑅∥ directions to the surface scale as[36] 

𝑅⊥ = 𝑁𝜈3ℎ⊥(𝜏𝑁𝜙) and 𝑅∥ = 𝑁𝜈3ℎ∥(𝜏𝑁
𝜙)                                        (4.3) 

Here and below, ν3 = 0.588 and ν2 = ¾ are the 3d and 2d Flory exponents for polymer 

chains[183] and 𝑥 = 𝜏𝑁𝜙.  The scaling functions ℎ⊥ and ℎ∥ fulfill the following asymptotes. In the 

adsorption limit at 𝑥 = 𝜏𝑁𝜙 → −∞, 𝑅⊥ does not depend on N while 𝑅∥ scales as 𝑁𝜈2. These 

conditions require that ℎ⊥ ∝ |𝑥|
−

𝜈3
𝜙  and ℎ∥ ∝ |𝑥|

𝜈2−𝜈3
𝜙 , and respectively,  

𝑅⊥ ∝ |𝑥|
−

𝜈3
𝜙 𝑁𝜈3 = |𝜏|

−
𝜈3
𝜙 ,  𝑅∥ ∝ |𝑥|

𝜈2−𝜈3
𝜙 𝑁𝜈 = |𝜏|

𝜈2−𝜈3
𝜙 𝑁𝜈2, at 𝑥 → −∞              (4.4) 
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Fig. 4.3. (a) Scaling of the gyration radii in the adsorption regime. Linear asymptotes 

correspond to the theoretical slopes of −
𝜈3

𝜙
≈ −1.176 = for 𝑅⊥ (descending upper branch) and 

𝜈2−𝜈3

𝜙
≈ 0.324 for 𝑅∥ (ascending branch). The plot is based on the CPA of Uc = -5.4 determined by 

the thermodynamic method. (b) Parabolic scaling of the incremental chemical potential, multiplied 

by N. 

The geometrical scaling is illustrated in Fig. 4.3 (a), where the gyration radii 𝑅⊥ and 𝑅∥ 

calculated for chains of different lengths and surfaces of different adsorption energy are presented 

using the scaling coordinates of (3). The slopes of linear asymptotes in the adsorption regime 

correspond to the predicted values of of −
𝜈3

𝜙
≈ −1.176 = for 𝑅⊥ and 

𝜈2−𝜈3

𝜙
≈ 0.324 for 𝑅∥. 

In the repulsion limit at 𝑥 = 𝜏𝑁𝜙 → ∞, both 𝑅⊥ and 𝑅∥ scale as 𝑁𝜈3, and respectively 

𝑅⊥/𝑅∥~1. At the very CPA in the limit of |𝜏| ≪ 𝑁−1/2, ℎ⊥ and ℎ∥ approach certain constants, 

ℎ⊥(0) and ℎ∥(0). Thus, this scaling ansatz (4) implies that 𝑅⊥/𝑅∥ is independent of N at 𝜏 → 0. This 

conclusion was used[36, 49, 183] for the practical calculation of the CPA from the point of 

intersection of 𝑅⊥/𝑅∥ versus U plots for the chains of different length N. However, since the scaling 

ansatz holds only with the provision of large N, such a geometrical method applied for finite length 

chains may overestimate the critical point, as shown in the supplementary material. 

Finally, the geometrical scaling can be extended to the scaling of the chain free energy 

found by Gong and Wang [50]: For sufficiently long chains, the difference in free energy 

(approximated by the difference in incremental chemical potential times the degree of 
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polymerization, 𝛽𝜇 ∙ 𝑁) between the chain at one value of the incremental chemical potential and 

the corresponding value at the CPA may be described as a scalable function,  

𝛽Δ𝜇 ∙ 𝑁 = 𝛽(𝜇𝑖𝑛𝑐𝑟 − 𝜇𝑖𝑛𝑐𝑟
𝐶𝑃𝐴) ∙ 𝑁 ~ 𝑓(|𝜏|𝑁𝜙)                                            (4.5) 

Where the function 𝑓(|𝜏|𝑁𝜙) in the limit of strong adsorption fulfills a power law with an 

exponent 𝛼, 𝑓(|𝜏|𝑁𝜙) = 𝐴(|𝜏|𝑁𝜙)
𝛼

 , so that  𝛽Δ𝜇 ~ |𝜏|𝛼𝑁𝛼𝜙−1. As the degree of polymerization 

approaches infinity, we assume as above, that the difference in chemical potential becomes 

negligible and independent of the degree of polymerization, i.e. 𝑁𝛼𝜙−1 = 1.  For the mean-field 

crossover exponent, 𝜙 =
1

2
 this implies 𝛼 = 2. As such, we conclude that for large N, the difference 

in chemical potential scales with the deviation from the critical point quadratically, as Δ𝜇 ~ |𝜏|2 , 

𝑁 → ∞.  Figure 4.3 (b) illustrates the collapse of the incremental chemical potential data onto a 

master curve. For the case of strong adsorption, the curve is given by the parabola 𝛽Δ𝜇𝑁 =

𝐴(|𝜏|𝑁0.5)2, which follows from Eq. (4.5) above.  The degree with which this scaling law applies 

to finite size chains, such as those considered here, gives credence to the mean field value of 𝜙 = 

0.5, and corroborates the similar findings for the scaling of free energy by others[50] despite the 

disparity in computational approaches. 

   4.6 Summary 

In conclusion, we have proposed a new thermodynamic method for determining the CPA 

of polymer chains from the equality of the incremental chemical potentials of adsorbed and free 

chains and demonstrated its abilities with off-lattice MC simulations of a freely jointed chain of LJ 

particles. For the chemical potential calculations we employed the incremental gauge cell method 

suggested earlier [188]. We found that the proposed method provides a consistent description of 

the critical behavior in line with the classical scaling approach with the crossover exponent of 𝜙 = 

0.5. The established scaling relationships for the density of adsorbed monomers, chain radii of 

gyration, and most interestingly, the chain incremental chemical potential provide a detailed 
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description of the transition from the 3d conformations at weak adsorption to the 2d conformations 

at strong adsorption.  The proposed method can be extended from the surface-tethered chains 

considered here to polymer adsorption in more complex geometries, including porous substrates, 

and with various types of adsorption interactions. The proposed method is directly related to the 

experimental definition of the CPA in chromatographic experiments from the chain length 

independence of the partition coefficient [52]. As such, this thermodynamic method is expected to 

provide a rationale for modeling the polymer partitioning, especially in the regime of liquid 

chromatography at critical conditions [185-187]. 
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CHAPTER 5 

Critical conditions of polymer adsorption and chromatography on non-porous substrates 

5.1 Introduction  

Polymer adsorption is the key phenomenon occurring in numerous practical applications 

such as colloidal stabilization, adhesion, painting, coating, and liquid chromatography, among 

others. From the theoretical point of view, this phenomenon is a special case of interfacial phase 

transitions in polymer chains interacting with heterogeneous systems[195]. Polymer adsorption is 

governed by a competition between enthalpic attraction and entropic repulsion. At weak adsorption 

energy and high temperature, entropy penalty is prohibitive and chains are effectively repelled from 

the surface. The free energy of adsorbed chains increases with the chain length and the partition 

coefficient, which determines the concentration of adsorbed molecules, decreases. At stronger 

adsorption energy and low temperature, enthalpy gain exceeds entropy loss and chains are 

predominantly adsorbed. The free energy of adsorbed chains decreases with the chain length and 

the partition coefficient increases. The transition from weak to strong adsorption regimes upon 

variation of adsorption strength or temperature is quite sharp. Following the seminal work of 

DeGennes[48], it is treated as a critical phenomenon occurring at the so-called critical point of 

adsorption (CPA).  

The aforementioned regimes of adsorption are realized in three modes of liquid 

chromatography of polymers: weak or ideally no adsorption – in size exclusion chromatography 

(SEC), strong adsorption – in liquid adsorption chromatography (LAC), and an intermediate regime 

corresponding to the CPA  – in liquid chromatography at critical conditions (LCCC)[60]. Critical 

conditions (i.e. CPA) are experimentally found for a large number of polymers, and LCCC has 

become a very popular technique for polymer characterization, complimentary to SEC and 

LAC[26]. It is noteworthy that LCCC is used as a first step (first dimension) in the majority of 

reported 2-dimentional chromatographic separations of copolymers and other complex 
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polymers[60]. The key advantage of LCCC is that the partition coefficient at the CPA is chain 

length-independent and the separation occurs with respect to the chemical (composition, end-

groups, microstructure, and topology) differences in polymer chains, rather than to their size or 

molecular weight. 

As with any mode of polymer chromatography, LCCC is usually performed on columns 

packed with porous particles[26, 60]. However, the presence of pores is the main factor in the 

shortcomings of LCCC such as low mass recovery, peak splitting and distortion, and reduced 

efficiency due to dynamic effects caused by a substantial increase of chain equilibration time 

especially in a case of narrow pores[26, 196]. In SEC and LAC modes, the presence of pores is 

presumed to be essential: in SEC separation occurs as a result of partition of polymer chains 

between the pores and interstitial volume outside the particles; in LAC the internal (pore) surface 

increases column loading capacity. However, for LCCC the necessity of porous substrates is not 

obvious, assuming that the CPA exists also in the case of non-porous substrate.   Here, we 

demonstrate for the first time both experimentally and theoretically all three modes of polymer 

chromatography on non-porous substrates, including the existence of the CPA. The ability to 

perform LCCC on non-porous columns may improve efficiency and mass recovery of the 

separations without any of the shortcomings of the porous substrates.  

The phenomenon of critical adsorption on planar non-porous surfaces has been extensively 

studied in the literature by using various theoretical and simulation methods (see reviews[34, 48, 

180, 181]). Some of the most notable advances were the grand canonical formulation of 

Birshtein[35] and the scaling formulation of Eisenriegler, Kremer and Binder[36]. With the 

emergence of high speed computing, there was renewed interest in studies of polymer adsorption. 

Off-lattice, real chains (i.e. chains with excluded volume effects) were studied extensively and 

compared with earlier scaling results for ideal (Gaussian) chains, with general agreement[45-47, 

49].  However, these studies were mainly concerned with the geometrical transformations of chains 
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at critical conditions and the respective scaling relationships and did not focus directly on the 

adsorption thermodynamics that determines the chromatographic separation. The authors interested 

in chromatographic separation, e.g.[50] among the others, established the CPA from the condition 

of length independence of the excess free energy F(N) of the tethered chains (bound to the surface 

by one end) of N monomer units, which was calculated directly using various random walk or 

Monte Carlo simulation models. In our recent work[197] (Chapter 4 of this dissertation), we 

suggested a thermodynamic definition of CPA based on the notion of the incremental chemical 

potential (ICP), which represents the difference of excess free energy of chains of size N and N+1 

monomer units, respectively[198]. Drawing on an example of real chains tethered to planar 

surfaces, it was shown that the CPA condition may be derived from the condition of equality of the 

incremental chemical potentials of chains in the adsorbed and free (non-adsorbed) states[197].  The 

respective calculations of the free energies of adsorbed chains were performed with the original 

incremental gauge cell Monte Carlo simulation technique[198]. However, these results cannot be 

directly applied to the calculation of partition coefficients, which govern polymer separation, since 

tethered chains do not represent all possible conformations of adsorbed chains. Here, we extend 

this methodology to the case of untethered chains allowing us to determine the partition coefficient 

between adsorbed (retained) and free (unretained) chains following a rigorous adsorption theory.  

The partition coefficient is controlled in simulations by an effective adsorption interaction potential 

U between the chain segments and the surface.  We show that at a specific value of this potential, 

U=UCPA, the incremental chemical potential of the retained chains happens to be equal to that of 

unretained chains, and this condition corresponds to the chain length-independent separation at the 

CPA observed in the chromatographic experiments. The calculated partition coefficient is further 

used to predict the elution of a series of linear polystyrenes upon chromatographic separation on a 

column packed with nonporous particles to match the respective experiments. In the experiments, 

the partition coefficient is controlled by varying the solvent composition at constant temperature, 

which corresponds to varying the model adsorption potential U. Without invoking any adjustable 
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parameters related to the column structure, we are able to describe quantitatively the observed 

transition from SEC to LAC regimes of separation upon the variation of solvent composition, with 

the intermediate LCCC mode occurring at a well-defined CPA. Therewith, we establish a 

relationship between the experimental solvent composition and the effective adsorption potential 

used in simulations.  

 The rest of this chapter of the dissertation is structured as follows. In Section 5.2, we 

discuss the link between the Gibbs adsorption theory and the definitions of the retention volume 

and partition coefficient adopted in the chromatographic literature. We suggest to define the 

retained analyte through the Gibbs excess adsorption quantified by the respective Henry constant 

and show the relevance of the Henry constant to the retention volume and partition coefficient. In 

Section 5.3, we establish the CPA condition as the equality of the incremental chemical potentials 

of retained and unretained macromolecules. We also discuss the incremental gauge cell MC 

simulation for calculating the chain free energy and Henry constant. The simulation model and 

details of the simulation technique are given in Section 5.4. The results of calculations of the 

incremental chemical potentials and Henry coefficients for the chains of varying length at different 

adsorption potentials are presented in Section 5.5.  The experimental data on separation of linear 

polystyrenes on a column packed with non-porous particles is given in Section 5.6, and the 

correlation between the experimental and modeling results is presented in Section 5.7. Section 5.8 

discusses possible hydrodynamics effects during polymer separation on non-porous columns. Brief 

conclusions are summarized in Section 5.9. 

5.2. Retention volume, partition coefficient, and Henry constant  

In liquid chromatography, two chromatographic phases are introduced to differentiate 

between the two states of the solute (analyte): retained and unretained.  The phase with retained 

analyte is called the stationary phase and the phase with unretained analyte – mobile phase. The 

experimentally measured quantity is retention time 𝑡𝑅 (time required for a chromatographic peak 
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to elute from the column following sample injection) or retention volume 𝑉𝑅 = 𝑣0̇ ∙ 𝑡𝑅 where 𝑣0̇ is 

volumetric flow rate, so that VR is a volume of liquid passing with the analyte. The molecules of 

the solvent (liquid) used to carry the analyte along the column are unretained by definition and 

occupy the entire mobile phase, while their concentration in the stationary phase is assumed to be 

zero. As such, the volume of mobile phase VM is set equal to the retention volume of the solvent, 

which with a good approximation equals to the liquid volume of the column VL.   The retention of 

the analyte is considered relative to the carrying solvent, so that in the case of retained analyte, 

𝑉𝑅 > 𝑉𝐿. In order to eliminate the effect of column geometry, the so-called retention factor[199-

201] k’ = VR / VL – 1  is introduced as a parameter characterizing the retention of the analyte on a 

column packed with particles with specific surface chemistry at selected chromatographic 

conditions.  

In liquid chromatography, retention is usually considered as a result of distribution 

(partition) of the analyte between its retained and unretained states,[199-201] and the retention 

volume is related to the volumes of mobile and stationary phases, VM and VST , 

VR = VM + K VST                                                        (5.1)  

This equation assumes thermodynamic equilibrium between the mobile and stationary phases, 

respectively. The partition (distribution) coefficient, K, is defined as the ratio of equilibrium 

concentrations of the analyte in the retained (stationary) and unretained (mobile) phases. Note that 

equation (5.1) is applicable to various mechanisms of interaction between the analyte and the 

stationary state, including adsorption and the chromatographic partition. In case of polymer 

chromatography, the adsorption mechanism is more common due to a significant size of the 

polymer analyte compared to the size of the bonded phase, and this mechanism of retention will be 

assumed in the rest of this chapter of the dissertation.  
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The use of Eq.5.1 requires the definition of the volume of the stationary phase, which is a 

subject of the long-lasting discussions in the chromatographic literature[202, 203],[204]  As related 

to liquid chromatography of polymers, which, as liquid chromatography of any analytes, is 

commonly performed on porous substrates, the size of macromolecules could be comparable with 

the pore dimensions. For this reason, the volume of stationary phase is typically associated with 

the volume of pores, and the volume of mobile phase – with the interstitial volume outside the 

porous substrate.[26, 47, 52, 60] In this case, the partition coefficient Kpore describes the equilibrium 

distribution between the free macromolecules in the bulk solution within the interstitial volume and 

the macromolecules confined within the pores. This approach was first introduced by Casassa[205] 

to analyze the elution in SEC, where the polymer partition between the pores and the interstitial 

volume is due to steric interaction inside pores, and then extended to the adsorbing macromolecules 

in LAC and LCCC [26, 60, 201, 206]. The partition coefficient between the pores and the interstitial 

volume depends on the strength of adsorption interaction and sizes of the analyte and pores. For 

the non-adsorbing solvent, Kpore = 1, for non-adsorbing macromolecules in SEC regime Kpore < 1, 

for strongly adsorbing macromolecules in LAC regime, Kpore >1. Therewith, the critical condition 

of adsorption was assumed to correspond to Kpore,CPA=1, so that retention time of polymer analytes 

in LCCC does not depend on their molar mass and equals to that of solvent. Such definition of 

LCCC was theoretically justified for ideal chains and it was experimentally verified in various 

applications (See Chapter 1 of this dissertation for a detailed discussion). 

However, the representation of the stationary phase as comprised of the pore volume, 

accepted in the liquid chromatography of polymers, ignores the possibility of partitioning within 

the interstitial volume due to interaction of the analyte with the external surface of the substrate. 

This deficiency becomes especially obvious in case of the columns packed with non-porous 

particles considered in this work. To remedy this situation, we will use the fundamental concepts 
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of adsorption theory[207] to describe partitioning of polymer analytes between the bulk solution 

and the adsorbent surface.  

 We present the retention volume through the Henry constant KH defined according to the 

Gibbs adsorption theory as the ratio of the excess adsorption of the analyte per unit surface area of 

packed particles to its bulk concentration 𝑐0 in the solvent. A similar thermodynamic approach was 

used earlier for the theoretical description of the chromatographic separation of low-molecular 

weight analytes, for example by F. Riedo and E. Kovats[208], Kazakevich[200, 202, 206],   and 

Yun et al.[209], yet it has not been applied systematically to polymer adsorption in liquid 

chromatography. 

The excess adsorption is defined as the difference between the equilibrium amount of 

analyte in the adsorption system and the amount of analyte in the system of comparison. The latter 

represents the homogeneous analyte solution of concentration 𝑐0 in the volume equaled to the 

volume of the mobile phase, i.e. the volume of liquid VL.  As such, the total amount of analyte Ntot 

in the column is presented as the amount of analyte in the bulk solution of volume VL plus the 

excess adsorption that is proportional to the surface area S of the solid phase, 𝑁𝑡𝑜𝑡 = 𝑐0𝑉𝐿 + 𝐾𝐻𝑐0𝑆. 

Here, KH is the Henry constant defined according to the Gibbs adsorption theory as the ratio of the 

excess adsorption of the analyte per unit surface area of the stationary phase and its bulk 

concentration 𝑐0 in the solvent. Assuming that the amount of the retained analyte equals the excess 

adsorption, the retention volume can be presented as 

 VR = VL + KH S                                                     (5.2) 

This thermodynamic approach naturally relates the experimentally measurable retention volume 

with the Henry constant and the geometrical characteristics of the column. For the packing of non-

porous spherical particles of effective radius RP, the adsorbent surface area per unit volume of liquid 

is S /VL= (3/RP)(1 − 𝜖)/𝜖. Here, 𝜖 = 𝑉𝐿/𝑉𝑐𝑜𝑙 is the column porosity, defined as the ratio of the 
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liquid volume 𝑉𝐿 to the total column volume, Vcol. Hence, Eq. 5.2 can be re-written in terms of the 

capacity factor k’ as 

VR = (1+ k’)VL,     k’ =KH (3/RP) (1 − 𝜖)/𝜖                        (5.3)     

   

Alternatively, one can use the partition coefficient K defined in the spirit of adsorption 

practice[207] through the excess adsorption expressed per unit volume of the solid phase VS 

(adsorbent) rather than per its unit area. In this case, Eq. 5.2 can be re-written as 

VR = VL + KH S = VL + KVS, where K= KH (S /VS ) = KH (3/RP)                   (5.3’) 

Note that the above equation is equivalent to the traditional Eq. 5.1, if the volume of solid phase VS 

is formally considered as the volume of a stationary phase. The volume of solid phase VS does not 

correspond to the definition of the stationary phase traditionally used in the chromatographic 

literature as a volume in which the retained analyte is located. The advantage of Eq. 5.3’ with  VS 

playing a role of the stationary phase volume is that, this volume, VS = Vcol – VL, is clearly defined 

and can be used in practice for predictions of the retention volume. In the following discussion, we 

will use the notion of the partition coefficient K implied by Eq. 5.3’, to describe the thermodynamic 

equilibrium between the retained and unretained analyte.  

The thermodynamic definition of excess adsorption naturally includes the situation of 

analyte repulsion from the adsorbent surface, e.g. by entropy-driven steric interaction responsible 

for size-exclusion effects in SEC. In the case of repulsion, the analyte is excluded from the mobile 

phase. This effect takes place even in the case of non-porous columns, but only in the interstitial 

volume between the particles, which usually is ignored in conventional models of SEC. The excess 

adsorption of non-adsorbing or weakly-adsorbing macromolecules and respective Henry constant 

are negative, so that the retention volume of the analyte is smaller than that of the solvent. In this 

case, the analyte excess adsorption is negative and, respectively, k’ and K < 0.  



                                                                                                                                                                                                                        96 
 

                                                                            

It should be emphasized that utilization of Henry constant KH in Eqs. 5.3 and 5.3’ to 

describe the adsorption mechanism of chromatographic retention is more practical as compared to 

the traditional description of stationary phase in Eq. (5.1), employed in liquid 

chromatography[203]. It does not require the introduction of the adsorption layer or any stationary 

phase volume and uses easily measurable the total liquid volume of the column VL as the reference 

for comparison. Below, we show that by using the Henry constant as the thermodynamic parameter 

describing the partition of macromolecules through Eqs. 5.3 and 5.3’, it is possible to describe in a 

unified fashion the chromatographic separation on non-porous substrates in both LAC and SEC 

regimes as well as in LCCC mode. 

 

5.3. Critical conditions of polymer adsorption and Henry constant 

 We employ the thermodynamic definition of the critical conditions of polymer adsorption, 

which is directly related to the chromatographic measurements: at CPA, the partition coefficient K 

between the retained and unretained analyte is chain length (i.e. molecular weight) independent 

provided that the chain length N is not too short,  i.e. beyond a certain small number[73] of chain 

segments N*  

𝑎𝑡 𝐶𝑃𝐴 → 𝑑𝐾/𝑑𝑁 = 0    for N > N*                                      (5.4) 

The molecular weight independence of the partition coefficient for chains N >N* implies that all 

such chains have the same probability to be in the mobile or stationary phases and thus cannot be 

separated based solely on their molecular weight. This definition implies that at CPA, the partition 

coefficients for chains of different length must converge to the same constant value K=KCPA. 

Noteworthy, the magnitude of KCPA is not pre-defined. Let us remind that in our approach, the 

amount of retained analyte is defined through the Gibbs excess adsorption and the partition 

coefficient K is proportional to the Henry constant KH via Eq. 5.3’.  Qualitatively, KCPA is expected 
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to be around 0, since it separates the SEC and LAC regimes characterized, respectively, by negative 

and positive KH. This differs from the common assumption of Kpore,CPA=1 used in previous works, 

which considered the chain partition between the interstitial and pore volumes [50, 52].  

 Assuming a thermodynamic equilibrium during the chromatographic process, the partition 

coefficient for the chain of length N, K (N), is determined by the difference between the excess 

Helmholtz free energy of the retained (adsorbed) and free macromolecules respectively, F = 

𝐹𝑎𝑑𝑠(𝑁) − 𝐹0(𝑁), and is proportional to the Boltzmann factor of  F : K ~ exp[-F/kBT], were kB 

and T are Boltzmann constant and temperature, respectively. From here on, all energy terms are 

given in kBT units.   To formulate a thermodynamically consistent criterion of the CPA, we invoke 

the definition of the chain incremental chemical potential 𝜇𝑖𝑛𝑐𝑟(𝑖) as the difference between the 

excess free energy of chains of length N+1 and N: 𝜇𝑖𝑛𝑐𝑟(𝑁) = 𝐹(𝑁 + 1) − 𝐹(𝑁) = 𝑑𝐹/𝑑𝑁 [198]. 

The chain excess free energy is determined by the summation of the incremental chemical 

potentials of its constituent segments 𝐹(𝑁) =  ∑ 𝜇𝑖𝑛𝑐𝑟(𝑖)
𝑁−1
𝑖=0  . Note that 𝜇𝑖𝑛𝑐𝑟(0) represents the 

excess chemical potential of a monomer (single segment). According to the chain increment 

ansatz[210], the incremental chemical potential of free unconfined chains is independent of the 

chain length, 𝜇𝑖𝑛𝑐𝑟
0 (𝑖) = 𝜇𝑖𝑛𝑐𝑟

0 = 𝑐𝑜𝑛𝑠𝑡, provided that the chain is sufficiently long, i >N*. 

Respectively, the free energy of unconfined chains is a linear function of the chain length, 𝐹0(𝑁)  

= 𝐹0(𝑁∗) + (𝑁 − 𝑁∗)𝜇𝑖𝑛𝑐𝑟
0 . The CPA condition (5.4) implies that dF/dN=0 and respectively, the 

incremental chemical potential of adsorbed chains at the CPA must be chain length independent 

and equal to the incremental chemical potential of free chains, 

𝜇𝑖𝑛𝑐𝑟 = 𝜇𝑖𝑛𝑐𝑟
0                                                              (5.5) 

As such, the thermodynamic condition of the equality of incremental chemical potentials is 

equivalent to the chromatographic definition of the CPA as the condition of chain length 
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independent elution. Note that this CPA condition is different from the condition of equality of the 

chain excess free energy, 𝐹𝑎𝑑𝑠 = 𝐹0, used in the earlier works.[64, 211] 

 In Section 4 of this dissertation[197], we verified the CPA condition (5.5) for adsorbing 

chains tethered to a non-porous surface and showed that this thermodynamic condition is consistent 

with classical scaling relationships which exist at the CPA for the fraction of adsorbed monomer 

segments, chain radii of gyration and chain free energy[36, 48]. Here, we consider a general case 

of chains which are not tethered, yet interact with the surface through an adsorption potential. 

Characteristic conformations of chains interacting with the surface are shown in Figure 5.1. 

 

Fig. 5.1. Schematics of different conformations of chains near the surface used for Monte Carlo 

calculation of the chain free energies. The polymer molecules are modeled as freely jointed 

chains of beads, representing Kuhn segments of size b. The dark strip represents a square-well 

adsorption potential of width b. To account for the entropic restrictions of allowed conformations, 

the chains are distinguished by the position z of the end segment (gray beads). Adsorbed 

conformations include (A) the chains end-anchored at the surface (tethered chains) and (B, C) the 

chains anchored beyond the adsorption well with at least one segment located inside the well.  

The free chain reference (D) is anchored at sufficient distance z > N to exclude possible 

interactions with the surface.  

 

 As defined above in Eq. (5.3’), the partition coefficient is directly proportional to the 

adsorption Henry constant, KH(N), that is the ratio of the excess adsorption per unit surface area 
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and the bulk concentration of the chains with N segments. The Henry constant KH(N) at a plane 

surface can be presented as the integral along the z-direction perpendicular to the adsorbing surface 

of the ratio of the Boltzmann factors of the chains located at distance z from the surface and free 

chains[73].    

𝐾𝐻(𝑁) = ∫ [exp(−(𝐹(𝑁, 𝑧) − 𝐹0(𝑁))) − 1]𝑑𝑧
∞

𝑧=0
                          (5.6) 

Here, 𝐹(𝑁, 𝑧) is the excess free energy of chains anchored by the end segment at the distance z to 

the surface. For sufficiently large z, 𝐹(𝑁, 𝑧) → 𝐹0(𝑁). The ratio of Boltzmann factors 

exp(−𝐹(𝑁, 𝑧)) / exp(−𝐹0(𝑁)) represents the ratio of concentrations of chains anchored at 

distance z and free chains. A detailed derivation of Eq. (5.6) is given in Appendix D. In order to 

calculate the Henry constant, 𝐾𝐻(𝑁), one has to compute the excess free energy, 𝐹(𝑁, 𝑧), as a 

function of the anchoring distance z. This is done below using the incremental chemical potential 

representation of the free chain energy 𝐹(𝑁, 𝑧) =  ∑ 𝜇𝑖𝑛𝑐𝑟(𝑖, 𝑧)
𝑁−1
𝑖=0    and employing the incremental 

gauge cell MC method[198]. A respective schematic of this procedure is shown in Appendix D 

Figure 1. 

5.4. Chain model and simulation methodology 

To compute the chain free energy and analyze its dependence on the chain length and 

adsorption potential, we employ the methodology developed in our previous works[72, 197, 198]. 

The simulation set-up is the same as before[197], so that the results obtained there for tethered 

chains are used as references. The polymer molecules are modeled as freely jointed chains of beads 

connected by harmonic springs. In this simplistic model, the beads represent Kuhn segments of 

length b, and there is no chain stiffness or limitations on bond angles or torsions. Exclusion volume 

effects are introduced via Lennard-Jones (LJ) interactions between non-bonded beads. Simulations 

were performed at dimensionless temperature T* = 8 to ensure “good” solvent conditions in the 

bulk[212]. Adsorption at the solid surface is modeled by a square-well interaction between beads 
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and the adsorbing surface of width equal to the bead diameter b. The magnitude of this potential, 

U, is varied from 0 to -1 to capture the whole range adsorption, exclusion, and critical conditions.  

 Independent simulations were performed for chains anchored at discrete distances z, 

measured in units b, by varying the chain lengths from N = 1 to N = 200 as illustrated in Appendix 

D Fig. D1. Free energy minimization is accomplished by the Metropolis method and the 

incremental chemical potentials 𝜇𝑖𝑛𝑐𝑟(𝑖, 𝑧) are measured via the incremental gauge cell 

method[198]. Each simulation consisted of 400 million MC moves per chain (displacement, 

insertion/deletion and configurational bias regrowth[44]) to equilibrate chain conformations, 

followed by 500 million moves to sample the conformational space and to compute the incremental 

chemical potential 𝜇𝑖𝑛𝑐𝑟(𝑖, 𝑧). The incremental chemical potentials 𝜇𝑖𝑛𝑐𝑟(𝑖, 𝑧) of chains of length i 

from 1 to N are summed to compute the chain excess free energy 𝐹(𝑁, 𝑧) =  ∑ 𝜇𝑖𝑛𝑐𝑟(𝑖, 𝑧)
𝑁−1
𝑖=0 . The 

free chain excess free energy 𝐹0(𝑁) is computed by anchoring the chain at z=N to exclude a 

possibility of its interaction with the surface. Our calculations showed that 𝐹(𝑁, 𝑧) converges to 

𝐹0(𝑁) at distances z exceeding the calculated radius of gyration RG(N) of the free chain of length 

N. The Henry constant 𝐾𝐻(𝑁) was then computed with Eq. 5.6. 

5.5. Determination of the critical point of adsorption in Monte Carlo simulations 

  In Figure 5.2, the incremental chemical potentials 𝜇𝑖𝑛𝑐𝑟 of the chains anchored at different 

distances z are plotted as a function of the chain length N at the adsorption potential 𝑈 = UCPA = -

0.725. As shown above in Section 4 of this dissertation, this value corresponds to the CPA in the 

case of tethered chains. At this value of the adsorption potential, the two key features of the 

incremental chemical potential are apparent. First, for all chains of N > 10 and any z, the incremental 

chemical potential is practically constant, i.e. chain length-independent. Second, the incremental 

chemical potential approaches that of the free chain, fulfilling the CPA condition (5.5): 𝜇𝑖𝑛𝑐𝑟 =

𝜇𝑖𝑛𝑐𝑟
0 . We also have demonstrated (not shown) that at z > RG, the incremental chemical potential is 
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constant and equals to 𝜇𝑖𝑛𝑐𝑟
0  for any N, which is a logical result for the short-range square well 

adsorption potential utilized, i.e. as the anchoring distance increases, the number of configurations 

affected by the surface decreases. Notably, CPA in the general case of adsorbing yet untethered 

chains is the same as for the tethered chains. 

 

Fig. 5.2.  Incremental chemical potential as a function of N for different anchoring distances z at 

the critical value of the adsorption potential UCPA = -0.725. All lines converge to the dotted line 

𝜇𝑖𝑛𝑐𝑟 = 𝜇𝑖𝑛𝑐𝑟
0  as N becomes sufficiently large. 

 

 After summation of the incremental chemical potentials and calculation of the free 

energies, the Henry constant was obtained using Eq. (5.6), and plotted as a function of adsorption 

potential (Fig. 5.3, left) for a series of characteristic chain lengths N, and as a function of N for 

various adsorption potentials (Fig. 5.3, right). 
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Fig. 5.3. (Left) Henry constant 𝐾𝐻(𝑁) computed for a series of characteristic chain lengths (N = 

20-200) as a function of the adsorption potential U. The intersection point corresponds to the CPA 

at U = UCPA = -0.725. (Right) Henry constant as a function of N for different values of U. At UCPA 

= -0.725, 𝐾𝐻(𝑁) is constant (LCCC mode), decreasing 𝐾𝐻(𝑁) values correspond to SEC mode at 

U > UCPA, increasing 𝐾𝐻(𝑁) values correspond to LAC mode at U < UCPA 

 

 The Henry constant is given naturally in the units of length (b). For the adsorption 

potentials weaker than the critical potential, the Henry constant is negative, indicating negative 

excess adsorption and depletion from the surface (Fig. 5.3, left).  There is a significant spread of 

the Henry constants at zero adsorption potential, indicating increased selectivity of separation in 

SEC mode. Then, the spread of KH becomes narrower as the critical potential is approached. At the 

CPA, the Henry constant is the same for all chain lengths (intersection point in Fig. 5.3, left) – a 

consequence of its relation to chain excess free energy.  The Henry constant at the CPA is close to 

0 yet is slightly positive 𝐾𝐻(𝑁)𝐶𝑃𝐴 = 1.25 +/- 0.45; its magnitude rapidly increases as the strength 

of the adsorption potential deviates from the CPA value. Above the critical potential, the Henry 

constant (and excess adsorption) is positive and chains are separated in the reverse order to that of 

the weak potentials.  

 Likewise, the behavior of the Henry constant as a function of the chain length (Fig. 5.3, 

right) at various values of adsorption potential U confirms the existence of critical conditions at 
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UCPA = -0.725 as predicted by the incremental chemical potential.  Here, it is shown that for 𝑈 > 

UCPA, 𝐾𝐻(𝑁) is a decreasing function of N, implying shorter chains are more likely to be adsorbed 

than longer ones.  At the other end of the spectrum, when 𝑈< UCPA, 𝐾𝐻(𝑁) increases with N, 

indicating longer chains have a higher probability to be adsorbed.  At 𝑈=UCPA, the Henry constant 

is constant for chains with N > 10, which is consistent with the definition of critical conditions in 

Eq. (5.4). 

  In the chromatographic experiments, the retention factor k’ or the partition coefficient K 

= k’VS/VL can be estimated from the directly measurable retention volume VR.. In order to directly 

compare the experiments to the theoretical predictions, it is necessary to convert the 

thermodynamically derived Henry constant KH(N) into the partition coefficient 𝐾 from Eq. (5.3’).  

To accomplish this conversion, one needs to know the following parameters of the chromatographic 

column: the column porosity 𝜖, total liquid volume VL and effective particle radius RP. The 

comparison between the experimental data and the theoretical prediction is illustrated below. 

5.6. Experimental confirmation of the existence of CPA in chromatographic separation on a 

non-porous column  

 A series of isocratic chromatographic experiments was performed using a column packed 

with non-porous particles. Separation was completed using Waters Corporation (Milford, MA, 

USA) Alliance® 2695 chromatography system coupled with Waters 2489 UV/Vis dual-wavelength 

absorbance on-line detector. Imtakt (Portland, OR)  4.6mm ID x 150 mm Presto® FF-C18 column 

packed with 2 micron diameter non-porous C18-bonded silica particles was used for separation. The 

mobile phase was comprised of mixtures of two HPLC-grade solvents, tetrahydrofuran (THF) and 

acetonitrile (ACN), both obtained from J.T. Baker (Phillipsburg, NJ) and used without further 

purification. The percentage of ACN ranged from 0% to 56% by volume to cover the full range of 

elution modes as shown previously for a similar porous substrate[213]. Column temperature was 

kept constant at 35℃ and mobile phase flow rate 𝑣0̇ was 0.25 ml/min.  The series of narrow 
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polydispersity linear polystyrenes (PS) ranging in peak molar mass M from 1350 to 186,000 g/mol 

was purchased from Waters. Retention time 𝑡𝑅 was measured using the UV/Vis detector. Toluene 

was used to measure unretained liquid volume.  Retention volume VR for each individual 

polystyrene at each solvent composition characterized by the vol% ACN, X, was assessed using the 

standard formula 𝑉𝑅 = 𝑣0̇ ∙ 𝑡𝑅 and is presented in Fig. 5.4 (left) as a function of Log M. The data 

clearly demonstrates the transition from the SEC mode of separation at lower ACN concentrations 

(X<54%) to the LAC mode at higher concentrations (X>54%). The LCCC mode is observed at X= 

54%, when the retention volume is chain length independent within the experimental error.  

 

Fig. 5.4. (Left, triangle symbols) experimental and (right, square symbols) theoretical retention 

volumes for a series of polystyrenes as a function of vol % ACN, X=0 to 56%, in the eluent (left) 

and the adsorption potential, U=0 to -0.875 in kBT units (right). CPA corresponds to X=54% and 

U=-0.725, respectively. 

5.7. Correlation between the experimental and modeling results  

 For the column employed in experiments, RP (the average particle radius) is ~1 micron, as 

reported by the vendor.  It is assumed that the retention volume measured by UV detector of a tracer 

molecule (toluene), VR = 1.088 ml, is an approximation of the total liquid volume VL .  Taking into 

account the total column volume Vcol =  2.49 ml, the column porosity is estimated as  𝜖 =
𝑉𝐿

𝑉𝑐𝑜𝑙
=

0.44.  Using these parameters in Eq. 5.3’, we calculated the partition coefficients for several chains 

of different lengths N (Fig. 5.5).  These chain lengths correspond directly to the molecular weights 
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of the experimental polystyrene chains described in Fig. 5.4 (left), using the scaling b = 2nm, 

corresponding to the Kuhn segment length for polystyrene in a thermodynamically good 

solvent[62].  

 

Fig. 5.5 Partition coefficient K as a function of the adsorption potential 𝑈 for chains of length N 

between 2 and 200.    

  

 The partition coefficient K in Fig. 5.5 clearly illustrates the transition from SEC to LAC 

modes with the decrease of the adsorption potential. For weak potentials 𝑈 >  −0.725, the partition 

coefficient is negative indicating effective ‘repulsion’ from the stationary phase.  Here, the shorter 

chains have smaller partition coefficients than larger chains, constituting the size-exclusion mode.  

Conversely, at stronger negative adsorption potentials 𝑈 < −0.725,  K is positive and the order of 

partitioning with respect to chain length is reversed.  Finally, in the vicinity of 𝑈𝐶𝑃𝐴 = −0.725, 

the K-values for all chains intersect, indicating the position of the critical adsorption potential. 

 The calculated values of partition coefficients K were next used to calculate directly the 

retention volume of the chains from equation (5.3’) to compare the experimental retention volumes 

with those predicted by simulations.  The results of these calculations are presented in Fig. 5.4 
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(right) alongside the experimental retention volumes in Fig. 5.4, (left). There is a striking 

quantitative similarity between the theoretical and experimental data that allows us to conclude that 

the effective adsorption potential U used in the simulations depends on the solvent composition X 

with the respective CPA values of XCPA=54% and UCPA=-0.725. Using the theoretical and 

experimental values of the retention volumes, one can construct a correlation between U and X 

using an interpolation scheme.  At Fig. 5.6, such a relationship is shown in the corresponding 

dimensional units.  This correlation may then be used to predict the retention behavior at an 

arbitrary solvent composition, or for gradient elution separation in a similar system[213].  

 

Fig. 5.6. Correlation between the reduced adsorption potential U’ =(U-UCPA)/ UCPA and reduced 

solvent composition X’=(X-XCPA)/ XCPA.  The respective CPA values are XCPA=54% and UCPA=-

0.725. 

  

 The reduced adsorption potential U’ =(U-UCPA)/ UCPA and reduced solvent composition 

X’=(X-XCPA)/ XCPA presented in Fig. 5.6 are normalized by the critical values 𝑈𝐶𝑃𝐴 = −0.725 and 

XCPA = 0.54, respectively.  In these coordinates, the size-exclusion order of elution corresponds to 

negative values of U’ and X’, and the adsorption mode - to positive.  At the critical conditions, 𝑈′ 

= X’ = 0.  The transition from SEC to LAC modes occurs within a very narrow range of mobile 

phase compositions, which is also found to be true for the adsorption potential.   The correlation 



                                                                                                                                                                                                                        107 
 

                                                                            

shown in Fig. 5.6 may serve as a justification for various solvent strength models discussed in the 

HPLC literature[199] [202, 203]. 

 The experimental retention diagram shown in Fig. 5.4 (left) illustrates for the first time all 

three modes of polymer chromatography on a non-porous column, including the existence of 

critical conditions, i.e. molecular weight independent elution at eluent composition close to 54% 

ACN. Such a conclusion was possible because of including into consideration both size-exclusion 

(entropy-driven) and adsorption (enthalpy-induced) interactions occurring in the interstitial volume 

between particles, which are commonly ignored in both size-exclusion and interaction 

chromatography[60]. The SEC-type behavior of the chromatographic system is observed at lower 

concentration of ACN (below 54%) (Fig. 5.4, left). Thus, in pure THF (purple triangles), the 

difference in retention volumes for the large and low molecular weight chains differs by more than 

10%, and the largest chains elute well before an injected flow marker (toluene, VR = 1.088 ml).  As 

the column used is non-porous, only interstitial volume can contribute to such size-exclusion type 

of elution.  For large chains, the transition from SEC to LAC is very sharp, so that at 55% ACN 

and higher the retention of large chains far exceeds those of the smallest molecular weight.  

 The correspondence of the experimental data to the results of simulation shown in Fig. 5.4 

is remarkable: almost quantitative agreement is found without invoking any adjustable parameters 

related to the column geometry. The thermodynamic model proposed for the partition coefficient 

involves known geometrical parameters of the experimental column and its packing particles.  The 

effective adsorption potential then is mapped to the experimental solvent composition.  

5.8. Effect of hydrodynamic separation   

 In the theoretical consideration above, we took into account only the thermodynamic 

mechanism of separation of macromolecules as it is related to the interplay between steric 

(entropic) and adsorption (enthalpic) interaction. Such an approach is well accepted for the analysis 
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of chromatographic separation of macromolecules inside pores, but never was used for description 

of the separation outside pores. It is a general consensus[60] to ignore both adsorption and steric 

interactions in interstitial volume and to consider the latter as a source of possible hydrodynamic 

(flow-induced) separation in hydrodynamic chromatography (HDC)[214].   Inhomogeneity of the 

flow field as a potential mechanism of separation by size in the chromatographic column packed 

with porous particles has been introduced by DiMarzio and Gutman[215]  at the same time as 

Cassasa offered his thermodynamic, entropy-driven  mechanism[51, 205].  The commonly 

accepted theory currently is that the thermodynamic mechanism of separation is dominant only 

inside pores, while the separation (if any) outside pores occurs by flow-induced forces[201].  This 

theory is based on the assumption that liquid inside pores represents so-called stagnant mobile 

phase, where mass transfer occurs predominately by molecular diffusion, while the mass transfer 

in the interstitial volume is described by the laminar flow convection accompanied by diffusion.  

Usually, this laminar flow is described by a parabolic (Poiseuille) flow velocity profile using the 

analog of an open tube channel[214] (see also Appendix D).  The separation occurs due to a 

distribution of the residence time of chains of difference size as a function of their distance from 

the wall. The parabolic flow velocity profile allows for a small solute to be close to the walls where 

the flow is stagnant, while the larger molecules remain nearer the center of the tube where flow is 

fastest. Qualitatively, the result of such flow-induced separation is the same as of the steric effect 

in SEC: the larger analytes elute earlier than the smaller ones.  Quantitatively, the standard HDC 

model for polymers in a packed bed[214]  only superficially underestimates the spread of the 

retention times for the system considered in this work, as shown in the Appendix D where the 

results of separation in the aforementioned experimental system (polystyrenes in THF) are modeled 

using both the hydrodynamic and thermodynamic theories.  

 It is hypothesized that a discrepancy between the HDC model and experimental results 

described here can be attributed to the non-Poiseuille nature of the packed bed flow profile, which 
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is  characterized by a pronounced stagnant (boundary layer with zero or low flow velocity) zone in 

the mobile phase near the surface of the particles, and a plug-flow velocity profile within the 

channels between particles, outside the stagnant zone[216]. Which mechanism really controls the 

separation in the interstitial volume depends on the size of the stagnant zone, which is affected by 

eluent viscosity, particle geometry, flow rate and diffusion coefficient of the analyte.   If the 

stagnant zone is narrower than the size (radius of gyration RG) of a polymer chain, then the 

hydrodynamic (flow) effects prevail (Fig. 5.7, left).  In the opposite case of a wide stagnant zone 

(Fig. 5.7, right), all chains that interact with the surface are located within the stagnant zone and 

are effectively shielded from the “moving” part of the mobile phase flow. In this case, the separation 

is controlled by the thermodynamic effects with competing steric and adsorption interactions, and 

the hydrodynamic effects have less impact.   As shown in Appendix D, the estimation of the width 

of the stagnant layer in the aforementioned experimental system[217], leads to a value far 

exceeding 10 Kuhn segments (radius of gyration of the largest chain considered), which justifies 

the use of the thermodynamic approach in simulation.  

 

Fig. 5.7. Effect of stagnant zone in the interstitial volume on retention.  (Left) Stagnant zone 

(width denoted by black arrow) is smaller than chain’s radius of gyration, hydrodynamic effects 

prevail.  (Right) Stagnant zone is larger than radius of gyration, thermodynamic effects govern 

the separation. 

5.8. Summary 
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This chapter of the dissertation presents a novel thermodynamic method to describe the 

macromolecule adsorption on nonporous surfaces and to examine the critical conditions of 

adsorption using the incremental gauge cell MC method. The developed theoretical approach is 

applied to chromatographic separation of polymer analytes on non-porous column.  The proposed 

approach implies the thermodynamic equilibrium between unretained and retained analyte treated 

in terms of the Gibbs adsorption theory. The amount of retained analyte is defined through the 

Gibbs excess adsorption that is quantified by the respective Henry constant KH. Therewith, the 

partition coefficient K between retained and unretained analyte is introduced through the Henry 

constant KH. Such definition implies that (i) at weak or no adsorption characterized by negative KH 

(partition coefficient K(N)<0 and progressively decreases with N), the chains are effectively 

repelled from the surface and the chain elution proceeds in the SEC mode with larger chains eluted 

first; (ii) at strong adsorption characterized by positive KH (K(N)>0 and progressively increases 

with N), the chains are adsorbed at the surface and the chain elution proceeds in the LAC mode 

with smaller chains eluted first; (iii) the critical point of adsorption (CPA), which separates SEC 

and LAC modes, is experimentally defined by the simultaneous elution of chains regardless of their 

length, and corresponds to the conditions of chain length independence of KH (K (N)=const=KCPA ~ 

0).  

From the thermodynamic standpoint, the CPA is defined by the equality of the incremental 

chemical potentials of adsorbed (retained) and free (unretained) chains. Using the incremental 

gauge cell MC method, we calculated the free energies and the respective Henry constants and 

partition coefficients of the adsorbing chains of different lengths at given adsorption potential. 

Upon the increase of the adsorption potential, we traced the transition from the SEC to LAC modes 

of separation with clearly defined intermediate mode corresponding to CPA. The theoretical results 

were compared with the specially designed chromatographic experiments with linear polystyrenes 

separated on a column packed with nonporous particles. For the first time, all three modes of elution 
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were demonstrated on a non-porous column, both experimentally and theoretically.  We found that 

by choosing the appropriate conversion factors derived entirely from the column parameters, it is 

possible to qualitatively reproduce the retention behavior of a series of linear polystyrenes across a 

broad range of solvent compositions, encompassing the SEC, LAC, and LCCC conditions. The 

comparison of the experimental and calculated retention volumes allowed establishing the 

relationship between the solvent concentration and the effective adsorption potential used in 

simulations. 

The simulation model employed here is one of the most simplistic models of the polymer 

chains with excluded volume. However, it captures the main competing mechanisms of polymer 

separation: entropic repulsion leading to size-exclusion mode of separation and enthalpic attraction 

due to adsorption. The advantage of this model is the absence of adjustable parameters except for 

the effective adsorption potential that allowed for a direct mapping of the theoretical results to the 

experimental data. This model can be further elaborated to take into account more complex chain 

topologies and microstructures, like specifics of end groups, star polymers, block- and statistical 

copolymers, etc. One of the important issues is the effect of inhomogeneous flow patterns in the 

packed beds that may lead to the hydrodynamic separation coupled with the thermodynamic 

separation was also considered. 
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CHAPTER 6 

 Mechanisms of Chain Adsorption on Porous Substrates and Critical Conditions of Polymer 

Chromatography 

6.1. Introduction  

 Adsorption of polymer chains on porous substrates is a complex physico-chemical 

phenomenon relevant to a broad range of applications such as drug delivery, filtration, and 

adhesion, as well as various separation methods including liquid chromatography of 

macromolecules. Adsorption of polymeric chains is governed by the competing mechanisms of 

enthalpic attraction and entropic repulsion[61]. At strong adsorption conditions, the enthalpy 

gained due to adsorption interaction exceeds the entropy loss due to restrictions imposed by 

confining pore geometry on chain conformations, and chains are predominantly adsorbed. The free 

energy of adsorbed chains decreases with the chain length and the partition coefficient that 

determines the concentration of adsorbed chains increases.  At weak adsorption conditions, the 

entropy penalty is prohibitive and chains are effectively repelled from pores. The free energy of 

adsorbed chains increases with the chain length and the partition coefficient decreases.  The 

transition between strong and weak adsorption is quite sharp, and following the seminal work of 

de Gennes[48] and others[33, 35, 36] who studied chain adsorption on plain surfaces, it is treated 

as a critical phenomenon, occurring at what is termed the critical point of adsorption (CPA). 

Skvortsov and Gorbunov (S-G)[211] demonstrated the CPA conditions during adsorption in pores 

using the ideal chain model without the effect of excluded volume. However, the subsequent 

molecular simulation studies with more elaborate models of real chains with excluded volume[50, 

57] questioned the existence of CPA for polymer adsorption on porous substrates despite the fact 

that the experimental manifestation of this phenomenon is widespread in polymer 

chromatography[61, 213, 218, 219]. Here, we investigate this controversy by using Monte Carlo 

simulations and posit that the critical conditions in polymer chromatography are related to the 
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specific mechanism of partial confinement of chains in so-called flower conformations[73], when 

only a part of the chain is located inside the pore.  

As noted above, the phenomenon of critical adsorption is widely exploited in polymer 

chromatography. Separation of macromolecules is typically performed on porous substrates. When 

adsorption is weak (ideally, negligibly small), steric (size exclusion) interactions between the 

polymer chains and porous substrate provides separation by molecular size. This separation regime 

is known as size exclusion chromatography (SEC) that is widely used to measure molar mass 

distribution of polymers. In SEC mode, larger chains are excluded from the pore volume and elute 

earlier than their smaller counterparts.  When adsorption is strong, in the regime of liquid adsorption 

chromatography (LAC), adsorption prevails and retention increases with the molecular weight; the 

order of elution is opposite to that in SEC with larger chains retained more strongly than shorter 

chains. The intermediate regime of mutual compensation between the attractive adsorption and 

repulsive steric interactions is called liquid chromatography at critical conditions (LCCC)[218, 

219]. In LCCC, elution of polymer chains is molecular weight-independent, enabling the separation 

of polymer fractions by other structural and/or chemical factors, e.g. by the type and number of 

various functional groups in telechelic polymers[220]. The respective experimental conditions that 

correspond to the CPA for a given class of polymers can be achieved by variation of either solvent 

composition or temperature of the polymer solution[63].  Although LCCC is widely used for 

separation of complex polymers and biopolymers by difference in chemical structure, and the 

critical adsorption conditions are well documented for many systems, the mechanisms of chain 

adsorption on porous substrates are still poorly understood and the conclusions derived from 

different theoretical models are controversial. 

Detailed analyses of critical adsorption on non-porous surfaces were performed by using 

various theoretical and computational models[29-36, 73, 211, 221]. The underlying theory of 

LCCC on porous substrates was suggested by Skvortsov and Gorbunov (S-G)[211], who 
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considered adsorption of ideal chains confined in slit-shaped pores. In modeling studies, the 

adsorption strength is controlled by the magnitude of the effective interaction energy, U. S-G 

defined the CPA as the value of U = UC, at which the difference in free energies between adsorbed 

and unconfined chains vanishes. This condition was interpreted as a complete mutual compensation 

of the effects of enthalpic and entropic interactions so that the concentration of chains confined in 

pores equals to the concentration of unconfined chains in bulk solution. They showed that the CPA 

exists for ideal chains and corresponds to the conditions of molecular weight-independent elution 

in LCCC.    

However, further modeling studies showed that the existence of CPA for chains adsorbed 

in pores is limited to the ideal chains. In Monte Carlo simulations of real chains with excluded 

volume, Cifra & Bleha[57] and Gong & Wang[50] found that the equilibrium partition between the 

free unconfined chains in the solution and chains confined within pore channels of several shapes 

always depends on the chain length regardless of the adsorption potential.  These authors suggested 

to redefine the CPA as the magnitude of adsorption potential, U = UC, at which the partition 

coefficient varies the least with the chain length. This definition may explain the apparent 

observation of critical conditions in chromatographic experiments, assuming that the deviations in 

the partition coefficient are smaller than the limits of experimental accuracy.  This conclusion was 

confirmed by Yang and Neimark[73] who used self-consistent field theory (SCFT) to simulate 

adsorption of real chains inside spherical cavities. 

Another mechanism that may explain the experimental evidence of critical conditions for 

chain adsorption on porous substrates is the presence of partially confined or ‘flower’ chain 

conformations[73, 222, 223]. Specifically, it has been shown[73] that when the characteristic chain 

size exceeds the pore size, the portion of chains completely confined within pores diminishes, as 

the adsorption potential reduces to its critical value (𝑈 → 𝑈𝐶), and the flower conformations 

outweigh completely confined states.  This effect is accompanied by the adsorption of chains on 
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the external surface of the substrate[221], where the chain entropy is significantly increased relative 

to the pore[70].  

In the previous chapter of this dissertation, the critical conditions of chain adsorption were 

studied with a MC simulation model of real (excluded volume) chains interacting with non-porous 

substrates, in particular, in chromatographic columns packed with non-porous particles[197, 221]. 

In that case, adsorption occurs exclusively on the particle external surface. In this chapter, we re-

examine the phenomenon of polymer adsorption on porous substrates and its application to polymer 

chromatography using the same MC simulation model that was used. We explore chain adsorption 

taking into account three general mechanisms[73] : adsorption on the external surface, complete 

adsorption inside pores, and partial adsorption in pores in flower conformations, see Fig. 6.1. We 

determine the critical conditions for this model and show that while the CPA does not exist for 

completely confined chains, it does exist for the chains which are allowed to be adsorbed partially 

within the pores and on the external surface. Moreover, in the vicinity of CPA, these two adsorption 

mechanisms (external adsorption and partial confinement) dominate and the fraction of completely 

confined chains diminishes.  

 The remainder of this chapter is structured as follows. In Section 6.2, we re-visit the 

thermodynamic definition of the critical condition of adsorption and show that the CPA implies the 

equality of the incremental chemical potentials of adsorbed and free chains, rather that the equality 

of the respective free energies as was assumed in earlier literature. Section 6.3 details our MC 

simulation set-up employed for modeling adsorption of real chains. In Section 6.4, we study chain 

adsorption at the plain surface, and show the existence of CPA at a certain value of the effective 

adsorption potential U = UC. This value is then used as a benchmark to probe the existence of critical 

conditions for chains completely confined to pores in Section 6.5. It is shown that, in contrast to 

ideal chains, the CPA does not exist for real chains completely confined to pores and the partition 

coefficient of completely confined chains progressively decreases with the chain length. In Section 



                                                                                                                                                                                                                        116 
 

                                                                            

6.6, we study the mechanism of partial confinement in flower conformations and calculate the 

respective partition coefficient, which turns out to be chain length independent at the same critical 

adsorption potential U = UC, as determined for the external surface. In Section 6.7, these partition 

coefficients are combined into an apparent partition coefficient, which is calculated and used to 

predict the retention volumes of chain molecules on porous adsorbents. Using a simplistic model 

of a surface corrugated with an array of ink-bottle spherical pores, we calculate the retention 

volumes for a series of linear polystyrenes separated on a chromatographic column packed with 

porous particles. The model involves two column parameters, the packing porosity and surface 

area, which are adjusted to get a quantitative agreement with the experiment. The relative weights 

of different mechanisms of adsorption are discussed, and it is shown that adsorption on the external 

surface and in flower conformations are dominant.  As the magnitude of the adsorption potential 

increases to its critical value, the chains are expelled from the pores to the external surface, helping 

to explain the existence of the CPA for porous substrates. The results are summarized in Section 

6.8. 
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Fig. 6.1. Characteristic conformations of polymer chain interacting with nanoporous substrate: 1 –

unconfined chain in bulk solution, 2 – chain adsorbed at the external surface, 3 – chain completely 

confined within the pore, 4 – partially confined flower conformation. 

6.2. Critical conditions of polymer adsorption  

 There are several definitions for the critical conditions of adsorption for polymer chains 

based on various chain properties, i.e. number of adsorbed monomers[33], radius of gyration[36], 

and chain free energy[211].  The latter definition implies the equality of the excess free energies of 

adsorbed and free chains, 𝐹(𝑁) = 𝐹0(𝑁). This condition is correct for the models of ideal chains, 

however, for real chains with excluded volume, it holds only in the limit of infinitely long chains. 

As shown in[73, 197] in the general case of real chains with exclusion volume, the CPA condition 
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of chain length independent separation requires the equality of the incremental chemical potentials 

of adsorbed and free chains: 

𝜇𝑖𝑛𝑐𝑟(𝑁) = 𝜇𝑖𝑛𝑐𝑟
0     at CPA for   N > N*                                                 (6.1) 

This condition is held provided that the chain length N is sufficiently long, N > N*, (N* is a 

certain small number (~10) of chain segments[198]). 

 The incremental chemical potential defined as the difference between free energies of 

chains of length N+1 and N, 𝜇𝑖𝑛𝑐𝑟(𝑁) = 𝐹(𝑁 + 1) − 𝐹(𝑁), is a measure of the work necessary to 

add or remove a segment at the end of a chain[210]. As such, the free energy of a chain is the sum 

of the incremental chemical potentials of its constituent segments 𝐹(𝑁) = ∑ 𝜇𝑖𝑛𝑐𝑟(𝑖)
𝑁−1
𝑖=0 . For a 

free unconfined chain, it has been shown previously that the free energy F0 is a linear function of 

the incremental chemical potential: 𝐹0(𝑁) = ∑ 𝜇𝑖𝑛𝑐𝑟
0 (𝑖)𝑁∗−1

𝑖=0 + (𝑖 − 𝑁∗)𝜇𝑖𝑛𝑐𝑟
0  [210].  Similar 

linear dependence holds also for the chains tethered or adsorbed to a nonporous surface[73, 197]. 

 The CPA condition (6.1) follows from the fact that the chain partition coefficient depends 

on the difference of the excess free energies of adsorbed and free chains, 𝐹(𝑁) − 𝐹0(𝑁) =

Δ𝐹(𝑁), which must be chain length independent, but not necessarily null, at the CPA. The latter 

implies that 

𝑑Δ𝐹(𝑁)/𝑑𝑁 = 0  at CPA                                                                  (6.2) 

and therefore, 𝜇𝑖𝑛𝑐𝑟 =
𝑑𝐹(𝑁)

𝑑𝑁
= 𝜇𝑖𝑛𝑐𝑟

0 =
𝑑𝐹0(𝑁)

𝑑𝑁
, confirming Eq. (6.1). A general derivation of the 

critical condition (6.1) is given the Appendix E.                                               

 In order to demonstrate the existence of critical conditions on porous substrates, MC 

simulations were undertaken to calculate the incremental chemical potential of chains of different 

length at various adsorption states shown in Fig. 6.1.  The incremental chemical potentials were 

summed to calculate the chain free energies, which were utilized to determine the respective 
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partition coefficients for the three different mechanisms of chain adsorption. The details of the 

simulation procedure are outlined below. 

6.3. Chain model and simulation methodology 

 6.3.1 Chain and Adsorbent Models 

The polymer molecules are modeled as freely jointed chains of spherical beads of diameter 

b.  Adjacent beads are connected by a harmonic potential Ub=k(r12 - b)2 where k is the harmonic 

spring constant, equal to 50 kBT/b2 and r12 is the center-center distance between the beads. In this 

model, there is no stiffness or limitation on bond angles or torsions and non-neighbor beads interact 

via the standard Lennard Jones potential ULJ = ((b/r12)12-(b/r12)6), where is the bead-bead 

interaction energy, equal to 0.125kBT.  The number of beads in the chain varies from N = 1 to N = 

200 as in our previous studies[197, 221]. These chains have corresponding gyration radii of RG = 1 

to 10b in free solution, calculated during simulation by ensemble average. The free chains approach 

thermodynamically good solvent conditions, i.e. random-coil conformation with excluded volume 

interaction, by setting reduced temperature T*=kBT/ = 8, near the athermal limit[212]. The 

adsorption interaction between the beads and the surface is modeled by a square-well potential of 

width b.  The same adsorption potential is applied to both the plain surface and the spherical pore 

walls. The magnitude of the adsorption potential, U, is varied from 0 to -1kBT to capture the full 

range of adsorption and exclusion conditions[221].   All energies mentioned below are in kBT units. 

6.3.2 Simulation Methodology 

The chains were equilibrated by a series of 400 million MC displacement, insertion, 

removal, and configurational bias regrowth[44] moves using the standard Metropolis algorithm.  

The incremental chemical potential of the chains was determined via the incremental gauge cell 

method[198] and averaged over 500 million MC production moves.  Free chain radii of gyration 

were likewise averaged over 500 million MC production moves, after equilibration. Simulation 
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details and the method for determining the critical conditions for different adsorption mechanisms 

(external surface, complete confinement, and partial confinement) are given below. 

6.4. Determination of the critical point of adsorption on a nonporous surface 

 The simulation method for determining the CPA follows the procedure outlined in 

Chapter 5 of this dissertation [221].  Chains are anchored by their terminal monomers at distance 

z = 0... L from the surface of the planar adsorbent measured in b units, where L is sufficiently far 

from the surface to approximate a free chain. For every z, the incremental chemical potential is 

measured for each chain length N = 1-200 (corresponding to gyration radii RG ~ 1…10b in free 

solution) using the incremental gauge cell method[198].  The difference between the incremental 

chemical potential of the adsorbed chain and a free chain, Δ𝜇 = 𝜇𝑖𝑛𝑐𝑟 − 𝜇𝑖𝑛𝑐𝑟
0  acts as an indicator 

of the regime of adsorption.  
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Fig. 6.2. Chain length dependence of the incremental chemical potential difference Δ𝜇(𝑧, 𝑈) of 

anchored chains at several U. A) U = 0. B) U = -0.725 (CPA), C) U = -1. D) Zoom of case C for 

large N. The range of anchoring distances z varies from 0.5 to 200.   

The plots in Fig. 6.2 show the incremental chemical potential difference Δ𝜇 as a function 

of chain length N for chains anchored at different distances z from the surface. For the case of zero 

adsorption potential (U = 0, Fig. 6.2. A), Δ𝜇 is positive reflecting effective repulsion from the 

surface due to entropic restrictions. As chains become longer or are anchored farther away from 

the surface, the surface effect diminishes and the incremental chemical potential tends to that of a 

free chain.  The critical conditions are found for U = -0.725 (Fig. 6.2. B). At the CPA, the difference 

in chemical potentials Δ𝜇 = 0 for all anchoring distances z for chains longer than a certain length 

N*=20. The chemical potential for chains close to the surface is either slightly positive (for very 

short chains, which are unlikely adsorbed) or negative (for longer chains, for which the probability 

of adsorption in higher).  Beyond the critical point (Figs. 6.2. C, D), the incremental chemical 

potential of the adsorbed chains is negative, since the majority of chains are strongly adsorbed.  

Interestingly, long chains (N > 100) tethered at distances z = 10-20b do come into contact with the 

adsorption well (see Fig. 6.2.D), indicating the existence of “stretched” states with chain gyration 

radii exceeding the maximum gyration radius RG(N=200) ~ 10b of free chains.  These “stretched” 

states (Fig. 6.1.2) are entropically less favorable than free chains (Fig. 6.1.1), but their free energy 

is partially compensated for by the strong adsorption interaction.  Notably, the CPA determined by 

this method is identical to that found by the geometrical method whereby chains tethered directly 

to the surface are exposed to an increasing potential field[197]. 
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Fig. 6.3. The Henry coefficient 𝐾𝐻(𝑁) computed for a series of characteristic chain lengths (N = 

15-200) as a function of the adsorption potential U. The intersection point corresponds to the CPA 

at U = UC = -0.725. Here, KH is given in units of b. 

The transition from weak to strong adsorption conditions and the existence of a well-

defined CPA are reflected in the dependence of the Henry adsorption coefficient[73, 221] on the 

adsorption potential (see Fig. 6.3).  The Henry coefficient, which represents the ratio of the surface 

excess concentration of chains cs to their bulk concentration c0, KH = cs/c0, is calculated using the 

following equation[73]: 

𝐾𝐻(𝑁) = ∫ [exp[−(𝐹(𝑁, 𝑧) − 𝐹0(𝑁))] − 1] 
𝐿

𝑧=0
𝑑𝑧                                (6.3) 

Notably, the Henry coefficient KH has the dimension of length, presented in Eq. (6.3) and 

below in terms of Kuhn segments, b, since z is also measured in b. Equation (6.3) states that the 

Henry coefficient is the integral of the Boltzmann weighted difference in the free energy of 

anchored F(N,z) and free F0 (N) chains.  The plot of the Henry coefficient KH as a function of the 

adsorption potential illustrates several key features of adsorbed chains.  For weak potentials, |U| < 
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|UC|, the Henry coefficient is negative, reflecting effective entropic repulsion and respectively, 

negative excess adsorption. As a consequence, weak potentials produce a significant spread of the 

Henry coefficient values across different chain lengths.  The chains are mostly repelled from the 

surface in proportion to their size and KH decreases with chain length.  As the adsorption potential 

approaches the critical condition, U ~ UC=0.725, the Henry coefficients for all chain lengths 

intersect at the critical value KH ~ 1.25.   At these conditions, which are identical to the case of a 

tethered chain[197, 221], all chains are equally likely to adsorb or to remain free, so the Henry 

coefficient is chain length-independent. Noteworthy, the critical value of KH is not zero reflecting 

the CPA condition of the equality of the incremental chemical potentials rather than chain free 

energies. Above the critical potential |U |> |UC | there is a sharp transition wherein the chains 

become strongly adsorbed to the surface.  Smaller chains are less likely to adsorb than larger ones, 

and so the Henry coefficient increases with chain length.   

6.5. Probing the existence of critical conditions for completely confined chains 

The value UC of the critical potential on the nonporous surface acts as a benchmark to probe 

the critical point on porous surfaces.  In this and the following section, the existence of critical 

conditions is investigated using simple model pores under two different geometric constraints: 

complete or partial confinements.  It will be shown that, under specific circumstances, critical 

conditions exist on porous surfaces and the critical adsorption potential on a porous surface is equal 

to the critical potential on a nonporous surface. 

Adsorption in pores is modeled by confining chains to spherical pores of various sizes.  We 

explore the range of pore radii Rpore = 1.5-6b that corresponds to the conditions of strong RG/Rpore 

~ 10 to moderate RG/Rpore ~ 2 confinement for the largest (N = 200) chains considered.  The 

adsorption potential at the internal surface of pores is assumed to have the same square-well form 

as the potential at the external surface. 



                                                                                                                                                                                                                        124 
 

                                                                            

To demonstrate the effect of pore size on adsorption behavior, we present in Fig. 6.4 the 

results of two computational experiments.  In the first experiment, chains of lengths N =1-200 were 

completely confined within pores of a range of pore sizes Rpore = 2, 3, 4, 5 and 6b at U = UC, and 

the chains were allowed to equilibrate. The incremental chemical potential of these chains was 

measured and plotted as a function of the chain length (see Fig. 6.4.A).  It is clear from Fig. 6.4.A 

that the incremental chemical potential of confined chains is a monotonically increasing function 

of chain length due to the increasingly prohibitive entropic penalty to insertion of additional beads 

in a pore volume.  The incremental chemical potential intersects the unconfined (free) chain value 

for some chain length N = N*, (equivalently, gyration radius RG = RG*), referred to here as the 

critical chain length and critical gyration radius, respectively.  At N* (RG*), the enthalpic and 

entropic interactions are exactly balanced.  The values of the critical chain length/gyration radius 

are dependent on the pore size Rpore and decrease progressively as Rpore gets smaller. The 

dependence of N* and RG* on Rpore is plotted below in Fig. 6.4.B. 

The critical chain length N* is quadratic in Rpore (N* ~ Rpore
2) (equivalently, RG ~ N0.5) 

indicating that chains of length N < N* behave as free chains in the pore when the adsorption 

potential is at its critical value, U = -0.725.  However, any chain larger than N* will not hold to this 

scaling, due to the penalty imposed by the positive incremental chemical potential. The dependence 

of the critical gyration radius RG* on the pore size approaches a linear asymptote (RG* ~ Rpore) (Fig. 

6.4.B, solid line) for large pores (Rpore ≥ 4), indicating that as pore size increases, it is possible to 

directly predict the maximum chain size that will adsorb in the pore.  There is deviation from the 

asymptote for small pores Rpore ≤ 4, which is explained by the increasing effect of entropic 

confinement.   
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Fig. 6.4. Incremental chemical potential as a function of N for chains of length N = 1-200. A - 

chains confined to pores of size Rpore = 2, 3, 4, 5 and 6b at U = -0.725. Black line represents the 

incremental chemical potential of unconfined (‘free’) chain. B – Chain length N* (open circles) 

and gyration radii RG* (closed circles) for which incr = incr
0, both as a function ofRpore for U = -

0.725. Solid black line – asymptotic dependence of RG* vs Rpore  for larger pores. Dashed line – 

parabolic dependence of N* on Rpore. C - Chains confined to a pore of size Rpore = 4b for various 

adsorption potentials U spanning from 0 to -1. Black line represents the incremental chemical 

potential of unconfined chains.   

In the second experiment, the incremental chemical potential of the chains was measured 

as a function of the adsorption potential U, for a single pore size, RP = 4b (see Fig. 6.4.C).  At this 

pore size, chains of N < 50 beads (RG ≤ 4 in free solution) fit comfortably within the pore when 

exposed to adsorption potential U corresponding to critical conditions on a plain surface U = -0.725 

(as per Fig. 6.4.B). However, beyond N = 50, the incremental chemical potential increases rapidly 

with N for all adsorption potentials considered.  In the limit of an extremely strong potential, it is 

conceivable that any chain consisting of N < 200 beads could adsorb within the pore. However, the 

monotonically increasing chemical potential indicates that longer chains (N >> 200) would be 

totally excluded from this pore.   

Fig. 6.4.C clearly demonstrates the absence of the critical adsorption conditions for this 

pore.  This situation is applied in general case: critical conditions (Eq. 6.1) do not exist for real 

chains confined to pores of comparable or smaller size than that of the free chain.  The results 

illustrated in Fig. 6.4 confirm the earlier findings for excluded volume chains, which were reported 

for various pore geometries[50, 64].  To further illustrate this point, the difference in free energy 

𝛥F = F(N) – F0(N) and the partition coefficient KP = exp[-F] for chains confined to pores of sizes 

Rpore = 1.5b and 4b are plotted as functions of N in Fig. 6.5 below. 
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Fig. 6.5. The chain length dependences of the free energy difference 𝛥F = F(N) – F0(N)  (A,C) and 

the respective partition coefficient KP (B,D) for the chains completely  confined to a pore of Rpore 

= 1.5b (top) and  4b (bottom) for a series of adsorption potentials U = 0 to -1.  

The difference in free energy 𝛥F of confined chains plotted in Fig. 6.5.A,C shows several 

interesting features.  First, in the absence of adsorption (U = 0), the free energy is monotonically 

increasing with N regardless of the pore size.  This is consistent with the effect of a pore being 

gradually filled up with the chain of beads – as the pore fills, the work required to add another bead 

to the chain increases due to strictly entropic forces.   In the presence of an adsorption potential, 

the shape of the free energy dependence changes dramatically.  Instead of being monotonically 

increasing, the free energy experiences a minimum[72], after which the free energy becomes 

progressively positive as N increases. This minimum is more pronounced for the larger (4b) pore 

(Fig. 6.5.C) than the smaller pore (Fig. 6.5.A), and the chain length NM at the point of minimum 

varies with U and Rpore. 
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The partition coefficient KP for chains completely confined to pores is defined in terms of 

the exponent of the difference in free energy of confined and unconfined chains KP = exp[-F]. The 

plots of KP as a function of chain length (Fig. 6.5, B,D) further illustrate the absence of critical 

conditions for finite length chains, regardless of pore size.  At zero adsorption potential, the 

partition coefficient monotonically decreases as chain length increases, reflecting the increasing 

difficulty to force larger excluded volume chains into the pores. In the presence of adsorption 

potential, the partition coefficient is non-monotonic in a manner similar to the free energy.  The 

partition coefficient increases with chain length for chains, which can fit in the pore with minimal 

restriction (N < NM).  The length NM of the chains “most likely” residing inside the pore shifts to 

slightly larger values as adsorption potential increases. However, for N> NM, the partition 

coefficient rapidly decreases with the chain length for all adsorption potentials due to severe 

entropic limitations, with the smaller (1.5b)  pore (Fig. 6.5.B) accommodating roughly 10 beads 

(RG = 1.6b in free solution), and the larger (4b) pore (Fig. 6.5.D)  up to 40 beads (RG = 4b in free 

solution) .  The non-monotonic behavior of the partition coefficient reinforces the conclusion that 

critical conditions do not exist for the real chains completely confined to pores, when pore size Rpore 

is comparable to chain size RG. This effect would not be observed for ideal chains, for which the 

CPA does exist [52]. Below, we show that the critical behavior observed in experiments is due to 

the adsorption mechanisms involving the external surface of the substrate. 

6.6. Partially confined chains 

The characteristic chain length NM mentioned above is of special interest. Provided the pore 

has an opening, chains of length N > NM tend to escape from the pore, at least partially, forming so-

called flower conformations[73]. Depending on the pore size, these partially confined states have 

been shown to make up a significant portion of chain’s conformations[73]. A flower conformation 

consists of a “root” or trans section of the chain residing inside the pore and a “stem” or cis section 

hanging out of the pore.  The stem of the flower conformation may either be adsorbed, if the 
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adsorption potential U is strong, or protrude into the bulk solution, if U is weak, (see Fig. 6.6. A, 

B).  Partially confined flower chains help us to explain the presence of critical conditions on porous 

substrates where the pores are of smaller size than the polymer chains in free solution Rpore < RG. 

 

Fig. 6.6. Partially confined chains in two conformations: (A) strong adsorption (|U| > |UC|) and (B) 

weak adsorption (|U| < |UC|). Dashed line represents delineation between cis and trans states. 

 The free energy of partially confined chains was a subject of detailed studies related to the 

translocation of chain molecules into nanopores[65, 72].  The free energy of a partially confined 

chain of length N is presented as a function of the degree of translocation s – the number of 

monomers inside the pore.  The free energy F (N, s) is composed of the free energies of cis FC(N-

s) and trans FT(s) subchains: F (N, s) = FC(N-s) + FT(s), where cis denotes beads outside the pore, 

and trans - inside the pore (See Fig. 6.6.B).  The sub-chain free energies are themselves composed 

of the sum of the incremental chemical potentials for cis and trans chains of length N-s and s 

respectively. For details of the free energy calculations of flower conformations, see Appendix E. 

The cis- and trans- sub-chains are simulated independently, in a manner similar to that 

used for externally adsorbed or completely confined chains.  In each case, sub-chains are tethered 

by a terminal monomer with a center distanced 0.5b from the surface separating cis and trans 
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conformations (denoted by the dashed line in Fig. 6.6). Upon equilibration, the incremental 

chemical potentials of the cis and trans sub-chains are measured and the free energies of cis FC(N-

s) and trans FT(s) subchains are calculated. The sum of sub-chain free energies gives the free energy 

F(N,s) of the partially translocated chains with given degree of translocation.  

In order to determine the free energy F(N) of the ensemble of flower chains with different 

degrees of translocation s = (1…N), one has to sum the Boltzmann-weighted free energies F(N,s) 

of the chains with given degree of translocation[73] :  

𝐹(𝑁) = − ln(∑ 𝑒𝑥𝑝(−𝐹(𝑁, 𝑠))𝑁
𝑠=1 )                                                       (6.4) 

It is important to note that each state F(N,s) is itself an ensemble average of the chain free 

energy representing the free energy of the most favorable conformations at given degree of 

translocation. Fig. 6.7.A-B below shows the incremental chemical potential and free energy 

difference F = 𝐹(𝑁) − 𝐹0(𝑁)  as functions of the chain length N for chains partially confined to 

a small pore (Rpore = 1.5b) and exposed to different adsorption potentials.  

The effect of the pore is evident from the behavior of the incremental chemical potential 

of the partially confined chains.  For all but the smallest chain lengths, the incremental chemical 

potential is a constant in chain length and resembles the behavior of an end-tethered chain[197].  

For strong potentials |U | > |UC|, where UC = -0.725 is the CPA found previously for non-porous 

surface, the incremental chemical potential is more negative than that of the free chain, indicating 

that the cis sub-chain is mostly adsorbed (Fig. 6.7.A). The incremental chemical potential for weak 

potentials |U |< |UC| however approaches the free chain value, indicating that most cis beads are not 

adsorbed (see Fig. 6.7.B). Noteworthy, at U ~ UC, the incremental chemical potential equals that 

of an unconfined chain, fulfilling the CPA condition Eq. (6.1).    
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Fig. 6.7  (A) Incremental chemical potential, and (B) free energy difference as functions of chain 

length N for chains partially confined to a pore of radius 1.5b for several adsorption potentials U = 

0 to -1. Partition coefficient KF for chains partially confined to a pore of radius Rpore = 1.5b as (C) 

a function of adsorption potential U  for several N and (D) for N = 1-200 for several U.  

 The difference in free energy (Fig. 6.7.B) as a function of the chain length is a clear 

indicator of the existence of critical conditions for partially confined chains. For adsorption 

potentials stronger than UC, F decreases with chain length, indicating that longer chains are more 

likely to be adsorbed than shorter ones.  For potentials weaker than UC, F increases with chain 

length, meaning short chains are more likely to be adsorbed.  At the critical conditions, the free 

energy difference becomes constant, and notably, this critical condition UC = -0.725 is the same as 

for the externally adsorbed chains. 

 In a manner similar to completely confined chains, we define the partition coefficient for 

flower conformations as the exponent of the difference in free energy between a confined and 

unconfined chain: KF = exp[-F].  The partition coefficient for chains partially confined to a pore 
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of size Rpore = 1.5b is given in Fig. 6.7.C-D as a function of adsorption potential U and chain length 

N, respectively. The partition coefficient of partially confined chains demonstrates several key 

features, which differentiate it from the case of complete confinement.  First, for potentials stronger 

than the critical conditions |U |> |UC|, the partition coefficient is monotonically increasing in chain 

length. (Fig. 6.7.C, |U| > 0.725; 6.7.D, yellow, gray lines). These potentials (|U |> |UC|) indicate 

enhanced adsorption of longer molecules (LAC conditions).  Second, there exists a characteristic 

potential (the critical point, UC = -0.725), where the partition coefficient switches from a decreasing 

function of N to an increasing one (Fig. 6.7.C interstection point, 6.7.D red line). At the critical 

potential UC, the partition coefficient does not depend on N. This potential is identical to the critical 

potential of chains adsorbed at a non-porous surface, which was described above. For potentials 

weaker than that corresponding to the critical condition |U |< |UC|, KF decreases with chain length, 

indicating enhanced partition of small molecules (SEC conditions) (Fig. 6.7.C, |U| < 0.725, 6.7.D, 

green, purple lines).   The transition from SEC to LAC through the CPA is very sharp – adsorption 

is greatly enhanced (relative to the weak adsorption case) for all molecules beyond the critical 

conditions at |U |> |UC|.   

The ability of partially confined chains to experience critical adsorption conditions 

illustrates the importance of accounting for the mechanisms which include external surface 

adsorption in the case of porous substrates.  Indeed, the mechanism of partial confinement offers 

an explanation for experimental observations of critical conditions. In the final section below, we 

explore the application of external surface adsorption and in particular, the contribution of partial 

confinement to chain retention in polymer chromatography on porous substrates. 

6.7. Chain Retention on Porous Substrates  

Assuming the thermodynamic equilibrium between unretained and retained analyte 

(chains), the retention volume VR is defined as the ratio of the total quantity 𝑁𝑡𝑜𝑡 of analyte in the 
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column to the bulk concentration 𝑐0 of the unretained analyte in the interstitial volume, VR =𝑁𝑡𝑜𝑡/𝑐0. 

Accounting for all three possible mechanisms of retention, 𝑁𝑡𝑜𝑡 can be expressed as 

𝑁𝑡𝑜𝑡 = 𝑐0[𝑉𝐼 + 𝐾𝐻𝑆𝑒𝑥𝑡 + 𝐾𝑃𝑉𝑃 + 𝐾𝐹𝑉𝑂]                                                (6.5) 

Equation 6.5 states that the total amount of analyte in the column is divided into four contributions 

from chains located: (1) in the interstitial volume VI (unretained), (2) on the external surface of the 

stationary phase particles of area Sext, (3) completely within the pores of accessible volume VP, and 

(4) at the external surface of stationary phase particles in flower conformations, where VO is the 

volume of surface pore openings. Normalizing Eq. (6.5) by the bulk concentration 𝑐0, one arrives 

at the equation of the retention volume 

𝑉𝑅 = 𝑉𝐼 + 𝐾𝐻𝑆𝑒𝑥𝑡 + 𝐾𝑃𝑉𝑃 + 𝐾𝐹𝑉𝑂                                                          (6.6) 

In the spirit of the Gibbs adsorption theory [143] the sum of the last three terms in the right-hand 

side of Eq.6.5 represents the excess adsorption 𝑁𝑒𝑥 = 𝑐0[𝐾𝐻𝑆𝑒𝑥𝑡 + 𝐾𝑃𝑉𝑃 + 𝐾𝐹𝑉𝑂] of analyte in the 

column, as compared to the amount of analyte in the interstitial volume at the bulk concentration, 

N0 = c0VI. Provided the excess adsorption is attributed to the retained analyte, the overall partition 

coefficient K can be defined as the ratio of the excess adsorption concentration, cex =Nex/VS, per unit 

volume of the porous solid particles of volume VS = Vcol – VI and the bulk concentration 𝑐0 in the 

solvent, K= cex /𝑐0  [221]. Note that the volume VS includes the volume of pores inside the particles. 

As such, the retention expression (6.6) may be rewritten as VR = VI + KVS, with the overall partition 

coefficient  

K = KHŜext+ KPP+ KFS                                                             (6.7) 

Here, Ŝext = Sext/VS is the specific external surface area per unit volume of solid phase, P=VP/VS is 

the accessible porosity of the substrate, and S is the surface porosity. The surface porosity is 

defined as S =nS vO Ŝext; nS is the number of pore openings per unit of external surface area and vO 
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– the volume of one pore opening.  These parameters are determined by the column packing 

geometry and particle structure. Eq. (6.7) represents the extension of the definition of the partition 

coefficient for a nonporous surface [221] to a porous substrate.  

The chain model employed is described in Section 6.3 with the monomer size scaled to 

represent the Kuhn segment of polystyrene at good solvent conditions (molar mass 832 Da, 

b=2nm)[62]. The chain length in the simulations varies from N = 2 to 200 that corresponds to the 

variation of molecular mass M of polystyrene fractions from 1,664– 166,400 Da. In Fig. 6.9, chain 

length N is converted to molecular mass M via the Kuhn segment mass.   

 

Fig. 6.8. Model porous substrate:.plane surface perforated by ink-bottle pores with spherical bodies 

and cylindrical openings. (A) Top-view (B) Side-view.  

As a structural model of porous substrate, we use the surface perforated by ink-bottle pores 

with cylindrical pore openings and spherical pore bodies, Fig. 6.8. The diameter and length of the 

pore opening are set equal to the bead diameter b, so that vO = b3/4. The size of pore bodies is set 

to Rpore = 1.5b, reflecting the nominal pore width of 6nm of NovaPak® C18 substrate from Waters 

Tech. (Milford, MA), used in[213].  Assuming a dense packing of spherical pores, the surface pore 

density is set to nS =0.13/b2 = 3.2x1012/cm2. The fixed density nS corresponds to a surface porosity 

of S = 0.1 and an accessible volume porosity of P = 0.09. This model implies that the retention 
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volume (6.6) depends only on two column parameters, the packing porosity C = VI/Vcol, where Vcol 

is the total column volume, and substrate external surface area Sext: 

VR = CVcol + Sext[KH + 1.8bKP+ 0.1bKF]                                                (6.8) 

Equation (6.8) is used directly to calculate the theoretical retention plotted in Fig. 6.9.B. 

To illustrate the influence of multiple retention mechanisms – and in particular the role of partial 

confinement (flower conformations) – on chain adsorption and partitioning, we have applied our 

model to a well-characterized example of isocratic elution of polystyrene (PS) fractions in binary 

mixtures of THF and ACN on a chromatographic column packed with porous particles [213]. 

 

Fig 6.9. (A) Molecular mass M elution profiles for the isocratic separation of polystyrene [213]. 

The solvent composition X of the experimental data is given in terms of the volume fraction of 
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acetonitrile, X = 0 to 0.6. Three chromatographic modes, SEC, LCCC (elution at CPA) and LAC 

are clearly distinguished by the shape of elution profiles. (B) The same experimental data (triangle 

symbols) alongside theoretical retention volumes (square symbols) calculated using the retention 

equation (8) in conjunction with the partition coefficients derived from simulations. In both graphs, 

solid vertical line denotes CPA retention volume, VCPA = 2.35 ml, dashed line – retention volume 

of largest chains, N = 200 in SEC mode (X = 0), fitted by adjusting the column porosity to C = 

0.53, corresponding to interstitial volume VI= 1.9 ml. (C) Correlation between effective adsorption 

potential U and solvent composition X in terms of dimensionless deviation U’, X’ from the critical 

values, UC and XC, for a nonporous column. 

The diagram in Fig 6.9.A shows the experimental correlation between the chain molecular 

weight and the retention volume for a range of solvent compositions in terms of volume fraction X 

of ACN recalculated from the data presented in [213].  As clearly seen, the composition of XC =0.52 

corresponds to the critical conditions of molecular weight independent elution with the CPA 

retention volume VCPA=2.35 ml.  Compositions X < XC correspond to the SEC order of elution with 

larger chains eluted first, most prominent for the limiting case of pure THF (X = 0). At this mobile 

phase composition, (X = 0) the chain retention exhibits a characteristic shape that points toward 

different states of polymer chains depending on molecular weight. Larger chains are excluded from 

the surface and it is less probable for them to enter the pores of the substrate than for smaller chains. 

Conversely, it is possible for smaller chains to penetrate into the pores of the substrate and the 

retention of these chains may be influenced by the presence of partially confined (flower) 

conformations. Above the CPA (X > 0.52), the elution volume increases with the molecular weight 

that implies the LAC regime, with chains strongly attracted to the substrate and the reverse 

sequence of elution. Larger chains have a higher probability to interact with the substrate than 

smaller ones, and therefore are more strongly retained.  When chains are strongly adsorbed, the 

enthalpic effects favor the chains to penetrate into the pores and therefore one may expect a larger 

contribution of flower conformations for chains of all molecular weights than is present in the SEC 

regime. 

To describe the chain retention in this system, we made the following assumptions. First, 

we associated the SEC conditions observed in pure THF (X=0) with the negligible adsorption 
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potential, U = 0, and the CPA conditions at XC = 0.52 with the critical adsorption potential U = UC 

= -0.725. Next, we determined the packing porosity C, and the external surface area, Sext, which 

are the only two adjustable parameters in our model. The packing porosity C = 0.53 (corresponding 

to VI = 1.9 cm3, for a column of volume Vcol = 3.58 cm3) was adjusted to fit the theoretical retention 

volume of chains of length N = 200 (VR =1.6 ml, Fig. 6.9.B, dashed line) for the case of zero 

adsorption potential (U = 0) to the experimental retention of the largest (166,400 Da) chains in pure 

THF (X = 0). Sext = 4x105 cm2 was chosen to best reproduce the critical retention volume VCPA = 

2.35 ml (Fig. 6.9.A, B solid line). The value of Sext is larger than the estimate made by assuming 

smooth, spherical particles of nominal radius RP = m[213], which may imply a significant degree 

of surface roughness and particle size heterogeneity. With these parameters, we predicted the 

retention behavior at different molecular weights and selected adsorption potentials (U=0, -0.7, -

0.725, -0.875, and -1).  

The experimental and theoretical retention are overlaid in Fig. 6.9.B. The square symbols 

correspond to the theoretical retention of chains exposed to a range of adsorption potentials U = 0 

to -1. The experimental and theoretical retention volumes at SEC (X=0, U=0) and CPA (X=0.52, U 

= UC = -0.725) conditions are in good agreement, since the selected points at these conditions were 

chosen for the fitting of model parameters. For potentials weaker than UC, retention is a decreasing 

function of molecular weight. For potentials stronger than the critical value, the theoretical retention 

mimics qualitatively the behavior of chain retention in the LAC regime. Note that the shown 

experimental and theoretical dependences deviate because the chosen values of the adsorption 

potential do not match the experimental compositions.  

In order to match the effective adsorption potential U employed in simulations and the 

solvent composition X, we employ the correlation derived in Chapter 5 of this dissertation [221] 

for chain separation on a non-porous column, Fig. 6.9.C. This correlation relates the dimensionless 

deviations of the potential U’ = (U-UC)/UC and composition X’ = (X-XC)/XC, both reduced to their 
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respective critical values. Using this correlation, the potentials employed in calculations U = (0,-

0.7, -0.725, -0.875, and -1) correspond respectively to the solvent compositions X = (0, 0.38, 0.52, 

0.537, 0.58). (See legend in Fig. 6.9). This correlation leads to logical results: theoretical and 

experimental retention volumes are properly ordered and theoretical data for X=0.38, 0.537, and 

0.58 are located to the left of experimental data at X=0.5, 0.54, and 0.6, respectively. Noteworthy, 

the quantitative agreement found with the correlation derived for a non-porous column confirms 

the robustness of our model and transferability of obtained parameters. 

In Fig. 6.10, we present the calculated contributions of different adsorption mechanisms in 

retention of polymer chains of different length at three different adsorption potentials U = 0, -0.725 

and -1, which have been shown to correspond to the SEC, LCCC and LAC conditions from the 

experiments. We quantify the contribution of each mechanism to theoretical retention using the 

components of Eq. 6.8 attributed to external surface, complete confinement to pores, and flower 

conformations, respectively: 

VR,ext =KHSext; VR,pore = KPbSext; VR,fl = KFbSext                                      (6.9) 

The contributions (6.9) in cm3 are plotted as functions of the chain length. For the SEC 

regime (U = 0), the (exclusion) contribution from the external surface VR,ext dominates (Fig. 

6.10.A); it is negative due to the excluded volume effects prominent in the absence of adsorption 

potential. The complete confinement contribution is negligible and the flower conformations 

contribute only into the retention of smaller chains. At the critical conditions (U = UC), the 

contributions of external adsorption and flower conformations are comparable and constant for 

larger chains (Fig. 6.10.B). The contribution from the complete adsorption is notable only for the 

smallest chains and rapidly decreases with the chain length. Even at strong adsorption (U = -1), 

external adsorption and flower conformations dominate for all but the smallest chains (Fig. 6.10, 

C). Noteworthy, the contribution from complete adsorption progressively vanishes with the 

increase of the chain length and the decrease of adsorption potential, see Fig. 6.10.D.  



                                                                                                                                                                                                                        138 
 

                                                                            

This analysis indicates that adsorption on the external surface and partial confinement in 

pores represent the major factors determining chain partition. The mechanism of partial 

confinement (flower conformations) helps one explain the presence of critical conditions observed 

in polymer chromatography with porous substrates and resolve the controversy between the 

experimental observations and prior molecular simulations [50, 57] which focused entirely on the 

behavior of chains completely confined in pores neglecting the external surface effects.  

 

Fig. 6.10. Contributions of adsorption mechanisms in SEC, LCCC, and LAC regimes: A. U = 0, B. 

U = UC, and C. U = -1.  Symbols for A-C: Stars–external adsorption.  Open circles – complete 

confinement. Filled triangles –flower conformations. D. Comparison of contribution of complete 

confinement across adsorption potentials – rapidly diminishes with the decrease of adsorption 

potential and increase of the chain length.   

6.8. Summary 
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Using a simple excluded volume chain model and MC simulations of thermodynamic 

equilibrium between adsorbed and free chains, we examine mechanisms of chain adsorption on a 

model porous substrate searching for conditions of the critical point of adsorption (CPA), at which 

the partition coefficient in the process of chromatographic separation is chain length independent. 

We distinguish three adsorption mechanisms depending on the chain location: on external surface, 

completely confined in pores, and also partially confined in pores in so-called “flower” 

conformations. The chain adsorption is treated in terms of the Gibbs excess adsorption theory 

developed in Chapter 5 for non-porous surfaces[143]. The thermodynamic condition of the CPA 

is defined from the equality of the incremental chemical potentials of adsorbed and free 

chains[197]. The free energies of different conformations of adsorbed chains are calculated by the 

incremental gauge cell MC method[198] that allows one to determine the partition coefficient as a 

function of the adsorption potential, pore size, and chain length. We confirm the existence of the 

CPA for the chain length independent separation on porous substrates, which is explained by the 

dominant contributions of the chain adsorption at the external surface, in particular in flower 

conformations. The CPA, known in chromatography as the LCCC regime, separates the regime of 

weak adsorption with SEC sequence of elution, with longer chains spending shorter time in the 

column, and the LAC regime of strong adsorption with the reverse sequence of elution. We show 

that as the magnitude of adsorption potential becomes stronger and approaches the CPA, the chains 

completely confined in pores are expelled to the external surface forming flower conformations. 

This mechanism was neglected in previous studies of excluded volume chains in pores, which 

questioned the very existence of the CPA for porous substrates. Moreover, we show that the critical 

conditions for porous and nonporous substrates are identical and depend only on the surface 

chemistry.  

It is hypothesized that the experimentally observed critical adsorption on porous substrates 

may be explained by the presence of external adsorption and partially confined or ‘flower 
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conformation’ chains, and it was shown that flower conformations exhibit the same critical point 

as externally adsorbed chains. 

 The theoretical results are confirmed by comparison with experimental data on 

chromatographic separation of a series of linear polystyrenes with variable solvent 

composition[213]. The overall partition coefficient, which included contributions from all three 

adsorption mechanisms, was calculated for chains adsorbing to a model porous substrate perforated 

by ink-bottled pores. Although this model does not imitate the pore structure of real 

chromatographic substrates, it captures the major physical mechanisms in a coherent fashion. The 

advantage of this model is a minimal number of adjustable parameters, the column packing porosity 

and packing external area, which were determined to get the best fit to the experimental data on the 

retention volumes at the non-adsorption surface (SEC regime) and at CPA. The presence of 

molecular weight independent elution at CPA and SEC-, LAC-like behavior was confirmed by 

varying the adsorption potential.  The retention volume contributions of each adsorption mode were 

calculated and compared at characteristic adsorption potentials, corresponding to SEC, LCCC, and 

LAC conditions.  It was found that external adsorption and flower conformations dominate over 

the mechanism of complete confinement, providing an explanation for the disagreement between 

the results of previous simulations and experimental observations.  Finally, using a correlation 

between the effective adsorption potential in our model and the solvent compositions previously 

determined for separations on nonporous substrate[221], the adsorption potentials in the porous 

substrate model were related to the expected solvent compositions that led to a quantitative 

agreement with the experimental observations.  

In conclusion, we developed a thermodynamic framework for modeling chain adsorption 

on porous substrates that is based on the Gibbs excess adsorption theory and the establishment of 

the equilibrium conditions from the equality of excess free energies of the adsorbed and free chains. 

The critical conditions of chain length independent separation are defined by the additional 
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condition of equality of the incremental chemical potentials of the adsorbed and free chains. Using 

a simple yet instructive model of porous substrate, we show the existence of the CPA for excluded 

volume chains and describe the SEC, LCCC, and LAC regimes observed for separation of linear 

polystyrenes on non-porous and porous chromatographic columns in a unified fashion. A 

quantitative agreement was achieved with transferring the adsorption potential – solvent 

composition correlation determined for the non-porous column to the porous column. This confirms 

the robustness of the proposed methodology and its potential applicability, with proper extensions 

to more complex systems including block-copolymers, star polymers, end-functionalized chains, 

as well as to the challenging problem of separation of polymer grafted nanoparticles.  
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APPENDICES 

Appendix A 

Supplementary Information for Chapter 2 

 

 

Fig. A.1. Volumetric differential pore size distributions calculated with the NLDFT model 

of independent cylindrical pores from adsorption (blue) and desorption (red) isotherms of N2 on 

SBA-15 shown in Fig. 2.2 (left). The two distributions agree within reasonable accuracy of the pore 

size characterization method.  

 

 
 

Fig. A.2. – A plot of the dependence of 𝑄−(𝑞) on the lattice size 𝐿, for 𝑄+(𝜒𝑎) = 0 (boundary 

desorption).  The lattice of size 200 is nearly indistinguishable from that of 275. 

 

A. Fitting surface area parameter SFIT 
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As discussed in section 2.3.1, the surface area parameter SFIT in our modeling scheme is fitted to 

the adsorption isotherm, and is always found to be well within 15% of the BET surface area of the 

material.  As an example, below we present a sample calculation of the BET surface and the 

corresponding SFIT for SBA-15. 

Procedure:  The pressure points on the adsorption curve, from relative pressures of 0.0499863 to 

0.349993, and corresponding to volumes of 258.681 cc/g STP to 429.5579 cc/g STP were plugged 

into the BET formula: 

 

𝑓 (
𝑃𝑜
𝑃

) =
1

𝑣 ∗ (
𝑃𝑜
𝑃

− 1)
 

and plotted as a function of the relative pressure, P/Po.  The result was linear curve from which the 

slope and intercept were calculated.  The monolayer capacity vm was then determined by the 

following formula: 

 

𝑣𝑚[
𝑐𝑐

𝑔
] =

1

𝑠𝑙𝑜𝑝𝑒 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
 

 

The monolayer capacity in this case was found to be 285.06 cc/g, which was then used to compute 

the BET area as follows: 

 

𝑆𝐵𝐸𝑇[
𝑚2

𝑔
] =

𝑣𝑚 [
𝑐𝑐
𝑔 ] ∗ 𝜎𝑁2

[
𝑛𝑚2

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒]
∗ 𝑁𝐴 [

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠
𝑚𝑜𝑙 ]

𝑉𝑆𝑇𝑃 [
𝑐𝑐

𝑚𝑜𝑙
]

∗ (
10−18𝑚2

𝑛𝑚2 ) 

 

where VSTP  = 22400, and σN2 = 0.162. The resulting area is 1241.52 m2. 

 

𝑉𝑆(𝜒) & 𝑉𝐶(𝜒): The theoretical boundary curves, corresponding to the nonporous adsorption (Vs) 

and the condensed fluid adsorption (Vc) were next computed using the newly fitted data. using the 

FHH equation for layer thickness, multiplied by a parameter representing the surface area: 

 

𝑉𝑠(𝜒) [
𝑚𝑚𝑜𝑙

𝑔
] =

𝑆𝐹𝐼𝑇 [
𝑚2

𝑔 ] (
𝐾

− ln(𝜒)
)

1
𝑚

[Å]

10 ∗ 𝑉𝑙𝑖𝑞 [
𝑐𝑐

𝑚𝑜𝑙]
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where Vliq is the liquid molar volume of Nitrogen at its boiling point 34.67(77K, 0.808 cc/g). K and 

m are FHH parameters with values 44.54 and 2.241, such that the layer thickness is in Angstroms. 

The fitting parameter SFIT is then used to fine tune the equation and should be comparable (to within 

around 15%) of the BET surface area.  In the case of SBA-15, SFIT was chosen to be 1265, making 

the error negligible. 

 

B. Expert choice of the limits of hysteresis 

The limits of the hysteresis loop must be chosen such that there are well-defined limits of relative 

pressure 𝜒, corresponding to the four major hysteresis loop points (A, B, C and E) (See Fig. 2.6).  

The procedure for choice of these four points can be broken down into two parts: choice of the 

departure points B and E, and choice of the closure points A and C. 

Closure points: Closure points A and C are chosen by the experimental overlap of adsorption and 

desorption boundary curves. 

Departure points: the points at which the boundary curves depart from 𝑉𝐶  & 𝑉𝑆 are similarly 

defined, as the experimental points at which the boundary curves no longer overlap the reference 

curves.  

Thus we are limited by the uncertainty inherent to experimental measurement when defining these 

points, which is estimated as less than ~2% for our instrumentation. 

 

C. Bond Percolation Algorithm 

The following short C++ program can be used to generate the function 𝑄−(𝑞) for any 0 ≤

𝑄+(𝜒𝑎) ≤ 1.  The only line which must be altered is the value in parentheses for the integer 

‘empties’, which corresponds to the fraction of unfilled pores at the beginning of scanning 

desorption. 

/*Scanning Bond Percolation Program for 3D Cubic Lattice 

 Richard Cimino, Rutgers University 

 July 2012 

  

 Based on the work of M.E.J. Newman and R.M. Ziff, 2001 

 */ 

 

//Calculates the number of sites connected to the external 

surface of a 3D Cubic Lattice over the complete 

//range of metastable necks. 

 

//Update Aug 1 2012 - fixed Q+(Xa) and measurement offset error. 

Only interior sites may now become scanning sites 

//Update Aug 2 2012 - Changed back to both interior and edge site 

choosing. Enhanced site picking speed by changing temp 

//                    to a vector and removing chosen sites. 

Fixed an error creating a floating point exception. 
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/*---------------------------------------------------------------

--------------------------------*/ 

//Preprocessor Directives and namespace declarations 

# include <stdlib.h> //for compatibility with Linux machines 

# include <iostream> 

# include <vector> 

# include <fstream> 

# include <time.h> 

 

using namespace std; 

 

/*---------------------------------------------------------------

-------------------------------*/ 

//Percolation Simulation Global Variables 

 

const int L=200; //side length - maximum this program can utilize 

const int N = L*L*L; //number of sites, total 

const int S = (L-2)*(L-2)*(L-2); //total number of interior sites 

const int N_Ext = N-S;//total number of exterior (boundary) sites 

const int NS = L*L; //number of sites per slice 

const int z = 6; //connectivity of the lattice 

const int M =(1./2.)*N*z+N_Ext;//number of bonds - (Interior 

Periodic) + Exterior Sites 

const int empties = (0.85)*N; //number of internal sites empty at 

beginning of simulation 

int bond_list[M][2];//list of bonds: index:[site1][site2] 

int ptr[N+1]; //pointer to sites; double duty: root: -cluster 

size; nonroot: points to root; Nth = External Surface 

int nn[N][z]; //array of nearest neighbors; used for filling 

bond_list; [D U B F R L] 

int order[M]; //order in which bonds are sequentially filled 

int Ext[N_Ext]; //External surface sites 

vector< vector < vector <int> > > temp;//temp array to hold site 

numbers 

int empty_pores[empties];//array to hold site numbers of empty 

pores 

double Qm[M]; //holds microcanonical measurements 

double btr[M]; //holds binomial distribuition 

//-----------------------------------Main Program----------------

--------------------------------- 

 

void boundaries() 

{    //set up nearest neigbor sites array with periodic 

boundaries 

    int i,j,k; 

    int n = 0; 

     

    //set up size of temp 

    temp.resize(L); 

    for (i = 0; i < L; ++i) { 

        temp[i].resize(L); 

    } 
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    for (i = 0; i < L; ++i) { 

        for (j = 0; j<L; j++) { 

            temp[i][j].resize(L); 

        } 

             

    } 

    for (i=0; i<L; i++) { 

        for (j=0; j<L; j++) { 

            for (k=0; k<L; k++) { 

                temp[i][j][k] = n; 

                //increment 

                n++; 

            } 

        } 

    } 

     

    n=0; //set up nearest neighbor sites 

    for (i=0; i<L; i++) { 

        for (j=0; j<L; j++) { 

            for (k=0; k<L; k++) { 

                if(j<L-1){nn[n][0] = temp[i][j+1][k];}  

                if(j==L-1){nn[n][0] = temp[i][0][k];} 

                if(j>0){nn[n][1] = temp[i][j-1][k];}  

                if (j==0) {nn[n][1] = temp[i][L-1][k];} 

                if(i<L-1) {nn[n][2] = temp[i+1][j][k];}  

                if(i==L-1) nn[n][2] = temp[0][j][k]; 

                if(i>0){nn[n][3] = temp[i-1][j][k];}  

                if(i==0) nn[n][3] = temp[L-1][j][k]; 

                if(k<L-1){nn[n][4] = temp[i][j][k+1];} 

                if(k==L-1) nn[n][4] = temp[i][j][0]; 

                if(k>0){nn[n][5] = temp[i][j][k-1];} 

                if(k==0) nn[n][5] = temp[i][j][L-1]; 

                n++; 

            } 

        } 

    } 

     

    //make a list of the exterior sites for use in bond_list 

    n = 0; 

    //k=0 surface 

    for (i=0; i<L; i++) { 

        for (j=0; j<L; j++) { 

            Ext[n] = (temp[i][j][0]); 

            n++; 

        } 

    } 

    //k=L-1 surface 

    for (i=0; i<L; i++) { 

        for (j=0; j<L; j++) { 

            Ext[n] = (temp[i][j][L-1]); 

            n++; 

        } 
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    } 

    //i=0 surface 

    for (j=0; j<L; j++) { 

        for (k=1; k<L-1; k++) { 

            Ext[n] = (temp[0][j][k]); 

            n++; 

        } 

    } 

    //i=L-1 surface 

    for (j=0; j<L; j++) { 

        for (k=1; k<L-1; k++) { 

            Ext[n] = (temp[L-1][j][k]); 

            n++; 

        } 

    } 

    //j=0 surface 

    for (i=1; i<L-1; i++) { 

        for (k=1; k<L-1; k++) { 

            Ext[n] = (temp[i][0][k]); 

            n++; 

        } 

    } 

    //j=L-1 surface 

    for (i=1; i<L-1; i++) { 

        for (k=1; k<L-1; k++) { 

            Ext[n] = (temp[i][L-1][k]); 

            n++; 

        } 

    } 

     

    //set up empty_pores[] - edge sites are allowed - for now 

   int col,row,dep; 

   int ind; 

   int counter = 0; 

     

   while (counter<empties) { 

       col = rand() % L; //from 0 to L-1 

       row = rand() % L; 

       if(temp[col][row].size() > 0){ 

           ind = rand () % temp[col][row].size(); //choose a 

random site from temp[col][row] 0 to size-1 

           empty_pores[counter] = temp[col][row][ind]; //allocate 

this sitenumber to empty_pores 

           temp[col][row].erase(temp[col][row].begin()+ind); 

//remove this entry from the vector to prevent doubling 

           cout<<"Empty Site ["<<counter<<"]: 

"<<empty_pores[counter]<<endl; 

           counter++; 

       } 

    } 

     

} 
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void makelist(){ 

    //make a list of the bonds 

    int i,j,n; 

    n = 0; 

     

    //interior bonds 

    for (i=0; i<N; i++) { 

        for (j=0; j<z; j++) { 

            if(nn[i][j]>i){ 

                bond_list[n][0] = i; 

                bond_list[n][1] = nn[i][j]; 

                n=n++; 

            } 

        } 

    } 

     

    //exterior bonds 

    for (i=0; i<N_Ext; i++) { 

        bond_list[n][0] = Ext[i]; 

        bond_list[n][1] = N; 

        n=n++; 

    } 

     

} 

 

void permutation(){ 

    //create a permutation of the bond numbers 

    int i,j; 

    int temp; 

     

    for (i=0; i<M; i++) order[i] = i; 

    for (i=0; i<M; i++) { 

        j = i + (M-i)*drand48(); 

        temp = order[i]; 

        order[i] = order[j]; 

        order[j] = temp; 

    } 

} 

 

int findroot(int i) 

{ // recursive rootfinding algorithm 

    if (ptr[i]<0) return i; 

    return ptr[i] = findroot(ptr[i]); 

} 

 

void percolate(){ 

    int i,j; 

    int s1,s2; 

    int r1,r2; 

    int big=0; 
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    for (i=0; i<N; i++) ptr[i] = -1; //set all interior sites to 

cluster of size 1 

    ptr[N] = -N-1; //set external surface site to -(N+1) 

     

    for (i=0; i<empties; i++) { //create bonds between interior 

empties and ext. 

        s1 = empty_pores[i];//empty pore 

        s2 = N;//exterior surface 

        r1 = findroot(s1); //find the root of site 1 

        r2 = findroot(s2); //find the root of site 2 

         

        //update cluster information 

        if (r1 != r2) { 

            if (ptr[r1]>ptr[r2]) { 

                ptr[r2] += ptr[r1]; 

                ptr[r1] = r2; 

                r1=r2; 

            } 

            else{ 

                ptr[r1] += ptr[r2]; 

                ptr[r2] = r1; 

            } 

        } 

 

    } 

     

    for (i=0; i<M; i++) { //do bond percolation 

         

        //site finding 

        s1 = bond_list[order[i]][0]; //find site 1 

        s2 = bond_list[order[i]][1]; //find site 2 

        r1 = findroot(s1); //find the root of site 1 

        r2 = findroot(s2); //find the root of site 2 

         

        //update cluster information 

        if (r1 != r2) { 

            if (ptr[r1]>ptr[r2]) { 

                ptr[r2] += ptr[r1]; 

                ptr[r1] = r2; 

                r1=r2; 

            } 

            else{ 

                ptr[r1] += ptr[r2]; 

                ptr[r2] = r1; 

            } 

        } 

        Qm[i] = (-ptr[N]-(N+1)); //microcanonical measurement  

        cout<<"Sites connected to External Surface: 

"<<Qm[i]<<endl; 

    } 

     

} 
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void binomial(double p){ 

    double C=0; //normalization 

    int nmax = p*M; //set nmax 

     

    btr[nmax] = 1; 

     

    //range n < nmax 

    for (int i = nmax-1; i>0; i--) { 

        double num = (double)i + 1.0; 

        double denom = (double)M-(double)i; 

        double fract = num/denom; 

        btr[i] = btr[i+1]*fract*((1.0-p)/p); 

    } 

    //range n > nmax 

    for (int i = nmax+1; i<M; i++) { 

        double num = (double)M -(double)i + 1.0; 

        double denom = (double)i; 

        double fract = num/denom; 

        btr[i] = btr[i-1]*fract*(p/(1.0-p)); 

    } 

     

    //normalization 

    for (int i=0; i<M; i++) { 

        C=C+btr[i]; 

    } 

    for (int i=0; i<M; i++) { 

        btr[i] = btr[i]/C; 

    } 

     

} 

 

double calculate(double q){ 

    //calculate the value of the canonical ensemble  

    int i; 

    double Qp = 0; 

     

    binomial(q);//call binomial calculator 

     

    //take ensemble average 

    for (i=0; i<M; i++) { 

        Qp = Qp + btr[i]*Qm[i]; 

    } 

    return Qp; 

} 

 

int main(){ 

     

    srand(time(NULL)); 

    srand48(time(NULL)); 

     

    boundaries(); 
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    makelist(); 

    permutation(); 

    percolate(); 

 

    ofstream results; 

    results.open("SimulationResults.txt"); 

     

    int Mesh = 100; 

    for (int i=0 ; i<=Mesh; i++) { 

        results<<((double)i/(double)Mesh)<<": 

"<<calculate((double)i/(double)Mesh)<<endl; 

    } 

    results.close(); 

     

    return 0; 

} 
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Appendix B 

Supplementary Information for Chapter 3 

A. CO2-DFT liquid and vapor densities and CO2 model surface tension 

The VLE for CO2 @ 273K was fitted by varying the fluid-fluid interaction energy parameter ff to 

reproduce the theoretical VLE data gathered from NIST.gov’s chemistry webbook (accessible 

online via http://webbook.nist.gov/chemistry/). A plot of the VLE (temperature-density) curve for 

CO2 is presented below in Fig B.1.  Notably, it is (not) possible for a 1-center LJ representation of 

CO2 to reproduce the entire VLE curve using constant parameterization across temperatures.  

However, for our purposes, fitting to 273K is sufficient. 

 

Figure B.1. Comparison of vapor (left branch) and liquid (right branch) densities as predicted 

with DFT (points) to NIST’s empirical VLE data (line) for a range of temperatures. 

http://webbook.nist.gov/chemistry/
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Figure B 2. (Left) QSDFT CO2 density profile in 60ff pore, used to fit the model (red line) 

vapor-liquid interface.  The red-line is input to the surface tension equation.  (Right) Radial 

distribution function g(r2-r1) for Lennard-Jones CO2, calculated by NVT MC simulation. 

Accurately reproducing the liquid-vapor surface tension of the target fluid is considered a 

key property of fluid models for adsorption purposes.  In this work, we estimate the surface tension 

of the CO2 model using an approach devised by Berry, Durrans, and Evans [ref B1] in the early 

1970s, which is easily applied to Lennard Jones molecules and DFT/Monte Carlo simulations.  This 

method is based on the Kirkwood Buff theory and assumes a smooth transition from liquid to vapor 

phases across a well-defined interface.  The model has the additional simplification that the radial 

distribution function is approximated by its liquid value over the entire interfacial (transition) 

region[ref B1]. 

 The surface tension  is presented in integral form over the interfacial region and takes into 

account the two particle distribution function n2 and the interaction potential 

𝛾 = (
1

2
) ∫ 𝑑𝑧1 ∭𝑑𝑟 𝑛2(𝑧1, 𝑟) (

𝑑𝜙

𝑑𝑟
) (𝑥2 − 𝑧2)/𝑟 

∞

−∞
                               (B.A1) 

In this case, the interaction potential is the Lennard Jones potential, and its derivative is: 

(
𝑑𝜙

𝑑𝑟
) = −

48𝜖𝑓𝑓

𝑟
((

𝜎𝑓𝑓

𝑟
)
12

− (
1

2
) (

𝜎𝑓𝑓

𝑟
)
6
)                                       (B.A2) 
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The two particle distribution function n2 is assumed to be directly related to the one particle 

distributions and the radial distribution function as: 

𝑛2(𝑟1, 𝑟2) ≅ 𝑛(𝑟1)𝑛(𝑟2)𝑔(|𝑟2 − 𝑟1|)                                        (B.A3) 

The one particle distribution at the interface is modeled by a piecewise exponential function n(z): 

𝑛(𝑧) = {
𝑛0 (1 −

𝑒
𝑧
𝐿

2
) 𝑧 < 0

𝑛0

2
𝑒−

𝑧

𝐿 𝑧 > 0

                                                 (B.A4) 

Where n0 is the bulk liquid density and L is the interface width. After some intricate integration, 

the surface tension can be rewritten in terms of the interface width and interparticle distance r as: 

𝛾 =
𝜋𝑛0

2𝐿4

8
∫ 𝑑𝑅𝑔(𝑟)

∞

0
(
𝑑𝜙

𝑑𝑟
) {(

𝑟

𝐿
)
4
− 8(

𝑟

𝐿
)
2
+ 72 − 𝑒

−(
𝑟

𝐿
)
(4 (

𝑟

𝐿
)
3
+ 28(

𝑟

𝐿
)
2
+ 72(

𝑟

𝐿
) + 72)}    

(B.A5) 

Application of Eq. B.A5 to estimate the surface tension of model CO2 is straightforward.  First, a 

single DFT calculation is performed in a large slit pore (60ff) at p ~ 0.9p0 and Eq. (B.A4) is fitted 

to the resulting liquid-vapor density profile (see Fig. B.2, (left). Use of a large pore ensures that 1.) 

there is a substantial liquid film along the pore wall 2.) that the liquid film is minimally affected by 

the solid-liquid interactions and 3.) that there is a well-defined liquid-vapor transition region in the 

density profile.  A single NVT MC simulation is next run to determine the radial distribution 

function of the CO2 molecules, given the DFT density and temperature.  These functions are then 

plugged into Eq. B.A5 and integrated until the LJ cutoff (in this case, 5ff).   The resulting surface 

tension for CO2 at 273K is: 4.56 dyn/cm, which is in excellent agreement with experimentally 

determined surface tension estimates (4.57-4.62 dyn/cm) [refs B2, B3]. 
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B. CO2 Model Saturation Pressure 

 While the saturation densities and the vapor-liquid surface tension of the CO2 model are in 

excellent agreement with empirical models and experimental data, the saturation pressure of CO2 

is not accurately predicted by DFT (shown below in Fig. B. 3, left). As such, the saturation pressure 

must be taken as an additional parameter of the model, in order to shift the condensation pressure 

of isotherms to the appropriate relative pressure.  To determine the appropriate shifting satuation 

pressure, the CO2 condensation pressures of the three experimental samples were mapped to their 

N2 pore size.  The plot of condensation pressure vs. pore size was then compared to the CO2 

prediction, and the saturation pressure was fitted to minimize the least-square error between the 

experimental and DFT-calculated pore sizes/pressures.  The fitting process is shown in Fig. B.3 

(right). This work, the saturation pressure of CO2 predicted by DFT is 38.9 bar and the fitted 

pressure is 36.5 bar.   

 

Fig. B. 3 (Left) Saturation pressure as a function of temperature for DFT (points) and empirical 

equation from NIST.gov. (Right) Fitting of the CO2 saturation pressure by choosing p0 to 

coincide with the N2 pore size. (Points – N2; solid line – CO2 p0 shifted to 36.5 bar; dotted line – 

CO2 p0 = 38.9 bar). 
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C. Fitting Comparison  

 

Fig. B.4 CMK-3 a experimental data (circles) alongside fits from slit/cylindrical kernel (line). 

To determine the pore size distribution each isotherm in the applied kernel is are given a 

weight, which is then convoluted to produce a “best fit” composite isotherm.  Fig. B.4 illustrates 

one such best-fit isotherm (red line) for the CMK-3 sample a using the slit/cylindrical kernel (K3) 

for CO2.  With an appropriate pore model, the best fit isotherm should be well-fitted to the 

experimental isotherm over the entire range of relative pressures.  The fit is excellent for this 

example, shown in log and linear scales to illustrate good fitting over multiple decades in relative 

pressure.  In the inset of Fig. B. 4, a detail of the capillary condensation region is shown.  The 

general fit of this kernel to the isotherm indicates that the assumption of slit shaped micropores and 

cylindrical mesopores is a decent assumption for this material. 

 

 



                                                                                                                                                                                                                        157 
 

                                                                            

D. Excess vs. Absolute Adsorption of CO2 

 In the context of an adsorption experiment, the adsorption measurement provides the 

amount adsorbed n as a function of externally imposed pressure p.  Due to the nature of volumetric 

adsorption experiments, this amount adsorbed n reflects not the total amount adsorbed (na) but the 

excess adsorption, n = ns.  The excess adsorption is defined in accordance with the Gibbs adsorption 

theory as the amount of adsorbed fluid which is in excess of the amount that would be present in 

the same volume, in the absence of an adsorbent.  Use of the excess adsorption definition allows 

one to forego any definitions of adsorption which explicitly differentiate between “adsorbed” or 

“unadsorbed” molecules. The term amount adsorbed in adsorption literature most often to refers to 

the excess, as this is the quantity which is determined during volumetric adsorption experiments. 

For the more conventionally used analysis gases N2 and Ar, where the adsorbate is far below the 

critical point, the excess adsorbed amount is essentially identical to the total amount adsorbed.  This 

fact has enabled the direct correlation of theoretical DFT isotherms - which are always measured 

in absolute adsorption – to experimental isotherms, producing both accurate PSDs and total 

volume/surface area calculations.  However, it is well known  that CO2 excess adsorption at 

pressures approaching 35 bar is significantly less than the absolute amount adsorbed. 
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Fig. B. 5. Experimental adsorption isotherm of CO2 @ 273K on CMK-3 carbon.  Blue – surface 

excess adsorption.  Red – absolute adsorption, calculated using Eq. B.D1 

The discrepancy between excess and absolute amount adsorbed for CO2 has immediate 

consequences when characterizing experimental isotherms.  As mentioned above, experiments do 

not record the absolute adsorbed amount – only the excess is measureable.  For this reason, it is 

necessary to estimate the absolute adsorbed amount.  In this work, conversion between excess and 

absolute adsorption is estimated using the following general equation: 

𝑛𝑎 = 𝑛𝑠/(1 − 𝜌𝑣/𝜌𝑙  )                                                   (B.D1) 

Where 𝜌𝑣 and 𝜌𝑙  are the bulk vapor and liquid densities of CO2 @ 273K, respectively. An example 

of the application of Eq. B.D1 is shown in Fig.D. 5 above, which compares the surface excess 

adsorption of CO2 @ 273 K on CMK-3 a carbon to the absolute amount adsorbed, as estimated by 

Eq. B.D1.  In this example, the amount adsorbed in the primary mesopore plateau region (p/p0 ~ 

0.85) differs by approximately 20% between absolute and surface excess.  In this case, application 

of standard methods such as the Gurvich rule that rely on the adsorbed amount would significantly 

underestimate the total pore volume if  excess were used in place of the absolute adsorbed amount. 

In all of the main paper discussion, Eq. B.D1 has been applied to each experimental excess isotherm 

of CO2, to arrive at an accurate estimate of the absolute adsorption.  These absolute adsorption 

isotherms were in turn used to calculate the PSD and pore volumes of each sample. 

E. Library of QSDFT Kernels for Ar adsorption on MMC 

 In addition to the CO2 kernels developed for this work, several argon @ 87K kernels were 

developed with models identical to N2 kernels previously published for analysis of micro-

mesoporous (MMC) carbons in various geometries.  A brief description of each Ar kernel is 

presented here for general information purposes.  These kernels (along with the CO2 kernels 



                                                                                                                                                                                                                        159 
 

                                                                            

described in Chapter 3) have been incorporated into the latest release of the Autosorb iQ software 

for data reduction analysis and are available to the public. 

Ar @ 87K Cylindrical-Equilibrium 

Kernel consisting of cylindrical geometry, equilibrium isotherms in the pore size range 0.5175 –-

50.2 nm.  This kernel is suitable to analyze the desorption branches of argon isotherms on 

hierarchically structured carbons. 

Ar @ 87K Cylindrical-Adsorption 

Kernel consisting of cylindrical geometry isotherms with 67 equilibrium isotherms in the pore size 

range 0.5175 –-4.84 nm and  metastable adsorption isotherms in the range 5.0-50.2 nm.  This kernel 

is suitable to analyze the adsorption branches of argon isotherms on hierarchically structured 

carbons. 

Ar @ 87K Slit-Cylindrical-Equilibrium 

Kernel consisting of slit geometry, equilibrium isotherms in the pore size range 0.325 – 2nm plus 

cylindrical equilibrium isotherms from 2.1-50.2 nm.  This kernel is suitable to analyze the 

desorption branches of argon isotherms on hierarchically structured carbons with substantial 

activation. 

Ar @ 87K Slit-Cylindrical-Adsorption 

Kernel of slit equilibrium isotherms in the pore size range 0.325 – 2 nm plus cylindrical equilibrium 

isotherms in the pore size range 2.1 – 5.0nm plus cylindrical metastable adsorption isotherms from 

5.2- 50.2 nm. This kernel is suitable to analyze the adsorption branches of argon isotherms on 

hierarchically structured carbons with substantial activation. 

Ar @ 87K Cylindrical-Spherical Adsorption 
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Kernel of cylindrical equilibrium isotherms in the pore size range 0.5175 – 4.84 nm plus spherical 

metastable adsorption isotherms from 5.0- 50.2 nm. This kernel is suitable to analyze the adsorption 

branches of argon isotherms on hierarchically structured carbons with large cagelike pores 

connected by smaller windows. 
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Appendix C 

Supplementary Information for Chapter 4 

A. Corroboration of IGCM results by the MDGC method and Chain Free Energy 

The incremental chemical potential was calculated by both Ideal Gas (IG) and Mean 

Density (MD) methods. In the MD method, the incremental chemical potential for a chain of length 

N is calculated from a simple average of sampled incremental chemical potentials over the course 

of a simulation. The MD method assumes the ‘mean density’ of monomers in the gauge cell reflects 

the simulation’s equilibrium state.   The function 𝜇𝑖𝑛𝑐𝑟(𝑁) is then ‘built up’ by averaging over 

many iterations of the same simulation for each value of N desired. In the IG method, a histogram 

(series of 𝜇𝑖𝑛𝑐𝑟 values for Ni near N) of the incremental chemical potential is collected. Histograms 

for different chain lengths are then combined to create a ‘smooth’ function 𝜇𝑖𝑛𝑐𝑟(𝑁).  The latter 

method requires a relatively fine grid of N, to ensure that the histogram peaks overlap sufficiently 

to render a statistically sound average.  The penalty of utilizing a fine grid however is more than 

compensated for when compared to the MD method, which takes anywhere from 20 to 100 

simulations (per N) to render statistically sound results. In order to test the applicability of both of 

these methods, two sets of IGCM simulations were performed, one with MD and one with IG.  The 

MD simulations consisted of 20 to 100 simulations at each value of N = 25, 50, 100, 150 and 200 

for each value of U = 0, -3, -5, -6…-10. The IG simulations consisted of one simulation at each 

value of N = 3, 5, 10, 15…200, for the same range of U values. Each set consisted of 400 

equilibration and 500 production sets of between 850,000 and 1 million Monte Carlo moves per 

set.  
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Fig. C.A.1. Dependence of the incremental chemical potential on the adsorption energy U for 

tethered chains of different length N from 25 to 200. The intersection point corresponds to the CPA 

at U=Uc=-5.4 +/- 0.05. Free jointed LJ chain model. Calculations with the incremental gauge cell 

MC method; (a) – MD, (b) – IG.. For the MD, N = 25, 50, 100, 150, 200. For the IG, results are 

presented for N = 30, 40, …, 200. In both cases, there is clear intersection at the point Uc = -5.4 

+/- 0.05. 

 The chain incremental chemical potential for sufficiently large chains  (N > 30) is shown 

to be a constant in our work. It follows that chain free energy, which is the sum of the chain 

incremental chemical potentials, should be linear in N for the same range of N. The linearity of the 

chain free energy dependence on N is illustrated in Fig. C.A.2 below.   

 

Fig. C.A.2. The chain free energy as a function of N. These calculations support the chain 

increment ansatz: for sufficiently large N the incremental chemical potential is constant and the 

chain free energy in a linear function of N. 

B. Geometrical method for determination of the CPA 

 As noted in Chapter 4, DeGennes defined the CPA from the criterion that below the CPA, 

the probability Pa of adsorption for a monomer distanced from the tethered end by n monomers 
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decreases to 0 as n increases. Above the CPA, this probability approaches a finite limit as 𝑛 →  ∞. 

The respective graph is shown in Fig. C.B.1. (a).  Likewise, utilizing the ansatz (2), the CPA may 

be found from the extrapolation of the linear region of a plot relating the fraction of adsorbed 

monomers to the adsorption energy Fig. C.B.1 (b). 

 

Fig. C.B.1. (a) Probability of adsorption for a monomer distanced from the tethered end by n 

monomers, Pa; Adsorption energies U = -3, -5.4 (CPA), -7, -8, and -10. Results averaged for 40 

chains. (b) Fraction of adsorbed monomers M/N as a function of adsorption energy -U; N = 200. 

Futhermore, in the geometrical framework several important scaling relationships for large 

chains have been developed. We are concerned here only with those governing the radii of gyration 

Rx2, Ry2 and Rz2, from which are derived the radii of gyration normal and parallel to the surface of 

the adsorbent: 

𝑅𝑔⊥
2 = 𝑅𝑧

2                                                                   (C.B.1) 

𝑅𝑔∥
2 =

𝑅𝑥
2+𝑅𝑦

2

2
                                                               (C.B.2) 

These scaling relationships make use of the crossover exponent 𝜙, and assume the following forms: 

𝑅𝑔⊥
2

𝑁𝜈 = ℎ⊥(𝑥) =  {

𝑐⊥1 𝑥 →  ∞

𝑐⊥2 𝑥 = 0

|𝑥|
−

𝜈3
𝜙 𝑥 → −∞

         
𝑅𝑔∥

2

𝑁𝜈 = ℎ∥(𝑥) =  {

𝑐∥1 𝑥 →  ∞

𝑐∥2 𝑥 = 0

|𝑥|
𝜈2−𝜈3

𝜙 𝑥 → −∞

              (C.B.3a-b)                                 

In (C.B3.a-b) ν3 = 0.588 and ν2 = ¾ are the 3d and 2d Flory exponents for polymer chains and 𝑥 =

𝜏𝑁𝜙.  It is worth noting that these scaling equations are plausible qualitative approximations, which 
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reflect the asymptotic behavior at large N.  Equations (C.B3.a-b) imply that the ratio of these 

primary radii of gyration gives rise to a function that is invariant in N at the critical point. Therefore, 

a plot of the ratio of the radii of gyration as a function of U for several values of N should intersect 

at the critical point, Uc.  This property is used to estimate the critical point in the geometrical 

method. However, since it holds only with the provision of large enough N, the geometrical method 

applied for finite length chains may overestimate the critical point, as shown below in Fig. C.B.2. 

 

Fig. C.B.2. Ratio of the radii of gyration of a tethered chain as a function of adsorption energy.  

Clear intersection occurs at around U = -6.5, somewhat more negative in value than the IG/MD 

results. 

For a long chain free in solution, the radii of gyration in each coordinate should approach 

the same value, and thus the polymer should approach a sphere-like shape.  The ratio of these radii 

should therefore be unity, as is shown within experimental error in Fig. C.B.2. For a tethered chain, 

this ratio will necessarily be slightly skewed, due to anisotropy of the chain and the limitation of 

conformations thus imposed upon it.  However, as the chain becomes large, this anisotropy should 

decrease.  Indeed, we see in Fig. C.B.2 that for chains beyond 50 monomers, this effect is about 

the same. In the presence of an adsorption field, the tethered chains undergo a geometrical 

transition, from the three-dimensional solvated chain, to one which is mostly adsorbed and two-

dimensional.  As implied by (C.B3.a-b), at the CPA, these curves should intersect for all values of 

N.  Fig. C.B.2. shows that this transition does indeed occur, though at a value of U slightly more 
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negative than found by the adsorption method.  The geometrical CPA occurs at approximately 

UcGM = -6.5 +/- 0.1. 

In the repulsion limit at 𝑥 = 𝜏𝑁𝜙 → ∞, both 𝑅⊥ and 𝑅∥ scale as 𝑁𝜈3, and respectively 

𝑅⊥/𝑅∥~1. At the very CPA in the limit of |𝜏| ≪ 𝑁−1/2, ℎ⊥ and ℎ∥ approach certain constants, 

ℎ⊥(0) and ℎ∥(0). Thus, the scaling ansatz (3) implies that 𝑅⊥/𝑅∥ is independent of N at 𝜏 → 0. This 

conclusion was previously used by others (see Chapter 4) for the practical calculation of the CPA 

from the point of intersection of  𝑅⊥/𝑅∥ versus U plots for the chains of different length N. 

However, since the scaling ansatz holds only with the provision of large N, such a geometrical 

method applied for finite length chains may overestimate the critical point.  In addition it is worth 

mentioning, that from the asymptotes (4) it follows that (𝑅⊥/𝑅∥)𝑁
𝜈2 ∝ |𝜏|

−𝜈2
𝜙 = |𝜏|−3/2 at 𝑥 →

 −∞. As such, the CPA can be estimated by plotting (𝑅⊥/𝑅∥)𝑁
𝜈2 versus U and fitting to the 

asymptote |𝜏|−3/2. However, it does not seem to be practical for the relatively short chains N<200, 

as seen from Fig. C.B.3. 

 

 

Fig. C.B.3. Plot of ratio of radii of gyration times 𝑁𝜈2versus adsorption energy. Asymptotic lines 

for |𝜏|−
3

2 versus U also included for Uc = -5.4 and -6.5. 

C. Alternative consideration of the scaling at CPA. 
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𝑅⊥ is determined by the characteristic length l of the loops formed by non-adsorbed 

monomers, as 𝑅⊥ ∝ 𝑙𝜈3. The loop length 𝑙 ∝
𝑁

𝑀
∝ 𝑁1−𝜙, and, as such, 𝑅⊥ ∝ 𝑁(1−𝜙)𝜈3. 𝑅∥ is 

determined by the distribution of M=𝑁𝜙 adsorbed monomers; this distribution can be viewed as 

resulting from a 2d random walk with the characteristic step equal to the characteristic loop 

extension in the parallel direction, which should be of the order of  𝑅⊥. Thus, (𝑅⊥/𝑅∥) ∝ 𝑁−𝜙𝜈̃2, 

where 𝜈2 is the respective 2d random walk exponent. It is debatable whether this 2d random walk 

should be treated as ideal or as a self-avoiding trajectory; in the former case 𝜈2=1/2 and (𝑅⊥/𝑅∥) ∝

𝑁−1/4, while in the latter case  𝜈2=3/4 and (𝑅⊥/𝑅∥) ∝ 𝑁−3/8. This consideration negates the above 

conclusion that that 𝑅⊥/𝑅∥ is independent of N at 𝜏 → 0, which is worth additional verification. 
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Appendix D 

 

Supplementary Information for Chapter 5 

 

A. Glossary 

aex Excess adsorption 

b  Polymer chain model unit size (Kuhn segment) 

c Concentration of chains near a surface  

c0 Bulk concentration of chains 

Dcol Column diameter 

DM Diffusion coefficient 

dp Particle diameter 

F Excess free energy of a chain molecule 

Fads
 Excess free energy of an adsorbed chain molecule 

F0
 Excess free energy of a free chain molecule 

K Thermodynamic partition (distribution) coefficient of polymer chromatography 

KH Henry adsorption coefficient 

KLAC Partition coefficient of liquid adsorption chromatography 

KLCCC Partition coefficient of liquid chromatography at critical conditions 

KSEC Partition coefficient of size exclusion chromatography 

kB Boltzmann constant 

k’ Retention factor 

l Characteristic length scale (for Péclet number) 

N Chain length (number of segments)  

N* Characteristic chain length 

Ntot Total amount of analyte in column 

Pe Péclet Number 

RC Capillary radius 

Re Reynolds Number 

Reff Effective hydrodynamic radius of chain 

RG Radius of gyration 

RP Average particle radius 

S Surface area of stationary phase 

T Kelvin Temperature 

T* Reduced temperature  

tm Retention time of a solvent molecule 

tR Retention time 

U Adsorption potential of solid wall 

U’ Reduced, normalized adsorption potential 

UCPA  Critical adsorption potential 

Vcol Total column volume 

VI Interstitial volume 

VL Liquid volume  

VM Mobile phase volume 

VP Particle pore volume 

VR Retention volume 

VST Stationary phase volume 

VS Volume of solid particles 

v0 Superficial column velocity 

𝑣0̇ Volumetric flow rate 

X Mobile phase composition 
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X’ Reduced, normalized mobile phase composition 

z Perpendicular distance from a flat adsorbing surface 

 

Greek Symbols 

ΔF Difference between chain excess free energy in the adsorbed and free states 

𝛿𝑓𝑖𝑙𝑚 Stagnant zone thickness 

ϵ Column packing porosity 

Greek Symbols (cont’d) 

𝜆 Ratio of chain radius of gyration to capillary radius 

𝜌 Fluid density 

𝜂 Fluid viscosity 

𝜇𝑖𝑛𝑐𝑟 Incremental chemical potential  

𝜇𝑖𝑛𝑐𝑟
0  Incremental chemical potential of free chain 

  

Abbreviations 

ACN Acetonitrile 

CPA Critical point of adsorption 

HDC Hydrodynamic Chromatography 

HPLC High performance liquid chromatography 

ICP Incremental chemical potential 

LAC Liquid adsorption chromatography 

LCCC Liquid chromatography at critical conditions 

MC Monte Carlo 

SEC Size exclusion chromatography 

THF Tetrahydrofuran 

UV Ultraviolet 
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B. MC Simulations and Derivation of Henry Coefficient  

 The Henry coefficient is a thermodynamic variable comprised of the statistical sum of 

chain configurations within an arbitrary volume 𝑉 = 𝑆 ∙ 𝐿 that encompasses the adsorption 

interface and some part of the bulk volume. The Henry coefficient is also a function of the chain 

length and excess free energy (see Eq. (5.5) in the main text and (Fig. D.1).  Assuming that the 

adsorbent is planar and homogeneous in the directions parallel to the adsorption surface, only 

variation in the chain configurations perpendicular to the surface will affect the chain free energy.  

Therefore, free energy of the chain is characterized as a function of the chain length and the 

perpendicular distance from the adsorbing surface, z as F(N,z).  

 The MC simulations sample the volume V near the adsorbing surface and measure the 

incremental chemical potential of chains in order to ultimately determine the Henry coefficient.  In 

each set of simulations, a chain is anchored by a terminal monomer (gray beads in Fig. D.1, below) 

at a distance z and is grown from 1 to N beads. The incremental chemical potential of the chain 

𝜇𝑖𝑛𝑐𝑟 is determined for each chain length 1 to N and the free energy of the chain of length N is 

calculated using 𝐹(𝑁, 𝑧) =  ∑ 𝜇𝑖𝑛𝑐𝑟(𝑖, 𝑧)
𝑁−1
𝑖=0 .  
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Figure D.1.  Schematic of calculation of the Henry coefficient of chains interacting with the 

surface. Chains are distinguished by the position z of the end segment. By using MC simulation, 

we compute the incremental chemical potentials and excess free energies of chains anchored at 

distance z from the surface. The Henry coefficient is determined by the integrating along z the 

ratio of Boltzmann factors of anchored and free chains.   

 

 The free energy of the chain is then used to relate the concentration of chains of length N 

at any point z = {0,…,L}within the volume V to the bulk chain concentration via the Boltzmann 

weight of the chain free energy: c(N,z)/c0 = exp[-(F(N,z)-F0(N))].  The excess adsorption aex is the 

amount of N-chains present in V in excess of the bulk concentration, c0(N).  

𝑎𝑒𝑥(𝑁) = ∫ [𝑐(𝑁, 𝑧) − 𝑐0(𝑁)]
∞

𝑧=0

𝑑𝑧 

The Henry coefficient KH and excess adsorption aex are directly related through the definition: 

𝑎𝑒𝑥(𝑁) = 𝐾𝐻(𝑁) ∙ 𝑐0(𝑁).  Rearranging the 𝑎𝑒𝑥(𝑁) expression for KH, we obtain: 

𝐾𝐻(𝑁) =
∫ [𝑐(𝑁, 𝑧) − 𝑐0(𝑁)]

∞

𝑧=0
𝑑𝑧

𝑐0(𝑁)
 

The bulk concentration is assumed to be constant and as such may be rearranged in the integral: 

𝐾𝐻(𝑁) = ∫ (
𝑐(𝑁, 𝑧)

𝑐0(𝑁)
− 1)𝑑𝑧

∞

𝑧=0

 

Using the equality c(N,z)/c0 = exp[-(F(N,z)-F0(N))], we arrive at Eq. 5.5 in the main text: 

𝐾𝐻(𝑁) = ∫ [exp[−𝐹(𝑁, 𝑧) − 𝐹0(𝑁)] − 1]𝑑𝑧
∞

𝑧=0

 

C. Hydrodynamic effects in the absence of adsorption. 

 The prediction of retention volume for the case of non-porous particles is dependent on the 

geometry/topology of the stationary phase and velocity of the fluid flowing through the column.  

Chains eluting in these columns are subject to different separation mechanisms (SEC, HDC, or a 

combination thereof) depending on the column properties [ref D1]. The discussion below compares 

the predictions of the standard hydrodynamic chromatography (HDC) model for the separation in 
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the column considered in this study in non-adsorption mode (left most data points in Fig. 5.4 in the 

main text). 

 The Reynolds number Re of a fluid is a dimensionless grouping which is used to determine 

the flow regime.  A laminar flow (Re < 100) is necessary to apply the hydrodynamic equations to 

a packed bed [ref D1].  Assuming roughly spherical stationary phase particles, the Re is given by: 

𝑅𝑒 =
𝑑𝑃𝑣0𝜌

𝜂
 

The particle diameter dp in this work is 2 microns and the average column velocity 𝑣0 is 

0.06 cm/s.  The density and dynamic viscosity of THF are ~ 0.88 g/cm3 and 0.48cP at the column 

temperature (35 C) [ref D2] .  At these conditions, the Re is ~ 0.002, indicating laminar flow.  For 

a column under laminar flow, we may invoke standard theory of hydrodynamic chromatography 

under Poisseulle flow to describe the separation of particles by their hydrodynamic radii.  The 

retention time tR of small particles in laminar flow in a packed bed is given by [ref D1]: 

𝑡𝑅(𝜆) = 𝑡𝑚(1 + 2𝜆 − 𝐶𝜆2)−1                                                                      (D.1) 

where tm is the residence time of a very short chain (here, 4.37 min) and C = 2.698 for dilute 

solutions in thermodynamically good solvent .  The aspect ratio 𝜆 =  𝑅𝑒𝑓𝑓/𝑅𝐶 is the ratio of the 

effective chain radius Reff to the capillary radius RC. The effective chain radius may be estimated as 

𝑅𝑒𝑓𝑓  ≈ 𝑅𝐺√𝜋 /2, where RG is the chain radius of gyration.  The radius of gyration for linear 

polystyrenes is proportional to the molecular weight [ref D3]: Rg = 0.0118Mw0.6.   Using the 

experimental range of chain lengths in this paper, Reff ranges between 1.4-26.9nm. The capillary 

radius is defined by the particle diameter (2 micron) and column porosity 𝜖 = 0.44: 𝑅𝐶 =

(
𝑑𝑃

3
) (

𝜖

1−𝜖
) = 5.2 𝜇𝑚.   

The retention volume is then easy to calculate: 𝑉𝑅 = 𝑡𝑅𝑣̇.  The plot of the results obtained 

from hydrodynamic equation (D.1) vs. the experimental and simulation retention volumes is shown 

in Fig. D.2 below:                                                        
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Figure D.2. Comparison of the retention volume predictions for the SEC mode (no adsorption 

potential) from hydrodynamic equation (blue line) and Monte-Carlo simulations (red triangles) as 

compared to the experimental data (green circles). 

 

 Comparison of the experimental elution (green circles) with the entropic repulsion 

predictions from simulations (red triangles) and hydrodynamic separation (blue line) reveals that 

the hydrodynamic mechanism described by the standard model of the Poiseulle flow in cylindrical 

capillary is reasonably suited to explain the separation of all chains on this nonporous column in 

the absence of adsorption; it only moderately underestimates the elution volume as the chain size 

increases.   

Another approach to account for the flow inhomogeneity, which may explain a discrepancy 

between HDC equation and the simulation results, is based in the division of liquid volume into the 

flow and stagnant zones [ref D4]. This model is implied in our work. For the system in this study 

all chains are orders of magnitude smaller than the column hydrodynamic radius RC. Our 

simulations and the corresponding retention volumes do not take into account the real distribution 

of the flow velocities.  It is assumed that the flow may be separated into two regimes: a constant 

plug flow of velocity 𝑣0 and stagnant zones of velocity ~ 0.  We further assume the stagnant zones 
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present in the column are wide enough to encompass all polymer interactions near the stationary 

phase and are significantly wider than the radii of gyration for the largest chains considered.   

To show the feasibility of this argument let’s estimate of the stagnant zone thickness. The 

group of Ulrich Tallarek [ref D4] has shown that the Péclet number can be used to determine the 

effective width of the stagnation zone  𝛿𝑓𝑖𝑙𝑚 in a chromatographic column using the following 

relationship: 

𝛿𝑓𝑖𝑙𝑚 ∝
𝑅𝐶

Pe
1
3

 

The Péclet number for the nonporous column is proportionate to the characteristic length l 

(in this case RC), superficial velocity and inverse diffusion coefficient [ref D5]: 𝑃𝑒 ∝ 𝑙 ∙ 𝑣0/𝐷𝑀.  

Estimation of the Pe by order of magnitude gives: 

𝑃𝑒 ∝
10−4[𝑐𝑚] ∙ 10−1 [

𝑐𝑚
𝑠 ]

10−5  [
𝑐𝑚2

𝑠 ]
~𝒪(1) 

It is worth noting that the 𝛿𝑓𝑖𝑙𝑚 relationship above was implemented for systems with 

particle sizes an order of magnitude larger than our experimental system. However, it is reasonable 

to assume the behavior of the fluid scales similarly for smaller sized particles, given the laminar 

nature of the flow.  With a Pe number of 𝒪(1) and 𝑅𝐶 of 𝒪(10−6) m, it is evident that the stagnant 

zones are much larger than the average radii of gyration of the largest chains 𝒪(10−9)𝑚. As such, 

the assumption of wide stagnant zones is feasible. 
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Appendix E 

 

Supplemental Information for Chapter 6 

 

A. Glossary 

b Bead diameter in the chain model 

cS Surface concentration of chains 

c0 Bulk concentration of chains 

Dcol Column diameter 

F Helmholtz free energy 

F0 Helmholtz free energy of an unconfined chain 

FC Helmholtz free energy of a cis chain 

FT Helmholtz free energy of a trans chain 

K Overall partition coefficient 

KH Henry adsorption coefficient 

KP Partition coefficient for complete confinement to pores 

KF Partition coefficient for partial confinement to pores 

k Harmonic spring constant 

kB Boltzmann’s constant 

L Characteristic distance away from surface (200b) 

M Molecular weight 

N  Number of chain segments 

N* Critical number of chain segments 

Nex Excess adsorption of chains 

NM Number of chain segments at which a free energy minimum occurs 

N0 Bulk number of chains 

Ntot Total number of chains 

nS Number of surface pores  

RG Radius of gyration of a chain 

RG* Critical gyration radius 

RP Particle radius 

Rpore Pore radius 

r12 Center-to-center distance of neighboring beads 

Sext External surface area of solid particles 

Ŝext Specific external surface area 

s Number of translocated chain segments 

s* Characteristic degree of translocation  

T Kelvin temperature 

T* Reduced temperature T* = kBT/ 

U Adsorption potential 

Ub  Harmonic bond potential 

UC Adsorption potential at critical conditions 

Vcol Column volume 

VR Retention volume  

VR,ext Contribution to retention from external surface 

VR,pore Contribution to retention from pores 

VR,fl Contribution to retention from flower conformations 

VS Solid volume 
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VI Interstitial volume 

VP Accessible pore volume 

VO Volume of surface pores 

vO Volume of one surface pore 

z vertical distance away from external surface of stationary phase 

 

Greek Symbols 

Δ𝐹 Difference in Helmholtz free energy between adsorbed and free chains 

 Bead-bead LJ energy parameter 

P Particle accessible ‘chain exploratory’ porosity 

S Surface porosity 

𝜇𝑖𝑛𝑐𝑟 Incremental chemical potential  

𝜇𝑖𝑛𝑐𝑟
0  Incremental chemical potential of free chain 

Δ𝜇 Difference in chemical potential of adsorbed and free chains 

  

Abbreviations 

CPA Critical point of adsorption 

LAC Liquid adsorption chromatography 

LCCC Liquid chromatography at critical conditions 

MC  Monte Carlo 

PS Polystyrene 

SEC Size exclusion chromatography 

S-G  Skvortsov & Gorbunov 

SCFT   Self-Consistent field theory 

 

Latin Terminology 

cis on external surface (not translocated) 

trans within pores (translocated) 
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B. Derivation of the Critical Conditions of Adsorption: General Case 

 

The definition of critical conditions from the equality of the incremental chemical 

potentials of adsorbed and free chains is shown below to be a natural consequence of the chain 

length independence of the partition coefficient for both internally and externally adsorbed chains.   

Internally / partially translocated chains 

 The partition coefficient for case of chains adsorbing in pores is simply the exponent of the 

difference in free energy: K(N) = exp[-(F(N)-F0(N))].  At the critical conditions, the partition 

coefficient is chain length independent or: 

𝑎𝑡 𝐶𝑃𝐴 →
𝑑𝐾

𝑑𝑁
= 0                                                       (E.B1) 

The derivative of the partition coefficient is: 

𝑑

𝑑𝑁
exp[−(𝐹(𝑁) − 𝐹0(𝑁))] = 0 

exp[−(𝐹(𝑁) − 𝐹0(𝑁))]
𝑑

𝑑𝑁
(−(𝐹(𝑁) − 𝐹0(𝑁))) = 0 

The exponent of a function cannot become zero, therefore the equation reduces to: 

𝑑

𝑑𝑁
(−(𝐹(𝑁) − 𝐹0(𝑁))) = 0                                               (E.B2) 

Rearranging the terms, the equality of incremental chemical potentials is the direct consequence 

of Eq. (E.B2): 

𝑑𝐹(𝑁)

𝑑𝑁
=

𝑑𝐹0(𝑁)

𝑑𝑁
→ 𝜇𝑖𝑛𝑐𝑟 = 𝜇𝑖𝑛𝑐𝑟

0  

Externally adsorbed chains 

The case of externally adsorbed chains follows similar logic as that of internally adsorbed chains.  

At critical conditions,  

𝑑𝐾𝐻

𝑑𝑁
= 0                                                            (E.B3)    

Where the Henry constant KH is: 
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𝐾𝐻(𝑁) = ∫ (exp[−(𝐹(𝑁, 𝑧) − 𝐹0(𝑁))] − 1
𝐿

𝑧=0

)𝑑𝑧 

Taking the N-derivative of Eq. (E. B3) and setting equal to zero: 

𝑑𝐾𝐻

𝑑𝑁
= ∫

𝑑

𝑑𝑁
(exp[−(𝐹(𝑁, 𝑧) − 𝐹0(𝑁))] − 1)𝑑𝑧

𝐿

𝑧=0

= 0 

 

𝑑𝐾𝐻

𝑑𝑁
= ∫ (exp[−(𝐹(𝑁, 𝑧) − 𝐹0(𝑁))])

𝑑

𝑑𝑁
(−(F(N, z) − F0(N))𝑑𝑧

𝐿

𝑧=0

= 0 

 (exp[−(𝐹(𝑁, 𝑧) − 𝐹0(𝑁))]) is never 0 regardless of the limit, therefore it can be removed from 

the equation: 

∫
𝑑

𝑑𝑁
(−(F(N, z) − F0(N))d𝑧 = 0

𝐿

𝑧=0

 

∫ (−𝜇𝑖𝑛𝑐𝑟(𝑁, 𝑧) + 𝜇𝑖𝑛𝑐𝑟
0 )

𝐿

𝑧=0

d𝑧 = 0 

∫ (𝜇𝑖𝑛𝑐𝑟(𝑁, 𝑧))
𝐿

𝑧=0

d𝑧 = ∫ (𝜇𝑖𝑛𝑐𝑟
0 )

𝐿

𝑧=0

d𝑧 

Imposing a detailed balance 𝜇𝑖𝑛𝑐𝑟 = 𝜇𝑖𝑛𝑐𝑟
0  is one solution to this equation. 

C. Calculation of Free Energy of Partially Confined Chains 

 

Fig. E.1 Calculation of free energies of partially confined chains in our model.  Gray beads are 

tethered within the adsorption well. Cis chain is outside the pore, trans – inside the pore.  
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 The free energy F(N,s) of a chain of N beads with s beads confined to a spherical pore such 

as the one shown above in Fig. E.1 is calculated from the sum of the free energies of the cis (outside 

pore) and trans (inside pore) sub-chains of lengths N-s and s, respectively.  The free energy of the 

cis and trans sub-chains is calculated based on summing the incremental chemical potentials of the 

independent chains: 

𝐹𝐶(𝑁 − 𝑠) =  ∑ 𝜇𝑖𝑛𝑐𝑟
𝐶𝑁−𝑠−1

𝑖=0                                                             (E.C. 1c) 

 

𝐹𝑇(𝑠) =  ∑ 𝜇𝑖𝑛𝑐𝑟
𝑇𝑠−1

𝑖=0                                                                    (E.C.1t) 

 

𝐹(𝑁, 𝑠) = 𝐹𝐶(𝑁 − 𝑠) + 𝐹𝑇(𝑠)                                                            (E.C2) 

The incremental chemical potential of the cis and trans chains are assessed using the incremental 

gauge cell method (see refs. in Chapter 6) applied to cis and trans chains grown from 1 to N-s and 

1 to s beads tethered to the external surface or tethered inside a pore by the terminal bead (gray 

beads in Fig. E.1) inside the adsorption well.   

 The free energy F(N) of a partially confined chain is the Boltzmann-weighted average of 

the free energies of chains over all degrees of translocation F(N,s): 

𝐹(𝑁) = − ln(∑ 𝑒𝑥𝑝[−𝐹(𝑁, 𝑠)]𝑁
𝑠=1 )                                                        (E.C3) 

This free energy is compared to that of a bulk chain 𝐹0(𝑁) to calculate the partition coefficient of 

partially translocated chains KF = exp[-(F(N)-F0(N))]. 
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Contribution: I performed all calculations and developed all CO2 and Ar kernels mentioned in this 

work, using programs written by Peter Ravikovitch and Yangzheng Lin. 

This chapter, Chapter 1, and Appendix B of the dissertation also contain references to additional 

work of mine, which was featured in the following publication: K. Cychosz, X. Guo, W. Fan, R. 
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GENERAL CONCLUSIONS AND OUTLOOK 

My dissertation encompasses a diverse field of physical interactions between fluids and 

nanoporous materials, which collectively may be labeled “adsorption phenomena”.  Gas and 

polymer adsorption and adsorption characterization are mature fields, each with a rich history of 

theoretical and experimental work.  In the last two decades these fields have experienced a 

renaissance brought about by the advent of advanced computational techniques and facilities, as 

well as new experimental materials – such as templated carbons, MOFS, etc…and new 

technologies, such as gradient elution chromatography, scanning and high pressure gas adsorption. 

As such, there is a need to develop tools and methods capable of predicting the physics of these 

systems and to characterize these new materials and processes.  In my work, I have focused on the 

development of novel analytical and computational models to describe the adsorption of simple 

and complex fluids on micro-mesoporous materials for the purpose of porous materials 

characterization. During the course of my dissertation I have striven to provide tools and methods 

which are both theoretically sound and above all else, practically useful for experimentalists and 

theoreticians alike.  

My contributions to the field of gas adsorption are twofold. The first and most prominent 

of my contributions is the development of the QSDFT adsorption isotherm kernels for porous 

materials characterization.  These kernels encompass Ar and CO2 adsorption which are both 

increasingly being used to assess the pore size and surface area/volume of micro- and mesoporous 

carbon materials.  The kernels encompass a wide range of carbon pore geometries, as a means to 

accommodate the diverse number of templated carbon materials for energy and catalysis 

applications.  Of particular import are the CO2 kernels, which are the only ones of their kind for 

analysis of high pressure adsorption isotherms on carbons with rough surfaces. These kernels have 

(Ar) or are planned to be (CO2) implemented in analytical gas adsorption software developed by 

the Quantachrome Instruments Company, and as such, this work has reached a broad audience.    
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The work on Ar adsorption in carbons is summarized in a peer-reviewed publication which is my 

most highly cited paper – with over thirty citations to date (Langmuir). The other, concerning CO2 

is in the final preparation for submission.  

Second, I developed a unified methodology by which the pore structure of micro-

mesoporous materials may be discerned based upon information from scanning adsorption 

isotherms. Using this method, one may differentiate between uncorrelated, partially correlated, 

and disordered materials.  Perhaps the most novel practical results of this work are 1) capability 

to distinguish pore network topologies from scanning isotherms (i.e. in the absence of XRD or 

other costly methods) and 2) possibility to determine the neck size distribution and connectivity 

of disordered pore networks from the same information. These methods were summarized in my 

first first-author publication “Theoretical and Experimental Studies of Scanning Adsorption-

Desorption Isotherms”, in 2013 in the Journal of Colloids and Interfaces A: Physicochemical and 

Engineering Aspects.  The relevance of this study is illustrated by the fact that in the short time 

since its publication, this paper has been cited over 15 times to date. 

The other major area to which I have contributed is to the field of polymer adsorption and 

chromatography.  From the theoretical standpoint, the most fundamental of my contributions is 

the description of the adsorption transition in polymer chains and the critical conditions of polymer 

adsorption (CPA) based upon a new thermodynamic criterion – the equality of incremental 

chemical potentials. This method, which is demonstrated for the case of chains tethered to a 

surface, is analogous to the geometrical and scaling methods utilized by previous authors.  This 

work was published in a communication to the Journal of Chemical Physics in 2013.   

The advantage of the incremental chemical potential method is that the incremental 

chemical potential (and hence the free energy of the chain) can be directly related to the partition 

of chains in polymer chromatography.  To this affect, I first studied the adsorption of chains on 

nonporous surfaces with a simple Monte Carlo model and showed that critical conditions of 
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polymer adsorption may be linked to the incremental chemical potential.  I developed a simple 

retention model based upon adsorption theory, which is capable of distinguishing the retention 

behavior of chains in three modes of chromatography: SEC, LAC, and LCCC.  These methods 

were also illustrated for the first time by dedicated experiments performed by our collaborators. I 

next extended this work to the case of polymers adsorbing on porous substrates, where for a long 

time there has been a controversy over the existence of critical conditions for real chains.  

Introducing three mechanisms of polymer adsorption, I was able to illustrate that the critical 

conditions of real chains do exist for porous substrates and are the same as those found on 

nonporous columns. The retention was shown to be modeled accurately with retention expressions 

based upon the overall partition coefficient (derived from simulations) and geometrical parameters 

of the experimental column.  Another important practical result of this work is the mapping of the 

experimental solvent composition – namely the fraction of poor solvent (acetonitrile) - to the 

effective adsorption potential.  This mapping allows one to predict the “real-life” retention 

behavior of chains in an experimental column based on the simulated retention model, which can 

save experimentalists time and resources that would otherwise be expended on determining the 

appropriate solvent conditions needed to affect a particular separation.  This work was summarized 

in two peer-reviewed journal articles, which have been published this year in the Journal of Colloid 

and Interface Science. 

Future prospects 

 While this work has produced practical and useful results which scientists may use within 

the fields of adsorption and characterization, there are still plenty of avenues for future research.  

Of particular interest for both gas and polymer adsorption is the study of molecularly rough and 

heterogeneous surfaces.  For example – it is known that most micro-mesoporous carbons are 

molecularly rough (i.e. heterogeneous) and may contain many surface defects. Such surfaces 

cannot be modeled easily with mean field methods such as DFT.  Instead, Monte Carlo simulations 
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provide a more suitable framework in which to study adsorption on such surfaces.  Analogously, 

the accurate modeling of the adsorption of polar molecules such as water within porous materials 

is another prime (albeit elusive) candidate for characterization of heterogeneous surfaces.  Recent 

experimental work has shown that water adsorption is able to differentiate between topologically 

similar surfaces of different chemistry.   

Likewise, the adsorption and separation of telechelic polymers (polymers with 

functionalized end-groups) on chromatographic columns remains largely open.  It is proposed that 

these polymers can be separated by elution through columns with surfaces of different 

(heterogeneous) surface functionality.   It is of great interest to be able to accurately predict the 

retention of such chains on heterogeneous surfaces and these methods could be expanded to 

describe the elution of star, branched, and brush polymers as well. 
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