Staff View
Collagen methacrylamide - a photocrosslinkable, thermoreversible collagen-based biomaterial

Descriptive

TitleInfo
Title
Collagen methacrylamide - a photocrosslinkable, thermoreversible collagen-based biomaterial
SubTitle
characterization and applications
Name (type = personal)
NamePart (type = family)
Drzewiecki
NamePart (type = given)
Kathryn Emily
NamePart (type = date)
1989-
DisplayForm
Kathryn Emily Drzewiecki
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Shreiber
NamePart (type = given)
David I
DisplayForm
David I Shreiber
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Nanda
NamePart (type = given)
Vikas
DisplayForm
Vikas Nanda
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Berthiaume
NamePart (type = given)
Francois
DisplayForm
Francois Berthiaume
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Baum
NamePart (type = given)
Jean
DisplayForm
Jean Baum
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Kemnitzer
NamePart (type = given)
John
DisplayForm
John Kemnitzer
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2016
DateOther (qualifier = exact); (type = degree)
2016-10
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2016
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Ideal properties of biomaterials for tissue engineering applications include biocompatibility, tissue mimicry, the ability to support cell attachment and growth, biodegradability, and control of biochemical and mechanical properties. Type-I collagen, a protein found throughout many tissues throughout the body, can be extracted from animal tissue and used to make fibrillar hydrogels or scaffolds for tissue engineering. While these collagen scaffolds have many of the optimal design parameters for biomaterials, the lack of control of scaffold properties is highly disadvantageous for its use in new tissue engineering paradigms. Previous studies have focused on developing a photoreactive collagen that could be biochemically and mechanically tuned via the application of light by functionalizing collagen with methacrylic acid to create collagen methacrylamide (CMA). This dissertation focuses on the characterization, continued development, and applications of CMA as a collagen-based biomaterial for tissue engineering. We demonstrated that fibrillogenesis of CMA, in contrast to type-I collagen, is thermoreversible. CMA can reversibly cycle between two states: it ii forms fibrillar hydrogels at 37 °C, and disassembles into a liquid suspension at temperatures less than 10 °C. The CMA synthesis procedure was revisited to better understand how methacrylation caused thermoreversibility. Of two methods used for conjugation, one results in a thermoreversible collagen. Thermoreversibility was not specific to the methacrylic acid - other compounds were conjugated and found to make collagen thermoreversible. In using circular dichroism spectroscopy to characterize the temperature-dependent protein structure of collagen, we found that collagen fibrils were displayed a unique signal; the fibril spectrum was seen as a negative peak at ~204 nm in contrast to the triple-helix signal in collagen's monomeric form that is characterized by a positive peak at ~222 nm. This signal was exclusive to the collagen fibril, and was used it as a tool to monitor collagen fibrillogenesis among other changes in collagen higher order structure Finally, we developed a method of free-form fabrication of CMA, where hydrogels are constructed through self-assembly, photocrosslinking of specific geometries, and cold-melted to remove regions that were not exposed to light. Customized hydrogels can be fabricated with or without cells, or further processed into sponges. Hydrogels were also shown to be biocompatible in a subcutaneous implant model. In comparison to many 3D printing strategies, CMA free-form fabrication is very simple to implement and is inexpensive, prompting continued development of CMA in tissue engineering and regenerative medicine.
Subject (authority = RUETD)
Topic
Biomedical Engineering
Subject (authority = ETD-LCSH)
Topic
Collagen
Subject (authority = ETD-LCSH)
Topic
Biomedical materials
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_7570
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xviii, 196 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Kathryn Emily Drzewiecki
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3W0988G
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Drzewiecki
GivenName
Kathryn
MiddleName
Emily
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2016-09-13 18:09:53
AssociatedEntity
Name
Kathryn Drzewiecki
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2016-10-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2018-10-31
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after October 31st, 2018.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-09-14T09:51:54
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-09-14T09:51:54
ApplicationName
Microsoft® Word 2010
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024