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ABSTRACT OF THE DISSERTATION

Current challenges in fundamental physics

By Daniel Egana-Ugrinovic

Dissertation Director:

Professor Scott Thomas

The discovery of the Higgs boson at the Large Hadron Collider completed the Standard Model of
particle physics. The Standard Model is a remarkably successful theory of fundamental physics,
but it suffers from severe problems. It does not provide an explanation for the origin or stability
of the electroweak scale nor for the origin and structure of flavor and CP violation. It predicts
vanishing neutrino masses, in disagreement with experimental observations. It also fails to explain
the matter-antimatter asymmetry of the universe, and it does not provide a particle candidate for
dark matter. In this thesis we provide experimentally testable solutions for most of these problems

and we study their phenomenology.
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Chapter 1

Introduction and Summary

The completion of the Standard Model of particle physics (SM) with the discovery of the Higgs
boson [1} 2] and the success of the standard model of Big Bang cosmology (ACDM) opened a new
era for fundamental physics. Both the SM and ACDM are tremendously successful models, but they
fail to explain the origin of the electroweak (EW) scale, the flavor and CP violating structure of the
SM, the origin of the matter-antimatter asymmetry and the particle nature of dark matter. It is
remarkable that in the next few years, the experimental program of particle physics and cosmology
might intersect with the phenomenology of the proposed theoretical solutions of all these problems.
In this work we study possible solutions to these problems which are within reach of current or
proposed experiments.

The Standard Model is is a Quantum Field Theory (QFT). QFT is the most successful theoretical
framework to describe fundamental physics to date. As an example, the SM correctly describes the
measured decay rates of all known elementary and composite particles with an unmatched precision
which in some cases, as in the rare decay of B; mesons to muons, are as small as a part in a billion [3].
Another remarkable example is the SM prediction for the magnetic moment of the electron, which
has been calculated to tenth order in an expansion in the electric coupling [4], and is consistent
with the experimental measurement to one part in one billion [5]. The SM is also consistent with
the cosmology of the early universe. As an example, together with the standard model of Big
Bang cosmology, it provides consistent predictions for the primordial abundance of light elements
D,? He,* He and "Li, which span nine orders of magnitude from *He/H ~ 0.08 to "Li/H ~ 10~!° and
were synthesized only a few minutes after the Big Bang [6].

The SM, however, has severe consistency problems. In the modern understanding the Standard

Model is an effective theory in the Wilsonian sense [7]. There are two intrinsic energy scales in the



Standard Model, which are the QCD confinement scale Aqcp ~ 220 MeV and the electroweak scale
which here will be parametrized by the Higgs mass my = 125 GeV. The next fundamental scale
is the Planck scale, Mp = 1.22 x 10 GeV, which is wildly separated from the electroweak scale.
In effective field theory, a theory with validity up to the Planck scale should provide a microscopic
description for the origin and stability under quantum corrections of the smaller energy scales in
the theory. As an example, the QCD confinement scale is elegantly explained in our current theory
by a mechanism called dimensional transmutation, which provides a dynamical connection between
the dimensionless strong coupling constant and the QCD scale, and explains its smallness with
respect to the electroweak scale. In the SM there is no such dynamical mechanism nor a symmetry
to explain the smallness of the Higgs mass with respect to the Planck mass. Without extremely
precise cancellations between parameters in the theory, the dynamics of the microscopic theory
would naturally drive the electroweak scale, together with the Higgs mass, to values close to the
Planck scale, in strong disagreement with experimental data. If the cancellations are not enforced
by a reason, as an underlying symmetry, the parameters of the theory must be “unnaturally” tuned
to provide these cancellations. This is the problem of the origin and stability of the electroweak
scale, which is usually called the “Hierarchy Problem” [8].

A possible solution for the Hierarchy Problem is supersymmetry [9, [10]. In supersymmetry,
fermions and bosons are related by the action of the supersymmetry group generators. In supersym-
metry, the smallness of the Higgs mass with respect to the Planck is related to the smallness of the
mass of its fermionic partners, which may be explained on symmetry grounds. If supersymmetry
is only broken softly (i.e., it is preserved at high energies), the stability of the electroweak scale
under renormalization to higher scales is due to the non-renormalization theorem of supersymmet-
ric theories |11}, [12], which protects certain quantities from perturbative radiative corrections. The
precise origin of the electroweak scale can be explained with a microscopic mechanism of supersym-
metry breaking, which then could dynamically induce EWSB at a small scale. Supersymmetry also
provides new particles that can be dark matter candidates.

Nature is, however, not supersymmetric. As a consequence, a phenomenologically viable mech-
anism for supersymmetry breaking is needed. This is a particularly delicate issue for flavor physics.
Supersymmetry breaking parameters generically induce flavor changing processes which are strongly
constrained by experiments. For this reason, a particularly attractive model for supersymmetry
breaking is gauge mediated supersymmetry breaking (GMSB). A review of GMSB can be found in
[13]. Gauge interactions are flavor blind so they cannot lead to flavor violating processes. Unfor-

tunately, the simplest untuned models of gauge mediation are inconsistent with the value of the



Higgs mass [14]. It is pressing to build models which retain the main features of GMSB, while being
consistent with the Higgs mass and avoiding the reintroduction of the Hierarchy Problem. In this
work we address this issue and present the possibly simplest extension of GMSB which satisfies these
criterions [15} |16].

The problem of the flavor structure and of the microscopic origin of CP violation in the Standard
Model are also two of the most important issues in fundamental physics. The masses of the quark
and lepton sector seem hierarchical, but we have no explanation for this fact, and neither do we
have an explanation for the origin of neutrino masses. In addition, the structure of flavor and CP
violation are related in the Standard Model; in our current understanding, both flavor CP violation
are contained in the CKM [17] |1§] and PMNS [19, |20] matrices. We have no explanation for the
origin of these matrices. And intriguingly, CP violation in the strong interactions (the “strong CP
phase”) is allowed by all symmetries, but is experimentally constrained to be less than one part in
a billion from measurements of the neutron electric dipole moment [21]. This is the so called strong
CP problem. Finally, CP violation is a crucial component for explaining the excess of matter over
antimatter in the universe. The Standard Model, however, does not contain enough CP violation to
account for this excess, which is yet another indication that our theory is incomplete.

All these problems might be related to each other, in what we call in this work “the puzzle of
CP violation”. Supersymmetry might play an important role in this puzzle. If a microscopic model
is built that is consistent with the flavor and CP structure of the Standard Model, supersymmetry
preserves this structure down to accessible energy scales thanks to the non-renormalization theorem.
In this thesis we present a complete, calculable, predictive and experimentally testable supersym-
metric model for all known and required CP violation in nature, which represents a full solution to
the puzzle of CP violation. The model explains all flavor mixing and CP violation spontaneously,
through condensates of so called Barr-Nelson fields, while it explains the origin of neutrino masses
through mixing with right handed neutrinos. Making use of the model background symmetries, it
is possible to impose all known data on the parameter space, and derive precise predictions for the
lightest neutrino mass and all the CP violating phases of the PMNS matrix, which have not been
measured. As a consequence, the model might be experimentally confirmed or falsified.

The models which will be presented in this work, as well as many other extensions of the Standard
Model, possess characteristic phenomenological features that may be experimentally probed. In
particular, most extensions of the Standard Model, including supersymmetry, have extended Higgs
sectors. Extended Higgs sectors contain additional Higgs particles, i.e., new scalar particles with

no quantum numbers near the electroweak scale. These new vacuum states can mix with the Higgs



boson, modify the Standard Model predictions for its interactions, and lead to new signatures at
colliders or other types of experiments. In particular, the Higgs sector of all supersymmetric models
contain at least one additional SU(2) Higgs doublet [22]. These kind of extensions of the Higgs
sector are called “Two Higgs Doublet Models” (2HDM). Two Higgs Doublet Models are not only
interesting for supersymmetry, but also are interesting for electroweak baryogenesis [23] and axion
models [24] 25, to name a few additional motivations. Moreover, they fall into a very constrained
class of theories of extended Higgs sectors that are consistent with electroweak precision tests by
construction, since they do not modify the Standard Model prediction for the p parameter at tree
level [26], which is defined as

i (1.0.1)

p = —m- -
m?% cos Oy

where 6y is the Weinberg angle. In the Standard Model at tree level p = 1, consistent with the
measured experimental value p = 1.000870 50+

The Higgs sector has already been partially probed at colliders [27H29] and no new physics has
been found. This suggests that if additional Higgs particles exists, they are likely to be heavier
than the Higgs boson, such that by decoupling its effects in the Standard Model Higgs sector are
suppressed. The most powerful available tool to analyze new physics near the decoupling limit is
wilsonian effective field theory. In this thesis we present a complete analysis of the tree level low
energy effective theory of the 2HDM. We identify all the effects in the low energy theory that might
be seen at colliders or low energy experiments, classifying the modifications to the Higgs interactions
by a concept of effective operator dimension, and organizing all flavor and CP violating effects in
the same way.

One of the main outputs of the effective field theory analysis, is that we find that the main types
of 2HDM studied in the literature including the ones corresponding to supersymmetric theories, i.e.
2HDM with Glashow Weinberg conditions, |30], contain only one CP violating phase at leading order
in an operator expansion. This CP violating phase can be constrained by current measurements of
the electron electric dipole moment, so we finally present in this work a complete study of the limits
in all the types of 2HDM with Glashow Weinberg conditions.

The topics in this thesis are presented from microscopic physics to larger scales. In chapter 2] we
start with a supersymmetric effective theory which is a full solution to the puzzle of CP violation.
The model is valid up to energies near the unification scale 10! GeV. The model explains the baryon
asymmetry of the universe and provides a mechanism for neutrino masses. Supersymmetry provides

a solution to the hierarchy problem, and a detailed model of gauge mediated supersymmetry breaking



at energy scales of 100 TeV consistent with the Higgs mass, is presented in section[3] Supersymmetry
also provides a motivation to study extensions of the Higgs sector around the TeV scale, and the
complete organization of extended Higgs sectors within effective field theory at tree level is presented
in chapter [l The operator analysis of extended Higgs sectors identifies novel CP violating effects
at low energies, and a detailed study of CP violation at energy scales of the electron is presented in
the same chapter. Further technical details are left for appendices. The phenomena covered in this
thesis span twenty-four orders of magnitude in energy, from the unification scale down to scale of

the neutrino masses.



Chapter 2

A complete model for all known and

required CP violation

2.1 The puzzle of CP violation

There is a CP puzzle in the Standard model and many of its extensions. In the quark sector
of the Standard Model there is a large CP violating phase in the CKM matrix, and its effects
on experimental observables depend on the flavor structure of the quark sector [17] |18] [31]. In
particular, its effects are heavily suppressed by quark mixing angles. Neither the origin of the CP
violating phase nor the origin of the flavor structure of the quark sector may be understood within
the framework of the Standard Model. Moreover, once the Standard Model is extended to allow for
neutrino masses, there are additional CP violating phases in the PMNS matrix of the lepton sector
[19] [20], which lead to effects that depend on the flavor structure of the lepton sector. Neither
the origin of neutrino masses nor of the flavor structure of the lepton sector is understood within
the Standard Model. Moreover, even if there is experimentally confirmed CP violation in the CKM
matrix, CP violation is experimentally absent from all experiments testing CP violation in SU(3)¢
interactions. SU(3)¢ interactions allow for a CP violating parameter § in the QCD Lagrangian term

i0

WGWGW. Current limits on electric dipole moments of the neutron [21] set a strong constraint

on CP violation in the strong interactions, # < 107!°. No symmetry or dynamical reason in the
Standard Model can explain the smallness of this parameter. This is commonly referred to as
the strong CP problem. Finally, CP violation is one of the three Sakharov conditions needed for
baryogenesis [32], so it is crucial for the cosmological evolution of our universe. The Standard Model,

however, does not contain enough CP violation to explain the asymmetry in our universe.



The origin of CP violation in the quark and lepton sector, its relation to the flavor structure of
the quark and lepton sectors, the absence in CP violation in the strong interactions and the needed
CP violation to explain the baryon asymmetry in the universe, might all be related in a puzzle of
CP violation, and might all have a common microscopic explanation. A schematic depiction of the
puzzle of CP violation and the relations between its different components is provided in figure 23]

Different classes of solutions aim to explain the strong CP problem, which is one of the parts
of the puzzle of CP violation. The Peccei-Quinn mechanism [24] [25] introduces an anomalous
U(1) pg symmetry, a low-energy remnant of which is the QCD axion, which has not been observed
in experiments. A different class of solutions, first introduced by Nelson [33] and Barr [34], aims
to solve the strong CP problem and to provide an explanation for the origin of CP violation in the
quark sector. Here, at a high scale the theory is CP-conserving, that is, # = 0 and all parameters in
the Lagrangian are real, i.e., there is no explicit CP violation. CP violation is only spontaneously
broken at lower scales, and is communicated to the quark sector without inducing a strong CP
phase. A minimal model useful to understand the Nelson-Barr (NB) mechanism was introduced in
Ref. [35]. In this model, in addition to the SM fields, a set of neutral scalar field S, and vector-like

down-type quarks D + D are introduced with the following interactions:
MDD + kqjSoDdj + N;QiHd; + ... (2.1.1)

where the dots represent CP conserving SM like interactions, as well as the potential for the fields S,.
For what concerns the latter, it just needs to produce complex vev’s (S,), and a generic polynomial
potential is satisfactory. Below the scale of spontaneous CP violation, which we call the Nelson-Barr
scale, the physical QCD vacuum angle is given by

B )\fjvd Kai{Sa)

10 = iArg (det My) = iArg (2.1.2)

0 M
where we have already set to zero the “bare” angle 6 and Argdetm,, which vanishes because the
high-energy theory is CP-conserving. Because M, is a triangular matrix with real elements on the
diagonal, its determinant is real and @ vanishes. Moreover, there is mixing between the light and
heavy down-type quarks, meaning that at low energies the 3 x 3 down-type Yukawa matrix will have
complex components.
In non-supersymmetric versions of the Nelson-Barr mechanism, there are contributions to 6 both

at tree-level, coming from non-renormalizable operators (such as S} S*DD), as well as radiatively,

via four-scalar interactions (such as S,S,H'H or SZS;SCSd) which cannot be forbidden by any



symmetry compatible with the Lagrangian . This implies a relatively low scale for the CP-
breaking scale, M < 108 GeV, too low to account for the CP-violating phases needed for thermal
leptogenesis. For this reason, we require the model to be supersymmetric at high energies: with
supersymmetry, such non-holomorphic operators are forbidden. There are potentially large loop
corrections to @ that involve soft squark masses [36-38], but those can be avoided in the case of
degeneracy and proportionality of the soft masses, such as in low-scale gauge mediation, which we
will require.

The simple supersymmetric Nelson-Barr solution to the strong CP problem is the starting point
for finding a complete solution to the whole puzzle of CP violation. In Nelson-Barr models CP
violation in the quark sector, which is part of the puzzle, is originated spontaneously. Since the
flavor structure of the quark and lepton sectors, and the origin of CP violation in the lepton sector
are the remaining parts of the puzzle, we extend the simple supersymmetric Nelson-Barr model so
that all known and required CP wviolation and flavor mizring are originated spontaneously. In our
model, baryogenesis is achieved via thermal leptogenesis due to out of equilibrium decays of right
handed neutrinos. In order to introduce CP-violation in the leptonic sector, we extend the model
of Eq. to the leptonic sector by introducing a vector-like 5 + 5 multiplet and considering
GUT-unified couplings of the Standard Model 5; = (Ei, L;) multiplet to the NB sector. Thus, the
CP violating phases and part of the flavor structure and mass hierarchies of the leptonic sector are
related to the ones in the quark sector by an unification Ansatz.

Common numerical techniques to analyze the parameter space of our model are not adequate,
due to the complexity of the flavor structure in the Standard Model. For this reason, we proceed
analytically by presenting a full list of polynomial flavor invariants for the quark and lepton sector.
Polynomial flavor invariants are useful tools to describe flavor physics and CP violation. Using flavor
invariants, we are able to show that all the relevant parameters for low energy physics in our model
can be fixed from known data, so that the model is able to not only realize all observed low energy
phenomena, but also to give strong predictions on the parameters of the lepton sector that have
not yet been measured. In particular, we show that the model reproduces quark and lepton masses
and mixing angles, predicts the leptonic CP phases in the PMNS matrix, predicts the mass of the
lightest neutrino to be in a very narrow range between 1072meV and 10~3meV, solves the strong
CP problem, for given right handed neutrino masses predicts the CP violating phases required for
leptogenesis entirely from low energy data and reproduces the observed baryon asymmetry through
thermal leptogenesis. The precision of the predictions depend entirely on the precision of current

measurements of quark and lepton masses and mixing angles.



Quark sector

Unification?
flavor structure

Lepton sector CP violation Baryogenesis:
flavor structure Sakharov
conditions

Strong CP problem

Figure 2.1: The puzzle of CP violation. In the quark sector, CP violation is contained in the CKM phase
and its effects depend on its flavor structure. In the lepton sector, CP violation is contained in the PMNS
matrix, and its effects depend on its flavor structure, so CP violation may also be related with the problem of
the origin of neutrino masses. CP violation in the lepton and quark sector may be related through unification.
CP violation is also fundamental for baryogenesis, and finally, it represents a problem for explaining the
experimentally absent strong CP phase.

The outline of this chapter is as follows. In Section[2.2] we introduce our model, a supersymmetric
version of Eq. with GUT-unified couplings between the NB sector and the MSSM fields.
Then, we systematically investigate the physics form the UV to the IR, describing the effective field
theories at each scale and finding non-trivial conditions for the couplings in the EFT arising from
the unification Ansatz. In Section we solve for the model parameters in terms of observed IR
data, such as fermion masses and mixing angles. In addition, we are able to solve for unobserved
parameters such as the lightest neutrino mass and the CP phases in the PMNS matrix, which are
predictions of our model. In Section we turn our attention to physics at the RH neutrino mass
scale: we discuss the Boltzmann equations that describe leptogenesis and find the final asymmetry
as a function of known IR observables and the RH neutrino masses. Appendix [A]contains a technical

discussion of flavor invariants.

2.2 Nelson-Barr model and leptonic CP phases

We begin by describing the supersymmetric model. In this section we do not consider any super-
symmetry breaking effects. A short discussion of supersymmetry breaking is postponed to section

(2.2.3]), and a full discussion of a gauge mediated supersymmetry breaking mechanism is postponed
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to section 3. We consider the field content of a supersymmetric type I seesaw model, with three
RH neutrinos Ny, N2, N3 which are SM singlets. We also add singlet fields Sj4, A=1,2, 5 =1,2,3
which are called Nelson-Barr fields and two vector-like matter SU(5) GUT multiplets 54 + 5.4,
A = 1,2. The setup requires two families GUT multiplets for reasons that will be discussed later.

The components of the vector like pair are defined as
54 = (Da,La), 54=(Da,La). (2.2.1)

The Nelson-Barr fields have complex expectation values (S;4) which spontaneously break CP
at a scale which we call the Nelson-Barr scale Mcp. This is the only source of CP breaking in the
whole theory. We take the Nelson-Barr scale to be much larger than the electroweak scale, but below
the unification scale. The masses of the vector like fields are also at the Nelson-Barr scale.

We now describe the interactions. At the unification scale we consider a canonical Kéahler po-
tential for simplicity. Dropping one loop corrections, the Kahler potential at the Nelson-Barr scale
is also canonicalll

The superpotential at the Nelson-Barr scale is given by

S\?j QinEj — ;\Z QiHuﬂj — ;\fj LinZj =+ ,U,Hqu,
~ 1
— A LiH,N; + 5 MijNiN;

+ MYy [DaDp + LaLp| + XS4 | Dads + LaLs | (2.2.2)

Note that in the last line of , we have imposed a unification Ansatz for the interactions of
the heavy vector-like matter fields. Note also that the superpotential contains basically the
interactions of a supersymmetric type I seesaw model, plus a mass for the vector like matter fields,
and Yukawas for the Nelson-Barr fields.

We dedicate the rest of this section to describe the superpotential, its parameters and the Nelson-
Barr mechanism. The lagrangian has a U(3)qg x U(3)z x U(3)7 x U(3)r x U(3); x U(3)n flavor
background symmetry, which corresponds to the background symmetry of a type I seesaw model.

The Nelson-Barr mechanism to solve the strong CP problem is implemented as follows. We
impose CP to be a symmetry of the Lagrangian. As a consequence, all couplings in can be
taken to be real in some flavor basis. We also impose that the Higgs condensate does not break CP
spontaneously,

(HiH,) =v2,  (HIHg) =02,  Arg(H,Hg) = 0,7 (2.2.3)

1 Adding one loop corrections does not significantly affect the discussion, because the corrections are mainly coming
from gauge loops and are flavor blind, so the flavor structure of the model to be presented is left unmodified. A more
detailed discussion is left for future work.
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We allow for CP to be broken only spontaneously by the Nelson-Barr fields. We remain agnostic
about the origin of the Nelson-Barr condensate, examples on how to spontaneously break CP through
singlet condensates are available in the literature [38] . We treat the S;4 fields as flavor and CP
breaking spurions and define

Ga = A(Sja) (2.2.4)

The above structure of CP breaking leads to a vanishing SU(3)¢ vacuum angle, as we now show.

At tree level, the physical SU(3)¢ vacuum angle of the supersymmetric theory is given by
i0 = iArg( e detm, det My)
where 6 is the unphysical, basis dependent theta angle in the Lagrangian and

~ Xug ¢
My, = A", My = (2.2.5)
0 MY
Since CP is a symmetry of the Lagrangian, the bare theta angle is zero, § = 0 and N vg, MPL are
real, so at tree level the physical theta angle is zero = 0. All CP violation is contained in ¢, which
does not affect 0. This is the Nelson-Barr solution of the strong CP problem |33} 34, |39]. Note that
due to supersymmetric non-renormalization, f remains zero at all orders of perturbation theory.

The MSSM Yukawas are not explicitly unified, but the vector like pair 54 + 54 has an SU(5)
unified mass term. It also has an SU(5) unified marginal interaction with the MSSM SU (5) multiplet
5; = (d;, L;) and Nelson-Barr fields. This unification Ansatz is an important part of our model.

In addition to the unification Ansatz, we also consider that all flavor mizing is is induced by
interaction with the Nelson-Barr sector, such that for <Sj > = 0 there is no flavor mixing. This
Ansatz can be naturally obtained in UV completions with horizontal symmetries, and it is super-
technically natural so it is protected. From the perspective of the flavor symmetries, it means that
we can work in a flavor basis in which all the couplings not involving Nelson-Barr fields can be

simultaneously diagonalized
S\Zf] =85 Af Mi; = 6i5 M; (2.2.6)

where f = d,u,?¢, N and all entries along the diagonals are real, since CP is only spontaneously
broken. Also, without loss of generality we can work in a basis where the vector like mass matrix
MADJ’BL is diagonal

MY = 4o ME" (2.2.7)

where no sum over C' is intended.
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S
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Dy, Ly
(Sja) (Sia)

Figure 2.2: Integrating out the vector like fields Da, La lead to wave function renormalization for the
§uperﬁelds d; and L;. The unification condition ensures that the wave function renormalization matrices for
d; and L; are the same.

Note that from the perspective of the flavor symmetries, the unification Ansatz and the conditions
for the origin of flavor mixing, mean that in our model, there exists a basis in which the
couplings of the Nelson-Barr fields to Ej and L; are the same and all the couplings in are
diagonal and real. This basis is unique: any transformation acting on L; would make either the RH
neutrino Yukawa or the RH neutrino mass complex. Any transformation acting on Ej without acting
on L; at the same time would break the unification Ansatz. Finally, any transformation acting on
u; would make the up type quark Yukawa complex.

Finally, the mass scales are taken as follows. We consider the masses of the vector like pairs

MlD’L, MQD’L to be at the Nelson-Barr scale,
Mop ~ MPP ~ M ~ Gi1 ~ G2 (2.2.8)

This is a coincidence of scales that may be realized dynamically, and it will not be discussed here
for brevity. In order to consider leptogenesis via out-of-equilibrium decay to the RH neutrinos, the
masses of the vector like fields ME’L are assumed to be larger than My, My, M3. We also consider

hierarchical RH neutrinos My, M3 > M;, as in the simplest thermal leptogenesis setup [40].

2.2.1 The effective theory below the scale Mf’L

We now derive the effective theory at energies below the scale MP+L by integrating out the heavy
vector like multiplet at tree level. In the large MP-F limit, the equations of motion for the vector

like fields give

B4=— [ CJ]';‘L]@. MEPE5,=0 (2.2.9)
MY

where we sum over j, but no sum over A is intended and ¢ is given by (2.2.4).
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Using the field equations (2.2.9)) in the superpotential ([2.2.2]), we get the effective superpotential

- 1
— AN L;H,N; + iMijNiNj (2.2.10)

with all real couplings. The low energy Kéahler potential can be obtained by using the equations of

motion (2.2.9) in the canonical UV potential. The result is

2dd; + 25 LT, + QI +ulw + 707,

+N/N;, + HlH, + H' H, (2.2.11)
where the hermitian wave function renormalization matrices are
d __ L _ ~tr
Zij = Zij = Zijee (2.2.12)

Z'ree includes the identity piece of the wave function renormalization matrix and the tree level
contribution to wave function renormalization from integrating out the heavy GUT multiplets, as

represented in figure Ztree ig given by
GiaCia
2
D,L
(222)

Z¥ee js the only source of CP violation in the low energy theory. Note from the definition of the

ZEeC = §;; + (2.2.13)

)

spurion ¢ (2:24), that in the limit [(S;4)| < M7"" and holding \, we get [¢;4| < MY"". In this
limit Z%¢° vanishes, and there is no observable CP violation in the effective theory. In this limit, the
model fails to accommodate the CP violating phase in the CKM matrix and the observed baryon
asymmetry. In order to get large CP violation in the effective theory we take ’<Sj A>’ ~ Mf’L.
Moreover, by direct calculation of the Jarlskog invariant in the IR theory, it may be shown that the

CKM phase of the low energy theory is non vanishing only if the volume
Im [ 2757 2157 255 (2.2.14)

is non vanishing. If one considers only one family of GUT multiplets 54,54 the off diagonal terms
of the wave function renormalization matrix Z'°® form a bivector, and the volume form
vanishes. A minimum of two families of GUT multiplets are needed for non-vanishing volume
, and for a non-vanishing CKM phase.

Note that there is a unique flavor basis in which the Ansatz that the Yukawas of the UV comple-
tion and the RH neutrino mass matrix are real and diagonal, and the wave function renormalization

matrix for d and L is the same from unification. The proof is by contradiction. Assume there is a
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UB)n xUB)L xU(3)e x U(3)7 x U(3)q x U(3)y flavor transformation different from the identity
that takes us to a new basis in which the aforementioned Ansatz hold. The U(3)y part of the trans-
formation would make the RH neutrino mass matrix off diagonal and/or complex, so it must be set
to the identity. As a consequence, we must also set the U(3); part of the transformation to the
identity, since any U(3)r, transformation would make the RH neutrino Yukawas off diagonal and/or
complex. Now, the U(3), part of the transformation would make the lepton Yukawas off diagonal
and/or complex, so it must also must be set to one. The unification Ansatz forces us to set the
U (3)7 transformation equal to the U(3), transformation, so it is also set to the identity. As a conse-
quence, the U(3)q transformation must be set to one, to keep the down type quark Yukawa real and
diagonal. Finally, this also enforces the U(3)z part of the transformation to be the identity, to keep
the up type Yukawa real and diagonal, completing the proof. This means that we cannot perform
any flavor transformation to get rid of Lagrangian parameters in our model, so the nine elements of
the wave function renormalization matrix, the nine elements of the real diagonal Yukawas, and the
three RH neutrino masses are the complete set of twenty-one independent physical parameters in
the quark and lepton sector of our theory. Below the energy scale of the three RH neutrino masses,
there are only eighteen independent physical parameters in the quark and lepton sector.

We now make the Kéhler potential canonical by the field redefinitions

d = Vzeo ®=4dL (2.2.15)

The field redefinitions affect the superpotential. Using (4.4.26) in (2.2.10) and dropping the primes

we get the low energy effective superpotential

— Ay LiH,N; + %MijNiNj (2.2.16)
with Yukawa couplings
Xy = (@7 M = (2T M
Ny = [N M = ()T, M
A= (BT A = ()T, A
AL = AL (2.2.17)

where in the second equality in each line we made use of the (2.2.12)).
The matrices A% A, AN, A\* and M;; are diagonal, real matrices as specified in (2.2.6)). The

expression for the Yukawas (2.2.17)) may be translated into non-trivial conditions for the low energy
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theory. The first condition is that the SU(3)¢ vacuum angle vanishes,
_ 1 - -
0 = Argdet(AyAg) = —iArg det(29) + Argdet(A\,\g) =0 (2.2.18)

where we used the reality of S\U, Mg and the hermiticity of the wave function renormalization matrices.
This is the low energy description of the Nelson-Barr mechanism. Supersymmetry ensures that
(2.2.18]) is an exact result to all orders of perturbation theory. The second condition is that the

leptonic Yukawas are related to the down type Yukawas by
M= AHT e, AV = \IT N, (2.2.19)

where I' and T'V are diagonal, real matrices. In terms of couplings of the UV completion they are

given by
rho= ()N, (2.2.20)
oY = (M)A (2.2.21)

The conditions (2.2.18) and (2.2.19) are a consequence of the UV completion. They are non-

trivial, in the sense that in a general case (in the most general MSSM with a type I seesaw model)
there exists no flavor basis in which and/or hold. From we do not obtain
non-trivial conditions on A% and A%, since in general, in the MSSM quark sector there is always a
flavor basis in which A" is diagonal and A% is specified by a real diagonal matrix times a hermitian
matrix.

The theory with canonical Kahler potential, superpotential (2.2.16) and Yukawas given by

(2.2.17)), or equivalently, with the non trivial conditions (2.2.18) and (2.2.19)), is the final form

of our effective theory in this section. The effective theory corresponds to a type I seesaw model
where the origin of all flavor mixing and CP violation is in an hermitian wave function renormal-
ization matrix (2.2.13)), so that the SU(3)¢ vacuum angle is zero. Supersymmetry ensures that the

vacuum angle stays zero at all orders of perturbation theory .

2.2.2 The effective theory below the RH neutrino mass scale

In this section we present the effective theory at a scale just below the lightest right handed neutrino
mass M; by integrating out the RH neutrinos at tree level. We neglect the effects of RG running
between the mass scale of the vector like GUT multiplets MAD’L and the RH neutrino mass scale.

We consider both scales to be separated by only a couple of orders of magnitude. The superpotential
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of our seesaw model (2.2.22f) below the right handed neutrino mass scale has the form
+AG(LiHu) (L Hy) (2.2.22)
where )\?j is given by
N = )\NM_I(/\N)T ) (2223)

The non trivial condition for the strong CP angle (2.2.18]) together with supersymmetry impose
a vanishing SU(3)¢ vacuum angle at all orders in perturbation theory. Also, from the non trivial

conditions for the Yukawas (2.2.19)), A’ and A" are related to the down type Yukawas
Xo= ()T = () eV Y] (2.2.24)

where I'Y and T'V are real, diagonal matrices defined in (2.2.21)). The right handed neutrino mass
matrix M is also real and diagonal in the basis we work on.

The effective theory corresponds to the MSSM with massive neutrinos and non trivial condi-

tions (2.2.18) and (2.2.24), ensuring vanishing # and relations between the quark and lepton flavor

parameters, respectively.
Finally, for completeness we define the mass matrices of the quarks, charged leptons and neutrinos
as

m* = v, A" mé = pg\? mt = vg\t m¥ = v\, (2.2.25)

Defining the real, diagonal matrix I'"™

= [I‘NM_lFN} (2.2.26)

&@w ‘ :@w

and using [2.2.25] we may rewrite the non-trivial conditions ([2.2.24)) in terms of the mass matrices
e _ ( d\T e v _ (- d\Trm, d
m‘=(m?)" T m” = (m?) T"m (2.2.27)

where I and T are some real, diagonal matrices.

2.2.3 Supersymmetry breaking and renormalization of 4

In the beginning of this section, it was shown that the supersymmetric model leads to § = 0 at all
orders in perturbation theory due to the non-renormalization of the superpotential. We now briefly
comment on the effects of supersymmetry breaking on the renormalization of . Renormalization of

0 can arise from the renormalization of any of the terms in

0 = 8n?Im 7 — 3Argm; — 3Argv,vg — Arg det(A ), (2.2.28)
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once supersymmetry is broken. From we immediately see that in order for the mechanism
not to be spoiled by SUSY breaking, the SUSY breaking sector has to be CP conserving, to avoid
a phase for the gluino mass or b, term. This is consistent with our assumptions, since we consider
all CP breaking to come from the Nelson-Barr sector.

To illustrate the general features of the corrections to 6, consider the renormalization of the

Yukawas once supersymmetry breaking is taken into account, which can be multiplicative (d;; +

u,d

.d d
u )Au Zj ,

e )AL with sfk’d hermitian, or additive, )\?j’d + 2% with sz‘j’d arbitrary.

The multiplicative corrections come from wave function renormalization matrices Z®, with ®
being the SM fields in the fundamental representaiton of SU(3)c, and lead to a contribution to 6
given by [[4 Arg det(Z%). This contribution always vanishes (with or without SUSY breaking) due
to the hermiticity of the wave function renormalization matrices.

The additive contributions are potentially dangerous. There are two types of additive corrections.
The first ones are the flavor aligned corrections, and are just proportional to the Yukawas themselves,
)\?j’d + Eu’d/\fj’d, where €% can be potentially complex. These kind of corrections may be generated
when SUSY breaking is mediated by gauge interactions. The aligned additive contributions do not
lead to large renormalization of 6, since as noted in 37| their effect in renormalizing § must be
proportional to the Jarlskob invariant. This motivates us to choose gauge mediation as our SUSY
mediation mechanism. The second type of additive corrections are flavor misaligned. In our model,
they may be generated by gauge mediation diagrams that also contain loops of the heavy vector
like quarks D, D, or loops of Nelson-Barr fields. These diagrams come first at three loops, and
are parametrically suppressed by MgU sy /MCQ; p- In section we will argue that in our model, in
order to consider successful leptogenesis, we must take Mcp > 1019 GeV, and to avoid gravitino
overproduction we need Mgysy ~ 100 TeV. This leads to M2, gy /M&p < 10710, Together with

the three loop suppression, this gives contributions to 6 of order 107'6, much below the current

experimental limits.

2.3 Predictions for IR physics

The objective of this section is to impose the constraints from the quark and lepton sector data on the
effective theory described in section [2.2.2] and to obtain predictions once all the model parameters
have been fixed.

In this section we make use of a technical description of the flavor symmetries and flavor in-

variants of the MSSM with massive neutrinos, which is left for appendix [A] Flavor invariants
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are combinations of Lagrangian parameters that are independent of the flavor basis in which they
are evaluated. For this reason, all flavor invariants are physical, they can be related to measurable
quantities. Examples of flavor invariants are masses, mixing angles and CP violating phases. In
terms of Lagrangian parameters, these invariants are in general complicated non-polynomial ex-
pressions. For instance, quark masses are proportional to the roots of the characteristic equations
of the Yukawa matrices. In appendix [A]] we describe complete sets invariants which are simpler,
polynomial combinations of Lagrangian parameters. The polynomial invariants will be used in this

section.

2.3.1 Parameter counting using invariants

The fermionic sector of the SM with massive neutrinos and vanishing strong CP phase contains
twenty-two measurable parameters, of which ten correspond to the quark sector and twelve to the
leptonic sector. The ten measurable parameters of the quark sector are six masses, three mixing
angles and the CKM phase. All the measurable parameters in the quark sector are known with good
accuracy EL The twelve measurable parameters of the leptonic sector are six masses, three mixing
angles and three CP violating phases. Of these twelve parameters, only eight have been measured,
namely the three charged lepton masses, two neutrino mass splittings (up to a discrete ordering) and
the three mixing angles [41]. A summary table of the measured running parameters in the quark
and lepton sector at the scales my and at 10'2 GeV is presented in table

In this section we show that in our model, due to the non-trivial conditions , only eighteen
out of the twenty-two measurable parameters of the fermionic sector can be chosen to be independent.

The proof is by direct counting. We choose the first ten independent measurable parameters to be
the quark masses and CKM matrix elements. The twelve measurable parameters of the lepton sector
cannot be chosen to be independent, because the lepton and quark sector Lagrangian parameters
are related by the non-trivial conditions . In order to identify the independent measurable
parameters in the lepton sector, we start by listing a complete set of polynomial leptonic invariants.
Any complete set of leptonic invariants specify all the measurable parameters of the lepton sector,
so the list must contain twelve invariants, and an invertible map between the invariants and the
lepton masses and elements of the PMNS matrix must exist. In appendix [A] we build a complete
list of polynomial invariants and show that the invertible map exists. Here we closely follow that

list, but we choose to build the invariants in terms of the leptonic mass matrices (2.2.25)) instead of

2The largest uncertainty being in the mass of the up quark, with a non-zero value strongly suggested by lattice
QCD simulations.
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yukawa matrices. The list of twelve invariants is

T[(mm*T)"]

Tr[(m”m”f)”]

Tr ([mzm”,m”m”] (m”(mzm”)*m”)> (2.3.1)

where n = 1,2,3. Using the non-trivial conditions (2.2.27)) in (2.3.1) and the cyclic property of the

trace, the list may be rewritten as

Tr (mlmﬁ)n - Tr ( (F£)2 (mdmdj')* )n
Tr (m"m"H" = Tr (I‘m mimdrm (mdm‘”)* )n
Tr [mzmﬁ, m’m"* ] o Ty [ (FK)Q (mdde)* , I mdmdiT™ (mdde)* } ’
Tr ([mem”,m”m”T}2 (mzm“)) = Tr ( [(Fé)2 (mdde)*,I‘m mimdtrm (mdm””)*}2

rt (mdmdf)*>

Tr <[memet7mumuf]2(mumw)) - T ({(FE)Q(mdde)*vrmmdderm (mdde)*r
0 ()" )
T [mmfmem ] = T [() (mfm®t) Tttt ()
Tr [mémé]‘,mu(mfmﬁ)*mu]‘]3 - Tr [(FZ)Q (mdmdf)* 7
medde(Fi)2mdmdtrm(mdmd’r)*}3
T ([, m o (T mT) - = T ({W (mfm)" T T ()|

mdmdt (1“‘3) 2md mdtrm ( mé de)*>

(2.3.2)
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where n = 1,2,3 and T'* and I'™ are real, diagonal matrices, which must be interpreted as model
parameters coming from the UV completion. The twelve polynomial leptonic invariants [2.3.2] are
completely specified by I'* and T'"™, and m*maf.

In a general basis, the matrices m*m®*’ and m?m?" are given by

muml, = Ugq, diag(m},m2,m;) U}, (2.3.3)
mamb, = Ug, diag(m3, m2,m}) Ul (2.3.4)

while the CKM matrix is given by
Vekm = U, U, (2.3.5)

In the basis we work on, in which m* is diagonal, the most general matrix Ug, is
Ug, = e “diag(l,e ", e~ ") (2.3.6)
where v, 71,72 are unspecified phases. Then, in this basis
Ug, = (UL ] Ve = " diag(1, €7, €72) Vi (2.3.7)

Using (2.3.7)) in (2.3.4), we can express the matrix m?m9T in terms of the ten quark sector measurable

parameters and two unknown phases 1, 72
mim® = diag(1, e, ") Viigy diag(m?2, m2, mi) Vi diag(1, e, e=2), (2.3.8)

In the quark sector, the phases 71,72 are not observable since they can be rotated away by a
U(3)g transformation. But thanks to the non-trivial conditions , they show up in the
leptonic invariants [2.3.2], so they become physical. Another way to understand that these phases are
observable, is to recall that in our model there is only one single primordial phase in all the theory,

related to the vacuum expectation values of the Nelson-Barr fields. The phases 71, y2 are related to

this primordial phase through (2.2.13) and (4.6.2)), so they are physical. We interpret these phases

as model parameters coming from the UV completion.

Using in the list (2.3.1), we obtain that the twelve polynomial invariants can be expressed
in terms of the ten quark sector measured parameters and eight model parameters: 7y, 2, I'%;, T,
i =1,2,3. These eight model parameters are fixed by the eight measured parameters of the leptonic
sector (the charged lepton masses, neutrino mass splittings, and mixing angles). We describe in the
next section how to numerically fix the model parameters with lepton sector data. This count is

the final result of this section: in our model, the twenty-two measurable parameters of the fermionic

sector can be specified from the ten measured parameters of the quark sector and the eight measured
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parameters of the lepton sector. The lightest neutrino mass and the three CP violating phases of
the PMNS matrix are predictions of the model. Note that the results are independent on tan 5. This
is to be expected, the only physical meaning of tan § is in the couplings of Higgs fields to fermions
and in the MSSM Higgs potential. Our analysis relies on invariants constructed out of down type
mass matrices, and as such it could be carried out after all Higgs fields have been integrated out
and no tan # dependence is left in the theory.

Note that when using the non-trivial conditions , quark sector data enters into the leptonic
invariants. This is important, since it means that some of the hierarchical structure of the quark

sector is inherited to the leptonic sector. This is a consequence of the unification Ansatz.

2.3.2 Solving for the unknown model parameters using leptonic data

In this section we describe the algorithm to solve for the eight model parameters v;,vs, I'f;, T,
i = 1,2,3 using the eight measured parameters of the lepton sector. This section is technical, the
reader interested in the results can skip to the next section.

The eight model parameters v1,v2, Y., T, i = 1,2, 3 are parameters of an effective theory just

i Laio
below the scale M; (the mass of the lightest RH neutrino), which for practical purposes in this section
is taken to be ~ 10'° GeV. In order to impose the constraints from IR data on the model parameters,
the measured parameters of the quark and lepton sector need to be evolved to the scale M; using the
MSSM renormalizaton group equations. We show the corresponding renormalized values in Table
which are taken from Refs [42, 43|, where we have taken the results for tan 8 = 10. As the
MSSM RGE equations depend on tan 3, this introduces a slight dependence of our result on tan 3.

All masses, mixing angles and the CKM phase in this section correspond to the values at the
scale M; ~ 10'° GeV. In this section, when we refer to observed parameters it should be understood
that we have in mind the renormalized values at this high scale.

We start by defining the PMNS matrix. In a general basis, the lepton mass matrices are given

by

m° = U, diag(me,my,,m;) Ug

m¥ = U, diag(mye,myu,myr) UL, (2.3.9)
the PMNS matrix is then the basis independent unitary matrix

Upmns = UL, U}, (2.3.10)
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Quarks my (MeV) | mg (MeV) | me (MeV) ms (GeV) me (GeV) | my (GeV)
=Mz 1.287959 | 2.917135 5571 1 0.624 4 0.083 | 172.54 3.0 | 2.89 4 0.09
p=10"2GeV | 0.657037 | 1.127032 2146 | 0.319+0.047 | 119.473% | 1.24 +£0.05
Leptons me (MeV) | my, (MeV) | m, (MeV) Am3; (eV?) Am3, (eV?)
=Mz 0.4865 102.718 1746.2 | (7.53+0.18) x 107° | (2.51 £ 0.10) x 102
pw=102CeV | 04124 87.088 1645.31 | (9.4140.22) x 107° | (3.214+0.13) x 1073
sin O5M sin OSFM sin? 9M §OKM

0.2253715-9006 1 0.041379:5014 | 0.003479:5993% | 1.25170-064

sin? OTMNS sin? 0§3MNS

0.51415-952

sin? Gfé\/ms

0.023019 0034

0.303610:0015

Table 2.1: Observed IR parameters. Top: Running quark and lepton masses in the MSSM with tan 8 = 10
from u = Mz to p = 10'>GeV. The running values are taken from Ref. [42]; for the neutrino mass
splittings, updated experimental values have been used [44, |45]. Bottom: The experimental values for the
mixing angles and CP phases, taken from the PDG [41]. Those do not run appreciably.

Note that the matrix Up, is defined in only up to right multiplication by a diagonal unitary
matrix, which can always be absorbed in the definition of Ug . Different choices for the diagonal
matrix lead to different parametrizations of the PMNS matrix. In the standard parametrization
described in appendix[A] the PMNS matrix is given in terms of the experimentally measured mixing

angles 615,613,023 and the unknown CP violating phases d13, A2 and A3 by

€12€13 512€13 s1ze” 013 10 0
U, = _ _ 113 _ 1013 iAo
PMNS 512023 — C12523513€ €12C23 — 512523513€ 523€13 0 e 0
812823 — C12C23813€"013  —C12823 — S12C23813€71%  cazeys 0 0 e
(2.3.11)

where s;; = sin;; and c¢;; = cos 6;;.

¢

We now describe how to solve for the model parameters. We first solve for I';;,

1=1,2,3. Using
(2.3.9) we can express the first three invariants of the list (2.3.2]) as functions of charged lepton

masses

Tr (mémf’[)n _ mgn 4 m2n

T m2" = Tr[ ( (F£)2 Vexw diag(m?2, m?,m3) VgKM) } (2.3.12)

¢

where n = 1,2,3. These three equations allow us to solve for I,

i = 1,2,3 using the known

renormalized values of the CKM matrix and charged fermion masses. Note that the solutions for

4 m
I; i

o @ =1,2,3 are independent of v1,v2, I'}}, ¢ = 1,2, 3 and the unknown CP violating phases of the

PMNS matrix. This is an important simplification for the numerical computations, which is seen
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transparently in (2.3.12)) thanks to the use of polynomial invariants. We leave the presentation of
explicit numerical solutions for the next section.

The next step is to solve for ', ¢ = 1,2,3. Using (2.3.9) in the second line of invariants in
E3) we get

2 2 2
Tr (m"m*H" = m2" +m2" + my!

Tr [ (Fm Vékum diag(mﬁ, mg, m%) VgKM diag(1, e 2m, 6_2”2)

S

I Vorwu diag(m?2, m2, mi) VCTKM diag(1, e*, e*12) ) ] (2.3.13)

In these equations the quark masses, elements of the CKM matrix and neutrino mass splittings
are known, and they allow us to solve for I'}}, ¢ = 1,2,3 as a function of v;,y2 and the unknown
lightest neutrino mass m,;. There is no simple analytic solution to these equations, so we solve
them numerically in the ranges 0 < v} <7, 0 < vy <7 and 0 < m,; < 1leV, where the last upper
bound is of the order of the experimental upper bound on the lightest neutrino mass [|.

The final step is to solve for v1,v2 and m, by using the known leptonic mixing angles. The
easiest way to find the solutions is to directly find the PMNS matrix as a function of 71, vy2 and m,q,

and solve for the values of v1,v9 and m,; that lead to the experimentally measured mixing angles.

This is done as follows. We repeat here the non-trivial conditions ([2.2.27))
0 _ d\T e v _ (rd\Tm d
m' = (m?)" T m” = (m?) T™ (31,92, mu1) m (2.3.14)

where now I'* is known and I'" is a known function of v;,72 and m,1, so we are only missing the
matrix m?. From (2.3.8) we know the combination m?md as a function of 1, v, and known data
from the quark sector. Any matrix m? satisfying (2.3.8)) leads to the same physical results, because

d,di

all the polynomial quark and lepton invariants are written only in terms of the combination m .

This means that we can choose

m? = diag(1, e, 2) Vigu diag(ma, ms, mp) (2.3.15)

Using (2.3.15) in (2.3.14) we obtain the leptonic mass matrices as a function of v,y and m,q,

mt (71,72, my1) = diag(mg, ms,my) VCTKM diag(1, e, "2 )FZ
my(717 2, mul) = diag(mda mg, mb) VCTKM dlag(la ei’h ) ei“rz )Fm (’Yl » V25 ml/l)
diag(1, e, €"12) Vi diag(ma, mes, mp) (2.3.16)

where T'* is known and I'™ is a known function of 1,72 and m,;. We now diagonalize the matrices

m*(y1, 2, Mu1), mY (Y1, Y2, my1) and using (2.3.10) we find the PMNS matrix as a function of 7y, 2
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and my1 (in the interval 0 <~; <7, 0 < v < 7 and 0 < m,, < 1leV). It is important to make sure

to express the PMNS matrix in the standard form (2.3.11). Finally, we use

|UPMNS(717'72amu1)|13 = [s13]
|UPMNS(V17’YQ,WV1)|12 = |512Cl3|
|Upmns (71572, mu1)|23 = |s23c13] (2.3.17)

The three equations allow us to solve for v1,7v2 and m,; in terms of the known mixing
angles. This immediately gives as an output the first prediction: the mass of the lightest neutrino
my1. Using the now known values of 1,72 and m,1, we can now numerically compute the whole
PMNS matrix, and we can extract from it the Dirac and Majorana phases 13, A2, A3, which are the
remaining three predicted physical parameters.

Two final technical comments are in order. First, the equations have twelve solutions
and the equations have forty-eight solutions. Only a small subset of the solutions are real
(recall that I'* and I'™ must be real matrices), but in general there is more than one set of real
solutions for the model parameters. Correspondingly, it is to be expected that the model will give
as an output a discrete set of predictions for the yet unmeasured parameters of the lepton sector.
Second, all the experimentally measured parameters of the quark and lepton sector that we use in
our calculations, are only known up to the experimental uncertainties. The quark masses, elements
of the CKM matrix, lepton masses and neutrino mass splittings are known with good precision, so it
is a good approximation to use their experimentally measured central value in the calculations. The
mixing angles in the lepton sector are known less precisely. At this point, their 30 experimental error
bands allow for deviations as large as ~ 50% from the measured central values [41]. This means that
instead of getting a discrete set of solutions for v;,v2 and I'}}, ¢ = 1,2, 3, we are only able to obtain
a discrete set of ranges, that are consistent with the mixing angles at some level of the experimental
uncertainties. Correspondingly, the predictions of our model will also lie in some ranges. A better

measurement of the leptonic mixing angles would make the predictions of the model more precise.

2.3.3 Results and predictions for electroweak scale physics

In this section we present the results and predictions for electroweak scale physics in our model.
Here we make use of the algorithm described in section to numerically fix the eight model

parameters v, vz, ['G, I, i = 1,2, 3 with lepton sector data. Once the model parameters are fixed

(R R Y]

by data, the allowed values for the lightest neutrino mass and CP violating phases of the PMNS

matrix are obtained as an output.
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Figure 2.3: Bands of mixing angles as a function of m,, for the model of section (solid) and 30 bands
of experimentally measured mixing angles (dashed). The model mixing angle bands as functions of m,, are
obtained by imposing quark sector data (masses, mixing angles and CKM phase), charged lepton masses
and neutrino mass splittings as constraints, and scanning over the unconstrained model parameter space. In
the top adjoining panel, we show the minimum Ay? for each value of m,, separating the solutions leading
to different signs of the baryon asymmetry, as discussed in Sec. @

To understand some general features of the model, we start by constraining the model parameters
only by using the known charged lepton masses and neutrino mass splittings. This is done by solving
equations 7. At this stage we do not make use of the known lepton mixing angles,
so there are still three unknown model parameters. We can trade one of the model parameters for
the unknown mass of the lightest neutrino m,,. The remaining two free parameters are taken to be
the phases 71 and 72, which are defined in [2:3.8]

The first result is that we find no solutions to equations f that correspond to
an inverted hierarchy scenario, so the hierarchy is predicted to be normal. The reason is that our
model inherits the mass hierarchies from the quark sector through the unification Ansatz. This
disfavors an inverted hierarchy, which differently from the quark sector hierarchy, always contains
nearly degenerate mass eigenstates regardless of the value of the lightest neutrino mass.

In figure we present the bands of leptonic mixing angles obtained in our model after solving
equations 7 and scanning over all values of v1,7v2. The bands are delimited by solid
lines, and plotted as a function of the lightest neutrino mass m,,. In the same figure, the bands
delimited by dashed lines are the experimentally allowed regions for the same angles (at 30). We
immediately see that the model tends to give mixing angles that fall roughly in the correct exper-
imental range and order (s3; > s?; > s%3). In particular, s?; tends to correctly be the smallest

~

mixing angle. This is a nice consequence of the unification Ansatz: in the quark sector s?; is the
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smallest mixing angle, and this feature is conveniently carried out to the leptonic sector. Note also
that the three angles fall within their experimentally allowed values only for a small window of
lightest neutrino mass. This range must be understood as a prediction, once the mixing angles are
constrained by data, the lightest neutrino mass is an output of the model.

To make this last statement more precise, in the top panel of figure 2:3] we also show the value of
a combined chi-squared test for the three measured mixing angles Ax* =32, Ax?(sin 0,5), as a
function of m,,,, marginalized over all values of v; and 5. The dashed horizontal lines correspond to
Ax? = 3.52,8.03 and 14.16 respectively, or equivalently, to CL intervals of 68%,95% and 99.7% for
a x? distribution with three degrees of freedom. At 30, the predicted range for the lightest neutrino
mass which is consistent with all the experimentally measured data from the quark and lepton sector
is

2x107%eV <m,, <9.5x10%eV (2.3.18)

We now move on to the predictions on the CP violating phases of the PMNS matrix. In figure
we plot the CP violating phases versus the known mixing angles. The figures are obtained by
fixing the lightest neutrino mass at m,1 = 5 x 1073eV and selecting the points i, v, that fulfill
the chi-squared test mentioned above Ax? =3, y Ax?(sin®;;) at 10,20 or 30. The points colored
with orange, purple and black fulfill the chi-squared test at 68%,95% and 99.7% confidence level,
respectively. These points must be considered to be consistent with all the experimentally measured
data from the quark and lepton sector. These plots are not scatter plots, they are the plots obtained
by imposing all known data from the quark and lepton sector in the model parameters. The red
diamond corresponds to the minimum value of the chi-squared test (the best fit point). The model
parameters corresponding to the best fit point are presented for reference in table

In the leftmost panels, as a check that we solved for the model parameters correctly, we show
how the mixing angles fall within the allowed experimental ranges, while in the three right panels
we show the corresponding predicted CP violating phases. The phases are generically not vanishing
in the sense that they do not show any preference for a null value. On the other hand, at the 3o
level, we cannot provide a sharp prediction for the CP phases. This is not a limitation of the model,
but of the current experimental uncertainties of the measured mixing angles. Better measurement of

the mixing angles will provide sharper predictions: for example, if future experimental uncertainties

3 The individual likelihood distributions are taken from the original experimental results of the KamLand, T2K
and Daya Bay collaborations [44-46|

4 Additionally, we only show the the region of the parameter space yielding the correct sign of the baryon asym-
metry. We will explain this in more details in Sec.
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are reduced by a factor of 3 for each mixing angle (with the central value staying the same), only

the black points will be allowed (at the 99.7% CL), corresponding to § ~ 7, %’r, Ay~ 0,7, A3 ~ 3.

(X

In table we give the full set of UV parameters 71,72, Ffi and I'") ¢ = 1,2, 3 corresponding
to the red diamond in Figure 2.4] as well as the predicted leptonic CP phases and lightest neutrino
mass. We see that there are large hierarchies between the different elements of the diagonal matrices
I'* and T'™. The reason is that due to the unification Ansatz, the same hierarchy of the quark masses
would be inherited to the leptonic sector, if all the elements of I'* and I'™ were of the same order. The
hierarchical structure of I' and I'"™ allows us to accommodate the correct hierarchies measured in

the leptonic sector. Note that the large value of I'{; does not represent a problem for perturbativity:

from (2.2.21)) and (2.2.26)) we see that all the elements of ¥ and I'™ can be achieved with perturbative

values of S\d, Aand AV,

Mmo| v | Th| TS | T4 | TH(GeV™h) | T5(GeV™h) | TH(GeVH)
0.74 | 0.64 | 52.4 | 0.196 | 0.022 | 826.9 x 10~10 | —28.5 x 10~1° | 0.036 x 10~10

sin 015 | sin? 6y3 | sin® 015 | Ax? m,, (eV) ) Ao A3

0.3038 | 0.5264 | 0.0228 | 0.024 || 5 x 1073 | 5.272 | 0.118 | 1.547

Table 2.2: Top: Numerical values of the model parameters for the benchmark point shown as a red diamond
in Figure[2:4] The eight parameters are fixed by the three charged lepton masses, two neutrino mass split-
tings and three leptonic mixing angles. Bottom: The mixing angles, well matched by their experimentally
measured central values (as shown by the small Ax2) and the predicted output of the mdoel: the lightest
neutrino mass m,, (with a normal hierarchy) and the three CP violating phases of the PMNS matrix.

It should be noted that the above predictions about the leptonic CP phases are rather sensitive
to the particular choice of m,, =5 x 10~3eV for the lightest neutrino mass. We illustrate this effect
in Figure where we show predictions for the CP phases d, A2 and A3 as a function of the lightest
neutrino mass m,,. The color scheme is the same as in Fig. with points within the experimental
1, 2 and 30 ranges for the mixing angles respectively marked in black, purple and orange. Within
the current experimental uncertainties, the CP phases are completely generic, but improvements
in the experimental precision can sharpen the predictions and give non-trivial correlations between
0, A2, Az and m,, as well as between individual CP phases.

Finally, we conclude this section by discussing the experimental outlook to confirm or disprove
our model. First, the predicted range for m,, is too low for current and projected direct
neutrino mass experiments looking for an endpoint in the beta decay spectrum. On the other hand,
in our model the sum of neutrino masses is restricted to the narrow range 0.060eV < > m, <

0.073eV, below the current PLANCK 95%CL upper bound, >, m, < 0.23eV [47] and just within
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Figure 2.4: Plots of sin®#;;, ij = 12,23,13 and the CP violating phases of the PMNS matrix §, A2, A3
versus sin® 0y, kl = 13,12,23 for the model of section constrained by IR data as explained in section
2.3.1l These plots are not scatter plots. The lightest neutrino mass is fixed at m,, = 5 x 107% eV. The
colored bands show the 1o to 30 experimental limits for each mixing angle. Regions are colored according
to a chi-squared test for the three measured mixing angles, considered as independent variables. Orange,
purple and black circles are solutions that fall within 30, 20 and 1o of the chi-squared test. The red diamond
is the best fit point described in Table

the reach of future galaxy surveys probing Large Scale Structures. Second, the CKM-like phase
§ will be measured at the DUNE experiment with a resolution that could approach O(10°) [48].
A measurement of & would overconstrain our model, and when paired with significantly improved
uncertainties in the lepton mixing angles it holds the potential of definitely confirming or excluding it.
On the other hand, when considering the existing uncertainties, a measurement of § would sharpen

the predicted range for m,,, which in turn would also improve the predictions for the Majorana
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Figure 2.5: Same as Fig. but with a projected 3x improvement in the experimental errors for the

mixing angles (assuming the central values stay the same). Now the predictions for the CP phases are more
precise.

phases Ag, A3 (see Fig. .

Another process depending on CP-violating phases is neutrinoless double-beta decay; in this
case, A2 and Az enter the expression for the neutrinoless decay mass parameter mog,gg =
|ZZ myi(UPMNS)ei)2|, where the PMNS matrix is fully calculable in our model. For example, the
best fit point in Table yields moypp = 6 x 1073 eV. Given that a lightest neutrino mass in the
range 1073 eV < m,, < 1072 eV and a normal hierarchy are predicted, we fall in the parameter
space region where a “throat” appears in the m,, — mg,33 plane, signaling cancellations between

different factors in mg,gg. With the currently large uncertainties for the mixing angles leading to a
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Figure 2.6: Same as Fig. but including only points leading to the wrong sign of the baryon asymmetry.
This illustrates how requiring the correct sign of the asymmetry leads to different predictions for IR physics.

wide range of predictions for Ao and A3, we are not able to exclude such cancellations: instead, we

find points lying within 1o from the mixing angles that yield a very small neutrinoless double-beta

decay parameter, of order 10~4eV, well below the future experimental reach.

2.4 Predictions for UV physics and thermal leptogenesis

We have seen that the effective theory presented in section [2.2.2] which is valid below the scale of
the RH neutrino masses, is completely specified by known IR data. In this section, we move up in

energies and we study the constraints from the quark and lepton sector data on the effective theory
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Figure 2.7: Correlations between the predictions of our model. Top: correlation between the leptonic CP
phases d, A2, A3 and the lightest neutrino mass m,,. Bottom: correlation between the different leptonic CP
phases. Points within the 68%,95% and 99.7% CL intervals for the leptonic mixing angles are respectively
marked in orange, purple and black, and the best fit point of Table [2.2] is shown as ared diamond. Only
points leading to the correct baryon asymmetry are shown.

described in section which is valid between the scale of the RH neutrino masses and the scale
of spontaneous CP breaking. A complete analysis of this effective theory is crucial for our purposes,
since it is the theory that contains all the relevant information for leptogenesis.

As we did in section [2.3] in this section we use a formal description of flavor symmetries and
polynomial invariants, now for a type I seesaw model. The description of the polynomial invariants

of a type I seesaw model is left for appendix

2.4.1 Parameter counting using invariants

The leptonic sector of a general type I seesaw model with three right handed neutrinos contains
twenty-one independent observables (six CP violating phases and fifteen real observables), as de-
scribed in the appendix Twelve of these parameters correspond to the twelve leptonic observ-
ables at the electroweak scale, namely the six charged lepton masses and the six elements of the
PMNS matrix. The remaining independent nine physical parameters, which we call UV observables,

are not measurable at the electroweak scale, and they correspond to the three RH neutrino masses
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Figure 2.8: Same as Fig. but with a projected 2x improvement in the experimental errors for the
lepton mixing angle (assuming the central values stay the same).

and six elements of a complex orthogonal matrix defined in . Of these last six elements,
three are real and three are complex, so we will loosely call them “UV mixing angles” and “UV CP
violating phases”.

Due to the conditions , the effective theory presented in section is not the most
general type I seesaw model, and not all of the twenty-one observables are independent. Moreover,
constraints on the nine UV observables can be made from data at the electroweak scale. We now
show that the twenty-one observables are all fixed by known data at the electroweak scale, the RH
neutrino masses and tan j3.

First, note that as described in section[2.3.1] the twelve observable parameters at the electroweak
scale are completely specified in our model by known data at the electroweak scale from the quark
and lepton sector. As explained in section this is non-trivial, since not all the elements of
the PMNS nor the mass of the lightest neutrino matrix have been measured to date. These yet
unmeasured parameters are predicted by our model. No knowledge of tan 5 or the RH neutrino
masses is required to specify the value of these twelve IR observables.

On the other hand, the nine UV observables cannot be chosen to be independent, due to the

non-trivial conditions (2.2.19)). To identify the independent UV observables, we first list a complete
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Figure 2.9: Same as Fig. but for points leading to the wrong sign of the baryon asymmetry.

set of nine UV polynomial invariants (A.2.7)-(A.2.13)
Tr (M*M)"
T Mo, M*M]°
T EBN 2
Tr [)\N/\N,M /\N/\NM]
* 2 *
Tr (NVAN,M M]* (M /\LANM)>
T Mo, M*M]°
Tr (A Ay, Ml Ay M
I [ N N N N ]
Tr ([)JV)\N,M*M] (M*A}VANM)) (2.4.1)
where n = 1,2,3. The UV polynomial invariants can be completely specified by taking traces

involving the matrices M and ANTAYN in any basis. In the basis we work on the right-handed

neutrino mass matrix M is diagonal and real, as specified in equation (2.2.6])

The eigenvalues M; cannot be predicted in our model. Note that the hierarchy of the RH neutrino

mass matrix is physically meaningful. For instance, swapping the values of M; and M> leads to
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different physical results, since it leads to different values for the polynomial invariants (2.4.1)).
On the other hand, using the non-trivial conditions (2.2.19) the matrix ANTAY can be written as

ANVIAN = TN (A4 Ty TN (2.4.3)

where T'V is a real, diagonal matrix defined in (2.2.21)). It is related to the real, diagonal matrix ['™
(which is known from measured IR data, see section [2.3.1]), through ([2.2.26]),

2
Jdpm — pN N (2.4.4)
U'LL

Since I'N and M are real diagonal matrices, from we obtain
= ;’—dx/ﬂx/ﬁ (2.4.5)
u
Using in and m? = vg\? we get
ANTAN — U%\/MT\/FWT(mdde)*\/M\/FT% (2.4.6)

Note that vV M and +/I'™ can contain imaginary elements, since the real diagonal matrices M and
'™ need not be positive. Finally, using the known expression for mm? ([2.3.8) in ([2.4.6) we get
1 ) )
ANIAN - = 2'725\/]\4 T\/Fm f [diag(l, e e2) Ve diag(m?, m?2, m3)
v? sin

V& o diag(l, e—m,e—m)} VM (2.4.7)

As discussed in section the parameters 71, 72 and the three elements of the real diagonal matrix
'™ can be obtained from known data at the electroweak scale. The only unknowns in ([2.4.7)) are

tan 5 and the three RH neutrino masses that set the diagonal matrix M.

We are now ready to do the parameter counting. Using (2.4.2)) and (2.4.7) in (2.4.1), we see that

the nine UV invariants can be fixed by known IR data and four unknown model parameters: the
three RH neutrino masses M;, ¢ = 1,2,3 and tan 8. Given these four unknown model parameters,
the three “UV mixing angles” and three “UV CP violating phases” can be predicted. This is the

final result of this section.

2.4.2 Thermal leptogenesis

Thermal leptogenesis is a very simple mechanism to generate the observed baryon asymmetry. We
now briefly summarize the mechanism and then apply the predictions of our model to generate the

asymmetry.
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For simplicity, we consider hierarchical RH neutrinos, M, < M, M., where a, b, ¢ take different
values from 1 to 3. Which one of the RH neutrinos N1, No, N3 is the lightest is relevant, as discussed
in section In thermal leptogenesis, a large population of N, is produced thermally from
scattering of the Higgs with leptons when 7" > M,. N, might or might not reach its equilibrium
number density n?\(}a ~ n., depending on the strength of its Yukawa coupling with the Higgs. If
the Yukawas of the RH neutrinos to the Higgs doublet and lepton doublets contain a CP violating
phase, any change of the N, abundance through these interactions generates a lepton asymmetry.
Any time an asymmetry is generated, it tends to be washed out by the inverse process, since it
represents a chemical disequilibrium. In the end, the interplay of the production of RH neutrinos,
their decay and the washout process leads to a residual asymmetry, but only if the process gets
out of equilibrium at some point of the evolution. If it does not, any remaining asymmetry will be
washed out.

The interplay of production, decay and washout is contained in the Boltzmann equations for
the RH neutrino abundance and the lepton (and slepton) asymmetry. We consider the simplified

Boltzmann equations [49]

d B Ki(z) eq
(@) = - (Ka:K; m) (Y, (z) — YR (2)) (2.4.8)
d _ K (x) e 1 (Koo YA (@)
T (AYL(H_% (x)) = (KxK;(as)) [2ea (YNa () — Yy (m)) ~5 ( e qu(x)> AYp, (:v)]
(2.4.9)

where K7 o(x) are the modified Bessel function of the second kind and

M,
T T
""Na,Lo+La
YN Lo+La s
K I'n,>La
o H|r-m,
K = Y Kaa (2.4.10)

and the CP asymmetry parameter is defined as

'nysrow, — TN LT 1=
€, = - No Lo (2.4.11)
UN,»rw, + TN, STH:

In the equation for the evolution of the lepton asymmetry , the first term on the right hand side
corresponds to the contribution to the asymmetry due to production and decay of the RH neutrinos
when there exists CP violation. The second term is the washout term which tends to erase any
asymmetry. Note that the solution for the asymmetry in the simplified Boltzmann equations are

linear in €,. In particular, AY; 7 (Aea) = AAY, 7 (€a).
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The corresponding baryon asymmetry over the entropy density is [49)

np 10
— =g za: INE (2.4.12)

The numerical prefactor takes into account that the lepton asymmetry is not entirely converted into
a baryon asymmetry by sphaleron processes. The input from microscopic physics enters in (2.4.9)
through K., and €,. In terms of the Yukawas of the seesaw model and the light neutrino mass

matrix they are given by [49]

Nx\N
Kaa — Ma )‘aa )‘aa
H|T:Ma 8w
M,
€ = _ M g (AN (mZEA5)] (2.4.13)

w2 AFAY
where only sum over the index § is intended, H|p—p;, = 1.66 gi/2M3/Mpl and in the MSSM,
g« = 228.75.

CP violation enters in the calculation through the asymmetry parameter €,. In a general type I
seesaw model, the CP violation needed for leptogenesis is uncorrelated with the CP violating phases
of the PMNS matrix [50]. The asymmetry parameter €, is only sensitive to the UV CP violating
phases, that cannot be measured in experiments below the scale of the RH neutrino masses. Our
model, however, is not a general type I seesaw model, since it contains non-trivial conditions (|2.2.19)
relating different Yukawa matrices. This provides relations between different observables. In section
we showed that in our model, all the UV observables, including the UV CP violating phases,
are fixed by known data from the IR, the three RH neutrino masses and tan 3. Moreover, since
thermal leptogenesis relies only on the decay of the lightest RH neutrino, one might expect that in
our model, only the knowledge of the lightest RH neutrino mass and tan S are needed to calculate

the resulting baryon asymmetry from leptogenesis. We now show that this statement is correct and

N

y . .
~e and mY, which determine K,, and

calculate the baryon asymmmetry by explicitly obtaining A
€q-

First, note from that the matrix ANTAY is a known function of IR data and the RH
neutrino masses. Also note that any matrix AV satisfying leads to the same physical results,
because all the polynomial invariants depend only on the combination ANtAN. Then, we are

free to choose

1 ) . *
AV = — [diag(md, ms, mp) Vo diag(1, e 6_172)} vVMVIm™ (2.4.14)

Uy
where in section we obtained the real diagonal matrix I'), and the phases 71,2 from known

IR data. In the basis we work on, M is diagonal, so we commute it with I',, and we obtain the
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element a, a of the matrix AV

1 , ) £ *
MV = . diag(ma, ms, my) Vi diag(1, e, e~ 92)y/Tm } v M, (2.4.15)

u aa

On the other hand, the neutrino mass matrix is known from ([2.3.16|), we repeat the expression here

for convenience
174

m” = diag(mg, ms, myp) VCTKM diag(1, e, em?)l""

diag(1, e, "12) Vi diag(ma, ms, my) (2.4.16)

where 71,72 and the real diagonal matrix I'"* are known from IR data.

Using (2.4.15)) and (2.4.16]) in (2.4.13) we immediately see that Ky, and the CP asymmetry e,

are completely specified by IR physics and the mass of the lightest RH neutrino, M,. No knowledge
of the masses of the heavier RH neutrinos is needed, in the range of validity of the calculations.
We now give a numerical example, using the benchmark point of Table We consider the

lightest neutrino mass to be M;. Using the model parameters of Table in (2.4.15)) and ([2.4.16|),

we obtain the flavored CP asymmetry parameters

1.07-107°[ |Mq] 421-107" [ |Mq] 1.17-1078[ | My
€1~ €y X~ — €3 ™~
! sin2 3 [ 1010 GeV ? sin2 3 [1010 GeV T sin?p 1010 GeV
(2.4.17)

where tan 8 = 10. The CP asymmetries are linear in |M;|. As a consequence, the baryon asymmetry

is also linear in |M;|. Using (2.4.17) in (2.4.12)) and numerically solving the Boltzmann equations

we obtain

820-1071° [ |M
LN [ M| ] (2.4.18)

s sin? B 1010 GeV

For our benchmark point, the correct baryon asymmetry can be obtained for M; ~ 10° GeV. Equa-

tion is a prediction of our model: the baryon asymmetry is linear in |M;|/ sin? 3, and the
proportionality constant is predicted by making use of known IR data.

The benchmark point of table is the best fit value for the model parameters as determined by

the low energy data. More generally, scanning over the set of model parameters that are consistent

with all the IR data up to the experimental uncertainties, we find that for tan 5 = 10, the correct

baryon asymmetry can be obtained in a range
107 GeV < | M| (2.4.19)

One special feature of our model is that the sign of baryon asymmetry is part of the prediction:

in our unified framework, the definition of “matter” in the quark sector (as given by the sign
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of the CKM phase determining CP violation in say, kaon mixing) defines “matter” in the lepton
sector. Thus, only the negative sign of the lepton asymmetry is phenomenologically acceptable. As
described above, known IR data ultimately determines (up to experimental uncertainties) the sign of
the asymmetry parameters ¢, and of the final baryon asymmetry. In reality, within the experimental
uncertainties in the lepton sector both signs of the asymmetry are still allowed. Different signs are
correlated with different predictions for the CP phases in the PMNS matrix.

We illustrate this effect in Fig. where we set the lightest (left-handed) neutrino mass to
the best fit value m,, = 5 x 1073 and display the allowed parameter space for the UV parameters
v1,72 (for presentation purposes, we choose the linear combinations (1 — v2,71 + 72) for the axes).
In the white region, there are no solutions to Eq. to reproduce the observed light neutrino
masses, while in the colored region solutions exist: there, the correct (positive) sign is given in
the yellow/red tones and the incorrect sign in blue tones. Because the Boltzmann equations are
homogeneous in |M;|, we can also display the value of the lightest right-handed neutrino mass
needed to achieve the correct absolute value of the baryon asymmetry np/s, with different hues of
red and blue corresponding to different values in the range |M;| = 10° — 10! GeV. Finally, we also
show contours delimiting regions consistent with the lepton mixing angles at 1,2, and 30, according
to the x? test described in Sec. In a world with perfect experimental resolution for the mixing
angles, some of these regions will disappear and one will shrink to the black diamond, corresponding
to the benchmark point described in Table In section [2.3.3] and Figs. we only displayed
the points leading to the correct sign of the baryon asymmetry. This lead to sharper predictions for
the IR data m,,,d, A2 and As.

In Fig. we show the correlation between the baryon asymmetry and the predictions for
yet-to-be-measured IR observables, where for concreteness the RH neutrino mass is set as M; =
10* GeV. This should be compared to the experimental value, ng/s = (0.8 & 0.2) x 1071 [47].
The benchmark point in Table gives the correct baryon asymmetry when M; = 10! GeV. As
in the previous section, we use a color scheme where points consistent with the measured leptonic
mixing angles at the 68%,95% and 99.7% CL are purple, orange and black, respectively. Only
points with np/s > 0 are consistent with the baryon asymmetry being generated after sphaleron
processing of the epton asymmetry from thermal leptogenesisﬂ Because the asymmetry parameters

€1,2,3 are linear in |M;], even points in Fig. that do not yield the correct magnitude of the baryon

5However, it is possible to decouple baryogenesis from the IR predictions of our model if it is assumed that a
different mechanism was responsible for the generation of the baryon asymmetry: in this case, our unified model still
describes all the IR observables and predicts the correlations described in Section [2.3] In particular, the correlations
show in Fig. will now also be phenomenologically acceptable.
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Figure 2.10: Values of the lightest RH neutrino mass M; required to achieve the observed magnitude
for the baryon asymmetry, for m,, = 5 x 107> ¢V and as a function of the UV parameters 71,72 (here
reparametrized in the (y1 — 2,71 + 72) plane for clarity). Colored regions give solutions to Egs. (2.3.12)—
, before enforcing agreement with the lepton mixing angles. Regions shaded in red (blue) give the
correct (wrong) sign for the baryon asymmetry, and are separated by the red lines. Note that at each point
in the 71,72 plane there are up to 6 x 24 distinct solutions for Eqs. (2.3.12)—(2.3.13), some of which will yield
different mixing angles and baryon asymmetries; for example, in the region enclosed by red lines solutions
exist for both signs of npg, meaning that this region can give the correct (positive) baryon asymmetry. Black
contours with continuous, dashed and dotted lines demarcate respectively the parameter space regions laying
within the 68%, 95% and 99.7% CL intervals for the leptonic mixing angles. Taking into account the lepton
mixing angles, phenomenologically acceptable regions are the red regions enclosed by the continuous black
contours. The benchmark point of table is shown as a black diamond.
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Figure 2.11: Correlation between the baryon asymmetry and the IR parameters of our model, for |M;| =
10" GeV. Points within the 68%, 95% and 99.7% CL intervals for the leptonic mixing angles are respectively
marked in orange, purple and black, and the benchmark point of Table is shown as ared diamond.

asymmetry will be able to, for different values of |M;|. We illustrate this in Fig. where we show
the correlation between the value of | M| needed to reproduce the observed baryon asymmetry and
the IR CP-violating phases dcp, A2 and A3. The correlation between dcp and |M;] is particularly
strong, and a future measurement of the Dirac neutrino phase has the power of predicting the RH
neutrino mass scale. As in the previous sections, it is worth noting that a better experimental
resolution for the lepton angles will sharpen these predictions.

We conclude with some comments on the cosmology of our model. First, note that for the lepto-
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Figure 2.12: Correlation between the RH neutrino mass scale |M;| and the IR observables of our model,
obtained by requiring that the correct matter-antimatter asymmetry is generated during leptogenesis. Points
within the 68%, 95% and 99.7% CL intervals for the leptonic mixing angles are respectively marked in orange,
purple and black, and the benchmark point of Table is shown as ared diamond.

genesis mechanism to work, the reheating temperature after inflation Tk should be higher than the
lightest RH neutrino mass, i.e. it should be larger than 10° — 10'! GeV. The reheating temperature
is also bounded from above by Mcp. The reason is that when CP is spontaneously broken, there
can be discrete number of vacua and long-lived domain wall will be generically produced. A lower
reheating temperature assures that domain walls have been inflated away. Thus, a set of necessary

conditions for successful leptogenesis in our model are (2.4.19)) and
M, <Tr < Mcep (2.4.20)

The high reheating temperature leads to cosmological constraints on the gravitino mass. For ther-

malized gravitinos in the early universe, the gravitino energy density is

200 ms3/o
9] =" 2.4.21
Va2 9«(Ttr) [ keV } ( )

where T}, is the freeze-out temperature for gravitino production. To avoid overclosure of the uni-
verse, the gravitino has to be light. Moreover, astrophysical constraint on structure formation set
the strong bound m3,, < 16eV [51]. Correspondingly, the supersymmetry breaking messenger scale
is constrained to be M, < 100 TeV. In this way, a cosmological history that include leptogenesis at

high temperatures automatically prevents a sizable contribution to 6.
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Chapter 3

125 GeV Higgs from Tree-level A-terms

3.1 Introduction

In the previous chapter, we built a supersymmetric model to solve the puzzle of CP violation in the
Standard Model. Experimental evidence indicates that if supersymmetry is a symmetry of nature,
it must be broken at low energy scales. A particularly well motivated supersymmetry breaking
mechanism is gauge mediated SUSY breaking (GMSB, for a review and original references, see [13]).
Since gauge interactions are flavor blind, gauge mediated supersymmetry breaking does not induce
flavor breaking effects that would be heavily constrained by flavor experiments. In this chapter, we
build a detailed model of gauge mediated supersymmetry breaking, which is consistent with all the
low energy phenomenology.

In particular, the discovery of the Higgs boson with a mass near 125 GeV [1} |2] has important
consequences for physics beyond the Standard Model, especially supersymmetry. In the MSSM,
it implies that the stops must either be very heavy or have a large trilinear coupling (“A-term”)
with the Higgs [14, 52159]. The large A-term scenario is more interesting from several points of
view. It is less fine-tuned and it allows for lighter (~ 1 TeV) stops that are still within reach of the
LHC. It also presents an interesting model-building challenge — prior to the discovery of the Higgs,
mechanisms for generating the A-terms from an underlying model of SUSY-breaking mediation were
not well-explored.

In the framework of gauge mediated SUSY-breaking, the problem of how to obtain large A-
terms becomes especially acute. In GMSB, the A-terms are always negligibly small at the messenger
scale. If the messenger scale is sufficiently high and the gluino sufficiently heavy, a sizable weak

scale A-term with relatively light stops may be generated through RG-running [14]. However,
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this setup is in strong tension with electroweak symmetry breaking (EWSB) [60]. This strongly
motivates extending gauge mediation with additional MSSM-messenger couplings that generate A-
terms through threshold corrections at the messenger scale.

In all models for A-terms considered since the observation of a Higgs boson at 125 GeV [61174],
the focus has been on generating A-terms at one-loop level through weakly coupled messengers.
Integrating out the messengers produces one or more of the following K&hler operators

1 1
1672 M

L1
1672 M

1 1 4
X'QhQs . (o X b (3.1.1)

X'HIH, ,

Here X is a field that spontaneously breaks SUSY, and M is the messenger scale. After substituting
(X) = 6?Fx and integrating out the auxiliary components of the MSSM fields, one obtains the

desired A-term
1 Fy

A H, Qs Ay~ ———
LDy AH,Qsus , Ay 1672 31

(3.1.2)

This setup has the advantage that the A-terms come out parametrically the same size as the other
soft masses in GMSB (one-loop gaugino masses, two-loop scalar mass-squareds). However, one-
loop A-terms from introduce a host of complications as well. First and foremost is the
“A/m? problem” [62]: in addition to the A-terms, one also generates a scalar mass-squared at
one-loop, completely analogous with the more well-known /B, problem. A one-loop scalar mass-
squared would overwhelm the GMSB contributions and lead to serious problems with fine-tuning
and/or EWSB. Previous solutions to the A/m? problem include taking the messengers to be those
of minimal gauge mediation [62], or having the hidden sector be a strongly-coupled SCFT |64, 65].

In this chapter, we will explore a new solution to the A/m? problem: models where the A-terms
are generated at tree-level in the MSSM-messenger couplings. The advantage with this approach
is that there is simply no A/m? problem to begin with, since at worst any accompanying sfermion
mass-squareds would be tree-level as well. An added benefit of this approach is that it will lead
us to a consider an interesting new operator for the A-terms: one which arises in the effective
superpotential, rather than in the K&hler potential. As we will see, this superpotential operator
will have qualitatively different effects on the MSSM soft terms as compared to Kéhler potential
operators.

The basic setup is quite simple. To generate a tree-level A-term, either the Higgs or stops must

mix with the messengers in the mass-matrix. For example, consider the superpotential

W = X'Hyu¢ + N ¢Qiu; + Mo (3.1.3)
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Here X is another spurion for SUSY-breaking, and ¢, (;~5 are heavy messenger fields. Upon integrating
out the messengers at the scale M, one generates the effective superpotential operator

j

U

A
Werr D _MXIHuQiEj (3.1.4)

Note that because of the SUSY non-renormalization theorem, Wes¢ can only arise at tree-level, so

it is perfectly suited for our purposes. In order to produce an A-term of the correct size, one must

havdT]

ZE' ~ O(TeV) (3.1.5)

The tree-level A-term originating from is minimally flavor violating (MFV), provided that
the operator in generates the full up-type Yukawa coupling of the MSSM. For this to work,
X’ should acquire a lowest component vev of size ~ M.

The interesting complication in these models comes from the fact that when integrating out the
messengers, in addition to the superpotential operator , a Kahler potential operator is also

generated at tree-level. For example, in the model (3.1.3)), one generates the term:
1
Kepp D WX’T X'HIH, (3.1.6)

(For a more general treatment of the Kéhler operators, see appendix A.) This leads to a soft mass

for H, of roughly the same order as the A-term:

2
y
sm3 = — IAf’;’)F |Ag|? (3.1.7)

For A\33 < 1, this represents a large, irreducible contribution to m%,w and correspondingly to the
fine-tuning of the electroweak scale. This is another manifestation of the “little A/m? problem”
encountered in [62], whereby a large A-term was accompanied by an equally large sfermion mass-
squared. In [62], the situation was even worse, because the contribution was irreducible with a fixed

coefficient:

gm? = | A (3.1.8)

There both the A-terms and the irreducible contribution to m%{“ (13.1.8]) originated from integrating
out the auxiliary components of the MSSM fields in the first K&hler operator in (3.1.1)). Since we
are starting instead with the effective superpotential operator (3.1.4)), the coefficient in (3.1.7) is free

to vary in our present models. Importantly, however, we will see that the sign in (3.1.7)) is always

INote that this is a loop factor smaller than the usual GMSB relation. A smaller F-term satisfying this hierarchy
can easily be dynamically generated using weakly-coupled messengers, see e.g. [75|. In this chapter we will simply
assume that F'y: of the right size can be obtained somehow and not explore it any further.
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negative, such that does not jeopardize electroweak symmetry breaking, in contrast to the
relation in .

In this chapter, we will consider various ways to alleviate the fine-tuning problem introduced by
the little A/m? problem . Clearly, if A3z is taken to be large (e.g. A3z ~ 3), then the little
A/m? problem is ameliorated. This requires a UV completion at a relatively low scale. We will
provide such a UV completion in this chapter, using a novel application of Seiberg duality |76, |77].

Alternatively, one can consider non-MFV models obtained from by exchanging the role
played by H, with ﬂgﬂ

W = XUy + KH,Q30u + Moy, (3.1.9)

For this model the expression analogous to contains mZ_ instead of m3; . As in [63], the fine-
tuning is greatly reduced with respect to the perturbative MF'V case because the stop contribution
to m3; is diluted by a loop factor. Moreover, the situation is even better than in [63], because in
that case there were still sizeable two-loop contributions to m%[u, whereas here the contribution is
solely to the squarks.

An important thing to note about the framework for generating tree-level A-terms presented
in this chapter is that it can in principle be tacked on to any mediation mechanism for the rest
of the MSSM soft terms; the framework itself does not lead to a particularly compelling choice.
This is in contrast to the one-loop models considered previously, whereby the A-term messengers
also contributed to the MSSM soft spectrum through minimal gauge mediation, and thus GMSB
was the most economical choice. Moreover, the tree-level A-term module does not affect the overall
phenomenology much; the one essential difference occurs in the non-MFV models, where the stops
can be split by several TeV due to the non-MFV analogue of .

For simplicity and concreteness, in this chapter we will couple our models to minimal gauge
mediation (MGM) [79H81]. We will see that after imposing the Higgs mass constraint, the models
are typically out of reach of Run I LHC; however they will be accessible (especially the lightest stop)
at 14 TeV LHC. Finally, we will estimate the fine tuning in these models and show that they achieve
essentially the best tuning possible in the MSSM (percent level).

The remainder of this chapter is organized as follows: Since no strongly coupled UV completion
is needed for the non-MFV models, we discuss those first in section 2, as well as their phenomenology

when coupled to minimal gauge mediation. In section 3 we analyze the MFV example in a similar

2Because these models are not MFV, one should worry about the potential constraints from precision flavor and
CP observables. This is beyond the scope of this work (see however |78]). We will assume for simplicity (as in [63])
that the coupling « is real and fully aligned with the third generation. We will also focus on the u3 model because
then the flavor violation is limited to the up-squark sector and the constraints are much weaker.
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way. In section 4, we UV complete the MFV model using Seiberg duality. Finally, in the conclusions
we list some potential future directions suggested by our work. A general discussion of the little

A/m? problem and Landau poles in models for tree-level A-terms is left for appendix

3.2 A non-MFV model

As discussed in the introduction, the non-MFV model has a less severe version of the little
A/m? problem, and thus does not need an immediate UV completion, unlike the MFV model .
Since the story is simpler here, let us start by analyzing the non-MFV model in detail. Apart from the
issues of flavor alignment discussed in the introduction, the form of the renormalizable superpotential
is the most general that couples the spurion, messengers and MSSM fields up to terms that
are irrelevant for our purposes (powers of the spurion X’ and a small soft mass for the messenger
pair from X'¢udy).

After diagonalizing the mass matrix and integrating out ¢,, &u at the messenger scale M, we

obtain the IR effective theory

/

X
Weff D) —HMHquﬂg

XX k2
YR LR V)

The irrelevant operator induced in the low energy superpotential leads to an A-term for the corre-

(3.2.1)
HIH,QiQs

Keff >
sponding MSSM fields after substituting (X’) = §?Fx. However, an additional contribution to m%g

from the first term in the Kahler potential is also induced, such that

om2 ——y—tgA2 (3.2.2)
=54 2.

us

Note that the contribution to m%s is negative, so to avoid a tachyonic right handed stop, it must be
cancelled off by additional contributions at the messenger scale (e.g. from GMSB) or from MSSM
renormalization group running from the messenger scale down to the weak scale. If k ~ 1, the fine
tuning from is comparable to the fine tuning from the A-term itself, since both enter the
running of m%,u in exactly the same fashion. Taking x > 1 therefore does not substantially improve
the overall fine tuning of the model. One major improvement relative to the non-MFV models
considered in [63] is that there are no sizeable contributions generated to m3; from integrating out
the messengers.

To study the phenomenology of a model with tree-level A-terms and a 125 GeV Higgs, we must
add our tree-level A-term module to an underlying model for the rest of the MSSM soft

masses. While in principle any model could be used, GMSB is a particularly well-motivated choice
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given the SUSY flavor problem. So for simplicity and concreteness, let us now specialize to the case
of minimal gauge mediation (MGM) with 5 & 5 messengers |79-81].

The parameter space of our model is as follows. The MGM sector of the model is characterized
by four parameters: messenger index N,,, tan 8, messenger scale M and SUSY-breaking mass scale
FWX, where Fx is the highest component vev of the SUSY breaking spurion. We take the masses of
the additional messengers in to be the same scale M for simplicity. We consider y and B,
to be determined by the EWSB conditions and we remain agnostic about their origin. Finally, our
model contains additional parameters %, which sets the scale for the tree level contribution to Ay,
and the coupling & (see (3.1.9)).

A low messenger scale M = 250 TeV and a large messenger number N,, = 3 are motivated by
the simultaneous requirements of reducing the tuning from the RG while allowing a large enough
SUSY scale to be achieved for the Higgs mass. (A different choice of messenger number does not
alter the phenomenology heavily, for reasons that will be explained later.) We take tan 8 = 20 to

saturate the tree level bound of the Higgs mass and x = 1 for simplicity and perturbativity. With

these choices, the parameter space of our models reduces to (FA’}’ , %‘) (Recall that we must take

FX’ 1 Fx
M "~ T6rm? M

to achieve A-terms comparable to the GMSB soft masses.) To make contact with

Fys

5 FWX) by the IR values of A; and the mass of the lightest stop

the IR observables, we can trade (

my, or the mass of the lightest stau mz . This parametrization is especially relevant for the LHC
phenomenology, since #; and 7; are the lightest colored particle and the NLSP respectively, as will
be seen shortly.

To generate the IR spectrum we use SOFTSUSY 3.5.1 [82]. Fine tuning Apr is calculated

according to the measure introduced in [63], given by

o dlogm?
" OlogA?

2FX QFX QFX FX/ FX/

A € {g1ﬁ,92ﬁ793ﬁ7 STaLEYa

1}
(3.2.3)

Apr = max A;.
The results are presented in figure[3.I] where we show contours of the Higgs mass, tuning and Mgy sy,
both in the (A, mz ) and (A;, ms, ) planes. Note that Mgy sy is significantly larger than m; . This
is because the two stop soft masses are split due to the negative contribution to m%s in li In
the gray shaded region the GMSB contribution is insufficient to cancel this negative contribution,
and the spectrum is invalidated by a stop tachyon. The main source of tuning in this model is the
running effect due to the colored spectrum or the A-term. From the Higgs and tuning contour lines
in both figures, we see that the model is able to reproduce the Higgs mass, while keeping fine tuning

to the percent level (which is basically the best that can be achieved in the MSSM). Moreover, the
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Figure 3.1: Contours of the Higgs mass (black), geometric mean of the stop masses (blue) and tuning
(dashed), in the (As,mg, ) (left) and (As,mz ) (right) planes. The shaded region on the (A¢,mz ) plane
corresponds to points with tachyonic stops. The black dot on both figures corresponds to the same point in
parameter space, with a spectrum presented in figure @ All quantities are evaluated at Msysy .

Higgs mass can be reproduced in interesting parts of parameter space, where there is both a light
colored particle mz, and a light slepton my#,.

A typical spectrum for the model is presented in figure [3.2] which corresponds to the black
dot indicated in the two different planes presented in figure In general, the spectrum across
the parameter space of our model is basically that of MGM with N,,.ss = 3 (gaugino unification,
colored sparticles heavier than electroweak sparticles, right-handed stau NLSP, etc.). There are,
however, two key differences. First, in order to counteract the large negative contribution (3.2.2) to
the right-handed stop, the MGM scale FVX is considerably larger than would otherwise be the case.
This results in the other colored sparticles being essentially decoupled. It also results in a higher
gravitino mass, which explains [83] why slepton co-NLSPs do not occur in figure Second, the
right-handed sleptons are a bit lighter than in MGM due to the effects of running induced by the
split stops. Amusingly, this effect of running means that the stau is the NLSP even for lower N,,¢ss,
unlike in MGM, where lowering N,,.ss leads to bino NLSPH

Due to the split spectrum, the largest sparticle pair production cross sections at LHC correspond

to £, and the right-handed sleptons. Pair production of stops leads to a decay chain with jets, leptons

3We choose our benchmark point here and in the next subsection to have mj = 124 GeV in order to account
optimistically for the theory uncertainty on the Higgs mass calculation.

4Note that if we exchange the roles of T3 and Q3 in , a negative soft mass for Q3 would be induced instead,
leading to a heavier 71 through running. In this case, it could be possible to have a bino NLSP even for N,, > 1.
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Figure 3.2: Spectrum for the point marked with the dot in ﬁgure The Higgs mass is mp, = 124 GeV,
with A, = —2.9 TeV. 71 is 17 GeV lighter than the right handed sleptons. The Higgsino mass is u = 1.05
TeV. Fine tuning is ~ 1/400.

and missing energy. When right handed sleptons are directly pair produced, the decay chain will
include relatively soft leptons (due to the moderate splitting of the right handed sleptons and the
stau), taus and missing energy. Of course the direct pair production of staus will lead to taus and
missing energy.

Of the above signatures, the most spectacular one is given by the decay of pair produced stops,
which can contain two jets, 4 leptons (from the decay of the bino to RH sleptons and RH sleptons
to stau), and two 7 jets plus missing energy. A search with a similar topology was carried out in
[84], where a limit on the total strong production cross section of ~ 1 fb was obtained. This limit
can be used to set an approximate bound on our parameter space, by comparing with our model’s
tree level total strong production cross section, which we obtain using MADGRAPH [85]. This leads
to excluding stops roughly below 800 GeV in the parameter space presented in figure [3.1] which
corresponds to staus heavier than 150 GeV.

The spectrum presented in figure [3.2]is inaccessible to the LHC run at 8 TeV, but it will become
accessible at 14 TeV. The total SUSY cross section of such point at the 14 TeV LHC is 8 fb, while
the total tree level colored production cross section is 2 fb. Relevant searches will be the updated

versions of multilepton or GMSB-inspired searches as [86] and [84].
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X' QudLe H, Hi ¢ ¢
Z3 | 1/3 2/3 1/3 2/3 2/3 1/3

Table 3.1: Charge assignments securing ) and (| -

3.3 An MFV model

Next we will turn to the MF'V model . Apart from the issues of UV completions to be discussed
in the next section, this model is slightly more complicated than the non-MFV model because here
we would like to generate the MSSM up-type Yukawas and the A-terms from the same operator.
To achieve this, it is necessary to turn on a lowest component vev for X’, which implies that one
must re-diagonalize the messenger mass matrix prior to integrating out the messengers. For later

convenience, we will redefine X’ so that its lowest component vev is separated out and denoted by

X{. Then (3.1.3]) becomes
W = (Xg + X')Hu¢ + X 6Qiu; + Mo (3.3.1)

with (X’) = Fx.62. The form of (3.3.1)) is the most general allowed by a Z3 symmetry, as detailed

in table which also allows for a p-term and down type Yukawas,
SW =y Hy Hy + N HyQidj + N9 HyLiE; (3.3.2)

We will not discuss the down sector Yukawas any further.
After diagonalizing the mass matrix and integrating out the heavy messenger states, we are left

with the supersymmetric effective action:

!

g X'
Wers Dyl (1 + cot Oy cos Oy ) H,Q:u; +p (1 + sinQHM) H,H,

M (3.3.3)
Keps D o HHX "X'HIH, + COJ&%OH I Qlul Qjuy,
where
X! g
M = /X2 + M2, sinfy= M", Y = Ndsinfy,  p=p cosfy (3.3.4)

and we have everywhere expanded in y' < M, Xg, keeping only the lowest nonzero order. In
(3.3.3)), the first term in the effective superpotential leads to an A-term proportional to the up-type
Yukawas. The second term in the effective Kahler potential is an MFV interaction suppressed by

the messenger scale, so it is safe from flavor constraints [87]. Meanwhile, the first term in K.yf
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represents a contribution to the soft mass of Huﬁ
smy;, = —|A* tan® Oy (3.3.5)

This is a manifestation of the little A/m? problem. Note that this contribution is negative, so it
is not dangerous for electroweak symmetry breaking, unlike what was found in the Kahler potential
models [62]. However, if tan 8y = 1 it still represents a major contribution to fine-tuning. Taking
tanfy < 1 would alleviate this fine-tuning problem, but at the cost of enlarging the underlying
coupling A33 according to . This leads to a Landau pole at low scales and a UV completion
becomes necessary. Such a UV completion is the subject of section [3.4] in which we use Seiberg
duality [76, 77] to realize the large coupling A33.

As in the previous section, to generate the rest of the soft masses we specialize to the case of

MGM. The parameter space is essentially the same as before, namely the MGM sector is described

by Ny, tan 3, M and %7 while our effective theory contains F]\’/‘[' which sets the scale for the tree
level contribution to A, and a coupling A\3*. Again, we consider ;1 and B, to be determined by the
EWSB conditions. We fix most of the parameters to the same values as before — N,,, = 3, tan 8 = 20
and M = 250 TeV — for essentially the same reasons. Finally, we consider two values for A33: \33 =1
is chosen to illustrate the perturbative case, while A\3% = 3 is studied since it has a beneficial effect

on decreasing tuning. With these choices, the parameter space of our model reduces to (FJ\)}’ Ex ),

VM
which we can trade for the IR values of the A-term A; and the gluino mass Mj.

In figure we show contours of the Higgs mass, tuning and Msysy in the (Mg, A¢) plane for
the two choices of A33. In both figures|??|and a large Higgs mass can be achieved with moderate
values of Mgysy thanks to the large A-terms. In figure [77] however, the p-term is very large and
induces sizable negative contributions to my through the stau and sbottom sectors. This implies
that a higher Mgy sy is needed to obtain the correct Higgs mass. (see e.g. [88].) The main source of
tuning can be either the large induced Higgs soft mass from or, for large Msy sy, the running
effect. We immediately see from figure [77] that the first of these sources represents a serious tuning
problem for A\33 = 1, in which case for a 125 GeV Higgs we obtain a typical tuning of ~ 1074, In
figure we see the beneficial effect of considering a larger value for A32. This choice suppresses the
fine tuning induced by , in such a way that a 125 GeV Higgs can be achieved while keeping

tuning to the one part in ~ 500 level.

5The second term in the effective superpotential gives rise to By, = pA¢ tan? Oy at the messenger scale.
While this is parametrically of the right size for EWSB, it has the incorrect sign to lead to the large tan 5 EWSB
condition B, ~ 0 at the weak scale. Thus a more complete model that also aspires to explain the origin of u and By
must include additional contributions to these parameters.
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Figure 3.3: Contours of the Higgs mass (black), geometric mean of the stop masses (blue) and tuning
(dashed), for A3* = 1 (left) and \3* = 3 (right) with N,, = 3, tan 8 = 20, M = 250 TeV. Different Higgs
mass contours are presented to account for the uncertainty in the theoretical Higgs mass calculation. The
shaded region corresponds to tachyonic stops/staus. The dot on the figure on the right corresponds to the
point in parameter space with the spectrum presented in figure The parameter space below the red line
on the same figure is excluded by [84]. All quantities are evaluated at Msysy .

In figure we present a typical spectrum for the model with A\3% = 3, which corresponds to
the black dot in figure This model is even more similar to MGM with stau NLSP than the
one presented in the previous subsection, since there is no negative contribution to the right-handed
stop to counteract. The only difference now with MGM is the large A-term, which has a minor
effect on the rest of the spectrum primarily through the RG. The MGM collider signatures here are
potentially spectacular. If colored superpartners are accessible to collider experiments they will lead
to a long decay chain including jets, leptons and missing energy. As in our non-MFV model, searches
that look for jets, tau final states and large missing energy can be sensitive to this spectrum when
the strong production is accessible. In particular ATLAS search [84] analyses a similar spectrum and
their results apply directly to our case, setting strong bounds on parts of the parameter space. For
tan 8 = 20, gluinos of up to 1.6 TeV are excluded, which corresponds to a total strong production
cross section of ~ 1.5 fb at tree level [85].

Multilepton searches could also be a leading probe of this model, especially when the colored
sparticles are too heavy to be produced. The stau NLSP scenario considered in [86] can be sensitive
to our case, but since in our spectrum mm., — M, ~ 20 GeV and 150 GeV < m,,, the obtained

bounds are not currently relevant for us. However, updates of these searches in Run II of the LHC
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Figure 3.4: Spectrum for the point shown in ﬁgure The Higgs mass is mp = 124 GeV, with A, = —2.7
TeV. 71 is 32 GeV lighter than the right handed sleptons. The Higgsino mass is 4 = 1.3 TeV. Fine tuning
is ~ 1,/400.

can be very interesting for our models.

3.4 A composite model from Seiberg duality

As discussed in the previous section, the little A/m? problem in the MFV model necessitates
a large value for A\33, and the theory has a Landau pole at a low scale. One way to explain physics
above the Landau pole is to build composite models that naturally provide |[A3%| > 1 due to the
underlying strong interactions. In general, characterizing such a strongly coupled UV completion
is challenging at best, however in the context of supersymmetric gauge theories we can make use
of Seiberg duality [76] [77]. We embed the model of section in the magnetic side of the duality,
where the fields Q3,3 and ¢ will be composite degrees of freedom. Since it is conceptually simpler,
we first discuss the electric side of the duality. In a second stage we discuss the mapping to the
composite degrees of freedom on the magnetic side, and we complete the model by adding in a

number of spectator fields.

3.4.1 Electric theory

The electric theory is defined by SQCD with N, = 2 colors and Ny = 3 flavors. Since the fundamental

of the electric gauge group SU(2)g is pseudo-real, this theory is invariant under an SU(6) global
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s |« | o | o 4[]
qL O 1 O z 3 | 3
1 qs O 1 1 0 3l -3

Table 3.2: Matter content of the electric theory. ¢ = g. ® qr ® ¢s form a fundamental of the SU(6) global
symmetry.

symmetry. It is therefore convenient to parametrize its degrees of freedom with a single matter field
¢’ in the fundamental of SU(2)g and SU(6). The standard model gauge group can be embedded

in the global symmetry as follows
SU(6) D SU(5) D SU(3). x SU(2), x U(1)y (3.4.1)

With this matter content, the global symmetry is anomalous. In section [3.4.3] we will introduce some
spectator fields to cancel the gauge anomalies and give vector-like masses to some exotics. Note that
because the global symmetry contains SU(5), grand unification is manifest in this model from the

outset. Concretely, the fundamental of SU(6) trivially decomposes as
6=5d1 (3.4.2)

where the 5 further decomposes into standard model representations in the conventional way. The
quantum numbers of ¢/ are summarized in table
In addition to hypercharge U(1)y, the breaking pattern in allows for an additional global
symmetry which we will denote by U(1)¢. As will be seen in section [3.4.2] it is necessary to consider
the MSSM baryon number to be part of the global symmetries for proton stability. It will also be
seen that baryon number has a unique embedding in U(1)g and U(1)y given by:
B=3yile i V= gl (3.4.3)
5 10
G = diag(1,1,1,1,1, -5)
Note that both the electric and magnetic theories have a Z, discrete symmetry that is leftover from
the anomalous global U(1) symmetry. As we will discuss in the next subsection, we will identify this

Z3 with the one of table

3.4.2 Magnetic theory

This theory s-confines in the IR and has a weakly-coupled magnetic dual description in terms of

the mesons and baryons of the electric theory as described in table These gauge invariants ¢’q’
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GUT | field | SU3). SU(2)p U(1l)y | composite | Zs B
Q3 U O 1/6 qeqrL 2/3 1 1/3
10 Us O 1 -2/3 qeqe 2/3 | -1/3

E' 1 1 1 qLqrL 2/3 1

5 ¢ 1 O 1/2 args | 2/3| 0
d | 1 -1/3 qeqs 2/3 | -2/3

Table 3.3: Matter content of the magnetic side of the duality. All fields fill out complete GUT multiplets.
Since E’ carries baryon number, it cannot be identified with a right handed lepton.

transform as the antisymmetric tensor 154 of the global SU(6). Under SU(5) this decomposes as
15, =104 & 5. (3.4.4)

The resulting SU(5) representations allow us to identify Qs, w3 and ¢ with composite degrees of
freedom. Note that the baryon numbers of Q3 and @3 uniquely determined the coefficients of U(1)y
and U(1)¢ in (3.4.3). The rest of the composite fields are E’ and d’, of which E’ has the same gauge
quantum numbers as right handed leptons, but non-zero baryon number.

The confining electric gauge group dynamically generates a superpotential in the magnetic dual,
given by

1
A3

= k(¢pQ3us — Q3Qsd + duszE")

Wmag = Pf(qiqj)

(3.4.5)

where Pf is the Pfaffian of the antisymmetric matrix ¢’¢’, and we used the mapping to the magnetic
theory in the second line. The coupling x descends from the strong dynamics in the electric theory
and can be large (for concreteness we assumed £ ~ 3 in section [3.3). From the last two operators
in it should also be clear that rapid, dimension 6 proton decay would be introduced if one
were to identify E’ with one of the MSSM leptons. The B and Z3 charges for the composite fields
are fixed by those of the electric quarks in table

3.4.3 Complete model with spectators

Let us now weakly gauge a SU(3), x SU(2)r, x U(1)y subgroup of the global symmetry. To cancel
anomalies, fill out complete GUT multiplets, and match the field content of the magnetic theory to
the model of section we add a number of fundamental fields, which are all spectators as far as
the Seiberg duality is concerned. Among these spectators are all three d, L and € generations of

the MSSM, as well as the first two generations of the () and u sectors. Finally, the H, and H, are
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GUT | field | SU3). SU2), U1y | Zs | B
5 ) 1 O —1/2 | 1/3] 0
d 0 1 1/3 | 1/3 | 2/3
2 1 0 —-1/2 [2/3| 0
ds 0 1 1/3 | 2/3|-1/3
Q' O 0 1/6 | 1/3| 1/3
10 | T O 1 —2/3 | 1/3 | -1/3
2 1 1 1 |2/3| 0
Q g 0 ~1/6 | 2/3 | -1/3
0 | v 0 1 2/3 | 2/3 | 1/3
E 1 1 -1 |1/3| -1
H, 1 0 12 |1/3| 0
Hy 1 0 —-1/2 [ 2/3| 0

Table 3.4: Spectators of the Seiberg duality required to cancel anomalies and fill out complete GUT
multiplets. Primed fields have heavy vector-like masses and are integrated out at the duality scale. The first
two generations are also spectators but are not shown here for simplicity.

spectators as well, but do not come in complete GUT multiplets. This is nothing other than the
usual doublet-triplet splitting problem in models with grand unification. The spectators and their
quantum numbers are introduced in table Aside from the usual baryon number, we also assign
the Z3 charges for the spectator fields such that the symmetry in table is realized. In addition to
the fields we introduced so far, one may choose to add up to three pairs of conventional, 5-5 gauge
mediation messengers without spoiling perturbative gauge coupling uniﬁcationEI

All the non-MSSM fields have vector-like masses. Some arise from Yukawa interactions in the

electric theory, while others are mass terms:

Wetee D Yardedsd +ypararE + Mo Q'Q + My U'T’ (3.4.6)
— Winag D yarAd'd + y AE'E + Mo Q'Q + My U'T’ B
Those that are Yukawas in the electric theory are naturally of the same size as the compositeness
scale A, and so for unification we must also take Mg ~ My ~ A.
We can see that it is possible to reproduce the model in by adding interactions between

spectators and the composites and between spectators themselves if we allow the following interac-

tions

SW = (X} + X'V Hu¢ + N9 ¢Qit; + Mo (3.4.7)

6We hereby assume that any uncalculable threshold corrections at the compositeness scale are negligible.
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where ¢, j identify quark fields in the gauge eigenbasis. To avoid clutter, we suppressed the mass
terms that are introduced in , as well as the pu-term and the down and lepton Yukawas. This
superpotential is generic if we impose the Z3 symmetry of tables and

As noted earlier, the first and second generations of the MSSM matter fields are all elementary
and spectators as far as the Seiberg duality is concerned. Since ¢ is a composite operator in the
electric theory, all up-type Yukawa couplings (other than the top Yukawa) must arise from irrelevant
operators in the electric theory. (Recall that the Z3 symmetry of table forbids the usual up-type

Yukawa couplings H,Qu.) For instance

_ A? _
AT(qLQS)(chL)Uz - AT¢Q3“2
uv uv
) A (3.4.8)
— Ty — ——¢QoT
Aoy (qrgs)Q22 Aoy PQ2Uz2
where Ayy is a cut-off scale of the electric theory. In the notation of section this yields:
0 0 O e € €
)\ZJ = ko133 + S\ZJ ~1lo 0 0 + € e €2 (3'4'9)
0 0 & e 2 &

with e ~ A/Ayy < 1. The composite sector therefore naturally provides a partial explanation of the
texture of the up-type Yukawa matrix. Since Q3 is a composite degree of freedom, it also predicts
€ ~ yp ~ 0.1, but the rest of the hierarchies in y4 and y, are not explained.

Upon integrating out the messenger fields, the analysis further reduces to what was presented in
section [3:3] There is one exception, in the sense that the model is no longer manifestly MFV since
the third generation was given a special treatment. In particular a non-MFV dimension six operator

is generated in the Kéhler potential from integrating out d’ in (3.4.5|)

0K ~ %(Qng)T(Q:‘aQ?) ~ %(Usd:&)f(u:’)d:&)- (3.4.10)

By rotating Q3 to the mass eigenbasis, this operator can in principle couple quarks of different
generations. However note that this operator does not introduce any new CP phase into the model
and it does not contribute to FCNC processes at tree level. Moreover it is suppressed by the duality
scale that is above the messenger scale 2 100 TeV. The effects in the first two generation quarks are
further suppressed by powers of € coming from . For instance, the operator contributing to
K-K mixing receives an additional suppression of ~ €®. Therefore we conclude that it is consistent

with the bounds from flavor observables [87].
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3.5 Conclusions of this chapter

In this chapter, we presented a new mechanism to generate large A-terms through tree-level super-
potential operators. We provided explicit examples of both MFV and non-MFV models. In contrast
to the conventional setups with one-loop A-terms through Kéhler potential operators, our tree-level
mechanism does not induce any dangerously large soft masses and is therefore manifestly free from
the A/m? problem. Generically, a soft mass of the same order as the A-term is nevertheless still
generated. For the non-MFV example this contribution greatly increases the splitting between the
stop mass eigenstates, but otherwise does not significantly impact the phenomenology or the fine
tuning. For the MFV case, the soft mass could potentially lead to disastrous levels of fine tuning, but
it can be brought under control by the existence of strong dynamics near the messenger scale. We
provide an example of such a composite sector which has a description in terms of Seiberg duality
and which explicitly allows for gauge coupling unification.

Some potential future directions suggested by this work include:

e An interesting avenue to pursue, is to study if these particular models of GMSB are absolutely
consistent with supersymmetric Barr-Nelson mechanisms, as the one presented in chapter 2,

such that they do not spoil the solution to the strong CP problem.

e For concreteness, we focused on an MGM setup as a first example, but we emphasize that tree-
level A-terms are merely a module that can be added to any mechanism for mediating SUSY
breaking. In particular, it would be interesting to study whether the mechanism can naturally
be embedded in more realistic models of dynamical supersymmetry breaking. In addition one
could generalize X’ beyond the spurion limit, and study the effects of its dynamics on the

phenomenology.

e In the non-MFV case it may be interesting to embed the tree-level A-term into a full fledged

theory of flavor.

e In the MFV case, we saw that the A-term module generated a contribution to B, which
unfortunately was of the wrong sign for EWSB. An interesting opportunity here would be to
construct a complete model that produces both tree-level A-terms and B,,, perhaps along the

lines of the models constructed in [75].

e Finally, the emergence of large A-terms from a composite sector in the MFV case may open a
new avenue towards constructing a realistic model where large A-terms are generated at the

TeV scale, hence further reducing the fine-tuning.
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Chapter 4

Effective Theory of Higgs Sector Vacuum

States

4.1 Introduction

In chapter [3| we analyzed part of the low energy phenomenology of supersymmetric models with soft
gauge mediated supersymmetry breaking, and we postponed the discussion of the phenomenology
of the Higgs sector of supersymmetric models to this chapter. All supersymmetric models, as well
as many extensions of the Standard Model contain extended Higgs sectors. The observation of a
Higgs-like boson at the LHC [1}, [2] opened a new era for discovery in this regard. The Higgs sector
must now be probed, and it must be determined if it corresponds to the one of the Standard Model
(SM), or if evidence of extended models such as supersymmetry can be found in data. In this
chapter, we study the phenomenology of such extended Higgs sectors in a very general framework,
which includes but is not limited to, the Higgs sector of the MSSM.

The Higgs sector of the SM has a very particular phenomenology. In the SM there is a single
vacuum state responsible for giving mass to all elementary fields, and its couplings are determined
entirely by these masses and gauge invariance. Both ATLAS and CMS have an extensive program
to search for scalar states that might be new vacuum states [89-93] and to test if Higgs couplings
are SM like [94H96].

From the theory perspective, the interpretation of any deviation in the SM Higgs sector predic-
tions requires an organization of the phenomenology of the possible extensions. This exercise cannot
be done in full generality, but existing experimental data can provide strong motivation in favor

of particular models. First, no significant deviations from the SM predictions for any of the Higgs
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couplings that have been measured at LHC have been found [94H96]. In the SM, the Higgs particle
couples to fermions and gauge bosons with the same strength than the Higgs condensate itself. This
property is called alignment, and it is not automatically fulfilled in extended Higgs sectors with
multiple vacuum states, but it is recovered in the limit in which all the beyond the SM field content
is decoupled [97]. A second strong limitation comes from the p parameter (p = m3, /(m?% cos? Ow)),
which is measured in EW precision experiments to be very close to one [41], as predicted in the SM
or in extensions with an arbitrary number of Higgs doublets and/or singlets [26]. Extensions with
more complicated SU(2) representations generally break this relation at tree leveﬂ

The above considerations provide a strong motivation to study the low energy phenomenology of
Higgs sectors extended only with heavy singlets and doublets. The main features of such extensions
can be studied by considering the most general extension with a real singlet [99, [100] or a second
doublet [101-104]. These models are referred as the Singlet Higgs Standard Model (SHSM, also
dubbed xSM) and the two Higgs doublet model (2HDM). Extensions with singlets arise in the
NMSSM [105] and in models of EW baryogenesis |[106]. Theories with two Higgs doublets arise
in different BSM scenarios and in particular, they are a fundamental part of all supersymmetric
models [22] including the models studied in the previous chapters. The theory and phenomenology
of both the SHSM [107H109] and the 2HDM [26/129, 110, [111] have been studied extensively in the
literature in the so called mixing language, which relies in finding the vacuum mass eigenstates and
its couplings using the full microscopic theories.

In this work we follow an alternative approach to study the SHSM and 2HDM: we derive their
tree level Wilsonian low energy effective theories (EFT)|[7] by integrating out the heavy SU(2) singlet
or doublet. Near the decoupling limit, EFT is the most powerful available tool to study the low
energy observables, since it automatically includes all the effects of UV physics and organizes them
hierarchically in an expansion in terms suppressed by the heavy mass scale. This allows us to find
patterns of deviations from the SM Higgs couplings for the different UV completions, and to clearly
organize flavor and T violating effects. In order to get a consistent expansion, it is important to
identify which operators must be kept in the EFT, and this is done by finding the correct concept
of effective operator dimension.

We start by studying the SHSM. We first review the phenomenology in the mixing language
and then we follow the alternative method using EFT. The correct concept of effective operator
dimension in the SHSM EFT corresponds to just naive operator dimension. We work up to effective

dimension six and we give only one example of an operator at effective dimension eight. We find

IFor an example of an exception see [98].
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that all the couplings of the Higgs are modified at effective dimension six with respect to their SM
counterparts. We also find that all the couplings of the Higgs to massive gauge bosons and fermions
are generically smaller in magnitude than in the SM, while self couplings may be larger. When
comparing with the results obtained using the mixing language, we find that all trilinear couplings
in the EFT and mixing languages coincide, but no coupling with more than three legs does. For
instance, the coupling of two Higgses to two gauge bosons obtained in the EFT language differs
from the one obtained in the mixing language. We provide a precise explanation on why this is the
case - trilinear couplings in both languages must coincide, since they control long distance pieces of
scattering amplitudes which cannot be modified by threshold corrections. This is a generic feature of
EFT, and it is also valid in the UV completion with an SU(2) doublet. We also perform a thorough
check of the EFT by comparing scattering amplitudes calculated in the mixing and EFT languages
and we correct previous results in the literature [112].

We then study the SM completed in the UV with an SU(2) doublet. Without loss of generality
in this chapter we work in the so called Higgs basis [113|, which is particularly useful near the
alignment limit. In this basis, only one of the doublets contains the Higgs vacuum expectation value
(vev), so in the exact alignment limit it must also contain the Higgs particle. The doublet with
no vev must be interpreted as the doublet that is decoupled. We begin by reviewing the mixing
language from a somewhat unconventional perspective, which relies on the use of the Higgs basis and
background symmetry invariant eigenvectors and eigenstates of the mass matrix. These eigenvectors
allow us to introduce a notion of complex alignment parameter, which is invariant under background
symmetries, is a straightforward generalization of the alignment parameter of the T conserving
2HDM, and simplifies the analysis of the general T violating 2HDM in the mixing language. We
then present the tree level low energy effective theory. We identify a concept of operator effective
dimension, which differs from naive operator dimension. We work up to effective dimension six
in operators involving fermions, and up to effective dimension eight in purely bosonic interactions.
We find that operators of effective dimension six modify Higgs self-couplings, couplings to fermions
and also lead to four fermion interactions, while Higgs interactions with massive gauge bosons are
only modified by operators of effective dimension eight. We also find that all the self-couplings
of the Higgs and the couplings to massive gauge bosons are generically smaller in magnitude than
the ones of the SM, while the couplings to fermions can be larger in magnitude. Regarding flavor
violation, Higgs Yukawas allow for AF = 1 chirality violating processes, while both AF = 1 and
AF = 2, chirality preserving and chirality violating processes are allowed in four fermion operators.

Regarding T violation, we find that at effective dimension six it only arises in Higgs interactions
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with fermions. The T violating phases that can be associated exclusively with couplings in the
2HDM potential [114], including the one in the complex alignment parameter, are not relevant up
to at least effective dimension eight. The consistency of the EFT is checked by comparing with
scattering amplitudes calculated in the mixing language. We finally perform a detailed analysis of
the 2HDM with Glashow-Weinberg conditions [30], namely the types I-IV 2HDM. We comment on
the different tan f dependence on different types, and we find that at effective dimension six, there
is a single universal T violating phase contained exclusively in the interactions of the Higgs boson
with fermions.

The chapter is organized as follows. In section [£:2] we present the Standard Model extended
with a real singlet. We first study the model using the mixing language, and then we derive the
EFT and reinterpret all the results from this perspective. In section we present the most general
extension of the Standard Model with an SU(2) doublet and derive the couplings of the Higgs in the
decoupling limit using the mixing language. In section [£.4] we present the corresponding effective
field theory. In section we study the effective theories of the 2HDM with Glashow-Weinberg
conditions in generality, allowing for CP violation. In section we study the constraints on CP
violation of such 2HDM with GW conditions from electric dipole moment experiments. We conclude
with comments on the phenomenology and a summary table of properties of the SHSM and 2HDM

effective field theories.

4.2 A Higgs and a heavy real scalar singlet

4.2.1 The model

We begin by describing a Higgs sector containing a Higgs doublet H and a real scalar gauge singlet
S. H is taken to have hypercharge Y = 1. We consider canonically normalized fields and the most

general potential. The Lagrangian density is given by
D,H'D'H —V(H) — { N QiHu; — M;QiHd; — N;L;Hl; + h.c. ] (4.2.1)
the covariant derivative acting on the doublet is
D,H = [8M - i(gQWauTa + ;ngu)] H (4.2.2)

In the potential, any linear term in S can be absorbed in a shift of .S, so the most general potential

at the renormalizable level is
A

/
CS3+A—SS4+m2HTH+—(HTH)2+§SHTH+%SQHTH (4.2.3)

I 2
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The potential is invariant under the Zs background symmetry specified in table All measur-
able quantities must be invariant under the background symmetry. Note that the Z; symmetry is

explicitly broken by & and (.

Zs

H +

IS _

m2, 12, N, g+
¢ -

Table 4.1: Charge assignments for the background Z, symmetry of the potential (4.2.3).

We consider perturbative marginal couplings. Stability of the potential requires Ag > 0, A >
0, > —v/A)Xg. By redefining the sign of the singlet we can make either & or ¢ positive. We also
consider a non tachyonic singlet mass 2 > 0. For H = 0 the potential is a quartic polynomial in
S, with a stable and a metastable minimum and an unstable maximum. Without loss of generality
we define the global minimum to be at S = 0. In order for the minimum away from the origin to be

the metastable minimum the potential parameters fulfill
2 _ 9 2
< Z)\g,u (4.2.4)

The gauge invariant combination characterizing the Higgs condensate with symmetry breaking pat-
tern SU(2)r x U(l)y — U(1)g, and the Zy invariant combination characterizing the singlet con-

densate are
02

2

]

— (H'H) %s = (52) (4.2.5)

The vacuum states s, h are defined as

S=vs+s Hy = %(v +h) (4.2.6)

where Hj is the neutral component of the doublet. Gauge invariance ensures v > 0. The Higgs vev
is v = 246 GeV. v has negative charge under the Z, background symmetry of table
The Higgs condensate gives mass to the gauge bosons corresponding to the broken gauge sym-

metries. The W and Z boson masses are

mw 2 mz cos Oy anvw go ( )
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Fermions are defined in the mass eigenbasis so )\{j (f = u,d,?) are diagonal matrices in flavor

space. The Yukawa matrices in terms of the fermion masses are

\@mf me
>\fJ — J — Logij (4.2.8)

(% v

We are interested in the case in which there is a separation of scales p? > |m2 |, which corresponds
to the limit in which the mass of the singlet is much heavier than the EW scale. In the EFT language,
 will be the cutoff of the low energy theory. We allow the remaining two mass scales in the theory,

& and (, to be as large as the cutoff

AGSY (4.2.9)

Finally, the decoupling limit is defined as

v? v? v?

S G e
)‘Ev)\lﬁa ASE) ;72

AR (4.2.10)

4.2.2 Mass eigenstates and couplings in the mixing language

In the mixing language, the couplings of the Higgs particle are found by identifying the mass eigen-
states of the scalar potential (4.2.3) in the Higgs-singlet condensate. The minimization conditions

of the potential specify the Higgs and singlet vevs in terms of Lagrangian parameters

8V )\ )\/

oH = V2m®v+ v + ol + V28w, =0 4211

OH |H=v/v2 Vam®u + \/iv + \/évvs-i-\[fvv ( )
%sﬂs - “”*+£”2+§” vs + (V] +% 5=0 (4.2.12)

We consider p > 0, so the minimum at the origin of field space can be destabilized only by the Higgs

mass at zero Higgs vev. From (4.2.12)), the extrema for the Higgs are at

2 1
v=0 and v’= -3 (m2 + §A’u§ + gvs) (4.2.13)

The term in parenthesis in the second expression is the Higgs mass at the origin. When positive,
the potential has a global minimum at v = 0,v;, = 0. When negative, the global minimum is away
from the origin and is a solution of the second expression in . The Higgs condensate induces
a tadpole for the singlet, destabilizing the global minimum at the origin of the singlet field space

and inducing a singlet condensate. The tadpole vanishes when ¢ — 0. The singlet vev is given by
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[@212)
207 =3hg (P + SN0?) + 247 +2¢A
Ve T T 3AsA
9 1 27
_ 3 <7 2, Lty 2 “ly2 e 2
A = ¢ 4C>\S(H +2)\v)+16x\sfv
1/3
N VO FSON GPURE SVIS BE(SVIRPA R (SR SN GPSB SVPA A
4 2 1679 2 2
(4.2.14)

which is the solution of the cubic equation (4.2.12)) that vanishes at & — 0. The remaining two
solutions are the unstable maximum and the metastable minimum which we do not study here. The
factor u? + %)\’ v? is the heavy singlet mass for a non-zero Higgs vev at the origin of the singlet field

space. Expanding in v?/ (p? + $M0v?) we get

R s U < v?
: 2u2 + N2 2(p2 4+ 3N02) \ p2 4+ 22
2 3
N 4252 B )\552 ’U2 N o 1)2
R R R AV B VRS

Note that v, vanishes in the limit & — 0, as expected. Since near the decoupling limit v < pu, we

(4.2.15)

further expand the above expression in (v/u),
2 / 2
v = “S(UY i (L8 A (v
2 \ i 2u2 2 1

C2€2 3C>\I€ )\/2 )‘562 v 4 ’UG
" <2u4 T a1 e ) (u) +O<u6)] (42.16)

The mass matrix for the vacuum states is specified by the second derivatives of the potential at

the stable minimum. They are

0*V 3 1
=7 = m2, =m? + 5)\1)2 + 5)\'@3 + vy
o*v
ohas = Mhs = Nvvs F &0
2
1
%TZ = m? =+ g)\svg + 5)\’1;2 + 2¢ws (4.2.17)

Mixing is introduced between the singlet field and the Higgs in the mass matrix (4.2.17)) due to the
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condensates. The mixing matrix is

cos sin h
( g ) _ ( T ) ( ) 1219
P2 —siny cosvy s

where 1 is the lightest mass eigenstate and will be identified with the physical Higgs. The mixing

angle is
—2m?
tan 2y = — b8 4.2.19
e gs - mlzzh ( )
or
2m?
in2y = e 4.2.20
sin 27y mZ —mZ ( )
where m? ,m? are the eigenvalues of the mass matrix. Using ([£.2.17) in ([{.2.19) we find
—2(Novg + &v)
tan 2y = 4.2.21
T a4 S0 — M?) + (2 — &y T IV — 0D) 221
From (4.2.13)), the soft mass is
1 1
m? = —— % — —\No? — €u, (4.2.22)
2 2
so (4.2.22)) in (4.2.21]) we express the mixing angle as
—2(N vy
tan 2y = (Vov, +v) (4.2.23)

12 — A2 4 2¢vg + 3Agv2 + LN02

A convenient expansion near the decoupling limit can be found for tan 2+ using the expansion for

the singlet condensate (4.2.16)) in (|4.2.23)

/ 3
tan 2/}/ = —% (U> —+ <_2)\§ + 2)\£ — 2C§2> (U> + 0O <UZ> (4224)
JOANY I % % Iz j

or, in terms of cos~y and sin~y
52 v 2 )\52 )\/52 Cé—S 1154 v 4 ’U6
o 2 \p) T\ T T T ) ) TOE

. £ (v A NE ¢ 38 (v’ v
= (0) (e as) () o) 4:225)

On the other hand, the two mass eigenvalues of the mass matrix (4.2.17)) are

1
md = 5 (mdy w2 2, = w32 + A, ) (4:2:26)

We identify the Higgs with the lightest mass eigenstate ¢1. Using (4.2.16) and (4.2.17)) in (4.2.26)

we get the Higgs mass near the decoupling limit
2 3)\/2 /\2 3 4 2
L)L (e @ gy
1% 2p 1% "
3 2¢4 20N 3 3 )\/ 3 3 5 )\2 2 2)\)\/ 2
(OB 200 BONE | 30ET A% 2ANg
216 1 [t 116 112 112
LIV 3)\/2 2 TN €4 Il 9£6 4 6
L3 BT TNET BAsET 280\ (v
pt 2p2 2ut 8ut  pb ) pt

m2 = U2

e (4.2.27)
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while the mass of the heavy eigenstate is
CE Y 52 ’U2
1 S 2 s ) 2
" < p? T p?) u?
2¢2 N 3 \ 2 3\ 2
@
2p 2 1% 1% 2

3/\552 54 v 0
T RE E+O o (4.2.28)

We are now ready to study the couplings of the mass eigenstates. The Lagrangian for the mass

eigenstates is obtained from (4.2.1) and (4.2.18)) and it is given by

1

2

1 1
56906&890(1 + §ZHZ/J (mQZ + gtpaZZ Pa +

90222 P2+ Jp10222 901902)

_ 1
+W+MW/J (m%/V + Jo.WW Pa + igapEWW <P§ + 9o WW @1‘;02)

—(m] fif; 0ij + M, ij fipaf; +hoc) = V(p1,02) (4.2.29)

where we sum over repeated indices and

n=3

1 1 4
V(p1,p2) = §mia(p3 — ngw?wgf" Pl
n=4 1
n, 4—n
- Z m%wgw P12 (4.2.30)
n=0

We give explicit expressions for all couplings in (4.2.29) and (4.2.30) below. As a consequence of

mixing with the singlet the couplings of the Higgs are modified with respect to their SM expressions.
We begin with the Higgs couplings to massive gauge bosons and fermions. Couplings of the Higgs

to gauge bosons V = Z, W and fermions f = u,d, ¢ are simply diluted by a factor of cos~y for each

Higgs field,
2m%,
Jp VvV = > COs 7y
2m?
9p2vv = U2V cos® y
m!
A= L cosy 0y (4.2.31)

The expressions for these couplings near the decoupling limit can be easily obtained using (4.2.25]).
We omit the explicit expressions for brevity. The couplings of 2 to fermions and gauge bosons are

inherited from the mixing between h and s

2mi, .
JpVV = — 0 Sm -y
2
_ 2my, . o
Jp3vv = ) sy
f

paij

m; .
Moo= —TZ siny 0y (4.2.32)
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The couplings of ¢1¢2 to massive gauge bosons are also inherited from mixing

2

2
Ty siny cosy (4.2.33)

Jpr12VV = —

Self couplings and Higgs-singlet couplings are given by using (4.2.18)) and the Higgs potential

(4.2.3)
9p3 = —3)v cos® 4 — 3€ cos® ysiny — 3\ v, cos? 7y siny
—3Nwcosysin® 4 — 2¢sin® v — 3\gv, sin®
9p2p, = —&cos® vy — Nwg cos® v 4 3\v cos? y siny — 2\ v cos® vy siny — 2¢ cos ysin? v
+2¢ cosysin® y 4 2N v cos 7y sin? 4 — 3Agv, cosysin? v + Nwsin® v
Jprp2 = —vX cos® v — 2¢ cos? ysiny + 2€ cos? ysiny + 2\ v, cos® v siny
—3Agv, cos? ysiny — 3\ cosysin® y 4+ 2X v cos ysin? v — Esin® 4 — N, sin®
9oz = —2¢ cos® v — 3\gu, cos® v + 3N v cos? ysiny
—3¢ cosysin® v — 3\ v, cosysin? v + 3\vsind v
gpr = —3Xcosy? — 6\ cos? ysin? vy — 3Ag siny?
9oy = 3A cos® ysiny — 3\ cos® ysiny + 3\ cosysin® v — 3\g cos ysin® v
9oz = —N cos vt — 3\ cos? ysin? v + 4) cos?® ysin? v — 3\g cos? ysin® vy — X siny?
Jprps = 3N cos® ysiny — 3\g cos® ysiny + 3 cosysin® 4 — 3\ cosysin®

gpr = —3Agcos 7% = 6) cos? ysin? y — 3\ siny?

The expressions for these couplings near the decoupling limit are obtained using (4.2.16)) and (4.2.25]).

Here for convenience we present the expansion for the Higgs self couplings

9e3 _?nn;,1 +(9)\£22—3/\/§2—9§i+2€§3>UZ+(’)<Uz)
v v 2p I 2p wt) p 1%
3m2, 3¢ N (_ 3¢e3 N 3\ 3Ne? N 354) v? <v4)

—+0
02 112 1 112 2 112

2 ,U4

gpt = — pe (4.2.34)

We will also make use of the coupling of two Higgses to a heavy mass eigenstate when calculating
scattering amplitudes. Near the decoupling limit we get

2062 BNE TN 0? vt
g¢§¢2 = €+<3>\f M2 + B) +ﬁ E+O E (4235)

4.2.2.1 Scattering amplitudes

As an application of the results of the previous section we obtain some selected Higgs scattering

amplitudes. This will prove to be useful as a consistency check of the EFT description, to be
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presented in section and to understand the difference between couplings in the mixing language
and the effective theory language. All the scattering amplitudes are modified with respect to their
SM values. The SM amplitudes can be read from this section by taking the limit & — 0. We omit
spinors in all amplitudes.

The dihiggs scattering amplitude to two W bosons is given by the tree level coupling plus the

contribution of diagrams with internal ¢1, @2 and W boson propagators,

920,90 WW 1 1
+rrr—\ PipaIPa 2
Alpror = WIWT) = g [QW?Wst—rng¢1WW(t—m%V+u—mﬁv)]

Pa
(4.2.36)
where we sum over a. Using the couplings (4.2.31)), (4.2.32)) and (4.2.34)) in (4.2.36) we get
2ms? €202 2m?, [3m? 2¢¢3
+ -\ _ w W Y
A(%%%WW)_Q’“’[UQ <_/~L4>+ v? {vzl—i_(_ pt
B 6AE2 n 3NE? N @ vj v? B 2m3, &2 ﬁ
112 112 wt ) 2|\ s—m2, 22 \ g2
_4m%v{1_§2v2}( v? n v? >
ot 1 f—m2 — 2
0] my, U —myy,
sv? s2w? ot
+O(4, % 4> (4237)
pt’ ot p

The first term is the contact interaction. The second term is the long distance s-channel contribution
mediated by the light mass eigenstate. The third term comes from an s-channel diagram mediated
by the heavy state. The last term is the long distance contribution mediated by the W boson. Note
that all the long distance contributions are controlled by the trilinear couplings g,s and gy, ww. In
general, all the long distance pieces of the amplitudes in this section are controlled exclusively by
trilinear couplings. We will make use of this observation in section

The dihiggs to difermion chirality violating scattering amplitude is

= 9e3pa Aiaij
A(pipr = fif;) = 5= (4.2.38)
§—mp,

where we sum over a. Using the couplings (4.2.31)), (4.2.32)) and (4.2.34)) in (4.2.38) we get
mi 8 | 3m}, N 2¢¢*  3vg? egt
02 02 Lt 112 Lt

627 2 v? £20? sv? 52?0t mlf2
Tz —m2 == o A0 60 A0 2 (4.2.39)
ue u §—Mmi, Iz pEeopopt v

A (<P1<P1 — fi?j) =

The last term in the above expression comes from the s-channel amplitude mediated by the heavy

state. The rest is the long distance contribution mediated by the light mass eigenstate. Note that

f

the long distance contribution is controlled by the trilinear couplings g3 and Ay, ;.
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The dihiggs to dihiggs scattering amplitude is

1 1 1
A N = — ¢ 4.2.40
(P11 = P1601) 9ot — 924, (smfo + = ma, + um%> ( )

where we sum over a. Using the couplings (4.2.34) in (4.2.40) we get

3m? Iml 12CAE3 12¢€5  2TA%¢2 18AN¢€?
A(pip1 = p191) = — U;I_[lf"'(_ 1 - TR

10 pb I Iz
N 544 B 18N/ ¢4 3 2756)112] ( v? v? v? )
pt p pé Jpr i\ s—mg, — t—mZ,  u—mg,
12¢€3  21ME2 18NE€2 214\ v?
+< gf + f - f - f ) z (4.2.41)
p I I ut )

2 t 2 2 4
L8 () o2 )
1 1 pt ot

where x = s,t,u. On shell we get

3m2 12¢63 2502 18N€2 25¢4\ [wv\®
_ _ 1 _ _ v
A(p101 = p1001) = 2 + ( e + 2 2 i ) (M)
Img, 120063 12¢€5  27A2¢2 18ANE2
I Y T~ e - w2 - 112
N 54N B 18N/ ¢4 B 27§6>v2] ( v? v? v? )
pt pt pe Jpr i\ s=mg, — t—mg,  u—mg,
2 4
+0 (ni Z4> (4.2.42)
p2

Note that the long distance contribution to the amplitude is controlled by the trilinear coupling G-

4.2.3 The low energy effective theory

The mixing language presented in the last section provides a complete description of the Higgs
particle in the SHSM. In this section we are interested in following an alternative approach in terms
of EFT by integrating out the singlet. This approach is valid near the decoupling limit defined in
(4.2.10). The cutoff of the EFT is the singlet mass p. No reference to mixing between the singlet
and the Higgs is needed in the EFT approach to describe the properties of the Higgs boson, all the
effects of mixing are automatically encoded in the low energy theory. In deriving the low energy
theory we work at tree level. All the corrections to the SM Lagrangian in this case are threshold
effects. This is enough to reproduce the tree level mixing effects presented in the last section.

EFT organizes the corrections to the SM properties hierarchically in terms of the small expansion
parameter v2/p?. In order to work consistently up to a particular order in the small expansion
parameter, we must define a concept of effective operator dimension which allows us to identify the

operators that must be kept in the low energy theory. In the SHSM, the correct concept of effective



70

dimension is just naive operator dimension. For instance, we will see that the effective Lagrangian

contains a threshold correction to the quartic
? 2
E(HTH) (4.2.43)
The coefficient of this operator contains a power of the heavy singlet mass in the denominator, but
it must not be considered to be suppressed, since &2 in the numerator is allowed to be as large as
12, so this operator is of effective dimension four. In section we will see that in the case of the
effective field theory of the 2HDM, we will need to define a concept of effective dimension which
does not coincide with naive operator dimension. In this chapter, we build the low energy theory
of the SHSM up to effective dimension six. Just for illustrative purposes, we also keep the leading
effects in Ag at effective dimension eight.
The tree level low energy effective theory of the SHSM can be obtained by computing the diagrams
of figures Diagrams give all the effective dimension six threshold corrections, and
diagram [4.4] gives the leading correction in Ag at effective dimension eight. The resulting effective

Lagrangian is

Zy D,H'D'H + %CH Ou(HTH)O"(H'H) — V(H)

—| A QiHu; — \;QiHd; — N L;Hl; + h.c. (4.2.44)
where
1 1 1

V(H)=m%4HH + EAH(HTH)Q + g776(HUH)3 + an(HTH)“ (4.2.45)

with
§2
ZH =1 CH = E m%{ = m2
2 Ve ¢ st Vaml,  am!
u2 2t us 218 J v ) J

The Higgs quartic in the low energy Ay = X\ —£2/u? can be negative, since £2/u? can be of order
one. In that case, the Higgs potential can still be stabilized by the (HTH)? operator, as needed in
some models of baryogenesis |106]. Note that the coupling Ag is irrelevant at effective dimension six:
it first enters as a coefficient of a dimension eight operator. As a consequence, its effects in the low
energy theory are always subleading in the expansion in the small parameter v?/u2. The effective
theory has the particularity that it does not contain operators with gauge boson or fermion
fields beyond the ones already present in the SM, since the particle that is being integrated out is
a singlet. All the modifications of the Higgs couplings to fermions and massive gauge bosons with

respect to their SM values come from the operator 0,,(HTH)9"(HTH), as we will see shortly.
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Figure 4.4: At dimension eight generates the
operator (HTH)*. This diagrams represents the
leading order correction in Ag, and is considered
only for illustrative purposes.

We now proceed to write the effective theory for the neutral component of the doublet in the

unitary gauge, which corresponds to the Higgs in the EFT description. The extremum condition for

the potential is

1% , 1 o, 1,1
CAZ A - “nsv®) =0 1.2.46
v In=o o (o + AV ey sy (4.2.46)
For a non-zero vev, the soft mass can be expressed in terms of the vev and couplings
1 1 1
my = —§AH02 — 17]6'04 — g’r]s’UG (4.2.47)
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The low energy Lagrangian density for the Higgs is

1 1 1
5 Zm Ouh 0" h+ Cr ( §v2 0uh 0" h + vh 0, h O"h + §h2 duh a%) —V(h)

1, 2h  Rh%\ ., 9 2h  h? e
+2mz<1+v+vz>Z’ZN+mW I+ —+5 WTEW

_ (1 + Z) mi; fif; +h.e. (4.2.48)

where

_ L oo 1 3 2,2 3 L4
V(h) = 2mHh +2)\H(2vh +vh +4h

1 1504 503 1502 3v 1
= h2 4+ =——n3 K+ SR 4+ ZhS 4.2.49
* 3"6( g gty (42.49)

1 708 V0 35u% Tv3 Tv? v 1
- 7h2 7h3 7h4 7h5 7h6 *h7 7h8
+4’78(4 L T R R LR T

The lowest order equation of motion for the Higgs field is

1
ZyOh = —m%h — 5AH(:sv?h + 3vh? + h?)

2 2 2 h mf —
i (”;ZZ#ZN 4 WZWW*“WH‘) (1 4 v) - ( [T+ h.c.) o (4.2.50)

where the dots represent terms of higher effective dimension. From now on we commit to Zg = 1.

The operator 0, (HTH)O*(H'H) leading to the non canonical kinetic terms in has two
effects in the couplings of the Higgs. First, it leads to wave function renormalization which dilutes
all couplings. Second it gives additional irrelevant operators with derivatives which further modify
the Higgs couplings, once they are replaced in favor of operators with no derivatives using integra-
tion by parts and the Higgs equation of motion. This second effect is usually not considered in
the literature [112], but it is important to obtain the correct couplings in the low energy theory.
We start by discussing these irrelevant operators. First, using integration by parts, the operator

0,(HTH)O*(H'H) can be rewritten as
%CH@L(HTH)G“(HTH) = §H<;v2 0,h 0" h + vh 0,k 0" h + %hQ Buha“h)
1 2 1 2 1 3
= Cu( 5v*0uh0"h — Svh* Oh — hOh (4.2.51)

The lowest order equation of motion (4.2.50)) can be used in (4.2.51]) to replace the operator Ok in
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favor of operators with no derivatives. The resulting Lagrangian is

1 1 1 1
3 Ouh 0"+ Cu ( §v2 uhO"h — <2vh2 + 6h3> [ —myh

2 2m? h
— g (3v2h + 30h% + 13 + (mZZ“Zu + mWW*“Wu) (1 + )
v v v
f

L fif; + h.c.)} ) —V(h)

v

m

+

2h | h? 2h | h?
m2Z<1+U+l)2>Z“Z#+m%V(1+U+1]2)W+“W;

|
N N/ N

h —
f
1+ v> my; fif ; +hee. (4.2.52)

We now discuss the wave function renormalization term ¢z v? Ou,h 0"h in (4.2.52)). To canonicalize
the kinetic Lagrangian, we perform a field redefinition

€22 1/2 vt 1/2
© = (1+ Cgv?)/2h = {1 + e } h = [1 +sin®y + O <u4) ] h (4.2.53)

where using we expressed the result in terms of sin? 4 to point out the close relation between
mixing and wave function renormalization. In the mixing language, all Higgs couplings are diluted
democratically due to mixing with the singlet. In the EFT language, this dilution is represented as
wave function renormalization of the Higgs field: the wave function renormalization constant is equal
to cos™! v up to corrections that in principle could come from higher order derivative interactions.
Note that in the SHSM EFT wave function renormalization is an effective dimension six effect. The

full Lagrangian in its final form is

n=8
L= %8;1905% - %miwz +> %gwtp” + %mQZZ“ZM +m W
n=t n ] "
+ Z o [ngz §Z”ZH + gonww Wﬂ‘Wﬂ_}
n=1 L
=l fif; = Y05 ALy, £+ b (4.2.54)
n=1

where all the Higgs couplings can be expressed in terms of couplings of the UV completion using

(4.2.52) and (4.2.53), and are written down explicitly below. We start with the Higgs mass, which

is given by
2 INEZ N2 3 4N .2
we (i) (e e e ey
’ G 2u? p?opt o opt) p?
3Asét vt vt 508
+ S O (4.2.55)

where we used (4.2.47) to replace the Lagrangian mass my in favor of the vacuum expectation value

v. The term linear in Ag in (4.2.55)) comes from our example of an effective dimension eight effect.
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We only keep this term for illustrative purposes for the Higgs mass, and we drop it from now on for
the rest of the calculations.

The couplings of the Higgs to gauge bosons are given by

Zm%, £2 9? v?

= 1 —_——— —_—

gevy v [ 222 O\
2m3, £2 v? vt

The modification of g,yv with respect to its SM value comes exclusively from wave function renor-
malization as defined in (4.2.53)). The modification of g2y with respect to its SM value comes

from wave function renormalization and from the additional interaction terms obtained from using

the Higgs equation of motion in going from (4.2.51) to (4.2.52)). For completeness, the rest of the

couplings to gauge bosons are

m?3, [8¢2v2 vt
VGp3vv = v29<p4VV = _U;/|: M4 + O([ﬁ)] (4257)

gpsvy and guayy are irrelevant couplings, and they vanish in the decoupling limit. They come from

using the Higgs equation of motion in (4.2.51)).

The couplings to fermions are
! 2,2 4
Foo & v v

fre2,2 4
¥ oonf o omy &v v -
’UAap2ij =0 )‘ga?’ij = _’U|: /1,4 + O(’u4>:| 5” (4258)

The modification of A,

»i; With respect to its SM value comes exclusively from wave function renor-

malization. A’ A, % s.. are irrelevant couplings which come from using the Higgs equation of motion
02ij? Tpdij

in (4.2.51)). They vanish in the decoupling limit.

The Higgs cubic and quartic self-couplings are modified by wave function renormalization and

extra contributions from the rest of the irrelevant operators of the effective potential

9p? _3mi+(9xg2_3xg2 9t 2g§3>v?+o<v4)

v 2 22 112 a 2t ut ) 2 e
3m2 1263 25062 18NE2 25¢%\ v? v
= ——Ff — - —+0(— 4.2.59
It v? +< e I p )u2 - (u‘*) ( )

The rest of the self-couplings are all irrelevant couplings, and they vanish in the decoupling limit.
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They are given by

30C€3  4BNE2 60AE2 606t v 105Ag&t vt 4 6
V9pr = ( Cf - f + 25 - E)qu—ffer@(zA%%)
1% 1 Iz Iz 1 2pt p 1% 1
o (30CE® 4BNE? 60AEE 60£T\ v?  315AgEt o? o v \2 v©
V9 =\ T e T e T A ) 2 od A T\ s e
1% 1 Iz Iz Iz I 1% Iz
3150584 vt vt v
3 _ S 2
v g<P7 = *T E+O E,)\SE
315058 vt vt v
4 _ S 2
v g¢8 = *T E+O E,)\SE (4260)

Note that in the SHSM EFT, all the modifications to Higgs couplings come at effective dimension
six. Also, all the couplings of the Higgs to fermions and gauge bosons are reduced at leading order
with respect to their SM counterparts, but Higgs self couplings may be larger. These features,
together with the absence of novel flavor and T violating effects, are the main phenomenological
features of the EFT of a Higgs sector completed in the UV with a real singlet.

We conclude this section by pointing out that all trilinear couplings involving at least one Higgs
are the same in the EFT and in the mixing language. Integrating out heavy fields does not modify
cubic interactions. The reason is that cubic interactions control the long distance (non analytic)
pieces of the tree level four linear scattering amplitudes, which do not receive contributions from
diagrams mediated by heavy fields. The equality of the cubic interactions in the EFT and mix-
ing languages ensures the equality between the long distance pieces of these amplitudes in both
languages. We give examples of calculations of these type of amplitudes in section [4.2.2.1] in the
mixing language and in section in the EFT language. This logic can be run backwards:
the equality between the non analytic scattering amplitudes enforces that the trilinear couplings in
both languages must match. The four linear couplings are not the same in the mixing and EFT
languages. Integrating out heavy fields in general modifies quartic (and higher order) interactions.
These couplings control short distance pieces of the tree level four linear amplitudes, which do get
contributions from diagrams mediated by the heavy mass eigenstate. In any case, even though cou-
plings in general do not coincide in the mixing and EFT languages, the scattering amplitudes must

coincide. Scattering amplitudes using the EFT language are obtained in the following section.

4.2.3.1 Scattering amplitudes

In this section we obtain the scattering amplitudes which were already computed in section
using the mixing language, now using the low energy EFT summarized in equation (4.2.54]). This
serves as a consistency check of the EFT, all amplitudes in the EFT and mixing language must

match. We omit spinors in all amplitudes.
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The dihiggs scattering amplitude to two W bosons is

17—\ 93 GoW W 2 1 1
A(‘PSD—>W w ) = Guv gwww_w_waW(tm%V—i_Um%/ (4.2.61)

Note that the same amplitude calculated in the mixing language (see (4.2.36])) also contains a

contribution from a diagram mediated by the heavy mass eigenstate. In the EFT language the

heavy state has already been integrated out, so its contribution is already included in the low energy

effective couplings. Using the couplings of the effective theory (4.2.56) and (4.2.59)) in (4.2.61), we

get

ud 02 02 1

S N 3N'¢? N 664\ v v?
12 e ph ) p2 |\ s—m2
4 4 2,2 2 2 4
_ mf{l—g”( o 2)+(9(”4> (4.2.62)
v W t—my, U —my, W

which coincides with the corresponding calculation in the mixing language (4.2.37)).

2 2,2 2 r3m2 3
A(‘P90—>W+W_) = Guv [2mw< _ % >+2mw[ m¢+(_2<§

The chirality violating dihiggs to difermion scattering amplitude is

;
— [ 3 i

Alpp = fil}) = —Noy + =25 (4.2.63)
©

The same amplitude calculated in the mixing language (4.2.38]) also contains a diagram mediated
by the heavy mass eigenstates, which in the EFT is already included in the low energy effective cou-

plings. Note that in the EFT language there is a four linear effective coupling )\Z; 24 that contributes

to the amplitude. Using the effective couplings of the EFT (4.2.58)) and (4.2.59) in (4.2.63) we get

fs.. 2 3 1¢2 4
A(Wﬂﬁfﬁj) = Wl<3m¢+[2@ —3)\5 —%

V2 02 1t 112 ud

6127 2 v? 202 vi ml?
— — 4.2.64
+ 112 ]Mz s—m2 + e +0 02 (4.2.64)

which coincides with the result obtained using the mixing language (4.2.39).

The dihiggs to dihiggs amplitude is

1 1 1
App = 0p) = gos — gos ( + + ) (4.2.65)
A\s—mZ  t-m2  u-—m2

This amplitude calculated in the mixing language (4.2.40|) also contains a diagram mediated by the

heavy mass eigenstates, which in the EFT are already included in the low energy effective couplings.
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Using the couplings of the effective theory (4.2.59)) in ([4.2.65) and expanding in v?/u? we get

3m2 1263 25062 18N €2 2564\ 02
— ¥
Alpe = e0) = = +(u4 e T T u4>u2
Im 12CAE3 12¢€5  27X2%€2 18AN¢?
B 4¢+<_ 445 n Cﬁﬁ B 26 n 26
v Iz jz 7 I
54N 18N R 2766 02 v? v? v?
T AT T A T )2 2 +t 5 T 2
i i o 7] §—mg, —mg  u—mg

+0 (Zi) (4.2.66)

Note that the equivalence between this result and the corresponding amplitude calculated in the
mixing language (4.2.42)) is only on-shell, since we used equations of motion to write our EFT in its

final form.

4.3 The two Higgs doublet model

The 2HDM is a theory with a Higgs sector composed by two identical complex scalar fields @,
a = 1,2, charged under SU(2)1 x U(1)y, with hypercharge one. The two Higgs doublets span a two
dimensional complex plane. A U(2) rotation in this complex plane does not affect the canonically
normalized kinetic terms and leads to a different choice of Higgs fields, which we call the choice of
basis. The ungauged SU(2) = U(2)/U(1)y subgroup of the U(2) is the full background symmetry

of the model [114} [115]. The Lagrangian density of the Higgs doublets in a generic basis is

D, ®! DF®, — V (), ®y) — { Ais Qi®ully — AL Qi®ed; — Aot LSl + hc. (4.3.1)

atj

where we sum over repeated indices and the covariant derivative acting on the doublets is

. 1
D@12 = {‘% - Z(QQWauTa + 2913,4)} Hi (4.3.2)

The most general potential at the renormalizable level is given by
1
V(®,,85) = m20|®; +mldld, — (mfzq){% + h.c.) + (@] @)
e (®102)% + Ay (®1 D) (@) + Ay(@2) (B} 0
o 5A2(@aP2)” + A3(D121)(2282) + Aa(P1 P2)(9221)
1

+ §A5(q>{<1>2)2 + 26(R1D1) (B]By) + A (BLD2) (D] D) + hic. (4.3.3)

The parameters m?, m3, A1, A2, A3, A4 are real, while m2,, A5, g, A7 are in general complex.
The gauge invariant combinations of the fields that characterize the Higgs condensate with

SU@2), xU(l)y = U(1)g are

2 2
S E I St 7 SR S (4.3.4)
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v _ g
2 - <¢)1(b2>

while the gauge invariant combination that measures charge breaking is
2
v

5 = (21®2)
v1 and vy are real, while v12 and v, are in general complex. The Higgs vacuum expectation value

takes the value v = 246 GeV. We also define the ratio of the vacuum expectation values tan 8 and

the relative phase of the condensate &

tan § = 5—2 £ = Arg(@{q)g) (4.3.5)
1

The U(1)pq invariant potential for the Higgs condensate in terms gauge invariant quantities is

1 1 1 1 1
Vv, v9,8) = imfvf + §m§u§ + g/\lvil + g)\gvg + Z(/\g + \g)vivs

: 1 , 1 . 1 .
+ Re( — vivam2,e’t + vavg)\5em£ + 51}%1}2)\66’5 + §U1U§>\7BZE> (4.3.6)

The condensate in terms of Lagrangian parameters is given by the minimization equations

ov 1 , 1 .
¢ = 0 = 51}2 sin 23 [Im(m%zezg) - sz sin 23 Tm(A5e%)
1 ) 1 )
- 51)2 cos® BIm(\ge™®) — 5112 sin? BIm(A7e®) | (4.3.7)
oV 1 1
— = 0 = mivcosf+ A v3cos® B4 = (A3 4+ \y)vPsin? Bcos B
81)1 2 2
— vsin BRe(m3,e™) + 5113 sin? f cos 3 Re(A5e%)
3 , 1 ,
+ 5113 sin B cos? BRe(Age'®) + 5113 sin® BRe(\7e) (4.3.8)
ov 1 1
— = 0 = mivsinf+ =X v3sin® B+ = (A3 + A\y)v3sin fcos?
81}2 2 2
— wvcos BRe(m3,e™) + 5113 sin (3 cos? B Re(A5e?®)
1 . 3 )
+ 51)3 cos® BRe(Nge') + 5113 sin? 3 cos B Re(A7e') (4.3.9)

The Higgs condensate gives mass to the gauge bosons corresponding to the broken gauge sym-

metries. The W and Z boson masses are

= %2 W tan Oy = 2 (4.3.10)

m =
2 27 Cos Ow g2

The magnitudes of the Higgs condensates vy, vy break the SU(2) background symmetry down to a
U(1)pq subset. The U(1)pq charges of fields and couplings are specified in table
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U(Lrq
®, +1
[0} —1
mi, m3, A1, A2, A3, A 0
m3y, X6, A7 +2
A5 +4
V1, U2 0
et -2
My ~1
My +1

Table 4.2: U(1l)pq charges. vi,v2 and & specify the Higgs condensate as defined in (4.3.4) and (4.3.5).
The U(1)pq is the part of the background symmetry that is left unbroken by v1 and va. The label f in the
Yukawa couplings corresponds to u,d or £. Fermions and gauge bosons are U(1)pq invariant fields.

In a general 2HDM with the EWSB pattern , the only feature that allows us to distinguish
between the two doublets is the direction of the vev in the space of the neutral components of the
doublets. This motivates the introduction of the Higgs basis, in which the vev is contained exclusively
in one of the doublets. The Higgs basis is obtained by a rotation in the doublet space into a new

set of doublets H,, a = 1,2

e*iE/ZHl = cosf3 P +sinpf e % By

H, —sinf e & + cos 3 Py (4.3.11)

such that in the new basis, only one of the doublets is responsible for EWSB

,02

5 = (HIH)) 0= (HIH,) (4.3.12)
Note that the Higgs basis is not unique. A U(1)pq transformation leaves the magnitudes of the Higgs
condensates invariant. As a consequence, the condition (4.3.12)) is U(1)pq invariant, and different

Higgs basis can be obtained by performing a U(1)pq transformation on the doublets H,.

We now describe the 2HDM in the Higgs basis. The Lagrangian density in the Higgs basis is

D HIDMH, — V(Hy, Hy) — | by QiHoty — Nl Qi HSdy — At LiH Sl + hec. (4.3.13)

atj

Since only H; carries a vev, the quark mass matrices are given by

!
< V2my;

lig —

. (4.3.14)



where the mass matrices for the quarks and leptons are defined in the Lagrangian as

_ m{]uﬂj — mjjdiaj — mf;f,sz + h.c.
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(4.3.15)

In the above definition and for the rest of this chapter, note that there is a dagger in the definition

of the down type mass matrices with respect to the up type mass matrix.

The potential in (4.3.13)) is given by

V(H,, Hs) w2 HI Hy + m2H} Hy + (ﬁﬁQHlULI2 + h.c.)

1< 1- ~ ~
+ G MHHL)? + Gha(HLH)? + Na(HLHo)(HIH) + Ma(HY H, ) (H{ Hy)

1- . .
+ §>\5(H1TH2)2 + N¢H| HyHI Hy + A7 (H} Hy)(H{ Hy) + h.c.

(4.3.16)

The parameters m3,m3, A1, A2, A3, Ay are real, while m3,, A5, A\g, A7 are in general complex. The

relations between the couplings in the Higgs basis and the generic basis are [115]

S\{ij = e_’f/Q/\{ij cos B+ eiE/Z/\gij sin 8
5\5”- = —e_if)\{ij sin 3 + )\gij cos 3
m: = m%c% + mgs% — Re(m3,e™)sas
G = sk + Re(he)sas
kel = L = m)an — Re(meS)ess — ilm(me)
A= Aich+ dash + %A345s§ﬁ + 2595 (c3Re(Age™) + s3Re(A7e™))
Ao = Aish+ Aach + %A345s§5 — 2525 (s2Re(Ase™) + Re(Are'®))
As = isgﬂ(h + Ao — 2X345) + A3 — sapcasRe((Ag — A7)e™)
N = isgﬁ(h + X2 — 2X345) + A1 — sagcapRe((Ag — A7)e™®)
Aset = isgﬁ(h + Xa — 2X345) + Re(A5€2%) + icogIm(\5e)
— sapezpRe (Ae — A7)e™®)) —iszplm ((As — A7)e™®))
Age's/? = —%szg ()\10?3 — )\28% — A345C28 — iIm()\562’f))

+  cpeapRe(Nge™) + spszsRe(Are™®) + ic%lm()\ﬁe’f) + iS%Im()\76i£)
Aret/? = —%525 ()\15% — )‘2026 + A3a5Cop + iIm()\562’f))
+  sgsagRe(Mse™®) + cpeapRe(Are™®) + iS%Im(/\GeiE) + ic%lm()qelf)
where c,3 = cosnf and s, 3 = sinnf and we defined

A345 = A3 + Ag + Re(N5e%%)

(4.3.17)

(4.3.18)

(4.3.19)

(4.3.20)
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In a general 2HDM, tan (8 is only required to map between couplings in the original generic basis and
the Higgs basis, but it is irrelevant for any calculation, since the generic basis is arbitrary. In other
words, tan 3 is a parameter that contains no physical information in a general 2HDM, since there is
no feature in the model that allows us to distinguish the direction of the doublets ®1, ®, as special
directions in field space. For this reason, we will make no further reference to tan 8 until section
[45 where we study particular cases of 2HDM with features that allow us to specify a preferred
basis which is different from the Higgs basis. The fields and couplings in the Higgs basis are charged
under a U(1)pq background symmetry as specified in table Note that all the relations (4.3.17),

(4.3.18) and (4.3.19) are covariant under the U(1)pq.

The decoupling limit in the Higgs basis can be very simple defined as the limit in which

ma > || v? (4.3.21)

where ¢ = 1..7. This definition is motivated by the fact that in the decoupling limit, the Higgs aligns
with the vacuum expectation value which is contained entirely in Hy, so Ho must be the decoupled
doublet. Near the decoupling limit alignment is not exact, and there are corrections that can be
understood in two ways. In the mixing language, corrections arise due to mixing between the neutral
components of H; and Hs, which is suppressed by powers of the electrosheep scale over the heavy
mass of Hs, as we will see in section In the effective field theory language, corrections arise in
the form of higher dimensional operators that modify the SM Lagrangian, which are induced when

H, is integrated out, as we will see in section |4.4

U(Lrq
H, 0
H, -1
2,13, A, A2, Az, Ad 0
M2y, A6, A7 +1
s +2
v 0
M 0
My +1

Table 4.3: U(1)pq charges in the Higgs basis. The label f in the Yukawa couplings corresponds to u,d or
£. Fermions and gauge bosons are U(1)pq invariant fields.

The EWSB conditions in the Higgs basis are simplified by the fact that only one of the doublets
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contains a vev. They are given by

(‘37‘/‘ = Lﬁz%—i—ij\ vW3=0
OH, lmi=o/vam=0 3 1 2
oV 1 5 1 1 3
= —miv J'_ 7)\ VT = O 4.3.22
O0H, ‘lev/ﬁ,HQZO N 0 ( )

These conditions can be rewritten as

v? = 2L (4.3.23)

1~
M3y = —=Ag0? (4.3.24)

where involves only real parameters and is a complex equation. The expressions
and relate m; and mq2 with the electroweak scale. The relation can be
interpreted as a no tadpole condition for the Hy doublet.

The Higgs potential contains fourteen parameters. However, not all of these parameters
are physical or independent of each other. Only thirteen of the parameters are invariants under the
background U(1)pq, namely the six real couplings, the four magnitudes of the complex couplings
and Arg(mi,\2), Arg(m2,\5), Arg(m3,A5). On the other hand, the EWSB relations and
(4.3.24) impose three conditions on the couplings, so the final number of physical and independent
invariants in the potential is eleven. One of the invariants can be chosen to be the Higgs vev.
Some of the parameters specifying the Higgs potential and Yukawa interactions in a general 2HDM
are complex, and allow for T violation. There are two independent physical T violating phases in
the bosonic sector in the case in which A5 # 0 [114]. We take them to be the U(1)pq invariant

combinations
1 1271 x* 1 ~ 4 \x
0, = iArg(/\G/\S) = iArg(m12A5)
0, = %Arg(;\?;\g) (4.3.25)

where in the first line we made use of (4.3.24)). In the case in which 5\5 = 0, there is only one inde-
pendent T violating phase given by 03 = Arg (5\7:\2) When considering also fermionic interactions,
there are several additional T violating phases. The U(1)pq invariant phases are

)2 A N (4.3.26)
All the U(1)pq invariant phases in the most general 2HDM can be expressed in terms of the complete

set of independent phases

01 (or 03 if A5 vanishes) 65 Arg(j\gj\f ) . f=ud (4.3.27)

24
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In this work we allow for T violation both in the bosonic sector and the fermionic interactions, and
we will specify when we specialize to the T conserving case. In this chapter we assume that there is
a low energy solution for the strong CP problem and we do not worry about possible contributions
from complex phases to 0gcp.

We now turn to the components of the Higgs doublets. The neutral and charged components of

the Higgs basis doublets are

1y = (v +i6°)

" — \% eiArg(Xé)/2<h2+ih3>

Hi = G*

HE = (AmOD2 (4.3.28)

where gauge invariance ensures v > 0. As advertised, the second doublet Hs in the Higgs basis does
not participate in EWSB. The phase ¢i418(35)/2 ig added in the definition of the components of Hy
because it makes the mass matrix automatically block diagonal in the T conserving case, as we will
see in section [£:3.1] In this case the fields hy and ho do not mix with hg, which will automatically be
a T odd eigenstate. Note that the fields h1, he and hg are invariant under the U(1)pq background

symmetry. G°, GT are Goldstone bosons. From now on we work in the unitary gauge.

4.3.1 Mass eigenstates

In the unitary gauge, the two doublets contain four Higgs particles, three of which are neutral and
one is charged. The charged Higgs boson is a mass eigenstate with mass

1

may = mi+ §X3v2 (4.3.29)
The three neutral states mix in the mass matrix
Lo

where we sum over ¢,j = 1,2,3. This mass matrix is U(1)pq invariant, real and symmetric. It is

specified by five real numbers and it is given by

2\ v? ‘5\6‘ cos 01 —v? ‘5\6’ sin 01
2 _ ~ ~ - -
ME= 2 ‘Aﬁl cosfy g+ Lv? (Ag F A+ ‘/\5’ ) 0 (4.3.31)
—UQ‘S\G‘Sin& 0 ma+%’02(5\3+5\4—‘5\5’>
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where 6, is one of the bosonic CP violating phases defined in . In this chapter we identify the
Higgs particle with the lightest of the three neutral mass eigenstates, which are labeled in increasing
order by their mass as (¢1, @2, @3). We are interested in analyzing the decoupling limit , in
which mixing in the mass matrix is suppressed.

The time reversal transformation properties of the mass eigenstates can be derived by inspecting

their couplings to gauge bosons and fermions. In general we expect the mass eigenstates to be

fields with indefinite T properties, due to the T violating phases (4.3.25) and (4.3.26)) of the 2HDM.

Note that the T violating effect of 6, is encoded in mixing of hy; with hsz. On the other hand,
the T violating phase 5 does not appear in the mass matrix. Note that the phase eiA™8(%3)/2 in
the definition guarantees that the mass matrix is automatically block diagonal in the T
conserving case.

The mass matrix has two zeroes, which have their origin in the underlying U(1)pq background
symmetry. To understand the zeroes, consider the limit in which we suppress the mixing between
hy and hy by taking Ag and 73, equal to zero. In this case, the only U(1)pq breaking term that
enters in the mass matrix is A5, which breaks the mass degeneracy of the two heavy eigenstates.
The phase ¢iA18(35)/2 included in our choice of component fields hs, h3 in , makes sure that
ho and h3 do not mix in the mass matrix, giving rise to the aforementioned zeroes. In this case, ho

As

and hgz are the heavy neutral mass eigenstates, with mass splitting controlled by

4.3.1.1 The T conserving case

Before analyzing the neutral mass matrix in generality, let us start by studying the mass eigenstates
in the simpler, T conserving case. This is defined as the case in which all the T violating phases
and vanish [114]. In the case that A5 = 0, one must also check that Arg(Az\§)
vanishes. In this section we can take all couplings to be real. In the T conserving case the mass
matrix simplifies to a block diagonal form, mixing only the fields h; and hs, which are now T even.

The field h3 is T odd and corresponds to the mass eigenstate o
1 ./~ - -
m2, = My = g + 0? ()\3 A — ‘)\5‘ ) (4.3.32)

The masses of the remaining neutral eigenstates are

1
Mg o0 = 3 (M% + M3y £ \/(M§2 - M3+ 4M%2> (4.3.33)

In terms of couplings in the potential, the Higgs mass near the decoupling limit is given by

2 2|3 o V7 Lio 193 5 3 s g0t v’
m = v\ — /\6 ﬁ — 5/\6 [2/\1 — A3 — Mg — /\5] + O(ﬁ?ﬁ) (4334)

¥1 ~4
2 my 2
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For completeness, the mass of the remaining neutral eigenstate is

1}2 ~ ’U4 UG
— 4+ A — 40— 4.3.35
Vg Mg <m>] (1:3:39)

2 _ 52 3
meg, = ms; As

1/ -
1+§<)\3+)\4+

Note that the splitting between the two heavy neutral eigenstates is

.2
My My, =V

_ . 02 4

Y ‘ 2 ol 4.3.36
ol +38 25 +0(55) (1:3:30)
The mixing angle between the h; and hs is generally named in the literature § — «, where « is

the rotation angle that diagonalizes the T even part of the mass matrix in the generic basis [26].

The relation between the mass eigenstates and h; and hg is given by

2 sin(f—a) cos(f — «) hq (4.337)
©3 —cos(f—a) sin(f—a) hao
cos(f — a) is called the alignment parameter |28], and the alignment limit is defined as the limit
in which cos(8 — a) = 0. In this limit, the Higgs lies along the direction of h;, which by definition
of the Higgs basis is the direction of the vev in field space. The alignment parameter controls the
couplings of the Higgs to gauge bosons and fermions [26]. In the alignment limit the couplings of

the Higgs are Standard Model like. The alignment parameter is given by
—2M3,

cos(f —a) = - (4.3.38)
2 2
A7+ [0, - 0t (M3, — a) a0
which at first order in v?/m3 is
< v? v?
cos(f — a) = — M 2 +0 <mg> (4.3.39)

4.3.1.2 The general T violating case

We now proceed to study the neutral mass eigenstates in the general T violating case, in which
all three fields h1, ho and hs mix in the mass matrix. Phases must now be included in the mixing

discussion [116]. The characteristic equation of the mass matrix is
—det(M? —zl)=a2*+azx’ +bx+c=0 (4.3.40)
with
a = —2m3 — v (A + A3+ M)

- - 1 - - 1o - - .
b = ’ﬁ’L% + Uzmg(Q)q + A3 + )\4) + vt l:)\l()\g, + /\4) + Z()\g, + /\4)2 — 1/\5/\; — /\6/\g:|

o
I

i + vt [mg G+ m}

1 - . - I -~ . - .-
- 11)6 [Al(Ag +21)% = MAsAE — 20605 \3 + M) + (A5 M52 + h.c.)} (4.3.41)
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The three solutions to the characteristic equation are the masses of the neutral Higgs particles,

and they are given by

1 A
2 _ 2
mg, = —w[aC—i—waC +wa]
A =a®>-3b
B = 2a® — 9ab + 27¢
B 1 1/3
= | =+ =/ B?% - 443
¢ = |5+ yvEan]
1
w =1, w2z_§+i§ , W3 =w) (4.3.42)

We identify the smallest root of the characteristic polynomial with the Higgs mass.
Near the decoupling limit, the mass eigenstates (4.3.42)) have simple expressions in terms of

expansions in v?/m3. In this case, the Higgs mass is given by

2 _ .23 PEBY v? 1 3 3 Y OV *Y 1 Y* Y2 vt v°
m2, = v Al—AGAﬁm—%—5[(%1—Ag—A4)A6A6—5(/\5A6+h.c)}m—%+o =

while the masses of the heavy eigenstates are

2 ~ 2
m =m + -
P2,$3 2 m% 2 1

1,+ = TN =R e vt v
L5 (o + Aa 2 [As]) =5 + S XAa[1 2 cos 261] =1 + (’)(Thﬁ)] (4.3.44)

Note that the mass splitting between the heavy states is

2 4
< e r v v
miS — miz = ’[}2 ‘AS‘ + )\6)\6 COS 291 ﬁ”),ig + O(Th%>‘| (4345)
The eigenvectors V' corresponding to the three mass eigenvalues mia characterize the mixing

and satisfy
2 y7a 2 a
MG VE=mg, V; (4.3.46)

where only a sum over j is intended. The eigenvectors can be chosen to be real, and they are given

by (7

Vit = eiji(M%; —m2 8a;) (M), —m2 0pk) (4.347)
where we sum over j, k. A and B can take the values 1,2 or 3 subject to A # B. Different choices
lead to different sign conventions for the eigenvectors. We commit to the choice A = 2, B = 3 for
the rest of this chapter. The eigenvectors are invariant under the U(1)pq background symmetry, so

they are physical, measurable quantities. The normalized eigenvectors are defined as

{/a Vi
Ve = (4.3.48)
Vel
2This expression is not valid when the eigenvalues are not degenerate. In practice, we will use it only for the Higgs
eigenstate, which in the decoupling limit is not degenerate. For the degenerate case, see [117].
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The normalized eigenvectors can be used to diagonalize the mass matrix
% 2 {7b 2
‘/;(LM”V] = (SamePa (4349)

Each normalized eigenvector has only two independent real components due to the normalization
condition

(V) + (V) + (V)" =1 (4.3.50)

Furthermore, the three eigenvectors are orthogonal to each other for non degenerate mass eigenvalues,
so all together they can be specified by three real numbers. Now, using (4.3.47)), the normalized

eigenvectors are

‘71,1 _ (M%Q - mia)(Mgs ?o )
VM3 —m2 )2 (M, + (M3, — m2,)2) + Mg(M3, — m2, )2
‘7; _ MlQ(M m )
\/(/\/@3 —m3,)? (My + (M3, — m,) 2) + Mz (M3, mg,)?
Ue = — Mis (M, — 5, (4.3.51)
VMB; = m2 )2 (Mg + (M3, —m2,)2) + My (M3, — m2, )2

\711 can always be chosen to be positive by a sign redefinition of the eigenvector. The definition
chosen in (4.3.51) leads to ‘711 > 0 near the decoupling limit, since in that case M2, and M3, are of
order m3 > m . Without loss of generality we can write the normalized eigenvector corresponding

to the Higgs in terms of a complez alignment parameter =

Vi=\1-E® Vi=ReE Vi=Im= , =eC (4.3.52)

= specifies the projections of the Higgs particle ¢ along hy, ho and hs. Note that 4/1 — |E\2 gives the
component of the Higgs in the direction of k1, which by definition in the Higgs basis is the direction
of the vev in field space. = is the complex generalization of the alignment parameter cos(8 — «) for
the general T violating 2HDM. In the T conserving case, In= = 0 and = reduces to cos(5 — a). We
will see in the next section that = controls the deviations of the Higgs couplings to fermions and
gauge bosons from their SM counterparts. In the alignment limit, = = 0, and the couplings of the
Higgs are SM like. The complex alignment parameter is invariant under the U(1)pq background
symmetry and both its magnitude and its phase are physical, measurable quantities.

Near the decoupling limit it is useful to find the complex alignment parameter as an expansion
in v?/m3 in terms of parameters of the Higgs potential. The real and imaginary components of the

complex alignment parameter can be obtained using (4.3.51f). The calculation is straightforward,
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using the elements of the mass matrix (4.3.31) and the expression for the Higgs mass (4.3.43)) we get

E:—‘S\G‘e‘“’lﬁ 1—1(25\1—5\3—;\4_‘5\5‘)£+0 v (4.3.53)
w22 m3 3 -

where 6; = 1/2 Arg(j\gj\g) is one of the CP violating phases defined in (4.3.25)). In calculating the

couplings of the light Higgs, an important combination will be

. 2 4
Seired)/2 N Do L (4.3.54)
3 oy

Also, note from (4.3.44)) that at first order, 7y corresponds to the mass of the heavy mass eigenstates,

SO we can write

o o 02 vt
EezArg(AS)/Q _ 7)\2 —— + O(ﬁfl) (4355)
2

¥2,3

In the next section we will also make use of the projection of the heavy neutral mass eigenstates in

the direction of the vev, which are given by ‘712 and ‘713. Using the mass matrix elements (|4.3.31]

and the expression for the mass of the heavy eigenstates (4.3.44) in (4.3.51), to first order in v?/m3

H O(m)]
14 o(m)] (4.3.56)

Note that in the T conserving limit, Im = = 0 and ¢s = hg is a pseudoscalar mass eigenstate that

we get

. v?
S 91 —~3
m3

VZ = —ImE

v? <
1+ReEO( ~2) =
my
v ~ v2
1+Im50(~2)‘| :‘A(S‘COS 91~72
my my

—ReZ

3
Vi

does not mix with the CP even fields hy or hso, so ‘712 vanishes and ‘713 reduces to the usual alignment

parameter — cos(ff — «).

4.3.2 Couplings of the Higgs boson

We now study the couplings of the Higgs particle ¢1 in the 2HDM. In this section, the complex align-
ment parameter is used extensively. Working near the decoupling limit is not a necessary
condition to make use of the complex alignment parameter.

In this section, when working near the decoupling limit, we express the deviations from the SM
couplings of the light Higgs as an expansion in v?/m3. We work up to first order in v?/m3 for the
fermionic interactions, and second order in the bosonic interactions. We will see that this captures

all the leading order deviations from the SM predictions near the decoupling limit.
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We start by defining the Lagrangian density for the light Higgs

1

1 1
5&%713@1 + §Z“Zu <m2z t9¢.22 Pat 594222 W%)

3 1
+W+“W# (m%v + Go, WW Pa + §QW§WW @%)

+ [gsalHiW(WJr”auH_% — WHH0,01) + h.c.}

H(9pr0222"0pp2 o1 — Z"020,01) + G103 2 (2" Opip3 o1 — ZHp30,01)

_(mzfjfi?j + )\faaz‘j fi‘Pa?j +h.c.) — V(SDL ©2, 903) (4.3.57)
where we sum over repeated indices and we included the Yukawa and gauge couplings involving one

heavy Higgs, for later use. We leave out interactions with more than one heavy Higgs, which will

not be used in this chapter. The potential for the light Higgs is

1 1 1 1
V(@h P2, 803) = 5”@180% - ?gtp‘;’go? - ng%spéll - 59@%@2@?@2
1 1 1
- 59%%9@%9‘73 - agwﬁtpz@i’@? - 59@%9"?@3 (4358)

where again we included the couplings involving at most one heavy Higgs.

Due to mixing of the doublets, the couplings of the Higgs are modified with respect to their SM
values. An exception is the coupling between two Higgses and two gauge bosons since it is determined
by gauge invariance and both H; and Hy have the same quantum numbers. This coupling is given

by
2 2
Ty (4.3.59)

Jetvv = T2~
The coupling of one Higgs to two gauge bosons comes exclusively from the projection of the Higgs
into the direction of the vev in field space ‘711 =4/1— |E|2, so it is diluted with respect to its SM

value by the complex alignment parameter as

2 2
v 1) (4.3.60)

g<p1VV -

Note that when the Higgs potential is T conserving, this leads to the familiar relation g, ,vv =

2m3, /v sin(B — ) [26]. Near the decoupling limit, using the complex alignment parameter to lowest
order in v?/m3 given in (4.3.53)), we get

2
2ms,

1o e Y +(9(”6) (4.3.61)
g 1 VV = S 6 = = 0.
v 2767 i m$

Yukawa couplings to up and down type fermions can be found by using the Higgs doublet Yukawa

couplings defined in (4.3.13)) and the projections of the Higgs into the neutral components of the
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doublets (4.3.52)). They are given by

A _5,,7&]0,/1 — |:|2+i§\f = piAre(A3)/2 (4.3.62)
prij T M, = \/? 24§ — 0.

This coupling violates the flavor and T symmetries due to the correction proportional to Xgij =,

which is inherited from the mixing with the heavy doublet. Near the decoupling limit, using (4.3.53))

we get
f 2 4
f _ s m; 1 iF 1« VY v
Aprij = 0ij v ﬁ)\zij‘)\ﬁ 72 + (9(%) (4.3.63)
Note that if the Yukawa of the heavy doublet vanishes 5\; ; = 0, the Higgs Yukawas are not modified

with respect to their SM values at first order in v?/m3. In this case, the modifications come
exclusively from dilution due to the complex alignment parameter in , which is a second
order effect. Note that in this case, the modifications to the SM predictions for the Higgs Yukawas
and to the coupling of a Higgs to two gauge bosons are identical: both couplings are diluted by
y/1-— |E|2 This limit resembles the results of the SHSM studied in section

The Higgs self-couplings are obtained from the 2HDM potential and the projections of

the Higgs into the neutral components of the doublets (4.3.52)). They are given by

oo = sk (1-P) 80+ AP (1)

- 3‘5\5‘Re52 (1 - |E|2)1/2 - 2[ ‘XG

e 2(1 - |2)?) —&-h.cl

- g[ ‘X7 e 2|2 + h.c.] (4.3.64)
~ 2 ~ ~ ~
9ot = —3h (1= 2F) = 8% 2" - 60k + M) B (1 - )
- o 3/2
—6 M ReZ? (1-|2%) - 6[ ‘/\6 e (1-12P)" + h.cl
- 1/2
- 6[ ‘M ei?2 = |2)? (1 - |5|2) + h.cl (4.3.65)

Using (4.3.53)) in the exact expression for the cubic Higgs self-coupling (4.3.65), we get

1 3m2 <or V2
It T T2 : "‘6)‘6)‘6777%
1 3 3 Y I* 3\ Y Y *2 U4 U6
+ S [20A1 = 12(A3 + M) | A§Ae — (6AsAE” + he.) | — + O —5 (4.3.66)
2 my my
3m2 ~ ~ ’1}2
— » *
9ot = T2 - +9)‘6)\6ﬁ

2

1 ~ ~ Ry T oty v v
+ [ (601 — 42(A3 + M) | AgAe — (21As A% + h.c.)} — + (9( g> (4.3.67)
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Note that all the deviations from the SM values of the Higgs couplings are parametrized by the
complex alignment parameter, such that if = = 0 all the coupling of the Higgs are SM like.

Let us now consider couplings involving also one heavy Higgs state. They will be used in the
next section to calculate scattering amplitudes of the Higgs to gauge bosons, fermions and Higgses.
The couplings of one neutral heavy Higgs to two gauge bosons are obtained from the projection of

these states into the field direction of the vev

1 2m2, ~ 2m 4

—JpoVV = QV Vl2 = V sm01 — + O 4>

v v :

1 Qm‘z/. ~ v2 vt

;gtpsVV = 2 1 = ’ Ccos 91 =5 + @ (m% (4.3.68)

where we used (4.3.56) . The g,, g=w coupling is obtained from the projection of the Higgs into
the neutral components of the heavy doublet Hs, since the charged Higgs resides entirely in Hs, so
its couplings to gauge bosons come exclusively from the kinetic term D,LH;r D" H,. In terms of the

complex alignment parameter this coupling can be expressed in a remarkably simple way

imw _
JorHEW = =7 = (4.3.69)
Using ([4.3.53)), to lowest order in v?/m3 we get
: 2 4
_tmwos | —iey Y v
o HEW = 0 ‘)\6’6 ! ’/7747% +O<77~”L3) (4.3.70)

The couplings involving a light Higgs, a heavy Higgs and the Z boson come exclusively from the

kinetic term of the second doublet DMH;r D#*H,. They are given by
2 02 4
1 —&—ImE(’)(?Q) __mz ‘Aﬁ‘cowl - +(’)( 2 )
my

1y
2
1 +ReEO<qf2>] =—— ‘As
my

The couplings of the heavy neutral states to fermions are to lowest order in v?/m3 given by the

Z 5 =
Go19272 = v ReZ

mz —
Jo19s2 = — » Im=

v2 4
sin 07 — 73 + (’)(m4> (4.3.71)

2

Yukawas of the heavy doublet,

1 o s v2
Ao = N etAre(3)/2 L 0 4.3.72
paij \/5 ¢ 2lj6 + ?’h% ( )
N A, eArs(o)/2 @<“22> (4.3.73)
psif | J5 2] m3

where the factor e?A™8(%)/2 comes from the definition of the component fields (4.3.28). Note that
these couplings are not controlled by the complex alignment parameter =, and do not vanish in the

alignment limit.
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The dihiggs couplings to one heavy Higgs are obtained from the Higgs potential, and they are

L2, 35| smnon + o &

vJeie: T 3‘ 6|smoby + 2

15 < v?

ZgL,O%L,O3 -3 ‘)‘6‘ COS 01 + O 7’7‘[,73 (4374)

Note that these couplings are not controlled by the complex alignment parameter. In particular, Z

could be small due to a large separation of scales v?/m3 < 1, while gizw,g?p 2,,, could be of order
1 1

X

v, if is not small.

4.3.3 Scattering amplitudes

We now work out some examples of tree level dihiggs scattering amplitudes. They will be used as
a consistency check for the 2HDM low energy EFT that will be presented in section [4.4.3| and to
compare couplings in the EFT and mixing languages. The Standard Model results for the amplitudes
can be read from this section by taking the limit ¢ — 0. We omit spinors in all amplitudes.

The tree level dihiggs to di-W boson scattering amplitude is

920,90, W2 1 1
+ — _ PiPadPa 2
Apror = WHW™) = g [%?W"‘ - =5 —gngz(t_m%V N u—m%/vﬂ

2 | (2p1 — p)u(P1 +p2 +pi)y
- |g¢1HiW|

< P
P + (p+ < p )]

(4.3.75)

where we sum over a and p. are the momenta of the W bosons. In the last line, exchanging p.

with p_ changes the Mandelstam variable ¢ to u. Using the expressions for the couplings (|4.3.59)),

({4.3.61), (4.3.67), (4.3.68) (4.3.70) and (4.3.74), we get

_ 2m? m2 vt
Aprpr = WHW™) = g“”l UW U;A/ Tl

2 2 3m2 2 1 ~ - ~ SO
_ 2w |: — v‘pl + 6)\6)\6 = 2< [21/\1 —12(As + /\4)] A5 6

v?2 ms
o 4 m2 02 UQ
— (6AsA%2 + h.c. )\/\ 21
s ) 35 )
4m§’;V X vt V2 sv? ol
G {1_%)\6 ] e i ——r o mi’ ms
my w w 2 2

(4.3.76)

where the first term is the contact interaction, the second term comes from the short distance
contribution of the heavy neutral states, and the two last terms are the long distance contributions

from Higgs and W boson mediated diagrams. Note that the contributions mediated by the charged
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Higgs written in the last line of (4.3.75]) drop out of the calculations - they do not contribute to the
order we work to.

The dihiggs to difermion chirality violating scattering amplitude is
f

— g2 a)\ wij
A(prpr = fif;) = 72@ mﬁ'] (4.3.77)
¢a

where we sum over a. Using the expressions for the couplings (4.3.63), (4.3.67), (4.3.72), (4.3.73)
and (4.3.74) we get

Alprer = fif;) = %

2
f 2 2 2 2
m; m 3 ~¢ ~,. M v
— 61 7 _ L1 )\)\* 7/\f /\* 1
L (- o )+ o T ()
3 -, -, 02 sv? vt oml?
=\ Ol —, —, —% 4.3.78
- g o ) .

where in the last step we made use of the definition of the CP violating phase 6, = %Arg(xgﬂg) (see
(4.3.25))). The first term in square brackets is the long distance contribution mediated by the Higgs,
and the last term corresponds to the short distance contributions mediated by the heavy Higgses.
Note that this amplitude has a flavor and T violating term both in the long and short distance
pieces, inherited from 5\51 ;» the coupling of the heavy doublet to the fermions.

The four Higgs scattering amplitude is

— — _ m2
§ m‘pa t m‘ﬂa u m@a

1 1 1
Alprpr = @191) = gyt — 92, ( + + ) (4.3.79)
where we sum over a. Using (4.3.67)) and (4.3.74]) we get

9,2 32 zv? 9,2 30?2 xv?
e oS- 2w o(20)] | Evo(2)
p2
Iy v? v? v?
02 s —m2 +t—m2 +u—m2
$1 1 ¥1

3m?2 - 2 . 2 s 2
= 20 L 9N Rg s 276 02 01 g + 2TAGAL Sin2 0 —
v ms ms

=3
my

Om 2 2 2 2

_(fl—?,GAlAgAﬁ?fQ)( U 2)
v ms s—mg  t—mg u—mg,

vt o’

ol L

-0 (3351
3m?2 cox [ V2 Om?2 )
=~ 4303 <m§> _ ( "o 360 AN -

i)

2
2
2
02 02 V2 zv? vt
O —, — 4.3.80
(s—m2 +t—m2 +u—m2 )+ (m%’m%) ( )

Y1 1 ¥1
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where the first two terms come from the contact interaction and the short distance diagrams mediated
by the Heavy Higgses, and the last term is the long distance contribution mediated by the Higgs

particle.

4.4 The low energy effective theory of the 2HDM

In this section we present the tree level low energy effective theory of the Standard Model extended in
the UV with a heavy Higgs doublet. Near the decoupling limit the heavy doublet can be integrated
out, and the remaining Higgs doublet in the low energy theory contains the vev and the Higgs
particle. The cutoff of the EFT is the heavy doublet mass my. The EFT description is an alternative
to the mixing language, and no reference to mixing between the neutral components of the doublets
is needed in deriving the EFT. Working at tree level is enough to reproduce the mixing effects
described in the previous section. The effective theory can be derived most easily by working in the
Higgs basis. In this basis one of the doublets carries no vev and must be identified with the heavy
doublet, as discussed in the previous section. The remaining doublet contains the particle that must
be identified with the Higgs in the low energy theory. In the derivation of the EFT we keep track
of the U(1)pq symmetry defined in table which can be used at any point of the calculations as
a consistency check, since all the fields in the low energy theory (fermions, gauge bosons and the
Higgs doublet Hy) are PQ invariants, so no coupling of the low energy theory can be charged under
the U(1)pq.

The regime of the 2HDM parameters we work in is the following. We consider all the marginal
couplings of the 2HDM in the Higgs basis X i = 1.7 to be perturbative. The 2HDM has three
dimensionful couplings: m1,mo and mo. However, there are only two mass scales, m; ms; due to
the no tadpole condition , m1o is of the order of 1. Due to the EWSB condition ,
the mass of the remaining doublet 71 must be identified with the EWSB scale. Near the decoupling

limit, M3 > |\;| v2. Due to the separation of scales, we organize the corrections to the SM predictions

as an expansion in the small parameter v?/m3. To obtain a consistent expansion in v?/m3 in the
2HDM EFT, we need to define a concept of effective operator dimension which differs from naive
operator dimension. The separation of scales motivates us to define our concept of effective operator
dimension by counting powers of the heavy scale in the operator’s coefficient in the Lagrangian.

Since my is the only heavy mass term, we define the operator’s effective dimension as

ng =4—nzz (4.4.1)
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where Nz 1S the number of powers of M3 in the operator’s coefficient. For instance, the operators

T gty () (44.2)

are both of effective dimension six, even though the first operator is of naive operator dimension
four. In this work, we choose to work up to effective dimension eight in the Higgs potential and
kinetic terms (including gauge interactions), and up to effective dimension six in operators involving
fermions. We will see that this captures all the lowest order deviations to the SM predictions for

the Higgs bosonic and fermionic interactions.

4.4.1 Diagrams and derivation of the EFT

In this section we present all the needed diagrams to derive the low energy EFT up to effective
dimension eight in the Higgs potential and kinetic terms and up to effective dimension six in operators
involving fermions. Since the maximum effective dimension we work up to is eight, all diagrams can
have at most two inverse powers of m3, i.e., they can have at most two Hy propagators. Note that of
all couplings in the 2HDM Lagrangian (£.3.16)), m3,, (mi,)* , X6s A, Aaij and 5\5” are the only ones
that involve only one heavy doublet Hs, so using these interactions it is possible to draw diagrams
with only one Hy propagator. These will be the diagrams that, at zero momentum, induce the
irrelevant operators with the lowest effective dimension (six). As such, leading deviations to the SM
predictions will be controlled by this small subset of parameters of the UV completion. We organize

the presentation of the diagrams by number of insertions of Higgs potential or fermionic couplings

involving the heavy Higgs doublet Ho.

leftmargin=* Diagrams with two m?, insertions:

Let us start with the diagrams of figure Up to effective dimension eight they lead to

_o |2 _o |2 ~ 9 |2
m m m
|~H}L§|HTH + lml?;aﬂm O"H + ‘n%’ {ggHjTaTbWaﬂwg‘Hl

1 1
~ g (i(‘)MHlTTaW(le +h.c.) + 9 H] BB Hy — S (18 H{B"H, + h.c. )}

(4.4.3)
which can be rearranged into

[ T:L?’ HiH, +| 12’ (D, Hy)" (D*Hy) (4.4.4)
2

leftmargin=* Diagrams with two \¢ insertions:
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H,

. W, Hy )
\ - S m *
\\Qm%Q)* \><< 12)
A 243T.T, 5 39t
X X
Y ~2 Y ~2
s m s m
Hi o~ T W, I B

Figure 4.5: Diagrams with two m?, insertions and gauge boson legs leading to operators up to effective
dimension eight. By gauge invariance there are also diagrams with only one gauge boson attached to the
internal heavy Higgs propagator, which we do not draw for brevity, but that are considered when deriving
the low energy theory. The upper diagram must be expanded up to quadratic order in the momentum of
the external leg to work up to effective dimension eight. The upper diagram at zero momentum leads to
the operator H ;r Hi. The upper diagram at quadratic order in the momentum expansion, together with the
diagrams with gauge bosons lead to the operator (DMHl)T (D" Hy).

The diagrams of figure [£.6] lead to

NoX (rtpr 3 4 ABNe | Bt a0
= (Hi{H1)” + 7 _§(H1H1) (OH| Hy +h.c)

— HlH, (8HH1T6“H1HI Hy + 8, H] Hy0" H{ Hy + H} 8, Hyo" HI Hy + h.c)

+ (HiHy)? { GEHIT, TyW,, W/ H, — go (iaMHfTangl + h.c.)
1 1
+ 9 H] BB Hy — S (z‘@,LHIB"Hl + h.c.) ] ] (4.4.5)

Rearranging the derivatives and the interactions with gauge bosons into covariant derivatives

we get
NXe ot rr 3, Ao t gyt t t(pm tor 2
S0 (HLH)® + 2550 20, (L H )0 (HIHy)(HLH) + (D H)' (D" HO)(HUHL )| (4.4.6)
2 2

leftmargin=* Diagrams with one \¢ and one m?, insertions
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Hy , H
\\ //
AN /7
R X Ao 2 t
Hl ————— N P == é/ ————— Hl
// \\
7 \
7 \
,7 AN HT
Hl s N 1
i Hy i Hy
Hy . Wa H, . B
\\ : \\ :
N 1 \\I
Hy ___2y Hy ___ly
- AN - AN
SEERN SERN
N N
N 9 N 1.2
, _2927—7(171() , _591
~ 4 ~ 7
Hi X .7 HT Xe 7
____7|’ 1 ____7|/
71 71
L7 , 1
7 1 7 1
]’_]’1 I Wb Hl 1 B

Figure 4.6: Diagrams with two A¢ insertions and gauge boson legs leading to operators up to effec-
tive dimension eight. By gauge invariance there are also diagrams with only one gauge boson attached
to the internal heavy Higgs propagator, which we do not draw for brevity, but that are considered when
deriving the low energy theory. The upper diagram must be expanded up to quadratic order in the mo-
mentum of the external leg to work up to effective dimension eight. The upper diagram at zero momentum
leads to the operator (HlT H,)%. The upper diagram at quadratic order in the momentum of the exter-
nal legs leads to 8, (H{ H1)&" (HIHy)(H{H:) and also, together with the diagrams with gauge bosons, to
(DyHL)T (D" H1)(H{ H1)*.

The diagrams in figure [£.7] lead to

x ~ 2 \* /\ ~ 2 \*
6(7;’112) (HIHl)Z 4 6(72712) [ _ H}.Hl HIDHl
my my

+ HiH, { GZHIT, TyW,, W/ H, — go (i@,LHITaW;‘Hl + h.c.)

+ ngTB B“Hl—fgl(za HlB“H1 +hc)] + h.c. (4.4.7)

Rearranging the derivatives

Y %,~ 2
AGMiy

INE2
6 12(HTH) + =5 lau(HIHl)a“(HIHl)+2(DMH1)T(D”H1)H1TH1] (4.4.8)
2

where we used S\Zﬁﬁz = 5\6771%; due to the no tadpole condition (4.3.24)).

leftmargin=* Diagrams with A3, \s and )5 insertions
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i
//
(m%Z)* 5\6 //
Hl _____ X __________ e 7 Hl
S H|
N S ~ 2 \*
SO e v, (M)
m
\\( 12) X\
\\\ xg \\\
—2¢3T,T), 5 -4
Hi 5\6 7 HT /~\6 .’
S .
, ! , I
7 1 7 1
H,y al W Hy rt B

Figure 4.7: Diagrams with one A\¢ and one (rh%g)* insertion up to effective dimension eight. There are
also hermitic conjugate versions of these diagrams and diagrams with only one gauge boson attached to
the internal heavy Higgs propagator, which are not drawn for brevity but considered when deriving the low
energy theory. The upper diagram must be expanded up to quadratic order in the momentum of the external
leg to work up to effective dimension eight. The upper diagram at zero momentum leads to the operator
(H 1T H1)?. The upper diagram at quadratic order in momentum of the external legs leads to H{( H\H 1T 0OH,
and also, together with the diagrams with gauge bosons, to (D, H:)"(D*H,)H]H,.

The diagrams of figure [£.8]lead to

s dadihg

Az |2, C o 20Nl Fos
—— = (H/H))" - —>2==(H/H HIH
ﬁl% ( 1 1) ﬁl% ( 1 1) m% ( 1 1)
- 9 L. .
Ay |y Forve 2Ny g s AaAEXG ot s w4
- T%(HIHI) - T%(HlHl) - m% (H1H1)
(Mmfs+he), o0 (MAemis+he) oo (MM +he), o
- =~ (H/H{)" — H H) ————*(HH
ng ( 1 1) ﬁl% ( 1 1) 27%421 ( 1 1)

where we used Xérh%z = 5\6771%3 due to the no tadpole condition (4.3.24)).

leftmargin=* Diagrams with Yukawas and an m?, or \¢ insertion:



99

Hj H, H, Hi
\\ // N 72 \* //
il , . (miy) .
N ’ ’
X .7 X\ .7
N ’ N ~ ~ ’

\\ //~ H{L \\)\3 >\6 // Hl
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Figure 4.8: Diagrams with a A3 vertex up to effective dimension eight. All diagrams are at zero momentum.
There are similar diagrams replacing the A3 vertex with A4 and :\5, which are also considered to derive the
low energy EFT. The diagrams with a A5 vertex are slightly different, they contain two 3, vertices instead
of one M3, and one (113,)* vertex. The upper left diagram leads to the operator (HIHl)Q. The upper right
diagram leads to the operator (H{ H;)®. The lower diagram leads to the operator (H] H;)*.

The diagrams of figure [£.9]lead to

A . A _ B}
2249, Hyu; [(ﬁﬁz)* + AZHIHl] ~ 2 Q,Hd, [mfz + >\6H1TH1}
ma mj
Nt
- %Linzj [mlz + A6H1TH1} +h.c. (4.4.10)
2

We do not present the operators at effective dimension 8 that modify the Yukawas.

leftmargin=* Diagrams with Yukawas only (four fermion operators):

The diagrams of figure lead to
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Figure 4.9: Diagrams with one Yukawa and one X6 Or s coupling up to effective dimension six. All
diagrams are at zero momentum. There are also complex conjugate versions of these diagrams and diagrams
with leptonic Yukawas, which are also considered to derive the low energy EFT. The upper left diagram
leads to the operator Q;Hi1u;. The upper right diagram leads to the operator Q; Hiu; H 1T H,. The lower left
diagram leads to the operator Q; H{d;. The lower right diagram leads to the operator Q;H{d; HIHl.

i /\ mn )\d;f )‘an =t 5‘Zij‘gmn Rl

M ) a0l + 20 7 DT 0h) + g L) B
S\d;‘r‘j\emn =\ 5t uz /\djnn 7 )\Einn

S (Quldy) (G, L) + S Qi) (Qmdn) + L@Z %) (Lln) + hc.

ma

(4.4.11)

4.4.2 The low energy theory of the Higgs doublet

Collecting the results (4.4.4), (4.4.6), (4.4.8), (4.4.9), (4.4.10) and (4.4.11) we are ready to write

down the low energy theory. For the remainder of this chapter we drop the subscripts in the doublet

of the low energy theory H; and its neutral component hy. The effective Lagrangian density for the
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Figure 4.10: Diagrams with two Yukawas up to effective dimension six. The lower diagram also has a
complex conjugate version. There are also diagrams with leptonic Yukawas. The upper left diagram leads
to the operator (Q:%;) (%!, Q). The upper right diagram leads to the operator (QE])(EI”QL) The lower

diagram leads to the operator —(Q;u;)(Q:d;), where the minus sign comes from reordering the contraction
of fields charged under SU(2).

Higgs doublet is

1
L = Zy D,H'D'H + (i [ O, (HTH)OM(H'H) + H'H DMHTD“H]

2

+ [zHTHaM(HTH)aﬂ(HTH) + (HTH)? DMHTD“H] —V(H)

—~ [QZH()\?J» ol HYH )G, — QuHC (NS + i HTH)dy — LiH® (X + 0l HTH)Z; + h.c.

1 1 1
V(H) =myH'H + A (HH)* + gne(HTH)?’ + Js(HH)'

where

A
1 _ 676
CH - mg
_ 9 12
Ty = 11 A, -1 M2
2M3o A
G = 2%
my
1 1
Az, = ZC}IU _ECHvz

(4.4.12)

(4.4.13)

(4.4.14)
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o (2
2 ~ 2 |m12
mpg = My ~ 9

ma

~9 T 'Y Y ~ 2 Tk o~
5, AminAs | 20+ A ey L (A3midy +hee)
m3 ms i
3 N 6( X3 + M) A; N 3(AEAgm2, + huc)

Ne = ——= = =
3 ) e

403+ A)AEXe . 2(MEA2 + hee.
s = (3+~44) 626 (A5 6~:_ c) (4.4.15)

>
S
|
1
[

Rt ') f=udl
m

Note that due to the no tadpole condition ([4.3.24)), the operator coefficients Az,,, (}; and (y are not
independent, as we see in the last lines of . Note also that in the effective theory there are no
threshold corrections to the Higgs kinetic Lagrangian at effective dimension six, the first corrections
are of effective dimension eight. The Higgs potential is modified at effective dimension six. The EFT
contains cubic Yukawa operators at effective dimension six, for all types of SM fermions. We do not
present operators with naive dimension six and eight involving the Higgs and gauge field strength
tensors since they come at effective dimension higher than eight. We also drop all operator dimension
six Higgs-fermion interactions with derivatives since they come at effective dimension eight. Note
that T violation in purely bosonic operators (operators involving no SM fermions) is irrelevant to
the effective dimension we work to; all the bosonic operators in are T conserving. Up to
the order we work to, T violation only arises in the Higgs-fermion interactions. The fermion mass
matrices are given by the linear and cubic Yukawas by
)\{jv n[jv?’ R
V2 2v2

The four fermion operators of the low energy theory are given by (4.4.11). Here we write them

(4.4.16)

as
uu — — 3 3 -7 7T
QO Q) (@, QL) + Q0 (Qudy) (d), Q1) + QL) (L) (T, L)
+ QU Qid) (T, LE) + Q2 Qi) Q) + Qo) Qi) (L) + hc.

(4.4.17)



or, expanding in components of the fermion doublets

—t

iymn
0O [(w@)«z;ul) ; Wﬁwm]

+

iymn

+ Q) [(uz'uj)(fmfn) - (diuj)(l/mfn)] the.

igmn

QL [(uiu»(uinub n (diu»(uindil)} QO [(md»(d;um T (did) (@ dl

Q) [<uidj><€;u,t> n <didj><e;at>] Qe [<uiuj><dmdn> (1) ()
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(4.4.18)

These are all the four fermion operators that are obtained at effective dimension six. The

superindices (0) and (2) represent operators that violate chirality by zero or two units respectively.

The labels uwu, dd, £¢, d¢, ud, uf label the right handed quarks appearing in the four fermion operator.

The coefficients of the operators are

Yu  yut N4t Yd T Ne

Quu(O) o /\Zij/\an dd(0) A21'jA2mn £2e(0) A22']'/\2mn
ymn ﬁ”&% ’ ymn Th% ) ymn ﬁ?,%
Rt 3¢ u ydt e R

dae(o) /\2ij/\2mn ud(2) _ )‘Qij>‘2mn ul(2) )‘2ij)‘2mn
ymn ’Iﬁ% ’ ymn Th% ) ymn m%

For general )\gij matrices, these four fermion interactions are flavor and T violating.

4.4.3 The Low energy theory of the Higgs boson

(4.4.19)

We now write down the effective theory for the neutral component of the Higgs doublet in the unitary

gauge. The no tadpole condition (4.3.24) will be used extensively in the rest of the discussion.
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Writing the Lagrangian density (4.4.12) in terms of h we get

1 1 . 2h  h? _ 2h  h?
H 56;4}18“]1 + §mQZZl Z, (1 + o + U2> + m%VW'WWM (1 + o + 2 )1

+Cn

1 3 3
28Hh8“h<2v2 + 3vh + 2h2) +

1 2 2 + — 1 2 2h3 1h,4
+ imZZ“Z#—l—mWW "W, 57} + 2vh 4 3h —|———|—

202

+ (y

a h8”h<9v +9v3h + 27 2h2+9vh3+ih4>

RS 1hS
33h+ 52h2+5h3 5h4+3+>]
uiuj{m;*j—&—(

( 2v 402
A (5
mt df,,2 df
s (oS ()
yy} [mf} + (”fj (Z?;))h 3(2’\%)# + (;\%)h?’} + hee.

The cubic Yukawa for the doublet contributes a term 377{;-1}2 /(2v/2) to the linear Yukawas of the

1
+ <2mZZ“Zﬂ + mWWﬂLW )

—V(h) -

(4.4.20)

Higgs f;f;h, but one factor of 77;]-712 /(24/2) is already included in the definition of the fermion mass

matrix m{j/v, Eq. (4.4.16). The Higgs potential is given by

1 1 1
Vh) = 5 m%h? + 3\ ( gvth + vh? + h4)
1 1 4 3 1 2
+3 nﬁ( 58” 2+ %h?’ + %h‘* 3”h5 + h6> (4.4.21)

1 700 7P 350" 71)3 Tv? v 1
- h? + —h* + ———h*+ —h°+ —hC + AT+ —h®
1 778( A L R R LT

The irrelevant kinetic operators in (4.4.20) can be replaced in favor of operators with no deriva-

tives using integration by parts and equations of motion. We first use integration by parts to rewrite

the kinetic terms proportional to ( as

1
58,L(HT H)O"(H'H)+ H'H D,H'D"H

3 3 3
= sz 0, hO*h + ivh O hO*h + ZhQ O hO*h +
1 1 2h3 1ht
(g2t ) (5 2on o+ 50 5 )
3 3 1
-2 tho? — Zoh20h — —h3 0O
48#h8 hv 4vh h 4h h+

3 4
2h” 1k ) (4.4.22)

1 1
+ <2m2ZZ“Z# + m%VWWW;) <2v + 20h 4+ 3h? + T— 4 = 507
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We also use integration by parts to rewrite the kinetic terms proportional to (};,
2HYH 9,(H H)O"(H'H) + (H'H)* D,H'D"H

gv 10,h0"h + 2v3h8 ho*h + 4711 h? 0,ho"h + vh38 ho*h + 8h4a hoth

L 2 TR — 1 3 o3 v2h2 3 g 300 1R°
+ <2mZZ“ZH+mWW AWM) <4U + h+ h +5’l}h h +§?+4'U2
9 49 3,90 9 9.3 4 5
= gﬁuh(‘)“hv 7Y h*0Oh — 7Y h° Oh — fvh Oh — —h Oh
L, 2 TR — 1 3 v2h2 5, 15, 3R 11h°
+ <2mZZ“ZH+mWW “WM) (41} + 21} h+ h= + 5vh 7/1 +§?+Zv2
(4.4.23)
The lowest order (effective dimension four) equation of motion for the Higgs field is
1
Oh = —m%h — §AH(3v2h+ 3vh? 4+ h?)
2 2m? h
+ (mZZ’“‘Z# + mWW*MW#> (1 + )
v v v
u dt A
—(miju»u+mijdd‘—kmijﬁﬂ—i-hc)+ (4.4.24)
v (2] v (2a¥] v 1ty L. “ e A

where the dots represent terms of higher effective dimension. Using (4.4.24]) in (4.4.22) and in

(4.4.23]), we can rewrite the Higgs Lagrangian (4.4.20)) with no irrelevant operators with derivatives

1 1 2h  h? 2h  h?
H 28uh8"h+2m22<1+ )Z“Z + W(1+ + >W+“W ]

+ Cu

1 1 f
zauhaﬂmﬂ - (ith + 4h3> { m%ih — §>\H(3v2h + 3vh? 4 h?)

2 2 2 h m;* m;” _ fT
+ ( mWW*“WH> <1+ ) - ( Luu; + —did; + ’M +hc)]
v v [ v v

1 1 2h% 1 h*
+ <2mQZZ“ZH + m%,VWJr“WM_) (21) +20h +3h% + T + = )

2 v2

!
+ 4 8 40

m2 2miy, _ h mg; m;ﬁ = me' 7
+ | =242, WHW ) (14 =) - Luu; + —2did; + —24;0; + h.c.
v v v v v v

3 3h°  1h°
+5 3h+ 2022 + 5o’ + h4++)]
3

1
gauha“hv‘l - <Zv3h2 + 923 + ot + 9h5> [— mih — 5AH(3v2h + 3vh? + h?)

1 2 4 2 —+ —
+ (QmZZ‘ Zy +myy W “WM) 55 T 12

1
4
U U ,,2 i U
uw; | mys + e )>h+3< - )h2+( - >h3]
j[ ! (v ( V2 2v/2 2v/2
df dt, 2 dt df
= my; U U Nij
-ab i+ (52 +2(575) )3 (55 + (o))

3

“ mtt n‘v? n‘v ntt
07 | (2 o L )>h+ ( 4 )h2+<“>h3]+h..
J[m” ( v (2\/5 22 22 ¢

’U
%

— V(h) —_

2
h

(4.4.25)
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Note that using equations of motion leads to new interaction terms for the Higgs with fermions
and gauge bosons - irrelevant operators involving derivatives of the Higgs cannot be neglected when
studying Higgs couplings. The wave function renormalization term in (4.4.25)) can be made canonical

by performing a field redefinition

3 9 1/2
7 (1—|—AZH—|— 2(Hv2—|—4C}IU4> h

9\ 271/2 6\ 11/2
[1+XTX (” ) } h[1+|’|2+0<” ﬂ h (4.4.26)
6 = = = = A
6 m3 ms

where in going from the first to the second line we made use of (4.4.14). As in section we
see that there is a close relation between the mixing parameter (in this case, the complex alignment
parameter Z) in the mixing language and wave function renormalization in the EFT language.

Finally, note that the extremum condition for the potential is

ov 5 1 1 1

= A+ gnevt + Zose®) =0 4.4.27
v In=o ooy + g YT e gt (4.4.27)
so the Lagrangian mass parameter my can be expressed in terms of Higgs potential couplings and
the vev

1 1 1
my = 75)\;11)2 - 17]6124 - gngv(i (4.4.28)

Using (4.4.26)) and (4.4.28) in (4.4.25) we write the effective field theory for the Higgs boson in its

final form
1 “w 1 2,2 n:81 n 1 2 71 2 +utrr—
L = 3 .0 ¢ = 5Mmey +Zﬁg‘f’"@ +§mZZ Zy +my WHHW
n=3

n=6
" 1 _
+ Z F |:gg9"ZZ §ZMZ# -+ gcp"WW W+MWM :|

n=1

u df 3.5, Ly 7.
—miuty; — myj did; —myilil;

n=3

-3 % Niy withy + Ay didy + Alhy 675 + b (4.4.29)

n=1

We now give explicit expressions for all the couplings of the effective theory. All the SM values
of the couplings of the Higgs can be read from this section by taking the limit X¢ — 0. The no
tadpole condition is crucial for the final results. For instance, note that in there are several
mass terms for the W and Z bosons at effective dimension eight. The no tadpole condition imposes
conditions between the coefficients of these operators, Eq. . These conditions ensure that
all the effective dimension eight mass terms cancel out, such that the mass of the W and Z boson

coincide with their values in the renormalizable SM, my = gav/2 and myz = gov/(2cosfy). Note

that this ensures that p = m%,/(m% cos? Oy ) = 1.
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We start by the Higgs mass, which is given by

~ ~ ~ /1]2
2 2 *
my = v | A1 — AgAe =5 —

11, .~ © TN Tkv 1,+.%9 vt v
e [(2)\1 ~Ja = A)Ashe — 5 (3A2 +h.c)] S+ (9( 6)]

(4.4.30)

The second term in comes from the threshold correction to the operators (HTH)? and
(HTH)? at effective dimension six. The rest of the corrections come from operators of effective
dimension eight: the term proportional to 5\15\35\6 is due to wave function renormalization ,
and the rest of the terms come from threshold corrections to the operators (HTH)", n = 2,3,4 at
effective dimension eight.

The couplings of one Higgs to two massive gauge bosons V = W, Z are

2m? Tr,~ vt v©
govv = v |;l - *>\6)\6 =7 + O(%,))
v 2 5

(4.4.31)

The difference with respect to the SM values comes exclusively from dilution by wave function
renormalization at effective dimension eight. The rest of the contributions to these couplings
coming from the terms with covariant derivatives proportional to (g and (}; in cancel out,
thanks to . The result coincides with the corresponding couplings obtained in the

mixing language (4.3.61)). The couplings of two Higgses to two massive gauge bosons are

[1 —33i A t +0 (:; )] (4.4.32)

The difference with respect to the SM prediction comes exclusively from the terms that were gen-

2

gp2vv =

erated by using the equations of motion in . This is an effective dimension eight effect. The
rest of the effective dimension eight terms cancel out. Note that does not coincide with
the result in the mixing language . As discussed in the SHSM EFT, four linear couplings
in general do not coincide in the mixing and EFT languages, we comment on the difference in the
end of this section. For completeness, the irrelevant couplings to gauge bosons come at effective

dimension eight and are given by

m? 6
'Ug@SVV = 7’072 24)\6)‘6+O< 6):|
L 2
m2 6
U29¢4v\/ = 77;/ 72)\6)\6 ( ):|
m2 . 6
039¢5VV = 773/ 144)\ )\6 7 +O( g>:|
4 m _ o
vigevy = ¥ 144006 — +O( g>] (4.4.33)

These couplings vanish in the decoupling limit.
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Higgs-fermion interactions are modified by the cubic Yukawas of the Higgs doublet, which come

at effective dimension six. They are given by

Ny
N m! 5. 9 A2 A v? Lo v
=82 (50 ) \F) o\
N 02 !
v)\f =7 v (~ >+O(~ >
7 ( V2 m3 ms

MoAe\ [ 02 vt
v, =3 ( 2\/% > (m%> + O(mg) (4.4.34)

Note that we neglect the effective dimension eight terms coming from wave function renormalization

(4.4.26) and from the use of the equations of motion in , since we only work up to effective
dimension six in interactions involving fermions. All the flavor violating terms in the fermionic
couplings are inherited from the heavy doublet Yukawa matrix, :\gu Non zero phases in
Xgij 5\3 lead to T violating processes mediated by Higgs boson exchange, since they induce a relative
phase between the Yukawas and the quark mass matrices. Note that the irrelevant couplings /\i 24
and )\i 3ij vanish in the decoupling limit.
Higgs self couplings are modified by the operators of effective dimension six and eight in .
They are given by
1 3m? 2

cor W
1 *

Lo = +6ARe 2

had! v2 67% 2

1 B B B o o 4 6
+3 [ [21A1 — 12(A3 4+ M) [ AgAe — (6AsAG” + h.c.)] ”—4 + 0(;%) (4.4.35)

ms
3m? -~ p?
P1 *
= — + 3605 6 —5
et v2 676 m3

N N N o o 4 6
+ [ [105%; — 60(As + Aa)] AsAs — (30As 752 + h.c.)} % + 0(717’16) (4.4.36)

For completeness, the irrelevant self couplings are given by

o 2 _ _ _ o o 4 6
9036 AL % + ( 58501 — 330(As + Aa)] Aghe — (16575057 + h.c.)) 40 13)
2
6

’Ugsos

o 2 _ _ ~ o o 4
Vg0 = 90R6X; — + ( [2097%; — 1170(As + Aa)] AgAe — (585As 752 + h.c.)) L (9( ?6>
2 2 2

_ _ _ o o 4 6

Vg7 ( [4536%; — 2520(As + Ag)] Asde — (126005052 + h.c.)) —+ (’)( ?6)

2 2
- - _ o o 4

vigys = ( [4536A1 — 2520(A3 + Aa)| AgAe — (12605787 + h.c.)) :1 )

All these irrelevant self couplings vanish in the decoupling limit.
Note that all trilinear couplings coincide in the EFT and mixing languages, while four-linear

interactions do not coincide, as already discussed in section for the case of the SM extended
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with a heavy singlet. The equality of the trilinear couplings in the EFT and mixing languages
ensures the equality between the non analytic (long distance) physical scattering amplitudes in the
EFT and mixing languages. Integrating out heavy fields cannot modify cubic interactions. Four-
linear interactions can be different in both languages, since four linear couplings in the mixing
language do not contain all the short distance pieces of the corresponding amplitudes, but EFT
couplings do. Scattering amplitudes calculated in both languages coincide, as we will see in section
[z

We conclude this section emphasizing a series of particular phenomenological characteristics of
the 2HDM EFT. First, deviations to the SM predictions of the Higgs-fermion couplings come at
effective dimension six, while deviations to the Higgs-gauge boson couplings come first at effective
dimension eight. This hierarchy is one of the main features of the 2HDM EFT. Deviations from
the SM predictions in a measurement of fermionic Higgs couplings at colliders, together with no
corresponding modifications to the Higgs-gauge boson couplings, would be a possible indication of
a Higgs sector completed with a second doublet in the UV. Second, all the deviations to the SM
predictions for the couplings of the Higgs at effective dimension six are controlled exclusively by a
small subset of the couplings of the UV completion: the PQ invariant combinations 5\51 y g and 5\3;\6.
This significantly reduces the complexity of the analysis of the most general 2HDM. In the mixing
language, X is related to the complex alignment parameter through . The modifications to
Higgs-gauge boson couplings with respect to their SM predictions at effective dimension eight, are
also controlled by 5\35\6. Another special characteristic of the 2HDM EFT is that all the bosonic
couplings of the Higgs are smaller in magnitude than their SM counterparts. This is evident in
the EFT, but less obvious in the mixing language, where the coupling of two Higgses to two gauge
bosons is left unmodified with respect to its SM value.

T violation has a particular structure in the 2HDM EFT. All T violation at effective dimension
six comes exclusively from the PQ invariant phases in the fermionic interactions proportional to
S\ij\& The T violating phases #; and 0, defined in which come from the 2HDM potential
do not show up at effective dimension six. Note that 6; is the phase of the complex alignment
parameter . As a consequence, measuring the phase of the complex alignment parameter is
challenging for a 2HDM near the decoupling limit, since the T violating effects of 8; are subleading.
The T violating effects of #; might first appear in fermionic interactions involving an insertion of
the coupling A5 at effective dimension eight. Finally, there is no CP violation in purely bosonic
interactions up to at least effective dimension ten in the 2HDM EFT. For instance, the operator

HTHF,, F* is not induced up to at least effective dimension ten.
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Regarding the four fermion operators , note that they are the only operators which are
not controlled by 5\6, and they are the only operators at effective dimension six which do not vanish
in the exact alignment limit, when = A6 = 0. In the exact alignment limit and near the decoupling
limit, the only hope to get hints of a second doublet would be at flavor experiments sensitive to
flavor violation in the four fermion operators .

Finally, note that in our results there is no reference to tan 8 anywhere, since in a general 2HDM,

tan # has no physical meaning.

4.4.4 Scattering amplitudes

As a consistency check of the EFT we compute scattering amplitudes, and compare with the corre-
sponding results obtained in the mixing language in section[£.3.3] 'We omit spinors in the amplitudes.

The dihiggs to di-W boson scattering amplitude is

+17 -\ Jp39pw2 2 1 1
A (901@1 — WTW ) = Guv [g¢2w2 - W — w2 (t — m%/v + " m%}v (4438)

Using the EFT couplings (4.4.31)), (4.4.32)) and (4.4.35)) the resulting amplitude is

2 2 2 4
Alpp —WHW™) = gwl M —6>\6/\6 Mw 2
U mQ
om2, [ 3m? vt 1
- AN 210 — 12Xz + M) AEN
2 { 02 Gm% [ 1 (A3 + 4)] 676
3~ ~ 22 02
— (6AsA2 +h NN —2
63537 ) ) *266~3}Q—m9

(4.4.39)

which coincides with the result obtained in the mixing language (4.3.76)). Note that the second term
in (4.4.39) comes from the modification to the dihiggs di-W boson coupling with respect to its SM
value.

The dihiggs to difermion chirality violating scattering amplitude is

— f giPS)\g];ij
Alpp = fifj) = Ny + S5 e (4.4.40)
Using the EFT couplings (4.4.34) and (4.4.35) we get
- 1 v? m! 3m? < v, V2
— f i *
A(@‘P—}fifj) - 0 l\[/\zu/\fs ~§ |:6ijv(_v2¢+6>‘6/\6 fn%)

2 2 4
f @ v
JA%%~£<&4@>+OC@N A
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which coincides with the result obtained in the mixing language (4.3.78)). Note that this amplitude
has a flavor and T violating term both in the long and short distance pieces, inherited from the
Yukawas of the heavy doublet 5\51 -

The dihiggs to dihiggs scattering amplitude is

1 1 1
App = 0p) = gps — gos ( 0 + ) (4.4.42)

2 a2 )
smgptmcpumw

Using the EFT coupling (4.4.35]) we get

2

3m ~_ ~ 1}2 9m2 ~ ~_ ~ 1}2
_ ® * $ *
A (QOQD — QOQO) = — ’[}2 + 36A6>\6 <7’h%> — < U4 — 36/\1)\6A6 Th2>

2 2 2 4
( v v 2>+O<Qj4> (4.4.43)
s—mg  t—my  u—mg My

which coincides with the result obtained in the mixing language (4.3.80).

4.5 The EFT of the 2HDM with Glashow-Weinberg conditions

In the SM, the fermion mass matrices and the Higgs Yukawas are aligned in flavor space, so they
can be simultaneously diagonalized by performing quark and lepton field redefinitions. As a conse-
quence, there are no flavor changing neutral currents (FCNC). FCNC are experimentally strongly
constrained.

In a general 2HDM, it is not possible to simultaneously diagonalize the fermion mass matrices
and the Yukawas of both Higgs doublets simultaneously by performing field redefinitions. This leads
to FCNC mediated by neutral Higgs states. In the 2HDM, FCNCs can be avoided by imposing the
Glashow-Weinberg (GW) conditions [30]. The conditions consist in giving mass to all fermions in
a particular representation by allowing them to couple with only one of the two doublets. These
conditions can be imposed by discrete symmetries or supersymmetry. The Glashow-Weinberg (GW)
conditions are satisfied by four discrete choices of the Yukawa couplings of the doublets @4,
Dy

Type L Ay =X =){ =0
Type IL Xt =X =)\ =0
Type IIT1: AY = X = X =0
Type IV: A4 =M =\ =0 (4.5.1)

In the 2HDM with GW conditions, the ratio of the vevs of the doublets vy/v; = tan§ defined in

(4.3.5)) contains physical information, since it is the ratio of the vevs in the preferred basis of the
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Higgs doublets in which one of the conditions holds. In other words, in a 2HDM with GW
conditions, tan g is physical, since it is the rotation angle relating the preferred basis with the Higgs
basis ﬁ

The objective of this section is to study the types I-IV 2HDM using the EFT presented in section
[4:4 GW conditions impose a particular structure on the Yukawas and four fermion operators of the
low energy theory, but we impose no other restrictions in addition to one of the conditions ,
i.e., we consider the Higgs potential to be the most general one at the renormalizable level, and we
allow for all the possible T violating phases. Since the GW conditions only refer to the fermionic
interactions, we do not present the bosonic interactions in this section. All the bosonic interactions
are the ones of a general 2HDM, and were presented in section [£.4] Each type of 2HDM will be
presented in sections [.5.1] [{.5.2, {.5.9] and [£.5.4] The detailed discussion of T violation in the types

I-IV 2HDM is left to section [4.6]

4.5.1 Typel

In the type I 2HDM the Yukawas of the doublet ®; are set to zero
M=X=X=0 (4.5.2)

so all the fermions get their mass from their coupling to the second doublet ®,.

The Yukawas of the doublets in the Higgs basis are obtained by using (4.5.2)) in (4.3.17))

Nt = eF gt sin (4.5.3)
Aot = Agi cos B (4.5.4)

The fermion mass matrices are related to X‘f{j’g through (4.3.14), so using (4.5.3) we rewrite )\;‘Z?;l’g

as
w,d,l
AUl _ e%i& \/sz‘j

2 csc 8 (4.5.5)

Using (4.5.5)) in , we write the Yukawas of the second doublet in the Higgs basis as

Tu,d,l it ?j’d’é
ANbt = /e cotﬁT (4.5.6)

215

3In the MSSM, tan 3 can be defined independently of the Yukawas, since there is a flat direction H, = H,4 which
specifies the preferred basis.
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Using (4.5.6) in the Higgs Yukawas (4.4.34), we get

)\udé _ mﬂdz 1_)\* —i&/2 tﬁ O 4
pij = T CO 7%
w,d,l
oAb = 35\667% cot 3 —2
u,d,[ 2 4
2 w,d,l m *
VA = — ” 3\ie 5 cotB -3 +0 (4.5.7)
ma 2

Note that using (4.3.54]) the Higgs Yukawas can also be expressed in terms of the complex alignment

parameter
u,d,fl ~ )

,d¢
w,dt m?j iArg(X5)/2,~ % = =2
90 Nt R P 5/ %e” 2 Zcot B+ O(E

p2ij v
mi.".’d’l
Uz)\:},dzf _ % |:3ezArg()\ )/2 — 2 = COt,B"‘O(EQ):l (458)

The coefficients of the four fermion operators are found using (4.5.6)) in (4.4.17)

ut
o) _ 1 ii mn 2
Qfﬁnn = 21%% 2 ot* 3
dat,d
dd(0) 1 ij Mmn 2
1 miim
20(0 i
sz'r(nT)L =2 WUTM COt2 ﬂ
2
dt, ¢
de(o 1 m;m
QW(M)L =2 fni%i”vz T cot? B
dt
(2 L mim
Ql.bjnsn) _ meg z]vzmn OtQB
QuZ(2) 1 mg]mﬂn 2
i, = 2W71)2 cot“ g (4.5.9)
2

In the EFT of a type I 2HDM at effective dimension six, all the modifications to the SM pre-
dictions for the fermionic couplings of the Higgs , and all the four fermion operators (4.5.9))
vanish in the large tan 8 limit. The reason is that in this limit, the doublet H, that is integrated out
is aligned with the doublet ®;, which does not couple to fermions. The leading effects on the Higgs
Yukawas in this case are of effective dimension eight, and come from kinetic operators in the effec-
tive Lagrangian. Alternatively, in the mixing language, at large tan 8 the only modifications to the
Higgs Yukawa couplings come from dilution due to the complex alignment parameter as discussed
in section [£:3:2] In this limit, the modifications to the SM predictions for the Higgs Yukawas and
Higgs couplings to gauge bosons are identical: both couplings are diluted by 1/1 — |E|2
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We now perform field redefinitions to present the Yukawa couplings and four fermion operators
in the quark mass eigenbasis. Without loss of generality, the quark mass matrices in a general flavor

basis are given by

Ug,, diag(m., me, my Ul 4.5.10
Qu u

3
[

m™ = Ug, diag(ma, ms, my) U (4.5.11)

where all the mass eigenvalues are real and non negative. We define the CKM matrix following the

conventions of [41]

V =U3, U5, (4.5.12)

The quark mass matrices are diagonalized by the field redefinitions

IS

u=u[Uq,],,  di=d;[Uq,],, w=[UL] u d=[U] d (45.13)

)

We drop the primes in the quark fields in the mass eigenbasis for the remainder of this chapter.

Using the field redefinitions (4.5.13) in the effective lagrangian (4.4.29)) and the Yukawas (4.5.7]), we

find the Yukawas in the quark mass eigenbasis

mudé 2 4
ALdE — 5, " [1—)\* —li/zcotﬁJrO( )]

] m%
e mi bt v?
VA = 04 Zv |:3)\2§6_ 2 cot B — g ( )]
my,d,é ig
2AZ; 7.] = 75@‘ IT |:3A662 cot 6 - + O< ):| (4514)

Note that the Yukawas in the mass eigenbasis are diagonal, as expected, since the GW conditions
ensure that there are no FCNCs.
We define the coefficients of the four fermion operators for the components of the quark and

lepton doublets in the quark mass eigenbasis as

e (0) (uﬂ])(ﬂjnuil) + w?jfn(o) (diuj)(ujndil)

ijmn

+ WO (@)@ dl) + W) (udy) (@)

ijmn ijmn

+ w0 ) @ ) + W= (T @)

mn pmn

Wit ) (didy) @, 00) + Wi (widy) (T,

ijmn zymn

+ wif,d(z) (uiﬂj)(dman) + Wy-di@) (diaj)(u”‘a”)

ymn ijmn
+ w2 (W) (b ln) + Wl (di) (Vi) + hc. (4.5.15)
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where the 4+ superindex indicates four fermion operators generated by integrating out the charged
Higgs, while the operators with no + superindex are induced by integrating out neutral heavy Higgs
states. In the original gauge interaction basis for the quark fields, the coefficients of these two
types of operators are identical, as in , due to gauge invariance of the operators .
In the quark mass eigenbasis these two types of operators have different coefficients, since the field
redefinitions act differently on the two components of the quark doublet Q. The coefficients
in are found by using in (4.4.18)), and performing the field redefinitions (4.5.13). We

get

U oy Wk T o Uy Wk T/ %
uu(0) _ 9 ia 5 my My, cot? B uut(0) 9 1 ‘/ij MMy, an cot2 5
ijmn T % m2FgTmn g igmn. T 220 02
2 2
dx,,d *, o dk, o d YT
dd(0) _ o ! 0330, My Mm cot? B W= _ o —1 —Vijmj i Vo cot? B
ijmn TS 52 MR T o igmn. T 220 02
2 2
J2N)
0(©0) o0 o 1 mi My, o
Wiimn = Wijmn = = 2—m25ij6mn 2 cot” 8
2
dx 0 o dk o0 4
ac0) _ 2 1 8::6 m; My, tQﬁ de+(0) 9 1 5 ‘/ijmj My, t25
ggmn ,,,“);LQ yprmn ,02 co wz]mn - mg mn '1.)2 Cco
2 2
U poy dk T, uY/* dx*
ud(2) _ 2 1 5.8 mimpy, t2 6 ud£(2) _ _9 1 Vvij m; anmn t2 6
ijmn mQ 1y mn 2 co wijmn - mQ 02 co
2 2
U oy £ T 0y Uy U
ul(2) _ 2 1 58 my My, t2 ﬁ wlE(2) _9 1 5 ‘/ij MMy, t2 B
igmn T < 2200 mn T 9 co Wijmn = = 2 Jmn 02 CO
2 2

(4.5.16)

where no sum over any index is intended. We keep the stars in the quark mass terms for generality,
but in the quark mass eigenbasis they are real. All flavor and T violation in the four fermion
operators comes from the CKM matrix, and it is induced by integrating out the charged heavy

Higgses. We leave a more detailed discussion of T violation for section

4.5.2 Type IL: \! =\ = /\g =0

The type I 2HDM is defined by setting A% = A4 = \§ = 0. Here we follow closely the calculations
and the discussion performed in section and we omit repeating some of the details. The

Yukawa matrices for the Higgs basis doublets are

~7fij = 6%/\751']‘ sin 3
AEE = =5 \BE cos 3 (4.5.17)

lij
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A= Ag;j cos 3

24
)\% = 15)\‘112;3 sin 8 (4.5.18)
Using (4.3.14)), (4.5.17) and (4.5.18) we rewrite A;‘lj “ in terms of the fermion mass matrices
%ij = e ﬁ;n% csc B
)\% = % \/ET# sec (4.5.19)

Using (4.5.19)) in (4.5.18]), the Yukawas for the heavy doublet can be expressed in terms of the quark

mass matrices as

Yu — i m:LJ
Ay = V2e™ 7 cot f —2
e

yd,l —i&
Agis = —V2e

(4.5.20)

Using (4.5.20) in (4.4.34)), the resulting couplings of the physical Higgs to up type fermions in

the low energy theory are

mi 4
Ny = [1—)\* _’5/200tﬁ—+0 )}
v
u "5 55 !
VG2 = — " 3ge 2cot/3’~2+(’)
2 mi s 2
VA = {?MZ ~F cot % ( ] (4.5.21)
while down type quark Yukawas are
mt vt
ae _ M Tx —ig)2 v
s = " e £ o 2)]
de 2 4
d,e My; _i v
VA 2y = UJ [3)\66 2 tan 3 — 2+(’)( %)]
N mfje ~ i€ v? vt
/\w s = [3/\66 2 tan 3 ﬁT% + O(m%)] (4.5.22)

Note that using (4.3.54]) the Higgs Yukawas can be expressed in terms of the complex alignment

parameter
my. . 3 * i
v)\:g = i {?)6""*@(5‘;)/26_i25 2 cot 8+ (’)(52)]
v
L2\ M55 [ iarg(Ae)/2 — 5 = =2
ViAGa;; = ” 3e 5//%eT 2 2 Cotﬁ—i—(’)(: ) (4.5.23)
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d,l
m.’
oAl = _mdé 3eiA18()/2- 5 = tanﬂ—&-(’)(”Q)
p2ij T v
df
m
vz/\ifij _ . |:362Arg()\ :)/2 72 = tanﬁ—&—@(”zﬂ (4524)

In the EFT the type II 2HDM at large tan 8 the the only modifications to the up type Higgs

Yukawas are subleading effects coming from dilution due to the complex alignment parameter by a

factor 4/1 — \E|2 as discussed in section [4.3.2| In this limit, the modifications to the SM predictions

for the up type Higgs Yukawas and Higgs couplings to gauge bosons are identical: both couplings
are diluted by /1 — |E|2 In this limit down type Yukawas suffer the largest deviations with respect
to their SM values, since they are modified at effective dimension six, and the modifications are
enhanced by tan 3.

The coefficients of the four fermion interactions are

1 m&m,

0
Q%n) = 2m2 ]v2 cot? 3
2
1 miim
dd(0) __ ij 'mn 2
Qljmn = 2%7/02 tan /8
a5
w©) _ 5 L MMy
Qiimn = QM%Ttan B
i, ¢
de(o 1 m;;m
ngw)z = QmQUTmntaHQB
2
ijmn T %T
1 my,m“
Qe = —2 LT (4.5.25)
2

We now rotate to the quark mass eigenbasis. The up type Yukawas are

u m? Yk, —i€/2 vt
)\Lp” = (52']' 0 ].—>\ COtﬁi-l-O v

m

2
U m? 2 v
VAG2;; = —0ij " |:3)\66 2 cot B — -2 +O( _ )]
u ) 2
2 u _ m; T — i
)‘90 sij = —0;j ” |:3)\66 2 cot 3 ﬁT% + O(m )] (4.5.26)
while the down type Yukawas are
md’é 4
)\ifj = 0ij — [1+)\* Zg/ztanﬂJrO( ﬂ
v m
d. m*
VA = 0y ;

3
S

~ 2 4
|:3/\Z€ 2 tan 3 — 2 "‘O( 4)}
2

~ 2 4
VAEE = 8ij —— [SAge 2 tan 8 — (9( ﬂ

p3ij 2 4
v ma 2

(4.5.27)

=1
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Note that in a type II 2HDM tan 8 can be measured from comparing the deviations of up type

Yukawas versus down type Yukawas from their SM values. Using (4.5.26) and (4.5.27) we get

d,l d,l
mt (AL —mg v v?
tan? 8 = | —2 ki : o — 4.5.28
e p ‘mg’Z<Azﬁm$/v>+ (m%) (1529

The four fermion interactions in the quark mass eigenbasis are defined as in (4.5.15)). They are

given by
U oy UK T Uy W%
uu0) _ o x 850 i T2 8 wit(0) _ o L —Vij 73 i Vi cot” 8
ymn ’ﬁl% 137mn UQ ymn ’ﬁ’L% ,UQ
dx . d *, o d¥,d T
dd(0) _ o 1 §i5 T M tan? B dd=(0) _ o 1 Vim§tme, Vi, tan? B
iymn mg g mn U2 igmn T mg ’112
O, 0
) o) 5 1 Mg My, o
iymn — Yigmn T 2 ,’,~n26ij5mn 2 tan B
2
dx 0 *, d¥, 0
@) _ o L s o miTmy, tan? 3 a(0) _ o 1 ¢ Vigmg M, tan? 3
ijmn Th% yymn ’U2 ijmn m% mn U2
d T, uY/* dx
(@ _ g 1o o mim wd () _ o 1 Vi miVinmn®
iymn m% yvymn 'U2 ijmn - m% ’U2
w. % T oy Uy £
w@ _ o 1 o mimg we@) _ o 1o Vigmymn (4.5.29)
ijmn T m% yvmn 2 iymn T ~% mn 2 s

where + superindex indicates four fermion operators generated by charged Higgs exchange and V is

the CKM matrix. Note that some of the four fermion operators in (4.5.29)) are tan 8 independent.

4.5.3 Type III

The type III 2HDM is defined by setting A} = A{ = A5 = 0. The Yukawa matrices for the Higgs

basis doublets are

5\11‘13;-1 — % )\12‘1?? sin 8

Mo = e T cos B (4.5.30)
5\75;? = /\géj cos 3

S‘gij = —e_ig)\{ij Sinﬂ (4531)

Using (4.3.14), (4.5.30) and (4.5.31)) we rewrite Ay;;

u,d,l

in terms of the fermion mass matrices

i ﬂmw
)\12‘17? = 6757“6505
v
Nooi = eéijsecﬂ (4.5.32)

2ij
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Using (4.5.31) and (4.5.32) the Yukawas for the heavy doublet can be expressed in terms of the

quark mass matrices as

Ju,d
>\2

2

ud

=2e” 2cot5

j

—V2e~F

(4.5.33)

j

Using (4.5.33]) in (4.4.34)), the resulting couplings of the physical Higgs to up and down type

quarks in the low energy theory are

u,d

: 02 4
u,d mij x  —i€/2 v
)\wj = [ )\ cotﬂm—%—i-(’) i

u,d 2 4
w,d My Tx it v v
)\<P 2ij T T, [3/\66 2z cot 3 = + O(fn‘é)}
2y sz 02 o
)‘gp ” = I |:3>\6€ 2 COt/B f% + O <'fh%):| (4534)
while the lepton Yukawas are
¢ 2
¢ ;4 « —ig)2 v v
Nowg = — {1+)\ / taan%JrO(m ﬂ
¢ 2 4
ms. v
oA, = —2 {3%62 tanﬂ+(9< )}
) v ma
¢ 2 4
’ ms. ~. i v
2)\<p sij = U” |:3)\66 2 tan 8 -2 + O< — 4” (4.5.35)
2 2
The four fermion interactions (4.4.17) are
U Ut
wu(0) o L MMy
Qimn 2 220 t< 58
dat, d
dd(0) _ o 1 MyiMyy
Qijmn = Qm% 2 ot 3
(2
£0(0) 1 My M 2
Qiimn = 27?1% 2 tan” g3
d
QIE®) _ _y LMo
ymn TNTL% ’1)2
U oy dt
ud(@) o 1 MiMymy
Qijn = ’ﬁ],i% ’U2 ot ﬁ
ijmn -2 Th% 02 ( 536)

We now rotate to the quark mass eigenbasis by using (4.5.13]). The Yukawas are again diagonal
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in flavor space, and given by

w,d 4
w,d m; * —1&/2 v
Aot = 0 =+ [1—)\ /cotﬁ——i—O m%ﬂ
u,d m?’d _ i€ 4
U)\cpzij = —(it'j " 3)\66 2 COtﬂi—FO %
2 w,d m%d I* _— 4
VA5 = 04 - |:3)\66 El cotﬁ ( §>} (4.5.37)
¢ 4
y4 _ m; * —i&/2
Aoij = 6 U{HA </ tan5—+ <m )]
¢ vh
v)\f; i = 0ij m’[?))\ﬁe 2tan6 2—|—O< I ]
my

2>\E — 5

v
m! o2
oy = 0y {3%6 <m2>] (4.5.38)

The four fermion interactions in the quark mass eigenbasis are defined as in (4.5.15)). They are

given by
U u* UKk
w0y L mim ey e _y L VI
UJijmn - mg ij9mn 02 CO wijmn = 2 2 co
d d * T
dd(0) _ 2 1 5::5 mi*mm t25 dd+(0) 9 1 V m mmvmn tQB
ijmn Th% i mnT CcO wijmn = m%TCO
Ox 0
o) _ oe£(0) _ o, L m&mé,
wz‘jmn _wzjmn mg ijOmn ) tan ﬂ
dx, 0 *, o dx, 0
L ax© _ _p L Vomimm
wijmn - m% 17%mn 1)2 wijmn = m% mn 1)2
d(2) 1 m”md* d+(2) 1 VT uy/*
u — - I m 2 u _ # 2
Wiimn = —2 2 i 0mmn 2 cot™ B Wiy =23 7 2 cot” 3
U g £% T oy Uy £
ub(2) —2 L(5”(5 i M wld(2) —9 1 5 m (4.5.39)
Wijmn - m% igOmnT 3 Wz;mn m% mn 02 0.

where + superindex indicates four fermion operators generated by charged Higgs exchange and V

is the CKM matrix.

4.5.4 Type IV

The type IV 2HDM is defined by setting A} = A4 = X\{ = 0. The Yukawa matrices for the Higgs

basis doublets are

Ju, b u,l
AMij = 62>‘2zy sin 8

)\11] = /\1” cos (4.5.40)

A = A% eos B

24j 2ij

)\2” = —e_lg)\lm sin 8 (4.5.41)
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Using (4.3.14)), (4.5.40) and (4.5.41)) we rewrite Ay, %4 in terms of the fermion mass matrices

_15 \/’m?]d

d
Agij = o ese B

& fmm
v

AQZ] = €2

sec 3 (4.5.42)

Using (4.5.41) and (4.5.42), the Yukawas for the heavy doublet can be expressed in terms of the

quark mass matrices as

ud

2” = V2~ 2cotﬂ
= fe

(4.5.43)

27,]

Using (4.5.43) in (4.4.34]), the resulting couplings of the physical Higgs to up type quarks and

leptons in the low energy theory are

u,l

02 4
wl My Tx —if)2 v
)\SOU_U|:1_A COtB +O mig
u,t " 4
u,l ij Tx i
oA, = {3%6 2 (m )}
u,é
T L P O SN (4.5.44)
Shij = » & — 2 = 5.
while the down type quark Yukawas are
d 4
m:.
)\le — 4 {1—1—)\* _Z§/Qtan5+(9(v4)}
v ms
J mf» 5 02 vl
VA2 = v] {3)\3@ 2 tan ff — ) —l—@( 3)}
md [ - 02 v
2,\Z sij = UJ [3)\6@ 2 tan 8 — =2 +O(m4ﬂ (4.5.45)
m3 2
The four fermion interactions (4.4.17)) are
u o ut
uu(0) 1 mij mn 2
ngmn ﬁl% ,U2 t 6
dt,d
dd(0) __ 1 mijmmn 2
Qiimn = 2177% 2 tan” 3
A
wo) o 1 MMy, 5
Qijmn =2 m% 2 ot 6
d
QO _ _2imi}mfrm
ymn ’ﬁl% ,U2
ymn ’ﬁl% UQ
ul (2) 1 m;‘]mﬁn 2
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We now rotate to the quark mass eigenbasis by using (4.5.13)). The Yukawas are again diagonal in

flavor space. The up type and lepton Yukawas are

u,l 4
A = g, T { — Xe _’5/2cot5—+(’) )}
)\Z Zzy = 76@‘ m?l |:35\662 cotﬂ ( t):|
v 2
m»t T - _ig 4
/\Wgw = —0j; # |:3)\6€ 2 cot,é’ 3 —l—(’)( %)] (4.5.47)

while the down quark Yukawas are

d 2 4
d m; Yx —if/2 v v
AAPU = 51']' |:]. + AGQ ¢/ tanﬁ ﬁ’],ig -+ O(ﬁz%)]
d d e v? vt
VG2, = Oij 3\ie” % tanf —; 72 +0 I
2
dr . e 2 !
2)\2 3ij = 0ij vl [3)\262 tan g ﬁ + (9(7%4)] (4.5.48)
2 2

The four fermion interactions in the quark mass eigenbasis are defined as in (4.5.15)). They are

given by
U UK T U/ *
uw(0) _ QL(S(S % tQIB uut(0) 9 1 M tQB
Wijmn - TNfL% 179 mn 1)2 CO wijmn — ”% v2 co
$rmy 1 Vimdmd VT
dd(o)_27(5 O W Mn a2 dd+(0) _ Vi Vim0 g
Wijn ’1)2 an ijmn 2 U2
Ok 0
o) _ wex@) o Looooomytmy, o
ijmn — Yijmn =2- 251']5 T cot” 8
2
d* o 0 % )
W) = 9 b5 T T sz _ o L Vi mn
ymn mg pvmn UQ ymn ’I’h% mn ’02
d U/ * *
wd@) g Lg 5 MM, wdk(2) _ o 1 %
iymn ’ﬁ’L% 179mn 1}2 ijmn m% U
£2) _ mimgy ulk(2) _ VEmiml:
u m
CL)Z]m’ﬂ - 2 5 5 T cot ,8 ijmn —2 7’[’712 6mnv72 cot B
2 2

(4.5.49)

where + superindex indicates four fermion operators generated by charged Higgs exchange and V'

is the CKM matrix.

4.6 T violation in types I-IV 2HDM

In this section we discuss T violation in the types I-IV 2HDM. We restrict ourselves to effective
dimension six effects. First, recall that in section we concluded that at effective dimension six,
T violation is contained only in the four fermion operators or in the Higgs Yukawas. In the types

I-IV 2HDM, T violation is further restricted.
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From equations (4.5.16)), (4.5.29), (4.5.39) and (4.5.49), we note that in the types I-IV 2HDM,

the only T violation in four fermion operators is due to the known CKM phase. These T violating
terms originate from integrating out the charged Higgs, arise only in flavor violating processes with
CKM matrix insertions, and are present even if all the T violating phases of the 2HDM vanish. The
effects of these T violating terms are heavily suppressed by the Jarlskog invariant.

All non-CKM CP violation at effective dimension six in the low energy theory is contained in
the cubic Higgs Yukawa, which modifies the SM like Higgs Yukawa couplings. In the quark mass
eigenbasis the Higgs Yukawas can be written as

u

u m;
)‘cpij = 51’]’ 0 ( 1 + Ky )
’ m
)‘i’ijf = 0y ; (14 Kay) (4.6.1)

m;"d’é is the complex quark matrix, and k,, q,¢ is given for each type of 2HDM with Glashow-Weinberg



conditions in section (4.5),

Type I:

Type II:

Type I1I:

Type IV:

where we defined

sin 6hf?

v? /9 v
Re Ky, = ——5 Re {e‘iﬁ/ )\g] cot B+ (’)(
My

Im Kk, = -1 = —cotfBsin ¢, .7 + O —
mk m K, cot B sin nif T (m

4
Reky = —Re{e‘lgp)\ } cot B—i—O( v >
mH
. ~ /04
Rekge = —2 Re {6_15/2)\2} tan 8+ (’)( )
My
!
Im k, = — cot Bsin 5hf? + O<m4>

H

4
Imkge = —tan 3 sin 5hf? + (9<U4)
My

4
ReﬁudRe{eZEﬂ)\ } cot 5+(9< Y )
my

4
Reky = —Re 715/2)\ tan 8+ O Y
m? m4
v
1

Imk, = —Imkg = — cot Ssin 6hff+(’)( )
My
. v?
Imky = —tan 3 sin 6hff+0<m}*{)
2 4
Re Ky = —U—z Re [6_’5/2)\3] cot ﬁ—l—O( Y )
My

2 ~
Rekyg = 77:72 Re [e—i£/2)\g} tan 8+ (9(7:24 >
H H
v

4
Imk, = -1 — cot 0, 7+ 0O
mk mry = — cot Bsin &), 5 <m4>
5 vt
I = —t i -4+ 0O —
mKq an ( sin T <m4>

2
= 7)‘6

o s1nArg( 15/2) [1+(9< )}

02 o 02
- @ Im (\je /%) [1 + o< )}
2 2
= ———1Im (m?ﬁ‘e_zg/z) [1 + (9(52)}
H

mH

In the last line of (4.6.3) we used the no tadpole condition (4.3.24) to write

m (5\36_15/2) = —QIm( ire _15/2)
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(4.6.2)

(4.6.3)

(4.6.4)
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From the effective phase (4.6.2)) we see that CP violation at effective dimension six, which is contained
in the Higgs Yukawas, can be written in terms of sin d, 7 Using the relation between Higgs basis

parameters and parameters in the original doublet basis, (4.3.18]), we obtain the relation
Im (ﬁz%z*e_ifﬂ) = —Im (m%z*e_i&) (4.6.5)

such that using (4.6.5)) we can express the effective dimension six phase sin d, 7 in terms of potential

parameters in the original basis

2 2
sin 6hf? = m—%[ Im (m%z* _’5) [1 + (9(;22)]

H
The quantity Im (m}5e~*) depends on the Higgs condensate phase £ in the original basis. We now

solve for the phase in terms of potential parameters. The EWSB condition in the original basis

{37 is
2% —if Lo s o—2igy L Lo o wo—igy L Lo2 oo * —i€
Im (miye™ ") = 7V sin 2BIm(Aie™ ") + v cos BIm(Age™) + v sin BIm(Ae ")
(4.6.6)
Note that from (4.6.6) it is clear that Im (m?5e®) is of the order of the electrosheep scale squared.

The symmetry protecting the Glashow Weinberg conditions imposes A\¢ = A7 = 0, so in this case

the EWSB condition (4.6.6]) is simplified to
. 1
Im (m%z*e_lg) = 41} sin 23 Tm(A\Ze~2¢) (4.6.7)

Equation (4.6.7) has a simple solution at effective dimension six. We leave the derivation of the

solution for an appendix. The solution is given by

2
Im(m3se™ %) = 112 |As|sin 243 sin Arg(mi,AL) [1 + (’)( |As] 7:;2)} (4.6.8)
H

Using (4 in the effective dimension six CP violating phase (4 ,

02 2
sinéhf? = |)\5|sm2ﬁsmArg(m12)\5) -} {1-{- O(|)\5nz§{>}
tan 8 v? 02
= Twa’d |As|sin Arg(mipA\L) —5- o [1+ O<|)\5| m%{)] (4.6.9)

(4.6.10)

where in the last line we made use of sin23 = 2tan /(1 + tan? 3). Note that at large tan 3 the

effective phase sin §, /7 I8 suppressed by 1/tan j,
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4.7 The electron EDM

The leading contributions to the electron EDM in terms of the effective Yukawa modifiers x, and

Kd,e is given by the sum of terms involving top, bottom, tau and W boson loops ||

e Grme

% ¢ loop - _1;5% {f(m?/m%)lmf%+g(mf/mi)1mmu} (4.7.1)

de 4v2aGpm,

e, ooy = —3\[(475; [f(mg/mi)lmw+g(m§/mi)1mfab} (4.7.2)

d, 420G rm.

e 7 loop - _\[(Zﬂ-)grn |:f(m72'/m}27,> +g(m72—/m;21):| Im Ky (473)

de aGrme

e - Mig {59(m%V/m%)+3f(m%/v/mi)+3[g(m%[,/mi)+h(m%v/mi)]

€ W loop (471—) 4

1Lg(m3y/m3) — f(m}y, /m3)
2 ’}’;%v/mi =t ] Im (4.7.4)

de 1 ﬂOéGFme

= - "¢ D(m? DI 4.7.
2 (47)3 sin? Oy (i /) Tan s (4.7.5)

non Barr-Zee

The corresponding masses are given in table We use the MS mass for the bottom quark

Yukawa in the calculations. We neglect the renormalization of the rest of the pole masses.

Pole MS (my) MS (m)
my | 172.5 163
my | 172.5
mp | 3.8 2.8
mr 1.8
mw | 80.4
mp 125

Table 4.4: Pole and MS masses in GeV.

The functions f(z),g(z) and D(z) are given in appendix [Cl For reference, the numerical values of
the functions are given in table [£.5]
In the absence of additional CP violating operators, the experimental limit on the electron EDM
is is [118]
de <87x107% e cm (4.7.6)

Using the effective Yukawas (4.6.2)) in the expression for the electron EDM (4.7.1)), (4.7.2), (4.7.3)),
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2 fR)/V= 9(2)/vz [(2)/z g(2)/z hz)/z D(z)/z
1 0.83 1.17 -0.78 —-1.10
m2/m? | 0.73 1.04
mi/m3 0.64 0.79
m2/m32 0.45 0.54
m2, jm3 147 206 —1.25 —2.49

Table 4.5: Reference values of functions f(z), g(z), h(z) and D(z). The functions are defined in appendix

G

(4.7.4) and (4.7.5) we obtain

2
TypeI: d. = 7.11 x 10°%7 cot Bsin oy, ;7 {1 + O(U 2)} e cm
my

i 5 N
Type II: d. = [4.56 x 107" cot 8 — 2.56 x 10" tan §] sind, ;7 |1+ o( - 2) e cm
L mp*= /|
—27 —27 . [ v* V]
Type III: d, = [4.54 x 107“" cot § — 2.57 x 10™*' tan ﬂ] sin 5hf? 1+ O< 2) e cm
L mg= /|
- 5 L3
Type IV: d = [7.12 x 107*" cot 8 — 1.38 x 107 tan 3] sin 6, ;7|1 + (9< Y 2) e cm
L mg= /|
(4.7.7)

We now make use of the electron EDM’s and the experimental constraint to set limits
on the effective phase sind, T The limits are shown in figure in the plane of the effective
phase versus tan 8. The limits are particularly strong at large values of tan 8 in the types II and
II1, since in that case there is a enhancement of the CP violating effective lepton Yukawa, which
enhances the EDM diagram with a W boson loop. The weakest limits are for the type I 2HDM,
since in that case there is no ehnacement of any of the CP violating effective Yukawas at large tan 5.

It is also illustrative to express the limits in terms of parameters of the two Higgs doublet model
potential in the original basis using the relation . The relevant combination of potential
parameters is |As|sin Arg(m‘ﬁ)\g)%. The corresponding limits are presented in figure (4.12). In
terms of this combination of parameters, there is no tan 8 enhancement for the limits. The reason
is that this combination of perameters enters in the effective phase sind, T with a power of tan 8
suppression, which cancels the tan 8 enhancement of the EDM’s in all cases. Note however
that the limits are still considerable in types II and III, in which case most of the parameter space
with |As|sin Arg(m‘ﬁz\g)% > 107" is ruled out. Types I and IV are mostly unconstrained, since
in this case the contribution of the combination |As|sin Arg(m‘llQ/\;)nZ—; to the EDM’s is heavily
suppressed by tan (.

Finally, we plot the limits as a function of the imaginary part of the effective top and tau Yukawa
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and tan 3 in and [4.14] We
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Figure 4.11: Limits on |sind, 7|. The shaded region is excluded by the ACME bound |d.| < 8.7 x
1072° e cm. Dashed lines correspond to contours of the electron EDM in units of e cm.

4.8 Conclusions of this chapter

In this chapter we studied and organized the low energy phenomenology of the SHSM and 2HDM
near the decoupling limit using EFT. We worked at tree level. In the SHSM we worked up to
effective dimension six, and in the 2HDM we worked up to effective dimension six in interactions

involving fermions, and eight in purely bosonic interactions. The main output of this exercise is a
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general map between experimental signatures and theory. We summarize some of its main features

in table [f.6] This map is a valuable, simple tool for interpreting experimental data.

Several observations can be made thanks to the organization of the phenomenology, that will be

studied in follow up papers. First, we point out that the main difference of extensions with singlets

and doublets, is that couplings of the Higgs to fermions and to massive gauge bosons are modified at

different effective dimension. For this reason, a well motivated quantity to study at LHC are ratios
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of the type
f
)\m‘j gil\év
fsMm
Jpvv /\tﬁij

Measurements of these ratios have been recently presented by ATLAS and CMS . In the SHSM

(48.1)

these ratios can be obtained from (4.2.56]) and (4.2.58)), and should be close to one, if radiative effects

are small. In the 2HDM they are obtained from (4.4.31)) and (4.4.34)) and should be generically

different from one. These observations remain valid away from the decoupling limit. Ratios of

different couplings of the Higgs are one of the main tools to discern between the different extensions
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of the Higgs sector. In the ratios, theoretical and/or experimental uncertainties might cancel. Ratios

of Higgs Yukawas or Higgs couplings to massive gauge bosons over Higgs self couplings might also

be interesting observables at colliders.

Moreover, the deviations of the couplings with respect to their SM values are controlled by a small

subset of parameters of the UV completions. This leads to correlations between the deviations. The

simplest case is in the SHSM, where both the Higgs couplings to two massive gauge bosons (4.2.56)

and the Higgs Yukawas (4.2.58) suffer the same modification as pointed out above. In the 2HDM,
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the deviations of these couplings are not directly correlated in general. However, in the particular
limit in which the Yukawas of the heavy doublet vanish, as in the type I 2HDM at large tan 3, both
deviations show up first at effective dimension eight and are equal, mimicking the effective theory
of the SHSM. In this case, both deviations can be understood as dilution by the complex alignment
parameter.

Regarding T violation, in the 2HDM EFT we identified the U(1)pq invariant T violating phases of
the full 2HDM which are most relevant at low energies. We showed that only relative phases between
the Higgs potential coupling X6 and the heavy doublet Yukawas appear at effective dimension six.
In particular, in types I-IV 2HDM we showed that there is only one such phase and it appears only
in the Higgs Yukawas. This phase can be constrained by EDM experiments.

We also organized all the effective dimension six flavor violating effects in the 2HDM EFT. All
the four fermion operators were derived, and the flavor violating Higgs Yukawas were presented.
For the general 2HDM, these results are tan 8 independent. Direct constraints on both the four
fermion operator coefficients and on the Higgs Yukawas can be placed, and efforts have already been
carried out in the literature [119]. Moreover, recent anomalies on flavor physics [120H126] provide
strong motivation to study models with novel sources of flavor violation. These anomalies might
be explained with tree level flavor violation [127], and it remains interesting to perform a detailed

study of all the alternatives within the 2HDM.
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The SHSM The 2HDM
Couplings to gauge bosons ED 6 ([4.2.56) ED 8 ([4.4.31)),(4.4.32)
GoVV,9p2VV s V=W2Z2 Always smaller than SM Always smaller than SM
Fermionic couplings ED 6 (4.2.58)
)\iij , f=u,d, Always smaller than SM ED 6 ({4.4.34)
Higgs self-couplings ED 6 (4.4.35), (4.4.36)
935 Gt ED 6 (¢.2.59) Always smaller than SM
ED 6 (4.4.17)),(4.4.34)
Flavor violation X AF =1,AF = 2. Chirality
violating and preserving.
ED 6 (4.4.17)),(4.4.34])
T violati X Only in fermionic interactions.
viotation Only one phase danpm
in types I-IV.
Modifications correlated and €2 X6 (4.3.16) (or = (4.3.52)))
S5 (4.2 4.2, <
controlled mostly by n? (8-2.3) (or cosy (#.2.18)) and /\gij4.3.13 s f=u,dt

Table 4.6: Summary table of the main features of the SHSM and 2HDM effective field theories. ED stands
for effective dimension. Fach equation reference after ED 6 or ED 8 points to the coupling or operator
where the corresponding effect can be read off. The rest of the equation references point to definitions of
parameters.
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Chapter 5

Conclusions and Outlook

In this work we addressed many of the fundamental problems of particle physics. We started
by discussing the puzzle of CP violation, which contains four basic moving parts: the strong CP
problem, the problem of the origin of the matter-antimatter asymmetry of the universe, the problem
of the flavor and CP violating structure of the quark sector, and the problem of the flavor and CP
structure of the lepton sector, which includes the issue of the origin of neutrino masses. We provided
a full solution to the puzzle of CP violation through a high scale supersymmetric model in which
all flavor mixing and CP violation is spontaneously generated through a Nelson-Barr mechanism.
We developed powerful analytical tools to study the parameter space of the model, and we were
able to conclude that the model not only accommodates all the known flavor and CP structure of
the Standard Model, but it accommodates all the required CP violation in nature and included
a mechanism for baryogenesis. Moreover, the model provides sharp predictions, making it quite
unique. In particular, it provides a strong prediction for the mass of the lightest neutrino, which is
below the mass sensitivity of current experiments.

It is exciting to have a well motivated model at disposition which such predictive power. The
dark energy survey will reach a bound on the scale of the neutrino masses > m,; < 0.1eV, just
above the higher mass range for our prediction. Therefore, our model provides strong motivations
to look for alternative ways to lower the bound. On the other hand, better measurements for the
mixing angles are crucial to improve the predictions of our model. And finally, measurements of the
CP violating phases in the DUNE [48] experiment could rule out or provide evidence in favor of our
model.

On the other hand, it is of the greatest importance to have phenomenologically viable mecha-

nisms of supersymmetry breaking. In this work we provided a complete, natural model for gauge
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mediated supersymmetry breaking. This model has attracted attention for its simplicity (the model
basically rescues a phenomenologically viable versions of minimal gauge mediation), and because
it has been shown to be the most natural model available in the literature [16]. The model leads
to spectacular experimental signatures at LHC for natural spectra with accessible colored particles
(stops or gluinos). The decay chain is long, and includes jets, missing energy and taus in the final
state, such that there is discovery potential with only few events. The natural parameter space of
this model is being probed at the 13 TeV LHC.

Finally, in this work we carried out a complete and detailed analysis of the Higgs sector of
supersymmetric models and of other extensions of the Standard Model. The properties of the Higgs
boson are being probed at LHC, and the absence of deviations with respect to the Standard Model
predictions lead to strong motivations to consider extended Higgs sector where the additional vacuum
states are heavy. Moreover, the possible extensions of the Higgs sector which are compatible with
electroweak precision tests are limited. Following these principles, we concentrated in extensions with
only a singlet (SHSM) or a heavy second SU(2); doublet (2HDM), and we performed a detailed
analysis of the phenomenology by using effective field theory. The conclusions are strikingly simple.
In the extension with a singlet, we found that only two operators modify the SM lagrangian at
leading order in the operator expansion, namely a Higgs sextic interaction and a dimension six
kinetic operator, which modifies uniformly the Higgs interactions to fermions and gauge bosons. On
the other hand, for any 2HDM near the decoupling limit, we found that the effects on low energy
physics are organized by a concept of operator effective dimension, which differs form naive operator
dimension. We found that the leading corrections to the SM predictions are exclusively in four
fermion operators, a cubic Higgs Yukawa operator and a sextic Higgs potential coupling. The most
interesting experimental opportunities arise from the first two types of operators. Four fermion
operators and cubic Yukawas may lead to flavor and/or CP violation, and an interesting avenue to
pursue is to understand the limits on the flavor structure of such operators. On the other hand, the
cubic Yukawa operator modifies the SM like couplings of the Higgs to fermions, and leads to possible
deviations that might be found at LHC. The operator analysis shows that in the 2HDM, deviations
to the SM like couplings of the Higgs to gauge bosons arise only at higher order in the operator
expansion so they are suppressed. The different hierarchy of modifications of the couplings in the
SHSM and 2HDM is a powerful tool to distinguish the phenomenology of the different extensions of
the SM.

The hierarchical organization of the modification to the Standard Model predictions in each of

the models was then used to understand the low energy CP violating effects of first a general 2HDM,
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and then of a 2HDM with Glashow Weinberg conditions. In the latter case, it was shown that the
observable effects at leading order in an operator expansion come from a single effective dimension
six operator, which was constrained using limits on the electric dipole moment of the electron. It is
interesting that such limits are most relevant for the 2HDM of types II and III, and constrain the
effective phase to be less than one part in ten for most values of tan 3. Types I and IV are much
less constrained, especially at high values of tan 3, and a large effective CP violating phase may be
present. Better limits on the electron EDM will be crucial to probe the remaining parameter space,
and if an anomalous result is obtained in the data, it could provide hints for the existence of an
extended Higgs sector.

Exciting times are coming for particle physics. All the models discussed in this work are directly
targeted to solve the fundamental problems of particle physics, and have phenomenological conse-
quences which are accessible to current or future experiments. Our understanding of the Higgs sector
of the SM, of the flavor and CP structure of the quark and lepton sector and of the symmetries un-
derlying our fundamental theories, which have been mostly unaltered in the previous decades, might
suffer a drastic change in the next few years. It is of the greatest importance for the theory commu-
nity to keep working in providing insight to organize and motivate new experimental searches, which

may finally lead to the solution of one or more of the current challenges in fundamental physics.
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Appendix A

Flavor invariants

A.1 Flavor Invariants in the Standard Model
The dimension five superpotential of the MSSM contains the interactions
/\ld] QinEj — )\Z QiHuﬂj — /\fj LinZj
+ A7 (LiHy)(L; Hy) (A.1.1)

The MSSM has a U(3)® background symmetry, which corresponds to its flavor group. The
charges of the couplings are specified in table For convenience, the flavor charges for some

combinations of couplings are given in table

UB)e UB)w UB)z UB)L U(3)
Q 31
u 31
8 §1
L 31
l 3,
)\u g_l 3_1
/\d g_l 3.1
)\g §,1 34
Y 6_»
s 16 15 15
€02 19 1, 1, 13 10
€'t 1, 16 1y 16 1o

Table A.1: Flavor symmetries in the Standard model with massive neutrinos. The vacuum angles are
defined up to a sign. The subscripts indicate the U(1) C U(3) charges.
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U)o UBjw UB)z  UB)L UB)e
Au Al 1,D 8y 1, 1,
)\d)\z 1088 1y 1y
AeAS 10©8) 1o
AL 1088027y 1p

AL, Ad)\:;] 80,49100, 45100, 4

Det A\, 1_5 1_3 1y
Det A\g 1_3 1 1_5
Det Ay 1_3 1_3
Det A\, 1.4 1
Tr[(AuA])"] 1,
Tr[(AaA))"] 1o
Tr[(AcA])"] 1
Te[(AA])"] 1o

Table A.2: Flavor charges for some combinations of fermionic couplings. The subscripts indicate the
U(1) C U(3) charges. This notation could be confusing: for instance A, can be confused with just simple
matrix multiplication as in the rest of the paper, but here we mean both the 8 that results from matriz
multiplication, and the 1 that results from the trace of the matriz multiplication. DEU

All observable quantities must be invariant under flavor transformations. Invariants can be built
by taking traces of flavored matrices, as in exemplified in table [AZ2] Observables that break and do
not break CP can be expressed in terms of CP odd and CP even invariants, respectively [128]. A
CP odd (even) invariant is defined as a purely imaginary (real) flavor invariant.

In this work we make use of leptonic invariants, which are useful tools to simplify the numerical
calculations. Quark invariants are not be used intensively, but they are somewhat simpler and more
familiar than the leptonic invariants and they illustrate the ideas of the invariant formalism, so we
begin by describing them.

The quark sector contains eleven observable parameters «;, i = 1..11. These parameters are the
six masses, three mixing angles, the CKM phase and the strong CP phase. Correspondingly, we
must be able to express the eleven observable parameters in terms of eleven independent invariants
Z;, j = 1..11, nine of which must be CP even and the remaining two must be CP odd. Independence

of the invariants is ensured if the Jacobian

det (gﬁj) (A.1.2)

is non zero. In this work we check numerically that this condition is always fulfilled for the set of

chosen invariants, but we omit presenting the explicit calculations for brevity.
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We now present the independent invariants for the quark sector. (*maybe just remove the follow-
ing comment, is not clarifying at all*) All of them, except the one measuring the strong CP phase,
will be built out of traces of matrices that transform only under U(3)g to ensure invariance (see
table . The magnitude of the six quark masses squared can be expressed in terms of the CP
even invariants

V2" Tr (/\UAL)TL v3" Tr ()\d)\:;)n (A.1.3)

with n = 1,2,3. The above invariants are real since the matrices A, \f, )‘d/\Zz are hermitian. The

remaining three CP even invariants are related with flavor mixing, and can be chosen to be

Tr ([)\UAL,)\d)\HQ)

Tr ([AuAL, Aa) (/\u)\L))

T (AL 2] (M)
It can be shown that the above invariants are real by using the cyclic property of the trace and
the hermiticity of the matrices )\u/\L and )\d)\;rl. Note that if the matrices )\u)\L and )\d)\:; can be
simultaneously diagonalized by an SU(3)¢ transformation, the invariants in vanish. This

corresponds to the case of no quark mixing.

The CKM phase resides in the CP odd Jarslkog invariant [31], which is conventionally defined as
1
—iJ = Zobef T ([AuAL,AdAL]?’) (A.1.4)

The trace in (A.1.4)) is purely imaginary since the matrix [A Al )\dAL]S is antihermitian. Note that
in the case of no quark mixing, the invariant vanishes and the CKM phase is not observable.
We now turn to the strong CP phase. The U(1) charges of ¢’ corresponds to the strength of

anomalies. The invariant for the SU(3)¢ vacuum angle is given by
i = iArg( ¢ Det A, DetAg ) (A.1.5)

The existence of a basis independent combination of Lagrangian parameters corresponding to the
SU(3)¢ vacuum angle implies that all of the zero modes of an SU(3)¢ instanton can be soaked up
by Lagrangian interactions.

Now, without loss of generality the yukawa matrices are given by

vy = Ug, diag(my,, me, my) U%
(A.1.6)
vgAa = Ug, diag(mga, ms,mp) UET

where Ug,,, Ug,, Uy and U3 are basis dependent unitary matrices and the masses are defined to

be real and positive. In a given basis, (A.1.6) fixes Ug,, Uq,, Uz and U; unambiguously up to
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right multiplication by arbitrary diagonal unitary matrices. These diagonal unitary matrices can be
seen as the remaining flavor transformation that one can perform in a basis in which A, or A\; are

diagonal. Without loss of generality, they can be chosen such that the CKM matrix

_ 77T *
Vexkm = UQuUQd (A.1.7)
is in its canonical form, as given by [41]
—is
C12€C13 512€13 S13€
Vokm = | —si12023 — c12823513€"  c12023 — S12523513€" 523C13 (A.1.8)
_ i0 _ _ 0
§12823 — C12C23813€ C12823 — 512C23513€ €23C13

Explicit expressions for the invariants in terms of measurable parameters can be obtained using

(A.1.6) and (A.1.7). The results are of course independent of the basis chosen to perform the

calculations. As an example, the invariants (A.1.3)) are given by

vi" Tr (AHAL)R = mi" + mz” + mf" (A.19)
v T (A" = mE 4+ m2 - mn

with n = 1,2, 3. Note that these “mass invariants” are independent of the mixing angles and of the

CKM phase. The invariants measuring flavor mixing are

viod T (AL AN?) = 2T (M2 Ve M3 Vi M2 Vo M3 Viens
— M2 Vo Mi Vi M2) (A.1.10)
2 * *
— M Vet M Vi ) (A.1.11)
2 * *
oio T (AL AN AN = T (M Vs M2 Ve M3 Vs M2 Viien
— M§ Vi M Vi) (A.L12)

The trace for the Jarslkog invariant is given by

vyvg Tr ([/\u/\;ru AMZ]?’) = Tr (3M3 Véren Mg Ve M3 Vi M3 VgKM) —he.
(A.1.13)
Jo=2(mi = me)(mi —mi)(mg = mg)(mg = m)(mg — mg)(mg — mg)

812823831612623031 sin (A.1.14)
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check prefactors The expressions for the flavor mixing CP even invariants (A.1.4) in terms of masses
and mixing angles are complicated non-linear expressions, and we choose to omit them. The ex-
pressions are complicated since mixing can occur between any two out of the three generations,
and the invariants must account for all the possibilities. This is a feature that carries on to the
leptonic sector, and in practice disfavors the use of CP even flavor mixing invariants, in the sense
that if the numerical values of the flavor mixing invariants are known, it is numerically challenging
to extract the values of the mixing angles from them. In this work we do not make use of flavor
mixing invariants in the calculations.

The leptonic sector contains twelve observables: the three charged lepton masses, three left
handed neutrino masses, three mixing angles and three CP violating phases in the PMNS matrix.
One of the CP violating phases is similar to the CKM phase of the quark sector, while the other
two are Majorana phases. Correspondingly, there are twelve invariants, nine of which are CP even,
and three of which are CP odd. Differently from the quark sector, in this case there is no basis
independent combination of quark and lepton Lagrangian interaction parameters that give rise to
quark and lepton masses corresponding to the SU(2), vacuum angle does this mean that the SU(2)p,
vacuum angle is not observable?, so the corresponding CP violating phase is not discussed here.

We now present the leptonic invariants. We build them as traces of matrices that transform
only under U(3)y, (see table . The magnitude of the three lepton and neutrino masses can be
expressed in terms of

Te[(AAD)"] Tr[(AA])"] (A.1.15)

for n = 1,2,3. The above invariants are real since the matrices )\g)\z,)\,,)\:f, are hermitian. The

remaining three CP even invariants are related with flavor mixing, and can be chosen to be

Tr (Al AAL)
T (A WAL (e)?)
Tr (oAl AAl ) (ual)?) (A.1.16)

The case of commuting )\g)\z and \, A\l corresponds to the case of no leptonic flavor mixing.

Of the three CP odd invariants for the leptonic sector [128], one is a leptonic Jarlskog invariant

— iy = %vg Tr ([m; ,)\l,)\f,]g) (A.1.17)
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while the remaining two are related to the Majorana phases
Tr (A, A (AN AL T)

T ([Ag)\} A ] (n(m})“ﬂ))

Without loss of generality, the charged lepton Yukawas and the LH neutrino mass matrix are

(A.1.18)

given by

UFDVIE ULd diag(meam;umT) U[;r

v2, = Ug, diag(mye,myy, my,) UL (A.1.19)

u

where Ur,,, U, and Uy are basis dependent unitary matrices and the masses are defined to be real

and positive. The PMNS matrix is a unitary, basis independent matrix defined as
Upmns = UL, UL, (A.1.20)

In a given basis, (A.1.19) fixes unambigously Uy, , but Uy, is fixed only up to right multiplication
by a diagonal unitary matrix. This diagonal unitary matrix is chosen such that the PMNS matrix

is in its canonical form given by

Upmns = UP (A.1.21)
where
1 0 0
P=| 0 ¢* o (A.1.22)
0 0 eia
and
€12C13 $12C13 s13e” 101
U= —812C23 — €12523513€01  C1aca3 — S12523513€01 S23C13 (A.1.23)
i613 Z-513

512523 — C12€23513€ —C12823 — 512€23513€ C23C13
where we are abusing of the notation by calling the lepton and quark mixing angles in the same way.
Explicit expressions for the invariants in terms of measurable parameters can be obtained using
(A.1.19) and (A.1.21)). The results are of course independent of the basis chosen to perform the
calculations. As an example, the invariants (A.1.15)) are given by
v Te (AA)" = m2 4+ mZ 4+ m2"
(A.1.24)
vl Tr (AN = m2 +m2t +mln

with n = 1,2,3. Note that these “mass invariants” are independent of the mixing angles and CP

violating phases.



143

The flavor mixing invariants (A.1.4]) are

vhug Tr ([)\f)\}’)\l/)\j/]2> = 2Tr (M; Upnns My Upyins M7 Upynins M Upyins

— M7 Upyins M, Upyis ME) (A.1.25)

2 * "
US”S Tr ([AME, AW\H AME) Tr (UPMNS ME UgMNS MZQ Upmns MVQ UgMNS Mefl

— M Upyins My Upins ) (A.1.26)
vy vg Tr ([Af)‘L)‘uAH%‘u}‘i) = Tr (M;l Upnns M7 Upnins Mi Upyins M7 Upyins
— M Uyns My U;MNS) (A.1.27)

The trace for the leptonic Jarslkob invariant is

3 * *
v, vg Tr ([)‘W\L /\V/\:r/] ) = Tr (3MEL Upnins My Upnins M7 Upwins My, UgMNS) —h.e

(A.1.28)

We can also evaluate the trace in the leptonic Jarlskob invariant explicitely

Jr = =2(mj, —m2)(m? —m)(m7 — my)(mi, —mp, ) (m3, —mj,)(my, —my,)
$12C12813C13523C23 sin 013 (A.1.29)

Note that this invariant is independent of the Majorana phases of the PMNS matrix.
The CP odd Majorana invariants in terms of masses and the PMNS matrix are
* 3
v12p12 Ty ([AM; Aw(AeA)) A ) = Tr (3M3 Uy M2 Upnins My, Ul (A.1.30)
MG Upnins My Uining M7 Upnins M,

Ubnins M7 Ubnins My Ubyns M2 Upnins ) —h.c.

vgvg Tr ([ME,MH (Av()‘f)‘z)*/\i)) = Tr (Mf U ains M7 Upnins

M, UgMNS Mgz U;MNS) —h.c. (A.1.31)
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UB)y UB)L UB)e

N 3

L 34

l 3
)\N 3 5—1

M | 6_,

)\e 571 31
6w2 ].3 10
ewl 16 112

Table A.3: Flavor symmetries of a type I seesaw model with leptonic couplings as in (2.2.16|). The subscripts
indicate the U(1) C U(3) charges.

| UB)Ny  UB)L U@
)\}LV)\N 10P 8 1o 1
M*M | 1008727, 1y 19

Table A.4: Flavor symmetries of a type I seesaw model for some combinations of fermionic couplings.
Couplings are defined as in (2.2.16]). The subscripts indicate the U(1) C U(3) charges.

A.2 Flavor Invariants in a type I seesaw model

We now consider the leptonic sector of a supersymmetric type I seesaw model. The superpotential

contains the interactions
1MNN N L,H4l AN L,H,N.
§ijz'j*ijidj*ijiuj

A type I seesaw model has a U(3)y x U(3) x U(3), background symmetry, which corresponds
to its flavor symmetries. The flavor symmetries are specified in table[A:3] In a type I seesaw model,
the RH neutrinos are heavier than the LH leptons. When the RH neutrinos are integrated out, they
lead to a low energy effective theory with leptonic flavor symmetry U(3)r, x U(3), as in table
For convenience, the transformation properties of some combination of couplings is given in table
A4

A type I seesaw model has twenty-one independent observables. We separate the observables and
invariants in “IR” and “UV” observables and invariants. We define the twelve IR observables &,
a = 1..12 to be a minimal set of independent parameters that completely specify all the independent
invariants that can be built with the flavor symmetry U(3)r x U(3), of the low energy effective
theory. As seen in section the twelve IR observables can be chosen to be the six LH lepton

masses and the six elements of the PMNS matrix.
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The remaining nine observables 7, b = 1..9 are defined as the UV observables maybe the wording
“observables” v/s “invariants” is not clear. after all, invariants are also observables. By definition,

the twelve IR invariants Z, do not depend on the nine UV observables,

0L,
=0 a=1.12,b=1.9 (A.2.1)
Oy

The nine UV invariants Z;, can depend both on the IR and UV observables.
We now identify the nine UV observables. We first note that the RH neutrino mass matrix is,

in the most general case

M = UL diag(M,, My, M3) Uy, (A.2.2)

On the other hand, using (2.2.23) and (A.1.19)), the neutrino mass matrix must satisfy

UZANM_I()\N)T = Uy, diag(mue, My, Myr) Ugu (A.2.3)
The most general RH neutrino Yukawa satisfying (A.2.3)) is [50]

vuAn = UL, diag(w/m,,e, NGO w/mw> Rdiag(ﬂ, \/ Ms, \/Mg) Un (A.2.4)
where R is a basis independent, complex orthogonal matrix
RRT =1 (A.2.5)

which we can write as
CoC3 —C183 — §152C3 §183 — C152C3
R = C283 C1C3 — 818283 —S81C3 — C15983 (A.2.6)
52 S51C2 c1C2
where s; = sin0;, ¢; = cos#; and 61, 65, 3 are arbitrary complex angles. Since R is basis independent,

all of its three real parameters and three phases are observable. They lead to flavor and CP violation

in the Yukawa interaction of the RH neutrino. From (A.2.2)) and (A.2.4), the nine UV observables

7, can be chosen to be the three RH neutrino masses, and the six elements that specify the matrix
R.

We now present the corresponding UV invariants. We build them out of traces of matrices that
transform only under U(3)y as in table The RH neutrino masses can be expressed in terms of
the invariants

T [(MM)"] (A.2.7)
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with n = 1,2,3. The three UV invariants measuring flavor violation are

Tr A A, M* M2 (A2.8)
Tr (A Ay, M AL AN M]? (A.2.9)
Tr ([A}VAN, M*M]Q(M*)\R,)\NM)Q) (A.2.10)

The three UV invariants measuring the UV CP violating phases are

T A A, M*M]° (A.2.11)
Tr Mo, M AN M (A.2.12)
Tr ([AEVAN, M*M] (M*AEVANM)2> (A.2.13)

Finally, one must show that the given set of twenty-one invariants is an independent set of
invariants. According to , the Jacobian matrix is a block-triangular matrix. This considerably
simplifies the calculation of the Jacobian. The determinant of a block triangular matrix is given by
the multiplication of the determinants of the diagonal blocks. The determinant of the diagonal block
involving only the IR invariants is non-zero, since it corresponds to the condition that the twelve IR
invariants are independent. The determinant of the second block is given just by derivatives of the
UV invariants with respect to UV parameters

0T,

det
¢ e

c=1.9 (A.2.14)

Using (A.2.7), (A.2.10) and (A.2.13)) we check that (A.2.14]) is indeed non-zero numerically. This

completes the proof; the twenty-one chosen invariants are independent.
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Appendix B

The little A/m?* problem for arbitrary

couplings

In sections and we concluded that the little A/m? tuning problem is most serious when a
soft mass for the Higgs field is generated. In this appendix we show that this little A/m? problem
is generic for our class of models: it cannot be avoided by increasing the messenger number or
considering a more general renormalizable superpotential.

Consider the most general renormalizable superpotential coupling the fields H,, @Q,w with n pairs

of messengers ¢, ¢ (k=1...n) with the quantum numbers of H, and its hermitian conjugate

W = Myérdp + XpdrHy + Y HoQU + Mo QU + . . . (B.0.1)

where we sum over repeated indices. Here, differently from section [3.3] we work in a basis in which
the supersymmetric mass matrix has already been diagonalized, so X have only F-term vevs. The
rest of the interactions included in ... do not matter to derive the induced A-term and soft mass at
lowest order, so we neglect them in what follows. Integrating out the messengers in the small SUSY

breaking regime F/M? < 1 we get the low energy superpotential and Kihler potential

_ _ Xk _ B X\ [ Xk n

so the A-term and induced soft mass are

O uXy . (X (X
YAy = M, omy, = (Mk> M, (B.0.3)

To avoid the little A/m? problem, we need to maximize the ratio of the A-term over the soft mass.

In particular we are interested in knowing if in doing this, the theory remains perturbative, or if it
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does not, when does it become strongly coupled. To address this question, note that there is a linear

combination of messengers that couples to the light fields with a Yukawa with magnitude given by

A= [P (B.0.4)
k

so that the Yukawa beta functions are, at one loop,

6yt )\2
1672

(B.0.5)

632\
Br =B+ z,t

_ a0
1 7_[_2 I Byt - /Byt +
where Y is a MSSM-like top Yukawa beta function. We immediately see that the parameter that
controls the running of the Yukawas is |\|. Fixing this parameter, the ratio of the A-term over the

soft mass is maximized when A\ and J)\(Ti are parallel vectors in k space. This leads to the bound

yr Ay
5mHu

<Al (B.0.6)

where to retain perturbativity A needs to be of order one or smaller. This bound is valid for the
most general renormalizable superpotential that couples messengers with the Higgs at tree level. A
similar bound relating the squark mass to the A-term can be obtained for the non-MFV model of
section [3.2] Note that the bound is independent of the messenger number. For messengers at 250
TeV and A = 1 as considered in section a Landau pole is obtained at ~ 10'® GeV. A coupling
A = 3 as considered in section [3.3] leads to a Landau pole less than a decade above the messenger

scale.
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Appendix C

EDM functions

In this appendix we define the functions needed for the calculation of the electron EDM in section

The functions are taken from (cite barr and paban) []. The functions f(z),g(z) and h(z) are

given by
10 = e [t [ )] G0y
S R P . G
9(2) = 2 /0 d x(lf:c)le [ z } (€02
1! 1 z z(l —x)
h(z) = 5z/o d:cxux)Z(x(lx)Zln[ - }—1) (C.0.3)
Defining
a(z) = z(1—2)
Alz,y,2) = x+4y/z
B(x,y,z) = A(x,y,2)—a(x)
B'(:z:,y,Z) = A(Iayaz) - a(y)
_ A(x,y,z) n A(m,y,z) —
C(:Lyy,Z) = B(z,y,2) L |: a(x) ] !
(g p _ a(x) n A(x7y7z) —
C'(x,y,2) B(x,%z)l [ a(x) ] !
br.2) = @ (C.04)

and
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R T
) /01 . /Olz e (C’(w,y,z) {3%1(;,2@(,;03 ;)zxy L1 +3x(£1; (;72;)!)(%(:5)) ) QG:E,x)]
s )
Dale) = / - / Wy (e ™ eg) Y
D) = / o /dy (zBul,y,z) [1 B 2%5(5%)}
t el )
Dy(z) = ;/01 do /O” dy a(g;) (gz((“;?;?) [1:(233 ~ Da(z) + 23z — 1)B(x,y, )
- QBQ(x,y,z)} - 2[1 - f&i;%b (C.0.5)
the function D(z) is given by .
D(z) =) _ Di(z) (C.0.6)

=1
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Appendix D

Solution to the EWSB condition for the
condensate phase ¢ in the Z, symmetric

limit

Glashow Weinberg conditions may be imposed by a Zs symmetry under which the doublets ®1, ®5
have opposite charges. This symmetry also imposes that the Higgs potential parameters A\g and A7

defined in (4.3.3) must vanish
A=A =0 (D.0.1)

In this appendix we provide the effective dimension six solution to the electroweak symmetry break-
ing (EWSB) condition (4.3.7)) for the gauge invariant condensate parameter { defined in (4.3.5) in
the Zy symmetric limit. In this limit the EWSB condition (4.3.7) is

ov 1 , 1 ,
9~ 0 = 5v2 sin2B [Im(miye™) — sz sin 28 Im(A5e®™)] (D.0.2)
For sin 28 # 0 and dividing by |m1s|” we can rewrite the EWSB condition (D.0.2) as

2
. 2 - 1 v
Im (ezArg mi, eL&)

=1 5 Im(A\5e?) sin 283 (D.0.3)
[maz|

The PQ violating mass term |m§2| is related to the heavy Higgs masses through

14 o<>] (D.0.4)
My

so to lowest order in v?/m?% the EWSB condition (D.0.3) may be rewritten as

|m%2| = %sin 268 m?%,

Im(eiArgm%eig) = 1ilm()\se%é) + O |25 v—4 (D.0.5)
2m¥% miy
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The first step to find the solution to the equation (D.0.5) is to rewrite it as a complex quadratic

. . 2 .
equation for e*AT&mizeié

, 1 0? , , , 4
piArgmiy ji& _ 57:;72 ()\56_1Argm%2) (ezArgmfzezE)Q +v4+0 < [As] 77:4) (D.0.6)
H H

where ~ is a real constant. 7 is not an arbitrary constant, since the left hand side of has

unit norm |e*Atemiz¢i€| = 1. Taking the norm of (D:0.6)), we find an equation for ~
1 v? ; vt
1=|-—5 Ase®® ol N\s| — D.0.7

The solution to the equation (D.0.7)) for the constant + is, at lowest order in v?/m?%,

U2
H

We now solve the complex quadratic equation for eiAremis it Only one of the two solutions

to the quadratic equation remains finite in the limit of vanishing v?/m?. The solution is

. . 1 2 : ol *
giArgmiy i€ _ ——|1- (1 — 2y Lz )\56—1Argm‘1‘2) + 0| |As] U—4 (D.0.9)
m% Ase” 1AM M M
Expanding in v2/m?2;, we obtain
iA 2 2 ’U2 iA 4 7}4
piArgmiy i€ _ S Ase”Aremz L O | \s) — (D.0.10)
mi; My

We are only interested in the imaginary part of e*Ar® mi2ei€, When taking the imaginary part of

(ID.0.10f), the first term on the right hand side vanishes since the constant «y is real, so we obtain

iA 2 2 v2 iA 4 1)4
Im(ez rgﬂthlf) = m721m(>\5671 rgmlz) —+ O |)\5| mT (DOll)
H H
Using the solution (D.0.8]) for the real constant « in (D.0.11)) we obtain
T (efAremh 6 = liIm()\E)efiArgm%g) +O( s ot (D.0.12)
2m% m

Inverting equation (D.0.4)) to express the heavy Higgs mass m?; as a function of m?2,/ sin 23, equation
(D.0.12)) may be rewritten as

) 1 2
Im(m2,e') = jqﬂ |As|sin 24 sin Arg(mi,A\L) {1 + (9( || :ﬂﬂ (D.0.13)
H

Equation (D.0.13) is the solution to the electroweak symmetry breaking condition (D.0.2)) for the

condensate phase £ in terms of lagrangian parameters, and is the final result of this appendix.
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