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ABSTRACT OF THE DISSERTATION

Language Guided Visual Perception

by MOHAMED ELHOSEINY

Dissertation Director: Ahmed Elgammal

People typically learn through exposure to visual facts associated with linguistic descriptions.

For instance, teaching visual concepts to children is often accompanied by descriptions in text

or speech. In a machine learning context, these observations motivate the question of how this

learning process could be computationally modeled to learn visual facts. We explored three

settings where we showed that combining language and vision is useful for visual perception

in both images and videos.

First, we addressed the question of how to utilize purely textual description of visual classes

with no training images, to learn explicit visual classifiers for them. We propose and investi-

gate two baseline formulations, based on regression and domain transfer that predict a classi-

fier. Then, we propose a new constrained optimization formulation that combines a regression

function and a knowledge transfer function with additional constraints to predict the classifier

parameters for new classes. We also proposed kernelized models which allows defining any two

kernel functions in the visual space and text space. We applied the studied models to predict

visual classifiers for two fine-grained categorization datasets, and the results indicate successful

predictions of our final model against several baselines that we designed.

Second, we modeled video event search as a language&vision problem where we proposed

a zero-shot Event Detection method by Multi-modal Distributional Semantic embedding of

videos. Our Zero-Shot event detection model is built on top of distributional semantics and
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extends it in the following directions: (a) semantic embedding of multimodal information in

videos (with focus on the visual modalities), (b) automatically determining relevance of con-

cepts/attributes to a free text query, which could be useful for other applications, and (c) retriev-

ing videos by free text event query (e.g., “changing a vehicle tire”) based on their content. We

validated our method on the large TRECVID MED (Multimedia Event Detection) challenge.

Using only the event title as a query, our method outperformed the state-of-the-art that uses big

descriptions.

Third and motivated by the aforementioned results, we proposed a uniform and scalable

setting to learn unbounded number of visual facts. We proposed models that can learn not

only objects but also their actions, attributes and interactions with other objects in one unified

learning framework and in a never ending way. The training data comes as structured facts in

images, including (1) objects (e.g., <boy>), (2) attributes (e.g.,<boy, tall>), (3) actions (e.g.,

<boy, playing>, and (4) interactions (e.g., <boy, riding, a horse >). We have worked on the

scale of 814,000 images and 202,000 unique visual facts. Our experiments show the advantage

of relating facts by the structure in the proposed models compared to four designed baselines

on bidirectional fact retrieval.
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Chapter 1

Introduction

Computer vision research has reached impressive milestones on standard visual recognition

tasks like action classification [63, 64], objects detection [62], classification [83, 147], and

segmentation [98]) and on a scale of millions of examples. Standard recognition tasks are

rapidly reaching maturity and introduces a motivation for AI Research to work on directly

developing methods that can really understand and reason about images where there is a big

gap between machine and human intelligence.

The rate by which of visual and unstructured text data is produced has significantly in-

creased and is rapidly accelerating. The goal of this thesis is to develop learning methods that

can incorporate unstructured text data to aid visual perception of objects in images and events

in videos, and to gain visual knowledge.

1.1 Motivation

Fig. 1.1 shows four images of four different bird categories with a question to determine which

one of them is “Parakeet Auklet”. It is not hard to see that answering this questions requires

an expert knowledge about the appearance of the bird. However, if we got provided a text

description shown on the top of Fig. 1.1, the answer will be much easier. The text description

provides information that “Parakeet Auklet” has an orange bill and it is dark above and white

below, which made the task far less challenging. This example shows that people can learn

challenging fine-grained visual concepts from descriptions and so we aim to computationally

model in this thesis by studying a variety of tasks that connect images and videos to a text

description of the visual concept.
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Figure 1.1: Which one of these Birds is Parakeet Auklet

1.2 Background and Related Work

We focus our related work discussion on three related lines of research: “zero/few-shot learn-

ing”, “visual knowledge transfer”, and “Language and Vision’

• zero/few-shot learning

• visual knowledge transfer.

• Language and Vision.

’.

Zero/Few-Shot Learning: Motivated by the practical need to learn visual classifiers of

rare categories, researchers have explored approaches for learning from a single image (one-

shot learning [109, 55, 59, 12]) or even from no images (zero-shot learning). One way of recog-

nizing object instances from previously unseen test categories (the zero-shot learning problem)

is by leveraging knowledge about common attributes and shared parts. Typically an interme-

diate semantic layer is introduced to enable sharing knowledge between classes and facilitate

describing knowledge about novel unseen classes, e.g. [119]. For instance, given adequately
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labeled training data, one can learn classifiers for the attributes occurring in the training ob-

ject categories. These classifiers can then be used to recognize the same attributes in object

instances from the novel test categories. Recognition can then proceed on the basis of these

learned attributes [89, 53]. Such attribute-based “knowledge transfer” approaches use an inter-

mediate visual attribute representation to enable describing unseen object categories.

Typically attributes [89, 53] are manually defined by humans to describe shape, color, sur-

face material, e.g. , furry, striped, etc. Therefore, an unseen category has to be specified in

terms of the used vocabulary of attributes. Rohrbach et al. [135] investigated extracting use-

ful attributes from large text corpora. In [121], an approach was introduced for interactively

defining a vocabulary of attributes that are both human understandable and visually discrimina-

tive. Huang et al. [73] relaxed the attribute independence assumption by modeling correlation

between attributes to achieve better zero shot performance, as opposed to prior models.

Similar to the setting of zero-shot learning, we use classes with training data (seen classes)

to predict classifiers for classes with no training data (unseen classes). In contrast to attributes

based method (e.g., [89, 53]), most of the work in this thesis, relies only on linguistic rep-

resentation of the visual category/concept which is purely textual without additional human

annotation beyond the category description.

Visual Knowledge Transfer: Our work can be seen in the context of knowledge shar-

ing and inductive transfer. In general, knowledge transfer aims at enhancing recognition by

exploiting shared knowledge between classes. Most existing research focused on knowledge

sharing within the visual domain only, e.g. [69]; or exporting semantic knowledge at the level

of category similarities and hierarchies, e.g. [58, 141]. We go beyond the state-of-the-art to

explore cross-domain knowledge sharing and transfer. We explore how knowledge from the

visual and textual domains can be used to learn across-domain correlation, which facilitates

prediction of visual classifiers from textual description as we explored in Chapter 2 and 3 for

objects, Chapter 4 for video events, and Chapter 5 for arbitrary facts in images (e.g., actions,

interactions, objects, etc. ).

Language and Vision: The relation between linguistic semantic representations and visual

recognition has been explored. For example in [28], it was shown that there is a strong correla-

tion between semantic similarity between classes, based on WordNet, and confusion between
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classes. Linguistic semantics in terms of nouns from WordNet [110] have been used in collect-

ing large-scale image datasets such as ImageNet[29] and Tiny Images [153]. It was also shown

that hierarchies based on WordNet are useful in learning visual classifiers, e.g. [141].

One of the earliest work on learning from images and text corpora is the work of Barnard

et al. [11], which showed that learning a joint distribution of words and visual elements facili-

tates clustering the images in a semantic way, generating illustrative images from a caption, and

generating annotations for novel images. There has been an increasing recent interest in the in-

tersection between computer vision and natural language processing with researches that focus

on generating textual description of images and videos, e.g. [54, 86, 166, 82]. This includes

generating sentences about objects, actions, attributes, spatial relation between objects, contex-

tual information in the images, scene information, etc. Based on the success of sequence to

sequence training of neural nets in machine translation (e.g., [22]), impressive works has been

recently proposed for image captioning (e.g., [79, 158, 163, 102]). In contrast, this thesis has a

fundamentally different goal and hence focuses on different setting. In terms of the goal, we do

not target generating textual description from images, instead we target predicting classifiers

from text. In terms of the learning setting, the textual descriptions that we use is at the level of

the category and do not come in the form of image-caption pairs, as in typical datasets used for

text generation from images, e.g. [118].

There are several recent works that studies unannotated text with images. In [61, 150],

word embedding language models (e.g. [107]) were adopted to represent class names as vec-

tors, which require training using a big text-corpus. Their goal is to embed images into the

language space then perform classification. In [44], a similar yet multimodal approach was

adopted for Multimedia Event Detection in videos instead of object classification. There are

several differences between these methods and the methods developed in this thesis. First, one

limitation of the adopted language model is that it produces only one vector per word, which

causes problems when a word has multiple meanings. Second, these methods assumes that each

class is represented by one or few-words and hence can not represent a class text description

that typically contains multiple paragraphs in our setting. Third, our goal is different which is

to map the text description to an explicit classifier in the visual domain, i.e. the opposite di-

rection of their goal as detailed in Chapter 2. Fourth, these models do not support non-linear
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classification, supported by the kernelized version proposed in our proposed method which is

detailed in Chapter 3. Finally, we comprehensively study describing visual object in different

settings. In fine-grained categories, word names are not sufficient which motivates predicting

fine grained categories from text descriptions like Wikipedia articles. We study general video

event in videos where it is convenient to search for event by the event name as we discuss in

Chapter 4. Finally, we developed a language and vision system that is able to jointly learn

objects, actions and interactions in one system in a scalable, uniform, and capable of relating

facts by structure. The system is also bidirectional, supporting language→ vision retrieval and

also vision→ language.

..

1.3 Objectives

The first goal of this dissertation is to study how to study the question of how to use purely

textual description of object categories with no training images to learn visual classifiers for

these categories. This goal implicitly address the problem of how to connect unstructured text

descriptions which is a linguistic representation about the object to its images representing its

visual representation. The second goal of this dissertation is to go beyond a single modality and

study connecting text to a multimodal signal in videos which includes not only visual signal

but also speech and text. The third objective by which we conclude our dissertation is how

to build a model that can gain visual knowledge by learning facts including not only objects

but also its actions and interactions with other objects. We study this setting while giving a

careful consideration to generalization (learning from few examples), uniformity (understand

attributes, action and interactions in one system), scalability (capability to learn unbounded

number of visual facts/concepts).

1.4 Contributions

We mainly investigate how to guide visual perception by language.

In Part I, we propose a novel problem which is predicting visual classifiers of unseen object

classes from just a text description for the visual object category. In earlier approach for this
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task is presented in Chapter 2, which predicts a linear classifier based on combining regression

and domain transfer cost function. Chapter 3 presented an improved method which enables

kernel classifier prediction such that any kernel function could be defined in both the visual

and the text domain. The visual classifiers are predicted in the form defined by the generalized

representer theorem [144] as detailed in the chapter.

In Part II (Chapter 4), we propose to guide event detection in videos by language. In partic-

ular, we propose a zero-shot Event Detection method by Multi-modal Language embedding of

videos. Object, action concepts, as well as other available modalities from videos are embed-

ded into language space. In this work, we extends extended such that videos could be retrieved

by free text event query (e.g., ”birthday party”) based on their multimodal content. We embed

videos into a distributional semantic space and then measure the similarity between videos and

the event query in a free text form. We validated our method on the large TRECVID MED

(Multimedia Event Detection) challenge. Using only the event title as a query, our method out-

performed the state-of-the-art that uses big descriptions (10% and 1% absolute improvement

improvement on ROC AUC (Area under the Curve) and the MAP (Mean Average Precision)

metric).

In Part III, we propose a setting where objects, actions and interactions can be modeled

simultaneously with a capacity to understand unbounded number of them in a structured way

(e.g., objects (e.g.,<boy>), (2) attributes (e.g.,<boy, tall>), (3) actions (e.g.,<boy, playing>),

and (4) interactions (e.g., <boy, riding, a horse >)). In Chapter 5, we investigated recent and

strong approaches from the multiview learning literature and also introduce two learning repre-

sentation models. We applied the investigated methods on several datasets that we augmented

with structured facts and a large scale dataset of more than 202,000 facts and 814,000 images.

Our experiments show the advantage of relating facts by the structure by the proposed models

compared to the designed baselines on bidirectional fact retrieval. In Chapter 6 and as a part of

our data collection setting for this setting, we present an automatic method for data collection

of structured visual facts from images with captions. With a language approach, the proposed

method is able to collect hundreds of thousands of visual fact annotations with accuracy of 83%

according to human judgment. Our method automatically collected more than 380,000 visual

fact annotations and more than 110,000 unique visual facts from images with captions and
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localized them in images in less than one day of processing time on standard CPU platforms.

.
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Chapter 2

Write a Classifier: Zero Shot Learning Using Purely Textual
Descriptions

The main question we address in this paper is how to use purely textual description of cate-

gories with no training images to learn visual classifiers for these categories. We propose an

approach for zero-shot learning of object categories where the description of unseen categories

comes in the form of typical text such as an encyclopedia entry, without the need to explicitly

defined attributes. We propose and investigate two baseline formulations, based on regression

and domain adaptation. Then, we propose a new constrained optimization formulation that

combines a regression function and a knowledge transfer function with additional constraints

to predict the classifier parameters for new classes. We applied the proposed approach on two

fine-grained categorization datasets, and the results indicate successful classifier prediction.

2.1 Introduction

One of the main challenges for scaling up object recognition systems is the lack of annotated

images for real-world categories. Typically there are few images available for training classi-

fiers for most of these categories. This is reflected in the number of images per category avail-

able for training in most object categorization datasets, which, as pointed out in [141], shows

a Zipf distribution. The problem of lack of training images becomes even more severe when

we target recognition problems within a general category, i.e. , fine-grained categorization, for

example building classifiers for different bird species or flower types (there are estimated over

10000 living bird species, similar for flowers). Researchers try to exploit shared knowledge be-

tween categories to target such scalability issue. This motivated many researchers who looked

into approaches that learn visual classifiers from few examples, e.g. [28, 55, 12]. This even
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* The Bobolink is a small New World blackbird 
and the only member of Dolichonyx.
* They often migrate in flocks, feeding on culti-
vated grains and rice, which leads to them being 
considered a pest by farmers in some areas. 

* The Cardinals are a family of  passerine birds 
found in North and South America. The South 
American cardinals in the genus Paroaria are 
placed in another family, the Thraupidae.

* Visual differentiation from the American 
Crow is extremely difficult and often 
inaccurate. Nonetheless, differences apart from 
size do exist.
* Fish crows tend to have more slender bills.
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Figure 2.1: Problem Definition: Zero-shot learning with textual description. Left: synopsis

of textual descriptions for bird classes. Middle: images for “seen classes”. Right: classifier

hyperplanes in the feature space. The goal is to estimate a new classifier parameter given only

a textual description

motivated some recent work on zero-shot learning of visual categories where there are no train-

ing images available for test categories (unseen classes), e.g. [89]. Such approaches exploit

the similarity (visual or semantic) between seen classes and unseen ones, or describe unseen

classes in terms of a learned vocabulary of semantic visual attributes.

In contrast to the lack of reasonable size training sets for a large number of real world

categories, there are abundant of textual descriptions of these categories. This comes in the

form of dictionary entries, encyclopedia articles, and various online resources. For example, it

is possible to find several good descriptions of a “bobolink” in encyclopedias of birds, while

there are only a few images available for that bird online.

The main question we address in this paper is how to use purely textual description of cat-

egories with no training images to learn visual classifiers for these categories. In other words,

we aim at zero-shot learning of object categories where the description of unseen categories

comes in the form of typical text such as an encyclopedia entry. We explicitly address the ques-

tion of how to automatically decide which information to transfer between classes without the

need of human intervention. In contrast to most related work, we go beyond the simple use of

tags and image captions, and apply standard Natural Language Processing techniques to typical

text to learn visual classifiers.

Similar to the setting of zero-shot learning, we use classes with training data (seen classes)
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to predict classifiers for classes with no training data (unseen classes).Recent works on zero-

shot learning of object categories focused on leveraging knowledge about common attributes

and shared parts [89]. Typically, attributes [142, 53] are manually defined by humans and are

used to transfer knowledge between seen and unseen classes. In contrast, in our work we do not

use any explicit attributes. The description of a new category is purely textual and the process

is totally automatic without human annotation beyond the category labels.

The contribution of the paper is on exploring this new problem, which to the best of our

knowledge, is not explored in the computer vision community. We learn from an image corpus

and a textual corpus, however not in the form of image-caption pairs, instead the only alignment

between the corpora is at the level of the category. We propose and investigate two baseline

formulations based on regression and domain adaptation. Then we propose a new constrained

optimization formulation that combines a regression function and a knowledge transfer function

with additional constraints to solve the problem.

Beyond the introduction and the related work sections, the paper is structured as follows:

Sec 2.3 introduces the problem definition and proposed baseline solutions. Sec 2.4 describes

the solution framework. Sec 2.5 explains the experiments performed on Flower Dataset [116]

(102 classes) and Caltech-UCSD dataset [160] (200 classes).

2.2 Related Work

Our proposed work can be seen in the context of knowledge sharing and inductive transfer. In

general, knowledge transfer aims at enhancing recognition by exploiting shared knowledge be-

tween classes. Most existing research focused on knowledge sharing within the visual domain

only, e.g. [69]; or exporting semantic knowledge at the level of category similarities and hier-

archies, e.g. [58, 141]. We go beyond the state-of-the-art to explore cross-domain knowledge

sharing and transfer. We explore how knowledge from the visual and textual domains can be

used to learn across-domain correlation, which facilitates prediction of visual classifiers from

textual description.

Motivated by the practical need to learn visual classifiers of rare categories, researchers have

explored approaches for learning from a single image (one-shot learning [109, 55, 59, 12]) or
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even from no images (zero-shot learning). One way of recognizing object instances from pre-

viously unseen test categories (the zero-shot learning problem) is by leveraging knowledge

about common attributes and shared parts. Typically an intermediate semantic layer is intro-

duced to enable sharing knowledge between classes and facilitate describing knowledge about

novel unseen classes, e.g. [119]. For instance, given adequately labeled training data, one can

learn classifiers for the attributes occurring in the training object categories. These classifiers

can then be used to recognize the same attributes in object instances from the novel test cat-

egories. Recognition can then proceed on the basis of these learned attributes [89, 53]. Such

attribute-based “knowledge transfer” approaches use an intermediate visual attribute represen-

tation to enable describing unseen object categories. Typically attributes are manually defined

by humans to describe shape, color, surface material, e.g. , furry, striped, etc. Therefore, an

unseen category has to be specified in terms of the used vocabulary of attributes. Rohrbach

et al. [135] investigated extracting useful attributes from large text corpora. In [121], an ap-

proach was introduced for interactively defining a vocabulary of attributes that are both human

understandable and visually discriminative. In contrast, our work does not use any explicit

attributes. The description of a new category is purely textual.

The relation between linguistic semantic representations and visual recognition have been

explored. For example in [28], it was shown that there is a strong correlation between semantic

similarity between classes, based on WordNet, and confusion between classes. Linguistic se-

mantics in terms of nouns from WordNet [110] have been used in collecting large-scale image

datasets such as ImageNet[29] and Tiny Images [153]. It was also shown that hierarchies based

on WordNet are useful in learning visual classifiers, e.g. [141].

One of the earliest work on learning from images and text corpora is the work of Barnard

et al. [11], which showed that learning a joint distribution of words and visual elements facil-

itates clustering the images in a semantic way, generating illustrative images from a caption,

and generating annotations for novel images. There has been an increasing recent interest in

the intersection between computer vision and natural language processing with researches that

focus on generating textual description of images and videos, e.g. [54, 86, 166, 82]. This in-

cludes generating sentences about objects, actions, attributes, patial relation between objects,

contextual information in the images, scene information, etc. In contrast, our work is different
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Pure	  textual	  descrip/on	  of	  an	  
unknown	  object	  class:	  	  
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and	  “P(c|t)”,	  which	  we	  have	  learned	  on	  “Known	  
Classes”.	  

Figure 2.2: Illustration of the Proposed Solution Framework for the task Zero-shot learning

from textual description.

in two fundamental ways. In terms of the goal, we do not target generating textual description

from images, instead we target predicting classifiers from text, in a zero-shot setting. In terms

of the learning setting, the textual descriptions that we use is at the level of the category and

do not come in the form of image-caption pairs, as in typical datasets used for text generation

from images, e.g. [118].

2.3 Problem Definition

Fig 2.1 illustrates the learning setting. The information in our problem comes from two

different domains: the visual domain and the textual domain, denoted by V and T , respec-

tively. Similar to traditional visual learning problems, we are given training data in the form

V = {(xi, li)}N , where xi is an image and li ∈ {1 · · ·Nsc} is its class label. We denote the

number of classes available at training as Nsc, where sc indicates “seen classes”. As typically

done in visual classification setting, we can learn Nsc binary one-vs-all classifiers, one for each

of these classes. Let us consider a typical binary linear classifier in the feature space in the form

fk(x) = cT
k · x

where x is the visual feature vector amended with 1, and ck ∈ Rdv is the linear classifier

parameters for class k. Given a test image, its class is determined by

l∗ = arg max
k

fk(x)
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Our goal is to be able to predict a classifier for a new category based only on the learned classes

and a textual description(s) of that category. In order to achieve that, the learning process has

to also include textual description of the seen classes (as shown in Fig 2.1 ). Depending on

the domain we might find a few, a couple, or as little as one textual description to each class.

We denote the textual training data for class k by {ti ∈ T }k. In this paper we assume we

are dealing with the extreme case of having only one textual description available per class,

which makes the problem even more challenging. However, the formulation we propose in this

paper directly applies to the case of multiple textual descriptions per class. Similar to the visual

domain, the raw textual descriptions have to go through a feature extraction process, which will

be described in Sec 2.5. Let us denote the extracted textual feature by T = {tk ∈ Rdt}k=1···Nsc .

Given a textual description t∗ of a new unseen category, C , the problem can now be defined

as predicting a one-vs-all classifier parameters c(t∗), such that it can be directly used to classify

any test image x as

c(t∗)
T · x > 0 if x belongs to C

c(t∗)
T · x < 0 otherwise (2.1)

In what follows, we introduce two possible frameworks for this problem and discuss potential

limitations for them, which leads next to the proposed formulation.

2.3.1 Regression Models

A straightforward way to solve this problem is to pose it as a regression problem where the goal

is to use the textual data and the learned classifiers, {(tk, ck)}k=1···Nsc to learn a regression

function from the textual feature domain to the visual classifier domain, i.e. , a function c(·) :

Rdt → Rdv . The question is which regression model would be suitable for this problem? and

would posing the problem this way give reasonable results?

A typical regression model, such as ridge regression [72] or Gaussian Process (GP) Regres-

sion [127], learns the regressor to each dimension of the output domain (the parameters of a

linear classifier) separately, i.e. a set of function cj(·) : Rdt → R. Clearly this will not capture

the correlation between the visual and textual domain. Instead, a structured prediction regressor
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would be more suitable since it would learn the correlation between the input and output do-

main. However, even a structure prediction model, will only learn the correlation between the

textual and visual domain through the information available in the input-output pairs (tk, ck).

Here the visual domain information is encapsulated in the pre-learned classifiers and prediction

does not have access to the original data in the visual domain. Instead we need to directly learn

the correlation between the visual and textual domain and use that for prediction.

Another fundamental problem that a regressor would face, is the sparsity of the data; the

data points are the textual description-classifier pairs, and typically the number of classes can be

very small compared to the dimension of the classifier space (i.e. Nsc � dv). In a setting like

that, any regression model is bound to suffer from an under fitting problem. This can be best

explained in terms of GP regression, where the predictive variance increases in the regions of

the input space where there are no data points. This will result in poor prediction of classifiers

at these regions.

2.3.2 Knowledge Transfer Models

An alternative formulation is to pose the problem as domain adaptation from the textual to

the visual domain. In the computer vision context, domain adaptation work has focused on

transferring categories learned from a source domain, with a given distribution of images, to a

target domain with different distribution, e.g. , images or videos from different sources [164,

139, 85, 35]. What we need is an approach that learns the correlation between the textual

domain features and the visual domain features, and uses that correlation to predict new visual

classifier given textual features.

In particular, in [85] an approach for learning cross domain transformation was introduced.

In that work a regularized asymmetric transformation between points in two domains were

learned. The approach was applied to transfer learned categories between different data dis-

tributions, both in the visual domain. A particular attractive characteristic of [85], over other

domain adaptation models, is that the source and target domains do not have to share the same

feature spaces or the same dimensionality.

Inspired by [85], we can formulate the zero-shot learning problem as a domain adaptation.

This can be achieve by learning a linear (or nonlinear kernalized) transfer function W between
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T and V . The transformation matrix W can be learned by optimizing, with a suitable regular-

izer, over constraints of the form tTWx ≥ l if t ∈ T and x ∈ V belong to the same class,

and tTWx ≤ u otherwise. Here l and u are model parameters. This transfer function acts as a

compatibility function between the textual features and visual features, which gives high values

if they are from the same class and a low value if they are from different classes.

It is not hard to see that this transfer function can act as a classifier. Given a textual feature

t∗ and a test image, represented by x, a classification decision can be obtained by tT
∗Wx ≷ b

where b is a decision boundary which can be set to (l + u)/2. Hence, our desired predicted

classifier in Eq 2.1 can be obtained as c(t∗) = tT
∗W (note that the features vectors are amended

with ones). However, since learning W was done over seen classes only, it is not clear how

the predicted classifier c(t∗) will behave for unseen classes. There is no guarantee that such a

classifier will put all the seen data on one side and the new unseen class on the other side of

that hyperplane.

2.4 Problem Formulation

2.4.1 Objective Function

The proposed formulation aims at predicting the hyperplane parameter c of a one-vs-all classi-

fier for a new unseen class given a textual description, encoded by t and knowledge learned at

the training phase from seen classes. Fig 2.2 illustrates our solution framework. At the training

phase three components are learned:

Classifiers: a set of one-vs-all classifiers {ck} are learned, one for each seen class.

Probabilistic Regressor: Given {(tk, ck)} a regressor is learned that can be used to give a

prior estimate for preg(c|t) (Details in Sec 2.4.3).

Domain Transfer Function: Given T and V a domain transfer function, encoded in the matrix

W is learned, which captures the correlation between the textual and visual domains

(Details in Sec 2.4.2).

Each of these components contains partial knowledge about the problem. The question is

how to combine such knowledge to predict a new classifier given a textual description. The
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new classifier has to be consistent with the seen classes. The new classifier has to put all the

seen instances at one side of the hyperplane, and has to be consistent with the learned domain

transfer function. This leads to the following constrained optimization problem

ĉ(t∗) =argmin
c,ζi

[
cTc− αt∗TWc− β ln(preg(c|t∗))

+ γ
∑

ζi
]

s.t. : −(cTxi) ≥ ζi, ζi ≥ 0, i = 1 · · ·N

t∗
TWc ≥ l

α, β, γ, l : hyperparameters

(2.2)

The first term is a regularizer over the classifier c. The second term enforces that the predicted

classifier has high correlation with tT
∗W. The third term favors a classifier that has high prob-

ability given the prediction of the regressor. The constraints −cTxi ≥ ζi enforce all the seen

data instances to be at the negative side of the predicted classifier hyperplane with some miss-

classification allowed through the slack variables ζi. The constraint t∗TWc ≥ l enforces that

the correlation between the predicted classifier and t∗
TW is no less than l, this is to enforce a

minimum correlation between the text and visual features.

2.4.2 Domain Transfer Function

To learn the domain transfer function W we adapted the approach in [85] as follows. Let T

be the textual feature data matrix and X be the visual feature data matrix where each feature

vector is amended with a 1. Notice that amending the feature vectors with a 1 is essential

in our formulation since we need tTW to act as a classifier. We need to solve the following

optimization problem

min
W

r(W) + λ
∑
i

ci(TWXT) (2.3)

where ci’s are loss functions over the constraints and r(·) is a matrix regularizer. It was

shown in [85], under condition on the regularizer, that the optimal W in Eq 3.4 can be com-

puted using inner products between data points in each of the domains separately, which

results in a kernalized non-linear transfer function; hence its complexity does not depend
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on the dimensionality of either of the domains. The optimal solution of 3.4 is in the form

W∗ = TK
− 1

2
T L∗K

− 1
2

X XT,where KT = TTT, KX = XXT. L∗ is computed by minimizing

the following minimization problem

min
L

[r(L) + λ
∑
p

cp(K
1
2
TLK

1
2
X)], (2.4)

where cp(K
1
2
TLK

1
2
X) = (max(0, (l − eiK

1
2
TLK

1
2
Xej)))

2 for same class pairs of index i,j, or

= (max(0, (eiK
1
2
TLK

1
2
Xej − u)))2 otherwise, where ek is a vector of zeros except a one at

the kth element, and u > l (note any appropriate l, u could work. In our case, we used

l = 2, u = −2 ). We used a Frobenius norm regularizer. This energy is minimized using a

second order BFGS quasi-Newton optimizer. Once L is computed W ∗ is computed using the

transformation above.

2.4.3 Probabilistic Regressor

There are different regressors that can be used, however we need a regressor that provide a

probabilistic estimate preg(c|(t)). For the reasons explained in Sec 2.3, we also need a struc-

ture prediction approach that is able to predict all the dimensions of the classifiers together.

For these reasons, we use the Twin Gaussian Process (TPG) [16]. TGP encodes the relations

between both the inputs and structured outputs using Gaussian Process priors. This is achieved

by minimizing the Kullback-Leibler divergence between the marginal GP of the outputs (i.e.

classifiers in our case) and observations (i.e. textual features). The estimated regressor output

(c̃(t∗)) in TGP is given by the solution of the following non-linear optimization problem [16]

1.

c̃(t∗) = argmin
c

[KC(c, c)− 2kc(c)Tu− η log(KC(c, c)

− kc(c)T(KC + λcI)
−1kc(c))]

(2.5)

where u = (KT + λtI)
−1kt(t∗), η = KT (t∗, t∗)− k(t∗)

Tu, KT (tl, tm) and KC(cl, cm) are

Gaussian kernel for input feature t and output vector c. kc(c) = [KC(c, c1), · · · ,KC(c, cNsc)]
T.

kt(t∗) = [KT (t∗, t1), · · · ,KT (t∗, tNsc)]
T. λt and λc are regularization parameters to avoid

1notice we are using c̃ to denote the output of the regressor, while using ĉ to denote the output of the final
optimization problem in Eq 3.9
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overfitting. This optimization problem can be solved using a second order, BFGS quasi-Newton

optimizer with cubic polynomial line search for optimal step size selection [16]. In this case

the classifier dimension are predicted jointly. In this case preg(c|t∗) is defined as a normal

distribution.

preg(c|t∗) = N (µc = c̃(t∗),Σc = I) (2.6)

The reason that Σc = I is that TGP does not provide predictive variance, unlike Gaussian

Process Regression. However, it has the advantage of handling the dependency between the

dimensions of the classifiers c given the textual features t.

2.4.4 Solving for ĉ as a quadratic program

According to the definition of preg(c|t∗) for TGP, ln p(c|t∗) is a quadratic term in c in the form

− ln p(c|t∗) ∝ (c− c̃(t∗))T(c− c̃(t∗))

= cTc− 2cTc̃(t∗) + c̃(t∗)
Tc̃(t∗)

(2.7)

We reduce − ln p(c|t∗) to −2cTc̃(t∗)), since 1) c̃(t∗)Tc̃(t∗) is a constant (i.e. does not affect

the optimization), 2) cTc is already included as regularizer in equation 3.9. In our setting,

the dot product is a better similarity measure between two hyperplanes. Hence, −2cTc̃(t∗) is

minimized. Given − ln p(c|t∗) from the TGP and W, Eq 3.9 reduces to a quadratic program

on c with linear constraints. We tried different quadratic solvers, however the IBM CPLEX

solver 2 gives the best performance in speed and optimization for our problem.

2.5 Experiments

2.5.1 Datasets

We used the CU200 Birds [160] (200 classes - 6033 images) and the Oxford Flower-102 [116]

(102 classes - 8189 images) image dataset to test our approach, since they are among the largest

and widely used fine-grained datasets. We generate textual descriptions for each class in both

datasets. The CU200 Birds image dataset was created based on birds that have a corresponding

2http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
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Wikipedia article, so we have developed a tool to automatically extract Wikipedia articles given

the class name. The tool succeeded to automatically generate 178 articles, and the remaining 22

articles was extracted manually from Wikipedia. These mismatches happens only when article

title is a different synonym of the same bird class. On the other hand, Flower image dataset was

not created using the same criteria as the Bird dataset, so classes of the Flower dataset classes

does not necessarily have corresponding Wikipedia article. The tool managed to generate about

16 classes from Wikipedia out of 102, the remaining 86 articles was generated manually for

each class from Wikipedia, Plant Database 3, Plant Encyclopedia 4, and BBC articles 5. We

plan to make the extracted textual description available as augmentations of these datasets.

Sample textual description can be found in the supplementary material.

2.5.2 Extracting Textual Features

The textual features were extracted in two phases, which are typical in document retrieval

literature. The first phase is an indexing phase that generates textual features with tf-idf (Term

Frequency-Inverse Document Frequency) configuration (Term frequency as local weighting

while inverse document frequency as a global weighting). The tf-idf is a measure of how

important is a word to a text corpus. The tf-idf value increases proportionally to the number

of times a word appears in the document, but is offset by the frequency of the word in the

corpus, which helps to control for the fact that some words are generally more common than

others. We used the normalized frequency of a term in the given textual description [143].

The inverse document frequency is a measure of whether the term is common; in this work

we used the standard logarithmic idf [143]. The second phase is a dimensionality reduction

step, in which Clustered Latent Semantic Indexing (CLSI) algorithm [169] is used. CLSI is a

low-rank approximation approach for dimensionality reduction, used for document retrieval. In

the Flower Dataset, tf-idf features ∈ R8875 and after CLSI the final textual features ∈ R102. In

the Birds Dataset, tf-idf features is in R7086 and after CLSI the final textual features is in R200.

3http://plants.usda.gov/java/
4http://www.theplantencyclopedia.org/wiki/Main Page
5http://www.bbc.co.uk/science/0/
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2.5.3 Visual features

We used the Classeme features [154] as the visual feature for our experiments since they pro-

vide an intermediate semantic representation of the input image. Classeme features are output

of a set of classifiers corresponding to a set of C category labels, which are drawn from an

appropriate term list defined in [154], and not related to our textual features. For each category

c ∈ {1 · · ·C}, a set of training images is gathered by issuing a query on the category label to

an image search engine. After a set of coarse feature descriptors (Pyramid HOG, GIST, etc. ) is

extracted, a subset of feature dimensions was selected [154], and a one-versus-all classifier φc

is trained for each category. The classifier output is real-valued, and is such that φc(x) > φc(y)

implies that x is more similar to class c than y is. Given an image x, the feature vector (de-

scriptor) used to represent it is the classeme vector [φ1(x), · · · , φC(x)]. The Classeme feature

is of dimensionality 2569.
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Figure 2.3: Left and Middle: ROC curves of best 10 predicted classes (best seen in color) for

Bird and Flower datasets respectively, Right: AUC improvement over the three baselines on

Flower dataset. The improvement is sorted in an increasing order for each baseline separately

2.5.4 Experimental Results

Evaluation Methodology and Metrics: Similar to zero-shot learning literature, we evaluated

the performance of an unseen classifier in a one-vs-all setting where the test images of unseen

classes are considered to be the positives and the test images from the seen classes are con-

sidered to be the negatives. We computed the ROC curve and report the area under that curve

(AUC) as a comparative measure of different approaches. In zero-shot learning setting the test

data from the seen class are typically very large compared to those from unseen classes. This

makes other measures, such as accuracy, useless since high accuracy can be obtained even if

all the unseen class test data are wrongly classified; hence we used ROC curves, which are
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Table 2.1: Comparative Evaluation on the Flowers and Birds

Flowers Birds

Approach Avg AUC (+/- std) Avg AUC (+/- std)

GPR 0.54 (+/- 0.02) 0.52 (+/- 0.001)

TGP 0.58 (+/- 0.02) 0.61 (+/- 0.02)

DA 0.62(+/- 0.03) 0.59 (+/- 0.01)

Our Approach 0.68 (+/- 0.01) 0.62 (+/- 0.02)

independent of this problem. Five-fold cross validation over the classes were performed, where

in each fold 4/5 of the classes are considered as “seen classes” and are used for training and

1/5th of the classes were considered as “unseen classes” where their classifiers are predicted

and tested. Within each of these class-folds, the data of the seen classes are further split into

training and test sets. The hyper-parameters for the approach were selected through another

five-fold cross validation within the class-folds (i.e. the 80% training classes are further split

into 5 folds to select the hyper-parameters).

Baselines: Since our work is the first to predict classifiers based on pure textual description,

there are no other reported results to compare against. However, we designed three state-of-the-

art baselines to compare against, which are designed to be inline with our argument in Sec 2.3.

Namely we used: 1) A Gaussian Process Regressor (GPR) [127], 2) Twin Gaussian Process

(TGP) [16] as a structured regression method, 3) Nonlinear Asymmetric Domain Adaptation

(DA) [85]. The TGP and DA baselines are of particular importance since our formulation

utilizes them, so we need to test if the formulation is making any improvement over them.

It has to be noted that we also evaluate TGP and DA as alternative formulations that we are

proposing for the problem, none of them was used in the same context before.

Results: Table 2.1 shows the average AUCs for the proposed approach in comparison to the

three baselines on both datasets. GPR performed poorly in all classes in both data sets, which

was expected since it is not a structure prediction approach. The DA formulation outperformed

TGP in the flower dataset but slightly underperformed on the Bird dataset. The proposed ap-

proach outperformed all the baselines on both datasets, with significant difference on the flower

dataset. It is also clear that the TGP performance was improved on the Bird dataset since it has



25

0 10 20 30 40 50 60 70 80 90
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
AUC for different class in Flower dataset

AU
C

Object Class Index

Figure 2.4: AUC of the predicated classifiers for all classes of the flower datasets

Table 2.2: Percentage of classes that the proposed approach makes an improvement in predicting over

the baselines (relative to the total number of classes in each dataset

Flowers (102) Birds (200)

baseline % improvement % improvement

GPR 100 % 98.31 %

TGP 66 % 51.81 %

DA 54% 56.5%

more classes (more points are used for prediction). Fig 2.3 shows the ROC curves for our ap-

proach on best predicted unseen classes from the Birds dataset on the Left and Flower dataset

on the middle. Fig 2.4 shows the AUC for all the classes on Flower dataset. More results are

attached in the supplementary materials.

Fig 2.3, on the right, shows the improvement over the three baseline for each class, where

the improvement is calculated as (our AUC- baseline AUC)/ baseline AUC %. Table 2.2 shows

the percentage of the classes which our approach makes a prediction improvement for each of

the three baselines. Table 2.3 shows the five classes in Flower dataset where our approach made

the best average improvement. The point of that table is to show that in these cases both TGP

and DA did poorly while our formulation that is based on both of them did significantly better.

This shows that our formulation does not simply combine the best of the two approaches but

can significantly improve the prediction performance.

To evaluate the effect of the constraints in the objective function, we removed the con-

straints −(cTxi) ≥ ζi which try to enforces all the seen examples to be on the negative side

of the predicted classifier hyperplane and evaluated the approach. The result on the flower

dataset (using one fold) was reduced to average AUC=0.59 compared to AUC=0.65 with the
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Table 2.3: Top-5 classes with highest combined improvement in Flower dataset

class TGP (AUC) DA (AUC) Our (AUC) % Improv.

2 0.51 0.55 0.83 57%

28 0.52 0.54 0.76 43.5%

26 0.54 0.53 0.76 41.7%

81 0.52 0.82 0.87 37%

37 0.72 0.53 0.83 35.7 %

constraints. Similarly, we evaluated the effect of the constraint tT
∗Wc ≥ l. The result was

reduced to average AUC=0.58 compared to AUC=0.65 with the constraint. This illustrates the

importance of this constraint in the formulation.

2.6 Conclusion and Future Work

We explored the problem of predicting visual classifiers from textual description of classes

with no training images. We investigated and experimented with different formulations for the

problem within the fine-grained categorization context. We proposed a novel formulation that

captures information between the visual and textual domains by involving knowledge transfer

from textual features to visual features, which indirectly leads to predicting the visual classifier

described by the text. In the future, we are planning to propose a kernel version to tackle the

problem instead of using linear classifiers. Furthermore, we will study predicting classifiers

from complex-structured textual features.

Acknowledgment This research was partially funded by NSF award IIS-1218872
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Chapter 3

Write a Kernel Classifier

In this paper we propose a framework for predicting kernelized classifiers in the visual domain

for categories with no training images where the knowledge comes from textual description

about these categories. Through our optimization framework, the proposed approach is capable

of embedding the class-level knowledge from the text domain as kernel classifiers in the visual

domain. We also proposed a distributional semantic kernel between text descriptions which

is shown to be effective in our setting. The proposed framework is not restricted to textual

descriptions, and can also be applied to other forms knowledge representations. Our approach

was applied for the challenging task of zero-shot learning of fine-grained categories from text

descriptions of these categories.

3.1 Introduction

We propose a framework to model kernelized classifier prediction in the visual domain for

categories with no training images, where the knowledge about these categories comes from a

secondary domain. The side information can be in the form of textual, parse trees, grammar,

visual representations, concepts in the ontologies, or any form; see Fig 3.1. Our work focuses

on the unstructured text setting. We denote the side information as “privileged” information,

borrowing the notion from [157].

Our framework is an instance of the concept of Zero Shot Learning (ZSL)[90], aiming at

transferring knowledge from seen classes to novel (unseen) classes. Most zero-shot learning

applications in practice use symbolic or numeric visual attribute vectors [87, 89]. In contrast,

recent works investigated other forms of descriptions, e.g. user provided feedback [159], tex-

tual descriptions [46]. It is common in zero-shot learning to introduce an intermediate layer that

facilitates knowledge sharing between seen classes, hence the transfer of knowledge to unseen
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Figure 3.1: Our setting where machine can predict unseen class from pure unstructured text

classes. Typically, visual attributes are being used for that purpose, since they provide a human-

understandable representation, which enables specifying new categories [87, 89, 53, 119, 1, 93].

A fundamental question in attribute-based ZSL models is how to define attributes that are vi-

sually discriminative and human understandable. Researchers has explored learning attributes

from text sources, e.g. [129, 130, 135, 14]. Other works have explored interactive methodolo-

gies to learning visual attribute that are human understandable, e.g. [121].

There are several differences between our proposed framework and the state-of-the-art zero-

shot learning approaches. We are not restricted to use attributes as the interface to specify new

classes. We can use any “privileged” information available for each category. In particular in

this paper we focus on the case of textual description of categories as the secondary domain.

This difference is reflected in our zero-shot classification architecture. We learn a domain trans-

fer model between the visual domain and the privileged information domain. This facilitates

predicting explicit visual classifiers for novel unseen categories given their privileged informa-

tion. The difference in architecture becomes clear if we consider, for the sake of argument,

attributes as the secondary domain in our framework, although this is not the focus of the pa-

per. In that case we do not need explicit attribute classifiers to be learned as an intermediate

layer as typically done in attribute-based ZSL e.g. [89, 53, 119], instead the visual classifier are

directly learned from the attribute labels. The need to learn an intermediate attribute classifier
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layer in most attribute-based zero-shot learning approaches dictates using strongly annotated

data, where each image comes with attribute annotation, e.g. CU-Birds dataset [160]. In con-

trast, we do not need image-annotation pairs, and privileged information is only assumed at the

category level; hence we denote our approach weakly supervised. This also directly facilitates

using continuous attributes in our case, and does not assume independent between attributes.

Another fundamental difference in our case is that we predict explicit kernel classifier in the

form defined in the representer theorem [144], from privileged information. Explicit classifier

prediction means that the output of our framework is classifier parameters for any new category

given text description, which can applied to any test image to predict its class. Predicting

classifier in kernelized form opens the door for using any kind of side information about classes,

as long as kernels can be defined on them. The image features also do not need to be in a

vectorized format. Kernelized classifiers also facilitates combining different types of features

through a multi-kernel learning (MKL) paradigm, where the fusion of different features can be

effectively achieved.

We can summarize the features of our proposed framework, hence the contribution as fol-

lows: 1) Our framework explicitly predicts classifiers; 2) The predicted classifiers are kernel-

ized; 3) The framework facilitates any type of “side” information to be used; 4) The approach

requires the side information at the class level, not at the image level, hence, it needs only weak

annotation. 5) We propose a distributional semantic kernel between text description of visual

classes that we show its value in the experiments. The structure of the paper is as follows.

Sec 3.2 describes the relation to existing literature. Sec 3.3 and 3.4 explains the learning set-

ting and our formulation. Sec 3.5 presents the proposed distributional semantic kernel for text

descriptions. Sec 3.6 shows our experimental results.

3.2 Related Work

We already discussed the relation to the zero-shot learning literature in the Introduction section.

In this section, we focus on the relations to other volumes of literature.

There has been increasing interest recently in the intersection between Language and Com-

puter Vision. Most of the work on this area is focused on generating textual description from

images [?, 86, 118, 166, 112]. In contrast, we focus on generating visual classifiers from textual
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description or other side information at the category level.

There are few recent works that involved unannotated text to improve visual classifica-

tion or achieve zero-shot learning. In [61, 117] and [150], word embedding language models

(e.g. [108]) was adopted to represent class names as vectors. Their framework is based on

mapping images into the learned language mode then perform classification in that space. In

contrast, our framework maps the text information to a classifier in the visual domain, i.e. the

apposite direction of their approach. There are several advantages in mapping textual knowl-

edge into the visual domain. To perform ZSL, approaches such as [117, 61, 150] only embed

new classes by their category names. This has clear limitations when dealing with fine-grained

categories (such as different bird species). Most of fine-grained category names does not ex-

ist in current semantic models. Even if they exist, they will end up close to each other in the

learned language models since they typically share similar contexts. This limits the discrim-

inative power of such language models. In fact our baseline experiment using these models

performed as low as random when applied to fine-grained category; described in Sec 3.6.4.

Moreover, our framework directly can use large text description of novel categories. In con-

trast to [117, 61, 150] which required a vectorized representation of images, our framework

facilitates non-linear classification using kernels.

In [46], an approach was proposed to predict linear classifiers from textual description,

based on a domain transfer optimization method proposed in [85]. Although both of these

works are kernelized, a close look reveals that kernelization was mainly used to reduce the size

of the domain transfer matrix and the computational cost. The resulting predicted classifier

in [46] is still a linear classifier. In contrast, our proposed formulation predicts kernelized

visual classifiers directly from the domain transfer optimization, which is a more general case.

This directly facilitates using classifiers that fused multiple visual cues such as Multiple Kernel

Learning (MKL).

3.3 Problem Definition

We consider a zero-shot multi-class classification setting on domain X as follows. At training,

besides the data points from X and the class labels, each class is associated with privileged
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information in a secondary domain E in particular, however not limited to, a textual descrip-

tion. We assume that each class yi ∈ Ysc(training/seen labels), is associated with privileged

information ei ∈ E . While, our formulation allows multiple pieces of privileged information

per class (e.g. multiple class-level textual descriptions), we will use one per class for simplic-

ity. Hence, we denote the training as Dtrain = {Sx = {(xi, yi)}N , Se = {yj , ej}Nsc}, where

xi ∈ X , yi ∈ Ysc, yj ∈ Ysc, and Nsc and N are the number of the seen classes and the training

examples/images respectively. We assume that each of the domains is equipped with a kernel

function corresponding to a reproducing kernel Hilbert space (RKHS). Let us denote the ker-

nel for X by k(·, ·) and the kernel for E by g(·, ·). At the zero-shot time, only the privileged

information ez∗ is available for each novel unseen class z∗; see Fig 3.1.

The common approach for multi-class classification is to learn a classifier for each class

against the remaining classes (i.e., one-vs-all). According to the generalized representer theo-

rem [144], a minimizer of a regularized empirical risk function over an RKHS could be repre-

sented as a linear combination of kernels, evaluated on the training set. Adopting the representer

theorem on classification risk function, we define a kernel-classifier of class y as follows

fy(x∗) =

N∑
i=1

βiyk(x∗, xi) + b = βy
Tk(x∗), (3.1)

where x∗ ∈ X is the test point, xi ∈ Sx, k(x∗) = [k(x∗, x1), · · · , k(x∗, xN ), 1]T, βy =

[β1y · · ·βNy , b]T. Having learned fy(x∗) for each class y (for example using SVM classifier), the

class label of the test point x∗ can be predicted as

y∗ = arg max
y

fy(x∗) (3.2)

It is clear that fy(x∗) could be learned for all classes with training data y ∈ Ysc = y1 · · · yNsc
,

since there are examples Sx for the seen classes; we denote the kernel-classifier parameters

of the seen classes as Bsc = {βy}Nsc , ∀y ∈ Ysc. However, it is not obvious how to predict

fz∗(x
∗) for a new unseen class z∗ ∈ Yus = z1 · · · zNus

. Our main notion is to use the privileged

information ez∗ ∈ E , associated with unseen class z∗, and the training data Dtrain to directly

predict the unseen kernel-classifier parameters. Hence, the classifier of z∗ is a function of ek∗

and Dtrain; i.e.

fz∗(x
∗) = β(ez∗ ,Dtrain)T · k(x∗), (3.3)
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fz∗(x
∗) could be used to classify new points that belong to an unseen class as follows: 1)

one-vs-all setting fz∗(x∗) ≷ 0 ; or 2) in a Multi-class prediction as in Eq 3.2.

3.4 Approach

Prediction of β(ez∗ ,Dtrain), which we denote as β(ez∗) for simplicity, is decomposed into

training (domain transfer) and prediction phases.

3.4.1 Domain Transfer

During training, we firstly learn Bsc as SVM-kernel classifiers based on Sx. Then, we learn

a domain transfer function to transfer the privileged information e ∈ E to kernel-classifier

parameters β ∈ RN+1 in X domain. We call this function βDA(e), which has the form of

TTg(e), where g(e) = [g(e, e1) · · · g(e, eNsc)]
T; T is an Nsc×N + 1 matrix, which transforms

e to kernel classifier parameters for the class e represents.

We aim to learn T, such that g(e)TTk(x) > l if e and x correspond to the same class,

g(e)TTk(x) < u otherwise. Here l controls similarity lower-bound if e and x correspond to

same class, and u controls similarity upper-bound if e and x belong to different classes. In our

setting, the term TTg(ei) should act as a classifier parameter for class i of the training data.

Therefore, we introduce penalization constraints to our minimization function if TTg(ei) is

distant from βi ∈ Bsc, where ei corresponds to the class that βi classifies. Inspired by domain

adaptation optimization methods (e.g. [85]), we model our domain transfer function as follows

T∗ = arg min
T
L(T) = [

1

2
r(T) + λ1

∑
k

ck(GTK)+

λ2

Nsc∑
i=1

‖βi − TTg(ei)‖2
(3.4)

where, G is an Nsc ×Nsc symmetric matrix, such that both the ith row and the ith column are

equal to g(ei), ei ∈ Se; K is an N + 1×N matrix, such that the ith column is equal to k(xi),

xi ∈ Sx. ck’s are loss functions over the constraints defined as ck(GTK)) = (max(0, (l −

1T
iGTK1j)))2 for same class pairs of index i and j, or = r · (max(0, (1T

iGTK1j − u)))2

otherwise, where 1i is an Nsc × 1 vector with all zeros except at index i, 1j is an N × 1 vector
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with all zeros except at index j. This leads to ck(GTK) = max(0, (l − g(ei)
TTk(xj)))

2 for

same class pairs of index i and j, or = r · (max(0, (g(ei)
TTk(xj) − u)))2 otherwise, where

u > l, r = nd
ns such that nd and ns are the number of pairs (i, j) of different classes and similar

pairs respectively. Finally, we used a Frobenius norm regularizer for r(T).

The objective function in Eq 3.4 controls the involvement of the constraints ck by the

term multiplied by λ1, which controls its importance; we call it Cl,u(T). While, the trained

classifiers penalty is captured by the term multiplied by λ2; we call it Cβ(T). One important

observation on Cβ(T) is that it reaches zero when T = G−1BT, where B = [β1 · · ·βNsc
],

since it could be rewritten as Cβ(T) = ‖BT −GT‖2F .

One approach to minimize L(T) is gradient-based optimization using a quasi-Newton op-

timizer. Our gradient derivation of L(T) leads to the following form

δL(T)

δT
= T + λ1 ·

∑
i,j

g(ei)k(xj)
T
vij + r · λ2 · (G2T−GB) (3.5)

where vij = −2 · max(0, (l − g(ei)
TTk(xj))) if i and j correspond to the same class, 2 ·

max(0, (g(ei)
TTk(xj) − u) otherwise. Another approach to minimize L(T) is through alter-

nating projection using Bregman algorithm [18], in which T is updated with respect to a single

constraint every iteration.

3.4.2 Classifier Prediction

We propose two ways to predict the kernel-classifier. (1) Domain Transfer (DT) Prediction, (2)

One-class-SVM adjusted DT Prediction.

Domain Transfer (DT) Prediction: Construction of an unseen category is directly computed

from our domain transfer model as follows

β̃DT (ez∗) = T∗T
g(ez∗) (3.6)

One-class-SVM adjusted DT (SVM-DT) Prediction: In order to increase separability against

seen classes, we adopted the inverse of the idea of the one class kernel-svm, whose main idea is

to build a confidence function that takes only positive examples of the class. Our setting is the

opposite scenario; seen examples are negative examples of the unseen class. In order introduce

our proposed adjustment method, we start by presenting the one-class SVM objective function.
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The Lagrangian dual of the one-class SVM [49] can be written as

β∗+ =argmin
β

[
βTK

′
β − βTa

]
s.t. : βT1 = 1, 0 ≤ βi ≤ C; i = 1 · · ·N

(3.7)

where K
′

is an N ×N matrix, K
′
(i, j) = k(xi, xj), ∀xi, xj ∈ Sx (i.e. in the training data), a

is an N × 1 vector, ai = k(xi, xi), C is a hyper-parameter . It is straightforward to see that,

if β is aimed to be a negative decision function instead, the objective function becomes in the

form

β∗− =argmin
β

[
βTK

′
β + βTa

]
s.t. : βT1 = −1,−C ≤ βi ≤ 0; i = 1 · · ·N

(3.8)

While β∗− = −β∗+, the objective function in Eq 3.8 of the one-negative class SVM inspires

us with the idea to adjust the kernel-classifier parameters to increase separability of the unseen

kernel-classifier against the points of the seen classes, which leads to the following objective

function

β̂(ez∗) =argmin
β

[
βTK

′
β − ζβ̂DT (ez∗)

TK
′
β + βTa

]
s.t. : βT1 = −1, β̂

T

DTK
′
β > l,−C ≤ βi ≤ 0;∀i

C, ζ, l: hyper-parameters,

(3.9)

where β̂DT is the first N elements in β̃DT ∈ RN+1, 1 is an N × 1 vector of ones. The

objective function, in Eq 3.9, pushes the classifier of the unseen class to be highly correlated

with the domain transfer prediction of the kernel classifier, while putting the points of the

seen classes as negative examples. It is not hard to see that Eq 3.9 is a quadratic program

in β, which could be solved using any quadratic solver; we used IBM CPLEX. It is worth to

mention that, the approach in [46] predicts linear classifiers by solving an optimization problem

of size N + dX + 1 variables (dX + 1 linear-classifier parameters and N slack variables); a

similar limitation can be found in [61, 150]. In contrast, our objective function in Eq 3.9

solves a quadratic program of only N variables, and predicts a kernel-classifier instead, with

fewer parameters. Hence, if very high-dimensional features are used, they will not affect our

optimization complexity.
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3.5 Distributional Semantic (DS) Kernel for text descriptions

When E domain is the space of text descriptions, we propose a distributional semantic kernel

g(·, ·) = gDS(·, ·) to define the similarity between two text descriptions . We start by distribu-

tional semantic models by [107, 105] to represent the semantic manifoldMs, and a function

vec(·) that maps a word to a K × 1 vector in Ms. The main assumption behind this class

of distributional semantic model is that similar words share similar context. Mathematically

speaking, these models learn a vector for each word wn, such that p(wn|(wn−L, wn−L+1, · · ·

, wn+L−1, wn+L) is maximized over the training corpus, where 2 × L is the context window

size. Hence similarity between vec(wi) and vec(wj) is high if they co-occurred a lot in context

of size 2 × L in the training text-corpus. We normalize all the word vectors to length 1 under

L2 norm, i.e., ‖vec(·)‖2 = 1.

Let us assume a text descriptionD that we represent by a set of tripletsD = {(wl, fl, vec(wl))

, l = 1 · · ·M}, where wl is a word that occurs in D with frequency fl and its corresponding

word vector is vec(wl) inMs. We drop the stop words from D. We define F = [f1, · · · , fM ]T

and V = [vec(w1), · · · , vec(wM )]T, where F is an M × 1 vector of term frequencies and V is

an M ×K matrix of the corresponding term vectors.

Given two text descriptions Di and Dj which contains M1 and M2 terms respectively. We

compute Fi (Mi × 1) and Vi (Mi × K) for Di and Fj (Mj × 1) and Vj (Mj × K) for Dj .

Finally gDS(Di, Dj) is defined as

gDS(Di, Dj) = FT
i ViVT

jFj (3.10)

One advantage of this similarity measure is that it captures semantically related terms. It is not

hard to see that the standard Term Frequency (TF) similarity could be thought as a special case

of this kernel where vec(wl)Tvec(wm) = 1 if wl = wm, 0 otherwise, i.e., different terms are

orthogonal. However, in our case the word vectors are learnt through a distributional semantic

model which makes semantically related terms have higher dot product (vec(wl)Tvec(wm)).
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3.6 Experiments

3.6.1 Datasets and Evaluation Methodology

We validated our approach in a fine-grained setting using two datasets: 1) The UCSD-Birds

dataset [160], which consists of 6033 images of 200 classes. 2) The Oxford-Flower dataset

[116], which consists of 8189 images of 102 flower categories. Both datasets were amended

with class-level text descriptions extracted from different encyclopedias which is the same de-

scriptions used in [46]; see samples in the supplementary materials. We split the datasets to

80% of the classes for training and 20% of the classes for testing, with cross validations. We

report multiple metrics while evaluating and comparing our approach to the baselines, detailed

as follows

Multiclass Accuracy of Unseen classes (MAU): Under this metric, we aim to evaluate the

performance of the unseen classifiers against each others. Firstly, the classifiers of all unseen

categories are predicted. Then, an instance x∗ is classified to the class z∗ ∈ Yus of maximum

confidence for x∗ of the predicted classifiers; see Eq 3.2.

AUC: In order to measure the discriminative ability of our predicted one-vs-all classifier for

each unseen class, against the seen classes, we report the area under the ROC curve. Since

unseen class positive examples are few compared to negative examples, a large accuracy could

be achieved even if all unseen points are incorrectly classified. Hence, AUC is a more consistent

measure. In this metric, we use the predicted classifier of an unseen class as a binary separator

against the seen classes. This measure is computed for each predicted unseen classifier and the

average AUC is reported. This is the only measure addressed in [46] to evaluate the unseen

classifiers, which is limiting in our opinion.

|Nsc| to |Nsc + 1|Recall: Under this metric, we aim to check how the learned classifiers

of the seen classes confuse the predicted classifiers, when they are involved in a multi-class

classification problem of Nsc + 1 classes. We use Eq 3.2 to predict label of an instance x∗, such

that the unknown label y∗ ∈ Ysc ∪ lus, such that lus is the label of the unseen class. We compute

the recall under this setting. This metric is computed for each predicted unseen classifier and

the average is reported.
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3.6.2 Comparisons to Linear Classifier Prediction

We compared our proposed approach to [46], which predicts a linear classifier for zero-shot

learning from textual descriptions ( E space in our framework). The aspects of the compar-

ison includes 1) whether the predicted kernelized classifier outperforms the predicted linear

classifier 2) whether this behavior is consistent on multiple datasets. We performed the com-

parison on both Birds and Flower dataset. For these experiments, in our setting, domain X is

the visual domain and domain E is the textual domain, i.e. , the goal is to predict classifiers

from pure textual description. We used the same features on the visual domain and the textual

domains as [46]. That is, for the visual domain, we used classeme features [154], extracted

from images of the Bird and the Flower datasets. Classeme is a 2569-dimensional features,

which correspond to confidences of a set of one-vs-all classifiers, pre-trained on images from

the web, as explained in [154], not related to either the Bird nor the Flower datasets. The ra-

tionale behind using these features in [46] was that they offer a semantic representation. For

the textual domain, we used the same textual feature extracted by [46]. In that work, tf-idf

(Term-Frequency Inverted Document Frequency)[143] features were extracted from the textual

articles were used, followed by a CLSI [169] dimensionality reduction phase.

We denote our DT prediction and one class SVM adjust DT prediction approaches as DT-

kernel and SVM-DT-kernel respectively. We compared against the linear classifier prediction

by [46]. We also compared against the direct domain transfer [85], which was applied as a

baseline in [46] to predict linear classifiers. In our kernel approaches, we used Gaussian rbf-

kernel as a similarity measure in E and X spaces (i.e. k(d, d′) = exp(−λ||d− d′||)).

Recall metric : The recall of our approach is 44.05% for Birds and 40.34% for Flower,

while it is 36.56% for Birds and 31.33% for Flower using [46]. This indicates that the predicted

classifier is less confused by the classifiers of the seen compared with [46]; see table 3.1 (top

part)

MAU metric: It is worth to mention that the multiclass accuracies for the trained seen clas-

sifiers are 51.3% and 15.4% using the classeme features on Flower dataset and Birds dataset1,

respectively. Table 3.1 (middle part) shows the average MAU metric over three seen/unseen

1Birds dataset is known to be a challenging dataset for fine-grained, even when applied in a regular multiclass
setting as it is clear from the 15.4% performance on seen classes
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Table 3.1: Recall, MAU, and average AUC on three seen/unseen splits on Flower Dataset and

a seen/unseen split on Birds dataset
Recall-Flower improvement Recall-Birds improvement

SVM-DT kernel-rbf 40.34% (+/- 1.2) % 44.05 %

Linear Classifier 31.33 (+/- 2.22)% 27.8 % 36.56 % 20.4 %

MAU-Flower improvement MAU-Birds improvement

SVM-DT kernel-rbf 9.1 (+/- 2.77) % 3.4 %

DT kernel-rbf 6.64 (+/- 4.1) % 37.93 % 2.95 % 15.25 %

Linear Classifier 5.93 (+/- 1.48)% 54.36 % 2.62 % 29.77 %

Domain Transfer 5.79 (+/- 2.59)% 58.46 % 2.47 % 37.65 %

AUC-Flower improvement AUC-Birds improvement

SVM-DT kernel-rbf 0.653 (+/- 0.009) 0.61

DT kernel-rbf 0.623 (+/- 0.01) % 4.7 % 0.57 7.02 %

Linear Classifier 0.658 (+/- 0.034) - 0.7 % 0.62 -1.61%

Domain Transfer 0.644 (+/- 0.008) 1.28 % 0.56 8.93%

splits for Flower dataset and one split on Birds dataset, respectively. Furthermore, the relative

improvements of our SVM-DT-kernel approach is reported against the baselines. On Flower

dataset, it is interesting to see that our approach achieved 9.1% MAU, 182% improvement over

the random guess performance, by predicting the unseen classifiers using just textual features

as privileged information (i.e. E domain). We also achieved also 13.4%, 268% the random

guess performance, in one of the splits (the 9.1% is the average over 3 seen/unseen splits).

Similarity on Birds dataset, we achieved 3.4% MAU from text features, 132% the random

guess performance (further improved to 224% in next experiments).

AUC metric: Fig 3.2 (top part) shows the ROC curves for our approach on the best pre-

dicted unseen classes from the Flower dataset. Fig 3.2 (bottom part) shows the AUC for all

the classes on Flower dataset (over three different splits). More results and figures are attached

in the supplementary materials. Table 3.1 (bottom part) shows the average AUC on the two

datasets, compared to the baselines.

Looking at table 3.1, we can notice that the proposed approach performs marginally similar

to the baselines from AUC perspective. However, there is a clear improvement in MAU and

Recall metrics. These results show the advantage of predicting classifiers in kernel space.

Furthermore, the table shows that our SVM-DT-kernel approach outperforms our DT-kernel
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Figure 3.2: AUC of the 62 unseen classifiers the flower data-sets over three different splits

(bottom part) and their Top 10 ROC-curves (top part)

model. This indicates the advantage of the class separation, which is adjusted by the SVM-DT-

kernel model. More details on the hyper-parameter selection are attached in the supplementary

materials.

3.6.3 Multiple Kernel Learning (MKL) Experiment

This experiment shows the added value of proposing a kernelized zero-shot learning approach.

We conducted an experiment where the final kernel on the visual domain is produced by Mul-

tiple Kernel Learning [66]. For the visual domain, we extracted kernel descriptors for Birds

dataset. Kernel descriptors provide a principled way to turn any pixel attribute to patch-level

features, and are able to generate rich features from various recognition cues. We specifically
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Table 3.2: MAU on a seen-unseen split-Birds Dataset (MKL)

MAU improvement

SVM-DT kernel-rbf (text) 4.10 %

Linear Classifier 2.74 % 49.6 %

used four types of kernels introduced by [15] as follows: Gradient Match Kernels that cap-

tures image variation based on predefined kernels on image gradients. Color Match Kernel

that describes patch appearance using two kernels on top of RGB and normalized RGB for

regular images and intensity for grey images. These kernels capture image variation and visual

apperances. For modeling the local shape, Local Binary Pattern kernels have been applied.

We computed these kernel descriptors on local image patches with fixed size 16 x 16 sam-

pled densely over a grid with step size 8 in a spatial pyramid setting with four layers. The dense

features are vectorized using codebooks of size 1000. This process ended up with a 120,000

dimensional feature for each image (30,000 for each type). Having extracted the four types of

descriptors, we compute an rbf kernel matrix for each type separately. We learn the bandwidth

parameters for each rbf kernel by cross validation on the seen classes. Then, we generate a

new kernel kmkl(d, d′) =
∑4
i=1 wiki(d, d

′), such that wi is a weight assigned to each kernel. We

learn these weights by applying Bucak’s Multiple Kernel Learning algorithm [17]. Then, we

applied our approach where the MKL-kernel is used in the visual domain and rbf kernel on the

text TFIDF features.

To compare our approach to [46] under this setting, we concatenated all kernel descriptors

to end up with 120,000 dimensional feature vector in the visual domain. As highlighted in the

approach Sec 3.4, the approach in [46] solves a quadratic program of N + dX + 1 variables

for each unseen class. Due to the large dimensionality of data (dX = 120, 000), this is not

tractable. To make this setting applicable, we reduced the dimensionality of the feature vector

into 4000 using PCA. This highlights the benefit of our approach since it does not depend

on the dimensionality of the data. Table 3.2 shows MAU for our approach under this setting

against [46]. The results show the benefits of having a kernel approach for zero shot learning

where kernel methods are applied to improve the performance.
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Table 3.3: MAU on a seen-unseen split-Birds Dataset (CNN features, text description)

MAU improvement

SVM-DT kernel (X -rbf, E-DS kernel) 5.35 %

SVM-DT kernel (X -rbf, E-rbf on TFIDF) 4.20 % 27.3%

Linear Classifier (TFIDF text) 2.65 % 102.0%

[117] 2.3% 132.6%

3.6.4 Multiple Representation Experiment and Distributional Semantic(DS) Ker-

nel

The aim of this experiment is to show that our approach also work on different representa-

tions of text and visual domain. In this experiment, we extracted Convolutional Neureal Net-

work(CNN) image features for the Visual domain. We used caffe [75] implementation of [84].

Then, we extracted the sixth activation feature of the CNN since we found it works the best on

the standard classification setting. We found this consistent with the results of [34] over differ-

ent CNN layers. While using TFIDF feature of text description and CNN features for images,

we achieved 2.65% for the linear version and 4.2% for the rbf kernel on both text and images.

We further improved the performance to 5.35% by using our proposed Distributional Semantic

(DS) kernel in the text domain and rbf kernel for images. In this DS experiment, we used the

distributional semantic model by [107] trained on GoogleNews corpus (100 billion words) re-

sulting in a vocabulary of size 3 million words, and word vectors ofK = 300 dimensions. This

experiment shows both the value of having a kernel version and also the value of the proposed

kernel in our setting. We also applied the zero shot learning approach in [117] which performs

worse in our settings; see Table 3.3.

3.6.5 Attributes Experiment

We emphasis that our main goal is not attribute prediction. However, it was interesting for us

to see the behavior of our method where side information comes from attributes instead of text.

In contrast to attribute-based models, which fully utilize attribute information to build attribute

classifiers, our approach do not learn attribute classifiers. In this experiment, our method uses

only the first moment of information of the attributes (i.e. the average attribute vector). We
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Table 3.4: MAU on a seen-unseen split-Birds Dataset (Attributes)

MAU improvement

SVM-DT kernel-rbf 5.6 %

DT kernel-rbf 4.03 % 32.7 %

Lampert DAP 4.8 % 16.6 %

decided to compare to an attribute-based approach from this perspective. In particular, we

applied the (DAP) attribute-based model [87, 89], widely adopted in many applications (e.g.,

[96, 132]), to the Birds dataset. Details weak attribute representation in E space are attached in

the supplementary materials due to space. For visual domain X , we used classeme features in

this experiment (like table 3.1 experiment)

An interesting result is that our approach achieved 5.6% MAU (224% the random guess

performance); see Table 3.4. In contrast, we get 4.8% multiclass accuracy using DAP ap-

proach [87]. In this setting, we also measured the Nsc to Nsc + 1 average recall. We found

the recall measure is 76.7% for our SVM-DT-kernel, while it is 68.1% on the DAP approach,

which reflects better true positive rate (positive class is the unseen one). We find these results

interesting, since we achieved it without learning any attribute classifiers, as in [87]. When

comparing the results of our approach using attributes (Table 3.4) vs. textual description (Ta-

ble 3.1)2 as the privileged information used for prediction, it is clear that the attribute features

gives better prediction. This support our hypothesis that the more meaningful the E domain, the

better the performance on X domain.

3.6.6 Experiments using deep image-sentence similarity

In this experiment, we used a state of the art Model [?] for image-sentence similarity by break-

ing down each text document into sentences and considering it as a positive sentence for all

images in the corresponding class. Then we measure the similarities between an image to

class by averaging its similarity to all sentences in that class. Images were encoded using VG-

GNet [148] and sentences were encoded by an RNN with GRU activations [22]. The MAU on

2We are refering to the experiment that uses classeme as visual features to have a consistent comparison to here
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Birds dataset for this experiments resulted in 3.3% MAU which is better that the Linear Clas-

sifier in Table 3.3. However, our kernel method (Eq ??) over deep features is still performing

2.03% better (i.e. 5.35% MAU).

3.7 Conclusion

We proposed an approach to predict kernel-classifiers of unseen categories textual description

of them. We formulated the problem as domain transfer function from the privilege space

E to the visual classification space X , while supporting kernels in both domains. We proposed

a one-class SVM adjustment to our domain transfer function to improve the prediction. We

validated the performance of our model by several experiments. We applied our approach

using different privilege spaces (i.e. E lives in a textual space or an attribute space). We showed

the value of proposing a kernelized version by applying kernels generated by Multiple Kernel

Learning (MKL) and achieved better results. We also compared our approach with state-of-

the-art approaches and interesting findings have been reported.
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Chapter 4

Zero Shot Event Detection by Multimodal Distributional Semantic
Embedding of Videos

We propose a new zero-shot Event Detection method by Multi-modal Distributional Semantic

embedding of videos. Our model embeds object and action concepts as well as other available

modalities from videos into a distributional semantic space. To our knowledge, this is the first

Zero-Shot event detection model that is built on top of distributional semantics and extends it

in the following directions: (a) semantic embedding of multimodal information in videos (with

focus on the visual modalities), (b) automatically determining relevance of concepts/attributes

to a free text query, which could be useful for other applications, and (c) retrieving videos

by free text event query (e.g., ”changing a vehicle tire”) based on their content. We embed

videos into a distributional semantic space and then measure the similarity between videos and

the event query in a free text form. We validated our method on the large TRECVID MED

(Multimedia Event Detection) challenge. Using only the event title as a query, our method

outperformed the state-of-the-art that uses big descriptions from 12.6% to 13.5% with MAP

metric and 0.73 to 0.83 with ROC-AUC metric. It is also an order of magnitude faster.

4.1 Introduction

Every minute, hundreds of hours of video are uploaded to video archival site such as YouTube [68].

Developing methods to automatically understand the events captured in this large volume of

videos is necessary and meanwhile challenging. One of the important tasks in this direction

is event detection in videos. The main objective of this task is to determine the relevance of

a video to an event based on the video content (e.g., feeding an animal, birthday party; see

Fig. 4.1). The cues of an event in a video could include visual objects, scene, actions, de-

tected speech (by Automated Speech Recognition(ASR)), detected text (by Optical Character
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(a) Grooming an Animal

(1) “brushing dog”, weight = 0.66976

(2) “combing dog”, weight = 0.66419

(3) “clipping nails”, weight = 0.52486

(b) Birthday Party

(1) “cutting cake” concept, weight = 0.7194

(2) “blowing candles” concept, weight = 0.64801

(3) “opening presents” concept, weight = 0.58737

Figure 4.1: Top relevant Concepts from a pre-defined multi-media concept repository and their

automatically-assigned weights as a part of our Event Detection method

Recognition (OCR)), and audio concepts (e.g. music and water concepts).

Search and retrieval of videos for arbitrary events using only free-style text and unseen

text in particular has been a dream in computational video and multi-media understanding.

This is referred as “zero-shot event detection”, because there is no positive exemplar videos

to train a detector. Due to the proliferation of videos, especially consumer-generated videos

(e.g., YouTube), zero-shot search and retrieval of videos has become an increasingly important

problem.

Several research works have been proposed to facilitate performing the zero-shot learning

task by establishing an intermediate semantic layer between events or generally categories (i.e.,

concepts or attributes) and the low-level representation of a multimedia content from the visual

perspective. [88] and [52] were the two first to use attribute learning representation for the

zero-shot setting for object recognition in still images. Attributes were similarly adopted

for recognizing human actions [95]; attributes are generalized and denoted by concepts in this

context. Later, [96] proposed Concept Based Event Retrieval (CBER) for videos InTheWild.

Even though these methods facilitate zero-shot event detection, they only capture the visual

modality and more importantly they assume that the relevant concepts for a query event are

manually defined. This manual definition of concepts, also known as semantic query editing,

is a tedious task and may be biased due to the limitation of human knowledge. Instead, we aim
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at automatically generating relevant concepts by leveraging information from distributional

semantics.

Recently, several systems were proposed for zero-shot event detection methods [161, 77,

76, 20, 71]. These approaches rely on the whole text description of an event where relevant

concepts are specified; see example event descriptions used in these approaches in the Supple-

mentary Materials (SM)1 ( explicitly define the event explication, scene, objects, activities, and

audio). In practice, however, we think that typical use of event queries under this setting should

be similar to text-search, which is based on few words instead that we model their connection

to the multimodal content in videos.

The main question addressed in this paper is how to use an event text query (i.e. just the

event title like “birthday party” or “feeding an animal”) to retrieve a ranked list of videos based

on their content. In contrast to [88, 96], we do not manually assign relevant concepts for a

given event query. Instead, we leverage information from a distributional semantic space [107]

trained on a large text corpus to embed event queries and videos to the same space, where simi-

larity between both could be directly estimated. Furthermore, we only assume that query comes

in the form of an “unstructured” few-keyword query (in contrast to [161, 77, 76]). We abbrevi-

ate our method as EDiSE (Event-detection by multimodal Distributional Semantic Embedding

of videos).

Contributions. The contributions of this paper can be listed as follows: (1) Studying how

to use few-keyword unstructured-text query to detect/retrieve videos based on their multimedia

content, which is novel in this setting. We show how relevant concepts to that event query could

be automatically retrieved through a distributional semantic space and got assigned a weight

associated with the relevance; see Fig. 4.1 “Birthday” and “Grooming an Animal” example

events. (2) To the best of our knowledge, our work is the first attempt to model the connection

between few keywords and multimodal information in videos by distributional semantics . We

study and propose different similarity metrics in the distributional semantic space to enable

event retrieval based on (a) concepts, (b) ASR, and (c) OCR in videos. Our unified framework

is capable of embedding all of them into the same space; see Fig. 4.2. (3) Our method is also

1 Supplementary Materials (SM) could be found here https://sites.google.com/site/mhelhoseiny/
EDiSE_supp.zip

https://sites.google.com/site/mhelhoseiny/EDiSE_supp.zip
https://sites.google.com/site/mhelhoseiny/EDiSE_supp.zip
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very fast, which makes it applicable to both large number of videos and concepts (i.e. 26.67

times faster than the state of the art [76]).

4.2 Related Work

Attribute methods for zero-shot learning are based on manually specifying the attributes for

each category (e.g., [88, 122]). Other methods focused on attribute discovery [133, 131] and

then apply the same mechanism. Recently, several methods were proposed to perform zero

shot recognition by representing unstructured text in document terms (e.g. [47, 103]) One

drawback of the TFIDF [143] in [47] and hardly matching tag terms in [103, 134] is that they

do not capture semantically related terms that our model can relate in noisy videos instead of

still images. Also, WordNet [111], adopted in [134], does not connect objects with actions

(e.g., person blowing candle), making it hard to apply in our setting and heavily depending on

predefined information like WordNet.

There has been a recent interest especially in the computational linguistics’ community

in word-vector representation ( e.g., [13]), which captures word semantics based on context.

While word-vector representation is not new, recent algorithms (e.g. [107, 105]) enabled

learning these vectors from billions of words, which makes them much more semantically

accurate. As a result, these models got recently adopted in several tasks including translation

[106] and web search [146]. Several computer vision researchers explored using these word-

vector representation to perform Zero-Shot learning in the object recognition (e.g. [60, 149,

117]). They embed the object class name into the word-vector semantic space learnt by models

like [107]. It is worth mentioning that these zero-shot learning approaches [60, 149] and also

the aforementioned work [47] assume that during training, there is a set of training classes

and test classes. Hence, they learn a transformation to correlate the information between both

domains (textual and visual). In contrast, zero-shot setting of event retrieval rely mainly on

the event information without seeing any training events, as assumed in recent zero-shot event

retrieval methods (e.g., [25, 77, 161, 96]). Hence, there does not exist seen events to learn such

transformation from. Differently, we also model multimodal connection from free text query

to video information.

In the context of videos, [161] proposed a method for zero-shot event detection by using
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the salient words in the whole structured event description, where relevant concept are already

defined in the event structured text description; also see Eq. 1 in [161]. Similarly, [25] adopted

a Markov-Random-Field language model proposed by [104]. One drawback of this model is

that it performs an intensive processing for each new concept. This is since it determines the

relevance of the concept to a query event by creating a text document to represent each concept.

This document is created by web-querying the concept name and some of its keywords and

merging the top retrieved pages. In contrast, our model does not require this step to determine

relevance of an event to a query. Once the language model is trained, any concept can be

instantly added and captured in our multimodal semantic embedding of videos.

In contrast to both [161] and [25], we focus on retrieving videos only with the event ti-

tle (i.e., few-words query) and without semantic editing. The key difference is in modeling

and embedding concepts to allow zero-shot event retrieval. In [161] and [25], the semantic

space is a vector whose dimensionality is the number of the concepts. Our idea is to embed

concepts, video information, and the event query into a distributional semantic space whose

dimensionality is independent of the number of concepts. This property, together with the

semantic properties captured by distributional semantics, feature our approach with two advan-

tages (a) scalability to any concept size. Having new concepts does not affect the representation

dimensionality (i.e., in all our experiments concepts, videos, event queries are embedded to M

dimensional space; M is few hundreds in our experiments). (b) facilitating automatic determi-

nation of relevant concepts given an unstructured short event query: For example, being able

to automatically determine that “blowing a candle” concept is a relevant concept to “birthday

party” event. [161] and [25] used the complete text description of an event for retrieval that

explicitly specifies relevant concepts.

There is a class of models that improve zero-shot Event Detection performance by rerank-

ing. Jiang et al. proposed multimodal pseudo relevance feedback [77] and self-paced rerank-

ing [76] algorithms. The main assumption behind these models is that all unlabeled test ex-

amples are available and the top few examples by a given initial ranking have high top K

precision (K ∼ 10). This means that reranking algorithms can not update confidence of a video

for an event without knowing the confidences of the remaining videos to perform reranking.

In contrast, our goal is different which is to directly model the probability of a few-keyword
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event-query given an arbitrary video. Hence, our work does not require an initial ranking and

can compute the conditional probability of a video without any information about other videos.

Our method is also 26.67 times faster, as detailed in our experiments.

4.3 Method

4.3.1 Problem Definition

Given an arbitrary event query e and a video v, our objective is to model p(e|v). We start by

defining the representation of event query e, the concept set c, the video v in our setting.

Event-Query representation e: We use the unstructured event title to represent an event

query for concept based retrieval. Our framework also allows additional terms specifically

for ASR or OCR based retrieval. While we show retrieval on different modalities, concept

based retrieval is our main focus in this work. The few-keyword event query for concept based

retrieval is denoted by ec, while query keywords for OCR and ASR are denoted by eo and ea,

respectively. Hence, under our setting e = {ec, eo, ea}.

Concept Set c: We denote the whole concept set in our setting as c, which include visual

concepts cv and audio concepts cd, i.e., c = {cv, cd}. The visual concepts include object, scene

and action concepts. The audio concepts include acoustic related concepts like water sound. We

performed an experiment on a set of audio concepts trained on MFCC audio features [26, 97].

However, we found their performance ≈ 1% MAP, and hence we excluded them from our

final experiments. Accordingly, our final performance mainly relies on the visual concepts for

concept based retrieval; i.e., cd = ∅. We denote each member ci ∈ c as the definition of the ith

concept in c. ci is defined by the ith concept’s name and optionally some related keywords; see

examples in SM. Hence, c = {c1, · · · , cN} is the the set of concept definitions, where N is the

number concepts.

Video Representation: For our zero-shot purpose, a video v is defined by three pieces of

information, which are video OCR denoted by vo, video ASR denoted by va, and video concept

representation denoted by vc. vo and va are the detected text in OCR and ASR, respectively.

We used [115] to extract vo and [156] to extract va. In this paper, we mainly focus on the

visual video content, which is the most challenging. The video concept based representation vc
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Figure 4.2: EDiSE Approach

Figure 4.3: PCA visualization in 3D of the ”Grooming an Animal” event (in green) and

its most 20 relevant concepts in Ms space using sp(·, ·). The exact sp(θ(“Grooming An

Animal”), θ(ci)) is shown between parenthesis
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is defined as

vc = [p(c1|v), p(c2|v), · · · , p(cN |v)] (4.1)

where p(ci|v) is a conditional probability of concept ci given video v, detailed later. We denote

p(ci|v) by vic.

In zero-shot event detection setting, we aim at recognizing events in videos without train-

ing examples based on its multimedia content including still-image concepts like objects and

scenes, action concepts, OCR, and ASR2. Given a video v = {vc, vo, va}, our goal is to com-

pute p(e|v) by embedding both the event query e and information of video v of different modal-

ities (vc, vo, and vo) into a distributional semantic space, where relevance of v to e could be

directly computed; see Fig. 4.2. Specifically, our approach is to model p(e|v) as a function F

of θ(e), ψ(vc), θ(vo), and θ(va), which are the distributional semantic embedding of e, vc, vo,

and va, respectively

p(e|v) ∝F
(
θ(e), ψ(vc), θ(vo), θ(va)

)
(4.2)

We remove the stop words from e, vo, va before applying the embedding θ(·). The rest of

this section is organized as follows. First, we present the distributional semantic manifold

and the embedding function θ(·) which is applied to e, va, vo, and the concept definitions c

in our framework. Then, we show how to determine automatically relevant concepts to an

event title query and assign a relevance weight to them, as illustrated in Fig. 4.1. We present

this concept relevance weighting in a separate section since it might be generally useful for

other applications. Finally, we present the details of p(e|v) where we derive vc embedding

(i.e. ψ(vc)), which is based on the proposed concept relevance weighting.

4.3.2 Distributional Semantic Model & θ(·) Embedding

We start by the distributional semantic model by [107, 105] to train our semantic manifold. We

denote the trained semantic manifold byMs, and the vectorization function that maps a word

toMs space as vec(·). We denote the dimensionality of the real vector returned from vec(·) by

M . These models learn a vector for each wordwn, such that p(wn|(wi−L, wi−L+1, · · · , wi+L−1, wi+L)

is maximized over the training corpus; 2 × L is the context window size. Hence similarity

2Note that OCR and ASR are not concepts. They are rather detected text in video frames and speech
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between vec(wi) and vec(wj) is high if they co-occurred a lot in context of size 2 × L in

the training text-corpus (i.e., semantically similar words share similar context). Based on the

trainedMs space, we define how to embed the event query e, and c. Each of ec, ea, and eo is

set of one or more words. Each of these words can be directly embedded intoMs manifold by

vec(·) function. Accordingly, we represent these sets of word vectors for each of ec, ea, and eo

as θ(ec), θ(ea), and θ(eo). We denote {θ(ec), θ(ea), θ(eo)} by θ(e). Regarding embedding of

c, each concept c∗ ∈ c is defined by its name and optionally some related keywords. Hence,

the corresponding word vectors are then used to define θ(c∗) inMs space.

4.3.3 Relevance of Concepts to Event Query

Let us define a similarity function between θ(c∗) and θ(ec) as s(θ(ec), θ(c∗)). We propose

two functions to measure the similarity between θ(ec) and θ(c∗). The first one is inspired

by an example by [107] to show the quality of their language model, where they indicated

that vec(“king”) + vec(“woman”)− vec(“man”) is closest to vec(“queen”). Accordingly, we

define a version of s(X,Y ), where the sets X and Y are firstly pooled by the sum operation;

we denote the sum pooling operation on a set by an overline. For instance, X =
∑

i xi and

Y =
∑

i yj , where xi and yj are the word vectors of the ith element inX and the jth element in

Y , respectively. Then, cosine similarity between X and Y is computed. We denote this version

as sp(·, ·); see Eq. 4.3. Fig. 4.3 shows how sp(·, ·) could be used to retrieve the top 20 concepts

relevant to θ(“Grooming An Animal”) inMs space. The figure also shows embedding of the

query and the relevant concept sets in 3D PCA visualization. θ(ec =“Grooming An Animal”)

and each of θ(ci) for the most relevant 20 concepts are represented by their corresponding

pooled vectors (θ(ec) and θ(ci))∀i), normalized to unit length under L2 norm. Another idea is

to define s(X,Y ) as a similarity function between the X and Y sets. For robustness [152], we

used percentile-based Hausdorff point set metric, where similarity between each pair of points

is computed by the cosine similarity. We denote this version by st(X,Y ); see Eq. 4.3. We used

l = 50% (i.e., median).

sp(X,Y ) =
(
∑
i xi)

T(
∑
j yj)

‖
∑
i xi‖‖

∑
j yj‖

=
X

T
Y

‖X‖‖Y ‖
(4.3)

st(X,Y ) = min{
l%
min
j
m
i
ax

xTi yj
‖xi‖‖‖yj‖

,
l%
min
i
m
j
ax

xTi yj
‖xi‖‖yj‖

}
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4.3.4 Event Detection p(e|v)

In practice, we decomposed p(e|v) into p(ec|v), p(eo|v), p(ea|v), which makes the problem re-

duces to deriving p(ec|v) (concept based retrieval), p(eo|v) (OCR based retrieval), and p(ea|v)

(ASR based retrieval) underMs. We start by p(ec|v) then we will how later in this section how

p(eo|v), and p(ea|v) could be estimated.

Estimating p(ec|v) : In our work, concepts are linguistic meanings that have corresponding

detection functions given the video v. From Fig. 4.3, Ms space could be viewed as a space

of meanings captured by a training text-corpus, where only sparse points in that space has

a corresponding visual detection functions given v, which are the concepts c (e.g., “blowing

a candle”). For zero shot event detection, we aim at exploiting these sparse points by the

information captured by s(θ(ec), θ(ci ∈ c)) inMs space. We derive p(ec|v) from probabilistic

perspective starting from marginalizing p(ec|v) over the concept set c

p(ec|v) ∝
∑
ci

p(ec|ci)p(ci|v) ∝
∑
ci

s(θ(ec), θ(ci))v
i
c (4.4)

where p(e|ci)∀i are assumed to be proportional to s(θ(ec), θ(ci)) in our framework. From

semantic embedding perspective, each video v is embedded into Ms by the set ψ(vc) =

{θv(ci) = vicθ(ci), ∀ci ∈ c}, where vicθ(ci) is a set of the same points in θ(ci) scaled with

vic; ψ(vc) could be then directly compared with θ(ec); see Eq. 4.5

p(ec|v) ∝
∑
ci

s(θ(ec), θ(ci))v
i
c

∝ s′(θ(ec), ψ(vc) = {θv(ci),∀ci ∈ c})
(4.5)

where s′(θ(ec), ψ(p(c|v)) =
∑

i s(θ(ec), θv(ci)) and s(·, ·) could be replaced by sp(·, ·), st(·, ·),

or any other measure inMs space. An interesting observation is that when sp(·, ·) is chosen,

p(ec|v) ∝ θ(ec)
T

‖θec‖

(∑
i
θ(ci)
‖θci‖v

i
c

)
which is a direct similarity between θ(ec) representing the

query and the embedding of ψ(vc) as
∑

i
θ(ci)
‖θci‖v

i
c; see proof in Appendix A. sp(·, ·) performs

consistently better than st(·, ·) in our experiments. In practice, we only include θv(ci) in ψ(vc)

such that ci is among the top R concepts with highest p(ec|ci). This is assuming that the re-

maining concepts are assigned p(ec|ci) = 0 which makes those items vanish; we used R=5.

Hence, only a few concept detectors needs to be computed for on v which is a computational

advantage.
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Estimating p(eo|v) and p(ea|v) : Both vo and va can be directly embedded intoMs since

they are sets of words. Hence, we can model p(eo|v) and p(ea|v) as follows

p(eo|v) ∝ sd(θ(eo), θ(vo)), p(ea|v) ∝ sd(θ(ea) , θ(va)) (4.6)

where sd(X,Y ) =
∑

ij x
T
i yj . We found this similarity function more appropriate for ASR/OCR

text since they normally contains more text compared to concept definition. We also exploited

an interesting property inMs that nearest words to an arbitrary point can be retrieved. Hence,

we automatically augment ea and eo with the nearest words to the event title inMs using co-

sine similarity before retrieval. We found this trick effective in practice since it automatically

retrieve relevant words that might appear in vo or va.

Fusion: We fuse p(ec|v), p(eo|v), and p(ea|v) by weighted geometric mean with focus

on visual concepts, i.e. p(e|v) =
w+1
√
p(ec|v)w

√
p(eo|v)p(ea|v)); w = 6. p(ec|v), p(ec|v), and

p(ec|v) involves the similarity between θ(e) and each of ψ(vc), θ(vo), and θ(va), leading to

Eq. 4.2 view.

4.4 Visual Concept Detection functions (p(c|v))

We leverage the information from three types of visual concepts in cv: object concepts co,

action concepts ca, and scene concepts cs. Hence, c = cv = {co ∪ ca ∪ cs}; the list of

concepts are attached in SM. We define object and scene concept probabilities per video frame,

and action concepts per video chunks. The rest of this section summarizes the concept detection

for objects and scenes per frame f , and action concepts per video chunk u. Then, we show

how they can be reduced to video level probabilities. Fig. 4.4 shows example high confidence

concepts in a “Birthday Party” video.

Object Concepts p(oi|f), oi ∈ co: We involve 1000 Overfeat [145] object concept detectors

which maps to 1000-ImageNet categories. We also adopt the concept detectors of face, car and

person from a publicity available detector (i.e., [56])

Scene Concepts p(si|f), si ∈ cs: We represented scene concepts (p(si|f)) as bag of word

representation on static features (i.e., SIFT [99] and HOG [24]) with 10000 codebooks. We

used TRECVID 500 SIN concepts concepts, including scene categories like “city” and “hall”

way; these concepts are provided by provided by TRECVID2011 SIN track.
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Action Concepts p(ai|u), ai ∈ ca: We use both manually annotated (i.e. strongly supervised)

and automatically annotated (i.e. weekly supervised) concepts; detailed in SM. We have ∼500

action concepts; please refer to [96] for the action concept detection method that we adopt.

Video level concept probabilities p(c|v)

We represent probabilities of the cv set given a video v by a pooling operation over the the

chunks or the frames of the videos similar to [96]. In our experiments, we evaluated both max

and average pooling. Specifically, p(oi|v) = ρ({p(oi|fk), fk ∈ v}), p(sl|v) = ρ({p(si|fk), fk ∈

v}), p(ak|v) = ρ({p(ai|uk), uk ∈ v}, where p(oi|v) and p(sl|v) are the video level probabil-

ities of for the ith object and the lth scene concepts respectively, pooled over frames fk ∈ v.

{fk ∈ v} are selected every M frames in v (M= 250). p(ak|v) is the video level probability of

the kth action concept, pooled over a set of video chunks {uk ∈ v}. The chunk size is set to

the mean chunk length of all concept training chunks. Finally, ρ is the pooling function. We

denote average and max pooling as ρa(·) and ρm(·), respectively.

4.5 EDiSE Computational Performance Benefits

Here we discuss the computational complexity of concept based EDISE, and ASR/OCR based

EDiSE. The fusion part is negligible since it is constant time.

Figure 4.4: Concept probabilities from videos (p(c|v))



57

Table 4.1: MED2013 MAP performance on four concept sets (event title query)
Ours-Gnews Ours-Wiki (Dalton etal, 2013)

TRECVID MED 2013 ρm(·) ρa(·) ρm(·) ρa(·)

sp(·, ·) st(·, ·) sp(·, ·) st(·, ·) sp(·, ·) st(·, ·) sp(·, ·) st(·, ·)

Concepts G1 (152 concepts) 4.29 3.94% 2.39% 2.38% 3.14% 2.13% 1.85% 1.70% 2.57%

Concepts G2 (101 concepts) 1.74 1.20 1.56% 1.20% 1.09% 0.96% 0.66% 0.60% 1.17%

Concepts G3 (60 concepts) 1.72 1.33% 1.28% 1.16% 1.21% 0.88% 0.88% 0.74% 1.54%

Concepts G4 (56 concepts) 1.22 0.95 0.84% 0.69% 0.87% 0.76% 0.67% 0.56% 0.83%

Table 4.2: MED2013 full concept set MAP Performance (auto-weighted versus manually-

weighted concepts)

Ours (auto-weighted )) (Dalton etal,13)(auto-weighted) (Dalton etal,13) (manually-weighted) Overfeat

8.36% 3.40% 7.4% 2.43%

SUN Object Rank Classeme CDDT WSCD−SIFTY ouTube

0.48% 0.77% 0.84% 2.28% 3.48%

4.5.1 Concept based EDiSE

The computational complexity for computing p(ec|v) is mainly linear in the number of videos,

denoted by |V |. We here detail why computational complexity of p(ec|v) is almost constant

and hence video retrieval is almost O(|V |).

From Eq. 4.5, p(ec|v) has a computational complexity of O(N · Q) for on e video, where

Q is the computational complexity of computing s(·, ·) and N is the number of concepts. We

detail next the computational complexity of sp(·, ·) and st(·, ·) for the whole set of videos |V |.

Complexity of p(ec|v) for sp(·, ·)

Let’s assume that there θ(ec) set has |ec| terms and θ(ci) has |ci| terms. Then, the computational

complexity of sp(θ(ec), θ(ci)) is O(M(|ec| + |ci|). |ci| and and |ec| are usually few terms in

our case (< 10). Hence the computational complexity of sp(θ(ec), θ(ci)) is O(M), where M

is the dimensionality of the word vectors. In our experiments M = 300. Given the complexity

of sp(θ(ec), θ(ci)), the computational complexity of p(ec|v) will be O(N ·M), where N is

the number of concepts. Hence, the computational complexity for computing p(ec|v) for |V |

videos is O(|V | · N ·M). However, for a given event, only few concepts are relevant, which

are computed based on sp(θ(ec), θ(ci)) and only few concepts 5 in our case are sufficient for

event zero shot retrieval, retrieved by Nearest Neighbor search of ci ∈ c that is close the ec.

Hence the computational complexity reduced to O(|V | ·M), M = 300 for the GoogleNews

word2vec model that we used. Hence, the computational complexity for |V | videos is basically

linear O(|V |), given M is a constant and M << |V |.
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Complexity of p(ec|v) for st(·, ·)

The previous argument applies here in all elements except the complexity of the similarity

function st(θ(ec), θ(ci)), which is O(M(|ec| · |ci|). Assuming that |ec| · |ci| is bounded by

a constant, then the complexity of |V | videos is also O(|V | ·M), but with a bigger constant

compared to sp(·, ·) (linear in |V | for constant M << |V |).

4.5.2 ASR/OCR based EDiSE

The computational complexity of sd(θ(eo), θ(vo)) and sd(θ(ea), θ(va)) are O(|eo| · |vo| ·M)

and O(|ea| · |va| ·M), respectively. There is no concepts for ASR/OCR based retrieval. Hence,

the computational complexity of p(eo, v) and p(ea|v) areO(|V | · |eo| · |vo| ·M) andO(|V | · |ea| ·

|va| ·M), respectively. Since |eo| � |V |, |vo| � |V |, |ea| � |V |, |va| � |V |, and M � |V |,

the dominating factor in the complexity for both p(eo, v) and p(ea|v) will be |V |.

4.6 Experiments

We evaluated our method on the large TRECVID MED [57]. We show the MAP (Mean

Average Precision) and ROC AUC performance of the designated MEDTest set [57], con-

taining more than 25,000 videos. Unless otherwise mentioned, our results are on TRECVID

MED2013. There are two distributional semantic models in our experiments, trained on Wikipedia

and GoogleNews using [107]. The Wikipedia model got trained on 1 billion words resulting

in a vocabulary of size of≈120,000 words and word vectors of 250 dimensions. The Google-

News model got trained on 100 billion words resulting in a vocabulary of size 3 million words

and word vectors of 300 dimensions. The objective of having two models is to compare how

well our EDiSE method performs depending on the size of the training corpus, used to train

the language model. In the rest of this section, we present Concepts, OCR, ASR, and fusion

results.

4.6.1 Concept based Retrieval

All the results in this section were generated by automatically retrieved concepts using only

the event title. We start by comparing different settings of our method against [25]. We used
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the language model in [25] for concept based retrieval to rank the concepts. This indicates that

p(e|ci) in Eq. 4.4 is computed by the language model in [104] as adopted in [25], that we

compare with under exactly the same setting. For our model, we evaluated the two pooling

operations ρm(·) and ρp(·) and also the two different similarity measures onMs space sp(·, ·)

and st(·, ·). Furthermore, we evaluated the methods on both Wikipedia and GNews language

models. In order to have conclusive experiments on these eight settings of our model compared

to [25], we performed all of them on the four different sets of concepts (i.e. each has the

same concept detectors; completely consistent comparison); see Table 4.1. Details about these

concept sets are attached in SM.

There are a number of observations. (1) using GNews (the bigger text corpus) language

model is consistently better than using the Wikipedia language model. This indicates when the

word embedding model is trained with a bigger text corpus, it captures more semantics and

hence more accurate in our setting. (2) max pooling ρm(·) behaves consistently better than

average pooling ρa(·). (3) sp(·, ·) similarity measure is consistently better than st(·, ·), which

we see very interesting since this indicates that our hypothesis of using the vector operations on

Ms manifold better represent p(e|ci). Hence, we recommend finally to use the model trained

on the larger corpus, ρm(·) for concept pooling, and use sp(·, ·) to measure the performance on

Ms manifold. (4) our model’s final setting is consistently better than [25]. The final MED13

ROC AUC performance is 0.834. MAP for MED13 Events 31 to 40 (E31:40) is 5.97%. De-

tailed figures are attached in SM.

Our next experiment shows the final MAP performance using the recommended setting

for our framework on the whole set of concepts, detailed earlier and in SM. Table 4.2 shows

our final performance compared with [25] on the same concept detectors. It is not hard to

see that our method performs more than double the MAP performance of [25] under the same

concept set. Even when manual semantic editing is applied to [25], our performance is still

better without semantic editing. We also show the performance on the same events of different

concepts (i.e. SUN [123], Object Rank [92], Classeme [155]), and the best performing concepts

in [161] (i.e., CDDT , WSCD−SIFTY ouTube ). These numbers are as reported in [161]. The results

indicate the value of our concepts and approach compared to [161] and their concepts. We also

report our performance using Overfeat concepts only to retrieve videos for the same events.
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(a) MED2013 (b) MED2014 (E31:40)
Figure 4.5: ASR & OCR AP Performance (Google News)

Figure 4.6: ASR & OCR AUCs on MED2013: Ours (GoogleNews) vs keyword Matching (the

same query)

This shows the value of involving action and scene concepts compared to only still image

concepts like Overfeat for zero-shot event detection. We highlight that the results in [161] uses

the whole event description which explicitly includes names of relevant concepts.

4.6.2 ASR and OCR based Retrieval

First, we compared our OCR and ASR retrieval trained on both Wikipedia and GoogleNews

language model. Table 4.3 shows that the GoogleNews model MED13 MAP is better than the

Wikipedia Model MAP in both ASR and OCR, which is consistent with our concept retrieval

results. Figure 4.5 shows the GoogleNews MED13 AP per event for both OCR and ASR. We

further show our AP performance on MED14 events 31 to 40 in Fig. 4.5.

In order to show the value our semantic modeling, we computed the performance of string

matching method as a baseline, which basically increment the score for every exact match in

Table 4.3: ASR & OCR Retrieval MAP on Ms using GNews, Wikipedia, and using word

matching

GNews MED2013 Wiki MED2013 matching MED2013

OCR 4.81% 3.85% 1.8%

ASR 4.23% 1.50% 3.77%

Table 4.4: ASR & OCR MAP performance using GNews corpus compared to [161](prefix E

indicates Event)

MED13 MED13 (word) [161] MED14(E31:40)

OCR 4.81% 4.30% 2.5%

MED13 MED13 [161] MED13 [161]-expansion MED14 (E31:40)

ASR 4.23% 3.27% 3.66% 5.97%
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the the detected text to words in the query. While, both our model and the matching model use

the same query words and ASR/OCR detection, semantic properties captured by Ms boosts

the performance compared to string matching; see table 4.3. This is since semantically rel-

evant terms to the query have a high cosine similarity in Ms (i.e., high vec(wi)Tvec(wj) if

wi is semantically related to wj). On the other hand, hard matching basically assumes that

vec(wi)
Tvec(wj) = 1 ifwi = wj , 0 otherwise. We also computed the ROC AUC metric for

our method and the hard matching method on ASR and OCR; see Fig. 4.6. For ASR, average

AUC is 0.623 for ours and 0.567 for Matching (9.9% gain). For OCR, average AUC is 0.621

for ours and 0.53 for Matching (17.1% gain). We report our GNews model results compared

with [161] to indicate that, we achieve state-of-the-art MED13 MAP performance or even better

for ASR/OCR; see table 4.4. The table also shows our ASR&OCR MED14 (E31:40) MAP.

4.6.3 Fusion Experiments and Related Systems

In table 4.5, we start by presenting a summary of our earlier ASR/OCR results on MED13 Test.

Comparing OCR and ASR performances to Concepts performance, it is not hard to see that

OCR/ASR have much lower average AUC zero-shot performance compared to concepts which

are visual in our work. This indicates that OCR/ASR produces much higher false negatives

compared to visual concepts. When we fused our all OCR and ASR confidences, we achieved

10.7% MAP performance, however, the average AUC performance is as low as 0.67. We

achieved lower MAP for our concepts 8.36% MAP but the average AUC performance is as

high as 0.834. This indicates that measuring retrieval performance on MAP performance only

is not informative, so one approach might achieve a high MAP but lower average AUC and vice

versa. We further achieved the best performance of our system by fusing all Concepts, OCR,

and ASR to achieve 13.1% MAP and 0.830 average AUC. We found our system achieves better

than the state of the art system [161] 4.0% gain in MAP, but significantly in average AUC; see

13.6% gain to [161] in table 4.5.

We also discuss CPRF [165], MMPRF [77], and SPaR [76] reranking systems in con-

trast to our system that does not involve reranking. The initial retrieval performance is 3.9%

MAP without reranking. Interestingly, we achieved a performance of 13.1% MAP also without

reranking. The reranking methods assumes high top 5-10 precision of the initial ranking and
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that all test videos are available. Without any of these assumptions, our system without rerank-

ing performs 6.7%, 3.0%, and 0.2% better than CPRF [165], MMPRF [77], and SPaR [76]

re-ranking systems; see table 4.5. Unfortunately, ROC AUC performances are not available

for these method to compare with. Regarding efficiency, given vc representation of videos, our

concept retrieval experiment on our whole concept set it takes≈270 seconds on a 16 cores Intel

Xeon processor (64GB RAM) to the retrieval task on 20 events altogether. This is more than

the time that SPaR [76] takes to rerank one event on an Intel Xeon processor(16GB RAM);

see [76]. Since, we detect the MED13 events in ≈270 given vc representation of videos and

as reported in [76], their average detection time per event for MED13 is ≈ 5 minutes assuming

feature representation of videos (i.e., 360 seconds per event = 7200 seconds per 20 events).

This indicates that our system is 26.67X faster than [76] in MED13 detection. Finally, when

we applied SPaR on our output as an initial ranking, we found that it improves MAP (from

13.1% to 13.5%) but hurts ROC AUC (from 0.83 to 0.79). This indicates that reranking has a

limited/harmful effect on the performance of our method. We think is since our method already

achieve a high performance without re-ranking; see SM for details about the features in this

experiment.

4.7 Conclusion

We proposed a method for zero shot event detection by distributional semantic embedding

of video modalities and with only event title query. By fusing all modalities, our method

outperformed the state of the art on the challenging TRECVID MED benchmark. Based on

this notion, we also showed how to automatically determine relevance of concepts to an event

based on the distributional semantic space.
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Table 4.5: Fusion Experiments and Comparison to State of the Art Systems

Method MAP AUC

Our Concept retrieval (event title query) 8.36% 0.834

Concept retrieval (Dalton etal, 2013) (event title query) 3.4 % -

Concept retrieval (Dalton etal, 2013) (after manually specifying concepts) 7.4% -

Our ASR GNews 4.81% 0.623

Our OCR GNews 4.23% 0.621

Our ASR Matching 2.77% 0.567

Our OCR Matching 1.8% 0.536

Our ASR and OCR all fused 10.6 0.670

Our Full (Concepts+ASR+OCR) (No reranking) 13.1% 0.830

Our Full + SPaR reranking [76] 13.5% 0.790

Full system [161] 12.6 0.730

Reranking Systems

Without Reranking [77] 3.9% -

CPRF [165] 6.4% -

Full Reranking system MMPRF[77] 10.1% -

Full Reranking system SPaR[76] 12.9% -
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Appendix A: Proof p(ec|v) for s(·, ·) = sp(·, ·)

We start by Eq. 4.5 while replacing s(·, ·) as sp(·, ·).

p(ec|v) ∝
∑
i

sp(θ(ec), θ(ci))p(ci|v)

∝
∑
i

θ(ec)
T
θ(ci)

‖θec‖‖θci‖
vic ∝

θ(ec)
T

‖θec‖

(∑
i

θ(ci)

‖θci‖
vic

) (4.7)

which is the dot product between θ(ec)
T

‖θec‖ representing the event embedding, and
∑

i
θ(ci)
‖θci‖v

i
c

representing the video embedding, which is a function of ψ(vic) = {θv(ci) = θ(ci)v
i
c}. This

equation clarifies our notion of distributional semantic embedding of videos and relating it to
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event title
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Chapter 5

Sherlock: Scalable Fact Learning in Images

We study scalable and uniform understanding of facts in images. Existing visual recogni-

tion systems are typically modeled differently for each fact type such as objects, actions,

and interactions. We propose a setting where all these facts can be modeled simultaneously

with a capacity to understand unbounded number of facts in a structured way. The training

data comes as structured facts in images, including (1) objects (e.g., <boy>), (2) attributes

(e.g., <boy, tall>), (3) actions (e.g., <boy, playing>), and (4) interactions (e.g., <boy, rid-

ing, a horse >). Each fact has a semantic language view (e.g., < boy, playing>) and a

vBEGIN:VCARD VERSION:3.0 PRODID:-//Apple Inc.//Mac OS X 10.9.5//EN N:Yang;Yi;;;

FN:Yi Yang EMAIL;type=INTERNET;type=pref:yangyi05@baidu.com X-ABUID:B749CF42-

C614-4271-86A9-4852FFDDD8E9:ABPerson END:VCARD We show that learning visual facts

in a structured way enables not only a uniform but also generalizable visual understanding. We

propose and investigate recent and strong approaches from the multiview learning literature and

also introduce two learning representation models as potential baselines. We applied the inves-

tigated methods on several datasets that we augmented with structured facts and a large scale

dataset of more than 202,000 facts and 814,000 images. Our experiments show the advantage

of relating facts by the structure by the proposed models compared to the designed baselines

on bidirectional fact retrieval.

5.1 Introduction

Despite recent significant advances in recognition, image captioning, and visual question an-

swering (VQA), there is still a large gap between humans and machines in the deep image

understanding of objects, their attributes, actions, and interactions with one another. The hu-

man visual system is able to efficiently gain visual knowledge by learning different types of
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facts in a never ending way from many or few examples, aided by the ability to generalize from

other known facts with related structure. We believe that the most effective and fastest way to

close this gap are with methods that possess that following key characteristics:

• Uniformity: The method should be able to handle objects (“dog”), attributes (“brown

dog”), actions (“dog running”) and interactions between objects (“dog chasing cat”).

• Generalization: The method should be able to generalize to facts that have zero or few

examples during training.

• Scalability: The method should handle an unbounded number of facts.

• Bi-directionality: The method should be able to retrieve a language description for an

image, and images that show a given language description of a fact.

• Structure: The method should provide a structured understanding of facts, for example

that “dog” is the subject and has an attribute of “smiling”.

Existing visual understanding systems may be categorized into two trends: (1) fact-level

systems and (2) high-level systems. Fact level systems include object recognition, action

recognition, attribute recognition, and interaction recognition (e.g., [147], [171], [19], [173],

[65], [5]). These systems are usually evaluated separately for each fact type (e.g., objects, ac-

tions, interactions, attributes, etc.) and are therefore not uniform. Typically, these systems have

a fixed dictionary of facts, assuming that facts are seen during training by at least tens of ex-

amples, and treat facts independently. Such methods cannot generalize to learn facts outside of

the dictionary and will not scale to an unbounded number of facts, since model size scales with

the number of facts. Furthermore, these recognition systems are typically uni-directional, only

able to return the conditional probability of a fact given an image. The zero/few-shot learning

setting (e.g., [136, 88]), where only a few or even zero examples per fact are available, is

typically studied apart from the traditional recognition setting. We are not aware of a unified

recognition/few shot learning system that learns unbounded set of facts.

In the second trend, several researchers study tasks like image captioning [79, 158, 163,

102], image-caption similarity [79, 81], and visual question answering [4, 100, 128] with very

promising results. These systems are typically learning high-level tasks but their evaluation
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Figure 5.1: Visual Facts in Images

does not answer whether these systems relate captions or questions to images by fact-level

understanding. Captioning models output sentences and thus can mention different types of

facts and, in principle, any fact. However, Devlin et al. [31, 32] reported that 60-70% of the

generated captions by LSTM-based captioning methods actually exist in the training data and

show that nearest neighbor methods have very competitive performance in captioning. These

results call into question both the core understanding and the generalization capabilities of the

state-of-the-art caption-level systems.

The limitations of prior settings motivated us to study a fact-level understanding setting,

which is more related to the first trend but unified to any fact type and able to learn an un-

bounded number of facts. This setting allows measuring the gained visual knowledge repre-

sented by the facts learnt by any proposed system to solve this task. Our goal is a method

that achieves a more sophisticated understanding of the objects, actions, attributes, and inter-

actions between objects, and possesses the desireable properties of scalability, generalization,

uniformity, bi-directionality, and structure.

Our approach is to learn a common embedding space in which the language and visual

views of a fact are mapped to the same location. The key to our solution achieving the desireable

characteristics is to make the basic unit of understanding a structured fact as shown in Fig. 5.1

and to have a structured embedding space in which different dimensions record information

about the subject S, predicate P, and object O of a fact.

Using an embedding space approach allows our method to scale as we can submit any

(<S,P,O>, image), (<S,P>, image), or (<S>, image) facts to train our embedding network.

At test time, it allows for bi-directional retrieval, as we can search for language facts that em-

bed near a given image fact and vice-versa. Retaining the structure of a fact in the embedding
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space gives our method the chance to generalize to understand an S/SP/SPO from training data

on its S, P, and O components, since this information is kept separate. To obtain uniformity,

we introduce wildcards “*” into our structured fact representation, e.g. <man,smiling,*> or

<dog,*,*> and use a wildcard training loss which ignores the unspecified components of em-

bedded second and first order visual and language facts. Carefully designed experiments show

that our uniform method achieves state-of-the-art performance in fact-level bidirectional view

retrieval over existing image-sentence correlation methods, other view embedding methods,

and a version of our method without structure, while also scaling and generalizing better.

Contributions: (1) We propose a new problem setting to study fact-level visual under-

standing of unbounded number of facts while considering the aforementioned characteristics.

(2) We design and investigate several baselines from the multiview learning literature and ap-

ply them on this task. (3) We propose two learning representation models that relate different

fact types using the structure exemplified in Fig 5.1. (4) Both the designed baselines and the

proposed models embed language views and visual views (images) of facts in a joint space that

allows uniform representation of different fact types. We show the value of relating facts by

structure in the proposed models compared to the designed baselines on several datasets on

bi-directional fact retrieval.

5.2 Related Work

In order to make the contrast against the related work clear, we start by stating the scale of facts

we are modeling in this work. Let’s assume that |S|, |P|, and |O| denotes the number of unique

subjects, unique predicates, and unique objects, respectively; see Fig 5.1. The scale of unique

second and third order facts is bounded by |S|×|P| and |S|×|P|×|O| possibilities respectively,

which can easily reach millions of facts. The data we collected in this work has thus far reached

202,000 unique facts (814,000 images). We cover five lines of related research (first three are

from fact-level recognition literature).

(A) Modeling Visual facts in Discrete Space: Recognition of objects or activities has

been typically modeled as a mapping function g : V → Y , where Y is discrete set of classes.

The function g has recently been learned using deep learning (e.g., [147, 151]). Different

systems are built to recognize each fact type in images by modeling a different g : V → Y ,
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where Y is constrained to objects, (e.g., [147]), attributes (e.g. [171]), attributed objects (<car,

red>) [19], scenes (e.g., [173]), human actions (e.g., [65]), and interactions [5]. There are

several limitations for modeling recognition as g : V → Y with |Y| → ∞. (1) Scalability:

Adding a new fact leads to changing the architecture, meaning adding thousands of parameters

and re-training the model (e.g., for adding a new output node). For example, if VGGNet [147]

is used on the scale of 202,000 facts, the number of parameters in the softmax layer alone is

close to 1 billion. (2) Uniformity: Modeling each group of facts by a different g requires

maintaining different systems, retrain several models as new facts are added, and also doesn’t

allow learning the correlation among different fact types. However, we aim to uniformally

model visual perception. (3) Generalization: While most of the existing benchmarks for this

Figure 5.2: Our setting in contrast to the studied fact

recognition settings in the literature. Scalability means

the number of facts studied in these works. Uniformity

means if the setting is applied for multiple fact types.

Generalization means the performance of this methods

on facts of zero/few images.

setting have at least tens of exam-

ples per fact (e.g., imageNet [30]),

a more realistic assumption is that

there might not be enough exam-

ples to learn the new class (the long-

tail problem). Several works have

been proposed to deal this prob-

lem in object recognition settings

[174, 140]. However, they suf-

fer from the aforementioned scal-

ability problems as facts increase.

(4) Bi-directionality: These mod-

els are uni-directional from V to Y .

Fig 5.2 shows representatives settings

of these methods. The three axes are

Scalability, Uniformity, and General-

ization. These methods typically study seen classes and hence do not generalize to unseen

classes.

(B) Modeling zero/few shot fact learning by semantic representation of classes (e.g.,

attributes): One of the most successful ideas for learning from few examples per class is
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by using semantic output codes like attributes as an intermediate layer between features and

classes. Formally, g is a composition of two function g = h(a(·)), where a : V → A, and

h : A → Y [120]. The main idea is to collect data that is sufficient to learn an intermediate

attribute layer, where classes are then represented by these attributes to facilitate zero-shot/few-

shot learning. However, Chen et al. [19] realized that attribute appearance is dependent on

the class, as opposed to these earlier models [120, 88, 52]. Although [19]’s assumption is

more realistic, they propose learning different classifiers for each category-attribute pair, which

suffers from the same scalability and learning problems pointed out in (A) and is restricted to

certain groups of facts (not uniform).

More recent attribute-based zero-shot learning methods embed both images and attributes

into a shared space (e.g., Attribute Embedding [1], ESZSL [136]). These methods were mainly

studied in the case of zero-shot learning and have shown strong performance. In contrast, we

aim at studying the setting where one system that can learn from both facts with many training

images and facts with few/no training images. Fig 5.2 shows the contrast between our setting

(white circle) and this setting. Although these methods were mainly studied using attributes

as a semantic representation and at a much smaller scale of facts, we apply the state of the art

ESZSL [136] in order to study the capacity of these models at a much larger scale.

(C) Object Recognition in continuous space using Vision and Language: Recent works

in language and vision involve using unannotated text to improve object recognition and to

facilitate zero-shot learning. The following group of approaches model object recognition as

a function g(v) = arg maxy s(v ∈ V, y ∈ Y), where s(·, ·) is a similarity function between

image v and class y represented by text. In [61], [117] and [150], word embedding language

models (e.g., [107]) were adopted to represent class names as vectors. In their setting, the

imageNet dataset has 1000 object facts with thousands of examples per class. Our setting has

two orders of magnitude more facts with a long-tail distribution. Conversely, other works model

the mapping of unstructured text descriptions for classes into a visual classifier [47, 7]. We are

extending the visual recognition task to unbounded scale of facts, not only object recognition

but also attributes, actions, and interactions in one model; see Fig 5.2 for contrast to our setting.

(D) Image-Caption Similarity Methods: As we illustrated earlier, our goal is fact-level

understanding. However, image-caption similarity methods such as [79, 81] are relevant as
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multi-view learning methods. Although it is a different setting, we found two interesting aspects

of these methods to study in our setting. First, how image-caption similarity system trained on

image-caption level performs on fact-level understanding. Second, these systems could be

retrained in our setting by providing them with fact-level annotation, where every example is a

phrase representing the fact and an image (e.g., “person riding horse” and an image with this

fact).

(E) MV-CCA : MV-CCA is a recent multiview, scalable, and robust version of the famous

CCA embedding method [67]. We apply MV-CCA as a baseline in our setting.

5.3 Problem Definition: Representation and Visual Modifiers

We deal with three groups of facts; see Fig. 5.1. First Order Facts<S,*,*> are object and scene

categories (e.g., <baby,*,*>, <girl,*,*>, <beach,*,*>). Second Order Facts <S,P,*> are ob-

jects performing actions or attributed objects (e.g., <baby, smiling,*>, <baby, Asian,*>).

Third Order Facts<S,P,O> are interactions and positional information (e.g. <baby, sitting on,

high chair>, <person, riding, horse>). By allowing wild-cards in this structured representa-

tion (<baby,*,*>and <baby, smiling,*>), we can not only allow uniform representation of

different fact types but also relate them by structure. We propose to model these facts by em-

bedding them into a structured fact space that has three continuous hyper-dimensions φS , φP ,

and φO

φS ∈ RdS : The space of object categories or scenes S.

φP ∈ RdP : The space of actions, interactions, attributes, and positional relations.

φO ∈ RdO : The space of interacting objects, scenes that interact with S for SPO facts.

where dS , dP , and dO are the dimenstionalities corresponding to φS , φP , and φO, respectively.

As shown in Fig. 5.3, first order facts like <woman,*,*>, <man,*,*>, <person,*,*> live

in a hyper-plane in the φP × φO space. Second order facts (e.g., <man, walking,*>, <girl,

walking,*>) live as a hyper-line that is parallel to φO axis. Finally, a third order fact like<man,

walking, dog> is a point in the φS×φP×φO visual perception space. Inspired from the concept

of language modifiers, the φS , φP , and φO could be viewed as what we call “visual modifiers”.

For example, the second order fact<baby, smiling,*> is a φP visual modifier for<baby,*,*>,
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Figure 5.3: Unified Fact Representation and Visual Modifiers Notion

and the third order fact <person, playing, flute> is the fact <person, *, *> visually modified

on both φP and φO axes. By embedding all language and images into this common space, our

algorithm can scale efficiently. Further, this space can be used to retrieve a language view of an

image as well as a visual view of a language description, making the model bi-directional. We

argue that modeling visual recognition based on this notion gives it a generalization capability.

For example is if the model learned the facts <boy>, <girl>, <boy, petting, dog>, <girl,

riding, horse>, we would aim at recognizing an unseen fact <boy, petting, horse>. We show

these capabilities quantitatively later in our experiments. We model this setting as a problem

with two views, one in the visual domain V and one in the language domain L. Let f be a

structured fact, fv ∈ V denoting the visual view of f and fl ∈ L denoting the language view

of f . For instance, an annotated fact with language view fl =<S:girl, P:riding, O:bike> would

have a corresponding visual view fv as an image where this fact occurs; see Fig. 5.4.

Our goal is to learn a representation that covers all the three orders of facts. We denote the

embedding functions from a visual view to φS , φP , and φO as φVS(·), φVP (·), and φVO(·), and the

structured visual embeddings of a fact fv by vS = φVS(fv), vP = φVP (fv), and vO = φVO(fv),

respectively. Similarly, we denote the embedding functions from a language view to φS , φP ,

and φO as φLS(·), φLP (·), and φLO(·), and the structured language embeddings of a fact fl as

lS = φLS(fl), lP = φLP (fl), and lO = φLO(fl). We denote the concatenation of the visual view

hyper-dimensions’ embedding as v, and the language view hyper-dimensions’ embedding as l;

see Eq. 5.1 Third-order facts <S,P,O> can be directly embedded in the structured fact space

by Eq. 5.1 with v ∈ RdS × RdP × RdO for the image view and l ∈ RdS × RdP × RdO for the
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Figure 5.4: Structured Embedding

language view. Based on our “fact modifier” observation, we propose to represent both second

and first-order facts as wild cards “∗”, as illustrated in Eq. 5.2, 5.3; see Fig 5.4, 5.3.

Third-Order Facts <S,P,O>: v = [vS ,vP ,vO] l = [lS , lP , lO] (5.1)

Second-Order Facts <S, P,*>: v = [vS ,vP ,vO = ∗] l = [lS , lP , lO = ∗] (5.2)

First-Order Facts <S,*,*>: v = [vS ,vP = ∗,vO = ∗] l = [lS , lP = ∗, lO = ∗] (5.3)

Setting φP and φO to ∗ for first-order facts means that the P and O modifiers are not of

interest for first-order facts, which is intuitive. Similarly, setting φO to ∗ for second-order facts

indicates that the O modifier is not of interest for single-frame actions and attributed objects.

If an image contains lower order fact such as <man>, then higher order facts such as <man,

tall> or <man, walking, dog> may also be present. Hence, the wild cards (i.e. ∗) of the first-

and second-order facts are not penalized during training.
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5.4 Models

We propose a two-view structured fact embedding model with five properties mentioned in

Sec 5.1. Satisfying the first four properties can be achieved by using a generative model p(fv, fl)

that connects the visual and the language views of f , where more importantly fv and fl inhabit

a continuous space. We model p(fv, fl) ∝ s(v, l), where s(·, ·) is a similarity function defined

over the structured fact space. We satisfy the fifth property by building our models over the

aforementioned structured wild card representation. Our objective is that two views of the

same fact should be embedded so that they are close to each other; see Fig 5.4. The question

now is how to model and train φV(·) visual functions (φVS(·), φVP (·), φVO(·)) and φL(·) language

functions (φLS(·), φLP (·), φLO(·)) . We model φV(·) as a CNN encoder (e.g., [83, 147]), and φL(·)

as RNN encoder (e.g., [107, 124]) due to their recent success as encoders for images and words,

respectively. We propose two models for learning facts, denoted by Model 1 and Model 2. Both

models share the same structured fact language embedding/encoder but differ in the structured

fact image encoder.

We start by defining an activation operator ψ(θ, a), where a is an input, and θ is a series

of one or more neural network layers (may include different layer types, e.g., convolution,

pooling, then another convolution and pooling). The operator ψ(θ, a) applies θ parameters

layer by layer to compute the final activation of a using θ subnetwork.

Model 1 (structured fact CNN image encoder): In Model 1, a structured fact is visually

encoded by sharing convolutional layer parameters (denoted by θc), and fully connected layer

parameters (denoted by θu); see Fig. 5.5(a). Then WS , WP , and WO transformation matrices

are applied to produce vS = φVS(fv),vP = φVP (fv) , and vO = φVO(fv). If we define b =

ψ(θu, ψ(θc, fv)), then

vS = φVS (fv) = WS b, vP = φVP (fv) = WP b, vO = φVO(fv) = WO b. (5.4)

Model 2 (structured fact CNN image encoder): In contrast to Model 1, we use different

convolutional layers for S than that for P andO, inspired by the idea that P andO are modifiers

to S (Fig. 5.5(b)). Starting from fv, there is a common set of convolutional layers, denoted

by θ0c , then the network splits into two branches, producing two sets of convolutional layers

θSc and θPOc , followed by two sets of fully connected layers θSu and θPOu . If we define the
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Figure 5.5: Sherlock Models. See Fig. 5.4 for the full picture.

output of the common S,P,O layers as d = ψ(θ0c , fv) and the output of the P,O column as

e = ψ(θPOu , ψ(θPOc , d)), then

vS = φVS (fv) = WS ψ(θSu , ψ(θSc , d)), vP = φVP (fv) = WP e, vO = φVO(fv) = WO e. (5.5)

Structured fact RNN language encoder: The structured fact language view is encoded using

RNN word embedding vectors for S, P and, O separately. Hence

lS = φLS(fl) = RNNθl(f
S
l ), lP = φLP (fl) = RNNθl(f

P
l ), lO = φLO(fl) = RNNθl(f

O
l ) (5.6)

where fSl , fPl , and fOl are the Subject, Predicate, and Object parts of fl ∈ L. For each of them,

the literals are dropped. In our experiments, θl is fixed to a pre-trained word vector embedding

model (e.g. [107, 124]) for fSl , fPl , and fOl ; see Fig 5.5(c).

Loss function: One way to model p(fv, fl) for Model 1 and Model 2 is to assume that p(fv, fl) ∝=

exp(−lossw(fv, fl)) and minimize the distance lossw(fv, fl) defined as

lossw(fv, fl) = wf
S ·D(vS , lS) + wf

P ·D(vP , lP ) + wf
O ·D(vO, lO). (5.7)

where D(·, ·) is a distance function. Thus we minimize the distance between the embeddings

of the visual view and the language view. Our solution to penalize wild-card facts is to ignore

their wild-card modifiers in the loss. Here wf
S = 1, wf

P = 1, wf
O = 1 for <S,P,O> facts ,

wf
S = 1, wf

P = 1, wf
O = 0 for <S,P> facts, and wf

S = 1, wf
P = 0, wf

O = 0 for <S> facts.

Hence lossw does not penalize the O modifier for second-order facts or the P and O modifiers

for first-order facts, which follows our definition of wild-cards. In this paper, we used D(·, ·)

as the standard Euclidean distance.

Testing (Two-view retrieval): After training a model (either Model 1 or 2), we embed

all the testing fvs (images) by the learnt models, and similarly embed all the test fls as shown
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in Eq 5.6. For language view retrieval (retrieve relevant facts in language given an image),

we compute the distance between the structured embedding of an image v and all the facts

structured language embeddings ls, which indicates relevance for each fact fl for the given

image. For visual view retrieval (retrieve relevant images given fact in language form), we

compute the distance between the structured embedding of the given fact l and all structured

visual embedding of images vs in the test set. For first and second order facts, the wild-card

part is ignored while computing the distance.

5.5 Experiments

5.5.1 Data Collection of Structured Facts

In order to train a model that connects the structured fact language view in L with its visual

view in V , we need to collect large scale data in the form of (fv, fl) pairs. Large scale data

collection is challenging in our setting since it relies on the localized association of a structured

language fact fl with an image fv when such facts occur. In particular, it is a complex task to

collect annotations for second-order facts and third-order facts.

We began our data collection by augmenting existing datasets with fact language view la-

bels fl: PPMI [167], Stanford40 [168], Pascal Actions [50], Sports [70], Visual Phrases [138],

INTERACT [6] datasets. The union of these 6 datasets resulted in 186 facts with 28,624 images

as broken out in Table 5.1. We also extracted structured facts from the Scene Graph dataset [78]

with 5000 manually annotated images in a graph structure from which first-, second-, and third-

order relationships can be extracted. We extracted 110,000 second-order facts and 112,000

third-order facts. The majority of these are positional relationships. We also added to the afore-

mentioned data, 380,000 second and third order fact annotation collected from MSCOCO and

Flickr30K Entities datasets using a language approach as detailed in [113] in the supplemen-

tary. We show later in this section how we use this data to perform several experiments varying

in scale to validate our claims. Table 5.2 shows the unique facts in the large scale dataset.

5.5.2 Setup of our Models and the designed Baselines

In our Model 1 and Model 2, θl is the GloVE840B RNN model [124] to encode structured facts

in the language view.
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1. Model 1: Model 1 is constructed from VGG-16, where θc is built from the layer conv_1_1

to pool5, and θu is the two following fully connected layers fc6 and fc7 in VGG-

16 [147]. Similar to Model 2, WS , WP , and WO are initialized randomly and the rest

of the parameters are initialized from VGG-16 trained on ImageNet [30].

2. Model 2: The shared layers θ0c match the architecture of the convolutional layers and

pooling layer in VGG-16 named conv_1_1 until pool3, and have seven convolu-

tion layers. The subject layers θSc and predicate-object layers θPOc are two branches

of convolution and pooling layers with the same architecture as VGG-16 layers named

conv_4_1 until pool5 layer, which makes six convolution-pooling layers in each

branch. Finally, θSu and θPOu are two instances of fc6 and fc7 layers in VGG-16 net-

work. WS , WP , and WO are initialized randomly and the rest are initialized from

Table 5.1: Our fact augmentation of six datasets

Unique language views fl Number of ( fv, fl) pairs

S . SP. SPO . total S SP SPO total images

INTERACT 0 0 60 60 0 0 3171 3171

VisualPhrases 11 4 17 32 3594 372 1745 5711

Stanford40 0 11 29 40 0 2886 6646 9532

PPMI 0 0 24 24 0 0 4209 4209

SPORT 14 0 6 20 398 0 300 698

Pascal Actions 0 5 5 10 0 2640 2663 5303

Union 25 20 141 186 3992 5898 18734 28624

Table 5.2: Large Scale Dataset

S SP SPO Total

Training facts 6116 57681 107472 171269

Testing facts 2733 22237 33447 58417

Train/Test Intersection 1923 13043 11774 26740

Test unseen facts 810 9194 21673 31677
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VGG-16 trained on ImageNet.

3. Multiview CCA IJCV14 [67] (MV CCA) : MV CCA expects features from both views.

For visual view features, we used VGG16 (FC6). For the language view features, we used

GloVE. Since MV CCA does not support wild-cards, we fill the wild-card parts of ΦL(fl)

with zeros for First Order and Second order facts.

4. ESZSL ICML15 Baseline [136] (ESZSL): ESZSL also expects both visual and seman-

tic features for a fact. As in MV CCA, we used VGG16 (FC6) and GloVE.

5. Image-Sentence Similarity (TACL15 [81]) (MS COCO pretrained): We used the

theano implementations of this method that were made publically available by the au-

thors [80]. The purpose of applying MS COCO pretrained image-caption models is to

show how image-caption trained models perform when applied to fact level recognition

in our setting. In order to use these models to measure simility between image and facts

in our setting, we provide them with the image and a phrase constructed from the fact

language representation. For example <person, riding, horse > is converted to “person

riding horse”.

6. Image-Sentence Similarity (TACL15 [81] (retrained): In contrast to the previous set-

ting, we retrain these models by providing them our image-fact training pairs where facts

are converted to phrases. The results show the value of learning models on the fact level

instead of the caption level.

5.5.3 Evaluation Metrics

We present evaluation metrics for both language view retrieval and visual view retrieval. Met-

rics for visual view retrieval (retrieving fv given fl): To retrieve an image (visual view)

given a language view (e.g. <S: person, P: riding, O: horse>), we measure the performance

by mAP (Mean Average Precision).An image fv is considered positive only if there is a pair

(fl, fv) in the annotations. Even if the retrieved image is relevant but such pair does not exist, it

is considered incorrect. We also use mAP10, mAP100 variants that compute the mAP based on

only the top 10 or 100 retrieved images, which is useful for evaluating large scale experiments.
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Metrics for language view retrieval (retrieving fl given fv): To retrieve fact language views

given an image. we use top 1, top 5, top 10 accuracy for evaluation. We also used MRR (mean

reciprocal ranking) metric which is basically 1/r where r is the rank of the correct class. An

important issue with our setting is that there might be multiple facts in the same image. Given

that there are L correct facts in the given image to achieve top 1 performance these L facts

must all be in the top L retrieved facts. Accordingly, top K means the L facts are in the top

L + K − 1 retrieved facts. A fact language view fl is considered correct only if there is a pair

(fl, fv) in the annotations.

It is not hard to see that the aforementioned metrics are very harsh, especially in the large

scale setting. For instance, if the correct fact for an image is <S:man,P: jumping>, then an an-

swer <S:person, P:jumping> receives zero credit. Also, the evaluation is limited to the ground

truth fact annotations. There might be several facts in an image but the provided annotations

may miss some facts. Qualitatively we found the metrics harsh for our large scale experiment.

Defining better metrics is future work.

5.5.4 Small and Mid scale Experiments

We performed experiments on several datasets ranging in scale: Stanford40 [168], Pascal Ac-

tions [167], Visual Phrases [138], and the union of six datasets described earlier in Table 5.1

in Sec. 5.5.1. We used the training and test splits defined with those datasets. For the union of

six datasets, we unioned the training and testing annotations to get the final split. In all these

training/testing splits, each fact language view fl has corresponding tens of visual views fv (i.e.,

images) split into training and test sets. So, each test image belongs to a fact that was seen by

other images in the training set.

Table 5.3 shows the performance of our Model 1, Model 2, and the designed baselines on

these four datasets for both view retrieval tasks. We note that Model 2 works relatively better

than Model 1 as the scale size increases as shown here when comparing results on Pascal dataset

to larger datasets like Stanford40, Visual Phrases, and 6DS. In the next section, we show that

Model2 is clearly better than Model 1 in the large scale setting. Our intuition behind this result

is that Model 2 learns a different set of convolutional filters in the PO branch to understand

action/attributes and interactions which is different from the filter bank learned to discriminate
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between different subjects for the S branch. In contrast, Model 1 is trained by optimizing one

bank of filters for SPO altogether, which might conflict to optimize for both S and PO together;

see Fig 5.5.

Learning from image-caption pairs even on big dataset like MSCOCO does not help dis-

criminate between tens of facts as shown in these experiments. However, retraining these mod-

els by providing them image-fact pairs makes them perform much better as shown in Table 5.3.

Compared to other methods on language view retrieval, we found Model 1 and 2 perform signif-

icantly better than TACL15 [81] even when retrained for our setting, especially on PASCAL10,

Stanford40, and 6DS datasets which are dominated by SP and SPO facts; see Table 5.1. For
Table 5.3: Small and Medium Scale Experiments

Language View retrieval Visual View retrieval

Top1 Top 5 MRR mAP mAP10 mAP100

Standord40 (40 facts) Model2 74.46 92.01 82.26 73 98.35 92

(11 SP, 29 SPO) Model1 71.22 90.98 82.09 74.57 99.72 92.62

MV CCA IJCV14 67.74 88.32 76.80 66.00 96.86 86.66

ESZSL ICML15 [136] 40.89 74.93 56.08 50.9 93.87 78.35

Image-Sentence TACL15 [81] (COCO pretrained) 33.73 62.62 47.70 26.29 59.68 44.2

Image-Sentence TACL15 [81] (retrained) 60.86 87.82 72.51 51.9 88.13 74.55

Chance 2.5 - - - - -

Pascal Actions (10 facts) Model2 74.760 95.750 83.680 80.950 100.000 97.240

(5 SP, 5 SPO) Model1 74.080 95.790 83.280 80.530 100.000 96.960

MV CCA IJCV14 59.82 92.78 73.16 33.45 66.52 53.29

ESZSL ICML15 [136] 44.846 88.864 63.366 54.274 89.968 82.273

Image-Sentence TACL15 [81] (COCO pretrained) 46.050 86.907 62.796 40.712 88.694 71.078

Image-Sentence TACL15 [81] (retrained) 60.27 94.66 74.77 50.58 84.65 71.61

Chance 10 - - - - -

VisualPhrases (31 facts) Model2 34.367 76.056 47.263 39.865 61.990 48.246

(14 S, 4 SP, 17 SPO) Model1 28.100 75.285 42.534 38.326 65.458 46.882

MV CCA IJCV14 [67] 28.94 70.61 88.92 28.27 49.30 34.48

ESZSL ICML15 [136] 33.830 68.264 44.650 33.010 57.861 41.131

Image-Sentence TACL15 [81] (COCO pretrained) 30.111 64.494 42.777 26.941 49.892 33.014

Image-Sentence TACL15 [81] (retrained) 32.32 94.72 50.7 28.0 49.89 33.21

Chance 3.2 - - - - -

6DS (186 facts) Model2 69.63 80.32 70.66 34.86 61.03 50.68

(25 S, 20 SP, 141 SPO) Model1 68.94 78.74 70.74 34.64 56.54 47.87

MV CCA IJCV14 [67] 29.84 39.78 32.00 23.93 46.43 36.44

ESZSL ICML15 [136] 27.53 47.4 58.2 30.7 60.97 47.58

Image-Sentence TACL15 [81] (COCO pretrained) 15.71 26.84 19.65 9.37 21.58 15.88

Image-Sentence TACL15 [81] (retrained) 26.13 41.10 30.94 26.17 56.10 40.4

Chance 0.54 - - - - -
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visual view retrieval, performance is competitive in some of the datasets. We think the reason

is due to the structure that makes our models relate all fact types by the visual modifiers notion.

Although ESZSL is applicable in our setting, it is among the worst performing methods in

Table 5.3. This could be because ESZSL is mainly designed for Zero-Shot Learning, but each

fact has some training examples in these experiments. Interestingly, MV CCA with the chosen

visual and language features is among the best methods. Next we compare these methods when

number of facts becomes three orders of magnitudes larger and with tens of thousands of testing

facts that are unseen in training.

5.5.5 Large Scale Experiment

In this experiment, we used the union of all the data described in Sec. 5.5.1. We further aug-

mented this data with 2000 images for each MS COCO object (80 classes) as first-order facts.

We also used object annotations in the Scene Graph dataset as first-order fact annotations with

a maximum of 2000 images per object. Finally, we randomly split all the annotations into

an 80%-20% split, constructing sets of 647,746 (fv, fl) training pairs (with 171,269 unique

fact language views fl) and 168,691 (fv, fl) testing pairs (with 58,417 unique fl), for a total of

(fv, fl) 816,436 pairs, 202,946 unique fl. Table 5.2 shows the coverage of different types of

facts. There are 31,677 language view test facts that were unseen in the training set (851 <S>,

9,194 <S,P>, 21,673 <S,P,O>). The majority of the facts have only one example; see the

supplementary material.

Qualitative results are shown in Fig. 5.6, 5.7 (with many more in the supplementary). In

Fig. 5.6, our model’s ability to generalize can be seen in the red facts. For example, for the

leftmost image our model was able to correctly identify the image as <dog, riding, wave>

despite that fact never being seen in our training data. The left images in Fig. 5.7 show the

variety of images we can retrieve for the query <airplane, flying>. In the right images in

Fig. 5.7, note how our model learns to visually distinguish gender (“man” versus “girl”), and

group versus single. It can also correctly retrieve images for facts that were never seen in the

training set (<girl, using, racket>). Highlighting the harshness of the metric, Fig. 5.7 also

shows that <airplane, flying> has zero AP10 value giving us zero credit since the top images

were just annotated as an < airplane>.
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<dog, riding, wave> 0.88

<one, riding, wave> 0.62

<guy, riding, wave> 0.60

<man, on, sand> 0.52

<man,on, beach> 0.51

<man, pushing, boat> 0.48

<boat, behind, boat> 0.775

<boat, beside, boat> 0.765

< boat, pulling, boat> 0.753

<bananas, over,fruit> 0.68

<bananas,behind, fruit> 0.68

<pineapple, on, table> 0.59

Figure 5.6: Language View Retrieval examples (red means unseen facts)

Figure 5.7: Visual View Retrieval Examples (red means unseen facts)

To perform retrieval in both directions, we used the FLANN library [114] to compute the

(approximate) 100 nearest neighbors for fl given fv, and vice-versa. Details about the nearest-

neighbor database creation and the large scale evaluation could be found in the supplementary.

The results in Table 5.4 indicate that Model 2 is better than Model 1 for retrieval from both

views, which is consistent with our medium scale results and our intuition. Model 2 is also

multiple orders of magnitude better than chance and is also significantly better than the com-

peting methods. To test the value of structure, we ran an experiment where we averaged the S,

P, and O parts of the visual and language embedding vectors instead of keeping the structure.

Removing the structure leads to a noticeable decrease in performance from 16.39% to 8.1% for

the K1 metric; see Table 5.4.

Previous smaller scale experiments are orders of magnitudes smaller and also less challeng-

ing since all facts were seen during training. Figure 5.8 shows the effect of the scale on the Top1

performance for language view retrieval task (denoted K1). There is an observable increase on

the improvement of Model 2 compared to the baselines in the large scale setting. Additionally,

the performance of the image-caption similarity methods degrade substantially. We think this

is due to both the large scale of the facts and that the majority of the facts have zero or very

few training examples. Interestingly, MV CCA is among the best performing methods in the
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large scale setting. However, Model 2 and Model 1 outperform MV CCA on both Top1 and

Top 5 metrics; see Table 5.4. On the language view retrieval, we have very competitive results

to MV CCA but as we have notices several good visual retrieval results for which the metric

gives zero-credit.

Figure 5.9 shows the Top10 large scale knowledge view retrieval (K10) results reported in

Table 5.4 broken out by fact type and the number of images per fact. These results show that

Model 2 generally behaves better with compared other models with the increase of facts. We

noticed a slight increase for Model 1 over Model 2.

It is desirable for a method to be able to generalize to understand an SPO interaction from

training examples involving its components, even when there are zero or very few training ex-

amples for the exact SPO with all its parts S,P and O. Table 5.5 shows the K10 performance for

Table 5.4: Large Scale Experiment

Language View retrieval % Visual view Retrieval %

Top1 Top 5 Top 10 mAP100 mAP10

Model 2 16.39 17.62 18.41 0.90 0.90

Model 1 13.27 14.19 14.80 0.73 0.73

Model 2 (Unstructured by SPO average) 8.1 12.4 14.00 0.61 0.62

MV CCA IJCV14 [67] 12.28 12.84 13.15 1.0 1.0

ESZSL ICML15 [136] 5.80 5.84 5.86 0.4 0.4

Image-Sentence TACL15 [81] (COCO pretrained) 3.48 3.48 3.5 0.021 0.0087

Image-Sentence TACL15 [81] (retrained) 5.87 6.06 6.15 0.29 0.29

Chance 0.0017 - - - -

Figure 5.8: K1 Performance Across Different Datasets. These graphs show the advantage of the

proposed models as the scale increases from left to right. (R) for TACL15 means the retrained

version, (C) means COCO pretrained model; see Sec 5.5.2
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Figure 5.9: K10 Performance (y-axis) versus the number of images per fact (x-axis). Top Left:

Objects (S), Top Right: Attributed Objects and Objects performing Actions (SP), Bottom Left:

Interactions (SPO), Bottom Right: All Facts.

Table 5.5: Generalization: SPO Facts of less than or equal 5 examples (K10 metric)

Cases SP≥15, O≥15 PO≥15, ≥15 SO≥15, P≥15 S≥15, PO≥15 SO≥15, PO≥15 SO≥15, SP≥15 S,P,O≥15 S,P,O≥100

NumFacts for this case 10605 9313 4842 4673 1755 3133 21616 12337

Model2 2.063 2.026 3.022 2.172 3.092 2.962 1.861 2.462

Model1 1.751 1.357 1.961 1.645 1.684 2.097 1.405 1.666

ESZSL 0.149 0.107 0.098 0.066 0.041 0.038 0.240 0.176

TACL15 (COCO pretrained) 0.013 0.024 0.025 0.019 0.000 0.013 0.034 0.027

TACL15 (retrained) 0.367 0.380 0.473 0.384 0.543 0.586 0.353 0.438

MV CCA 1.221 1.889 1.462 1.273 1.786 1.109 1.853 1.838

SPOs where the number of training examples is ≤ 5. For example, the column SP≥15, O≥15

means ≤ 5 examples of an SPO that has at least 15 examples for the SP part and for the O part.

An example of this case is when we see zero or very few examples of<person, petting, horse>,

but we see at least 15 examples of <person, petting, something=dog/cat/etc (not horse)> and

at least 15 examples of something interacting with a horse <*,*, horse>. Model2 performs

the best in all the listed generalization cases in Table 5.5. We found a similar generalization

behavior for SP facts that have no more than 5 examples during training. We add more figures

and additional results in the supplementary materials.

5.6 Conclusion

We introduce new setting for learning unbounded number of facts in images, which could be

referred to as a model for gaining visual knowledge. The facts could be of different types like
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objects, attributes, actions, and interactions. While studying this task, we consider Uniformity,

Generalization, Scalability, Bi-directionality, and Structure. We investigated several baselines

from multi-view learning literature which were adapted to the proposed setting. We proposed

learning representation methods that outperform the designed baseline mainly by the advantage

of relating facts by structure.
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Chapter 6

SAFA: Sherlock Automatic Fact Annotation

Motivated by the application of fact-level image understanding, we present an automatic method

for data collection of structured visual facts from images with captions. Example structured

facts include attributed objects (e.g., <flower, red>), actions (e.g., <baby, smile>), interac-

tions (e.g., <man, walking, dog>), and positional information (e.g., <vase, on, table>). The

collected annotations are in the form of fact-image pairs (e.g.,<man, walking, dog> and an

image region containing this fact). With a language approach, the proposed method is able to

collect hundreds of thousands of visual fact annotations with accuracy of 83% according to hu-

man judgment. Our method automatically collected more than 380,000 visual fact annotations

and more than 110,000 unique visual facts from images with captions and localized them in

images in less than one day of processing time on standard CPU platforms. We will make the

data publically available.

6.1 Introduction

People generally acquire visual knowledge by exposure to both visual facts and to semantic

or language-based representations of these facts, e.g., by seeing an image of “a person petting

dog” and observing this visual fact associated with its language representation . In this work,

we focus on methods for collecting structured facts that we define as structures that provide

attributes about an object, and/or the actions and interactions this object may have with other

objects. We introduce the idea of automatically collecting annotations for second order visual

facts and third order visual facts where second order facts <S,P> are attributed objects (e.g.,

<S: car, P: red>) and single-frame actions (e.g., <S: person, P: jumping>), and third order

facts specify interactions (i.e., <boy, petting, dog>). This structure is helpful for designing

machine learning algorithms that learn deeper image semantics from caption data and allow us
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Figure 6.1: Structured Fact Automatic Annotation

to model the relationships between facts. In order to enable such a setting, we need to collect

these structured fact annotations in the form of (language view, visual view) pairs (e.g., <baby,

sitting on, chair> as the language view and an image with this fact as a visual view) to train

models.

[21] showed that visual concepts, from a predefined ontology, can be learned by querying

the web about these concepts using image-web search engines. More recently, [33] presented

an approach to learn concepts related to a particular object by querying the web with Google-

N-gram data that has the concept name. There are three limitations to these approaches. (1) It

is difficult to define the space of visual knowledge and then search for it. It is further restricting

to define it based on a predefined ontology such as [21] or a particular object such as [33].

(2) Using image search is not reliable to collect data for concepts with few images on the

web. These methods assume that the top retrieved examples by image-web search are positive

examples and that there are images available that are annotated with the searched concept. (3)

These concepts/facts are not structured and hence annotations lacks information like “jumping”

is the action part in <person, jumping >, or “man’ and “horse” are interacting in <person,

riding, horse >. This structure is important for deeper understanding of visual data, which is

one of the main motivations of this work.

The problems in the prior work motivate us to propose a method to automatically anno-

tate structured facts by processing image caption data since facts in image captions are highly

likely to be located in the associated images. We show that a large quantity of high quality

structured visual facts could be extracted from caption datasets using natural language process-

ing methods. Caption writing is free-form and an easier task for crowd-sourcing workers than

labeling second- and third-order tasks, and such free-form descriptions are readily available in

existing image caption datasets. We focused on collecting facts from the MS COCO image
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caption dataset [94] and the newly collected Flickr30K entities [125]. We automatically col-

lected more than 380,000 structured fact annotations in high quality from both the 120,000 MS

COCO scenes and 30,000 Flickr30K scenes.

The main contribution of this paper is an accurate, automatic, and efficient method for

extraction of structured fact visual annotations from image-caption datasets, as illustrated in

Fig. 6.1. Our approach (1) extracts facts from captions associated with images and then (2)

localizes the extracted facts in the image. For fact extraction from captions, We propose a

new method called SedonaNLP for fact extraction to fill gaps in existing fact extraction from

sentence methods like Clausie [27]. SedonaNLP produces more facts than Clausie, espe-

cially<subject,attribute> facts, and thus enables collecting more visual annotations than using

Clausie alone. The final set of automatic annotations are the set of successfully localized facts

in the associated images. We show that these facts are extracted with more than 80% accuracy

according to human judgment.

6.2 Motivation

Our goal by proposing this automatic method is to generate language&vision annotations at

the fact-level to help study language&vision for the sake of structured understanding of visual

facts. Existing systems already work on relating captions directly to the whole image such as

[79, 81, 158, 163, 102, 4, 100, 128]. This gives rise to a key question about our work: why it is

useful to collect such a large quantity of structured facts compared to caption-level systems?

We illustrate the difference between caption-level learning fact-level learning that motivates

this work by the example in Fig 6.1. Caption-level learning systems correlate captions like

those on top of Fig. 6.1(top-left) to the whole image that includes all objects. Structured Fact-

level learning systems are instead fed with localized annotations for each fact extracted form

the image caption; see in Fig. 6.1(right), Fig. 6.6, and 6.7 in Sec. 6.6. Fact level annotations

are less confusing training data than sentences because they provide more precise information

for both the language and the visual views. (1) From the language view, the annotations we

generate is precise to list a particular fact (e.g., <bicycle,parked between, parking posts>). (2)

From the visual view, it provide the bounding box of this fact; see Fig 6.1. (3) A third unique
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part about our annotations is the structure: e.g., <bicycle,parked between, parking posts>

instead of “a bicycle parked between parking posts”.

Our collected data has been used to develop methods that learn hundreds of thousands of

image facts, as we introduced and studied in [2]. The results shows that fact-level learning

is superior compared to caption-level learning like [81], as shown in Table 4 in [2] (16.39%

accuracy versus 3.48% for [81]). It further shows the value of the associated structure in the

(16.39% accuracy versus 8.1%) in Table 4[2]). Similar results also shown on a smaller scale in

Table 3 in [2].

6.3 Approach Overview

We propose a two step automatic annotation of structured facts: (i) Extraction of structured fact

from captions, and (ii) Localization of these facts in images. First, the captions associated with

the given image are analyzed to extract sets of clauses that are considered as candidate <S,P>,

and <S,P,O> facts.

Captions can provide a tremendous amount of information to image understanding systems.

However, developing NLP systems to accurately and completely extract structured knowl-

edge from free-form text is an open problem. We extract structured facts using two methods:

Clausie [27] and Sedona( detailed later in Sec 6.4); also see Fig 6.1. We found Clausie [27]

missed many visual facts in the captions which motivated us to develop Sedona to fill this gap

as detailed in Sec. 6.4.

Second, we localize these facts within the image (see Fig. 6.1). The successfully located

facts in the images are saved as fact-image annotations that could be used to train visual per-

ception models to learn attributed objects, actions, and interactions. We managed to collect

380.409 high-quality second- and third-order fact annotations (146,515 from Flickr30K Enti-

ties, 157,122 from the MS COCO training set, and 76,772 from the MS COCO validation set).

We present statistics of the automatically collected facts in the Experiments section. Note that

the process of localizing facts in an image is constrained by information in the dataset.

For MS COCO, the dataset contains object annotations for about 80 different objects as

provided by the training and validation sets. Although this provides abstract information about
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objects in each image (e.g., “person”), it is usually mentioned in different ways in the caption.

For the “person” object, “man”, “girl”, “kid”, or “child” could instead appear in the caption. In

order to locate second- and third-order facts in images, we started by defining visual entities.

For the MS COCO dataset [94], we define a visual entity as any noun that is either (1) one

of the MS COCO dataset objects, (2) a noun in the WordNet ontology [111, 91] that is an

immediate or indirect hyponym of one of the MS COCO objects (since WordNet is searchable

by a sense and not a word, we perform word sense disambiguation on the sentences using a

state-of-the-art method [172]), or (3) one of scenes the SUN dataset [162] (e.g., a “restaurant”).

We expect visual entities to appear either in the S or the O part (if exists) of a candidate fact.

This allows us to then localize facts for images in the MS COCO dataset. Given a candidate

third-order fact, we first try to assign each S and O to one of the visual entities. If S and O

elements are not visual entities, then the fact is ignored. Otherwise, the facts are processed

by several heuristics, detailed in Sec 6.5. For instance, our method takes into account that

grounding the plural ”men” in the fact <S:men, P: chasing, O: soccer ball > may require the

union of multiple ”man” bounding boxes.

In the Flickr30K Entities dataset [125], the bounding box annotations are presented as

phrase labels for sentences (for each phrase in a caption that refers to an entity in the scene).

A visual entity is considered to be a phrase with a bounding box annotation or one of the SUN

scenes. Several heuristics were developed and applied to collect these fact annotations, e.g.

grounding a fact about a scene to the entire image; detailed in Sec 6.5.

6.4 Fact Extraction from Captions

We extract facts from captions using Clausie [27] and our proposed SedonaNLP system. In con-

trast to Clausie, we address several challenging linguistic issues by evolving our NLP pipeline

to: 1) correct many common spelling and punctuation mistakes, 2) resolve word sense am-

biguity within clauses, and 3) learn a common spatial preposition lexicon (e.g., “next to”,

“on top of”, “in front of”) that consists of over 110 such terms, as well as a lexicon of over two

dozen collection phrase adjectives (e.g., ”group of”, ”bunch of”, ”crowd of”, ”herd of”). For

our purpose, these strategies allowed us to extract more interesting structured facts that Clausie
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fails at which include (1) more discrimination between single versus plural terms, (2) extracting

positional facts (e.g., next to). Additionally, SedonaNLP produces attribute facts that we denote

as <S, A>; see Fig 6.4. Similar to some existing systems OpenNLP [10] and ClearNLP [23],

the SedonaNLP platform also performs many common NLP tasks: e.g., sentence segmenta-

tion, tokenization, part-of-speech tagging, named entity extraction, chunking, dependency and

constituency-based parsing, and coreference resolution. SedonaNLP itself employs both open-

source components such as NLTK and WordNet, as well as internally-developed annotation

algorithms for POS and clause tagging. These tasks are used to create more advanced functions

such as structured fact annotation of images via semantic triple extraction. In our work, we

found SedonaNLP and Clausie to be complementary for producing a set of candidate facts for

possible localization in the image that resulted in successful annotations.

Figure 6.2: SedonaNLP Pipeline for Structured Fact Extraction from Captions

Varying degrees of success have been achieved in extracting and representing structured

triples from sentences using <subject, predicate, object> triples. For instance, [137] describe

a basic set of methods based on traversing the parse graphs generated by various commonly

available parsers. Larger scale text mining methods for learning structured facts for ques-

tion answering have been developed in the IBM Watson PRISMATIC framework [51]. While

parsers such as CoreNLP [101] are available to generate comprehensive dependency graphs,

these have historically required significant processing time for each sentence or have traded

accuracy for performance. In contrast, SedonaNLP currently employs a shallow dependency
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Figure 6.3: Accumulative Percentage of SP and SPO facts in COCO 2014 captions as number

of verbs increases

Figure 6.4: Examples of caption processing and <S,P,O> and <S,P> structured fact extrac-

tions.

parsing method that runs in some cases 8-9X faster than earlier cited methods running on iden-

tical hardware. We choose a shallow approach with high, medium, and low confidence cutoffs
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after observing that roughly 80% of all captions consisted of 0 or 1 Verb expressions (VX); see

Fig. 6.3 for MSCOCO dataset [94]. The top 500 image caption syntactic patterns we observed

can be found on our supplemental materials [3]. These syntactic patterns are used to learn rules

for automatic extraction for not only <S,P,O>, but also <S,P>, and <S,A>, where <S,P>,

are subject-action facts and <S,A> are subject-attribute facts. Pattern examples and statistics

for MS COCO are shown in Fig. 6.5.

Figure 6.5: Examples of the top observed Noun (NX), Verb (VX), and Preposition (IN) Syn-

tactic patterns.

In SedonaNLP, structured fact extraction was accomplished by learning a subset of ab-

stract syntactic patterns consisting of basic noun, verb, and preposition expressions by ana-

lyzing 1.6M caption examples provided by the MS COCO, Flickr30K, and Stony Brook Uni-

versity Im2Text caption datasets. Our approach mirrors existing known art with the addition

of internally-developed POS and clause tagging accuracy improvements through the use of

heuristics listed below to reduce higher occurrence errors due to systematic parsing errors: (i)

Mapping past participles to adjectives (e.g., stained glass), (ii) De-nesting existential facts (e.g.,

this is a picture of a cat watching a tv.), (iii) Identifying auxiliary verbs (e.g., do verb forms).

In Fig. 6.4, we show an example of extracted <S,P,O> structured facts useful for image

annotation for a small sample of MS COCO captions. Our initial experiments empirically con-

firmed the findings of IBM Watson PRISMATIC researchers who indicated big complex parse

trees tend to have more wrong parses. By limiting a frame to be only a small subset of a

complex parse tree, we reduce the chance of error parse in each frame [51]. In practice, we ob-

served many correctly extracted structured facts for the more complex sentences (i.e., sentences

with multiple VX verb expressions and multiple spatial prepositional expressions) – these facts

contained useful information that could have been used in our joint learning model but were

conservatively filtered to help ensure the overall accuracy of the facts being presented to our
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system. As improvements are made to semantic triple extraction and confidence evaluation

systems, we see potential in several areas to exploit more structured facts and to filter less in-

formation. Our full <S,P,O> triple and related tuple extractions for MS COCO and Flickr30K

datasets are available in the supplemental material [3].

6.5 Locating facts in the Image

In this section, we present details about the second step of our automatic annotation process

introduced in Sec. 6.3. After the candidate facts are extracted from the sentences, we end up

with a set Fs = {f il }, i = 1 : Ns for statement s, whereNs is the number of extracted candidate

fact f il , ∀i from the statement s using either Clausie [27] or Sedona-3.0. The localization step

is further divided into two steps. The mapping step maps nouns in the facts to candidate boxes

in the image. The grounding step processes each fact associated with the candidate boxes and

outputs a final bounding box if localization is successful. The two steps are detailed in the

following subsections.

6.5.1 Mapping

The mapping step starts with a pre-processing step that filters out a non-useful subset of Fs

and produces a more useful set F∗s that we try to locate/ground in the image. We perform this

step by performing word sense disambiguation using the state-of-the-art method [172]. The

word sense disambiguation method provides each word in the statement with a word sense in

the wordNet ontology [91]. It also assigns for each word a part of speech tag. Hence, for each

extracted candidate fact in Fs we can verify if it follows the expected part of speech according

to [172]. For instance, all S should be nouns, all P should be either verbs or adjectives, and O

should be nouns. This results in a filtered set of facts F∗s. Then, each S is associated with a set of

candidate boxes in the image for second- and third-order facts and each O associated with a set

or candidate boxes in the image for third-order facts only. Since entities in MSCOCO dataset

and Flickr30K are annotated differently, we present how the candidate boxes are determined in

each of these datasets.

MS COCO Mapping: Mapping to candidate boxes for MS COCO reduces to assigning
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the S for second-order and third-order facts, and S and O for third-order facts. Either S or

O is assigned to one of the MSCOCO objects or SUN scenes classes. Given the word sense

of the given part (S or O), we check if the given sense is a descendant of MSCOCO objects

senses in the wordNet ontology. If it is, the given part (S or O) is associated with the set

of candidate bounding boxes that belongs to the given object (e.g., all boxes that contain the

“person” MSCOCO object is under the “person” wordnet node like “man”, ’girl’, etc). If the

given part (S or O) is not an MSCOCO object or one of its descendants under wordNet, we

further check if the given part is one of the SUN dataset scenes. If this condition holds, the

given part is associated with a bounding box of the whole image.

Flickr30K Mapping: In contrast to MSCOCO dataset, the bounding box annotation

comes for each entity in each statement in Flickr30K dataset. Hence, we compute the can-

didate bounding box annotations for each candidate fact by searching the entities in the same

statement from which the clause is extracted. Candidate boxes are those that have the same

name. Similarly, this process assigns S for second-order facts and assigns S and O for second-

and third-order facts.

Having finished the mapping process, whether for MSCOCO or Flickr30K, each candidate

fact f il ∈ F∗s, is associated with candidate boxes depending on its type as follows.

<S,P> : Each f il ∈ F∗s of second-order type is associated with one set of bounding boxes

biS , which are the candidate boxes for the S part. biO could be assumed to be always an empty

set for second-order facts.

<S,P,O> : Each f il ∈ F∗s of third-order type is associated with two sets of bounding boxes

biS and biS as candidate boxes for the S and P parts, respectively.

6.5.2 Grounding

The grounding process is the process of associating each f il ∈ F∗s with an image fv by assigning

fl to a bounding box in the given MS COCO image scene given the biS and biO candidate boxes.

The grounding process is relatively different for the two dataset due to the difference of the

entity annotations.

Grounding: MS COCO dataset (Training and Validation sets)
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Table 6.1: Human Subject Evaluation by MTurk workers %

Dataset (responses) Q1 Q2 Q3

yes no Yes No a b c d e f g

MSCOCO train 2014 (4198) 89.06 10.94 87.86 12.14 64.58 12.64 3.51 5.10 0.86 1.57 11.73

MSCOCO val 2014 (3296) 91.73 8.27 91.01 8.99 66.11 14.81 3.64 4.92 1.00 0.70 8.83

Flickr30K Entities2015 (3296) 88.94 11.06 88.19 11.81 70.12 11.31 3.09 2.79 0.82 0.39 11.46

Total 89.84 10.16 88.93 11.07 66.74 12.90 3.42 4.34 0.89 0.95 10.76

Table 6.2: Human Subject Evaluation by Volunteers % (This is another set of annotations

different from those evaluated by MTurkers)

Volunteers Q1 Q2 Q3

yes No Yes No a b c d e f g

MSCOCO train 2014 (400) 90.75 9.25 91.25 8.75 73.5 8.25 2.75 6.75 0.5 0.5 7.75

MSCOCO val 2014 (90) 97.77 2.3 94.44 8.75 84.44 8.88 3.33 1.11 0 0 2.22

Flickr30K Entities 2015 (510) 78.24 21.76 73.73 26.27 64.00 4.3 1.7 1.7 0.7 1.18 26.45

In the MS COCO dataset, one challenging aspect is that the S or O can be singular, plural,

or referring to the scene. This means that one S could map to multiple boxes in the image. For

example, “people” maps to multiple boxes of “person”. Furthermore, this case could exist for

both the S and the O. In cases where either S or O is plural, the bounding box assigned is the

union of all candidate bounding boxes in biS . The grounding then proceeds as follows.

<S,P> facts:

(1) If the computed biS = ∅ for the given f il , then f il fails to ground and is discarded.

(2) If S singular, f iv is the image region that with the largest candidate bounding box in biS .

(3) If S is plural, f iv is the image region that with union of the candidate bounding boxes in

biS .

<S,P, O> facts:

(1) If biS = ∅ and biO = ∅, f il fails to ground and is ignored.

(2) If biS 6= ∅ and biO 6= ∅, then bounding boxes are assigned to S and O such that the

distance between them is minimized (though if S or O is plural, the assigned bounding box is

the union of all bounding boxes for biS or biO respectively), and the grounding is assigned the

union of the bounding boxes assigned to S and O.
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(3) If either biS = ∅ or biO = ∅, then a bounding box is assigned to the present object (the

largest bounding box if singular, or the union of all bounding boxes if plural). If the area of this

region compared to the area of the whole scene is greater than a threshold th = 0.3, then the f iv

is associated to the whole image of the scene. Otherwise, f il fails to ground and is ignored.

Grounding: Flickr30K dataset The main difference in Flickr30K is that for each entity

phrase in a sentence, there is a box in the image. This means there is no need to have cases for

single and plural. Since in this case, the word “men” in the sentence will be associated with the

set of boxes referred to by “men” in the sentences. We union these boxes for plural words as

one candidate box for “men”

We can also use the information that the object box has to refer to a word that is after the

subject word, since subject usually occurs earlier in the sentence compared to object. We union

these boxes for plural words.

<S,P> facts:

If the computed biS = ∅ for the given f il , then f il fails to ground and is discarded. Otherwise,

the fact is assigned to the largest candidate box in if there are multiple boxes.

<S,P, O> facts: <S,P, O> facts are handled very similar to MSCOCO dataset with two

main differences.

a) The candidate boxes are computed as described for the case of Flickr30K dataset.

b) All cases are handled as single case, since even plural words are assigned one box based

on the nature of the annotations in this dataset.

6.6 Experiments

6.6.1 Human Subject Evaluation

We propose three questions to evaluate each annotation: (Q1) Is the extracted fact correct

(Yes/No)? The purpose of this question is to evaluate errors captured by the first step, which

extracts facts by Sedona or Clausie. (Q2) Is the fact located in the image (Yes/No)? In some

cases, there might be a fact mentioned in the caption that does not exist in the image and is

mistakenly considered as an annotation. (Q3) How accurate is the box assigned to a given fact

(a to g)? a (about right), b (a bit big), c (a bit small), d (too small), e (too big), f (totally wrong
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box), g (fact does not exist or other). Our instructions on these questions to the participants can

be found in this anonymous url [48].

We evaluate these three questions for the facts that were successfully assigned a box in the

image, because the main purpose of this evaluation is to measure the usability of the collected

annotations as training data for our model. We created an Amazon Mechanical Turk form to

ask these three questions. So far, we collected a total of 10,786 evaluation responses, which are

an evaluation of 3,595 (fv, fl) pairs (3 responses/ pair). Table 6.2 shows the evaluation results,

which indicate that the data is useful for training, since≈83.1% of them are correct facts with

boxes that are either about right, or a bit big or small (a,b,c). We further some evaluation

responses that we collected from volunteer researchers in Table 6.2 showing similar results.

Fig. 6.6 shows some successful qualitative results that include four extracted structured facts

from MS COCO dataset (e.g., <person, using, phone>, <person, standing>, etc). Fig 6.7 also

Figure 6.6: Several Facts successfully extracted by our method from two MS COCO scenes

Figure 6.7: An example where one of the extracted facts are not correct due to a spelling

mistake
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show a negative example where there is a wrong fact among the extracted facts (i.e., <house,

ski>). The main reason for this failure case is that “how” is mistyped as “house”; see Fig 6.7.

The supplementary materials [3] includes all the captions of these examples and also additional

qualitative examples.

6.6.2 Hardness Evaluation of the collected data

In order to study how the method behave in both easy and hard examples. This section present

statistics of the successfully extracted facts and relate it to the hardness of the extraction of these

facts. We start by defining hardness of an extracted fact in our case and its dependency on the

fact type. Our method collect both second- and third-order facts. We refer to candidate subjects

as all instances of the entity in the image that match the subject type of either a second-order

fact <S,P> or a third-order fact <S,P,O>. We refer to candidate objects as all instances in the

image that match the object type of a third-order fact <S,P,O>. The selection of the candidate

subjects and candidate objects is a part of our method that we detailed in Sec 6.5. We define the

hardness for second order facts by the number of candidate subjects and the hardness of third

order facts by the number of candidate subjects multiplied by the number of candidate objects.

In Fig 6.8 and 6.9, the Y axis is the number of facts for each bin. The X axis shows the bins

that correspond to hardness that we defined for both second and third order fats. Figure 6.8

shows a histogram of the difficulties for all Mturk evaluated examples including both the suc-

cessful and the failure cases. Figure 6.9 shows a similar histogram but for but for subset of

facts verified by the Turkers with Q3 as (about right). The figures show that the method is able

to handle difficulty cases even with more than 150 possibilities for grounding. We show these

results broken out for MSCOCO and Flickr30K Entities datasets and for each fact types in the

supplementary materials [3].

6.7 Conclusion

We present a new method whose main purpose to collect visual fact annotation by a language

approach. The collected data help train visual system systems on the fact level with the diversity

of facts captured by any fact described by an image caption. We showed the effectiveness of
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Figure 6.8: (All MTurk Data) Hardness histogram after candidate box selection using our

method

Figure 6.9: (MTurk Data with Q3=about right)Hardness histogram after our candidate box

selection

the proposed methodology by extracting hundreds of thousands of fact-level annotations from

MSCOCO and Flickr30K datasets. We verified and analyzed the collected data and showed

that more than 80% of the collected data are good for training visual systems.
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Chapter 7

Conclusion and Future Work

In this thesis, I have explored how to guide visual perception by language on three settings/applications

where either zero of very few examples per visual concepts are available.

(A) Write a Classifier In Chapter 2, we showed that zero shot recognition of fine-grained

objects is possible from just Wikipedia article describing the visual category. The main idea

was to predict a visual classifier from just term frequencies of the Wikipedia articular. We

studied several formulations where we showed that the most useful learning component is a

transformation matrix W that project the term frequencies of the Wikipedia article into visual

classifier space. It could be also improved by a second step with quadratic programming that

improve the predicted classifier by sampling negative examples. In Chapter 3, we showed that

this transformation could be done in the kernel space, where two arbitrary kernel similarity

functions can be use, one between text description and one between images. We also showed

the value of using a variant of TFIDF that uses distributional semantics. More recent advances

has that regularization that encourage sparsity wikipedia terms, which in turn suppresses the

noisy wikipedia terms and hence significantly improve the zero shot performance [126].

(B) Video Event Retrieval from text a Classifier: In Chapter 4, I studied a multimodal setting

where an event text query (i.e. just the event title like “birthday party” or “feeding an animal”)

to retrieve a ranked list of videos based on their multimodal content. In contrast to [88, 96], I

showed that relevant concepts to a given query can be determined automatically by leveraging

leverage information from distributional semantic space [107]. The distributional semantic

space was trained on a large text corpus to embed event queries and videos to the same space,

where similarity between both could be directly estimated. Furthermore, we only assume that

query comes in the form of an “unstructured” few-keyword query (in contrast to [161, 77, 76])

which uses a big text articles that explicitly list relevant concepts and yet achieved a better
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zero-shot performance. This property makes our approach more practical since the typical use

of event queries for video search should be similar to text-search ( based on few words).

(C) Towards Generalization and Visual Understanding: In (A) and (B), we studied zero-

shot learning setting on particular set of classes (A) or events (B). In Chapter 5, we introduce

a setting for learning unbounded number offacts in images, which facilitates gaining visual

knowledge.While studying this task, we consider Uniformity, Generalization, Scalability, Bi-

directionality, and Structure. We investigated several baselines from multi-view learning liter-

ature, adapted to our setting. We proposed a structured embedding model that outperform the

designed baselines mainly by the advantage of relating facts by structure

My thesis work was an attempt towards better generalization of visual understanding guided

by language and encourage future work in several directions. For (A) Write a Classifier, we still

do not have model that are capable of demonstrating their understanding by relating which sen-

tence in the text description is talking about which part of image (e.g., “orange bill” should be

related to the head of the bird in bird images). For (B) Video Event Retrieval from text a Clas-

sifier: , the average precision on the zero-shot event detection is still 13.1% and improving the

results data efficient methods is an open-question to my humble knowledge. For (C) Towards

Generalization and Visual Understanding: , I just scratched the surface of the problem of rich

image understanding. One of the hard questions is building interpretable methods to tackle

visual reasoning which is very exciting problem (e.g., inferring hidden facts like mirror for a

selfie image). A huge progress has been made in the recent few years in computer vision, yet,

there is so much work to be done towards more intelligent machines.
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