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This thesis is focused on development of an integrated decision making support 

framework to assist with the design of a sustainable community that has access to secure 

clean energy and utilizes innovative technologies and strategies. Innovative technologies 

include but not limited to renewable generation/storage resources, Plug-In Electric 

Vehicle (PEV), Building Monitoring Systems (BMS), Programmable Communication 

Devices (PCD), and etc. This framework has 3 unique components: i. energy dynamic 

demand modeling, ii. investment strategies for Distributed Energy Resources (DER), and 

iii. demand side energy management in uncertain markets.  
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In the existing litrature and industry practices, energy load profile is considered as an 

input to a decision making support tools and its dynamics is ignored which can lead to 

unreliable and less cost effective investment decisions in the long run. The analysis of 

such dynamics is not possible with existing demand forecast models, which are built 

based on time series forecasts relying on historical data. Therefore, in this thesis a 

bottom-up demand forecasting model entitled High Resolution Adaptive Model (Hi-

RAM) is integrated with DER investment model.  

Hi-RAM provides compelling results concerning the potential load shifting of PEVs, 

as well as how advanced energy management systems enable response to Electric 

Distribution Companies (EDC) price signals. Hi-RAM is a bottom-up stochastic demand 

model consisting of: 1- Markovian stochastic process for simulating human activities, and 

buildings occupany profiles. 2- Probabilistic Bayesian and Logistic technology adoption 

models and 3- Optimization and rule-based energy management models for building end-

uses e.g., Heating, Ventilating, and Air Conditioning (HVAC), Lighting, and PEV 

charging  which enable them to respond to EDC price signals without compromising 

users’ comfort.  

The DER investment model is built as a non-linear stochastic mixed integer 

programming to maximize the cash flow over the planning horizon considering long-term 

market variations, short-term operational volatilities, and the dynamics of underlying 

demand. Integration of Hi-RAM and the DER investment model offers a novel analytical 

framework which can be used at the design stage of new products to assess their 

effectiveness. Such a framework can also assist decision makers to investigate investment 

strategies on community’s DER e.g., PV solar, wind turbines, electric storages, and etc. 
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taking into account the specifics of building behavioral and physical characteristics as 

well as the emergence of new end-uses and Demand-Side Management (DSM) 

capabilities. 

While developing this tool is an essential step towards sustainable and efficient 

energy solutions in the planning stage of new buildings and communities, attention must 

also be paid to the existing building stock where the U.S. buildings sector alone 

accounted for 7% of global primary energy consumption. Recognizing its importance, 

this thesis also investigates advanced energy magement and control policies for buildings 

within a constrained peak demand envelope while ensuring that custom climate 

conditions are facilitated. This will mitigate service disruption and high cost of energy 

production and distribution.  
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INTRODUCTION AND RESEARCH BACKGROUND  

1.1 Objectives Introduction an Research Background 

This thesis intends to deliver solutions to the following problems: 

1. A bottom up stochastic demand model that can capture the behavior of 

individuals, and residential units within a community. The demand model 

consists of the following components:  

i) Markovian stochastic process for simulating human activities. 

Activities are simulated with respect to individual’s demographics e.g., 

age, gender, employment status and time of week. At given time 

within the building block, this model generates synthetic energy/non-

energy related activities. Moreover, occupancy pattern of the building 

block would be realized.     

ii) Probabilistic Bayesian and Logistic regression technology adoption 

models. These models provide an estimate for penetration levels of 

PEVs and PCDs within communities.  

iii) Optimization and rule-based energy management models for end-uses 

which enable them to respond to EDC price signals without 

compromising users comfort. 

 

2. DER investment strategies by considering long-term market variations, short-

term operational volatilities, and the dynamics of underlying demand. The 

following models will be considered: 
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i) Non-linear stochastic mixed integer programming, which aims to 

maximize the cash flow due to investment on the portfolio of DER 

considering optimal unit commitment and economic dispatch subjected 

to DER operational constraints and availability of renewable sources 

e.g. solar, wind. 

ii) Integration of bottom up demand model with investment model. This 

benefits investment decisions by providing realistic demand profiles 

considering the behavior of end users.  Such integration enables 

investigating several scenarios under the emergence of new end-uses 

and the implementation of DSM strategies. 

  

3. Day-ahead operational plans for a portfolio of multi-buildings by incorporating 

market uncertainty trends. The portfolio of interest consists of two groups of 

buildings namely; controllable and uncontrollable. The following models will be 

considered: 

i) Physics-based and statistical models for estimation and prediction of 

end-use consumptions including HVAC, lighting, and building 

equipment in controllable buildings. 

ii) A multi-objective mathematical programming to minimize the energy 

expenditure given EDC price signals while satisfying the occupants’ 

comfort.  
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1.2 Brief Overview of Thesis Accomplishments 

1.2.1 A High Resolution Adaptive Model of Residential Energy Demand  

 

This chapter intends to build a dynamic demand model which may have advantages 

such as introducing the capability of estimating and forecasting of total energy 

consumption in residential communities without relying historical data. It also provides a 

better understanding of how load profiles would vary considering 1: the emergence of 

new end-uses e.g., PEV, 2: the DSM capabilities.  

Built-in end-use models reflect the function of intelligent thermostats which learn 

temperature preference of building occupants. Furthermore, they simulate the dynamics 

of price responsive thermostats with pre-cooling and pre-heating capabilities; smart 

electric plugs with the capability of altering the switch status; automated dimmer switch 

with the capability of altering lighting levels based on real time EDC price signals. 

PCDs have the potential to curtail the residential energy load profile and shift peak 

load to off peak periods. When the adoption of these devices is coupled with the 

introduction of new loads such as those from the PEVs, there is still very limited 

understanding on how they interact with each other, and influence one another, as well as 

their collective impact on energy demand. 

The adaptive model is capable of analyzing why demand behaves the way it does by 

zooming in or out depending on the level of granularity required by the analysis. The 

proposed model empowers utility companies to investigate DSM strategies and their 

effectiveness. Moreover, it may provide insight to system operators about the impact of 

the emergence of new loads when actual historical or metered data is missing. 
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1.2.2 Integration of Demand Dynamics and Investment Decisions on Distributed 

Energy Resources 

 

This chapter intends to demonstrate that closing the loop between demand dynamics 

and supply resource planning can influence long-term investment decisions on DER. The 

value of a DER portfolio depends on its projected return on investment and the potential 

growth in its operating income while serving underlying demand. For a DER, the 

investment payoff is directly linked to the operation of the physical assets, and return on 

investment depends on how these operations will be utilized in the short term. Depending 

on when investments were made and also amount of the investment, long-term value of a 

DER could be assessed. Investment decisions would be effected by considering grid 

energy and fuel costs, the price of technologies, and federal/state incentives [1].  

Economics of DER could be enhanced by inclusion of DSM. In this context, DSM 

can be regarded as demand response resources. In presence of DSM, energy load profiles 

become highly dynamic and difficult to predict e.g. demand can be either curtailed or 

shifted over time as a result of response to electricity prices. Integration of DSM as a 

resource necessitates inclusion of dynamic demand models into planning frameworks. 

The novelty of this work is the capability to investigate investment decisions by 

taking into account aforementioned demand dynamics.  Investment planning also takes 

into account factors that are usually contributed to long-term market variations, and 

short-term operational volatilities. Unlike earlier works where power consumption is 

calculated from load forecast models obtained from historical data, this work uses a 

bottom-up demand model for short-term load calculations. The bottom up model is 

capable of lending itself to certain What-If analysis on the use of advanced technologies, 
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new plug-ins e.g., PEVs, and consumer response to power price fluctuations. This would 

allow the investor to examine return on investment as a function of technology and 

behavioral pattern changes over time; such analysis cannot be carried out using stationary 

forecast models, which are solely obtained on the basis of historical data. The proposed 

methodology also enables the EDCs to investigate opportunities to reduce/defer 

investment on energy generation resources and network upgrades.  

 

1.2.3 Operational Planning for Multi-building Portfolio in an Uncertain Energy Market 

 

This chapter intends to investigate day-ahead operational planning of a multi-

building portfolio under electricity market uncertainty. The portfolio of interest consists 

of two groups of buildings: controllable and uncontrollable. To perform the proposed 

study, a hybrid physics-based and statistical models for HVAC as well as models for 

lighting and electrical equipment are developed. This also includes calculation of hourly 

load distribution in uncontrollable buildings using non-parametric bootstrapping method. 

The problem of day-ahead operational planning is formulated as a multi-objective 

mathematical programming based on building, market, and weather information. The 

objectives are minimal operational expenditure and minimal occupants’ discomfort. Bi-

polar objectives are picked in order to consider the tradeoff between the two objective 

functions namely operational expenditure, and occupants comfort.  

The proposed pricing scheme considers the differences between the day-ahead and 

real-time prices to reflect the trend of energy market uncertainty. It concludes that 

incorporating available insights about market uncertainty into day-ahead planning can 
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result in load responses which may help to manage the underlying load more rigorously 

than just using forecasted market data.  

 

1.3 Synopsis of contribution 

1.3.1 A High Resolution Adaptive Model of Residential Energy Demand  

 PEV and PCD probabilistic adoption models based on householder 

characteristics (see section: 3.2.1, 3.3.6) and  

 End-use optimization/rule-based models that optimize the use of PCD 

components if adopted. 

1.3.2 Integration of Demand Dynamics and Investment Decisions on Distributed 

Energy Resources 

 

 Investigation of investment strategies on DER considering near-future 

scenarios such as large-scale penetration of PEV, and smart grid enabling 

technologies e.g. DSM.  

 Inclusion of underlying demand dynamics on DER investment decisions.  

1.3.3 Operational Planning for Multi-building Portfolio in an Uncertain Energy Market 

 A generic hybrid physics-based statistical model for modeling HVAC 

system that is applicable for any building type and HVAC technology.  

 A pricing scheme, which enables the decision maker to manage day-ahead 

load more efficiently in terms of daily peak reduction, overall load 

curtailment, and load smoothness. 
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1.4 Motivation 

 

Many envision the future of power system to be an interconnected network of small-

scale DER, along with a large-scale macro grid [2]. To name a few but not limited to, 

avoided transmission and distribution (T&D) losses, utilization of renewable energy, and 

lower greenhouse gas emissions are advantages of DER deployment [3]. According to 

International Energy Agency (IEA), renewable-based generation triples between 2008 

and 2035 [4].  

Paradigm shift is taking place not only in means of energy generation, delivery and 

control but also in behind-the-meter consumption patterns. A good example is PEV: The 

fast sales growth rate of PEVs can potentially alter the energy demand behavior [5], and 

could affect directly the electrical grid in at least two ways. First, as a new end-use it will 

increase overall energy consumption. Second, the pattern of charging PEV could 

correlate with traffic patterns which could potentially pose significant challenges to 

EDCs as it could introduce new peaks. A new demand profile may indicate different 

requirements to supply energy and to maintain the distribution network.  

In the smart grid era, the development of information and communication 

technologies has enabled two-way communications between system operators and 

consumers. These technologies enable DSM capabilities. System planners and operators 

may consider DSM as a resource for balancing supply and demand. DSM can also help 

customers to reduce their carbon footprint [6]. Furthermore, considering high upfront cost 

of DER, DSM may provide opportunities to reduce/defer investment on these resources.  
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Operating a DER is complex due to the integration of renewable and conventional 

generation resources, energy storage devices, and DSM. Randomness of renewable 

power generation may violate the predefined DER operations schedules. Moreover, 

energy demands could become highly dynamic and difficult to predict in the presence of 

DSM. 

The significant interdependency and interactions among behavior of end users, the 

operation of energy supply/storage resources, and the existence of DSM capabilities 

require a holistic and integrated decision making support framework that can capture the 

impact of these components on one another. Otherwise, the analysis could under or over 

estimate the value of DER, and could ignore the impact of risks due to uncertainties in 

demand and supply.  

Having a model-based energy consumption calculation at end user’s level that can 

reflect their stochastic behavior rather than using time series-based forecasts lacks in the 

existing literature. This research aims at paving the way towards better understanding of 

the dynamics of community’s energy consumption patterns that could be utilized in the 

design of energy generation/storage resources to serve community’s energy needs. While 

developing such framework is an essential step towards sustainable and efficient energy 

solutions in the planning stage of new buildings and communities, attention must also be 

paid to the existing building stock.  Recognizing its importance, this thesis also 

investigates green scheduling strategies for exisitng communities. This will lead to less 

service disruption as well as avoided investment cost on new power plants. 
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1.5 DER in conjugation with DSM   

DERs are capable of operating in parallel with or independently from the macrogrid 

(islanded mode) ensuring reliable and affordable energy security. Having the obligation 

to fully satisfy its demand at each point of time, any shortage in available power supply 

within the DER will lead to the purchase of electricity from the macro-grid at spot market 

price [7]. 

Intermittent nature of renewable resources arise load balancing problems. One 

solution for this problem is application of energy storage devices. Yet another solution is 

DSM which can help consumers adjusts their consumption according to power supply.  

High upfront cost of DER is one another barrier, since renewable energy resources 

are generally more capital intensive than fossil fuel resources.  In this context DSM is a 

very promising resource [8, 9, 10]. It provides the opportunity to reduce/defer 

investments on new power plants. Customers will be encouraged by financial incentives 

e.g. real time pricing to use less energy during peak hours or to move the time of energy 

use to off-peak hours. This is as opposed to flat rates that do not reflect the actual costs to 

supply power lead to inefficient capital investment in new generation, and T&D 

infrastructure [11].    

Above all, indicates that there is a need to integrate DSM into resource planning as a 

resource [11,12]. Innovations in monitoring and controlling loads are underway offering 

an array of new technologies that will enable substantially higher level of DSM in all 

customer segments. While DSM applications in industrial and commercial sectors have 

been well studied [13, 14, 15], there is a lack of studies which address the issue of 
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consumers managing their household loads without sacrificing their comfort level. 

Examples are to name a few but not limited to application of time use management for 

electric vehicle recharging, pre-cooling/-heating, adjusting lighting level, and etc. These 

opportunities could not be investigated if underlying demand was not flexible enough to 

point out the effect of such dynamics on load profile.   

In order to appropriately evaluate DSM, energy demand consumption models should 

be developed to simulate different scenarios for industrial, commercial and residential 

users. Traditional models forecast demand consumption based on the previous 

consumption data in a top‐down approach. Instead, a bottom‐up approach should be 

addressed to overcome the limitations of the former, such as the inability to predict 

consumption patterns changes like the implementation of flexible demand consumption, 

and adoption of new technologies. 

The following chapters are organized as follows: Chapter 2 focuses on development 

of a High Resolution adaptive model of residential energy demand. In chapter 3, 

investment decisions on DER are investigated by considering long-term market 

variations, short-term operational volatilities, and dynamics of underlying demand. Last 

but not least, In Chapter 4, day-ahead operational strategies for existing portfolio of 

buildings will be discussed under uncertainty of energy market. 
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1. A HIGH-RESOLUTION ADAPTIVE MODEL OF RESIDENTIAL 

ENERGY DEMAND [101] 

2.1 Abstract 

In this chapter an adaptive residential energy demand model that can be used to 

determine changes in behavioral and energy usage patterns of a community is presented. 

The model is capable of simulating both electricity and heat demands of individual 

residential households and a community when: (i) new load patterns from Plug-in 

Electrical Vehicles (PEV) or other devices are introduced; (ii) new technologies and 

smart devices are used within premises; and (iii) new Demand Side Management (DSM) 

strategies, such as price responsive demand are implemented.  Unlike time series 

forecasting methods that solely rely on historical data, the model only uses a minimal 

amount of data at the atomic level for its basic constructs. These basic constructs can be 

integrated into a household unit or a community model using rules and connectors that 

are, in principle, flexible and can be altered according to the type of questions that need 

to be answered. Furthermore, the embedded dynamics of the model works on the basis of: 

(i) Markovian stochastic model for simulating human activities, ii) Bayesian and logistic 

technology adoption models, and iii) Optimization, and rule-based models to respond to 

price signals without compromising users’ comfort. The proposed model is not intended 

to replace load forecast models. Instead it provides an analytical framework that can be 

used at the design stage of new products and communities to evaluate design alternatives. 

The framework can also be used to answer questions such as why demand behaves 

the way it does by examining demands at different scales and by playing What-If games. 



12 

 

 
 

These analyses are not possible with time-series forecast models built on historical 

samples, simply because, these forecast models and their level of accuracy are limited by 

their training datasets and can hardly demonstrate variations that are not present in the 

historical dataset.  

KEYWORDS: Bottom-up demand modeling, Technology adoption, Demand side 

management, Electric vehicles, Price responsive demand. 

Nomenclature 

Index  

d Index for Day of Week; d ∈ {0,1}  

Φ Index for PEV State; Φ ∈ {1,2,3} 

i Index for Household; i = 1… I 

j Index for End-uses  

r Index for Occupant; r = 1…R 

t Index for Time of Day; t = 1…T 

Variables and Parameters  

APCD PCD Adoption 

APEV PEV Adoption 

AR Acceptable Light Level 

CAPPEV PEV Electric Storage Capacity 

CCt Cost Associated to Charging PEV 

CHt PEV Electric Storage Charge  

CHR PEV Electric Storage Charge Rate 
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CPair Air Specific Heat Capacity 

DCHt PEV Electric Storage Discharge 

DF Daylight Factor; Ratio of Internal Light Level to External Light Level 

DHR PEV Electric Storage Discharge Rate 

ELj Energy Load Associated to j-th End-use 

EP Electricity Price  

FR Flexible Lighting Level Range 

K Heat Transfer rate with Outside 

LUXAL Needed Artificial Light 

LUXIN Illuminance Due to Daylight at a Point on the Indoors Working Plane  

LUXOUT Outdoor Illuminance from an Unobstructed Hemisphere of Overcast Sky 

ma Air Mass 

mHVAĊ  Air Mass Flow Rate 

MCI Number of Monte Carlo Iterations 

MDH Miles Driven per Hour 

MPSL Minimum Percentage of Storage Level 

NLUX Indoor Comfortable Light Level 

O% Active Occupancy Percentage 

pSnSm Probability of Transition from Sn to Sm  

Pspecific Buildings' Specific Heat Loss Rate 

Sn State of Markov Chain; n = 1…N 

SOC State of Charge 
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SPLB & UB Thermostat Set-points (Lower and Upper bound) 

Ta Internal Temperature 

TELd
i  Total Energy Load Profile of the i-th Household 

THVAC HVAC Supply Air Temperature 

TSnSm Transition Matrix  

T∞ Ambient Air Temperature 

 

2.2 Introduction 

The residential sector is using almost one third of the total electrical energy in US 

[16]. According to the Federal Energy Regulatory Commission (FERC), much of the 

untapped potential for reducing electricity use lies in residential behavioral changes and 

modifications to traditional consumption patterns [17]. This is particularly true 

considering that by 2030 Automatic Metering Infrastructure (AMI) will be widely 

deployed across the U.S. and dynamic pricing will be widely available or at least it will 

be an option [17]. At the same time, the residential electricity demand is also on the verge 

of showing increased uncertainty as new types of home appliances/electronics are 

introduced and adopted. Traditionally, the major use of electricity in the U.S. residential 

sector can be attributed to air conditioning, lighting, appliance/electronics, and water 

heating [18]. The recent rapid adoption of new home appliances/electronics, albeit many 

of them have become more energy efficient, has introduced new variables into the 

residential electricity demand. A good example is Plug-in Electric Vehicles (PEV) with 

fast sales growth rate which can potentially alter the residential energy demand profile 

[19], and could affect directly the U.S. electrical grid in at least two ways. First, as a new 
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end use it will heighten the average daily demand level. Second, it could pose significant 

challenges to utility companies if people choose to recharge their PEVs during peak 

hours. Without anticipating proper strategies to curtail/shift such heightened peak 

demands, new power plants are needed in order to meet these demands, which, in turn, 

lead to less efficient use of energy resources.  

Fortunately, devices that provide feasibility for utility companies to influence 

consumer consumption behavior and for householders to save energy and to take benefits 

of Demand Side Management (DSM) strategies are emerging and have seen rising 

applications in the residential sector. These devices are commonly referred to as 

Programmable Communication Devices (PCD). PCDs are designed to adjust 

consumption level not only by household specific conditions but also by the exogenous 

market driven changes e.g., electricity price. A common set of these devices include, but 

are not limited to, Intelligent Thermostats (PCDIT), Price Responsive Thermostats 

(PCDPRT), Smart Electric Plugs (PCDSEP), and Automated Dimmer Switches (PCDADS). 

These devices have the potential to shift/curtail energy consumption and contribute to the 

development of energy efficient behaviors. But when the adoption of these devices is 

coupled with the introduction of new loads such as those from the PEVs, there is still 

very limited understanding of how they interact and influence each other, and of their 

collective impacts on the residential energy demand. Furthermore, to design appropriate 

DSM strategies, energy demand consumption models should be developed to simulate 

different scenarios for energy users.  

This research aims at developing a high-resolution residential energy demand model 

to gain better understanding of how different electricity demand patterns evolve with the 
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emergence of new loads, such as PEVs, the adoption of new technologies, and the 

implementation of price responsive DSM strategies. 

2.3 Review of Energy Demand Models 

In deregulated markets, demand forecasting is vital for the energy industry. 

Forecasting models are used to set electricity generation and purchasing, establish 

electricity prices, switch loads and plan for infrastructure development [20]. Demand 

forecasting can serve short-term and long-term goals. Short-term forecasting plays a very 

important role in operating functions such as energy transactions, unit commitment, 

security analysis, and economic dispatch [21]. On the other hand, long-term forecasting 

focuses on the role of policy formulation and supply capacity expansion. Long-term 

forecasting tries to predict consumption behavior changes under the influence of 

adoptions of new technologies or changes in policies for energy use. Short-term and long-

term forecasting requires different modeling approaches. More specifically, short-term 

forecasting usually employs a top-down approach, while for long-term forecasting; a 

disaggregated bottom-up approach is often used. The top-down approach treats individual 

sectors as energy sinks and is not concerned with individual end uses. The bottom-up 

approach, on the other hand, identifies the contribution of each end-use towards the 

aggregate energy consumption.  

In the context of residential segment, both top-down and bottom-up models have 

been developed to model and predict residential energy demand. For example, a few 

studies utilized historic aggregate energy values and regressed the energy consumption of 

the housing stock as a function of top-level variables such as macroeconomic indicators 

(e.g. gross domestic product, and inflation), energy price, and general climate [22, 23]. 

http://users.encs.concordia.ca/~raojw/crd/reference/reference003599.html
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The bottom-up approaches extrapolate the estimated energy consumption of a 

representative set of individual houses to the regional and national levels [23]. There are 

two types of models used in the bottom-up approach: statistical and engineering models. 

Statistical models apply a variety of statistical techniques to regress the relationship 

between the end-uses and the energy consumption. Techniques such as regression [24, 

26], conditional analysis [26, 27] and neural networks [28, 29] are common practices 

throughout the literature. On the other hand, engineering models rely on information 

about building characteristics and end-uses to estimate energy consumption. Engineering 

models are the only viable methods that can fully develop energy consumption estimate 

for a sector without any historical energy consumption information. Engineering models 

proposed in the literature have employed techniques such as distribution [30, 31], 

archetypes [32, 33], and samples [34, 35]. Generally, bottom-up engineering models are 

more suitable options for evaluating the impacts of new technologies or energy saving 

opportunities [22]. In these types of models, each end-use has its own sub-model, which 

enables the aggregated model to track the effects of any component change on reducing 

energy consumption. However, one drawback common to most engineering models is the 

assumption of unrealistic occupant behavior which could lead to unreal conclusions [22].  

This limitation has encouraged researchers to develop engineering models equipped 

with advanced occupant behavior models. Caposo et al. [30] used a Monte Carlo method 

to capture the relationship between the residential demand and the behavioral factors of 

the household occupants. Richardson et al. [36] introduced a Markov chain technique to 

generate synthetic active occupancy patterns based on the survey data on people’s time 

use in the UK. Highly resolved synthetic demand data were created in their study by 
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using a stochastic model that maps occupant activities to appliance uses. Widén and 

Wäckelgård [37] employed a similar approach to relate residential power demand to 

occupancy profiles. Of particular note is that their synthetic activity generation model 

was calibrated using time use and electricity consumption datasets collected in Sweden. 

The study showed that realistic demand patterns can be generated from simulated 

sequence of human activities. Muratori et al. [38] proposed a similar approach with the 

addition of physics-based engineering HVAC systems, and their Markov process is 

calibrated based on the American Time Use Survey (ATUS) data. The study proved that 

the generated demand profiles are statistically similar to metered residential electricity 

data. Energy demand models can be a valuable tool for evaluating the challenges and 

opportunities for implementing DSM and Demand Response (DR) programs in smart 

electricity grids [39] with the potential of achieving to approximately 10% reduction of 

overall demand [40]. However, few studies have employed bottom-up models to study 

the impacts of energy saving programs. In [41, 42], a dynamic energy management 

framework is developed to find the overall optimal schedule of deferrable loads with the 

objective of minimizing the electricity-related expenditure of each residential customer. 

[43] presented a case study which simulates the effect of widespread adoption of tiered 

electricity pricing; this work complements earlier studies [44]. They are motivated by the 

economic and policy impacts of residential price-based demand response programs in 

smart grid era. 

The focus of this chapter is to determine demand changes subject to (i) emergence of 

new PEV loads, (ii) adoption of new technologies (PCD), and (iii) implementation of 

DSM strategies in terms of price responsive demand. To achieve this, a high resolution 
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bottom-up model is developed. The model includes advanced engineering and occupant 

behavior sub-models. Previous studies have evaluated the impacts of these new 

technologies, but more from the stand points of individual technologies or economic and 

policy impacts [43, 44]. In this study, however, the coupling effects of these technologies 

on energy demands when they are simultaneously adopted are considered. The model 

features the following new contributions: (i) PEV and PCD probabilistic adoption models 

based on householder characteristics and (ii) end-use optimization/rule-based models that 

optimize the use of PCD components if adopted. Collectively, the proposed model can 

pave the way towards a new community development plan and design platform that 

closely couples energy supply with energy demand dynamics and evolution and allows 

for a priori evaluation of effective energy saving and efficiency alternatives. Furthermore, 

a tool built on the basis of such a dynamic model can address the elasticity of a 

community to evolving changes in prices, energy efficiency policies, and so on. Next, 

modeling methodology is given followed by model validation, simulation analysis, 

discussion of results, and conclusions.  
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2.4 Modeling Methodology 

The general composition of the proposed energy demand model is shown in Figure 

1. In this model, three load categories are defined as base loads (SH&S,WH, LI, and CA), 

loads associated with specific activities (A), and PEV load. Nominated load categories are 

according to major end uses within residential sector [30].  To capture the effect of PEV 

emergence, a Bayesian probabilistic adoption (APEV) model is introduced. In addition, a 

probabilistic logistic model is formulated to measure the willingness of householders to 

adopt new technologies (APCD). For each specific household, a stochastic sequence of 

activities is generated based on its resident characteristics and time of week. Each activity 

in the sequence has its own energy consumption load (ELA). A sequence of activities also 

forms an occupancy pattern for a household such that it directly influences the base loads 

and PEV load. Last, but not the least, the model considers the availability of PCD such 

that it provides opportunities to end users to adjust consumptions based on price of 

energy while maintaining occupant comfort. The details of each end use model with two 

scenarios of "Equiped with PCD", and"Not equiped with PCD” are provided in the 

upcoming sections. Based on the above structure, the total energy load profile of the i-th 

household with “R” (r = 1, refers to householder index) residents can be formulated as:   

TELd
HH(i)

= ∑ ∑ ELj,d(t)
J
j=1

T
t=1 , where:  j ∊ {SH&SC,WH, L, CA, A, PEV},  ELA,d(t) =

∑ ELA r,d(t) 
r=R
r=1                                                                                                                            (1)     
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Figure 1 Schematic framework of proposed modeling methodology 

 

2.5 Dynamic Demand Models 

2.5.1 Daily Activity and Occupancy Pattern Simulation 

Individual behaviors are stochastic in nature, which is caused by a multitude of 

factors such as individual demographic characteristics (e.g. age, gender, and employment 

status), type of day (weekend/weekday), and environmental conditions [38].  To capture 

this stochasticity, non-homogenous and discrete-time Markov chain models are used in 

this work. If there are N possible states defined as S1…Sn=N, the memoryless Markov 

property indicates that at each time step (t) conditional probability distribution of future 

states of the process depends only upon the present state. At each time step, the transition 

matrix TSnSm(t) = Pr(Xt+1 = Sm│Xt =  Sn) can be written as: 

http://en.wikipedia.org/wiki/Conditional_probability_distribution
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TSnSm(t) = [

pS1S1(t) ⋯ pS1SN(t)

⋮ ⋱ ⋮
pSNS1(t) ⋯ pSNSN(t)

]                                                                                    (2)  

 

According to the above transition matrix, the probability that the process occupies a 

particular state Sn  at time step t is: 

pSn(t) =  pSn(1)∏ TSnSm(t)  , ∑ pSn(t) = 1N
n=1

t−1
t=1                                                               (3)        

 

In this model, the transition probabilities are calibrated using the ATUS data with the 

10-minute time intervals. Based on the ATUS data, the possible states are classified into 

12 categories (See Table 1). 

 

Table 1 The occupant states defined in the Markov chain 

States 

1.Away (work related/education) 5.Vacuum/Sweeping 9.Dishwashing/Drying 

2.Away (non-work related) 6.Loundry 10.Computer 

3.Sleeping 7.Cooking 11.Audio/Music 

4.Washing/Grooming 8.Watching TV 12.InsideActivity (non-energy) 

 

2.5.2 Customized Transition Probabilities 

Previous studies have shown that age, gender, and employment status are dominant 

factors affecting  average time spent on different activities [47] and different geographic 
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regions have no influence on an ATUS occupant’s daily activity pattern [48]. Since 

residential activities are highly relative to time of week [49], the transition probabilities 

are modeled as a function of Time of Week (TWϵ{weekday,weekend}), age, Gender 

(G ϵ{male, female}), and Employment Status (ES ϵ{employed, unemployed/retired}). 

For each respondent in the ATUS data set, these variables are extracted, and stratified 

into 6 homogenous age subgroups (AgeCATϵ{1:< 22, 2: 22 − 29, 3: 30 − 43, 4: 44 −

57, 5: 58 − 71, 6:> 71}). In this way, a customized set of transition probabilities as 

follow are provided:  

TAgeCAT,G,ES,TW(t) = [

p(11|AgeCAT,G,ES,TW), t ⋯ p(1N|AgeCAT,G,ES,TW), t

⋮ ⋱ ⋮
p(N1|AgeCAT,G,ES,TW), t ⋯ p(NN|AgeCAT,G,ES,TW), t

]                   (4) 

 

At each time step ‘t’, a uniformly-distributed pseudorandom number is used to 

determine an individual’s state (S ∊ {1, … , N = 12}). Figure 2 depicts the effect of 

occupant characteristics on occupancy pattern. The reference is a weekday for an 

occupant with AgeCAT = 3, G = male , ES = employed (Blue curves in Figure 2). For 

each scenario a Monte Carlo simulation (MCI = 1000) is conducted. At each time step, 

the Expected Chance of Being Home (ECBH) is calculated as in (5). 

ECBH(t) =
∑ 1n(t)MCI

MCI⁄ , 1n(t) ∶= {
1,          if S(t) ∉ {1,2}
0,                             else

                                        (5) 
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Figure 2 Expected chance of being home and different characteristics 

 

2.6 Enabling Technologies 

2.6.1 Probabilistic PCD Adoption Model 

The adoption of the PCD technology is modeled as a probability event that is related 

to affordability and environmental attitudes of householders. A common approach to 

measure a person’s attitude towards investing in energy efficient technologies is to ask 

customers about their past purchases of Compact Fluorescent Light bulbs (CFL) as an 

indicator of their willingness to pay more in order to save on energy costs over the life of 

a product [50, 51]. Herein data in [52] is applied where participants reported their 

perceptions of energy consumption and savings and recycling activities. In one of many 

questions, respondents were asked if they bought CFLs (binary response). These response 

data is used as the basis for developing a probabilistic PCD adoption model.  More 

specifically, the problem is formulated as a logistic regression problem.  Logistic 

regression uses a linear predictor function f(k, i) to predict the probability that 

observation i (here: i-th Household) has outcome k, where: 

f(k, i) =  βk × Xi                                                                                                                             (6)  
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βk  is the set of regression coefficients associated with outcome k. Xi  is the set of 

explanatory variables 18 ≤ Age ≤ 76, Education Level (Edl) {1: high school/

less, 2: some college, 3: college degree, 4: graduate school} associated with observation i. 

For K possible outcomes (K = APCD ∈{Yes, No}), K-1 independent binary logistic 

regression model is built. One outcome is chosen as a pivot (reference category: APCD = No) 

and the other outcome is separately regressed against the pivot outcome (7). Based on 

this approach, logistic regression coefficients are estimated and summarized in Table 3.   

ln (
P[APCDi = Yes]

P[APCDi = No]
)

=β
(0,APCD=Yes)

+β
(Age,APCD=Yes)

× Xi
Ager=1 +β

(Edl,APCD=Yes)

× Xi
Edlr=1                                                                                                                 (7) 

 

It should be noted that, for the i-th household, Xi
Age

 and  Xi
EL are assumed to be 

householder’s Ager=1 andELr=1, respectively. According to (5), the probability of 

adopting (P[APCDi = Yes]) and not adopting PCD (P[APCDi = No]) for i-th household are 

computed using the fact that all probabilities must sum to one (P[APCDi = Yes] +

P[APCDi = No] = 1). For this sample dataset, the log odds of “APCDi = Yes” versus 

“APCDi = No”, left hand side of (7), increases as the education level increases. 
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Table 2 Model coefficients and p-values  

 APCD = Yes P-Values 

β(0,APCD=Yes) -1.7764 6E-05 

β(Age,APCD=Yes) 0.020946 3E-02 

β(Edl,APCD=Yes) 0.19858 5E-02 

 

2.6.2 Intelligent Thermostats 

PCDIT is considered as a device that is able to learn occupants’ temperature 

preferences and adjust temperature settings accordingly. As the first step to develop the 

PCDIT  model, Residential Energy Consumption Survey (RECS) data is used to tabulate 

the intelligent thermostats settings based on occupant characteristics. As shown in the 

RECS data [53], two variables, TEMPHOMEAC and TEMPHOME, were collected to 

represent comfort temperatures for householders during summer and winter seasons. 

Box-and-whisker diagrams are constructed for each 24 combinations of “AgeCAT” and 

“Edl”. Figure 3-a shows the first quartile (Q1) and the third quartile (Q3) values for 

“TEMPHOMEAC” for each combination. Figure 3-b shows the same information for 

“TEMPHOME”. Figure 3-a suggests that the sampled respondents with higher age levels 

prefer higher temperatures in summer and respondents with higher education levels 

prefer higher temperature settings as well. However, such trend cannot be clearly 

observed in winter (Figure 3-b).  Based on Figure 3, the lower surface (Q1) and the upper 

surface (Q3) are used as the Lower Bound (SPLB) and the Upper Bound Set Points (SPUB), 

respectively, when HVAC systems are functioning. 
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Figure 3 a) Lower and upper bounds for set points (summer), b) Lower and upper bounds for set points 

(winter) 

 

2.7 Energy Consumption Modeling 

This section describes the modeling of energy consumption associated with specific 

activities and the base load calculation. The latter accounts for end uses 

including SH&S, LI, CA, and WH. In addition to these models, a load model centered on 

PEVs is also described.   

2.7.1 Energy Consumption Associated with Specific Activities 

To model the energy consumption associated with specific activities, the power 

conversion parameters are used as shown in Table 4 to convert activity states into power 

demands, an approach similar to what was employed in [38]. These parameters are 

generated based on the average wattages of the current appliance stock [54]. 
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Table 3 Energy consumption power associated to specific activities 

States Electricity power consumption (Watt) 

Washing 1800 

Vacuum/Sweeping 1500 

Laundry 3600 

Cooking 3500 

Watching TV 120 

Dishwashing/Drying 1800 

 

2.7.2 Space Heating and Cooling Model 

In order to calculate the energy consumption caused by the space heating and 

cooling end-uses, the dynamic change of indoor temperature is formulated as a Newton's 

law of heating and cooling problem. Such dynamic is introduced to enable the 

functionalities of PCDPRT e.g. pre-cooling and pre-heating capabilities.    

ma × Cp ×
dTa

dt
=  mHVAC ×̇ CPair × (THVAC − Ta) − K × (Ta − T∞)                                (8)  

 

Discretization techniques are used to integrate this model into a simulation 

framework with a step size of 10 minute. This process is usually carried out as a first 

step toward making continuous differential equations suitable for numerical evaluation. It 

is well-known that the space heating and cooling loads are highly dependent on site 

specific characteristics e.g. wall/window insulation, thickness of walls, humidity, etc. 

Since this chapter is not aimed at developing detailed model of HVAC, a slightly 

modified version of the temperature evaluation model which is proposed in [38] is 
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adopted here (9). That is instead of calculating the thermal resistance of household 

envelope (K/W), a building's specific heat loss rate (Pspecific ~ [W/K ]) from the RECS 

dataset is used. To enable the pre-cooling/pre-heating capabilities, an optimization 

framework is developed to minimize the cost of HVAC energy consumption given the 

knowledge of the current electricity price in every ten minutes. If PCDs are not available, 

a flat electricity price profile will be assumed. In other words, this can be formulated as 

minimize∑ |pdot(t)| × EP(t)T
t=1  subjected to the following constraint:  

Ta(t) = Ta(t − 1) +
pdot(t) +  Pspecific × (T∞(t) − Ta(t − 1))

ma × CPair
                                     (9) 

 

The indoor temperature (Ta) at each time interval is constrained between the lower 

and upper bounds (SPLB ≤ Ta(t) ≤  SPUB). If PCD is available, the PCDIT sets lower and 

upper limits based on the preferences of householders. Otherwise, the predefined lower 

and upper bounds will be assigned based on the ASHRAE standards [55]: 

[SPLB, SPLB] = {
f(Ager=1,  Edlr=1), if equiped with PCD

[70,75], else
                                         (10) 

 

pdot at each time interval, is constrained as follow: −Max(AC) ≤ pdot(t) ≤ 0 

where:  

MaxAC = HH Area × 𝜌air × CPair × (THVAC,CoolingMode − TDesigned,Cooling mode)      (11) 
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2.7.3 Lighting Model 

The lighting end use model takes into account perception of natural light levels 

within a building, the number of people who are active (at home and awake) [30, 56], and 

household area. At each time step, the indoor illuminance (lux~lm/m2) is defined as 

below:  

LuxIN(t) = (
DF

100
) × LuxOUT(t)                                                                                                 (12)     

 

If an active individual is presented at a time step, the luminance level should be hold 

within an Acceptable Range (AR ∊ {100 − 150 lux } [57]). The Flexible Range (FR) is 

defined as a distance between the maximum and minimum levels of AR. Anywhere 

within this range; AR represents a comfortable lighting situation for occupants. PCDADS 

is included to provide the capability of controlling lighting levels within the AR range. It 

is assumed that the FR has a negative relationship with the ratio of electricity price over 

the peak price. A mathematical formulation of FR(t) is as follows: 

FR(t) = {
f (

EP(t)

max(EP)
)                    ,    if equiped with PCD

max(AR) −min(AR),    else
                                                   (13)   

 

The number of people who are active at each time interval is derived from simulated 

individual activities at a household. This leads to the definition of occupancy percentage 

at each time interval as: 

http://en.wikipedia.org/wiki/Illuminance
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O%(t) =
∑ 1n(t)n=N
n=1

N
, 1n(t) ∶= {

1, if Sn(t) ∉ {1,2,3}
0,                          else

                                                          (14)  

 

Given O%(t), one could calculate lighting electricity load within a household as the 

following:  

NLUX(t) = Min(AR) + FR(t)                                                                                                   (15) 

LUXAL(t) = Max[(NLUX(t) − LUXIN(t)), 0] × O%(t)                                                      (16)  

ELLI(t) = Area × (
LUXAL(t)

𝛈(efficiency)
)                                                                                               (17)   

 

2.7.4 Cold Appliance (Refrigeration) Model 

According to the data from the energy.gov website, cold appliances generally work 

1/3 of the time. To calculate the energy consumption of cold appliances, a Bernoulli 

distribution with 1/3 probability of success is being used. This approach has been 

previously introduced in [48]. 

 

2.7.5 Water Heating Model 

Based on the possible states (S), loads associated with water heating are calculated if 

a household individual is engaged in one of the following activities: washing/grooming, 

dishwashing/drying, and laundry. As reported in a previous study [58], the following 

metric for relating water usage to specific activities is used (Table 5).  



32 

 

 
 

Table 4 Average GPM water usage for each activity state 

State(S) GPM 

4 2.5 

6 2 

9 2.25 

 

To calculate the amount of electricity needed to heat water, it is assumed that water 

typically enters residences at about 10 °C (Tin). It is true that Tin may vary with latitude 

and season, but for simplicity this variation is ignored. Also according to [58], water with 

a temperature of 40–49 °C (mean(Tout) = 45°C) is usually used for dish-washing, 

laundry and showering. Based on this information, the consumed electricity for water 

heating in each time step within a household can be calculated using the following 

formula:  

ELWH(t) = GPMSi
× Duration(t) × (

8.3lb water

gal
) × (Tout − Tin)                                   (18)  

 

2.7.6 PEV Model 

Curtin et al. [44] conducted interviews with randomly selected 2,513 participants to 

assess their state of knowledge and opinions about PEVs. They found that “age of 

householder” and “income” are strong correlates of consumers who expressed interest in 

purchasing PEVs. Age is an important factor due to the strong relationship between with 

driving miles - elderly people drive less than young people [59]. With respect to income, 

Curtin et al. found that consumers with higher income have a significantly higher 
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probability to purchase PEVs [44]. Their study also found a correlation between income 

and education level (Edl). Using data in [44], a probabilistic PEV adoption (APEV) model 

is formulated (19). For each household, the model treats householders’ age and Edl as 

two independent variables (see Figure 4). Number of adopted PEVs in each household is 

set to be one. Figure 4 shows the calculated probabilities for PEV adoption across the 

factors including education level and age of householder. This probabilty plot clearly 

confirms the findings in [50]. 

p(APEV|Age, Edl) =
p(APEV,Age,Edl)

p(Age,Edl)
=

p(Age|APEV,Edl).p(PEVAdoption,Edl)

p(Age,Edl)
=

p(Age|APEV).p(APEV|Edl).p(Edl)

p(Age,Edl)
=

p(APEV|Age).p(APEV|Edl)

p(APEV)
=

p(APEV|Age).p(APEV|Edl)

∑ p(APEV|Age).p(Age))Age
             (19)   

 

Table 5 Age and education levels for PEV adoption model 

Variables Categories Description 

Education level 

(Edl) 

1 High School or less 

2 Some College 

3 College degree 

4 Graduate school 

Age 

1 18-34 

2 35-44 

3 45-54 

4 55-64 

5 65 and more 
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Figure 4 𝐀𝐏𝐄𝐕 probabilities across different age and education levels 

 

The time and amount of charging are two key factors for evaluating the impact of the 

large-scale introduction of PEVs on the aggregated load profile [60]. As a result two 

schemes can be adopted (i) optimal and (ii) non-optimal charging scheme. In both 

schemes, the charging schedule is based on occupancy patterns that are obtained from 

daily activity simulator in section 3.5.2 along with consideration of individual driving 

habits. Scheme (i) is effective when both PEVs and PCDs are adopted. Furthermore, to 

demonstrate the functionality of PCDSEP, the charging schedule is set to follow a dynamic 

programming framework, which finds the shortest feasible path along which the cost 

based on a given hourly price is minimized. The feasibility of a path is dictated by 

householder occupancy patterns and PEV technical constraints e.g., battery capacity, 

charge, and discharge. On the other hand, scheme (ii) is effective when PEV exists but no 

PCD is adopted. In this case, one random feasible schedule that is not necessarily averse 
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of price will be assigned. To solve the cost optimization problem, a forward induction 

technique is employed. More specifically, the recursive relationship for the forward 

induction on the minimum-cost problem is formulated as in (21) where CCt(Φt) is an 

optimal value over the current and completed stages given that PEV is in state 

Φ ϵ [1: Charge ,  2: Discharge,  3: Idle] with t stages to go. At each time stage (t) 

available options for PEV state are dictated by whether a PEV is present in the premise’s 

charging station or not (20). It is assumed that the householder is the one who commutes 

with PEV, and PEV will not be used in durations when the householder is “OUT” for less 

than an hour (4 consecutive 15min intervals where householder is in Si ∈ {i = 1 , 2}). 

One hour minimum charging time is also considered (4 consecutive 15min intervals 

where householder is in Si ∉ {i = 1 , 2}. 

Φt = {
Si ∈ {1 or 3}        , PEVt

in,out = 1      

Si =  2               , PEVt
in,out = 0

 , PEVt
in,out ϵ {1: IN, 0: OUT}                      (20)      

 

Consequently, the minimum charging cost problem can be formulated as: 

minimize CCt(Φt) + CCt−1(Φt−1)                                                                                       (21)  

s.t. 

CCt(Φt) = {
CHt × EPt           , Φt = 1
0                             , Φt   ≠ 1

                                                                                (22)    

CHt        = {
CHR                ,  Φt = 1

0                       ,  Φt   ≠ 1
                                                                                       (23)   

DCHt     = {
DHR × MDH ,   Φt = 2

0                       ,  Φt ≠ 2
                                                                                         (24)  
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MPSL × CAPPEV ≤ SOCt ≤ (1 − MPSL) × CAPPEV                                                             (25)       

SOCt ≤ SOCt−1 + CHt − DCHt                                                                                                 (26)      

 

  The MDH parameter in (24)  was derived from [61]. According to [61], “average 

driving miles” is strongly correlated with driver’s age and gender. Since the amount of 

battery discharge during each time interval is highly dependent on driven miles, it is 

reasonable to relate the “miles/hour” of householders who adopted PEVs to his/her 

demographics (see Figure 5). This leads to the following tabulation: Age1: 16-19, Age2: 

20-34, Age3: 35-54, Age4: 55-64, and Age5: ≥65. In addition to these parameters, several 

PEV specific technical parameters are considered in the proposed model. They include: 

CAPPEV = 20kwh [65], CHR = 1.4KW [63] , and DHR =
0.34KW

mile
[63]. 

 

Figure 5 Average driving miles across different groups 
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2.8  Model Validation 

The above bottom-up model integrates many sub-models, some of which are built on 

the basis of earlier works. However, there are unique contributions of this work in terms 

of new sub-models and also the embedded optimization routines and algorithms that 

automatically optimize technology adoption and managing new loads. Naturally, such a 

comprehensive model requires large set of high fidelity data on a variety of variables at 

atomic level. The focus of this work has not been on how to collect and validate such 

large volume of high fidelity data. Instead, it is focused on the development of model 

constructs and integration of these constructs into a larger framework. For validation, the 

following two-step approach has been taken: 

(i) Validation of individual sub-models; simulation of occupancy patterns via 

discrete-time Markov chain is previously validated in earlier literature [37, 38, 46]. Using 

same publicly available dataset as in [46], Section 2.5.2 provides results for this sub-

model (see Figure 2). Survey data in [52] is used for developing PCD adoption model in 

section 2.6.1. Introduced in section 2.7.4, cold appliances sub-model is constructed as in 

[48]. Data in [58] is used for sub-model in section 2.7.5. In section 2.7.6, calculated 

probabilities from PEV adoption model clearly confirms the findings in [50] (this model 

is developed using dataset in [50]). Technical parameters of dynamic programming in 

PEV charging sub-model are adopted from real data as in [63, 65].  

(ii) Validation of the whole model; the RECS dataset is used to validate the whole 

model. RECS study gathers information on how and how much total energy is distributed 

across various end-uses [58]. In addition to end-use data, RECS feeds the model with 

unique information about characteristics of household members e.g. age, gender, 



38 

 

 
 

education level, and employment status and appliances within premises. The latter, gives 

an opportunity to candidate households that syncs well with the defined states in section 

2.7.1 (see Table.2). These are households which have dishwashers, cloth washer, clothes 

dryer, space heating and cooling system, and one TV since it is defined to be a shared 

state. Filtering RECS households accordingly, leaves 361 households for validating the 

whole model (141 households with one member, 134 households with 2 members, 44 

households with 3 members, 30 households with 4 members, and 12 households with 5 

members). Since RECS has annual consumption data, one year simulation is conducted 

for all selected households with respect to their occupant characteristics.  Two sample t-

tests are performed to compare the simulation results with the RECS data. The t-test 

suggests that there is no statistically significant difference at α=0.05 between the 

simulated and the RECS data (Table 6). This further indicates that the proposed model is 

capable of simulating energy demands based on the selected household characteristics. 

Since information regarding to weather (e.g. hourly ambient temperature) and household 

insulations are not available in RECS, space heating & cooling is taken out from both 

simulation and RECS data (see [48] for validation of such end-use in host of required 

information).  
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Table 6 Model vs. RECS (μ=sample mean, σ²= sample standard deviation) 

HH members μ (Model)  μ (RECS)  σ² (Model)  σ² (RECS)  Null hypothesis p-value 

1 8.64 8.34 2.31 4.81 Failed to reject 0.503 

2 12.43 12.76 3.95 7.33 Failed to reject 0.634 

3 13.86 14.06 4.15 6.33 Failed to reject 0.852 

4 16.02 15.55 4.13 5.7 Failed to reject 0.711 

All HHs 11.54 11.57 4.95 6.7 Failed to reject 0.939 

 

2.9 Simulation and Analysis   

In this section, the proposed residential energy demand model is used to demonstrate 

its capability in assessing the effects of PEV and PCD adoption on load profiles. Price 

signals are effective drivers for end uses namely; SH&SC, LI, and PEV charging. Since it 

is assumed that water heaters and stoves are using natural gas, these end-uses are 

excluded out of the entire load profile.  
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2.10 Design of Experiment 

One household is selected from the RECS database as the subject of investigation in 

Experiments 1 and 2; sections 2.10.1 and 2.10.2 respectively. The characteristic of this 

particular household is shown in Table 7. To simulate the energy demand profile, a 

working (TW = 1) summer day is chosen as a representative date.  For ambient 

temperature, a profile as shown in Figure 6 is used that corresponds to July 2
nd

 of a 

synthetic year in Deer Valley, Phoenix, AZ [65]. It should be noted that the proposed 

model is not limited to any particular household or date. The selection of the above 

household and date is just for the purpose of demonstration. 

 

Table 7 Household characteristics  

Number of Household members (R) 4 

Householder education level 3 

Householder Age (r = 1) 32 

Total Square foot 3239 

Total Cooled Square foot 2839 

  AgeCAT Gender ES TW 

Householder 3 1 1 1 

HH member2 3 2 2 1 

HH member3 1 1 2 1 

HH member4 1 1 1 1 

 

 

Figure 6 Hourly ambient temperature 
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2.10.1 Experiment 1 (Introduction of PEV and Impact on Load Profile) 

The purpose of this experiment is to evaluate the impact of different PEV 

penetration levels on the electricity load profile. Monte Carlo technique (MCI = 1000) 

was used to simulate the household electric load profile (see Table. 8 for household 

characteristics) which is governed by the probabilistic activity model. Different 

APEV levels (APEV = 10% to 100%; Increment step = 10%) are considered along with 

the reference load (APEV = 0%). In this experiment, no PCDs are considered (APCD =

0%).  Figure 7 shows 6 scenarios where APEV% ∈ {0,20,40,60, ,80,100}. The average 

peak and the load factor along with the statistical t-test results against the reference load 

are provided in Table 8. It is noticeable that when  APEV% reaches to 30% and higher, the 

average load becomes significantly higher than the reference load. Since the peak growth 

is slower than that of the average load, one could clearly see the gradual increase of load 

factor (Average load / peak load). This is more due to the valley filling during the early 

hours (time period of 12:00AM to 6:00AM). On the other hand, the peak grows rapidly 

during the period of 18:00PM to 21:00PM. This growth of peak which is the result of 

evening PEV charging, could pose significant problems to utility companies. As 

mentioned earlier, a possible solution to this problem is the time of use management. 

Such model capability provides great insights to power suppliers on the impact of the 

potential emerge of new loads when actual metered data are missing.    
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Table 8 Different 𝐀𝐏𝐄𝐕 levels against reference (𝐀𝐏𝐄𝐕 = 𝟎%) 

 [𝐀𝐏𝐄𝐕,

 𝐀𝐏𝐂𝐃] 
Hnull: µReference
= µPEV%   

P-value 

Average 

load 

(Watt) 

Peak 

load 

(Watt) 

Load 

Factor 

Average 

load growth 

against 

reference 

Peak 

growth 

against 

reference 

[0%,0%]   2004.6 3102.2 0.646   

[10%,0%] Failed to reject 

null 

5.6E-01 2048.5 3165.1 0.647 1.02 1.02 

[20%,0%] Failed to reject 

null 

2.0E-01 2101.9 3222.4 0.652 1.05 1.04 

[30%,0%] Null rejected 4.2E-02 2158.6 3307.7 0.653 1.08 1.07 

[40%,0%] Null rejected 04.9E-03 2217.3 3372.1 0.658 1.11 1.09 

[50%,0%] Null rejected 5.5E-04 2264.8 3428.2 0.661 1.13 1.11 

[60%,0%] Null rejected 1.54E-05 2329.8 3495.2 0.667 1.16 1.13 

[70%,0%] Null rejected 5.84E-07 2381.0 3552.7 0.670 1.19 1.15 

[80%,0%] Null rejected 1.48E-08 2432.9 3614.2 0.673 1.21 1.17 

[90%,0%] Null rejected 2.77E-10 2483.4 3665.9 0.677 1.24 1.18 

[100%,0

%] 

Null rejected 1.21E-11 2520.7 3707.9 0.680 1.26 1.20 

 

 

Figure 7 Electricity loads for different 𝐀𝐏𝐄𝐕 levels. Inside brackets refer to [𝐀𝐏𝐄𝐕%, 𝐀𝐏𝐂𝐃%] 



43 

 

 
 

2.10.2 Experiment 2 (Effect of Different 𝐀𝐏𝐂𝐃, and 𝐀𝐏𝐂𝐃 Penetration Levels) 

In this experiment, eleven categories of adoption percentages are considered for PEV 

and PCD. These are APEV, APCD = 10% to 100%; Increment step = 10% (see Table 7 

for household characteristics). This leads to 11x11 scenarios. An artificial price profile is 

constructed based on the generated reference loads. This derives from the load at each 

time divided by the peak load (Figure 8). 

 

Figure 8 Hourly electricity price over peak price 

Figure 9 graphically illustrates the changes of the average and peak loads across 

different APEV  and  APCD levels. The load factors across different APEV and APCD are 

also provided in Figure 10. 
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Figure 9 Average and Peak load across different 𝐀𝐏𝐄𝐕 , 𝐀𝐏𝐂𝐃 

 

 

Figure 10 Load factor across different 𝐀𝐏𝐄𝐕 , 𝐀𝐏𝐂𝐃 

 

It can be seen from Figure 9 that as the APCD level increases the average load 

smoothly decreases. But this behavior cannot be observed on the peak load profile. As the 
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APCD level increases, the peak value starts to decrease, but at a certain point it starts to go 

up again. To better understand the reason behind this behavior, the APEV level was kept at 

50% along with different APCD levels. The resulting load profiles are provided in Figure 

11. The average peak and load factors along with the statistical t-test results against the 

reference load [APEV = 50%, APCD = 0%] are provided in Table 9. The results suggest 

that when APCD reaches 40%, the curtailment of the average load starts differing 

significantly from the reference load while the new peak is still lower than the reference 

peak. One may notice that when the APCD level increases to 50%, the new peak load 

starts to be greater than the reference peak, leading to a significant drop in the load factor.     

 
Table 9 Average load, Peak, and load factor of different 𝐀𝐏𝐂𝐃 levels 

[APEV, APCD] 

 
𝐻𝑛𝑢𝑙𝑙: µ𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = µ𝑃𝐶𝐷%  P-value 

Average load 

(Watt) 

Peak load 

(Watt) 

Load 

factor 

[50%,0%] Failed to reject null  2264.85 3428.22 0.66 

[50%,10%] Failed to reject null 5.2E-01 2220.91 3336.26 0.66 

[50%,20%] Failed to reject null 1.9E-01 2175.62 3279.81 0.66 

[50%,30%] Failed to reject null 6.3E-02 2138.52 3293.00 0.65 

[50%,40%] Null rejected 1.3E-02 2098.27 3300.39 0.63 

[50%,50%] Null rejected 2.0E-03 2057.47 3463.39 0.59 

[50%,60%] Null rejected 2.39E-4 2014.76 3840.22 0.52 

[50%,70%] Null rejected 2.17E-05 1972.50 4222.50 0.46 

[50%,80%] Null rejected 1.81E-06 1931.09 4595.12 0.42 

[50%,90%] Null rejected 8.38E-08 1881.00 5047.73 0.37 

[50%,100%] Null rejected 7.10E-09 1840.89 5393.09 0.34 
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Figure 11 Electricity load for different 𝐀𝐏𝐂𝐃 levels. Inside brackets refer to [𝐀𝐏𝐄𝐕%, 𝐀𝐏𝐂𝐃%] 

 

It is safe to conclude that the presence of PCDs can not only curtail the load but also 

shift the peak in response to the price signals. This also leads to a lower load factor. To 

better visualize this, three scenarios including  APEV,PCD = [50%, 0%],  APEV,PCD =

[50%, 40%], and APEV,PCD = [50%, 70%] are extracted and displayed in Figure 12. In 

the scenario of APEV,PCD = [50%, 40%], it can be seen that the original peak load at 

19:50PM with the magnitude of 3428.2 Watt is successfully curtailed and shifted to 

18:50PM. Meanwhile, another peak rises up at 5:50AM as a result of the relatively 

significant price differences between 5:50AM (0.37) and 6:00AM (0.50). In the scenario 

of APEV,PCD = [50%, 70%], one could observe that this price difference generates a big 

spike which is higher than the original peak value.  To investigate the spike formation, 

one could zoom in onto the end-use level. This will lead to the discovery of end-uses 

which are capable of curtailing/shifting loads. These end-uses include PEV charging 

(Figure 13), Space Cooling (Figure 14) and Lighting (Figure 15). 
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Figure 12 Electricity loads of three different 𝐀𝐏𝐂𝐃 levels. Inside brackets refer to [𝐀𝐏𝐄𝐕%, 𝐀𝐏𝐂𝐃%] 

 

 

Figure 13 Electricity load of PEV charging. Inside brackets refer to [𝐀𝐏𝐄𝐕%, 𝐀𝐏𝐂𝐃%] 
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Figure 14 Electricity load of space cooling. Inside brackets refer to [𝐀𝐏𝐄𝐕%, 𝐀𝐏𝐂𝐃%] 

 

 

Figure 15 Electricity load of lighting - Inside brackets refer to [𝐀𝐏𝐄𝐕%, 𝐀𝐏𝐂𝐃%] 

 

It can be observed from the peak period between 19:00PM to 20:40PM that a portion 

of load is shifted because the electricity price encourages shifting the recharging schedule 

to off peak hours (early morning). Another portion of the peak load is curtailed, largely 

thanks to the dimmable lighting system where FR has a negative relationship with the 

ratio of electricity price over the peak price (a peak usually occurs in a time period when 

the sun is down and artificial lighting is necessary). Also, the pre-cooling capability 
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switched off the cooling system in the first 20 minutes of the peak period (see Figure14). 

The spike occurring at 5:50AM is due to the relative price difference between 5:00AM 

and 6:00AM. This price difference forces the cooling system to pre-cool the building and 

works in a relatively low mode till 7:10AM. Meanwhile, the load associated to the PEV 

charging is also accumulated up to this point of time (5:50AM). It should also be noticed 

that since most of the householders are in sleep during this time period, the lights are off; 

therefore the lighting system has no capability to curtail the load. 

 

2.10.3 Experiment 3 (Aggregating Load Profiles from Households to 

Residential Community) 

The purpose of this experiment is to aggregate the load profiles of individual 

households with different characteristics and varying willingness to adopt PEVs and 

PCDs. Forty households (HH(i): i… I = 40) with different occupant numbers and 

characteristics are considered in this experiment. Among these households, 50% of them 

are with four occupants, 20% with three, 20% with two, and 10% with one occupant.  40 

households are chosen due to the fact that 40 is the typical number of connected 

households to a primary distribution feeder. For the i-th household, APEV and APCD are 

calculated based on its householder characteristics (Xi
Ager=1 and Xi

Edlr=1) using 

(19) and  (7), respectively. The square footages of households are assumed to be same. 

Furthermore, it is assumed that all households have an identical HVAC system where the 

thermostat levels are set according to their occupant characteristics as in (10). Let’s first 

analyze the effects of resident characteristics on the load patterns. In the following 
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scenario, both HH(31)and HH(39) have 4 occupants but with different characteristics 

(see Table 10). In Figure 16, load profiles are provided. For HH(39), morning peak 

occurs, then the load level drops since household members are probably going to 

work/school.  However, this pattern is not true for HH(31) due to the non-employed 

status of household members (see Table 10). According to Figure 4 the probability of  

APEV in HH(39)is higher than HH(31). Considering consequent load for PEV charging, 

one may observe that the demand valley in time period between 12:00PM-6:00AM is 

filled more in HH(39)than HH(31). The average load reduction percentages in HH(31) 

and HH(39) are 6% and 10% respectively.   

Table 10 HH31 and HH39 characteristics 

HH31 HH39 

Edlr=1 1 Edlr=1 4 

Ager=1 56 Ager=1 49 

r AgeCAT Gender ES TW r AgeCAT Gender ES TW 

1 4 2 2 1 1 4 1 1 1 

2 6 1 2 1 2 4 2 1 1 

3 4 1 2 1 3 1 1 2 1 

4 1 2 2 1 4 1 2 2 1 

 

The aggregated electricity load profiles of all these forty households in both 10-

minute and hourly resolution are shown in Figure 17, and Figure 18. The energy load 

profiles for both 10-minute and hourly resolution are also provided Figure 19 and Figure 

20. One may observe that by reducing the resolution to one hour, load fluctuations and 

spike formations are not visible anymore. This clearly demonstrates the value of high 

resolution demand model, which is to provide suppliers with better insights such that the 

generation can be matched with consumption. Moreover, the capability of such models in 
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aggregating individual unit loads to different desirable scales (e.g. neighborhoods) 

without compromising the underlying details and dynamics paves the way towards more 

sustainable investment decisions on power generator systems.    

 

 

Figure 16 a) 𝐇𝐇(𝟑𝟏)and b) 𝐇𝐇(𝟑𝟗)electricity load profile 

 

 

Figure 17 Electricity load for community of 40 households - 10minute resolution 
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Figure 18 Electricity load for community of 40 households - 1 hour resolution 

 

 

Figure 19 Energy load for community of 40 households - 10minute resolution 
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Figure 20 Energy load for community of 40 households - 1 hour resolution 

 

2.11 Discussion of Results and Future Research 

It is observed that as APEV penetration level surpass a certain level; the average load 

becomes significantly higher than reference load. Since the growth of peak is slower than 

that of average load, one could see the gradual increase of the load factor due to valley 

filling during time period between midnight and sunrise. On the other hand, intensified 

consumption during peak hours could pose significant problems to utility companies. The 

effect of PCD on electricity load pattern is found interesting in two ways. First, it shows 

that as APCD percentage reaches to a certain level (here; APCD = 50%, see Table 10), a 

relatively different electricity load profile is obtained where leveraging off-peak 

electricity prices lead to creation of even higher rebound peak shifted toward the off-peak 

period. These rebound peaks have also been observed by [43, 66]. As also discussed in 

[33], this is the result of one-way communication e.g., price signals to customers. 

Reduced peak demand and greater efficiency may be achieved by a two-way 
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communication between customers and system operators. Second, it is observed that the 

electricity price structure has major effects on the curtailed/shifted demand profile. The 

relatively large price difference between 5:00 AM and 6:00AM caused rebound peak 

formation prior to 6:00AM, while the smooth price difference from 13:00PM till 

20:00PM resulted in smaller and smoother spikes.  The proposed framework helps 

utilities to investigate and evaluate their pricing policy effectiveness in absence of 

historical responded demand data. In Experiment 3, the average load reduction 

percentages confirm the findings in previous studies - the potential of approximately 10% 

reduction of overall demand is achievable [39, 40]. Moreover, a comparison of the 

aggregated electricity load profiles of all households in both 10-minute and hourly 

resolution reveals that by reducing the resolution to one hour, load fluctuations and spike 

formations will not be visible anymore, leading to a potential loss of valuable information 

for  utility owners.  

The models developed in this research can be improved in several ways. First, for 

the probabilistic PCD adoption model, the use of CFL measure may be a limiting 

assumption due to the fact that willingness to purchase a CFL is a "quick win" energy 

efficiency measure, and does not necessarily indicate that the householder is willing to 

pay for a more expensive and complex efficiency measure e.g. PCD. Designing specific 

surveys may help to relax this assumption. SH&SC model within proposed framework 

which is currently simplified version of [38] can be improved by different approaches. 

Although [38] proposes an accurate model of a household, the proposed approach needs 

information, which is usually not available.  Instead, one may apply a hybrid physics-

based and data driven approach as in [67]. Assuming independency among occupant’s 
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activities which is the result of applying discrete Markov chain is one another limitation 

of this study.  Last but not least, the use of static power conversion parameters to 

calculate energy consumption associated with specific activities can be significantly 

improved by developing consumption distribution for such activities. One major direction 

for the future work is to link this framework to energy resource capacity planning. By 

doing so, it closes the loop between the demand dynamics and the energy supply, such 

that it enables the investigation of opportunities to reduce/defer investment on energy 

supply resources. This is particularly true in situations where customers have capabilities 

to receive real time energy price.  

 

2.12 Conclusion 

A bottom-up demand model with constructs that are capable of simulating both 

electricity and heat demands of individual residential households and a community is 

proposed. With new model constructs and integration of these constructs into a larger 

framework, this work propose new sub-models and technology adoption models along 

with embedded optimization routines and algorithms that automatically optimize 

technology adoption and managing new loads. In the context of different experiments, it 

is shown how this model can be used for understanding the demand behavior, 

investigation of DSM strategies, energy price effectiveness and so on.  For the purpose of 

presented experiment, surveyed public data and results from existing literature that are 

not necessarily of high fidelity nature as intended are used. However, this does not limit 

the broad applicability of the simulation platform for real life applications.  
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2. INTEGRATION OF DEMAND DYNAMICS AND 

INVESTMENT DECISIONS ON DISTRIBUTED ENERGY 

RESOURCES [68] 

 

3.1 Abstract 

This chapter directly couples investment decisions on Distributed Energy Resources 

(DER) with Demand Side Management (DSM) strategies that can be adopted over time 

by residential communities. The formulation also takes into account factors that usually 

contribute to long-term market variations and short-term operational volatilities. This 

work uses a High Resolution Adaptive Model (Hi-RAM) proposed in chapter 2 for short-

term load calculations on a premise that expected dynamical effects due to DSM 

strategies and their interactions that cannot effectively be captured by time-series forecast 

models. The integration of Hi-RAM into investment formulation allows for certain What-

If investment scenario analysis on the use of advanced technologies, new plug-ins, and 

consumer response to power price fluctuations. To demonstrate the significance of 

coupling of DER investment decisions and DSM strategies, three scenarios are presented. 

The base scenario (Mode I) results can be reproduced using traditional forecast models 

and is included for baseline analysis and benchmarking.  In Mode II new load patterns for 

PEV are introduced. Mode III is an extended version of Mode II where smart devices are 

used within households. The comparison of investment decisions from the three modes 

clearly demonstrate that interaction effects of DSM strategies matter. 

KEYWORDS—Distributed energy resources (DER), demand dynamics, capacity 

planning, plug-ins, price responsive demand. 
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Nomenclature 

A. Index 

ɸ  Index of Power Generator Assets; ɸ ϵ {WT, PV, GF, CHP} 

i Index of Household 

j Index of CHP Regions 

r Index of Household Residents 

t Index of Time (Hour) 

ϑ Portfolio Assets; ϑϵ{PV,WT, GF, CHP, Boiler, ST} 

y Index of Time (Year)  

  

B. Variables 

AI Cash invested in other alternatives in period  ($) 

BGen Boiler Hourly Heat Generation (kW) 

C Storage Charge (kW) 

CHPGH CHP Total Hourly Electricity Generation (kW) 

CHPGHW CHP Hourly Wasted Heat Generation (kW) 

CHPGHNW CHP Hourly Non-wasted Heat Generation (kW) 

D Storage Discharge (kW) 

ɸG ɸ Total Hourly Power Generation (kW) 

ɸG_L ɸ Hourly Power Generation Serves Load (kW)  

ɸG_S ɸ Hourly Power Generation to Storage (kW)  

GP Gas Price ($/kWh) 
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Hd  Heat Demand 

Pd Power Demand 

PB Total Financial Charges on Borrowed Funds ($) 

EPG Hourly Electricity Purchased from Macro Grid (kWh) 

PLLj Partial Load Levels of CHP  

ROI Return of Cash Invested on Alternative Investment  

SOC Storage State of Charge (kW) 

SP Electricity Spot Price ($) 

SOG Annual On-site Generation Operational Savings ($) 

ϑCAP Accumulated Installed Capacity (kW) 

  

C. Parameters 

AIC Initial Available Cash ($) 

Beff Boiler Efficiency 

Blimit Maximum Borrowing Limit ($) 

CapExϑ Unit Capacity Cost of ϑ ($/kw) 

CHPLLjeff CHP Electric Efficiency Associated to Load Level 

CϑO&M ϑ Non-fuel Operational and Maintenance Cost 

DF Annual Discount Rate 

Egrid Grid Average Heat Rate  (mmbtu/kwh) 

FC Finance Charge Rate 

GFHR Gas-fired Heat Rate (mmbtu/kwh) 
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3.2 Introduction 

The value of a DER portfolio depends on its projected return on investment and the 

potential growth in its operating income while serving underlying demand. For a DER, 

the investment payoff is directly linked to the operation of the physical assets, and return 

on investment depends on how these operations are utilized overtime [69, 70]. Depending 

on when and how much investment is made, long-term value of a DER could be assessed. 

Investment decisions are usually influenced by fuel costs, the price of technology, state 

incentives, and parameters such as finance charge rates/terms [71].  

Economic benefits of a DER could be enhanced by contributing strategies such as 

demand side management (DSM) [72, 73]. In this context, DSM can be regarded as a 

means of not only reducing energy costs but also generating revenue by reducing load on 

the grid [74, 75, 76]. In the presence of DSM, energy demand becomes highly dynamic 

and difficult to predict e.g., demand can be curtailed/shifted over time as a result of 

HPR Heat to Power Ratio 

IRR Investment Rate of Return   

LRP Land Rental Price ($/Acre)  

MLST Minimum Percentage of Storage Level 

Mult Transmission Costs Multiplier 

STeff Electricity Storage Efficiency 

STPR Electricity Storage Charge/Discharge Power Rate 
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customer response to electricity prices. Integration of DSM as a resource necessitates 

inclusion of such dynamics into investment modeling.  

In this chapter investment decisions on DER are investigated by taking into account 

the specifics of household behavioral and physical characteristics, which happen to be the 

main load drivers in residential communities. Investment planning also takes into account 

factors that usually contribute to long-term market variations, and short-term operational 

volatilities. This work uses a bottom-up demand model proposed in chapter 2. The 

bottom up model (Hi-RAM) is capable of capturing behavioral patterns of end users and 

lends itself to certain What-If analysis on the use of advanced technologies, new plug-ins, 

and consumer response to price fluctuations according to their demographic 

characteristics. This would allow investors to examine return on investment as a function 

of technology and behavioral pattern changes over time; such analysis cannot be carried 

out using stationary forecast models, which are solely obtained on the basis of historical 

data. 

 

3.3 Related Studies 

Planning, operation, and control of DER are extensively studied in literature. 

Focusing on operation and control of DER, [78] applied a stochastic optimization 

framework to optimize the operation of a DER configuration, where they observed 

significantly different results versus that of deterministic case. [77] proposed a two-stage 

optimization model to optimize the hourly operation of a DER aiming at optimizing one-

day-ahead plans and daily operations. By considering a trade-off between revenue and 
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risk, [79, 80] proposed a two-stage stochastic optimization model where weighted mean-

risk sum is the objective function of the problem. Commercially available software 

systems also exist, such as Hybrid Optimization Model for Electric Renewables [81], 

which enables to analyze the combination of renewable and conventional energy 

resources. By incorporating investment into operation and control problem, [82] studied 

the capacity investment in order to optimize the sizing and siting for DER. Their 

objective function includes investment and operating costs. Cost-benefit analysis is 

conducted in order to obtain both optimal size and site. [83] and [84] applied non-linear 

optimization approach toward the problem of optimal portfolio sizing considering static 

and stochastic demand; respectively. [85] investigates investment decisions on DER by 

combining short-term operational volatility and long-term market variations. 

Using DER in conjugation with DSM provides both economic and environmental 

advantages [86]. [87] described how price responsive demand can be effectively 

integrated into wholesale power markets. [88] proposed active energy management 

system endowed with an optimal power flow integrating DSM and active management 

schemes for the optimization of a smart grid in a competitive power market. [89] 

presented the relationship between networks and consumer electronics. They discussed 

capabilities to control the temperature and volume of heat, cooling, or ventilation, and 

lighting patterns depending on what the occupant is doing. However, models for 

capturing such dynamics were not provided. [90] proposed optimal load scheduling 

strategy to minimize the electricity costs of an industrial end user under real time pricing. 

An analytical approach was followed to describe the potential electricity cost savings to 

an industrial end user under real time pricing through intelligent demand management.  
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[91] proposed a short-term physically based load model of the demand of a group of air 

conditioners as a function of outside temperature, and air conditioning system 

parameters. The formulation provides the optimal schedule of electricity usage given the 

predetermined electricity price schedule. [92] discussed the critical role that energy 

optimization algorithms will play at residential level to effectively achieve benefits of 

energy saving via participation of informed customers. They presented a vision of a home 

electrical system which consists of renewable generation assets, electric vehicle, and sets 

of controllable and uncontrollable appliances.  Also [93] recommended an algorithm for 

power usage of home appliances where real-time price signals are sent from utility to 

customer end. Finally, [96] proposed a layered architecture for load management system 

in smart buildings with emphasis on optimal energy consumption management.  

The proposed framework enables investigation of long-term investment decisions on 

DER considering near-future scenarios such as large-scale penetration of PEV, and smart 

grid enabling technologies e.g., DSM. Unlike studies such as [86, 96] that assume 

expected measures for responded demand, in this work curtailed/shifted demand will be 

directly calculated thanks to end-use models in Hi-RAM. Hi-RAM breaks down the 

complex interactions between the network participants by modelling each end-use. 

Moreover, it not only investigates DER operational costs in conjugation with DSM as in 

[94, 95] but also suggests capacity planning solutions for a DER portfolio.  Through a 

number of numerical experiments, it is demonstrated that the inclusion of underlying 

dynamics significantly impact investment decisions. For the purpose of demonstration 

three modes of investment are considered, where mode I simulates a baseline model 
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which works similar to existing models in the literature. The other two modes are 

variations of our proposed investment model. 

 

3.4 Problem Statement 

The problem of interest is to formulate DER investment decisions e.g., sizing, 

configuration and timing by directly taking into account DSM solutions and interactions 

between these solutions. Null hypothesis is that distribution (expected value and 

variance) of savings from DSM strategies will significantly influence the investment 

decisions.  DSM strategies may include a host of options, including but not limited to: 

adoption of advanced control and scheduling for EV charging and smart home 

technologies e.g., with ability to respond to price signals. The main premise of this 

chapter is that savings from DSM solutions evolve over time and depend on the 

interaction between these solutions. Furthermore, such dynamics can hardly be captured 

through forecast models that are solely built on the basis of observed historical data. Real 

life data collection of such effects and their interactions would usually require extensive 

experiments and observations, and would be expensive if not infeasible. On the other 

hand, the use of dynamic bottom up models that works on the basis of atomic level data 

and closely capture behaviors and patterns under various DSM strategies can be much 

more cost effective and practical.  In essence the simulated data from a bottom up model 

is used as surrogate for observed data. In practice, one can use combined framework 

where historical data is used primarily and augmented by secondary data from such 

bottom up simulations.  



65 

 

 
 

The proposed solution to the above problem constitutes the integration of the 

following sub-models: (i) A dynamic model that accurately captures load behavior under 

a discrete set of configurations and design choices that pertain to behavioral patterns and 

technological solutions that are adopted at individual household level (see chapter 2). 

This model is briefly discussed later in this chapter. (ii) A stochastic investment model in 

the form of Mixed Integer Non-linear Programming (MINLP) that optimizes cash flow 

over a horizon (CFY) and projected cash flow beyond the planning horizon (CF̂Y). Cash 

flows include operational savings due to DER investment, finance payments and 

alternative investment. It is assumed that each year the investor has opportunity to invest 

on other activities. Also limited funds are available to be borrowed in each year in order 

to invest on DER assets. Monte Carlo technique is applied for solving stochastic MINLP 

problem. 

This chapter will focus on the investment model and, in particular, it will 

demonstrate how to incorporate the bottom-up dynamical demand model into investment 

decisions. Despite earlier works e.g. [71, 77, 85, 86, 98] where power consumption is 

calculated from load forecast models obtained from historical data, this work uses a 

bottom-up demand model. Furthermore, in comparison to [71, 77, 85] which considered 

gas-fired (GF), photovoltaic cells (PV), wind turbine (WT), electric battery storage (ST), 

and  purchase form the grid in DER portfolio, in this research two new resources are 

added into the mix. Those are combined heat and power (CHP) and DSM. Moreover, 

unlike [71, 77, 85] where DER cost savings function was calculated separately and was 

fed to a stochastic long-term investment model, operation and investment optimization 
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problems are solved together combined. Objective function for the investment problems 

is formulated as: 

maximize (CFY + CF̂Y) = SOGY + ROIY + BY − PBY − SOAY – AIY  + SOĜY +

ROÎ Y+1  − PB̂Y+1                                                                                                                            (1)  

 

3.5 Problem Formulation 

3.5.1 Operational Constraints  

In this section formulation for each asset generation is described. Gas-fired is 

assumed to generate power according to its capacity and specific heat rate as in [71, 77]. 

For WT and PV generation, capacity factor approach is applied, where WT and PV are 

assumed to generate power according to their capacity factor (CFɸ |ɸ ϵ {WT, PV}). For 

WT it is assumed that capacity factor follows (CFWT) based on Figure 21, where the 

ratio is the function of hourly wind speed. It is also assumed that for wind speeds below 

4m/s and above 25m/s, the WT does not function [97]. PV capacity factor (CFPV) is 

assumed to be a ratio of hourly solar intensity to the intensity which PV generates its 

maximum power. This gives both WT and PV hourly generation as below:  

ɸGy,t = ɸCAPy × CFɸy,t  , ɸ ϵ {WT, PV}                                                                         (2) 
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Figure 21 Wind Turbine Capacity Factor 

CHP consumes gas and generates both power and heat. Since CHP electrical 

efficiency is highly dependent on its load level [98], piecewise linear electrical efficiency 

algorithm is applied for CHPG formulation. Three load regions with specific efficiency 

are assumed (PLLj, CHPLLjeff
) as in Figure 22. in each ‘y’, according to accumulated 

installed capacity (ɸCAP| ɸ = CHP) the allowable load for each region follows: 

LLjy = PLLj × CHPCAPy, j = 1…3                                                                                            (3) 

 

 

Figure 22 CHP electrical efficiency at each region 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C
F

W
T

 

Wind speed (m/s) 

0.15

0.2

0.25

0.3

0.35

0.4

PLL1 PLL2 PLL3

C
H

P
L

L
e
ff

 



68 

 

 
 

 

Two sets of binary constraints as in (4) , (5) along with binary decision variable for 

CHP status (CHPOS) are introduced which force the unit to be shut down if the load level 

is below LL1. ‘M‘refers to a large number. 

PLL1 × CHPCAPy − PRLL1y,t   ≤    M × (1 − CHPOSy,t)                                                    (4)  

PLL1 × CHPCAPy − PRrLL1y,t > −M × CHPOSy,t                                                                 (5) 

 

Total hourly electricity generation (CHPG) calculates as in (6) with respect to unit 

status and electricity generation at each region (PRLLj):   

CHPGy,t =∑PRLLjy,t {
= CHPCAPy × (PLL1)   × CHPOSy,t                , j = 1

≤ CHPCAPy × CHPOSy,t × (PLLj − PLLj−1) , j ≠ 1

J

j=1

                  (6) 

 

The amount of hourly generated heat (CHPGHW + CHPGHNW) is constrained as in 

(7).  

CHPGHWy,t
+ CHPGHNWy,t

= HPR × CHPGy,t                                                                       (7) 

 

After defining all generation constraint, electric storage constraints will be 

introduced. At each time period, the available energy kept in storage (SOC) is conserved 

by: 
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SOCy,t = SOCy,t−1 +  Cy,t × STeff −
Dy,t

STeff
 , t ≠ 1                                                                     (8) 

Cy,t and Dy,t are charging and discharging quantities from storage during each hour. 

Storage charge and discharge are constrained by maximum charge/discharge power rate 

of the device (9). 

Cy,t × STeff +
Dy,t

STeff
≤ STPR × t                                                                                                   (9) 

 

Moreover, the state of charge (SOC) is constrained between min/max of allowable 

storage level. This will constrain SOC at each time step with respect to accumulated 

capacity at ‘y’ (10).  

MLST × STCAPy ≤ SOCy,t ≤ (1 −  MLST) × STCAPy                                                       (10) 

 

In (11), allowable energy for charging the device (C) is constrained based on 

available portion of generation which is not served the load (ɸG_S). 

Cy,t =  ∑ (ɸG_Sy,t =ɸ ɸGy,t   −  ɸGLy,t)                                                                                 (11)  

 

3.5.2 DER Operational Saving 

Cost of operating DER is the cost of both fuel and non-fuel on-site generation plus if 

any, the cost of purchasing power from grid (EPG). It is assumed that if PV or WT is 
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installed there would be associated costs for renting the needed land 

(RLɸ  |ɸ ϵ {WT, PV}). In this order, DER operational cost at each year (DEROCy) 

follows:   

DEROCy

=∑  ∑ 

T

t=1

D

d=1

[(ϑGy,t × (
GPy

ϑeff
+ CϑO&M) |ϑϵ {GF, Boiler}) + ∑ ɸGy,t × CɸO&M

ɸ ϵ {WT,PV}

+ ∑PRLLjy,t   × (CostSlopejy + CCHPO&M) + EPGy,t × SPy,t

J

j=1

]  

+ ∑ RLɸy
ɸ ϵ {WT,PV}

                                                                                                                        (12) 

 

RLɸ’s are calculated as: ɸlkw × LRPy × ɸCAPy. For calculating the fuel-related 

CHP operation costs, slope cost (CostSlopej) is defined as below:   

CostSlopejy =

{
 
 

 
 GPy × (

1

CHPLLjeff

)                           , j = 1

GPy ×

PLLj

CHPLLjeff

− 
PLLj−1

CHPLLj−1eff

PLLj −PLLj−1
            , j ≠ 1

                                                    (13)  

 

In (12), electricity spot price (SP) is assumed to be a random function of natural gas 

price (GP), grid average heat rate (Egrid), a multiplier (Mult) which accounts for 

transmission costs, and hourly profile of electricity price as a percentage of peak price. 

Adopted from [99], Ornstein-Uhlenbeck Brownian motion with mean reverting drift is 

used to model natural gas prices. With knowing underlying price values along with both 
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power (Pd) and heat demand (Hd), the annual operational cost without DER 

(NoDEROCy) calculates as below:  

NoDEROCy =∑∑(Pdy,t × SPy,t +

T

t=1

Hdy,t ×
GPy

Beff
)                                                            (14)

D

d=1

 

 

Using (13) and (14), one could calculate savings due to on-site generation (SOG) as 

follow: 

 SOGy = NoDEROCy −  DEROCy                                                                                            (15)    

 

3.5.3 Serving Dynamic Demand 

Both power and heat demand should be met as the main constraint of any energy 

system [100]. Recognizing its importance, the summation of hourly power generation 

which serves load (ɸG_L), discharge from ST (D) and electricity purchased from macro 

grid (EPG) should be equal or greater than power demand at each time step (16). This 

also holds for heat as in (17).  

∑ɸG_Ly,t
ɸ

+ Dy,t + EPGy,t ≥ Pdy,t                                                                                       (16) 

BGeny,t + CHPGHNWy,t
= Hdy,t                                                                                              (17) 
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Pd and Hd derive from stochastic bottom-up adaptive model (Hi-RAM). At household 

(HH) level, model takes into account HH physical characteristics (XPh
HH=i), residents’ 

demographics (YDemo
HH=i), and ambient variables (ZAmb

HH=i). Considering “I” HHs this gives:     

Pdy,t , Hdy,t~ ∑ f(XPh
HH=i, YDemo

HH=i ,  ZAmb
HH=i)

I

i=1
                                                                          (18) 

Where: 

XPh
HH=i ϵ { HH Size}  

YDemo
HH=i  ϵ {Age, Gender, Empolyement status} 

ZAmb
HH=i ϵ {Ambient Temperature , Solar Intensity } 

 

The embedded dynamics of the model works on the basis of Markovian stochastic 

model for simulating human activities. Given “R” residents in the i-th HH, sequence of 

activities will be simulated where transition probabilities (T) are in form of: 

TSnSm
R=r (t)~g(YDemo

HH=i). Transition probabilities are calibrated using American Time-Use 

Survey data (ATUS),  publicly available in US Department of Labor website 

(http://www.bls.gov/tus/).  Simulated activities then will be converted to its associated 

load (e.g. watching TV, dishwashing, etc.  Herein these are called “Loads associated to 

specific activities” (LASA). “Base-load” is the other load category which consists of: 

HVAC, Lighting, and cold appliances load. HVAC model works on basis of a Newton's 

law of heating and cooling. The lighting energy use model takes into account perception 

of the natural light level (solar intensity) within a building and number of people who are 
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active. At each time interval “t”, latter calculates from the simulated activities of 

residents. This follows as:  

∑ 1n(t)r=R
r=1 ,   1n(t) ∶= {

1,   Sr(t) ∉ {away, sleeping}

0, Sr(t) ∈ {away, sleeping}
                                                     (19) 

 

where S refers to states (activities) 

Moreover, cold appliances load follows probabilistic Bernoulli distribution. 

Knowing number of households (HH) under the study, both power and heat demands are 

obtained from (18). Two What-if scenarios are defined. These scenarios are denoted by 

Mode II, and Mode III.  In Mode II new load patterns from PEV are introduced. PEV 

charging schedule is based on occupancy pattern simulated by Hi-RAM and takes into 

consideration the driving habits of individuals. Charging schedules are not necessarily 

averse of price. 

Mode III is the upgraded version of Mode II where smart devices are used within 

premises. This enables the implementation of price responsive DSM strategies via 

programmable communication devices (PCD). PCD enables end-use models to reflect the 

function of: Intelligent thermostats which learn temperature preference of occupants; 

Price responsive thermostats with pre-cooling capabilities; Smart electric plugs with the 

capability of altering the switch status; Automated dimmer switch with the capability of 

altering lighting levels based on the real time market price (For more details see: [100]). 

Conceptual framework that demonstrates the integration of bottom-up demand model to 

capacity planning (investment problem) is depicted in Figure 23. 
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Figure 23. Integration of demand dynamics to capacity planning 

 

3.5.4 Cash Flow Constraints 

Investment decisions will be made in order to maximizing the end of horizon cash 

flow plus the projected value of any cash flow beyond the horizon at horizon year [77]. 

Cash flow constraints (20 - 22) are adopted from [77, 85].  

CFY = SOGY + ROIY + BY − PBY − SOAY − AIY                                                           (20) 

 

ROIY which is the return of cash invested on an alternative investment other than 

DER in the previous period (AIY−1), calculates as: ROIY = AIY−1 × (1 + IRR). AI is 
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constrained based on the availability of cash, where at the beginning of horizon (y = 1 ) 

it cannot exceed initial available cash (IAC), and in following years it follows as: 

AIy ≤ SOGy−1 + ROIy  , y ≠ 1                                                                                                   (21) 

 

At each period it is assumed that borrowed fund cannot exceed the limit (By ≤

Blim). Moreover, Funds borrowed are restricted to be used to purchase on-site resources 

and cannot be invested on analternative option. Therefore, total DER investment in each 

period is constrained by funds available through borrowing and SOAy: 

SOAy + By = ∑ CCϑyϑ                                                                                                               (22)   

 

where CCϑ  is the cost associated to purchase incremental capacity of 

ϑ (ACϑ): CCϑy = CapExϑy × ACϑy. Having purchased ACϑ at each year, accumulated 

capacity of each asset could be calculated as follow: 

ϑCAPy = {
ACϑy                               ,                    y = 1

ϑCAPy−1 +  ACϑy         ,                    y ≠ 1
                                                             (23) 

 

Fund borrowed in period x would entitle the borrower to payment flows in coming 

periods. Total payment in each period would be: 

PBy =∑
FC × By

1 − (1 + FC)−FT
                       y = x + 1,… , x + FT                                         (24)

y−1

x=1
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CF̂Y includes perpetual savings from the DER (SOĜY), the return on cash invested in 

the last period (ROÎ Y+1), and the remainder of finance charges (PB̂Y). These follow as: 

SOĜY =
1

1 + DF
∑

SOGY+1
(1 + DF)s

∞

s=0

=
SOGY+1
DF

                                                                             (25) 

ROĈIY+1 =
1

(1 + DF)
ROIY+1                                                                                                    (26) 

PB̂Y = ∑
PBt

(1 + DF)t

Y+FT

t=Y+1

                                                                                                               (27) 

 

Non-negativity constraints are also considered for variables which cannot take 

negative values: 

ACϑy, ϑCAPy, SOAy, By, AIy ≥ 0                                                                                    (28 − 32 )   

 

3.6 Results and Discussion 

In this section daily DER operation along with investment decisions will be 

presented for three modes of electricity demand. Results corresponding to Mode I (base) 

are reproducible using time series forecast models and are provided here as a benchmark 

to evaluate the results from Mode II (new end-use consumption in form of PEVs) and 

Mode III (customer's response to price signals and other DSM strategies). Community of 

40 households is selected; note that there are typically 40 households connected to a 

primary distribution feeder. Households are selected from Residential Energy 
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Consumption Survey (RECS) data (for detailed description of selected households, see 

chapter 2). RECS feeds the proposed demand model in chapter 2 with unique information 

about characteristics of household members (e.g. age, gender, education level, and 

employment status) and appliances within premises (see [101] for detailed information 

regarding application of RECS in bottom-up models).  It should be noted that the model 

is not limited to any particular household and this selection is just for the purpose of 

demonstration. Both power and heat load will be supplied by either DER or macro-grid. 

Hourly power demand medians with corresponding 25
th

 and 75
th

 percentiles for Mode I, 

II, and III are demonstrated in Figure 25, 26, and 27; respectively. Heat demand is same 

for all three different electricity modes (Figure 28). Planning horizon is assumed to be 5 

year. Availability of renewables such as solar intensity and wind speed are illustrated in 

Figure 24. Operational and financial parameters are provided in Table 11. Moreover, Unit 

capacity costs are presented in Table 12.  

Table 11 Operational and financial parameters 

 

Table 12 Unit capacity cost ($/kW) 

ϑ Year 1 Year 2 Year 3 Year 4 Year 5 

PV 3000 2810 2630 2460 2300 

WT 2200 2090 1985 1880 1770 

GF 100 100.1 100.2 100.3 100.4 

CHP 1200 1210 1220 1230 1240 

ST 600 570 540 513 490 

Boiler 0.6 0.7 0.8 0.9       1.0 

 

HPR 1.1 CGFO&M 0.015 $/kWh  IAC 10
5 
$ 

STPR 100 kW CWTO&M 0.009 $/kWh  Blim 10
5 
$ 

MLST 0.1 CPVO&M 0.005 $/kWh  IRR 0.03 
 

Beff 0.8 CCHPO&M 0.012 $/kWh  FC 0.06 

GFHR 0.03  PVlkW 0.07Acre/kW FT 5 

CBO&M 0.006 $/kWh WTlkW 0.24 Acre/kW  DF 0.05 
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Figure 24 Hourly solar intensity (top) and wind speed (bottom) 

 

 

Figure 22 Power demand Mode I 
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Figure 23 Power demand Mode II 

 

 

Figure 24 Power demand Mode III 
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Figure 25 Heat demand across all models 

 

3.6.1 Mode I; Daily DER Operation and Investment Decisions 

Average daily operation in horizon year for Mode I is demonstrated in Figure 29. 

One may observe that generation from renewable sources namely PV and WT follow the 

availability of their corresponding resources (Figure 24).  Moreover, it could be seen that 

CHP generation is negligible during early hours (EH) of the day (between1
st
 and 6

th
 hour 

period). As depicted in Figure 29, heat demand during EH is in the minimum level except 

for 6
th

 period. This sudden spike in heat demand with considering relatively low power 

demand (see 6
th

 hour in Figure 25) limits the potential of CHP. In such situation 

according to (4), and (5) the unit will be shut down (CHPOS = 0) since: PLL1 ×

CHPCAPy ≤ PRLL1y,t.  

Poor coordination between power and heat level in this time period, leads to highest 

EPG level throughout the day. Figure 30 illustrates average sources which contribute to 
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charge electricity storage rather than directly serving the load. This type of analysis is 

feasible due splitting mechanisms ɸG_L , and ɸG_S as in (11). As it can be seen major 

contribution is from renewable resources. This indicates that, existence of electricity 

storage helps to accommodate excess generation from intermittent renewable resources 

and to participate into price arbitrage operations. 

 

Figure 26  Mode I, Average hourly operation (horizon year) 

 

3.6.2 Mode II; PEV Emergence and Investment Decisions 

In Table 13 average cumulative capacity installments are demonstrated for all three 

modes. As it can be seen, by considering the emergence of PEV (Mode II) investment 

decisions may differ compare to Mode I. In this (Mode II), PEV recharging schedule is 

based on householder’s occupancy pattern.  This means charging is an option when they 

are at home. This mostly happens in early hours of the day, and peak hours through end 

of the day. Simulated by Hi-RAM, the frequency of PEV recharging is depicted as in 

Figure 31. 
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Figure 30 Mode I, State of charge and resources 

 

The positive correlation between recharging pattern and wind availability (see Figure 

24), suggested more capacity installment of WT in Mode II compare to Mode I (see 

Table 13). Moreover, higher peak values in Mode II as a result of PEV recharges, ended-

up in more CHP installment compare to Mode I. One may notice that by incorporating 

such demand dynamics e.g. large PEV penetration to communities into capacity planning 

problem, more sustainable strategy than Mode I could be suggested that can hedge 

against possible future supply shortcomings. 
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Figure 31 PEV recharging 

 

Table 13 Average cumulative installed capacity (kW) among all modes 

  Year 1 Year 2 Year 3 Year 4 Year 5 

  Mode I 

WT 0.7 27.5 64.3 100.6 162 

PV 2.6 14.3 22.4 26 59.3 

ST 0 7.7 17.9 62.2 64 

CHP 64.7 64.7 64.7 64.7 64.7 

GF 10.7 10.7 10.7 10.7 10.7 

Boiler 46.1 46.1 46.1 46.1 46.1 

  Mode II 

WT 0.3 28.8 65.1 104.2 171.7 

PV 2.5 14.8 23.6 26.7 55.6 

ST 0 10.1 19.2 55.9 56.8 

CHP 68 68 68 68 68 

GF 11.5 11.5 11.5 11.5 11.5 
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Boiler 44.9 44.9 44.9 44.9 44.9 

  Mode III 

WT 1.3 30.9 68.5 106 171.5 

PV 3.8 17.4 22.9 27.8 68.4 

ST 0 5.8 26.2 60.2 60.2 

CHP 57.8 57.8 57.8 57.8 57.8 

GF 11.4 11.4 11.4 11.4 11.4 

Boiler 45.5 45.5 45.5 45.5 45.5 

 

3.6.3 Mode III; DSM as a Resource 

In this mode, three end-uses namely lighting, PEV charging, and space cooling are 

responding to SP. Average profile of end-uses consumption in both Mode II and Mode III 

are depicted in Figure 32. Cash flows at the end of horizon plus beyond the horizon 

(CFY + CF̂Y) in different Modes are illustrated in Figure 33. One may observe that 

addition of price responsive DSM into portfolio (Mode III) results in more cash flow than 

both Mode I and II. To better envision the reason behind this, financial activities during 

planning horizon are provided for both Mode II and Mode III in Figure 34 (negative 

values indicate outflows).  

As it can be seen when DSM is available, more operational savings will be achieved. 

This will expand the opportunity to invest on other activities according to (20). 
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Figure 32 Average end uses consumption Mode II (red) vs. Mode III (blue) 

 

 

Figure 33 Cash flow at end of horizon + beyond horizon 
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By comparing the configuration of installed assets in Mode III and Mode II, one 

finds more investment on PV and less investment on CHP. The latter is mainly due to the 

curtailment of peak load. The former would lead to more installation of electricity 

storage. Higher unit cost of PV relative to CHP (see Table 13) leads to more funds to 

procure resources in Mode III compared to Mode II. However, more operational savings 

would be obtained in Mode III since production cost of PV is less than CHP. Another 

reason relates to price arbitrage operations. More electricity generation from PV leads to 

more contribution of this resource to recharge electricity storage (recharging with cheaper 

electricity).  Mode III results suggest that the addition of DSM into the portfolio 

optimization results in not only higher operational savings but also in less environmental 

burdens.  
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Figure 34 Financial activities in Mode II and III 
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3.7 Conclusion and Future Work 

This research intends to formulate DER investment decisions by directly taking into 

account savings from DSM strategies. Hi-RAM that is capable of calculating DSM 

dynamical impacts is coupled with long-term formulation of a capacity planning problem.  

It was argued that traditional forecast models obtained solely from historical data fail to 

capture interaction effects of DSM strategies and, thus may lead to investment decisions 

that do not truly reflect optimal conditions. It is observed that emergence of PEV load 

varies the investment decisions. In particular more investment in wind turbines in Mode 

II than I due to the coordination of charging habits and wind availability. [94] observed 

similar patterns by using transportation data. In Section C, one may observe that 

existence of DSM e.g. smart charging reduces the operational costs. Investigation of such 

operational cost savings are observed in literature as in [94, 95]. This framework not only 

investigates operational cost savings as a result of DSM existence, but also suggests 

optimal configuration for DER portfolio in host of DSM. It is demonstrated that existence 

of DSM flattens the load profile (peak reduction and valley filling). This will avoid 

further investment in generation assets (particularly in dispatchable resources) in order to 

meet peak capacity. Proposed investment strategy in Mode II could be considered as a 

“more sustainable solution” where it can hedge against possible future supply 

shortcomings. In Mode III, decisions are even smarter than Mode II, where existence of 

price responsive demand would lead to utilization of more renewables and revenue. 

Coordination of model outcomes with existing literature is interesting since the 

simulated data from a bottom up model is used as surrogate for historical domain specific 

data e.g., electric meter, transportation, and demand response data. Unlike the existing 
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literature, this framework not only investigates load dynamics in the presence of 

advanced technologies, new plug-ins, and consumer response, but also suggests DER 

capacity planning solutions. This is important particularly for new communities where 

historical data is not available/sufficient. Furthermore, case of study can be easily 

expanded/changed in Hi-RAM. One direction for the future work is the addition of 

industrial and commercial load to this framework. Other direction would be participation 

of daily activities and consequent loads into demand response programs. One could 

derive willingness-to-shift functions for so-called delay-able activities. Investigating the 

effect of different climate on investment decisions is one another direction for future 

work.   
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4. OPERATIONAL PLANNING FOR MULTI-BUILDING 

PORTFOLIO IN AN UNCERTAIN ENERGY MARKET [105] 

 

4.1 Abstract  

In this chapter, an optimization framework is proposed for day-ahead operational 

planning of a multi-building portfolio under market uncertainty. The portfolio of interest 

consists of two groups of buildings: controllable and uncontrollable. In the proposed 

framework, first, physics-based and statistical models are developed for estimation and 

prediction of end-use consumptions including Heating, Ventilation Air Conditioning 

(HVAC), lighting, and equipment in controllable buildings. In addition, calculation of 

hourly load distributions in uncontrollable buildings is developed using a non-parametric 

bootstrapping method. Then a multi-objective mathematical programming is formulated 

to minimize the energy expenditure given utility price signals while satisfying the 

occupants’ comfort. The proposed pricing scheme considers the differences between the 

Day-Ahead and Real-Time prices to reflect the trend of energy market uncertainty. It is 

demonstrated that this pricing scheme results in better performance, in terms of achieving 

to demand management goals, than the current scheme. Current pricing scheme is solely 

based upon the Day-Ahead forecasted price. The performance of the proposed framework 

is explored using real energy market data. 

  

Keywords: Multi-building portfolio, hybrid end-use models, uncertain market trend, 

energy market, demand response.   
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Nomenclature 

A. Index 

D Day Index 

ɸ Building Index 

ɤ End-use Index 

T Time Index (Hour) 

Z Zonal Index 

D Day Index 

ɸ Building Index 

B. Variables 

A Floor Area (ft
2
) 

E. Electricity Consumption (KWH) 

LB Temperature Lower Bound  

O Occupancy Percentage 

SCH Operational Schedule 

Ti Internal Temperature (°F) 

T∞ Ambient Temperature (°F) 

UB Temperature Upper Bound  

A Floor Area (ft
2
) 

E. Electricity Consumption (KWH) 

LB Temperature Lower Bound  

UB Temperature Upper Bound  
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C. Variables 

DAP Day-ahead Price 

DAP&ED DAP with Inclusion of Expected Market Uncertainty Trend 

DAP&SDD DAP with Inclusion of Standard Deviation of Market Uncertainty Trend 

LF Load Factor 

OLR Overall Load Reduction 

PC Constant Power Consumption (W/ft2)  

PHR Peak Hour Reduction 

PS Pseudorandom Scalar  

 R. Reduction 

RTP Real-time Price  

SLR Schedule Reduction Limit 

SP Set point (°F) 

DAP Day-ahead Price 

DAP&ED DAP with Inclusion of Expected Market Uncertainty Trend 

DAP&SDD DAP with Inclusion of Standard Deviation of Market Uncertainty Trend 

LF Load Factor 

OLR Overall Load Reduction 

PC Constant Power Consumption (W/ft2)  

PHR Peak Hour Reduction 

PS Pseudorandom Scalar  
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4.2 Introduction 

The electricity network faces several major challenges, such as ever-increasing 

demand, emergence of intermittent renewable supply systems, and weather-related 

blackouts [106]. Real-time market is one of the potential solutions to address these 

challenges. Real-time market benefits the network in stressed out hours e.g., peak hours 

mainly through motivating enrolled customers to reduce/shift their loads. In such a 

market, costumers, facility managers may adjust their near future operational schedules 

based on available market information e.g., day-ahead market. This is a win-win situation 

since in one hand costumers can receive financial benefits, and on the other hand, the 

network can experience more balance between the demand and supply. The latter also 

provides economic benefits as it reduces the need for additional peaking capacity, 

increases component reliability, and results in a better operating performance.  

However, a major concern or obstacle to achieve the above benefits is the 

uncertainty in energy markets. The energy market uncertainty can lead to large deviations 

between the Real-Time Price (RTP) and its forecasted values, e.g., Day-Ahead Price 

(DAP). Ignoring these deviations in near-future operational planning and adjusting or 

modifying the load according to the forecasted values may threaten the reliability of the 

system. As a result, in order to enhance the reliability or maximize the benefits of the 

real-time market, two capabilities are of great need: (i) the underlying demand needs to 

be elastic enough to market signals; and (ii) operational plans need to be made under 

consideration of market volatilities. Consumers who are able to foresee the market 

volatility with a reasonable level of accuracy can adjust their operating schedule in order 

to reduce the risk of power network failures (increasing network reliability) and/or 
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maximize the profits in day-ahead market.  Equipping major energy consumption sectors, 

including residential, commercial, industrial, and transportation, with these two 

capabilities can contribute to a sustainable and reliable demand-supply network.  

In 2014, almost 55% of total energy is consumed in residential (11%), commercial 

(7%), and industrial buildings (36%) [107]. Residential and commercial sectors tend to 

have more regular schedules and operating patterns. Such regularity is a valuable 

characteristic in terms of load response to network signals. As a matter of fact, decision 

makers such as facility/portfolio managers have often more confidence about future/near-

future operational plans for such loads than for irregular and unpredictable load patterns, 

which are often associated with industrial buildings [108].  

As technologies reach maturity and dynamic pricing spreads nationwide, the 

business value behind load management increases. For example, Building Energy 

Management System (BEMS) empowers facility managers in this particular matter [109]. 

BEMS can be centrally located and communicate over telephone or Internet links with 

remote buildings having outstations so that one energy manager can manage multiple 

buildings remotely. Targets of BEMS often include HVAC, lighting, and electrical 

equipment (appliances). The HVAC accounts for 50% and the latter two combine 

(lighting and equipment) for 30% of energy consumption across all building sectors [110, 

and 111].  

In recent years, increasing attention has been paid to building energy management 

via operational adjustments (operational planning). A conceptual framework for 

improving the effectiveness of building energy management in the realm of smart grids 
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operations was presented in [114]. Furthermore, [115] proposed the pricing scheme to 

shift electricity demand of appliances from periods of high prices to periods of low prices 

with and without electricity storage devices. They used artificial dynamic pricing scheme 

that was a linear function of the spot price and load level.  Multi-objective optimization 

frameworks were proposed in some studies to evaluate the effects of comfort relaxation 

on the energy demands of buildings [114, 115, 116]. In both studies, the authors 

employed a physics-based model of a single-zone building conditioned by an air-

handling unit (AHU), and developed a detailed thermal comfort model. In addition, [117] 

assessed the possible benefits of optimized HVAC control strategies that account for both 

energy and indoor air quality goals. [118] also implemented a multi-agent comfort and 

energy simulation to model alternative management and control of building systems and 

occupants.  

Human and device agents including HVAC, lighting, and appliance agents were 

used to explore trends in energy consumption and management of a university test-bed 

building. In addition, Markov decision problems were used to model and modify the 

interaction among agents. This enabled the investigation of opportunities to reschedule 

energy-consuming events. To study the trade-off between energy and comfort, [119] 

combined occupancy prediction with occupant discomfort which was described with 

probability density functions.  In some of those studies, evaluations were not necessarily 

performed for real energy market [113-119]. The effects of the day-ahead market on the 

predictive dynamic building models were also investigated by [120, 121].  In particular, 

[121] focused on power consumption scheduling to minimize the electricity consumption 

with peak load reduction in buildings. The analysis was performed under the flat rate 
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electricity price policy. Also, the total energy demands of buildings were calculated via 

abstract functional forms (sinusoidal functions). However, no measures for validating the 

proposed end-use models were provided in [120, 121]. The extensive literature in 

building energy management suggests the necessity of considering and investigating 

multi-building energy management strategies to reduce the risks associated with the high 

volatility of the real-time market [120]. Such effort is important due to the fact that the 

economic downturn has shifted the attention of firms and public owners of large building 

portfolios toward their existing buildings [122].  

In this chapter, the portfolio of multi-buildings with different functionalities is 

considered. In these buildings, portfolio manager faces both controllable and 

uncontrollable loads. The problem of interest is to evaluate the day-ahead operational 

plans for the portfolio by incorporating market uncertainty and volatility.  These plans 

should be adaptable to regional/temporal power network/market needs, such as peak 

reduction, average load shedding, load smoothing, etc. More specifically, the day-ahead 

plans are compared under different pricing schemes in terms of their ability to satisfy 

demand-side management goals such as peak hour reduction (PHR), overall load 

reduction (OLR), and daily load factor (LF) enhancement. 

 

To perform the proposed study, a hybrid physics-based and statistical models for 

HVAC as well as models for lighting and electrical equipment are developed. This also 

includes calculation of hourly load distribution in uncontrollable buildings using non-

parametric bootstrapping method. The problem is formulated as multi-objective 

mathematical programming based on building, market, and weather information. The 
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objectives are minimal operational expenditure and minimal occupants’ discomfort. Bi-

polar objectives are picked in order to consider the tradeoff between the two objective 

functions, operational expenditure, and comfort. This is in fact, an essential step towards 

evaluating demand elasticity at large scale [123].  

 

This chapter features the following contributions: (i) A generic hybrid physics-based 

statistical model for modeling HVAC system that is applicable for any building type and 

HVAC technology (ii) A pricing scheme, which enables the decision maker to manage 

day-ahead load with respect to demand-side management goals e.g., PHR, OLR, and LF 

enhancement (load smoothness). The chapter is structured as follows. In the following 

section, the modeling methodology is described along with the proposed end-use models 

and energy market dynamics. This follows by operational day-ahead planning under 

different price regimes along with discussion of results and findings through numerical 

examples. Conclusions and future work are presented at the end. 

 

4.3 Modeling Methodology 

In this study, buildings with different use types are selected. These buildings include 

a building with large, industrial load, an office building, a residential building, and a 

lodging building. Although the latter is characterized by its high-energy consumption due 

to its main mission e.g., providing maximum comfort to its customers to any price, there 

are still opportunities to reduce consumption levels through effective energy management 

strategies [124]. Three standard reference building energy models are utilized. These 

models developed by the U.S. Department of Energy are namely: mid-rise apartment (A: 
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33,740 ft2, |floors|:4), medium office (A: 53,628 ft2, |floors|:3), and small hotel (A: 

43,200 ft2, |floors|:4) constructed in or after 1980 [125]. The mid-rise apartment contains 

27 zones including apartments and corridors; the medium office has 15 zones including 

core and perimeter offices in all three floors; and the hotel has 68 zones belonging to 

guest rooms, laundry room, mechanical room, meeting room, corridors, attic and storage 

rooms.  

For the building with industrial loads, the industrial load data from [126] is adopted. 

The industrial load has an uncontrollable nature while the loads associated with other 

buildings are controllable. Controllable (responsive) loads are namely HVAC, lighting, 

and electrical equipment. Using simulated data generated by EnergyPlus, multiple 

regression models are built for estimation of HVAC, lighting and equipment 

consumptions. This is necessary in order to bring the aforementioned end-uses into an 

optimization problem. The controllable parameters are considered as independent 

variables in regression models. These are temperature set points and schedules for 

lighting and equipment. At each time step, schedules for lights and equipment are in form 

of |Lights; ON| |Total lights|⁄ , |Equipment; ON| |Total equipment|⁄ , respectively. It 

should be mentioned that physical upgrades, such as building renovations are not 

considered here.  Interested readers can refer to [127] for such studies.  

The facility is expected to be enrolled in a real-time pricing program and the 

portfolio manager is aware of the hourly day-ahead energy market, such as the Locational 

Marginal Pricing (LMP) data.  Operational plans are derived using DAP and is compared 

with the ones derived using actual price (RTP). In this setting, RTP data is the control 

price and DAP is the forecast of RTP using the state-of-the-art forecasting methods [128, 



100 

 

 
 

129, and 130]. In addition, two new pricing schemes are introduced in order to foresee 

the trend of market uncertainty and adjust operational plans accordingly. These two new 

schemes are DAP&ED, and DAP&SSD. The former adds the expected market uncertainty 

trend to DAP schemes while the latter includes standard deviation of market uncertainty 

trend into DAP schemes. Performances of the proposed pricing schemes are compared in 

terms of their ability to satisfy demand-side management goals. Herein the specific goals 

of interests are PHR, OLR, and daily LF enhancement. Next, the proposed methodology 

for modeling HVAC, lighting, and equipment are provided. Then, energy market 

dynamics and uncontrollable buildings with industrial load and multi-objective 

mathematical programming are also described. 

 

4.3.1 Estimation of Total HVAC Electricity Consumption  

This section describes the analytic constructs of the generic hybrid physics-based 

and statistical model, a model for the estimation of electricity consumption associated 

with HVAC. The model relates the space cooling electricity consumption in the building 

to exogenous parameters such as ambient temperature and internal parameters such as 

building characteristics, building occupancy, and HVAC technologies. The model not 

only assists with estimating HVAC electricity consumption, but also can be utilized for 

investigation of optimal operational schedules without compromising occupants comfort. 

Moreover, it enables load shifting strategies such as pre-cooling. The general functional 

form of the model is inspired by Newton's law of heating and 

cooling: dTa dt⁄  ~ f (THVAC − Ti  ,  Ti − T∞). The Proposed HVAC energy consumption 

model is written as follows: 
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EHVAC
ɸ (t) = β0

ɸ
+ β1

ɸ
.
∑ Ti

z,ɸ(t) − Ti
z,ɸ(t − 1)

Z(ɸ)
z=1

|Z(ɸ)|
+ β2

ɸ
. (
∑ Ti

z,ɸ(t)
Z(ɸ)
z=1

|Z(ɸ)|
− T∞(t))

+ β3
ɸ
. Oɸ̂(t) + β4

ɸ
. (THVAC

ɸ
−
∑ Ti

z,ɸ(t)
Z(ɸ)
z=1

|Z(ɸ)|
)                                                 (1)  

 

Total HVAC energy consumption (EHVAC
ɸ

) in (1) is calculated by adding all HVAC-

related electricity consumers e.g., chillers, pumps, cooling towers, auxiliary handling 

unit, fan, exhaust fan, etc. In order to build the model, simulation for typical summer 

period (06/01 – 08/31) is conducted using EnergyPlus.  First half of the data is used for 

training the model, and the second half will be conserved for testing purposes (model 

validation). In order to make the model flexible to a broad span of operating conditions, 

random hourly zonal set points (SP) is assigned in the simulation period. By doing this, 

the statistical models are able to capture the variability in HVAC consumption over a 

wide range of set points values. This is achievable by integration of EnergyPlus and 

Matlab via Building Controls Virtual Test Bed (BCVTB)
1
. Hourly random set point 

assignment follows an algorithm similar to truncated random walk process. This is 

demonstrated as in Figure 35.  

                                                           
1
 BCVTB is a software environment that allows users to couple different simulation programs for 

distributed simulation. For example, the BCVTB allows to simulate a building and HVAC system in 

EnergyPlus and the control logic in MATLAB/Simulink, while exchanging data between the software as 

they simulate. The BCVTB is based on the Ptolemy II software environment. 
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Figure 27 Hourly set point assignment algorithm 

 

For model adequacy checking and validation, coefficient of determination (R2), and 

standard error from mean (SEM) are used. Given the notation “y” for simulated values of 

total HVAC energy consumption, R2can be calculated as follows. 

R2 = 1 −
∑ (y(i)− EHVAC

ɸ (i))
2

N
i=1

∑ (y(i)− 
1

N
∑ y(i)N
i=1 )

2
N
i=1

,   SEM = √
∑ y(i)− EHVAC

ɸ (i)2N
i=1

N
                                           (2) 

 

The performance measures (R2, and SEM) for the proposed HVAC model across 

different buildings along with model parameters are provided as in Table 14. To better 
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visualize the performance of the proposed model, the estimated and the simulated values 

of EHVAC
ɸ

 are depicted in time-series and scatter plots in Figure 36 and Figure 37, 

respectively. In Figure 36, blue curves represent the actual values (simulated data using 

EnergyPlus) for HVAC electricity consumption while red curves correspond to estimated 

values using (1) for all controllable buildings within the portfolio; ɸ ∊{small hotel, mid-

rise apartment, medium office}. In Figure 37, reference line y = x is provided. This helps 

to understand whether or not two comparable data sets (actual and estimated) agree with 

each other. In this setup, the more the two data sets agree, the more the scatters tend to 

concentrate in the vicinity of the identity line. As it can be seen in this figure, the paired 

values of the estimated and simulated observations are relatively close to the identity line, 

particularly in the hotel building and the midrise apartments. The proposed forecast 

model has a slight underestimation in larger simulated values in the office building 

(Figure 37, right, see also SEM values in Table 14).  This is mainly due to existence of 

electric reheat system in the air primary loops in this building.    
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Table 14 Summary of parameters and performance of HVAC estimation model 

ɸ HVAC technology 𝑦̂ R2 SEM Coefficients (β) P-value 

Small hotel 

Packaged terminal air 

conditioner -Single speed 

direct expansion coil 

43.92 0.73 6.86 𝛽0 61.92 1e-12 

𝛽1 -2.59 6e-14 

𝛽2 2.18 4e-25 

𝛽3 -0.26 8e-2 

𝛽4 2.37 2e-38 

Midrise 

apartment 

Split system units with -

Single speed direct 

expansion coil 

41.82 0.88 6.45 𝛽0 42.92 6e-59 

𝛽1 -3.93 8e-27 

𝛽2 -3.77 0 

𝛽3 3.08 8e-48 

𝛽4 2.98 8e-06 

Medium 

office 

Packaged VAV units – 

Two speed direct 

expansion coil 

90.53 0.79 13.42 𝛽0 113.12 1e-10 

𝛽1 -9.52 6e-28 

𝛽2 -4.261 1e-23 

𝛽3 8.64 9-17 

𝛽4 5.63 1e-35 
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Figure 36 Electricity consumption across different buildings. Estimated values (red curves), simulated 

values (blue curves) 
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Figure 37 Scatterplots of estimated versus simulated consumption values for 𝐄𝐇𝐕𝐀𝐂 

 

4.3.2 Lighting and Equipment Models 

In this section, the lighting and equipment models for three building types, namely 

small hotel, mid-rise apartment, and medium office are described. These models will be 

eventually fed to the multi-objective optimization problem in order to adjust both lighting 

and equipment schedules. For the building with industrial load, such models are not 

considered due to the assumption of uncontrollable load.  One way for calculating 

lighting and equipment loads is based on zonal operation schedules and total floor areas 
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as in (3) and (4). This method is widely applied in energy simulation tools, such as 

EnergyPlus.  

ELGHT
ɸ (t) =  ∑ PCLGHT

z × Az × SCHZ
ɸ,LGHT0(t)

Z(ɸ)
z=1                                                                  (3) 

EEQPT
ɸ (t) =  ∑ PCEQPT

z × Az × SCHZ
ɸ,EQPT0(t)

Z(ɸ)
z=1                                                                  (4) 

Eɤ
ɸ(t)       =   ∑ 𝛾𝑧 × SCHZ

ɸ,ɤ0(t)
Z(ɸ)
z=1                                                                                   (5) 

 

where, PC is the constant power consumption per square footage 

[W ft2⁄ ~ 0.092 W m2⁄ ], Az is the zonal square footage, and SCHZ
ɸ,ɤ0

is the predefined 

hourly schedule. One may consider them as a percentage of lights and equipment that are 

being used at each time step. Since in EnergyPlus Input Data Files (IDF), zonal areas are 

not provided, the lighting and equipment electricity consumptions are regressed against 

zonal operational schedules. This transforms equations (3) and (4) to the linear regression 

models as shown in (5).   

 

4.3.3 Characteristics of the Building with Industrial Load (Uncontrollable Building) 

As mentioned before, in this study a building with uncontrollable industrial load is 

considered. Daily electricity consumption profiles as well as a boxplot for such building 

are demonstrated in Figure 38 (electricity consumption data is adopted from [126]). It is 

observed that large industrial loads randomly occurred (peak loads) in the following 

hours: 9:00 a.m. – 10:00 a.m., 2:00 p.m. – 4:00 p.m. and 6:00 p.m. –7:00 p.m. Such large 
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industrial loads are often uncontrollable and cannot be either shifted or curtailed. This is 

because such loads are consumed by large industrial equipment that typically work based 

on a set of internal schedules and are not necessarily controlled by the building manager. 

For example, in a university campus, students may use a large heater in a mechanical lab, 

which lead to large stochastic loads over time. The schedule of the mechanical lab is not 

supervised by the building manager. To overcome this problem, a statistical method 

called non-parametric bootstrapping method is used to estimate the sample distribution of 

hourly loads. In non-parametric bootstrapping method, a large number of bootstrapped 

samples e.g., 1000 with replacement are drawn from a population made up of the sample 

data. A sampling distribution for these two statistic measures is created by determining 

the mean and variance of each sample. It has been shown that by using non-parametric 

bootstrapping, the hourly sample mean distributions will be symmetric (see Figure 39) 

[131]. Using non-parametric bootstrapping will lead to hourly sample mean distributions, 

which are symmetric. This is demonstrated in Figure 39. In addition, it can significantly 

decrease the variance of the estimated values and provides more precise results.  
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Figure 38 Daily electricity consumption profiles (left), Boxplot of hourly electricity consumption (right)  
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Figure 39 Hourly sample mean distributions of electricity consumption in a building with industrial load 

 

4.3.4 Energy Market Dynamics 

In this chapter, publicly available energy market data provided by Pennsylvania-

New Jersey-Maryland (PJM) interconnection [132] is utilized in order to investigate the 

dynamics of uncertain energy market. PJM coordinates the buying, selling and delivery 

of wholesale electricity and balances the needs of suppliers, wholesale customers and 

other energy market participants. In analogy, the energy market operation is similar to a 

stock exchange, with market participants establishing a price for electricity by matching 

supply and demand. The market uses locational marginal pricing (LMP) that reflects the 
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value of the energy at the specific location and time it is delivered.  LMP will be same 

across the entire grid until regional transmission congestion happens to effect prices.  

The Energy Market consists of both Day-Ahead and Real-Time markets. The Day-

Ahead Market is a forward market in which hourly LMPs are calculated for the next 

operating day based on generation supplies, demand bids, and scheduled bilateral 

transactions. The Real-Time Market is a spot market in which current LMPs are 

calculated at five-minute intervals based on the actual grid operating conditions. This 

study is focused on the hourly market data for the year of 2014. At the present day, the 

day-ahead market is used as the forecasted price and availability of perfect information is 

assumed (real-time market for day-ahead). In Figure 40, the hourly day-ahead market 

(green curves) is plotted for each month along with the monthly average (red curve).   
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Figure 40 hourly day-ahead market (green curves) and monthly average (red curve) 

 

From Figure 40, a clear trend in the day-ahead energy market can be observed. For 

months 1, 2, 3, 4, 10, 11, and 12 (non-summer) both morning and evening peaks happen. 

The Morning peak hour is consistent among non-summer months (8:00 a.m.) while 

evening peak ranges between 6:00 p.m. and 8:00 p.m. For months 5,6,7,8, and 9 

(summer) only evening peak (at 5:00 p.m.) is observable.  In the proposed day-ahead 

operational planning problem, Day-ahead Price (DAP) market data is used. Although 

DAP calculation methods are well-established and trustworthy, one should be cautious 

about price volatilities. Extreme price volatility, which can be up to two orders of 

magnitude higher than that of any other commodity or financial asset, forces energy 
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market participants to hedge against price movements. Consumers who are able to 

forecast the volatile wholesale prices with a reasonable level of accuracy can adjust their 

bidding strategy and their consumption schedule in order to reduce the risk of system 

failures and/or maximize the profits in the day-ahead trading [133].  With the assumption 

that actual market data (RTP) is available, incorporating price volatility (Real Time Price 

(RTP) vs. Day Ahead Price (DAP)) into day-ahead planning is the point of interest. In 

Figure 41, one can observe the deviation of RTP from DAP in both summer and non-

summer months. It is noticeable that the larger variation happens during peak hours, such 

as8:00 a.m. and 7:00 p.m. for non-summer months (Figure 41.a) and 5:00 p.m. for 

summer months (Figure 41.b).  
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Figure 41 Deviation of RTP from DAP in both summer and non-summer months 

 

4.3.5 Multi-objective Problem 

The multi-objective problem of interest is to simultaneously minimize the total cost 

of electricity (f1) and the occupant discomfort (f2) as shown in the following equation: 

minimize{f1(x), f2(x)} ,
s. t x ∊ Ω

                                                                                                    (6)  

 

where Ω is the feasible region and f1 and f2 along with operational constraints are 

defined as below: 
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f1~P
DAP or RTP × ∑ ∑ EHVAC

ɸ (t)Tɸ + ELGHT
ɸ (t) + EEQPT

ɸ (t)                                             (7) 

f2~∑ ∑ ∑ ∑ (SCHZ
ɸ,ɤ0(t) − SCHZ

ɸ,ɤM(t))p. OZ
ɸ
(t)T        Zɤ=LGHT,EQPTɸ                               (8) 

 

EHVAC
ɸ

, is presented in (1) ELGHT
ɸ

, EEQPT
ɸ

 are also represented by (3), (4), respectively. 

LB ≤ Ti
z,ɸ
≤ UB                                                                                                                (9) 

SRL × SCHZ
ɸ,ɤ0

≤ SCHZ
ɸ,ɤ

M

≤ SCHZ
ɸ,ɤ0

                                                                           (10) 

 

In principal, electricity consumption can be shifted or curtailed at each time interval 

via:  

1) Building thermal storage: This refers to pre-cooling capability. According to (4) and 

the lower and upper bounds of temperature (9), HVAC pre-cools the building (if any) 

with respect to building internal parameters (e.g., occupancy, internal zonal temperatures) 

and exogenous parameters such as ambient temperature and energy market.  

2) Lighting and equipment adjustments: Electricity consumption of both lighting and 

equipment may be curtailed by modifying predefined schedules. Schedule modification 

takes into account zonal occupancy and occupant comforts (each zone in each building 

has its own schedule and occupancy pattern).  

The weighted sum method is used which allows the multi-objective optimization problem 

to be cast as a single-objective mathematical optimization problem. This single objective 
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function is constructed as a sum of objective functions 𝑓𝑖’s multiplied by weighting 

coefficients 𝑤𝑖’s. Hence, the problem (6) is reformulated to: 

 

minimize∑ wifi(x),
k
i=1

s. t x ∊ Ω
,  

wi ≥ 1, ∀i = 1,… , k and ∑ wi = 1 
k
i=1                                                                           (11) 

 

Under the convexity assumptions, the solution to (11) is Pareto optimal (the solution 

is unique if the problem is strictly convex). Decision maker (DM) often assigns weights 

of objective functions based on the intrinsic knowledge of the problem. However, as 

different objective functions can have different magnitude, normalization of objectives is 

required to get a Pareto optimal solution consistent with the weights assigned by the DM. 

The weights are computed as wi = uiƟi  where 𝑢𝑖’s are the weights assigned by the DM 

and Ɵ𝑖’s are the normalization factors. Normalization factors are calculated using utopia 

(𝑧𝑖
∗) and nadir points (𝑧𝑖

𝑁).  The former is the lower bound of the Pareto optimal set, 

while the latter is the upper bound of the Pareto optimal set (see [134] for more details on 

normalization in multi-objective optimization). It should be noted that, the differences of 

optimal function values in the nadir and utopia points gives the length of the intervals 

where the optimal objective functions vary within the Pareto optimal set. That being said, 

one could calculate the normalization factors as follows:  

 

zi
∗ = fi(x

[i]) = argminx{fi(x): x ∊ Ω}                                                                            (12) 
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zi
N =

max fi(x
[j])

1 ≤ j ≤ k
,∀i = 1,… , k                                                                                        (13) 

Ɵi =
1
zi
N − zi

∗⁄ .                                                                                                               (14) 

 

Pareto optimal sets for our optimization problem are illustrated in Figure 42. Any 

point on the Pareto frontier curve (contract curve) suggests that there is no better solution 

without compromising either of the objective functions. Hereafter, it is assumed that 

intrinsic knowledge of the problem exists: w1 = 0.59 , w2 = 0.41 .  

 

Figure 42 Pareto optimal sets 

 

4.3.6 Day-ahead Operational Plans 

In this section, first the effect of real-time price deviation from day-ahead price on 

operational plans and on responded load is investigated. Then the proposed approach to 
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consider such price deviation into day-ahead operational planning problem will be 

explained. 

 

4.3.6.1 Effect of RTP Deviation from DAP 

Figure 41 depicts the deviation of RTP from its forecasted values (DAP). The 

underlying causes of such variation are barely predictable due to their stochastic nature. 

The known causes are sudden outages e.g., generator, transmission outages, extreme 

weather conditions, and imbalance between generation and demand [135]. Market tries to 

motivate costumers to adjust their load according to these unexpected price variations. 

The larger the magnitudes of these variations are, the more load adjustment is needed. 

Due to this reason, elasticity in operational schedules is needed in order to for portfolio 

managers respond to new price signals and adjust load accordingly. To demonstrate the 

need of such elasticity in operational schedules, a day-ahead price profile for one summer 

day is picked and the variance of all real-time price profiles (153 days) against the 

selected day-ahead profile (Var = Ê [(RTPd,t − DAP∗,t)
2
] − Ê[(RTPd,t − DAP∗,t)]

2
) is 

computed.  

Var is used as a measure of RTP deviation form DAP. The results are provided in 

Figure 43. In this figure, the average optimal operational schedules of three buildings in 

response to real-time prices are presented. Each pixel represents an hour of the day. The 

reference colors for the temperature set-points (26°C) and the lighting/equipment 

schedule (0% reduction) are red and blue, respectively. The first row is the operational 
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plan with the selected day-ahead price (DAP∗,t). It can be observed that by increasing the 

Var (moving upward in y-axis), the number of pixels in each line that have different 

colors than the reference color increases. This effect is more pronounced in the lighting 

and equipment schedules (The middle and right sections of Figure 43) than in the 

temperature set points. If such adjustment does not happen among end-uses, the real-time 

needs of the network would not be satisfied. In other words, the reliability of the whole 

system might be jeopardized. 

Load management would be more effective if one could accurately predict the 

magnitude of the price variation. This would afford opportunities to plan the load 

adjustment accordingly in advance (day-ahead) instead of dealing with it in the real-time 

or near real-time bases. As mentioned earlier, the price variation and its magnitude are 

hardly predictable due to stochastic nature of underlying causes. Instead, inclusion of the 

price variability trend into decision making is suggested. For example, by looking at 

Figure 41, one may observe a systematic pattern in the price variation: larger variations 

occur around peak hours for both summer and non-summer months (summer: at times 

3:00 p.m. – 6:00 p.m., and non-summer: at times 7:00 a.m. – 9:00 a.m. and 6:00 p.m. – 

9:00 p.m.). 

Foreseeing such systematic variation in conjunction with forecasted prices (DAP) in 

day-ahead planning, may provide an ability to accommodate real-time network needs 

(PHR, OLR, LF enhancement) better than by just utilizing forecasted process in day-

ahead planning. Figure 44 shows the load response to both Day Ahead Price (DAP) and 

Real Time Price (RTP) for six different days.  In this figure, the red solid and red dotted 

curves represent DAP and RTP respectively. The blue solid curve is the load response to 
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DAP. This is the solution of (6) where PDAPis utilized in (7). On the other hand, the blue 

dotted curve is the load response calculated by substituting PRTP with PDAPin (7). In this 

case, one may observe the unexpected spikes in RTP. Almost in all spike events, the shift 

of the load as the result of the pre-cooling is observed. However, no more curtailment in 

these events is detected. This is due to our defined lower limit for both the lighting and 

equipment schedule, which has already been achieved in DAP-based operational plans. 

By relaxing this assumption, one may experience both further load curtailment and load 

shift in host of RTP spikes.    

 

Figure 43 Impact of 𝐕𝐚𝐫 on average optimal operational schedule of three buildings 
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Figure 44 Responded load to both DAP and RTP for six different days 

 

4.3.6.2 Incorporating Price Deviation into Day-ahead Operational Planning Problem 

In this section, two new pricing schemes which can be used in day-ahead planning 

instead of using DAP are proposed. These schemes are namely; DAP&ED, and DAP&SSD. 

The former adds the expected market uncertainty trend to DAP schemes (Ê[RTPd,t −

DAPd−1,t]) while the latter includes standard deviation of market uncertainty trend into 

DAP schemes (√Ê [(RTPd,t − DAPd−1,t)
2
] − Ê[RTPd,t − DAPd−1,t]

2
). In both schemes, 

we conducted normalization in order to add expected value and standard deviation to 

DAP schemes: 
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DAP&EDd−1,t =
𝐯=(DAPd−1,t+Ê[RTPd,t−DAPd−1,t])−min𝐯∀t=t,…,T  

(max𝐯− min𝐯)∀t=t,…,T
                                          (15) 

DAP&SDDd−1,t =
𝐰=(DAPd−1,t+√Ê[(RTPd,t−DAPd−1,t)

2
]−Ê[RTPd,t−DAPd−1,t]

2
 )− min𝐰∀t=t,…,T

(max𝐰− min𝐰) ∀t=t,…,T
 (16)  

                   

In order to investigate the daily performance of different pricing schemes, multi-

objective optimization is solved for price regimes 

namely; DAPd−1,t, DAP&EDd−1,t, DAP&SDDd−1,t. Responded loads are then compared 

with the case that load is responded to RTPd,t. As mentioned earlier, three performance 

indicators namely; PHR, OLR, and LF enhancement are considered in the comparison of 

different pricing schemes.  

 

Figure 45 Illustration of candidate hours in PHR measure test 

In the comparison test-bed, three measures are considered namely: peak hour 

reduction (PHR), overall load reduction (OLR), and daily load factor (LF) enhancement. 



123 

 

 
 

The latter refers to average daily load divided by the daily peak load. For all summer 

days, the multi-objective problem is solved for different price schemes. Given d
th

 day, 

these are operational plans under following schemes: i)  RTPd , ii) DAPd−1  iii) 

DAP&EDd−1 and iv) DAP&SDDd−1. For the peak hour reduction (PHR) measure, the 

hours where sudden spikes are realized in RTP are that of interest. In fact, these are 

moments (hours) that power network is under the stress. It is assumed that these are the 

hours where RTPt’s are α times greater than the expected value of daily real-time prices).    

arg (RTPt >  α × Ê[RTP]: t ∈ {t = 1…T})                                                                    (17) 

 

Here it is assumed that α=2. In Figure 45, hours that meet criteria in (17) are 

highlighted. Under each price scheme, the percentage of load reduction (R) for all 

candidate hours is calculated. To compare the performances, scatterplots as appeared in 

Figure 46 are constructed where in all of the subplots, x-axis corresponds to RRTP and y-

axis corresponds to RDAP,RDAP&ED, RDAP&SDD respectively from left to right. OLR and 

LF calculations are on daily basis while PHR calculation is hourly (In Figure 46-a, each 

dot represents an hour while in 46-b and 46-c, each dot represents a day). In Table 15, 

statistics from Figure 46 in terms of percentage of points (%P) are provided. Considering 

the upper left subplot in Figure 46, these are percentage of points located above or 

beyond of y = x. Points above the line indicate superior performance of the scheme 

represented in y-axis than that’s of x-axis and vice versa. As an example, in Figure 46-a, 

it is demonstrated that in terms of PHR using RTP surpasses DAP (Figure 46-a (Left)) 
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while DAP&ED, and DAP&SSD surpass RTP (Figure 46-a (Middle)) and (Figure 46-a 

(Right)) respectively.     

 

Figure 46 Scatterplot of PHR, OCL, and LF (blue curve: y=x) 

Table 15 PHR, OLR and LF under all pricing schemes 

Percentage of peak hour reduction 

 %P RDAP> RRTP   %P RDAP&ED> RRTP  %P RDAP&SDD> RRTP 

 30.9  93.4  94.5 

Percentage of overall load reduction 

 %P RDAP> RRTP   %P RDAP&ED> RRTP  %P RDAP&SDD> RRTP 

 62  100  96 

Load factor 

 %P LFDAP> LFRTP   %P LFDAP&ED> LFRTP   %P LFDAP&SDD> LFRTP  

 55.5  97  100 
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4.4 Discussions 

In this research, a HVAC estimation model proposed in earlier work [137] is 

extended to improve the model robustness as well as practicality. The extension is made 

at three fronts: (i) One regression model relates the energy consumption to both 

exogenous and internal parameters. In a two-stage algorithm proposed in [137], an 

intermediate variable called sensible cooling/heating rate (Ṙ) is estimated. The calculated 

Ṙ is used as an independent variable in the second model for estimation of HVAC energy 

consumption. R ̇ represents the sensible cooling/heating rate that is actually supplied by 

the system to the zone for the reported time step. From the practical point of view, 

developing a model independent of R ̇  is of great interest. This is because although R ̇ is 

available in energy simulation tools e.g., EnergyPlus, it is not necessarily practical to 

collect and measure such data in real buildings. (ii) In contrast to [136, 137] which focus 

on only one specific building, the proposed model is more robust and is tested and 

validated on multiple buildings with different use types. (iii) The time dependent effects 

are captured using mathematically meaningful variables (dummy time indicator 

variables) in [137]. In this work, real measure such as hourly building occupancy 

percentage is used instead of dummy variables. 

In terms of day-ahead operational plans, one may observe a peak reduction from 5 to 

10% and an overall load shedding of 4 to 6% for all pricing schemes. One may argue that 

such tiny figures are not significant. This is not true; in particular considering the total 

investment need for the electricity grid infrastructure worldwide until 2035 is estimated 

by the International Energy Agency (IEA) to be of the magnitude of $17 trillion [138]. 
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Reducing or deferring only 1 % of this need would still affect an investment volume of 

$170 billion.   

In terms of the performance and effectiveness of different pricing schemes, Table 16 

shows using either the proposed DAP&ED or DAP&SDD schemes results in load 

responses which can better satisfy all three demand management goals (PHR, OLR, and 

LF). It is demonstrated that for LF and PHR, the performance of  DAP&SDD is superior 

to DAP while for OLR, DAP&ED outcomes are more suitable load responses. One 

cautionary note is that these observations are based on the presented case study and the 

results are not general. The main message out of this research is that if day-ahead 

planning incorporates insights about future market trends (Deviation of RTP from DAP), 

this can result in load responses which simultaneously satisfy power network needs and 

demand management aims better than just using the forecasted market data.  

The models developed in this research can be improved in several ways. The 

proposed regression models can be significantly improved by considering the interaction 

between independent variables. To avoid the non-linearity in our mathematical 

programming, we did not incorporate such interaction. Furthermore, in the multi-

objective framework, the defined penalty function for occupants discomfort can be more 

thoroughly investigated by using different functional forms.   
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4.5 Conclusion and Future Works 

In this study, the day-ahead operational plans for a portfolio of multi-buildings are 

evaluated by experimenting with incorporating market uncertainty trend into the day-

ahead planning. The portfolio of interest consists of two groups of buildings: controllable 

and uncontrollable. The load responses in the proposed pricing schemes are compared to 

the load responses where only Day-Ahead pricing scheme is considered. Three demand-

side management goals, peak hour reduction (PHR), overall load reduction (OLR), and 

daily load factor (LF) enhancement, are considered as performance metrics. Hybrid 

physics-based and statistical models for HVAC system is developed along with models 

for lighting and electronic equipment for this purpose. The operational plans are 

generated by solving a multi-objective mathematical programming problem in which the 

objectives are minimal operational expenditure and minimal occupants’ discomfort by 

considering variables related to building, market, and weather information. This research 

shows the day-ahead operational plans under the proposed pricing schemes result in 5% 

to 10% peak reduction and the overall load shedding is in the range of 4% to 6%.  It is 

demonstrated that incorporating available insights about market uncertainty into day-

ahead planning can result in load responses which may help to manage the underlying 

load more rigorously than just using market forecasts the forecasted market data. It is 

demonstrated that incorporating available insights about market uncertainty trend into 

day-ahead planning can lead to a load management strategies with higher performance 

than just using market forecasts. One direction for the future work is analysis and 

investigation of drivers that encourage companies and building owners to adopt 

efficiency improvements and sustainability policies. The other direction is inclusion of 
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electricity storage network for building portfolio. One aspect of such study could be the 

dynamics and interaction between system of storages, and the other would be cost and 

benefit analysis. This could be in terms of comparing incentive-based programs to 

encourage occupants to consume accordingly e.g. according to utility signals to investing 

on electricity storage devices.   
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