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ABSTRACT OF THE DISSERTATION

Interfaces in Supersymmetric Field Theories

By Dmitrii Galakhov

Dissertation Director:

Professor Gregory W. Moore

Supersymmetry has proven to be a valuable tool in the study of non-perturbative dynamics in

quantum field theory, gravity and string theory. In this thesis we consider supersymmetric inter-

faces. Interfaces are defects defined by spatially changing coupling constants. Interfaces can be

used to probe the non-perturbative low energy dynamics of an underlying supersymmetric quantum

field theory. We study interfaces in a set of four-dimensional quantum field theories with N = 2

supersymmetry known as theories of class S. Using these defects we probe the spin content of the

spectrum of quantum states saturating the Bogomolnyi-Prasad-Sommerfeld bound. We also apply

supersymmetric defects to the construction of knot and link invariants via quantum field theory.

We associate to a knot - presented as a tangle - an interface defined by a spatially varying superpo-

tential in a 2d supersymmetric Landau-Ginzburg model. We construct explicitly the Hilbert space

of ground states on this interface as the cohomology of a nilpotent supercharge and prove that this

Hilbert space is graded by Z × Z and is an invariant of the knot (or link). In explicit examples

we show that the corresponding Poincaré polynomial coincides with the Poincaré polynomial of the

renowned Khovanov homology that categorifies the Jones polynomial.
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Chapter 1

Introduction & Preliminaries

A universal physical phenomenon of great importance is a dependence of a physical system behavior

on the energy scale. This dependence gives the whole variety of systems observed in nature despite

different systems can behave quite differently, so ocean waves and deep inelastic scattering of quarks

in nucleons are quite dissimilar, though they are both captured by different energy scales of the

Standard Model Lagrangian. This concept has got a serious development during the last century and

has a rigorous formulation in terms of the renormalization group (RG). With the change of the energy

scale the system is modified with the renormalization group flow. The action is only a Wilsonian

effective action that is valid up to some energy scale Λ. A physical system can even undergo a

phase transition when some order parameter is developed. Unfortunately, modern computational

tools are not enough to study this phenomenon in the full generality: so “running” of coupling

constants in the quantum field theory at certain energy scales was described theoretically and is

in agreement with the experiment, though, say, the problem of quark confinement and dynamical

mass scale generation remains to be solved. Nevertheless there are simplified physical models where

the problem of solving the RG flow equations may be attempted: given ultra-violet (UV) data one

can describe the theory behavior in the infra-red (IR) limit, calculate effective coupling constants,

degrees of freedom etc. Usually, a common feature of these models is to use relatively high amount

of supersymmetries (SUSY) to suppress quantum field fluctuations.

We will concentrate on 4d N = 2 supersymmetric theories, so called theories of class S theories,

and 2d N = (2, 2) supersymetric Landau-Ginzburg theories. These theories have been attracting the

interest of theorists for a while. And the reason is three-fold. First although the IR dynamics of these

theories is simplified by supersymmetry it is still rather rich and is believed to be close to models

appearing in nature. Moreover, these models happen to describe some low energy phenomena of
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string/M-theory and supergravity. This gives particular insight into the non-perturbative behavior

of these theories and their duality properties. And, finally, these models reveal reach mathematical

structures governing their dynamics, that attracts, in turn, attention of a mathematical audience

and helps in mutual development of both areas.

In this dissertation to study properties of these theories we will exploit a notion of interfaces:

paths in the parameter space of the theory connecting different points. Physically interfaces are

represented by operators or defects with spatially changing coupling constants or boundary condi-

tions for fields interpolating between theories with different parameter setups. In supersymmetric

theories interfaces turn out to be sensitive to the low energy effective spectra of states saturating

the Bogomolnyi-Prasad-Sommerfeld (BPS) bound. On the other hand interface partition functions

satisfy certain Ward identities reduced due to the supersymmetry to partial differential equations

and their generalizations. This reveals a straight route to a tight interplay between IR dynamics of

the quantum field theories and geometrical structures on their parameter spaces.

We will apply this setup to two problems: construction of the class S theories BPS spectrum

and construction of the knot(link) homology.

The structure of the dissertation is the following. In the rest of this introductory chapter we

will introduce notions of class S theories and supersymmetric Landau-Ginzburg theories, definition

of interfaces in these theories, and, finally, a short review of knot theory basics we will use in what

follows.

In chapter 2 we will apply the interface tool to the study of BPS spectra in class S theories.

We will determine Ward identities for an interface as a Hitchin system on the Riemann surface C

known as the UV curve. Thus we represent interfaces as a parallel transport on the moduli space

of spectral (or Seiberg-Witten) curves. We explicitly deform (“refine”) the parallel transport to

include information about the spin of BPS states and derive in some particular setups protected

spin characters capturing BPS spectrum spin information.

In chapter 3 we will apply the interfaces in the supersymmetric Landau-Ginzburg (LG) theories to

calculation of the knot(link) homologies. The braids will be represented as certain interfaces on the

so called Yang-Yang LG theory parameter space. We will construct knots as braid closures. A braid

homotopy is represented as an interface homotopy preserving the Hilbert space of non-perturbative

ground states graded with the fermion number. We will construct closures of braids with the help

of fusing/defusing interfaces. during this procedure we will encounter certain difficulties related to

flavour charge of ground states, a way to overcome this obstacle will be proposed. We will construct

explicitly this Hilbert space for a given knot diagram as a cohmology of the supercharge and show it
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is invariant under the Reidemeister moves. In the explicit examples we show Poincaré polynomials

coincide with Khovanov knot polynomials.

1.1 Content and low energy effective action of 4d super Yang-Mills

theory

We start with a brief discussion of N = 2 supersymmetry what is crucially relevant for the whole

discussion and mention and mention some its basic representations: vectormultiplet and hypermul-

tiplet [4, 11, 12]. The first one is the N = 2 vectromultiplet. It contains a gauge field Aµ, two Weyl

fermions λ, ψ and a complex Higgs scalar φ, all are in the adjoint representation of the gauge group

G. The hypermultiplet contains two Weyl fermions ψq and ψ†q and complex bosons q and q†. We

can arrange these fields into the following diagrams according to the action of the SUSY Clifford

algebra:

A
a†1

��

a†2

��
λ

a†2 ��

ψ

a†1��
φ

ψq
a†1

��

a†2

��
q

a†2 ��

q†

a†1��
ψ†q̃

(1.1)

One can construct Lagrangians in terms of the superfields making SUSY manifest:

Ψ = Ψ(1)(ỹ, θ) +
√

2θ̃αΨ(2)
α (ỹ, θ) + θ̃2Ψ(3)

α (ỹ, θ) (1.2)

Ψ(2)
α (ỹ, θ) = Wα(ỹ, θ), Ψ(3) =

∫
d2θ̄Φ†eV (1.3)

Q(y, θ) = q(y) +
√

2θψq(y) + θ2Fq(y) (1.4)

In these terms the N = 2 super-Yang-Mills (SYM) Lagrangian reads

L =
1

4π
=Tr

∫
d2θd2θ̃

τ

2
Ψ2 +

+

Nf∑
i=1

[∫
d4θ

(
Q†ie

−2VQi + Q̃†ie
2V Q̃i

)
+

∫
d2θ

(√
2Q̃iΦQi +miQ̃iQi

)
+ h.c.

]
(1.5)

We have constructed this Lagrangian in terms of a complex coupling constant τ = 4πi
g2 + θ

2π , where

g is a standard Yang-Mills coupling constant and θ defines a topological θ-term. Consider what

happens physically when we start to flow down along the energy scale. It is important to notice first

that after integration over auxiliary fields the Lagrangian acquires a potential term

V = − 1

2g2
Tr
([
φ†, φ

])2
(1.6)
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To define the vacuum of the theory one should minimize this potential by choosing the Higgs field

to be aligned along the Cartan subalgebra h of the algebra of the initial Lie gauge group G. This

vacuum brakes the initial gauge symmetry to the product G→ U(1)rankG via the Higgs mechanism,

so that 〈φ〉 = aiH
i, where Hi are Cartan algebra elements in corresponding representation, for

example, for SU(2) theory 〈φ〉 = diag(a,−a). Still after the initial gauge symmetry is broken down

the residual Weyl group symmetry remains. So to parameterize so called Coulomb branch of our

theory we have to use Weyl invariants, for example, for the gauge group SU(n) uk = 〈 1k Trφk〉.

These parameters change under the renormalization group flow and have some complicated relation

to the scalar field expectation value 〈φ〉 at low energies.

To proceed further one has to consider how the supersymmetry is affected by the renormalization

group. The initial SU(2)R ⊗ U(1)R symmetry of the Lagrangian (1.5) suffers from anomalies [90].

The residual symmetry reads (SU(2)R ⊗ Z4Nc−2Nf )/Z2. So the low energy effective action should

preserve this symmetry.

Thus we have all the ingredients to construct the low energy effective action explicitly. It contains

Abelian N = 2 vector multiplet flown down from the remained massless diagonal part of the high

energy gauge field. The terms with at most two derivatives and not more than four fermions are

constrained by N = 2 supersymmetry [90]. They are all expressed in terms of a single holomorphic

function F called prepotential

Leff =
1

4π
Im Tr

∫
d2θd2θ̃F(A) (1.7)

The general form of the prepotenial is prescribed by symmetries as well. For example, for pure

SU(2) theory

F(a) =
i

2π
a2 log

a2

Λ2
+

∞∑
k=1

ck

(
Λ

a

)4k

a2 (1.8)

The first term in this expansion comes from one-loop beta-function correction and higher corrections

appear due to instanton contributions. The precise expression can be derived by integration over

instanton moduli space [80], or by geometrical means, after one describes singularities of this function

[90, 91]. The prepotential singularities have a deep physical meaning. They appear at those points

of the moduli space where some excited states become massless and modify the low energy effective

action so that considered description breaks down. So we follow to construction of excited states in

the effective theory.
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1.2 BPS states in class S theories

A vast class of 4d N = 2 supersymmetric theories can be engineered by a compactification of a

stack of M5-branes on Riemann surfaces C sometimes called UV curve [98, 38, 41, 67]. These are so

called class S theories. This class includes SYM theories, though it also includes theories not having

a transparent weak coupling regime when its Lagrangian can be naively written in terms of local

fields. Nevertheless, it is expected that in the low energy limit these theories are described by a

Coulomd branch and a superpotential. These theories are generically parameterized by a punctured

Riemann surface C, certain boundary data D at punctures and a simply laced gauge algebra g, we

will denote them as S(C, D, g).

A description of any composite state in the low energy limit is highly complicated, though the

supersymmetry helps here as well. Since the supersymmetry is unbroken all the states in the theory

fall into different representations. It is important to distinguish between so called short and long

SUSY representations.

Additionally all the physical states satisfy the Bogomolny-Prasad-Sommerfeld (BPS) bound re-

lating the mass of a state to topological characteristics of the gauge field at the spatial infinity.

The natural language for this kind of relations is the central extension of the SUSY algebra

{QIα, Q̄α̇J} = 2σµαα̇Pµδ
I
J ,

{QIα, QJβ} = 2εαβZ
IJ ,

{Q̄α̇I , Q̄β̇J} = 2εα̇β̇Z
∗
IJ ,

α, α̇ = 1, 2, I = 1, . . . ,N (1.9)

In the particular example of SYM theory[4, 11] the central charge reads:

Z = − 1

g2

∫
S2
R→∞

〈(−iF + ∗F )φ〉 (1.10)

Where the integral is taken over a sphere at spatial infinity. This central charge can be simply

expressed in terms of the “electric” and “magnetic” charges of a dyonic field configuration. In prin-

ciple, we have a collection of central charges corresponding to different topological sectors spanning

a lattice due to Dirac quantization condition

Z = aini + a
(D)
i mi, n,m ∈ Z (1.11)

Where ai is a Higgs field expectation value and a
(D)
i is its dual.

On the lattice we can consider a symplectic Dirac-Zwanziger-Schwinger (DZS) pairing given for

two charges γ1 = (n
(1)
i ,m

(1)
i ), γ2 = (n

(2)
j ,m

(2)
j ) by the following expression:

〈γ1, γ2〉 =
∑
i

(n
(1)
i m

(2)
i − n

(2)
i m

(1)
i ) (1.12)
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An important physical meaning of this pairing is that it corresponds to the classical angular mo-

mentum of the electro-magnetic field J = 1
2 |〈γ1, γ2〉| generated by two dyons.

So all the effective physical states satisfy a BPS bound for its mass M :

M ≥ |Z| (1.13)

The states can be divided in two types of representations with respect to the action of the SUSY

algebra su(2)R and the spatial rotation algebra so(3)R

Hshort = ρ⊗ h (1.14)

Hlong = ρ⊗ ρ⊗ h (1.15)

The N = 2 SUSY algebra representation can be considered as two copies of Clifford algebra

representations ρ. So the long reps contain both copies, while on the short reps a half of SUSY

generators is identically zero, thus the short reps contain only one copy. As a consequence they

saturate the BPS bound, so the masses of such states are exactly known non-perturbatively.

Geometrical picture can be revealed from consideration of singularities and corresponding mon-

odromies of the moduli space. These singularities arise due to that fact that some states become

massless. In the simplest case of pure SU(2) SYM theory such states are a monopole and a dyon

[90, 91]. Such point of view allows one to complete the description of the low energy effective action

by the geometric construction of the prepotential.

Starting with a punctured UV curve C, having extra data D in punctures and assuming the

gauge algebra to be g one constructs a complex IR curve Σu parameterized by the Coulomb branch

coordinates u and endowed with a meromorphic form λ called a Seiberg-Witten differential [90, 91,

98]:

Σu : λK +

K∑
r=2

ϕrλ
K−r = 0 (1.16)

Where ϕr are meromorphic r-differentials on C parameterized by the Coulomb branch parameters

uk and UV coupling constants (in the superconformal case) or by introduced cutoffs.

Then expectation values of the Higgs field can be calculated as period integrals of the Seiberg-

Witten form:

ai =

∮
Ai

λ, a
(D)
i =

∮
Bi

λ (1.17)

(1.18)

In this context the symplectic form (1.12) on the charge lattice is inherited naturally from the

intersection pairing of cycles on the Seiberg-Witten surface.
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Traveling across the moduli space the masses of non-BPS states can vary and in some points it

could happen that they saturate the BPS bound, while the BPS masses are restricted to saturete this

bound everywhere. Thus to distinguish BPs states from non-BPS ones it is useful to introduce an

index counting BPS states and equaled to zero on non-BPS states. Such an index is called protected

spin character (PSC) or refined BPS index, and it is defined as

TrHBPS
(2J3)q2J3(−q)2I3 = (q − q−1)Ω(γ;u; q) (1.19)

Ω(γ;u; q) = Trh q
2J3(−q)2I3 (1.20)

where J3 and I3 are Cartan generators of unbroken spatial spin so(3) and isospin su(2)R algebras

correspondingly. Due to the presence of the second copy of the Clifford algebra representation Ω is

identically zero on long reps and is non-trivial on short reps containing spin information as well:

• hypers: Ω(hyper) = 1

• vectors: Ω(vector) = q + q−1

One can extract a simpler quantity representing just a weighted sum over BPS states representatives

called a BPS index ΩBPS(u) = Ω(u;−1).

This quantity is an index in that sense that it is piecewise constant while traveling across the

moduli space jumping across so called walls of marginal stability.

As it was discovered in [19] it can happen that BPS particles form a new BPS boundstate.

Thus it is a natural question if a composite BPS state can decay into more “fundamental” ones.

This process to be possible one should satisfy energy and charge conservation conditions. Thus, for

example, for a couple of BPS particles with charges Z1 and Z2 possibly forming a new bound we

should satisfy

|Z1 + Z2| = |Z1|+ |Z2| (1.21)

What is possible only on the locus where argZ1 = argZ2, in other words charges have to be aligned

on the complex plane. The special locus of the moduli space where some boundstates can become

unstable and decay is called a wall of marginal stability. The walls of marginal stability separate

the moduli space into chambers, inside a particular chamber BPS spectrum does not change.

1.3 tt∗-geometry in supersymmetric Landau-Ginzburg theory

Now let us review some basic properties of N = (2, 2) supersymmetric Landau-Ginzburg theories.

We consider an N -dimensional Kähler manifold X with a holomorphic superpotential W : X → C.
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The action in terms of chiral superfields Φi (i = 1, . . . , N) reads:

S =

∫
d2x

[∫
d4θ K(Φi, Φ̄i) +

1

2

(∫
d2θ W (Φi) +

∫
d2θ̄ W̄ (Φ̄i)

)]
(1.22)

We can reexpress the Lagrangian in terms of component fields (world-sheet metric is diag(−1, 1)):

L = −gij̄∂µφi∂µφ̄i +
i

2
gij̄ψ̄

j̄
−

(↔
∇0 +

↔
∇1

)
ψi− +

i

2
gij̄ψ̄

j̄
+

(↔
∇0 −

↔
∇1

)
ψi+−

−1

4
gīj∂īW̄∂jW −

1

2
(Di∂jW )ψi+ψ

j
− −

1

2

(
Dī∂j̄W̄

)
ψ̄ī−ψ̄

j̄
+ +Rij̄kl̄ψ

i
+ψ

k
−ψ̄

j̄
−ψ̄

l̄
+

(1.23)

Here we introduced Kähler metric gij̄ = ∂2
ij̄
K(φi, φ̄j), Christoffel symbols Γijk = gil̄∂jgkl̄, curvature

tensor Rij̄kl̄. Also we use the following notations:

ψ̄
↔
∇µχ = ψ̄∇µχ− (∇µψ̄)χ

∇µψi = ∂µψ
i + ∂µφ

jΓijkψ
k

Di∂jW = ∂i∂jW − Γkij∂kW

(1.24)

and the following Hermiticity conditions on fermions χ†± = χ̄±, (ψ̄χ)† = χ̄ψ.

Implying the standard same time field commutators:

gij̄

[
φi(x0, x1), ∂x0

φ̄j̄(x0, x
′
1)
]

= iδ(x1 − x′1), gij̄

{
ψiα(x0, x1), ψ̄j̄β(x0, x

′
1)
}

= δαβδ(x1 − x′1) (1.25)

We can construct supercharges in this model as the following expressions:

Q± =

∫
dx1

[
gij̄(∂0 ± ∂1)φ̄j̄ψi± ∓

i

2
ψ̄ī∓∂īW̄

]
Q̄± =

∫
dx1

[
gījψ̄

ī
±(∂0 ± ∂1)φj ± i

2
ψi∓∂iW

] (1.26)

They form a centrally extended algebra:

{Q+, Q−} = 2iZ̄,
{
Q̄+, Q̄−

}
= −2iZ,{

Q±, Q̄±
}

= (H±P)

(1.27)

Where central charge Z = W (x → +∞) − W (x → −∞), and H and P are Hamiltonian and

momentum operators correspondingly. Other anti-commutators are zero.

Now we can construct a family of nilpotent charges:

Qζ := Q− − ζ−1Q̄+, Q̄ζ := Q̄− − ζQ+ (1.28)

Moreover the Hamiltonian is almost Qζ-exact:

H =
1

2

{
Qζ , Q̄ζ

}
+ 2Re(ζ−1Z) (1.29)
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Applying a usual logic we see that the theory admits imposing a BPS bound on eigenvalues of

the Hamiltonian E:

E ≥ 4|Z| (1.30)

The role of BPS states saturating this bound in this theory is played by solitons. They are

determined by solutions to a ζ-soliton equation

∂xφ
i =

iζ−1

2
∂φiW (1.31)

We define a set Sαβ(ζ) of solutions to this equation with prescribed boundary conditions at spatial

infinities α and β. Here α and β are critical points φ(∗) of the superpotenital at spatial ±∞:

∂φiW |φ∗(α)
= 0, ∂φiW |φ∗(β) = 0 (1.32)

Notice that Sαα(ζ) always contains a trivial solution φi(x) = φ∗(α) for arbitrary ζ.

Then actual perturbative BPS ground states are defined as small Gaussian fluctuations around

soliton solutions and are annihilated by the supercharge Qζ . Though on the quantum level these

states can overlap through the instanton interpolation. And for two such quasi-classical states |χ〉

and |χ′〉 the following matrix element can be non-zero:

〈χ′|Qζ |χ〉 6= 0 (1.33)

This leads to the fact that some of the classical ground states are lifted. True quantum ground

states are harmonic forms on the field space (the Hamiltonian in this case acts as a Laplacian). The

space of the harmonic forms in this case is isomorphic to cohomologies of the supercharge Qζ .

So one constructs a complex (Morse-Smale-Witten complex) [47, 96], where chains are these

quasi-classical states, they are graded by their fermion numbers, the supercharge has degree 1 and

acts as a differential on this complex.

The fermion number grading the chains in this complex is a pretty subtle quantity. A proper

definition can be given in terms of so called η-invariant of the corresponding Dirac operator [7, 47],

we postpone the definition of this fermion number. We will be able to derive an alternative definition

from the Ward identities.

One of the basic definitions related to Landau-Ginzburg theories is so called chiral ring of oper-

ators. We define a chiral operator Φi as

[Qζ ,Φi] = 0 (1.34)
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We can define a Qζ-closed class of chiral operators [Φi] equivalent up to Qζ-exact piece

[Φi] ∼ [Φi + {Qζ , ρ}] (1.35)

Chiral operators form a ring [18]:

ΦiΦj = CkijΦk + {Qζ ,Λ} (1.36)

Or for classes we get

[Φi] [Φj ] = Ckij [Φk] (1.37)

Naively the chiral algebra depends on the choice of the supercharge, in particular, on the phase ζ.

Nevertheless, structure constants Ckij are universal. One natural choice is to associate chiral fields

to polynomials of superfields Φi representing supermultiplets containing scalar φi. Then the chiral

ring is isomorphic to C[φ1, . . . , φN ]/〈∂φiW 〉.

Another natural way to define chiral operators is to consider them as marginal deformations of

the superpotential

δW =
∑
i

δtiΦi (1.38)

Ground states in our theory form a representation. Indeed let us start with some ground state

|0〉, then multiplied by a chiral field Φi a new state

|i〉 := Φi|0〉 (1.39)

is again a ground state. Then vacuum representation of the chiral algebra takes an explicit form

Φi|j〉 = Ckij |k〉 = (Ci)
k
j |k〉 (1.40)

Analogously, we can define anti-chiral fields [Q̄ζ , Φ̄i] and states |̄i〉. This is just another choice of a

basis in the same space,hence there is a square matrix

Gj̄i = 〈j̄|i〉 (1.41)

defining Zamolodchikov metic ds2 = Gj̄idt̄jdti on the parameter space. Obviously the chiral ring

structure depends on the parameters ti, so the ground states do. Let us define a Berry connection

Di = ∂ti +Ai on the quasi-classical vacuum bundle over the parameter space:

(Ai)
j
k := −Gjl̄∂tiGl̄k (1.42)
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〈α′| |α〉β

T

Figure 1.1: Landau-Ginzburg theory on a cylinder.

We construct supersymmetric interfaces in this theory by putting it on a cylinder. We consider a

propagation along a cylinder of circumference β and put two ground states |α〉 and 〈α′| corresponding

to critical points (1.32) on its boundaries (see fig.1.1) also known as Chan-Paton factors.

We study a collection of partition functions as functions of marginal couplings ti:

Zαα′ [t] = lim
T→∞

〈α(t0)|e
−
T∫
0

dτH(τ)
|α(t)〉 (1.43)

Let us substitute boundary critical points corresponding to ground states 〈α| → 〈j|, |α′〉 → |k〉, and

calculate how this partition function changeds with ti:

∂tiZjk[t] = 〈j(t0)|e
−
∞∫
0

dτH(τ)
∂ti︸︷︷︸
Ai

|k(t)〉+ 〈j(t0)|e
−
∞∫
0

dτH(τ)
(βζ−1 ∂tiW︸ ︷︷ ︸

Φi

)|k(t)〉 (1.44)

Where the last term comes from the boundary term in the action. We can rewrite this equation as

an action of a connection:

(∇i)lkZjl[t] =
[
∂tiδ

l
k + (Ai)

l
k − βζ−1(Ci)

l
k

]
Zjl[t] = 0 (1.45)

A similar connection takes place for conjugated parameters t̄i:

∇̄i = ∂t̄i + Āi − βζC̄i, ∇̄Z = 0 (1.46)

The Gauss-Manin connection (∇i, ∇̄i) is flat or in components:

[Di, D̄j ] + β2[Ci, C̄j ] = 0

[Di, C̄j ] = [D̄i, Cj ] = 0

(1.47)

These equations are usually referred to as tt∗-equations and they can be used to calculate

Zamolodchikov metric [18] and it is usually far from being flat.

1.4 Interfaces in class S theories

To put the discussions of 4d N = 2 and 2d N = (2, 2) supersymmetric theories on a similar footing

we consider a coupled 2d-4d system following [43].
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Introduce a generalized Wilson-’tHooft surface defect in the 4d theory SI(z). This defect is

defined by a point z on the UV curve C and choice of the vacuum I we will explain in what follows.

This might be a Gukov-Witten type defect [56] represented by certain boundary conditions on the

gauge field around a surface defect with axes aligned along time and x3 axis in the 4d space. If we

take a certain time slice this defect is represented by a 1d string, so it generalizes a usual notion of

Dirac strings [28].

In the IR the coupled 2d-4d system can be considered as an effective theory in 2d. The preserved

part of 4d supersymmetries by the defect can be seen as 2d superalgebra (see [43, Appendix A]). In

particular, for a defect aligned along the x3-axis and preserving momentum componenets P0 and P3

one can choose the following identification:

Q+ = −Q21, Q̄+ = Q̄2̇2, Q− = Q̄1̇1, Q̄− = Q12 (1.48)

In the IR we can also consider our defect as a defect in the IR effective Abelian theory. Then it is

parameterized by two types of the parameters: monodromies αi of the Abelian gauge fields in the

2d plane perpendicular to the defect and 2d theta angles ηi. Perturbatively these real parameters

can be combined into complex ones (Gukov-Witten(GW) parameters):

ti = αi + τijηj (1.49)

where τij is an effective coupling constant (τij = ∂2

∂ai∂aj
F). The defect generates in the IR a

superpotential W defining GW parameters:

ti =
∂W
∂ai

(1.50)

Then we introduce an interface along lines of sec.1.3 of certain phase ζ by varying the Gukov-

Witten parameters along the spatial direction (see fig.1.2). So physically we have two possibly

different vacua I and J on the opposite sides of the Dirac string and some dyonic field “blob”

concentrated in the middle.

I J

γ1

γ2

Figure 1.2: Interface defect in 4d supersymmetric theory

From the M-theory point of view it is natural to assign to surface defects M2-branes ending on

M5-branes describing 4d theory over a two dimensional surface [3, 92, 39, 43]. To cover the world-
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sheet of the surface defect this M2-brane is left with one extra dimension that is perpendicular to

M5-brane, so M2-brane has a definite position z on the UV curve C. Thus to an interface IIJζ (℘)

interpolating between two surface defects SI(z1) and SJ(z2) we associate a path on C connecting

points z1 and z2. Let us reinterpret these spectral parameters zi in terms of other observables.

Indeed, notice that the central charge of a state on the interface is not a single valued function

of surface defects zi, rather it has periods corresponding to contribution to the central charge from

BPS dyons of the master class S theory floating around (see fig.1.2):

ZIJ =WI −WJ +
∑
a

γa ·

 ~a

~a(D)

 (1.51)

As we have seen in section 1.2 the vacuum expectation values ai and a
(D)
i appear as periods of

Seiberg-Witten differential λ defined by the spectral cover Σ 1.16. So we expect that

∂

∂z
WI =

∂

∂dz
λ(I) (1.52)

where λ(I) refers to the I-th root of eq.(1.16).

So we can consider z as a parameter of the theory, thus we have corresponding system of tt∗-

equations for interfaces with changing z along them. This system is a Hitchin system on the Riemann

surface C with a gauge group SU(K) since we have K vacua as the rank of the gauge group:

FA + β2[C, C̄] = 0, DAC̄ = D̄AC = 0 (1.53)

This system implies a flatness of the Hitchin connection

A =

(
β

ζ
C +Az

)
dz +

(
βζC̄ +Az̄

)
dz̄ (1.54)

Partition functions of the interface for different vacua choices form flat sections of the Hitchin

connection.

1.5 Knot theory review

It is a quite common problem in geometry to classify manifolds with possibly some extra structure

modulo some equivalence relation. And a rather helpful tool on this route is some topological

quantum field theory where this equivalence relation is a symmetry of a theory, so partition functions

on these manifolds are invariants, depend only on the equivalence classes.

A particularly nice example of this geometry-QFT interplay are knot invariants derived from

Chern-Simons theory [97].
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Knots are embeddings γ : S1 ↪→ M3, where M3 is a 3d manifold, up to a regular homotopy

(during this homotopy transform a tangent vector is never degenerate). Having this embedding we

can construct an expectation value of a Wilson loop in the Chern-Simons theory as a path integral

over gauge connections on M3:

PR(q, a|γ) =

∫
[DA]

TrR Pexp

∮
γ

A

 e
i κ4π

∫
M3

AdA+ 2
3A

3

(1.55)

In the case of the gauge group SU(N) and when the 3-manifold M3 is a sphere this expression is a

rational function in variables

q = e
2πi
κ+N , a = qN (1.56)

and it is known as Hoste-Ocneanu-Millett-Freyd-Lickorish-Yetter (HOMFLY) polynomial (if we

substitute back a = qN )[36], and this polynomial is an invariant (almost, there is an anomaly, but

it is controllable and does not spoil everything) of a knot.

Returning back to the classification problem it is natural to ask if the HOMFLY polynomials

distinguish knots, i.e. if two inequivalent knots have different HOMFLY polynomials. A generic

answer is not known, though for symmetric reps R it is known that so called mutant knots are

indistinguishable.

Nevertheless there are knot invariants (maps from knot regular homotopy classes to functions)

with more refined structure.

For example, Khovanov polynomials [62] categorifying Jones polynomials (a case of HOMFLY

polynomials for the gauge group G = SU(2)) are constructed in a somewhat different way, as

Poincaré polynomials of certain complexes associated to a knot:

K�(q, t|γ) =
∑
i

ti qdimHi(γ) (1.57)

Generalization to higher rank groups is known as Khovanon-Rozansky homology [64, 65], and cor-

respondingly Khovanov-Rozansky polynomials P�(a, q, t). These polynomials refine the HOMFLY

polynomials in the following sense: the Euler characteristic of the associated knot complex is the

HOMFLY polynomial in the fundamental representation

P�(q, a,−1|γ) = P�(q, a|γ) (1.58)

And there is a common belief that one can construct superpolynomials PR(q, a, t|γ) that are supposed

to be generalization of the Khovanov-Rozansky polynomials on a generic representation R [31].

Though there is no explicit construction. So one of the major problems in this activity is to construct
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some refinement of Chern-Simons theory capturing homological structure of knots and define

superpolynomials.

And there are indication in the most recent literature that there is another deformation of knot

polynomials possibly related to 5d super Yang-Mills theory [2, 6].

In this dissertation we will reformulate knot homology as a physical object arising in a quantum

field theory problem.

Let us put this setup into an interfaces framework we have started with.

One can calculate alternatively the HOMFLY polynomial as a weighted monodromy trace of a

conformal block in the Wess-Zumino-Witten (WZW) model [77, 73, 93]. In the WZW model on a

2d sphere one can define primary fields φi(zi) depending on its position zi on the sphere and falling

into a representation of an algebra g of a compact Lie group G [35]. As functions of zi conformal

blocks of these primary fields are flat section of a flat Knizhnik-Zamolodchikov connection [69]:∂zi +
1

κ+ c2(G)

∑
j 6=i

tai ⊗ taj
zi − zj

 〈φ1(z1) . . . φn(zn)〉 = 0 (1.59)

Here κ is a coupling constant as in the Chern-Simons path integral (1.55), c2 is the second Casimir

element, and tai is an a-th generator of g acting on i-th primary field. The generators are subjected

to a normalization condition Tr tatb = 2δab.

To incorporate interfaces we will interpret the Knizhnik-Zamolodchikov connection as a reduction

of tt∗-connection on a parameter space of so called Yang-Yang-Landau-Ginzburg model. Under this

representation of knots(links) as interfaces the regular knot homotopy is translated to interface

homotopy. The Hilbert space of true ground states on the interface is expected to be a homotopy

invariant. In this dissertation we will construct this link interfaces explicitly, construct Hilbert spaces

of ground states as cohomologies of the supercharge Qζ and prove invariance of the corresponding

Hilbert spaces under regular link homotopy. The corresponding Poincaré polynomials are shown to

coincide with Khovanov polynomials in explicit examples.

In the remaining part of the introduction we will remind some basic facts about knot theory

necessary to proceed.

1.5.1 Knot diagrams and Reidemeister moves

Knots are usually depicted as knot diagrams on a 2d surface. The knot is projected to the 2d surface

and in the intersections one keeps information about which strand is above, which one is below.

Two knot diagrams represent the same knots iff they can be related by a sequence of local moves

called Reidemeister moves [86]:
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Reidemeister move I:

= (1.60)

Reidemeister move II:

= (1.61)

Reidemeister move III:

a

b

c

c′

a′

b′

b′′

c′′

a′′
=

c

b

a

a′

c′

b′

b′′

a′′

c′′
(1.62)

Define a local vertex:

Ra
′,b′

a,b =

a b

a′b′

(1.63)

The third Reidemeister move in this terms is called Yang-Baxter equation:

Ra
′′,b′′

a,b Ra
′,c′′

a′′,c R
b′,c′

b′′,c′′ = Rb
′′,c′′

b,c Ra
′′,c′

a,c′′ R
a′,b′

a′′,b′′ (1.64)

There is a long history of study of all these elements.

Here we just stress that a relation between Chern-Simons theory and Wess-Zumino-Witten model

give a solution in terms of R-matrix for a quantum algebra Uq(sln) [66]. The knot is considered as

a time evolution of strands.

Uq(sln) gives naturally three maps between representations and their tensor powers (R-matrix

and q-Clebsh-Gordan coefficients) [68]:

Rk,li,j : A⊗A → A⊗A (1.65)

Cki,j : A⊗A → A (1.66)

Ci,jk : A → A⊗A (1.67)
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Where A is a representation of Uq(sln), and we label vectors of these representations with indices i,

j, and so on, ∅ labels a trivial representation.

We associate these maps to brading and (de)fusion elements:

k l

ji

= Rk,li,j ,
i j

= Ci,j∅ , i j = C∅i,j (1.68)

Using these elements we can construct an expectation value for any knot, for example

i uq r

n p

l m
j k

s t

P =
∑

i,j,...,u

(R−1)qrst (R
−1)npqrR

jl
inR

mk
pu ×

×Cis∅ C
tu
∅ C

∅
lmC

∅
jk

(1.69)

1.5.2 Kaufmann and Khovanov bracket

Here we follow reviews [8, 29]. One can construct a knot polynomial through so called Kaufmann

bracket defined as:

〈∅〉 = 1,

〈 〉
=

〈 〉
− q

〈 〉
,

〈
L
〉

= (q + q−1)〈L〉 (1.70)

Thus we have for the Jones polynomial (G = SU(2), q = e
2πi
κ+2 ):

Jq(K) =

〈
Tr � Pexp

∮
K

A

〉
= 〈K〉Kaufmann (1.71)

The Khovanov’s setup starts with a homological refinement of the Kaufmann bracket:

〈∅〉 = 1→ Z→ 1,

〈 〉
=

[
0→

〈 〉
d→ q

〈 〉
[1]→ 0

]
,

〈
L
〉

= V ⊗ 〈L〉(1.72)

Here q and [1] are shifts in q-grading and homological grading. V is 2-dimensional q-graded vector

space with

qdeg v± = ±1 (1.73)

So the diagram of the knot splits into a collection of free unlinked loops in different ways. The action

of the differential splits or glues together loops.

For example, for the Hopf link (see fig.1.3) we have the following square of resolutions:



18

Figure 1.3: Hopf link

(V ⊗ V )[0]

V [1]

V [1]

(V ⊗ V )[2]

m

∆

m ∆

0 0

0 0

0

0

0

0

(1.74)

The differential implies an equivalence for gluing and splitting vector spaces accordingly:

0 −→ (V ⊗ V )[0]
d−→V [1]⊕ V [1]

d−→(V ⊗ V )[2] −→ 0 (1.75)

Gluing vector spaces (multiplication):

→ ,

V ⊗ V m−→V, m :

 v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

 v+ ⊗ v+ 7→ v+

v− ⊗ v− 7→ 0

(1.76)

Splitting spaces (co-multiplication):

→ ,

V
∆−→V ⊗ V, ∆ :

 v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−

(1.77)
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And the Khovanov polynomial is a Poincare polynomial of the resulting knot complex:

K�(q, t|γ) =
∑
i

ti qdimHi(γ) (1.78)

A natural generalization of this quantity is expected to be a knot superpolynomial, a function

KR(q, a, t) depending on a group SU(N) through the variable a = qN , as well on representation R.

1.5.3 Vertex state model for Khovanov homology

In a particular case of a fundamental rep of Uq(sl2) R-matrix and cap/cup elements are known to

reduce to the following vertex state model [100]:

+ +

++

= q
1
2 ,

− −

−−
= q

1
2 ,

− +

−+

= q−
1
2

+ −

+−
= q−

1
2 ,

+ −

−+

= q
1
2 − q− 3

2 ,

− +

+−
= 0

(1.79)

And for the caps/cups:

+ −
= + − = iq−

1
2

− +
= − + = −iq 1

2

(1.80)

Let us rewrite Khovanov homology in a similar formulation.

This intersection formula can be reformulated as

= q
1
2 ⊕ q− 1

2 (1.81)

We assign a weight t to homological degree, to get back Jones polynomials it is enough to switch to

Euler characteristic, i.e. to substitute t = −1. The coefficients in (1.80) are consequently promoted

to

+ −
= + − = t

1
2 q−

1
2

− +
= − + = t−

1
2 q

1
2

(1.82)
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And the intersection has the same form. And for the opposite intersection we have

= = q−
1
2 ⊕ q 1

2 (1.83)

If we define 1d vector spaces spanned by v+ and v− as loops with certain spin projections on

strands:

v+ = −

+
−

+
, v− =

+

−
+

− (1.84)

The multiplication law is analogous to the one in Khovanov’s construction:

V ⊗ V m−→V, m :

 v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

 v+ ⊗ v+ 7→ v+

v− ⊗ v− 7→ 0
(1.85)

And the co-multiplication law also reads:

V
∆−→V ⊗ V, ∆ :

 v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−
(1.86)

This construction also gives an invariant bi-graded homological group. The q-degree is weighted

by the power of q variable in the expansion, the homological degree is weighted by the power of t

variable correspondingly. The framed knot invariant is given by a bi-graded Poincaré polynomial:

P�(q, t|γ) :=
∑
i,j

tiqj dimHi,j(γ) (1.87)

For examples of a calculation in this setup see Appendix C.

To get a knot invariant we should take care that the framing enters as an overall monomial

multiplier. It can be simply handled by a closer look to the first Reidemeister move. Indeed, it

gives not equivalent polynomials, rather proportional ones, then we can rescale this proportionality

coefficient back. So we define a knot invariant:

P̂�(q, t|γ) := (q−
3
2 t)n+−n−P�(q, t|γ) (1.88)

where n+ and n− are numbers of positive and negative intersections defined as follows. Choose an

orientation of the knot then we have two types of crossings, we assign to them signs + and − in the
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following way:

n− = #

( )
, n+ = #

( )
(1.89)

Notice that defined in this way the knot polynomial differs slightly from Khovanov’s definition:

K�(q, t|γ) = P�(qt, t|γ). (1.90)

Nevertheless, if we substitute t = −1 the resulting construction reduces to the physical vertex

model. So we would use this setup as a goal for Chern-Simons homological refinement.
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Chapter 2

BPS states in class S theories

So as a background theory we have chosen a class S(C, D, g) theory.

As we have discussed in sec.1.4 a natural way to consider interfaces is to introduce their partition

functions as flat sections of the Hitchin connection on the punctured Riemann surface C:

FA + β2[C, C̄] = 0, DAC̄ = D̄AC = 0 (2.1)

All the fields here are in the adjoint representation of a simply laced algebra g. And boundary data

at punctures D are certain boundary conditions for fields near the punctures.

The Hitchin system appears naturally in a compactification of a stack of M5-branes on the

Riemann surface C [42, 41].

For a family of interfaces IIJζ (℘) we construct a flat Hitchin connection:

A(ζ) =

(
β

ζ
C +Az

)
dz +

(
βζC̄ +Az̄

)
dz̄ (2.2)

To an interface we associate a partition function Ψ being a flat section of this connection:

(d+A(ζ))Ψ = 0 (2.3)

We follow [42, 41, 44, 43] and utilize the following trick. We analytically continue values of ζ

form S1 to the punctured Riemann sphere C×. Then we can consider the limit ζ → 0. Then the

analysis is quite similar to the study of asymptotic differential equation solutions due to G. Stokes,

also known as a Wentzel-Kramers-Brillouin (WKB) method in physics (see e.g.[32]). We search for

a solution in the following form:

Ψ(z) ∼ eζ
−1

z∫
x(t)dt (2.4)

So the first approximation reduces to an algebraic equation for the eikonal xdz:

Det (I · x(z)dz + C(z)dz) = 0 (2.5)
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This is an equation defining a complex curve Σ with a meromorphic differential xdz. To be binded

to a physical theory one identifies this curve with the spectral curve Σu (1.16) and the meromorphic

differential with the Seiberg-Witten differential λ = x(z)dz.

We choose some trivialization of the branched cover π : Σ→ C: a collection of branching points

and a collection of cuts (see fig.2.1). On a set Cc = C \ {branch cuts} a global choice of the roots

ordering can be made. Thus we have a well defined map s : Σ \ π−1{cuts} → Z that associates to

each point on Σ not lying on the cut an order number of the cover sheet it is lying on. We continue

the definition of the root ordering to the branching points and associate to each branch point and

cut an element of the Galois group of the spectral cover (2.5) as a polynomial in x. In the case when

g is of type AK−1 we have a K-fold cover, and in a generic position we can label the branching

points by 2-cycles from the permutation group SK (for a discussion of more generic situation see

[74]).

(ij)

(kl)

(im)

Figure 2.1: Branching points and cuts

Then we can write the asymptotic expansion in the following form:

Ψ(z) =

∑
i,j

∑
a∈Γ(z(i),z

(j)
0 )

Ω(a)Xa

Ψ(z0) (2.6)

where Ω(a) are integer numbers, Stokes coefficients, Γ(z(i), z
(j)
0 ) is a set of relative homology classes

of paths connecting i-th and j-th pre-images of points z and z0 on the cover, and operators Xa are

defined as

Xa = e
ζ−1

∫
a

λ+O(ζ0)
Ea (2.7)

where Ea is a square matrix with just one unit entry at position (s(∂−a), s(∂+a)) where ∂±a are

opposite ends of an oriented path a.

This decomposition is called Abelianization map since it represents a non-Abelian parallel trans-

port with the g-valued connection along a Riemann surface C in terms of an Abelian parallel transport

on the cover Σ with a structure group being the Weyl subgroup of G.
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Physically integer coefficients Ω(a) represent BPS indices (see discussion around eq.(1.20)) of

bound 2d-4d states supported on the interface [43, 52]. The central charge of a state corresponding

to the path a is defined as

Za =

∫
a

λ (2.8)

For closed paths we can take a trace closure of the matrix valued function Xa to get scalar func-

tions Xγ(u) where moduli u parameterize the Seiberg-Witten curve and γ ∈ H1(Σ,Z). Functions

Xγ(u) define so called semi-flat coordinates [42] on the moduli space M of solutions to the Hitchin

system (2.1) modulo gauge transformations. These coordinates are closely related to classical Fock-

Goncharov coordinates of the Teichmüller theory associated to ideal triangulations of the UV curve

C [34].

Integer valued functions Ω(a) are only piece-wise constants, indeed they depend on the point

u on the moduli space of Seiberg-Witten curves and on the chosen phase ζ. In particular, when

the phase of the interface ζ coincides with a phase ζ0 of a dyonic BPS state, this BPS state can

be captured by the interface or released [43] to form a new bound state. This changes BPS indices

of the interface states in a certain way. So a knowledge of BPS indices of all interfaces for all the

parameters allows one to calculate BPS indices of dyons in the class S theory.

A promotion to the protected spin characters defined in (1.20) is less straightforward. Continuing

analogy with the Fock-Goncharov coordinates one expects a deformation (“quantization”) of the Te-

ichmüller space with a quantization parameter controlled by chemical potential q [44]. Consequently,

we should introduce a deformation of the WKB method to incorporate this quantization and the

spin information correspondingly. Thus we start with an abstract notion of the parallel transport

and an Abelianization map, then we determine how the refining deformation and corresponding

protected spin charcters can be recovered.

2.1 Spectral networks

It is well-known that the WKB approximation fails to work near so called “turning points” (branching

points in our terminology) since the exponentiated eikonal is near zero so the exponent can not be

assumed to dominate. So the expansion (2.6) can not be a correct asymptotic of the flat section on

the whole C. Instead the coefficients Ω(a) jump discontinuously across anti-Stokes lines, or so called

S-walls. To define them we use the following principle: we will not notice a discontinuous behavior of

coefficients in front of the exponentially small contributions. These exponentially small contributions
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occur when the eikonal is purely real along the whole integration path. So we define (ij)-WKB lines

(or anti-Stokes lines, or S(ij)-walls) as real curves on C satisfying the following equations:

i∂t(λ
(i) − λ(j)) ∈ R>0 (2.9)

where ∂t is a tangent vector to the S-wall, λ(i) is the Seiberg-Witten differential on the i-th sheet and

i is a contraction map. There are two types of S-walls: primary and descendent. Primary S(ij)-walls

are emanated from (ij)-branching point. Descendent S(ij) are born or terminated in joints of S(ik)

and S(kj)-walls (see fig.2.2)1. So a generic pattern of S-walls can be quite involved (see fig.2.10). We

call the whole system of S-walls a spectral network SN(u, ζ), by construction it depends on phase ζ

and point u of the moduli space [45, 46].

(ij)

(ij)

(ij)(jk)

(jk)

(ik)

Figure 2.2: Examples of S-walls.

2.2 Abstract Abelianization map

In the previous section having a spectral cover Σ of a Riemann surface C we have constructed a

family of spectral networks SN(u, ζ). Now we present an abstract Abelianization of the parallel

transport along the curve C.

Following [52] we will apply the spectral networks machinery to associate the parallel transport U

on a Riemann surface C with a non-Abelian connection on it to a formal algebra Y (these variables

1We can describe branching points as zeroes of the discriminant of the spectral cover equation (2.5) with respect
to the variable x. In the neighbourhood of the ramification point z0 the discriminant can be expanded into Taylor
series:

Disc(z) =
∏
i<j

(x(i) − x(j))2 = c(z − z0) +O
(
(z − z0)2

)
In a generic setup coefficient c is non-zero, though if the spectral cover has some additional symmetries we might have to
use higher oreders in this expansion. So generically in the neighbourhood of the branching point λ(i)−λ(j) ∼ α

√
z − z0

and we easily solve the S-wall equation (2.9):

z(t) = z0 +

(
3

2
ζα−1

) 2
3

e
2πin

3 t, t ≥ 0, n = 0, 1, 2

where t is a “time” along S-wall trajectory. So generically one has three S-walls emanated from each branching point.
In the case when the branching point is of higher order (if it is a collision point of more than two sheets) we can
perturb the parameters of the spectral cover, so that the branching point is resolved in a collection of close simple
branching points.
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are aimed to represent Abelian parallel transport along the cover) of paths on a covering surface Σ

subjected to a minimal set of rules:

1. If two paths a and b are regular-homotopic2 then

Ya = Yb (2.10)

2. Concatenation rule

YaYb =

 Ya◦b, if a concatenation a ◦ b exists,

0, otherwise
(2.11)

There are no other natural a priori rules for this algebra.

The spectral network SN(u, ζ) cuts the UV curve C into charts C \ SN(u, ζ) =
∐
i

Ui. We define

the parallel transport U along some path ℘ ⊂ C following these two detour rules:

1. If ℘ ⊂ Ui we define the parallel transport just as a sum of parallel transports along all the

sheets:

U℘ :=
∑

a∈π−1(℘)

Ya (2.12)

2. If the path ℘ intersects the spectral network along some S(ij)-wall σ ⊂ SN(u, ζ) lying on the

boundary of two charts U+ and U−, so that ℘∩U± = ℘± and σ = ∂(U+)∪∂(U−) (see fig.2.3),

the parallel transport is defined through a re-gluing map:

U℘ = U℘+
(1 + Tσ)U℘− (2.13)

Where Tσ is an element of the path algebra

Tσ =
∑
a∈Dσ

Ya (2.14)

defined as a sum with multiplicities over all regular homotopy classes with endpoints located in lifts

of the intersection point z = ℘ ∩ σ to i-th and j-th sheet correspondingly.

The element Tσ change smoothly along the S-wall σ, we just relocate endpoints of all the classes

along corresponding lifts of σ. Though it changes discontinuously across branching points and joints

of the spectral network.

2Let I = [0, 1] be the unit interval parametrized by t, and consider an immersion f : I → X into a Riemann
surface X, namely a smooth map such that f : TtI → Tf(t)X is injective (i.e. the path never has zero velocity). A
regular homotopy between two immersions is a homotopy through immersions.



27

σ

℘− ℘+
z

Figure 2.3: Regluing map

At branch points we impose simpleton boundary conditions:

Tσ = Yγp (2.15)

where γp ⊂ Σ is a path starting from a lift of the intersection point z = ℘ ∩ σ to i-th sheet and

ending on a lift to the j-th sheet, encircling the branching point p:

ij

z℘− ℘+

p

γp

U− U+

U+ ∩ U− = σ

z = ℘ ∩ σ

℘ ∩ U± = ℘±

∂γp = z(j) − z(i)

Across joints (see fig.2.4) regluing elements change accordingly:

T(ij)′ = T(ij), T(jk)′ = T(jk), T(ik)′ = T(ik) + T(ij)T(jk) (2.16)

(ij)

(ik)

(jk)

(jk)′

(ik)′

(ij)′

Figure 2.4: Spectral network joint

2.3 Flatness and sign rule

To show that abstract parallel transport presented in the previous section is flat indeed, i.e. for two

regular homotopic paths ℘ and ℘′ on C

U℘ = U℘′ (2.17)

we start with the flatness across ramification points (see fig.2.5).
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12

3 4

D

B1

A1

C1

(−+)1

(+−)1

(+−)2

B2 A2

C2

Figure 2.5: Lifts and detours

In a generic simple branching point two sheets are colliding, we denote them without loss of

generality as a (+)-sheet and (−)-sheet, as we cross the cut we get an action of (+−)-permutation.

There are three S-walls emanated from the branching point [52], those neighbour S-walls that do

not have a cut between them should be of opposite type, so we have chosen (+−), (−+) and (+−)

types as one goes counterclockwise.

The flatness condition requires that the parallel transports along path going through points 1,

2, 3, 4 and a path going directly from 1 to 4 through the cut are equal:

U1234 = U14 (2.18)

Let us write both sides explicitly:(
Y [A

(++)
1 ] + Y [A

(−−)
1 ] + Y [A

(+−)
2 ]

)(
Y [B

(++)
1 ] + Y [B

(−−)
1 ] + Y [B

(−+)
2 ]

)
×

×
(
Y [C

(++)
1 ] + Y [C

(−−)
1 ] + Y [C

(+−)
2 ]

)
= Y [D(+−)] + Y [D(−+)]

(2.19)

Here we have denoted explicit paths on the cover by labelling pre-images of end-points with sheets

they are lying on. So path A
(+−)
2 starts at preimage of point 1 on (+)-sheet and ends on the

pre-image of point 2 on the (−)-sheet.
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Thus we get the following equality:

Y

A(++)
1 B

(++)
1 C

(++)
1︸ ︷︷ ︸

a(++)

+ Y

A(−−)
1 B

(−−)
1 C

(−−)
1︸ ︷︷ ︸

a(−−)

+ Y

A(++)
1 B

(++)
1 C

(+−)
2︸ ︷︷ ︸

D(+−)

+

+Y

A(−−)
1 B

(−+)
2 C

(++)
1︸ ︷︷ ︸

D(−+)

+ Y

A(−−)
1 B

(−+)
2 C

(+−)
2︸ ︷︷ ︸

a′(−−)

+ Y

A(+−)
2 B

(−−)
1 C

(−−)
1︸ ︷︷ ︸

D(+−)

+

+Y

A(+−)
2 B

(−+)
2 C

(++)
1︸ ︷︷ ︸

a′(++)

+ Y

A(+−)
2 B

(−+)
2 C

(+−)
2︸ ︷︷ ︸

D(+−)a′(−−)

 = Y [D(+−)] + Y [D(−+)]

(2.20)

Comparing the both sides of this equality we arrive to a condition on the path algebra. If we denote

by a prime a difference between paths by a curl around the branching point, so

a = , a′ = (2.21)

then the expansion of the flatness condition delivers a new equation for the path algebra:

Ya + Ya′ = 0 (2.22)

We refer to this condition as a sign rule. Notice that a′ has a little “bubble”. This bubble can

not be eliminated since we are considering paths up to a regular homotopy.

The sign rule may be realised in different ways depending on a concrete representation of the

path algebra. We will return to this discussion in sec.3.3.2 and Appendix A.

Other check of the homotopy invariance can be carried on, say, across joints or S-walls, never-

theless the condition (2.22) is defining, so we can state a theorem.

Theorem 2.3.1. Rules (2.12) and (2.13) define on a path algebra subjected to an extra condition

(2.22) a flat parallel transport U, i.e. for two regularly homotopic paths ℘1 ∼ ℘2 we have

U℘1
= U℘2

2.4 Projection to Fock-Goncharov coordinates

To determine a projection to quantum coordinates on the Hitchin moduli space analogous to quantum

Fock-Goncharov coordinates on the Teichmüller space let us remind a desired quantization condition.

We consider dyonic operators Xγ labelled by dyonic charges γ ∈ H1(Σ,Z). Natural intersection

pairing on the homology lattice 〈·, ·〉 is identified with DSZ pairing (see section 1.2). We expect

these generators to form a Heisenberg algebra:

XγXγ′ = q〈γ,γ
′〉Xγ+γ′ (2.23)
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where the parameter q is the chemical potential entering (1.20). This commutation relation can

be argued from different points of view [44, 49, 61]. A brief physical explanation is the following.

Consider a 3d BPS state as a multi-centered BPS molecule [76] of more elementary dyons. One can

apply localization technique to this system and expects the system localizes to a critical configuration

that is a fixed point of the spin generator J3. So the dyons should be located along the spatial x3-

axis. Two dyons of charges γ and γ′ respectively localized to the x3-axis create an electro-magnetic

field with a classical axial momentum J3 = 1
2 〈γ, γ

′〉 aligned along the x3-axis and contributing to

the PSC as q〈γ,γ
′〉.3

In the classical story we have identified the coordinates on the Hitchin moduli space with Abelian

holonomies on the spectral cover. Here we expect that on closed paths γ the abstract path algebra

acquires a representation:

ρ(Yγ) = qf(γ)X[γ] (2.24)

where f(γ) is a scalar function of the path γ and [ · ] is a homology class of the corresponding regular

homotopy class. If we implement a concatenation of closed cycles we can apply the representation

map to the rule (2.11), this would imply the following equation for the function f :

“f(γ ◦ γ′) = f(γ) + f(γ′) + 〈γ, γ′〉”

We have put it in quotation marks since we have not implemented a concatenation procedure for

closed paths yet. Though this relation proposes to search for a function that behaves as a quadratic

refinement of the intersection pairing, a nice candidate is the writhe.

Consider a path a as a map a : [0, 1]→ Σ. We denote as σ(a) a set of self-intersection points of a.

For each point s ∈ σ(a) we can present two points t1, t2 ∈ [0, 1], such that t1 < t2 and a(t1) = a(t2).

We define the writhe wr a as a signed sum over self-intersections:

wr a =
∑
s∈σ(a)

sign
[
dt1(s)γ ∧ dt2(s)γ

]
(2.25)

where the sign of a form is defined as its orientation with respect to the surface area form. For

example,

wr



 = 3 + 1 = 2 (2.26)

3There are other ways to derive this algebra. In the case of Liouville CFT it follows naturally from commutation
relations of so called current operators, or check-operators [20, 49, 53]. In the case of the SYM theory in Ω-background
these commutation relations can be read from [61].
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To clarify the role of the writhe as of quadratic refinement for the intersection pairing consider

two closed paths γ1 and γ2 possibly with self-intersections (see fig.2.6). Let us add an auxiliary path

χ without self-intersections intersecting both γ1 and γ2 consequently. Intersection points divide χ in

three pieces: χ−, χ0 and χ+. Now we can glue the auxiliary path with γi considering closed paths

as open paths with the beginning and the end put in the intersection point. Thus we have:

wr (χ− ◦ γ1 ◦ χ0 ◦ γ2 ◦ χ+) = wr (χ− ◦ γ1 ◦ χ0 ◦ χ+) + wr (χ− ◦ χ0 ◦ γ2 ◦ χ+) + 〈[γ1], [γ2]〉 (2.27)

where the last term comes from the mutual intersection of paths in question.

χ−

χ+

χ0γ1

γ2

Figure 2.6: Auxiliary path

Still the function in the representation map (2.24) can have a piece linear in the path concate-

nation. To fix it we will use the sign rule (2.22). The paths different by a curl with a bubble should

have opposite sign in this representation. We can easily calculate the number of curls as a number

of branching points encircled by the path:

curl γ :=
1

πi

∫
γ

d log λ (2.28)

When we compare curls of a and a′ it is different by 1. Also notice that due to a small “bubble” in

a definition of a′ its writhe also differs by 1, so we should cancel q-powers due to this contribution.

So, finally, our definition for a representation on closed curves reads

ρ[Yγ ] = qwr γ(−q)curl γX[γ] (2.29)

2.5 Wall-crossing

2.5.1 Line defects

An important class of defect operators preserving some supersymmetries allowed in class S theories

is called line defects [44, 43]. Line operators preserve a ζ-supersymmetry (see sec.1.4) analogous to

interfaces. They can be considered as interfaces with identical surface defect boundary conditions
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on its ends. So we can define partition functions of the line defects as holonomy traces of the Hitchin

connection (2.2):

〈L(℘, ζ)〉 = Tr Hol℘ (d+A) (2.30)

To include the chemical potential q for spin J3 and isospin I3 generators we define it as a

representation map of the Abstract parallel transport holonomy:

〈L(℘, ζ, q)〉 = ρ[U℘] (2.31)

The right hand side can be expanded over dyonic operators Xγ with coefficient in the polynomial

ring Z[q, q−1]:

〈L(℘, ζ, q)〉u =
∑

γ∈H1(Σ,Z)

Ωγ(q, u)Xγ (2.32)

The coefficients Ωγ(q) have a meaning of the PSC of BPS states in a background with the line defect

preserving supercharge Qζ (so called framed BPS states) and in the electro-magnetic charge sector

γ:

Ωγ(q) = TrHBPSq
2J3(−q)2I3 (2.33)

Relation (2.32) establishes the action of the RG flow since we have related a line defect given by UV

data to low energy observables Xγ in the effective theory.

Definition (2.31) is not generic, indeed it depends on the choice of a marked point on the closed

path ℘ that enters the writhe, though this discrepancy can be controlled. In [52] it was proposed to

consider a specific subclass of interfaces called halo-saturated interfaces and resulting holonomies. In

[37] the definition was generalized further to be applicable to arbitrary line defects. The definition

of the writhe of a closed path ℘ that can be thought as a map ℘ : S1 → Σ was continued to a U(1)

Chern-Simons partition function of a Wilson loop t 7→ (℘(t), t) in Σ× S1.

Functions Ωγ(q, u) are only piecewise constant functions on the moduli space. This phenomenon

is known as wall-crossing. The BPS spectrum of the theory jumps across certain loci on the moduli

space, so PSC’s do. On these loci BPS states can decay into each other, conservation laws for these

decays impose a real one dimensional condition on the loci, so generically they are represented by

codimension-1 hypersurfaces in the moduli space dividing it into chambers where functions Ωγ(q, u)

are constants.

There are several hierarchical orders of wall-crossing. So one distinguishes:
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• S-walls. We have already encountered S-walls, they are responsible for appearance of soliton

BPS states in the spectrum of effective 2d theory on the interface. Detour rule (2.13) assigns

to solitons their topological and flavour charges charges. And the central charge of a soliton

configuration is calculated according to the rule (2.8). We will return to discussion of the

connection between detours and solitons in sec.3.3.1.

• K-walls. K-walls appear in the framed BPS wall-crossing. Physically, in the low energy limit

the framed BPS state can be thought of as a dyonic heavy core of electro-magnetic charge

γc and a halo of bound 3d BPS particles of charge γh (possibly different species of different

charges) floating around (see fig.1.2). An effective size of the halo cloud is given by Denef’s

formula [23]

rhalo =
〈γh, γc〉

2Im [ζ−1Zγh(u)]
(2.34)

This size diverges on co-dimension 1 hypersurfaces in the extended moduli space (u, ζ) called

K-walls. Across K-walls framed BPS degeneracies entering (2.32) jump.

• MS-walls. Marginal stability walls (or MS-walls) are defined as codimension 1 hypersurfaces

in the moduli space where the very 3d BPS states in class S theory without any defect inclusion

become stable or unstable.

2.5.2 Flip

So far we have discussed S-walls. Now we use our construction of line defects to study K-walls, this

would give us information about BPS spectrum of the class S theories and then we will be able to

collect information about MS-walls.

The framed PSC’s in (2.32) are determined by spectral network topology. So discontinuity in

framed PSC’s is related to discontinuity in spectral network topology.

Let us consider a simplest case of two close branching points of the same (ij)-type (see fig.2.7).

Suppose we start to vary the phase ζ = eiϑ, the topology of the spectral network undergoes a

discontinuous transition through a critical network at some phase ϑc. This transition is also known

as a flip of triangulation or cluster mutation in the Fock-Goncharov picture [34]. In the critical

network some S-walls instead of flowing to a puncture connect two branching points (actually it

could the same branching point). A lift of the finite S-wall is a closed path γc on Σ, then from (2.9)

we define easily the critical phase:

ϑc = Arg Zγc (2.35)
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a

ϑ > ϑc

γc

ϑ = ϑc

d

a

ϑ < ϑc

Figure 2.7: Flip

Let us calculate the parallel transport along the path a before and after the flip:

U(ϑ>ϑc)
a = Yã(i) + Yb̃(i) + Yã(j)

U(ϑ<ϑc)
a = Yã(i) + Yã(j) + Yd̃(j)

(2.36)

Here ã(i) is a lift of path a to sheet (i) and correspondingly for other paths and lifts.

Suppose a is continued somehow to a closed path, then we consider the same equations in the

representation ρ to get expectation values of line defects:

〈L(ϑ > ϑc)〉 = Xγ(1 + qXγc) +X−1
γ

〈L(ϑ < ϑc)〉 = Xγ +X−1
γ (1 + q−1Xγc)

(2.37)

One can represent the transition through this K-wall as an action of K-morphism on Fock-Goncharov

coordinates:

K : Xγ 7→ Xγ(1 + qXγc) (2.38)

Comparing this factor to a factor from a gas of free BPS dyons (see for example [76, sec. 2.3]) one

observes that under the flip a hypermultiplet of charge γc is bound to the line defect.

In a generic case when a halo of BPS particles of charge γh is bound to the line defect the

corresponding K-morphism reads:

KΩγh (q)
γh : Xγ 7→ Xγ

∏
m∈Z

|〈γ,γh〉|−1∏
m′=1−|〈γ,γh〉|

(1 + (−q)mqm
′−〈γ,γh〉Xγh)am(γh)

sign 〈γ,γh〉

(2.39)

where powers am(γh) are defined by the PSC of the BPS halo particle:

Ωγh(q) =:
∑
m∈Z

am(γh) (−q)m (2.40)

2.5.3 MS-walls and wall-crossing formulae

To describe MS-walls consider a collection of intersecting K-walls on the extended moduli space

(u, ζ). For example assume we have two K-walls corresponding to BPS particles of charges γ and γ′
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(see fig.2.8), as we will see in a moment if intersection pairing for these charges reads 〈γ, γ′〉 = 1 a

new bound state of charge γ + γ′ appears in the joint. Projecting intersection locus to the moduli

space we will get a MS-wall.

u-plane

ζ

γ

γ′

γ′

γ

γ + γ′

MS-wall

u

ζ

γ

γγ′

γ′

γ + γ′

A

B

u1 u2

ϑ1

ϑ2
1

2

Slicing surface

Figure 2.8: Wall-crossing

Let us choose some 1d path intersecting the MS-wall, considering different values of ζ we will get

a slicing surface. We consider two points A and B, and two homotopic paths. Consider spaces XA

and XB of all the line defects in points A and B correspondingly. We can go from point A to point

B either along path 1 or along path 2, these two possibilities induce two distinguished composite

morphisms:

XA XB

S(u1;ϑ1, ϑ2)

S(u2;ϑ1, ϑ2)

(2.41)

Since these morphisms are common for all the generators in the ring of IR dyonic operators we

conclude:

S(u1;ϑ1, ϑ2) = S(u2;ϑ1, ϑ2) (2.42)

These morphisms are also known as spectrum generators and can be written as compositnion of
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elementary K-wall morphisms:

S(u;ϑ1, ϑ2) =

x∏
ϑ1<Arg Zγc<ϑ2

KΩγc (q)
γc (2.43)

where product goes over all the chareges of BPS particles γc, and K-morphisms are ordered in the

product according to phases Arg Zγc . So generically if none of BPS particle charge phase crosses

either ϑ1 or ϑ2 the morphism S(u;ϑ1, ϑ2) is constant on the moduli space.

Equation (2.42) was first derived by Kontsevich and Soibelman [70, 71] in application to a

construction of Donaldson-Thomas invariants for Calabi-Yau 3-folds.

As we see the K-morphisms provide a flat parallel transport on the moduli space. We will exploit

this fact in what follows when we consider knot invariants.

2.6 BPS spectrum of Kronecker quiver theory families

2.6.1 Spectral networks for Kronecker quivers

In addition to spectral networks, one alternative route to the BPS spectrum is the dual description

in terms of quiver quantum mechanics [23, 76]. The problem of counting BPS states gets mapped

into that of counting cohomology classes of moduli spaces of quiver representations. Quiver quantum

mechanics arises as an effective theory on the BPS state world-line. The corresponding partition

function representing PSC can be calculated by introducing Ω-background and following application

of the localization technique [81]. Quivers are nicely encoding matter content of N = 4 supersym-

metric matrix quantum mechanics: quiver dimension vector γ = {ni}Nk=1 encodes gauge symmetry

of the theory
N⊗
k=1

U(ni), vertices of the quiver represent vector multiplets of the gauge field, and,

finally, each arrow between nodes i and j is assigned to chiral matter fields in representation (�, �̄)

of U(ni)× U(nj).

In this section we will provide results of calculating the PSC’s in theories associated to a Kro-

necker quiver (see fig.2.10): these are quivers consisting of two nodes with p arrows directed from

one node to the other.

p
m n

Figure 2.9: Kronecker quiver

This quiver with dimension vector (m,n) describes PSC’s of BPS molecules consisting of m and
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n “elementary dyons” with charges γ1 and γ2 with DZS pairing 〈γ1, γ2〉 = p. It is well-known that

this system has just one MS-wall defined by a difference Arg Zγ1 −Arg Zγ2 . If this difference is less

than 0 then only elementary BPS particles are presented, in the other chamber states of arbitrarily

high spin are presented, moreover corresponding central charges form a dense cone on the complex

plane [55]. So we expect the following wall-crossing formula:

Kγ1Kγ2 = Kγ2

 ∏
(a,b)∈Z2

KΩaγ1+bγ2
(q)

aγ1+bγ2

Kγ1 (2.44)

where all products are taken in order of increasing central charge phase (when read from left to

right).

A critical spectral network at certain phase ζc = eiϑc gives a description of all Kγ-walls such that

Arg Zγc = ϑc, so we will describe simultaneously a ray of charges nγc, n ∈ N. Let us adopt a useful

notation for this problem, a morphism corresponding to all the morphisms on the concrete charge

ray is defined as:

Kζc :=
∏
n∈N
KΩnγc (q)
nγc (2.45)

The algebra of Fock-Goncharov variables (2.23) implies Xnγ = Xn
γ , so the ray morphism is still

represented by some function Q(Xγ) of one variable Xγ , in particular,

Qζc(x) =
∏
n∈N

∏
m∈Z

(1 + (−q)mxmn)am(nγ)

Kζc : Xγ 7→ Xγ

|〈γ,γc〉|−1∏
m=1−|〈γ,γc〉|

Qζc(q
m−〈γ,γc〉Xγc)

sign 〈γ,γc〉
(2.46)

A typical example of a Kronecker quiver MS-wall appears already in the super-Yang-Mills theory

with gauge group pure SU(3) and without chiral matter [51]. The corresponding UV curve C is

represented by a cylinder, the IR Seiberg-Witten curve Σ is a 3-fold cover of C with four branching

points. One can construct a family of critical spectral networks describing Kζc -walls for the p-

Kronecker quiver setup [52], see fig.2.10, we have depicted only critical S-walls of finite length on

this scheme. The critical spectral network is represented by p connected blocks. For a charge ray

(αm,αn), where α is integer and m and n are co-prime, the block consists of m × n cells. Each

cell consists of a bunch of S-walls squeezed to a single line in the critical phase, in a generic case

there is an infinite number of S-walls encrypted in this diagram. Blocks are glued to each other in

one diagonal, as well they are glued around the cylinder according to marks Ai, Bi, so the critical

S-walls are winding around the cylinder p times. S-walls of different types are denoted by different

colors: (ij) and (ji) – blue, (jk) and (kj) – red, (ik) and (ki) – purple.



38

(m,n)

(m,n)

(m,n)

Bp−1

Ap−1

B1

A1

B2

A2

B1

A1

(ij)

(jk)

(ij)

(jk)

(m,n)

m cells

n cells

Figure 2.10: Spectral network for a family of Kronecker quivers

The spectral network technique allows one to calculate the Kζc-morphism explicitly in terms of

solutions to certain higher order functional equations. In the simplest case of a charge ray (α, α)

this construction reads [52]:

Q(x, q) =

p−1
2∏

s=− p−1
2

P (xq2s, q) (2.47)

where function P is a solution of a functional equation:

P (x, q) = 1 + x

p−2∏
s=−(p−2)

P (xq2s, q)p−1−|s| (2.48)

Boundary condition for this equation can be easily derived from the form of factors (2.39), indeed

if we assume that all the variables Xγ tend to 0, then all these factors reduce to a factor 1, so we

conclude:

P (0, q) = 1 (2.49)

Let us consider solutions to this equation in some elementary cases.
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p = 1. In this case the critical network is just a saddle. The functional equation is algebraic

actually and can be solved explicitly:

P (x, q) = 1 + x

Q(x, q) = 1 + x

(2.50)

Comparing this expression to expansion (2.46) we see that this morphism is just a flip morphism

we have encountered before. So this K-wall corresponds to presence of a hypermultiplet in the BPS

spectrum.

p = 2. In this case we get again an algebraic equation for P :

P (x, q) = (1− x) (2.51)

Q(x, q) = (1− xq)(1− xq−1) (2.52)

We conclude Ω(q) = q + q−1, and this means a vectormultiplet presented in the spectrum.

p ≥ 3. Equation is no more purely algebraic. We can attempt to solve it perturbatively expanding

the function P as Taylor series in variable x. Up to the second order the solution reads:

P (x, q) = 1 + x+
q2(p−1) + q−2(p−1) − 2

(q + q−1)2 − 4
x2 +O(x3) (2.53)

One can use this expansion to a very high order to confirm all the predicted PSC’s coincide with

ones derived by other methods [52]. For example, for charge (1, 1) and generic p the PSC reads:

Ωp(q) =
qp − q−p

q − q−1
(2.54)

This quantity is also known as quantum number [p]q or a quantum dimension. This result can be

simply reproduced in the multi-centered model of BPS states [23, 76]. In this case the configuration

is represented by a “Hall atom”: a pair of two dyons with DZS pairing p, or just an electron and a

monopole of magnetic charge p. Ground states in this system are given by p+ 1 Landau levels on a

sphere, due to interaction of the electron spin with magnetic field of the monopole levels are lifted,

so there are p ground states that fall nicely into a representation of spin SU(2) and give a quantum

dimension of this representation as PSC [23].

2.6.2 Remarks on BPS dynamics

We can suppress the chemical potential substituting q = −1 and returning BPS index instead of

PSC, then equation (2.48) becomes algebraic:

P (x) = 1 + xP (x)(p−1)2 (2.55)
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This equation had been identified previously by Kontsevich and Soibelman [70] and by Gross and

Pandharipande [55], as the one governing the generating function of BPS degeneracies. A surprising

physical conclusion appears when one considers asymptotic behavior of the BPS index with the

charge growing [94]:

Ω(n,n) ∼ ecpn, cp = (p− 1)2 log(p− 1)2 − (p− 2) log(p− 2) (2.56)

On the other hand we can estimate the entropy, a logarithm of a number of degrees of freedom stored

in a box of volume V and in the momentum space below energy level E in a generic asymptotically

free theory:

S = κV
1
4E

3
4 (2.57)

where κ is a non-universal constant depending on the theory. The BPS index is a signed sum over

distinguished degrees of freedom, it can not exceed the whole number of degrees of freedom. Implying

that the central charge grows linearly with the electro-magnetic charge one gets an apparent paradox:

Ω ∼ eκn . eS ∼ eκ̃n
3
4 (2.58)

The resolution of this paradox comes from taking into account the fact that our bound applies only

to the theory in a finite volume. If the size of BPS states becomes large enough and they do not

fit into the box of finite volume, then they do not contribute to the naive counting of degrees of

freedom.

Using the multi-centered model of BPS molecules one can make a simple estimate of an effective

size of a these molecules. Suppose it consists of “elementary” BPS particles of charges γ1 and γ2,

then the size of the molecule is constrained from below:

rmolecule ≥
〈γ1, γ2〉

2Im (Zγ1Z̄γ2)
|Zγ | (2.59)

where Zγ is a total central charge of the molecule. For a molecule given by a dimension vector (n, n)

Zγ = n(Zγ1 + Zγ2). So the volume o the box suitable to include a molecule scales as V ∼ V0n
3.

Eventually, we have to revise the entropy bound:

S(n) ∼ eκ̃n
3
2 (2.60)

And this revised bound resolves the paradox.

The BPS particles preserve massive little subgroup of the Lorentz group of space-time trans-

formations. So PSC of a physical state naturally decomposes over characters of spin SU(2). This
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implies the PSC’s are invariant under the change q ↔ q−1 of the chemical potential. Spin SU(2)

can be associated to Lefschetz SU(2) acting on quiver representation cohomology [23]. Generically,

we associate the PSC to a Poincaré polynomial4 of this cohomological group:

Ωγ(q) = q−2Jmax(γ)χγ(q) (2.61)

where Jmax is the highest admissible spin of the corresponding quiver variety, a charge-dependent

bound on this quantity is known as Kac’s theorem (see [88]).

Quiver Poincaré polynomials reveal a specific pattern first noticed by Reineke [87]. With growing

charge the polynomial tails start to stabilize, for example, for p = 3:

χ(4,3)(q) = 1 + q2 + 3q4 + 5q6 + 8q8 + 10q10 + 12q12 + 12q14 +O(q16)

χ(7,6)(q) = 1 + q2 + 3q4 + 5q6 + 10q8 + 16q10 + 29q12 + 43q14 +O(q16)

χ(8,6)(q) = 1 + q2 + 3q4 + 5q6 + 10q8 + 16q10 + 29q12 + 45q14 +O(q16)

χ(8,7)(q) = 1 + q2 + 3q4 + 5q6 + 10q8 + 16q10 + 29q12 + 45q14 +O(q16)

(2.62)

The limiting polynomial this sequence converges to is expected to be a Poincaré polynomial of the

classifying space B(GLn ×GLn/C∗) where C∗ is a subgroup of elements (λI, λ−1I) [30].

We will reproduce Kac’s theorem bound and the limiting polynomial from the functional equation

(2.48) following [52].

Let us search for a solution to (2.48) in terms of a Taylor expansion

P (p)(x, q) =
∑
n=0

ω(p)
n (q)xn (2.63)

The contribution to a particular Taylor coefficient in front of z can be represented as a sum over

partitions ts,j . We label non-negative integers ts,j by a pair of integers (s, j); s corresponds to a

contribution of a term with a shift controlled by s in (2.48), while j distinguishes formally between

the terms with the same s gathered into powers in (2.48). We sum over all possible values of ts,j

inserting a Kronecker symbol, so that only a few contribute. The recursion relation reads

ω
(p)
k (q) =

∞∑
ts,j=0

q
2
∑
s,j
sts,j

 p−2∏
s=−(p−2)

p−1−|s|∏
j=1

ω
(p)
ts,j (q)

 δk−1,
∑
s,j
ts,j (2.64)

The highest power of q is contributed by tp−2,1 = k−1 with all the others t’s set to zero, therefore we

may recast the above as a recursion relation for the the maximal power αk for q in ω
(p)
k (q), together

with a boundary condition:

αk = αk−1 + 2(p− 2)(k − 1), α1 = 0 (2.65)

4 It would be more precise to call this quantity a χy-genus, though if the moduli space is smooth it can be identified
with the Poincaré polynomial (see the discussion in [22, section 2.5]).
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which is solved by

αk = (p− 2)k(k − 1) . (2.66)

Since Q is related to P by (2.47), the highest power of q in the coefficient of zk is αk + (p − 1)k.

Hence, finally, the highest spin for the (n, n) state reads

2Jmax(n) + n− 1 = αn + (p− 1)n (2.67)

This entails a beautiful agreement of our formula (2.48) with previously known results from quiver

representation theory

2Jmax(n) = (p− 2)n2 + 1 (2.68)

Now we switch to calculation of the limiting polynomial. As a preliminary remark, notice that

the expansion of the products in the generating function allows one to relate coefficients in the formal

series to the PSC

ω(p)
n (q) = qαn−2Jmax(n) 1− q2n

1− q2
Ω(p)(q, nγc)

(
1 +O(q(p−1)n)

)
(2.69)

and by O(qp) we denote a formal series in q, starting with a term of degree p.

Introducing the series

χ̃(p)
n (y) := y−(p−2)n(n−1)ω(p)

n (y) (2.70)

we can focus on its stabilization since (assuming |q| < 1)

lim
n→∞

χ̃(p)
n (q) = (1− q2)−1χ

(p)
∞(1,1)(y) ,

lim
p→∞

χ̃(p)
n (q) =

1− q2n

1− q2
χ

(∞)
(n,n)(q) .

(2.71)

Performing the substitution ω
(p)
n (q) 7→ χ̃

(p)
n (q)q(p−2)n(n−1), s 7→ s− (p− 2) into (2.64) we arrive

at the following recursion relation

χ̃
(p)
k (q) =

∞∑
ts,j=0

q
2
∑
s,j
sts,j+(p−2)

∑
(s,j)6=(s′,j′)

ts,jts′,j′

×

×

2(p−2)∏
s=0

p−1−|s−(p−2)|∏
j=1

χ̃
(p)
ts,j (q)

 δk−1,
∑
s,j
ts,j

(2.72)

where the second summation in the power of q goes over different pairs of indices. In the limit

p → ∞, precisely that summation causes a localization (assuming |q| < 1 and noticing that the

power is non-negative) on partitions of k − 1 satisfying
∑

(s,j)6=(s′,j′)

ts,jts′,j′ = 0, these are partitions
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consisting of just one ts,j = k − 1 with all the others being zero. Thus we are eventually left with a

summation over positions (s, j)

χ̃
(∞)
k (q) =

∞∑
s=0

(1 + s)q2s(k−1)χ̃
(∞)
k−1(q) . (2.73)

This reproduces the result known from quiver representation theory, the corresponding limiting

Poincaré series read

χ(q) =
1− q2

∞∏
j=1

(1− q2j)2

(2.74)
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Chapter 3

Application to knot homology

3.1 Homology origin in QFT: brief SUSY QM overview

We make a brief review of the origin of the cohomology in supersymmetric quantum mechanics

following [96] (see also reviews in [47, 59]).

We consider the supersymmetric quantum mechanics of a particle moving in a Riemann manifold

M of dimension n with Euclidean metric g.

The Lagrangian of this system is given by

L =
1

2
gij ẋ

iẋj +
i

2
gij
(
ψ̄i∇tψj −∇tψ̄iψj

)
− 1

2
Rijklψ

iψ̄jψkψ̄l − 1

2
gij∂ih∂jh−∇i∂jhψ̄iψj (3.1)

where

∇tψi = ∂tψ
i + Γijkẋ

kψk, ∇i∂jh = ∂i∂jh− Γkij∂kh , (3.2)

and Rijkl and Γkij are the Riemann tensor and the Cristoffel symbols correspondingly on the manifold

M. And the function of coordinates h is recognized as a Morse height function with a non-degenerate

Hessian in extrema points.

The supersymmetric quantum mechanics action is invariant under infinitesimal SUSY transfor-

mations:

δφi = εψ̄i − ε̄ψi

δψi = ε
(
iẋi − Γijkψ̄

jψk + gij∂jh
)

δψ̄i = ε̄
(
−iẋi − Γijkψ̄

jψk + gij∂jh
) (3.3)

One can calculate supercharges as corresponding Noether currents:

Q = e−hψ̄i
∂

∂xi
eh, Q̄ = ehψi

∂

∂xi
e−h (3.4)
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Identifying fields ψi with 1-forms dxi on the manifold M we see that supercharges behave as con-

jugated differentials:

Q = e−hdeh =: dh, Q̄ = ehd†e−h =: d†h (3.5)

The Hamiltonian in this system is a conjugated Laplace operator:

H =
1

4

(
dhd
†
h + d†hdh

)
(3.6)

The Hilbert space of ground states is identified with the space of harmonic forms onM with respect

to Laplacian H. The Hodge decomposition theorem (see e.g.[54]) implies the space of harmonic

forms is isomorphic to the cohomology H•(M, dh). Though the conjugation eh can be considered

as an invertible chain-map (we will return to its role in sec.3.5.3) preserving cohomology

H•(M, dh) ∼= H•(M, dh′) (3.7)

so cohomology of the supercharge Q coincides with the deRahm cohomology of M.

If we consider an opposite limit when the height function scales as h→ λh, λ→∞ the ground

states are localized near critical points of h where the potential term gij∂ih∂jh vanishes. Near a

critical point x∗ choose coordinates xI , s.t.

h = h(x∗) +
∑
I

cI(x
I)2 +O(|y|3) (3.8)

cI are eigen values of the Hessian of h in point x∗, they are non-zero in our setup.

In this coordinates the Hamiltonian in the neighbourhood of the critical point x∗ can be decom-

posed as

H =
1

2

∑
I

[
p2
I + λ2cI(x

I)2 + λcI
[
ψ̄I , ψI

]]
(3.9)

If we denote by |0〉 a vector annihilated by all ψI we can determine the ground states up to the

leading order in the perturbation theory in the following way:

Ψ(0)
x∗ = e

−λ
∑
I

|cI |(xI)2 ∏
J: cJ<0

ψ̄J |0〉 (3.10)

Non-perturbative corrections due to instantons deform Q-matrix elements to be generically non-zero.

So one defines a Morse-Smale-Witten (MSW) complex as a vector space spanned by perturbative

ground state wave functions1:

M =
⊕
x∗

C
[
Ψ(0)
x∗

]
(3.11)

1Here we used as an underlying ring the complex field C since the complex structure is naturally inherited from
the complex structure of the Hilbert space. See also footnote 7 on page 102.
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Its cohomology H•(M, Q) is isomorphic to H•(M, dh), so to the deRahm cohomology.

We can use H•(M, Q) as a homotopy invariant of functions h. And we will exploit this point of

view in what follows. To put Landau-Ginzburg theory on a similar footing one considers the target

space of the SLG model X as a real space [47] parameterized by real coordinates ua. The height

function on LG fields reads:

h = −
∫
D

dx

[
λa
dua

dx
− 1

2
Re(ζ−1W )

]
(3.12)

where λ = λadu
a is a locally defined form dλ = i

2gij̄dφ
i ∧ dφ̄j̄ .

We will be able to associate knot(link) embeddings to interfaces in so called supersymmetric

Yang-Yang-Landau-Ginzburg theory, therefore knot homotopy will be translated to homotopy of

the interface and the height function h. Derived in this way a Hilbert space of true interface ground

states is expected to be a knot (link) invariant.

3.2 Holomorphic reduction: Ward identities, Yang-Yang functional and

conformal blocks

Similarly to the discussed model of supersymmetric quantum mechanics the supersymmetric Landa-

Ginzburg theory also can be approached in two limits.

The Euclideanized Landau-Ginzburg action is almost Qζ-exact:

S = {Qζ ,V}+ 2β Re (ζ−1Z) (3.13)

So we rewrite the partition function as a generalized path integral in this model on a cylinder

(see fig.1.1):

Zα′α[u] =

∫
φ(T=−∞)=ϕα
φ(T=∞)=ϕα′

[Dφ][Dψ]eu{Qζ ,V}+2βRe (ζ−1Z) (3.14)

Here φα and φ∗α′ are quasi-classical solutions corresponding to ground states |α〉 and 〈α′| on a cylin-

der. According to the usual localization philosophy the generalized partition function is independent

of u and coincides with expression (1.43). Therefore we consider two natural limits:

• Quasi-classical limit u → ∞. In this limit quasi-classical solutions giving minimum to the

action contribute, and quantum fluctuations around these solutions are suppressed, so the

partition function reduces to a sum over all the quasi-classical trajectories weighted with the
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action and one-loop determinant:

Zα′α =
∑

s∈Sα′α(−iζ)

eβζ
−1Zs+βζZ̄s∆s (3.15)

Notice in this case the classical equation of motion coincides with the soliton equation (1.31)

up to a rotated phase ζ, so we used a set of soliton solutions Sα′α(−iζ). The contribution of

one-loop determinants is captured by ∆s.

• Alternative limit u → 0 “kills” all the dynamics and leads to just an integral over boundary

field values:

Zα′α =

∫
Ωα′ ∧ Ωα e

2β Re (ζ−1∆W ) (3.16)

Here Ω’s are middle-dimensional forms on the Kähler manifold X corresponding to vacuum

states [60]. Generically vacuum state functions are difficult to define. We will not use their

explicit form, so we do not specify them.

These expressions might seem too trivial to be real partition functions of a physical model. In the

first expansion (3.15) complications come from the determinant ∆s, in the case when α and α′

are the same vacuum and no soliton jumps are presented this determinant should coincide with a

diagonal component of so called Zamolodchikov metric that is far from being flat, and even in the

simplest case of cubic superpotential W it is represented by Painlevé transcendents (see [18]). On

the other hand complications in expansion (3.16) are represented by choice of specific forms Ω as we

have mentioned.

Here we will apply a holomorphic reduction trick we have already encountered in the beginning

of chapter 2 in the Hitchin system consideration. Initially ζ was a complex phase confined to a

unit circle. Now let us continue analytically ζ to ζ ∈ C×. Thus we define two complex variables

λ = βζ−1 and λ̃ = βζ (let us remind that β is a circumference of a compactified dimension so it is

positive real). In this way we rewrite tt∗-connection (1.45) and (1.46):

∇i = ∂ti +Ai − λCi (3.17)

∇̄i = ∂t̄i + Āi − λ̃C̄i (3.18)

as well as its flat section – partition function – in two ways:

• A sum over solitons (3.15):

Zαα′ =
∑

s∈Sαα′ (−iλ)

eλZs+λ̃Z̄s∆s (3.19)



48

It is important to notice that the set Sαα′(x) depends only on the phase of x, rather than on

its absolute value.

• An integral (3.16):

Zαα′ =

∫
Ωα ∧ Ωα′ e

λ∆W+λ̃∆W̄ (3.20)

From now on we will consider a holomorphic limit:

β, ζ → 0, λ̃→ 0, λ ∼ const (3.21)

In this limit the Berry curvature on the vacuum bundle vanishes, so we can choose the connection

to be just flat. In this case the partition function can be considered as a flat section of just tt∗-

connection holomorphic part (we will call it holomorphically reduced tt∗-connection):

(∂ti + λCi)Z[t] = 0 (3.22)

Following [60] form Ω becomes just purely holomorphic form. Indeed an integral (called brane

amplitude)

Π =

∫
Dφ eλW (φ) (3.23)

where we used a simple measure Dφ =
∏
i

dφi satisfies (3.22) as we will see further.

As well a simplification appears in the sum over solitons. In the limit β → 0 only zero frequency

modes around the soliton background (1.31) contribute. This contribution can be reexpressed in

terms of a fermion number fs:

∆s = eπifs+O(β) (3.24)

If we substitute the expression for the sum over solitons into tt∗-equations and again consider the

holomorphic limit, we will get equations for the soliton action:

Det (∂tiZs 1− Ci) = 0 (3.25)

This equation implies existence of a zero eigen vector Λs[ti] (in a generic position (away from

branching points) all the eigenvalues are distinct so there is just one zero eigenvalue, therefore just

one dimensional null-space):

(∂tiZs 1− Ci)Λs[ti] = 0 (3.26)
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Then we can determine the fermion number through a scalar product:

∂ti(πifs) = −Λ†s∂tiΛs

Λ†sΛs
(3.27)

Thus we expect the following asymptotic behavior in the limit λ→∞ from the solution to (3.22):

Zαα′ =
∑

s∈Sαα′ (−iλ)

eλZs[ti]+πifs[ti]+O(λ−1) (3.28)

Indeed, substituting this asymptotics into (3.22) and expanding we return to equations (3.26) and

(3.27).

Notice that we can get different vacuum amplitudes by acting with chiral fields Φi as well we can

choose different integration contours LJ in the boundary amplitude (3.23). So consider a generic

brane amplitude:

ΠJ
i [t] :=

∫
LJ

Dφ Φi(φ) eλW (φ) (3.29)

Let LJ be a Lefschetz thimble defined in a generic position as an integration path going through

the J-th critical point of the function W along the steepest descend path given by the soliton

equation (1.31) and going away on its ends to singularities where the exponent starts to diverge

(this might be the same singularity, say, ∞).2 The basis of the chiral ring is expected to have

the same dimensionality as the number of quasi-classical vacua: the number of W -critical points.

The same is the number of independent Lefschetz thimbles LJ . Therefore linearly independent flat

sections (3.29) form a non-degenerate square matrix ΠJ
i . Having this matrix we can reconstruct

holomorphically reduced tt∗-connection as a Berry connection:

∇i = ∂ti − (∂tiΠ)Π−1 (3.30)

Now let us explain briefly why (3.29) is a generic flat section of holomorphically reduced tt∗-

connection. We suppress the index J assuming Π to be a column with arbitrary choice of the

Lefschetz thimble.

We can calculate

∂tiΠj [t] = λ

∫
L

Dφ Φi(φ)Φj(φ)eλW (φ) (3.31)

The equivalence of the chiral ring to C [φ1, . . . , φn] /〈∂φiW 〉 implies in turn

Φi(φ)Φj(φ) = CkijΦk(φ) +
∑
p

hp∂φpW (φ) (3.32)

2One distinguishes left and right Lefschetz thimbles different by imposing a condition on the trajectory to approach
critical value either at spatial −∞, or +∞ correspondingly. For distinctness we choose left Lefschetz thimbles.
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Where hp are some constants independent of φ. Substituting it back we notice that the terms

proportional to hp cancel out due to the Stokes theorem, so the wave function Πi satisfies

∂tiΠj [t] = λCkijΠk[t] (3.33)

Generally tt∗-connection is also called Lax tt∗-connection implying relation to integrable models.

The very representation (3.16) implies a presence of a hierarchy of differential equations like flat

section condition (1.45) derived via Ward identities or so called Schwinger-Dyson equations when

we use invariance of the integral with respect to change of integration variables. Let us see how it

works in the case of holomorphically reduced tt∗-connection.

Indeed, notice the integrals (3.29) are invariant under change of variables φi → φi+ εf(φi) where

f is an arbitrary function and ε is a small parameter. Expanding them in ε we derive an infinite

hierarchy of Ward identities:

∑
i

∫
L

Dφ (f ′(φi)Φk(φ) + f(φi) [λ∂φiWΦk(φ) + ∂φiΦk(φ)]) eλW (φ) = 0 (3.34)

Now we can expand the integrand over chiral fields:∑
i

(f ′(φi)Φk(φ) + f(φi) [λ∂φiW + ∂φiΦk(φ)]) =

= D0(t) +
∑
i

Di(t)Φi(φ) +
∑
p

mp(t)∂φpOp(t, φ)

(3.35)

here Di(t) are coefficients of this expansion, some combinations of chiral ring structure constants.

The last term drops out by Stokes, while the remaining ones give a collection of differential equations:(
D0(t) +

∑
i

Di(t)∂ti

)
Π[t] = 0 (3.36)

These equations give a holomorphic connection on the same space of wave functions Πi[t] so we

conclude:

reduced tt∗−equations are equivalent to Ward dentities

Example. Let us illustrate this simple statement by a simple example: the Airy function. Consider

the following superpotential

W =
1

3
φ3 − zφ (3.37)

In this case the chiral ring reads:

C[φ]

〈φ2 = z〉
' C[1]⊕ C[φ] (3.38)
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The chiral ring is generated by two chiral fields 1 and φ with the following structure constants:

1 ◦ 1 = 1, 1 ◦ φ = φ ◦ 1 = φ, φ ◦ φ = z 1 (3.39)

In this case it is simple to construct holomorphically reduced tt∗-connection. We choose the following

column of the partition functions:

Π(z) =

 〈ψ|1〉
〈ψ|φ〉

 (3.40)

Just substituting the corresponding values of of structure constants we get the following tt∗-

connection:

∂zZ(z) = −λ

 0 1

z 0

Z(z) (3.41)

Notice this equation is equivalent to the Airy equation:

[
λ−2∂2

z − z
]
〈ψ|1〉 = 0 (3.42)

Airy equation can be easily derived through the Ward identities for the Airy integral, indeed,

Ai(z) =

∫
L

dφ e
λ
(
φ3

3 −zφ
)

(3.43)

Where L is one of Lefshetz thimbles, it does not matter which one we choose since integrals with

both choices satisfy the same differential equation, nevertheless different choices of the integration

cycle would give some linear combination of two Airy functions Ai(z) and Bi(z). Making substitution

φ→ φ+ ε and expanding in ε we get∫
L

dφ
(
φ2 − z

)
e
λ
(
φ3

3 −zφ
)

= 0 (3.44)

The term φ2 can be mimicked by an action of the second derivative, so we arrive to the Airy equation:

[
λ−2∂2

z − z
]

Ai(z) = 0 (3.45)

Let us consider the following family of superpotentials

W = −
N∑
i=1

log(z − φi) + 2
∑

1≤i<j≤N

log(φi − φj) +

N∑
i=1

V (φi, qa) (3.46)

Here we have N Landau-Ginzburg indistinguishable fields and put them into a common holomorphic

potential V (φ, qa) with parameters qa and experiencing 2d Coulomb interaction. Actually this choice

is related to an integrability of 2d Coulomb gas model.
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Following our logic instead of explicit calculation of structure constants and holomorphically

reduced tt∗-connection let us consider differential equations arising from Ward identities on the

integral representation. In the particular case of the Coulomb-gas-like potential (3.46) we have the

following Ward identities:[
λ−1∂2

z − V ′(z)∂z +
∑
a

Da(z, q)∂qa

]
Z(z, q) = 0 (3.47)

Where Da are meromorphic functions of z, qa depending on explicit form of the potential V . Here

we do not specify boundary vacua for the partition function since as we expect the same differential

equation for all the vacua choices. A detailed derivation of this equation is postponed to Appendix

D. This equation can be easily reformulated as a connection component ∇z on the parameter space.

So will refer to it as holomorphically reduced tt∗-connection for this family of Landau-Ginzburg

models.

To proceed to the knot theory we would like to choose a concrete family of Yang-Yang potentials:

V (φ, qa) = −
∑
a

ka log(φ− qa) (3.48)

And eventually in the Yang-Yang case we arrive to the following partial differential equation:[
λ−1∂2

z +

(∑
a

ka
z − qa

)
∂z −

∑
a

1

z − qa
∂qa

]
Π0(z, q) = 0 (3.49)

Making a new substitution

Π0(z, q) =:

(∏
a<b

(qa − qb)−
kakb

2

)(∏
a

(z − qa)−
λ
2 ka

)
Ξ(z, q) (3.50)

We derive for the wave function Ξ the following equation:[
λ−1∂2

z −
∑
a

(
1

2

ka(ka + 1)

(z − qa)2
+

1

z − qa
∂qa

)]
Ξ(z, q) = 0 (3.51)

Thus the chiral part of the partition function takes values in the space of Liouville conformal blocks

in CFT with central charge c = 1− 6
(
λ1/2 − λ−1/2

)2
[10, 101].

Ξ(z, q) =

〈
Φ(2,1)(z)

∏
a

V∆a
(qa)

〉
, ∆a =

ka(ka + 1)

2
(3.52)

In sec.3.4 we will explain how we use this connection to construct knot invariants.

Now let us use the Ward identities corresponding to the holomorphically reduced tt∗-connection in

the models of class (3.46) to extract information about solitons in these models. Indeed the expansion

over soliton solutions (3.28) should give an alternative representation of the brane amplitude:

Π[z, qa] =
∑
s∈S

cse
λWs[z,qa]+πifs[z,qa]+O(λ−1) (3.53)
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In this expansion we do not know the space of soutions S, neither expansion constants cs. Nev-

ertheless we can substitute this expansion into (3.47) and derive following equations for exponent

argument in the limit λ→∞:

(∂z∆Ws)
2 − V ′∂z∆Ws +

∑
a

Da∂qa∆Ws = 0 (3.54)

(2∂z∆Ws − V ′) ∂z(πifs) + ∂2
z∆Ws +

∑
a

Da(z, qa)∂qa(πifs) = 0 (3.55)

So to determine what soliton solutions are presented in the spectrum and do contribute to the

partition function we should solve the first equation. The corresponding solution would give a

central charge of the corresponding soliton. And the fermion number of the found soliton can be

calculated from the second equation.

At this stage these equations are not very illuminating since they are still partial differential

equations and to determine their solution we have to impose boundary conditions on a complex co-

dimension 1 surface in the parameter space unless we can simplify it or we know an exact solution

to the initial equation like in RCFTs. In what follows we will consider a specific limit simplifying

these equations.

3.3 Spectral networks categorification

Before going to description of the categorification process let us remind what an inverse process,

decategorification, should do. Decategorification suppresses notion of the Poincaré polynomial to

the Euler characteristic of a complex, so we forget about underlying vector spaces and take into

account only their dimensions. Notice that the partition function of an interface (1.43) depends on

Chan-Paton factors, so it is represented by a Chan-Paton matrix. Analogously to an interface one

associates a Chan-Paton matrix of complexes [47]. We will consider an interface complex as formal

sum of all Chan-Paton complexes. So applying Euler characteristic map χ to a complex generically

we will get a matrix of Euler characteristics, or a linear operator. So as a check we can consider

Euler characteristics of any expression in our discussion in this section and derive a corresponding

expression from chapter 2.

3.3.1 Solitons in a ’tHooft limit

Now let us consider the following scaling of the potential (3.46):

W = −
N∑
i=1

log(z − φi) + 2
∑

1≤i<j≤N

log(φi − φj) +
1

g

N∑
i=1

V (φi, qr) (3.56)
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Now we take a limit g → 0 while the number of fields N →∞ so that

gN ∼ const (3.57)

We will explain why this simultaneous ’tHooft limit is necessary in the consideration of the Yang-

Yang potential in what follows, the chosen scaling can be interpreted as a consideration of large

coefficients ka ∼ 1
g in (3.48).

We expect the following phenomena:

• In the vacuum equation the potential term is dominant

∂φiW ∼
1

g
V ′(φi) = 0 (3.58)

Thus all the stationary points for N fields φi are localized near the extrema of the potential

pa: V ′(pa) = 0. Thus we can choose a tuple of filling numbers {Na}, so that
∑
aNa = N . In

this picture Na fields φi are put in the vacuum pa. “Renormalized” filling numbers ca = gNa

are finite in this limit. A generic approximate ground state wave function reads:

Ψ(φ) =
∑

tuples
{Na}

c{Na}

N1∏
i1=1

δ(φi1 − p1)

N2∏
i2=1

δ(φi2 − p2) . . . (3.59)

• The second term in (3.56) is a repulsive 2d Coulomb potential. It does not allow to put all

the particles in one minimum. Rather they form “droplets” of finite thickness when the ca are

small. Indeed let us estimate the position deviation δφa of some particle from the vacuum pa

by a mean field approximation:

1

g
V ′′(pa)δφ(a) −

Na
δφ(a)

= 0, δφ(a) ∼
√

ca
V ′′(pa)

(3.60)

The approximation ca � 1 is known as a Dijkgraaf-Vafa (DV) phase [25, 26, 24] (see also

[78] and references therein) in a theory of matrix models. In this phase the vacua concentrate

near extrema of the potential in “Wigner droplets”. While these droplets are small they do

not affect each other, so probability distributions of the particles are approximately given by

Wigner semicircle distributions:

Ψthick(φ) =
∑

tuples
{Na}

c{Na}

N1∏
i1=1

w
1
2

−V ′′(p1)/c1
(φi1 − p1)

N2∏
i2=1

w
1
2

−V ′′(p2)/c2
(φi2 − p2) . . . (3.61)

where

wκ(z) =

√
κ

2π

√
4− κz2
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Let us estimate contributions of different terms into superpotential (3.56). Single sum over index

gives a factor of order N . Thus we have

−
∑
i

log(z − φi) ∼ N ∼
1

g

2
∑
i<j

log(φi − φj) ∼ N2 ∼ 1

g2

1

g

∑
i

V (φi, qa) ∼ N

g
∼ 1

g2

(3.62)

So we expect the following asymptotic behavior of the potential difference for solitons:

∆Ws =:
1

g2
F(qa) +

1

g
W(z, qa) +O(g0) (3.63)

Notice the term of order g−2 depends only on parameters qa while the term of order g−1 depends

on both qa and z.

Now let us depict an effective potential for fields φi following from mean field analysis. See fig.3.1.

A1 A2

Figure 3.1: Effective potential

First we have an external potential V (p) drawn by the black color that has extrema (we have

drawn two separate minima). The droplets of fields φi collected in these extrema create extra

repulsive (attractive) “hills” (drawn by the red color). So a particle φi in this picture “sees” an

effective potential, where all the extrema of the potential V (p) are doubled. This is a generic

picture, though in the DV phase (ca � 1) this doubling resolution is small and we can denote new

effective vacua p
(±)
a .

So we expect solitons hopping from p
(±)
a to p

(±)
b , or p

(+)
a to p

(−)
a or vice versa. Though these

solitons do not contribute to the partition function unless their phases are not aligned with ζ not

to break Qζ .
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If we add rescaling to the equation (3.54) it would look like

(∂z∆Ws)
2 − 1

g
V ′∂z∆Ws +

∑
r

Dr∂qr∆Ws = 0 (3.64)

Up to higher g-corrections, the equation simplifies, instead of being PDE it becomes a first order

ODE:

(∂zW)
2 − V ′(z) (∂zW) +

∑
r

Drur = 0 (3.65)

This equation is known as a spectral cover Σ→ C, and

ur := ∂qrF(q) (3.66)

are moduli.

The solution to this equation has branches

∂zW =
1

2
V ′(z)± 1

2

√
(V ′(z))2 − 4

∑
r

Drur (3.67)

The branching points in the case of DV phase (ca, ur � 1) are slightly resolving the minima of the

potential pa, moreover, as we will see later they are exactly positions p
(±)
a of effective vacua as it is

depicted at fig.3.1.

Now consider integrals of dW over periods of the spectral cover. A-periods are simple∮
Aa

dW = g

∮
Aa

dz

〈∑
i

1

z − φi

〉
SLG

= 2πigNa = 2πica (3.68)

B-periods are less trivial. Though we can estimate them using a well-known formula from electro-

statics for the potential difference ∆abϕ

∆abϕ =
∂Eab
∂q

(3.69)

where Eab is an energy, and q is a charge. The integral of dW over B-cycle encircling pa and pb

corresponds to the potential change of charge moved form pa vacuum to pb vacuum. the role of the

energy is played by the free energy F, and the charge we have already determined to be ca. Thus

we have ∮
Ba

dW =
∂F

∂ca
(3.70)

Thus we may think of dW as of a Seiberg-Witten differential of an effective theory given by

a spectral curve (2.5), and of F as of a corresponding prepotential. Indeed the spectral curve

corresponds to a theory of class S type A1 on C = P1 \ {punctures} with simple punctures z and qa
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and mass parameters on the punctures given by ka’s. Notice that at least when V (p) is a polynomial

the relevant chiral operators can be produced through deformation of the coefficients. There are as

many relevant deformations as the order of V ′(p), so the number of the A-cycles and the number of

moduli coincide.3

Now let us draw more information about solitons from the asymptotic analysis. So generically

we expect the following asymptotic behavior of holomorphically reduced tt∗-connection flat section:

Z(z, q) =
∑
p∈Dζ

dp exp

λ
 1

g2
F +

1

g

∫
p

dW

+O(g0, ζ0)

 (3.71)

Here we have used a set of detours Dζ of paths on the IR curve Σ (defined by (2.5))that emerges in the

consideration due to the Stokes phenomenon, and dp are Stokes parameters counting degeneracies

of detour appearance with signs. We have already discussed construction of the detour paths in

chapter 2, let us just remind that this set can be defined purely by consideration of tt∗-section

equation asymptotic behavior, no extra field theory data are needed. Now we make two important

remarks allowing one actually to count solitons in the presented ’tHooft limit:

• Comparing expansions (3.71) and (3.28) we conclude that soliton elementary partition func-

tions contributing in saddle points of the Landau-Ginzburg action are in one-to-one correspon-

dence with detours. So having calculated the expansion (3.71) and actual set Dζ we expect to

calculate the set S(ζ) from eq.(3.28) through this correspondence:

σ : Dζ → S(ζ) (3.72)

• Using this correspondence we can also define fermion numbers of solitons. Eq.(3.55) simplifies

in the ’tHooft limit as well and can be explicitly solved. Actually, we are not so interested in

the value of a fermion number of a state as in the difference of fermion numbers of two states

3 It is important to notice that we are able to present a set of equivalent observables, while even IR dynamics of
the class S theory and Landau-Ginzburg theory under consideration are different. This can be easily seen by counting
quasi-classical vacuum states. The number of IR vacua on a surface defect in the class S theory is given by the order
of the spectral cover (see [43, Sec. 3.4] for example), while the number of vacua in the Landau-Ginzburg theory
is given by a number of Bethe roots for N LG particles. Moreover, in what follows we will associate mutations to
solitons in the Landau-Ginzburg theory carrying topological charge, while the same mutations in class S theories are
associated to a 4d BPS particle presence in the IR theory spectrum, and 4d BPS particles have only a flavour charge
in the effective surface defect theory, no topological charge.
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to define grading difference in the MSW complex. So for two solitons s and s′ we have 4:

fs − fs′ = − 1

2πi

∫
σ−1(s)−σ−1(s′)

d log

(
W′ − 1

2
V ′
)
− 1

4πi

∫
σ−1(s)−σ−1(s′)

dV ′

W′ − 1
2V
′ (3.73)

Here we have used a map σ−1 : S(ζ) → Dζ . One might expect higher order g-corrections to

this solution. However we expect that the result of this difference is an integer number for

topologically equivalent solitons, so it can not depend on free parameter g, hence higher order

g-corrections should be cancelled out in this difference.

3.3.2 Simpletons and categorified Abelianization map

Now we would like to apply ideas of the spectral networks we have discussed in chapter 2 to flat

connections on the spaces of the ground states in the supersymmetric Landau-Ginzburg model

generated by marginal coupling deformations. This makes us to associate certain parallel transports

in the marginal coupling space to interfaces. For the general theory of interfaces we refer to [47].

Rules summarized in sec.2.2 allow one to represent parallel transport problem (3.71) in abstract

terms. To an interface U℘ transporting a Coulomb probe parameter z (see eq.3.46) along a path

℘ we associate an asymptotic expansion over detours Dζ(℘) depending on the phase ζ and on the

path ℘ of the interface:

U℘ =
∑

p∈Dζ(℘)

Yp (3.74)

Having a path variable Yp we can take the corresponding path element p in Dζ(℘) and associate to

it corresponding approximate solution σ(p) of the forced soliton equation (1.31), to this solution we

associate a perturbative wave function Ψ[Yp] analogous to (3.10).

We define the corresponding MSW complex for the interface U℘ as a vector space:

M(U℘) =
⊕

p∈Dζ(℘)

C[Ψ[Yp]] (3.75)

Let us argue that this complex is a regular homotopy invariant of ℘, to do so we should implement

the sign rule (2.22).

Depending on a concrete morphism of path categories the condition (2.22) can be realized in

different ways. We should realize it in terms of complexes and the reasonable realization is that

4This formula can be compared to a naive formula for the fermion number counting number of Dirac operator
eigenvalues crossed zero value

f =
1

2πi

∫
d log Det

i,j

〈
∂2W

∂φi∂φj

〉
It is well known that this formula has a restricted range of applicability. So we will be careful and apply our expression
only to solitons represented by path of the same homology class. To define fermion numbers for solitons appearing in
the R-complex we consider explicitly fusion of Liouville fields.
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a direct sum of complexes associated with Ya and Ya′ (see (2.21)) is quasi-isomorphic to the zero

complex. In other words C [Ψ[Ya]] and C [Ψ[Ya′ ]] form an exact sequence under the action of the

differential:

0→ C [Ψ[Ya]]
Qζ→C [Ψ[Ya′ ]]→ 0 (3.76)

Or, vice versa

0→ C [Ψ[Ya′ ]]
Qζ→C [Ψ[Ya]]→ 0 (3.77)

Or, returning to solitons we write:

〈Ψs(a′)|Qζ |Ψs(a)〉 = ±1 (3.78)

Where we have used a map s : Dζ → S(ζ) relating paths to soliton solutions.

Indeed if we calculate the fermion number difference for these two states according to our formula

in the ’tHooft limit (3.73) as an integral around square root singularity:

∆f = fa − fa′ =
1

2πi

±4π∫
0

d log
√
eiθ = ±1 (3.79)

Let us construct these states explicitly.

Suppose we have some generic superpotential W (φ, z) depending on fields φ and parameters z.

Now suppose at some critical value of the parameter z∗ two vacuum field values collide

φ∗1(z∗) = φ∗2(z∗) = φ∗

We can introduce new variables in the neighbourhood of the critical point z∗ (ramification point of

the spectral cover)

δφ = φ− φ∗, δz = z − z∗

Then the superpotential near this point can be expanded as

W = A δφ3 +B δφ δz + higher terms (3.80)

Thus without loss of generality we can parameterize the theory in the neighbourhood of ramification

points by a cubic potential:

W (φ, z) =
1

3
φ3 − φz (3.81)
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One can easily calculate corresponding critical points:

φ∗± = ±z 1
2 , ∆W = −4

3
z

3
2 (3.82)

And as we see there are three values z = e
2πi
3 n when soliton jumps are admissible, these are our

three S-walls (compare to sec.2.1).

We will construct an explicit field configuration contributing to the matrix element (3.78) in

sec.3.5.1 in terms of curved webs.

3.3.3 Evolution, gluing and mutations

One can introduce a natural composition operation on interfaces. For this purpose we will adopt a

notation � analogous to [47]. We define � as bilinear operation with respect to direct sum ⊕, so it

is enough to define it on generators. The interface Hilbert space of ground states is a subspace of

the Hilbert space of perturbative ground states being quantum fluctuations around quasi-classical

trajectories in the field space φi∗(x), let us denote a classical trajectory by p and the corresponding

state by Ψp
5. Suppose two trajectories p and p′ can be concatenated, we denote their concatenation

as p′ ◦ p, then we define the gluing composition of complexes as of vector spaces (compare to the

path algebra form sec.2.2):

C[Ψp]� C[Ψp′ ] =

 C[Ψp′◦p], if p and p′ can be concatenated,

∅, otherwise
(3.83)

Let us discuss a connection between the Coulomb probe interface when we change its parameter

z and interfaces in the master theory when we change moduli or phase ζ (see superpotential (3.46)).

Suppose we construct a MSW complex Mũ
γ for an interface corresponding to change of parameter z

of the Coulomb probe along path γ while phase ζ and other parameters ũ are fixed. Now suppose

z is fixed and ũ changes to a new point ũ′. An interface IU interpolating between points ũ and ũ′

along some path in the parameter space connects two models and its Euler characteristic may be

represented as a shift operator (a matrix of Euler characteristics of Chan-Paton complexes) acting

on the partition function space, indeed, the reduction to the Euler characteristic χ returns us to

representation of parallel transports in terms of coordinates on the moduli space of flat connections

(see sec.2.5.1). The interface IU transports an interface Mũ
γ to Mũ′

γ , this evolution in the Heisenberg

picture gives the following relation for Euler characteristics of these interfaces:

χ(Mũ′

γ ) = χ(IU )χ(Mũ
γ)χ(IU )−1 (3.84)

5In comparison to [47, eq.(17.7)] we have suppressed boundary condition indices i and j′ assuming this information
is stored in the solution p
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This relation is lifted to a quasi-isomorphism of complexes:

Mũ′

γ � IU ∼ IU �Mũ
γ (3.85)

If different families of complexes Mũ
γ and Mũ′

γ for different γ are known equation (3.85) can be used

to derive interface IU .

As an example let us consider an interface performing the simplest flip mutation (2.38). Classi-

cally, we can represent the flip as evolution:

Kγ′(Xγ) = φγ′Xγφ
−1
γ′ (3.86)

where the function φγ is quantum dilogarithm function (see [33] and also [44, sec.3.4.1]) defined as:

φγ =

∞∏
k=0

(1 + q2k+1Xγ) (3.87)

The action of quantum dilogarithm is going to be mimicked by corresponding interface Φγ satisfying

evolution equation (see fig.2.7)

(
C[Ψ[Yã(1) ]]⊕ C[Ψ[Yb̃(1) ]]

)
� Φγc ∼ Φγc � C[Ψ[Yã(1) ]] (3.88)

The Euler characteristics of Φγ we already know, it is given by the quantum dilogarithm. So we

expect

Φγc = (C⊕ C[X0])� (C⊕ C[X1])� (C⊕ C[X2])� . . . (3.89)

where Xk is a soliton wave function with corresponding Euler characteristics χ(Xk) = q2k+1Xγc . It

is easy to construct those solitons (see fig.3.2). Indeed the interface is represented by a “shower”

X0

X1

X2

Droplet 1 Droplet 2

Figure 3.2: Solitons between edges of Wigner droplets

of solitons interpolating from all the vacua at one edge of Wigner droplet neighbour by neighbour

to the very tip of another edge. Actually, there are two types of solitons depicted by solid lines

and dashed ones satisfying condition χ(Xk) = q2k+1Xγc , however in the spectrum just one shower

is presented, another shower appears after phase transition across a stability wall. An example of
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a similar transition is presented in sec.3.4.6. We do not expect contributions of other solitons, say,

from a center of a Wigner droplet to the center of another one since these solutions are suppressed

by their energy. As we will see an asymptotic solution in the limit q → 0 we have presented captures

actually an exact solution in the non-categorified case, i.e. we can reproduce Drinfeld R-matrices,

key elements of a Jones polynomial construction, from these flip interfaces in their asymptotic form

(3.87). So we hope that (3.89) captures enough information to reproduce a correct R-interfaces (see

sec.3.4.4) and knot cohomologies.

3.4 Braiding interfaces

3.4.1 Braiding as a parallel transport on the moduli space

As we have discussed in section 1.5 the physical approach to knot(link) invariants treats these invari-

ants as knotted Wilson loop observables in the Chern-Simons theory. n-component link described

by a collection of maps γi : S1 →M3 gives rise to the following average:∫
[DA]

∏
i

TrRi Pexp

∮
γi

A

 e
i κ4π

∫
M3

AdA+ 2
3A

3

(3.90)

We can associate its own representation Ri to each component of the link. Here κ is an integer

valued constant know as Chern-Simons level, we assume that the gauge group is SU(N).

One of the popular ways to calculate this average is to use the relation between Chern-Simons

theory and the Wess-Zumino-Witten (WZW) model. Suppose our 3-manifold M is a product of

a time interval I and some Riemann surface C. And suppose we have embedded some link into

M = C × I. The path integral (3.90) can be interpreted as an evolution of quantum states assigned

to each time slice. Let us choose some time slice t, the link intersects C at this time in points qi

(see fig.3.3). To each point qi we associate a representation Ri coinciding with the representation

of the Wilson loop puncturing C at this point if a tangent vector to the Wilson line has a positive

angle with the surface or with complex conjugated one to the representation of the Wilson loop if

the angle is negative. The corresponding space of states depends on the surface C and puncture data

(qi, Ri).

This space of states coincides with the space of conformal blocks in the WZW model [97, 77].

In the case C is a Riemann sphere we can present

(⊗
i

Ri

)
-valued wave functions Ψ of punctures qi

spanning this space. These wave functions satisfy the Knizhnik-Zamolodchikov equations [69]:∂qi +
1

κ+N

∑
j 6=i

T ai ⊗ T aj
qi − qj

Ψ(qi) = 0 (3.91)
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q1 q2 q3 q4
C

M3
time

Figure 3.3: Chern-Simons vs. Wess-Zumino-Witten

where T ai are generators of the algebra su(N) acting on Ri.

These equations can be thought of as a Schrödinger evolution equation in quantum mechanics.

Having an element B of a braid group we associate to it a trajectory representative: trajectories

of punctures qi : [0, T ]→ C as functions of time t. An evolution operator

U(T ) = Pexp

T∫
0

dt
∑
i 6=j

1

κ+N

T ai ⊗ T aj
qj(t)− qi(t)

q̇i(t) (3.92)

is invariant under regular homotopic transformations of trajectories qi(t), so it is an invariant of

braid group element B.

In what follows we will be interested in the gauge group SU(2), so we do not distinguish repre-

sentations and their conjugates, all the representations are labelled by spin J .

To connect this setup to spectral networks we have discussed in chapter 2 let us consider Heisen-

berg evolution picture where operators O are changing with time:

O(T ) = U(T ) O(0) U(T )−1 (3.93)

As a set of operators consider Wilson loops in the fundamental representation lying on the time slice

C. They can be described by introducing an additional strand with coordinate z:[
∂z +

1

κ+ 2

∑
i

σa ⊗ T ai
z − qi

]
Ψ(z; qi) = 0 (3.94)

where σa are Pauli matrices. Consider an asymptotic expansion when spins associated to strands

are large Ji ∼ hi/(2g), g → 0, we expect the following behavior (compare to sec.3.3.1):

Ψ(z|qi) ∼
− (κ+2)−1

g2
F(qi)− (κ+2)−1

g

z∫
dW(z,qi) (3.95)
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The resulting equation for the exponent argument coincides with the spectral cover equation (3.65)

(see derivation of this equation in Appendix E):

(dW)2 =
∑
i

(
h2
i

(z − qi)
+

∂qiF

z − qi

)
dz2 (3.96)

The spectral cover appearing in this setup is similar to one encountered in class S theory consid-

eration, in Liouville CFT and Yang-Yang-Landau-Ginzburg theory. So we can discuss all these

examples on a similar footing [50]. Wilson loops O correspond to holonomies of connection (3.94),

thus their asymptotic behavior is analogous to line defect behavior we have discussed in sec.2.5.1.

Asymptotic expansion coefficients of line defects are piece-wise constants on the moduli space,

i.e. as functions of qi. As we follow braid element B along the parameter space we cross some

K-walls, so to the evolution operator we associate an ordered set of K-morphisms:

U(T ) 
∏
a

Ka (3.97)

Wall-crossing formulae ensure that the resulting morphism is a braid invariant. A similar con-

struction is widely known in the literature (see e.g.[58, 27]) in a slightly different fashion. The flips

of traingulations in the Teichmüller theory corresponding to simple K-morphisms in our picture

are represented by by tetrahedron gluing. The adjoint action of K-morphism is associated to a

Chern-Simons partition function on a tetrahedron.

In a way similar to the WZW conformal block on the time slice ofM3 description one can consider

analogous Liouville (Toda) confirmal blocks with degenerate vertex operators. A collection of null-

vector equations for all vertex operators entering the conformal block is a self-consistent system of

partial differential equations, one can treat them again as connections on the configuration space

of vertex operator positions and proceed to an evolution operator (open Verlinde operator [40]) in

this system that is a braid invariant. Remarkably, it is possible to prove an equivalence of quantum

algebra Uq(sl2) and Liouville algebra as braided tensor categories [84, 83].

Finally, we can think of braid representatives and associated evolution as parallel transport

and interfaces in the Yang-Yang-Landau-Ginzburg (YYLG) theory. We expect that homotopically

equivalent braids give homotopically equivalent interfaces, therefore Hilbert spaces of true ground

states isomorphic to each other as graded vector spaces. Thus we expect a well-defined map from the

braid group to isomorphism classes of YYLG ground state Hilbert spaces (corresponding Poincaré

polynomials).

To arrive actually to knot (link) invariants one should introduce fusing/defusing operators or a

trace operation. We will see that there are certain obstacles on this route. So in what follows we will
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present a calculation of an interface representation for the braid group generators (in analogy to R-

matrices we will call them R-twists) in two ways: using Heisenberg evolution picture in the ’tHooft

limit and in a model with symmetry breaking of [48], and we will observe an agreement between these

calculations. For computational reasons the second model is simpler, so we will proceed with it in

the rest of this chapter. We will show explicitly that the resulting model describes braid invariants.

Afterwards we will describe an obstacle with fusing/defusing interfaces construction and propose a

resolution (reduction) that will allow us to construct knot invariants.

3.4.2 R-interfaces in the Heisenberg picture

In the topological field theory two following braids are identical:

qa

x
I R

=

qa

x
I ′R

(3.98)

This is a diagramatic representation of the following relation (compare to (3.85)):

I �R ∼ R� I ′ (3.99)

where � is a consequent gluing of interfaces (see sec.3.3.3) and ∼ implies quasi-isomorphism of

complexes.

This equation is enough to defineR-matrix as a differential operator acting on a space of partition

functions (3.47) [58, 57]. We will use it to define R-interface in the same fashion.

As we discussed we can construct solitons corresponding to the Verlinde interface using the

spectral cover Σ(3.65). In the particular case of YYLG model it is given by (3.96). Here Hamiltonians

ha are renormalized weights (ka = ha/g) of representations sitting on the strands and ua = ∂qaF

are moduli. The q-deformation procedure as in chapter 2 performs indeed a canonical quantization

of the parameter space: unified space of the puncture positions and Coulomb branch.

In a generic case, moduli ua are not independent due to conformal invariance, indeed, in the case

of superconformal SU(2) SYM theory with Nf = 4 the only parameter is the bare coupling constant

τ and the conjugated modulus is a Higgs vev.
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Though the calculation becomes much more convenient if we use a wider class of spectral curves

including (3.96):

dW2 =

2n+2∏
j=1

(z − pj)

n∏
a=1

(z − qa)2

dz2 (3.100)

Here qa are strands positions, and pj are new moduli that will be ramification points. We put

these parameters on the complex plane in such a way that qa lie on the real line and each qa is

accompanied by two branching points p2a−1 and p2a, two remaining b.p.’s p2n+1 and p2n+2 we put

in such a way they have large positive (negative) imaginary part. Then we take the following choice

of basic cycles as depicted in fig.3.4.

Y1 Y4 Y7

Y3 Y6

Y2 Y5

. . . . . .

Figure 3.4: Deformed spectral curve for YY model and cycle choice on it.

As before we associate to the chosen cycles soliton complexes Yi, though in the non-refined case

(t = −1) those are just differential operators Yi acting on the Yang-Yang partition function. They

represent quantized Fock-Goncharov coordinates on the Teichmüller space associated to triangula-

tions of C(see sec.2.4) and satisfy a Heisenberg algebra

YiYj = q2bjiYjYi (3.101)

where the matrix B = (bij) is the matrix of intersection form on cycles. For this chosen system of

cycles this matrix reads

B =



0 1 −1 0 0 0 0

−1 0 0 1 0 0 0

1 0 0 −1 0 0 0

0 −1 1 0 1 −1 0

0 0 0 −1 0 0 1

0 0 0 1 0 0 −1

0 0 0 0 −1 1 0



(3.102)

As we move parameters qa and Wigner droplets according to R-twist the spectral network goes

through the following film “frames”:
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On these frames the choice of cuts is given by orange color, purple crosses denote branching

points. Black dots are two singularities we are permuting. Lines of the spectral network are drawn

either red or blue depending on if it is of type (+−) or (−+) correspondingly.

As we can see the topology of spectral networks changes four times, this corresponds to four

consequent mutations. Thus we construct our R-interface as:

R = S � Φ4 � Φ3 � Φ2 � Φ1 (3.103)

Where Φi are mutations corresponding to edge-to-edge solitons we discussed in sec.3.3.3. (see fig.3.5).

And S is a classical soliton-less contribution from permutation of the Wigner droplets as wholes,

indeed there is a mean field effective potential between Wigner droplets depending logarithmically

on their positions on C, and this potential gives a 2πi shift when braiding.

3.4.3 Drinfeld R-matrix recovery, spins as filling number

We can easily recover Drinfeld R-matrix from (3.103) by substituting soliton contribution by oper-

ators Yi.

We can choose a “polarization”: say, the wave function representing disrtibution of the LG fields
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Φ1

Φ4

Φ3

Φ2

Figure 3.5: Four mutations of R-complex

among Wigner droplets is an eigenfunction of Y3 and Y6:

Y3Ξ = q2N3Ξ, Y6Ξ = q2N6Ξ (3.104)

Where q = eπiλ, and N3 and N6 are filling numbers of corresponding Wigner droplets encircled by

these cycles. Then a soliton interpolating between different Wigner droplets acts as a shift operator:

Y4 = e∂N6
−∂N3 (3.105)

Substituting corresponding classical expressions for mutation contributions and expanding (3.103)

we get an expression for the Drinfeld unversal RD-matrix for Uq(sl2):

RD = S

∞∑
n=0

(−q)−n
n∏
j=1

(1− q−2j)

[
Y −1

4 (1 + q−1Y −1
2 )(1 + q−1Y −1

6 )
]n

(3.106)

Operator S = qN3N6/2 is just a q-shift due to permutation of Wigner droplets. Let us introduce a

state vector |Na, ka〉 corresponding to a Wigner droplet associated to a puncture qa. It is defined

by two numbers: ka from the Lagrangian and Na – Wigner droplet filling number.

Notice that parts of the R-matrix expression in terms of cluster coordinates Yi can be recognized

as elements of Uq(sl2):

E ∼ e−N3(1 + q−1Y −1
2 ), F ∼ eN6(1 + q−1Y −1

6 ) (3.107)

Thus for two states

Y −1
4 (1 + q−1Y −1

2 )(1 + q−1Y −1
6 ) ∼ E ⊗ F

And our ground state function (3.59) can be thought of as an element of tensor product:

Ψ(N1, . . . , Nn) ∼ |N1, k1〉 ⊗ . . .⊗ |Nn, kn〉 (3.108)

Remember we assume that LG fields φi are indistinguishable, hence, say, a state when field φ1 is

placed to the critical point v1 and φ2 is placed to the critical point v2 is physically identical to a

state when φ1 is placed to v2 and φ2 is placed to v1, so indeed the state is defined just by filling

numbers of Wigner droplets.
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3.4.4 Spin-1
2 R-interface in the model of Wigner droplets

Now we try to adopt eq.(3.103) to the case of the fundamental representations.

As we discussed in the previous section the critical points of the LG model play a role of represen-

tation vectors |N, k〉 meaning that N vacuum slots are occupied near a puncture with parameter k.

In particular case of finite dimensional representations N and k are integers, moreover 0 ≤ N ≤ k,

this implies that number of particles N localized near a puncture with parameter k is integer and

not greater then k. This implies a need to reconcile equation for R-interface (3.103).

Indeed, an elementary mutation (3.89) used here should be modified since the infinite product

in (3.89) starting from an edge of Wigner droplet and going towards its opposite edge should be

terminated when the opposite edge of the Wigner droplet is reached.

Now consider a part of R-interface Φ2 � Φ1. As we braid two punctures the first mutation Φ1

causes a shower of solitons going from one Wigner droplet to another (see fig.3.5 and fig.3.2):

(3.109)

The next shower of solitons corresponding to Φ2 has the following form:

(3.110)

Notice that the solitons corresponding to the most left path in Φ1 and Φ2 coincide. Nevertheless,

degeneracy of this soliton is expected to be 1. So we just smoothly combine these pictures getting

a family of solitons:

Φ2 � Φ1 ∼
∏
i

(C⊕ C[Ψ[si]]) (3.111)

Where si are following solitons:

(3.112)
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Factors in this product are ordered according to counterclockwise order of the corresponding soliton

direction. So first appear solitons corresponding to Φ1 then those corresponding to Φ2. Similarly

we do for Φ4 � Φ3. Eventually, the expression for the R-interface takes the following form:

R = S �
y∏
j

(C⊕ C[Ψ[s̃j ]])�
y∏
i

(C⊕ C[Ψ[si]]) (3.113)

Another important notice is about fermion numbers of these solitons:

f [s̃] = f [s] + 1 (3.114)

This contribution comes from the fact that the soliton Y2, or equivalently Y6, has to have a

fermion number 1. Here we argue that this is the case:

f [Y2] = f [Y6] = 1 (3.115)

Indeed we can use the known solution of 2d CFT.

Indeed if composed Y2 and Y3 give just a central element that is twice (on two sheets) a mon-

odromy of around the singularity. Thus if we assume that Y2 and Y3 have the same homological

degree then it is equal to degree of a path around singularity. If we assume that singularity in point

p is analogous to singularity of (2s + 1, 1)-degenerate CFT field in (3.51) then we know asymp-

totic behavior of the soliton partition function in the neighbourhood of z → p is given by OPE of

degenerate fields:

Φ(2,1)(0)Φ(2s+1,1)(z) ∼ z∆(2(s±1)+1,1)−∆(2s+1,1)−∆(2,1)︸ ︷︷ ︸
∼Ξ(z)

Φ(2(s±1)+1,1)(0) (3.116)

Thus for the partition function Z according to (3.50) we have:

Z(z) ∼ eξ log(z−p),

ξ =
1

2
(∆2s + ∆2s+2,1)−∆2s+1,1 −∆2,1 + 2α2s+1,1α2,1 =

1

2
+ b2︸︷︷︸

λ

2s+ 1

2

(3.117)

Where α’s are corresponding Liouville momenta defined as ∆(α) = α(Q − α). As expected from

the asymptotic form (3.28) it has two contributions: the one proportional to λ corresponds to the

fields’ action, while the second contribution is due to fermion determinant sign. And the loop around

puncture p gives us a desired fermion number:

f [Y2] =
1

πi
(ξ|b2→0)

∮
p

d log(z − p) = 1 (3.118)

Let us consider the simplest case of the fundamental representation. In this case all the puncture

parameters ka = 1 and we have one either filled or unoccupied vacuum. In this case eq.(3.113)
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simplifies drastically

R� = S ⊕ S � C[Ψ[s̃]]⊕ S � C[Ψ[s]] (3.119)

Where we have just two non-trivial solitons (we will denote them by single and double line):

s̃

s

(3.120)

Let us describe this interface pictorially (compare to the vertex model (1.79)):

= q
1
2

+ +

+ +

⊕ q 1
2

− −

− −

⊕ q− 1
2

− +

+ −

⊕

⊕q− 1
2

+ −

− +

⊕ q 1
2

+ −

+ −

⊕ q− 3
2

+ −

+ −

(3.121)

Here we imply a correspondence spin projections and states in LG model: |+〉 ∼ |0, 1〉 and |−〉 ∼

|1, 1〉. A horizontal line and a double line imply solitons s̃ and s correspondingly interpolating

between Wigner droplets. A black bullet implies that the second soliton carries fermion degree [+1].

We will comment on this abbreviation and other elements necessary to construct MSW complex in

what follows.

3.4.5 Spin-1
2 R-interface in the model with symmetry breaking

A similar picture can be derived in the LG model with an extra symmetry breaking à la [48]:

W =
∑
a,i

ka log(qa − wi)− 2
∑
i<j

log(wi − wj) + c
∑
i

wi (3.122)

The case of the fundamental representation corresponds to ka = 1. In this case the vacuum equation

reads:

∑
a

1

wi − qa
−
∑
j 6=i

2

wi − wj
+ c = 0, ∀i (3.123)
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If the number of punctures qa is greater or equal to the number of LG fields wi we can present the

following solution in the limit c→∞:

wi = qa(i) −
1

c
+O

(
1

c2

)
(3.124)

where qa(i) is some choice among the punctures. Thus we see that LG fields are accompanying

punctures. This model is similar to the one of Wigner droplets, though in this case droplets consist

of only one LG field. Mutual repulsion between LG particles prevents them from gathering near

one puncture.

Similarly to consideration in s.3.4.4 we have two states for strands: + – puncture is accompanied

by one LG particle, − – the puncture is not accompanied by LG particles:

+

+

∼ qa ,

−

−

∼ qa (3.125)

Consider the simplest non-trivial case of two punctures and one LG field (we have used notations

q1 = x, q2 = y):

W = log(x− w) + log(y − w) + cw (3.126)

There are two possible vacua:

w− = x− 1

c
+O

(
1

c2

)
, w+ = y − 1

c
+O

(
1

c2

)
(3.127)

Following techniques of [19] we draw vanishing cycles (all the possible ζ-soliton equation solutions

beginning in a concrete vacuum), in this case this is simple since we need to solve a one dimensional

differential equation:

Im
[
ζ−1∂wW (w(s))ẇ(s)

]
= 0, (3.128)

where the dot means a derivative with respect to proper time s. We can write two cycles for each

vacuum since in the neighbourhood of the vacuum w∗ there are two solutions to equation (3.128):

w(s) = ± 2s√
ζ−1∂2

wW |w∗
+O(s2) (3.129)

In our situation vanishing cycles have the following form (we have chosen ζ = 1):

x

y

w−

w+



73

1

x

y

2

x

y

3

x

y

4

x y

5

x

y

6

y

x

Figure 3.6: Solitons in LG model with symmetry breaking.

As we braid x and y counterclockwise we get a consequent set of “film frames” (see fig.3.6).

Solitons appear when either two vanishing cycles intersect or a vanishing cycle emanated from one

vacuum merges to another vacuum.

As we see on these figures only two solitons interpolate between w− → w+ (marked by red on the

figure). It is not complicated to calculate their contribution to the q-degree and confirm equivalence

to (3.121)6.

6Actually it is not so simple to calculate the corresponding η-invariants to derive corresponding fermion numbers.
For example the naive formula 1

2πi

∫
d logW ′′ gives the wrong answer in this case. So we omit here this calculation

using results of the previous section.
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In the same way we can calculate an inverse R-interface, or R−1-interface

= q−
1
2

++

++

⊕ q− 1
2

−−

−−

⊕ q 1
2

−+

+−

⊕

⊕q 1
2

+−

−+

⊕ q 3
2

+−

+−

⊕ q− 1
2

+−

+−

(3.130)

3.4.6 Soliton spectrum of the model with symmetry breaking

Let us define the spectrum of solitons in a simple model with symmetry breaking with two punctures

and one dynamical field defined by superpotential (3.126).

Following [47, Sec.18.4.7] we define the target space X as a minimal cover of the configura-

tion space Conf(n, C) of indistinguishable n Landau-Ginzburg fields on the Riemann surface C

with punctures where superpotential W is single-valued. To be specific X = ̂Conf(n, C)/H where

̂Conf(n, C) is a universal cover, and H is a subgroup of π1 given by the kernel of the homomorphism∮
dW : π1 → 2πiZ. So that π1(X) = H.

Solitons in this model are charged with respect to the Abelianization of H. We will denote this

charge by h.

The critical points on X, defined by condition ∂wiW = 0, form a Z-torsor when one takes into

account the sheet on which the critical point lies.

On the other hand the soliton equation (1.31) and its boundary conditions are well-defined on

the configuration space Conf(n, C). Generically (if parameters ka are integer) a soliton solution can

be lifted to any sheet of W , though mutual difference between sheet numbers is fixed by the soliton

phase ζ, since a change of this difference shifts the soliton central charge by 2πi, and unless ζ = ±i

shifts ζ.

Nevertheless, there is a specific soliton set Sαα(i) that do not change a position of a critical

point in the configuration space, though it makes a transition between different sheets of W -cover.

We call these solutions “Bloch” solitons in analogy to Bloch wave functions spreading in periodic

structures like crystals [13].

The homotopy class of a path corresponding to Bloch solitons is simple. It is just a loop (clockwise

or counterclockwise) around a puncture (see fig.3.7).
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Figure 3.7: Example of Bloch counterclockwise and clockwise solitons.

Independently of the puncture positions qα these solitons have a central charge ±2πi (if we set

all ka = 1) so they can not form binding points at arbitrary interface phase ζ except a special value

ζ = ±i. In the case ζ = ±i to construct a generic classical ground sate we will have to consider

Bloch waves on the W -cover along similar construction in QCD (see e.g.[89, chap.13.5]). So we have

chosen arbitrary phase ζ different from ±i. Generically Bloch solitons are very similar, the only

thing distinguishing them from each other is the flavour charge h, or, in other words, we distinguish

punctures Bloch solitons are winding around.

Although Bloch solitons do not form binding points they are still present in the spectrum of the

theory and they do contribute to the instanton field configurations as boosted soliton trajectories as

we will see in what follows.

So, summarizing, the soliton spectrum consists of a Z-torsor over a finite set of solitons: X , Y ,

Bx, By and corresponding anti-solitons X −1, Y −1, B−1
x , B−1

y (see fig.3.8) flowing in the opposite

direction.

Bx By

Y

X

By Bx

Ỹ

X̃

	

Figure 3.8: Soliton spectrum in the model with symmetry breaking

Suppose we smoothly braid punctures x and y and denote the braiding angle as θ. Notice we

can not map homotopically the soliton spectrum at θ = 0 to the soliton spectrum at θ = π. Indeed

as we tune smoothly θ we get following transition between solitons:

Y → X̃ −1, Bx → Bx, By → By

Solitons X and Ỹ −1 have the same central charge, though they can not be homotopically mapped
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to each other since their flavour charges are different:

h[X ] = h[Y ] + h[Bx] 6= h[Y ] + h[By] = h[Ỹ −1] (3.131)

Since there is no homotopy map in the field space connecting two spatial field configurations with

different flavour charges we expect the flavour charge h to be conserved in the Yang-Yang-Landau-

Ginzburg theory.

So the system undergoes a phase transition crossing a stability wall (see fig.3.9, solitons that

remain stable across the wall we marked by solid line, solitons decaying or recombining are marked

by a dashed line). On this wall soliton X decays to Y and Bx that go through the wall smoothly,

meanwhile soliton Ỹ −1 recombines from Y and By.

i

ζ

θ

stability wall
Y

X

Bx,y

X̃ −1

Ỹ −1

Bx,y

Figure 3.9: Phase transition in the model with symmetry breaking

3.5 Spin-1
2

knot(link) (co-)homology

3.5.1 Instantons in Landau-Ginzburg model

First we review a construction of instantons in LG model following [47].

We perform the Wick rotation (t → −iτ) and consider field configurations in the Euclidean

space-time. A ζ-instanton “self-duality” equation in the LG model (Qζ-fixed point condition) takes

the following form:

(∂x + i∂τ )φi =
iζ

2
gij̄

∂W̄

∂φ̄j̄
(3.132)

Recall that ζ0-soliton is a constant in time field configuration satisfying (3.132) for ζ0:

∂xϕ
i
ζ0(x) =

iζ0
2
gij

∂W̄

∂φ̄j

∣∣∣
φi=ϕiζ0

(x)
(3.133)

Consider a µ-boost (rotation) in Euclidean space-time: x

τ

→
 cosµ sinµ

− sinµ cosµ


 x

τ

 (3.134)
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Figure 3.10: Straight and curved instanton trajectories.

A boosted configuration

φ̂i(x, τ) := ϕiζ0(x cosµ+ τ sinµ) (3.135)

satisfies (3.132) with ζ = ζ0e
iµ. Hence ζ-instantons can be constructed as moving boosted ζ0-solitons,

the boost amount reads µ = Arg ζ
ζ0

.

Solitons interpolating between I’th and J ’th vacua can be viewed as a localized field configu-

ration: a domain wall at a collective coordinate X0. The phase of the soliton ζIJ is given by the

superpotential difference between I’th and J ’th vacua:

ζIJ =
∆WIJ

|∆WIJ |
(3.136)

Therefore instantons are domain walls in the space-time bent at a certain angle:

µIJ = −Arg
ζ−1∆WIJ

|∆WIJ |
(3.137)

Or we can write its trajectory explicitly using collective coordinates X(s) and T (s):

dX(s)

ds
=

Im [ζ−1∆WIJ ]

|∆WIJ |
,

dT (s)

ds
=

Re [ζ−1∆WIJ ]

|∆WIJ |
(3.138)

Where s is a proper time along the trajectory. Since we would like to consider interfaces with the

superpotential W (x) depending explicitly on the spatial coordinate x the domain walls are curved:

dX(s)

ds
=

Im [ζ−1∆WIJ(X(s))]

|∆WIJ(X(s))|
,

dT (s)

ds
=

Re [ζ−1∆WIJ(X(s))]

|∆WIJ(X(s))|
(3.139)

These equations give rise to the curved web formalism of [47] to construct instantons in the LG

model. See, for example, fig. 3.10.

To construct a curved web one needs also vertices representing soliton scattering processes (see

fig.3.11). So we get joints of domain walls separating some fan of vacua {I1, I2, . . . , In}.

This process implies a conservation of the central charge. Indeed ZIJ = WI −WJ , thus we get:

ZI1I2 + ZI2I3 + . . .+ ZInI1 = 0 (3.140)
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In

I1

I2

I3

Figure 3.11: Bulk vertices

Calculation of explicit contributions of the vertices is not an easy task. One should explicitly solve

the ζ-instanton equation (3.132) with boundary condition associated to the vacua fan {I1, I2, . . . , In}.

For our purposes we need only to know if certain vertex is non-zero, or correspondingly the instanton

process associated to this vertex is allowed. We will comment on the calculation of these vertices in

sec.3.5.3.4.

As well we have boundary vertices. These vertices appear as soliton contributions to quasi-

classical LG wave-functions forming the MSW complex. An IJ-soliton appears at a specific coordi-

nate x of the interface when Im
[
ζ−1∆WIJ

]
= 0. As we see from eq.(3.139) these boundary vertices

represent binding points at future and past infinity for the instanton trajectory.

Eventually we will have soliton contribution corresponding to caps and cups, they correspond to

binding rays of certain phase ζ constraining boundary conditions at spatial ±∞.

To contribute to the Qζ-matrix element the instanton solution should carry one zero fermion

mode. We can count zero fermion modes using supersymmetry. It implies that we should associate

one fermion mode to each modulus of the solution. Indeed suppose we consider a family of solutions

to (3.132) φ(x, τ |r1, . . . , rn) parameterized by moduli r1, . . . , rn. To each modulus we can associate

a tangent vector δφi to solutions of (3.132) in the space of field configurations:

(∂x + i∂τ )δφi =
iζ

2
gij̄
(
∂2
j̄k̄W̄ δφ̄k̄ − glj̄Γikl∂j̄W̄ δφk − gil̄Γj̄

k̄l̄
∂j̄W̄ δφ̄k̄

)
(3.141)

Combined together with its conjugate counterpart these two equations can be reformulated in the

form:

∇/ Ψ = 0 (3.142)

Where ∇/ is the Dirac operator acting on the fermions and Ψ = (iζ−
1
2 δφi, iζ

1
2 δφ̄ī). Eventually, we

have one-to-one correspondence between fermion zero modes and moduli:

ψi− ←→ iζ−
1
2 δφi, ψ̄ī+ ←→ iζ

1
2 δφ̄ī (3.143)
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Consider for simplicity a MSW complex consisting of two quasi-classical states Ψ1 and Ψ2 on an

interface of degree 0 and 1 correspondingly:

M = C[Ψ
(0)
1 ]⊕ C[Ψ

(1)
2 ] (3.144)

Now suppose Ψ
(0)
1 has two solitons at x1 and x2:

Ψ
(0)
1 = xx1 x2

I J K
(3.145)

Similarly we assume Ψ
(0)
2 has also two solitons at x3 and x4 correspondingly:

Ψ
(1)
2 = xx3 x4

I L K
(3.146)

Then, in principle, we can expect the following instanton configuration:

x

t

−∞

+∞

x3 x1 x2 x4

T0

I

K

J

L

(3.147)

Notice that instanton trajectories are approaching boundary binding points asymptotically, though

some of the trajectories connecting web to the boundary vertices should be straight, otherwise the

instanton configuration has more moduli than 1 and does not contribute to the Qζ-matrix element.

The presented field configuration has exactly one modulus T0, so it can be moved forwards and

backwards in time. So we conclude

〈Ψ(1)
2 |Qζ |Ψ

(0)
1 〉 = ±1 (3.148)

The concrete sign of this matrix element is determined by the determinant of Dirac operator in the

instanton background or by orientation of the form Ψ2 ∧ ?QζΨ1 along the steepest descend path

([59] or [47, Appendix F]). We will comment on the sign computation in sec.3.5.2 and sec.3.7.4.

To conclude this subsection let us explicitly calculate an example of a curved web representing

instanton in the cubic model of a simpleton (see sec.3.3.2).
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Without loss of generality we choose x-dependence of the parameter z to be z(x) = e2πix and

the ζ-phase to be 1. The quasi-classical state corresponding to path a (see eq.(2.21)) does not

contain solitons, while the state corresponding to a′ contains two solitons at phases 0 and 2π
3 , or at

x-coordinates 0 and 1
3 :

Ψs(a) = x
+

(3.149)

Ψs(a′) = x0 1
3

+ − +

(3.150)

Substitute (3.82) into (3.139). This gives us the following equation for the trajectory:

dX

ds
= − sin 3πX,

dT

ds
= cos 3πX (3.151)

These equations can be easily solved:

T (X) = T0 −
1

3π
log sin 3πX (3.152)

We depict schematically this trajectory on fig.3.12.

t

x

+∞

−∞
0 1

3

T0

+ − +

Figure 3.12: Instanton curved web for a simpleton.

As we see the instanton is represented by a domain wall seprating + and − vacua and interpo-

lating between two soliton configurations: no solitons in the past infinity, a soliton – anti-soliton

configuration (we depicted soliton boundary vertices by red squares) in the future infinity.

This instanton field configuration has one free parameter t0 that is a one real collective coordinate.

Hence in the quantum theory we have exactly one fermion zero mode associated to this collective

coordinate. This means that the instanton carries fermion number 1 as it is expected.
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3.5.2 Why is Q2
ζ = 0?

As for now we can define if for two states Ψ1 and Ψ2 the matrix element 〈Ψ2|Qζ |Ψ1〉 is zero or

non-zero, and generically we can scale non-zero matrix element to be ±1.

The concrete sign of this matrix element is given by a relative sign of the top form Ψ2 ∧ ?QζΨ1

and the volume form on the field space [59]. Both forms are infinite dimensional, so this complicates

the problem of defining the matrix element sign.

Suppose we have a collection of cochain generators. Associate to them nodes of a graph. Two

nodes corresponding to generators of degree f ψ and of degree f + 1 χ if 〈χ|Qζ |ψ〉 6= 0 we connect

by an arrow

ψ χ
(3.153)

Then we can represent a complex as an oriented graph, say,

First suppose the graph is a tree. Without loss of generality starting from any root we can choose

orientation of each form in the nodes in such a way that all the edges correspond to matrix element

+1.

Though if the graph has loops some edges are constrained to have definite sign by pre-chosen

orientation in nodes.

Consider the simplest loop:

α γ

β

δ

+1 +1

+1 x
(3.154)

So we start with a root α, then fix matrix elements along edges going to node β, then γ, and from α

to δ, thus orientations in all the nodes are fixed. So matrix element x is automatically determined

by this data. The complex reads:

M =

(
0→ C[α]

Q(21)
ζ−→ C[β]⊕ C[δ]

Q(32)
ζ−→ C[γ]→ 0

)
(3.155)

The differential reads:

Q(21)
ζ =

 1

1

 , Q(32)
ζ =

(
1 x

)
(3.156)
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Then condition Q2
ζ = Q(32)

ζ Q(21)
ζ = 1 + x = 0 implies x = −1.

Let us motivate this sign from field theory. We should calculate explicitly how the sign of the

form differs for two paths α→ β → γ and α→ δ → γ.

Let us start with approximate ground state in the Landau-Ginzburg theory. We just use an

infinite dimensional analog of formula (3.10):

|Ψ〉 = e
−
∑
n
|κn|

∫
|δφin|

2dx

( ∏
n:κn<0

ψ̄īn,+

)( ∏
n:κn>0

ψ̄īn,−

)
|0〉 (3.157)

Where δφin is n-th eigenfunction of the Dirac operator ∇/ :

∂xδφ
i
n −

iζ

2
gij̄
(
∂2
j̄k̄W̄ δφ̄k̄n − glj̄Γikl∂j̄W̄ δφkn − gil̄Γ

j̄

k̄l̄
∂j̄W̄ δφ̄k̄n

)
= −iκnδφin (3.158)

Here we used slightly loose notations. Indeed, after some energy level the spectrum becomes con-

tinuous. So by a sum over states we imply both a sum over discrete spectrum and an integral over

continuous one.

If we considered a quasi-classical state in the free (spatial translationally invariant) Landau-

Ginzburg theory as a perturbation to a solitonic solutions there was a modulus corresponding to

spatial translations and correspondingly a fermion zero mode. So the ground state is double degen-

erate. This degeneration disappears in the presence of the interface since the translation invariance

is broken and there is no fermion zero mode.

In other words the zero mode gets a correction ∆κ0 to its eigenvalue that is either negative or

positive.

We can estimate the correction to the eigenvalue using simple perturbation theory:

∆κn = Re

[
ζ−1

∫
dx

∂2(W − W̃ )

∂φi∂φj
δφin
||δφin||

δφjn

||δφjn||

]
(3.159)

Where W is a superpotenital of an interface and W̃ is a superpotential of a free theory. We can make

the difference between these potentials as negligible as possible, thus fermion zero mode eigenvalue

correction iz non-zero but small, much smaller than a typical eigenvalue order Λ that is of order of

a soliton mass.

In this coordinates the supercharges has the following form:

Qζ =
∑
n

∫
dx
[
igij̄ψ

i
n,− (|κn| − κ̃n) δφ̄j̄n − iζ−1gījψ̄

ī
n,+ (|κn| − κ̃n) δφjn

]
Q̄ζ =

∑
n

∫
dx
[
igījψ̄

ī
n,− (|κn|+ κ̃n) δφjn − iζ−1gij̄ψ

i
n,+ (|κn|+ κ̃n) δφ̄j̄n

] (3.160)

Where κ̃n is the true n-th eigenvalue differing from κn by instanton contributions.
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We keep track only of fermion variables, so we suppress all the indices. Fermion zero modes are

highly localized on solitons. Indeed, if we assume a soliton to have a form of a kink, approximately

Heaviside step function θ(x), then fermion zero mode wave function is given by θ′(x) = δ(x) (see

(3.143)). We will denote a mode localized at coordinate x as ψ̄±(x). Solitons corresponding to a

single line (3.213) bring in ψ̄−(x)-modes, while those corresponding to double line bring in ψ̄+(x)-

modes.

So suppose we have a state Ψ with a collection of binding points B, B = B− tB+, where B− are

binding points for what ∆κ0 < 0, and B+ are those with ∆κ0 > 0 correspondingly.

Then we write a form corresponding to the state Ψ as

Ψ ∼
∏

x−b ∈B−
ψ̄+(x−b )

∏
x+
b ∈B+

ψ̄−(x+
b ) ∧ Ω (3.161)

where Ω is a form corresponding to higher energy modes.

In these terms the supercharge takes the following form:

Qζ ∼

( ∑
i+∈R+1

ψ̄+(xi+) +
∑

i−∈R−1

ψ−(xi−)

)
∧ (3.162)

Where R+1 is a collection of binding points corresponding to R-interfaces and R−1 is a collection

of binding points corresponding to R−1-interfaces.

Typical loop situation (3.154) arises when we have a kink-anti-kink “bubble” when kink and

anti-kink appear from the vacuum and merge back creating something else. For example, consider

two consequently glued R-interfaces. We have two possibilities: binding point given by a single line

trajectory (3.213) bound to the first interface located at x1 and binding point given by a double line

trajectory bound to the second interface and located at x2, or vice versa:

β ∼ ψ̄+(x2)ψ̄−(x1) ∧ Ωβ , δ ∼ ψ̄+(x1)ψ̄−(x2) ∧ Ωδ (3.163)

Suppose there are no binding points on states α and γ:

α ∼ Ωα, γ ∼ Ωγ (3.164)

Now consider path α → β. First the action of Qζ gives a new mode ψ+(x2), then one of the high

energy modes ψ− becomes a low energy mode, but it does not intersect the zero eigen value to

preserve the fermion number:

Ωα
Qζ−→ ψ̄+(x2) ∧ Ωα

flow−→ ψ̄+(x2)ψ̄−(x1) ∧ Ωβ (3.165)
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Now consider path β → γ. The action of the supercharge gives a mode ψ̄+(x1) and the mode ψ̄−(x1)

returns back to high energy modes. So we reconstruct the whole path α→ β → γ:

Ωα
Qζ−→ ψ̄+(x2) ∧ Ωα

flow−→ ψ̄+(x2)ψ̄−(x1) ∧ Ωβ
Qζ−→

Qζ−→ ψ̄+(x1)ψ̄+(x2)ψ̄−(x1) ∧ Ωβ
flow−→ ψ̄+(x1)ψ̄+(x2) ∧ Ω̃

(3.166)

On the other hand if we move along path α→ δ → γ modes ψ̄+(x1) and ψ̄+(x2) appear in different

order:

Ωα
Qζ−→ ψ̄+(x1) ∧ Ωα

flow−→ ψ̄+(x1)ψ̄−(x2) ∧ Ωβ
Qζ−→

Qζ−→ ψ̄+(x2)ψ̄+(x1)ψ̄−(x2) ∧ Ωβ
flow−→ ψ̄+(x2)ψ̄+(x1) ∧ Ω̃

(3.167)

Obviously, two resulting forms differ by the sign:

〈γ|Qζ |β〉︸ ︷︷ ︸
+1

〈β|Qζ |α〉︸ ︷︷ ︸
+1

= −〈γ|Qζ |δ〉︸ ︷︷ ︸
x

〈δ|Qζ |α〉︸ ︷︷ ︸
+1

(3.168)

Or, as we expected x = −1.

3.5.3 Homotopy

3.5.3.1 Interface homotopy and complex quasi-isomorphism

In supersymmetric quantum mechanics it is shown that supercharge cohomologies are invariant

under homotopic changes of the superpotential and metric on the manifold. Similar is expected in

the Landau-Ginzburg theory, so we expect the invarinace of the constructed knot cohomology. In

this section we will present an explicit check of this invarinace.

Following the usual idea (see sec.1.5) this check is made locally in elementary homotopic moves

called Reidemeister moves.

So first we will be ensured that invariance can be reduced to local homotopy. This is non-trivial

statement, since generically the very cohomology is not local, we can not cut out arbitrary braid

from a knot and assume it will be a proper subcomplex.

Afterwards we verify the Reidemiester moves II and III.

To prove isomorphism of cohomological groups we use simple reasoning following [47, sec.10.7].

Consider two chain complexes V and V ′ endowed with degree 1 differentials Q and Q′. A degree

d linear map U : V → V ′ is called chain map if it satisfies

Q′U = (−1)dUQ (3.169)
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If we have two chain maps U : V → V ′ and U ′ : V ′ → V and thier composition is homotopic to an

identity map:

UU ′ = Id +QT + TQ

U ′U = Id +QT ′ + T ′Q

(3.170)

then the following cohomologies are isomorphic:

H•(V,Q) ∼= H•(V ′, Q′) (3.171)

As U and U ′ we can use homotopy map between different knot diagrams. Speaking plainly under

this map the true ground states are mapped to each other, while fake ones merge or appear by pairs

as they have non-zero matrix element with the supercharge Qζ .

As it is proposed in [47, sec.10.7] we consider moduli qα(x, σ) depending on the homotopy pa-

rameter σ in (3.48) and change homotopically the superpotential with “time” σ as fast as we like,

then we get a curved web defined by the instanton equation (3.132) with τ substituted by σ and

boundary conditions given by V and V ′. Notice that in this time we break the time translation

invariance of the equation, the curved web has no moduli, and the map U has degree 0 opposed to

the differential.

If we change knot embedding very slowly we can assume that solitons remain in their binding

points, so we can construct the web just by following migration of the binding points as we transform

the knot digram. This reasoning allows us to work locally. If we move the knot digram only

inside some part of the knot, only binding points in this part are moving. In what follows we

check consequently the Reidemeister moves II and III necessary for claiming that the presented

construction gives braid invariants. To construct knot invariants we will introduce braid closures

and verify Reidemeister move I afterwards.

3.5.3.2 Reidemeister move II

Consider homotopic Reidemeister move II:

→ (3.172)
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The l.h.s. gives following contributions to the MSW complex:

M


 =

− −

− −

− −

⊕

+ +

+ +

+ +

⊕

− +

+ −

− +

⊕

+ −

− +

+ −

⊕

⊕q


− +

− +

+ −

⊕

− +

+ −

+ − 
⊕ q−1


− +

− +

+ −

⊕

− +

+ −

+ − 

(3.173)

First four terms do not contain binding points and transform to corresponding contributions from

the r.h.s. under homotopy as they are. Remnant terms in two subcomplexes M1 and M−1 of q-

degrees 1 and -1 correspondingly merge to each other under homotopy. Indeed notice that binding

points correspond to solitons that have homologically equivalent paths, so these solitons have the

same central charge Z. We can construct Im[ζ−1Z] as a function of position x and homotopy “time”

σ (see fig.3.13).

Figure 3.13: Soliton central plot

Horizontal plane on this figure denotes the zero level. Intersection line of the plot with zero level
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corresponds to solutions x0(σ) of Im[ζ−1Z(x0, σ)] = 0, soliton positions as a function of homotopy

“time” σ. Thus as we see two binding points are moving towards each other merging.

3.5.3.3 Reidemeister move III

The most intriguing part is homotopic Reidemeister move III:

−→ (3.174)

Both sides contain multiple contributions.

We can divide all the generators of complexes at both sides of this map into groups. Homotopy

does not change the boundary conditions of the interfaces. So the homotopy invariance condition

for a group of generators mapping boundary state |a〉 ⊗ |b〉 ⊗ |c〉 to |a′〉 ⊗ |b′〉 ⊗ |c′〉 as Htpya
′,b′,c′

a,b,c .

We start with Htpy−−−−−−:

q2

− −

− − −

− − −

− −

−→ q2

− −

− − −

− − −

− −

(3.175)

Notice the homotopy map does not change gradings. In this case neither of two sides has biding

points, thus the homotopy map is just a literal homotopic map of braids. Other groups Htpy+−−
−−+,

Htpy−+−
−+−, Htpy++−

−++, Htpy−−+
+−−, Htpy+−+

+−+, Htpy−++
++− and Htpy+++

+++ are checked in the same

simple fashion.

Now we turn to the next type of groups Htpy+−−
−+−:

q

− +

+ − −

+ − −

+ −

⊕ q−1

− +

+ − −

+ − −

+ −

−→ q

+ −

− + −

+ − −

− −

⊕ q−1

+ −

− + −

+ − −

− −

(3.176)

This case can be also checked in a simple way. Notice there is one-to-one map of each q-graded

component, the whole top twist goes to the bottom twist under homotopy map, the binding points
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are confined to the twist area smoothly flow along time-like trajectory not changing their type. In

the same way we check Htpy−+−
+−−, Htpy++−

+−+ and Htpy+−+
++−.

The most interesting term is Htpy+−−
+−−:

LHS(Htpy+−−
+−−) = q2

+ −

+ − −

+ − −

+ −

⊕ q−2


+ −

− + −

− + −

+ −

⊕

+ −

+ − −

+ − −

+ − 
⊕

⊕

+ −

− + −

− + −

+ −

⊕

+ −

+ − −

+ − −

+ −

⊕

+ −

+ − −

+ − −

+ −

RHS(Htpy+−−
+−−) = q2

− −

+ − −

+ − −

− −

⊕

− −

+ − −

+ − −

− −

(3.177)

Terms with q-degree +2 are mapped to each other under homotopy straightforwardly through a

3-valent bulk vertex:

x

σ

Similarly behaves q-degree −2 term in the l.h.s. though it contains two generators that merge

through a 3-valent vertex. Notice in this case boundary vertices in the time past are not binding

points, instead they are boundary conditions. So the curved web does not have moduli and the

homotopy map is of degree 0.

And the most non-trivial contribution is of q-degree 0. Let us draw homological classes of soliton
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paths in the field space (all the solitons flow from left to right):

From this diagram it is clear that generators containing binding points marked by orange, green

and magenta colors are fake and merge through a 3-valent bulk vertex, while a generator containing

binding points marked by red and blue is mapped to the generator on r.h.s. We can depict both

curved webs corresponding to two these processes on the following diagram:

σ

x

(3.178)

Notice that solitons marked by orange and gray binding points have identical central charges.

Thus they give identical trajectories in the curved web formalism. This trajectory is continued by

dashed line on the presented diagram. So two black bulk vertices that are lying on this dashed line

might be merged into a multi-valent vertex, then maps Qζ and U might be much more complicated.

Nevertheless this does not happen since this solitons are not present in the spectrum at the same

point of the parameter space, moreover chambers where gray and orange solitons are presented in

the spectrum of the theory are separated by another chamber where there are no solitons of this

central charge. We can observe this explicitly by constructing stepest descend paths:

In the same way we check Hpty++−
++−. All the other possible groups are empty so we have

demonstrated homotopy invariance of the cohomology under Reidemeister move III.
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3.5.3.4 Bulk vertices from wall-crossing formulae

Generically to define a bulk vertex one should solve the instanton equation (3.132) at a certain point

in the parameter space qα and with boundary conditions prescribed by the vacua fan {I1, . . . , In}:

βI1,...,In [qα] =
In

I1

I2

I3

(3.179)

This is a pretty tough problem. Nevertheless, we know a problem of a similar difficulty: to derive

an explicit solution of the soliton equation (1.31). And usually in practice an explicit form of the

solution is irrelevant, instead we are interested in solution degeneracies. Similarly, in our construction

we are interested if a vertex βI1,...,In [qα] is zero or non-zero, if a solution to the instanton equation

exists or not.

A nice way around to determine soliton degeneracies is so called wall-crossing formulae (as we

discussed in chapter 2). We use a contribution of existing soliton solutions to a parallel transport with

tt∗-connection. Then homotopy invariance of this parallel transport following from tt∗-connection

flatness allows us to relate soliton contributions and, consequently, soliton degeneracies in different

areas of the parameter space.

Suppose we have chosen two homotopic paths ℘ and ℘′ on the parameter space, consider two

MSW complexes M(℘) and M(℘′) corresponding to interfaces associated to these paths. Homotopy

invariance implies equivalence of Euler characteristics:

χ(M(℘)) = χ(M(℘′)) (3.180)

Let us make this statement tautological, assume M(℘) and M(℘′) are one-dimensional:

M(℘) = (0→ C[Ψ1]→ 0) , M(℘′) = (0→ C[Ψ2]→ 0) (3.181)

The homotopy should act on this spaces as a non-degenerate linear map U :

〈Ψ2|U |Ψ1〉 6= 0 (3.182)

Sometimes we could do even better and reduce U to just one vertex β[qa], thus we conclude β[qa] 6= 0.

Let us illustrate this statement with an example.

Consider a superpotential (3.122) with three punctures q1, q2 and q3 and one LG field w. As

before we consider three vacua w∗i ∼ qa − 1
c and fix phase ζ to be 1. Let us draw Lefshetz thimbles
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for all vacua and consider two homotopic paths A and B in the space (q1, q2, q3):

1

2

3

1

2 3

1 2

3

1 2 3

A1
A2

B1 B2

(3.183)

This example illutstrates the simplest wall-crossing formula. Indeed we get following MSW com-

plexes for two paths:

M(A) = (C + C[Ψ[E12]])� (C + C[Ψ[E23]])

M(B) = (C + C[Ψ[E23]])� (C + C[Ψ[E13]])� (C + C[Ψ[E12]])

(3.184)

Where Eij is a soliton interpolating between vacua i and j. Expanding both sides and comparing

two Chan-Paton factors we conclude that two following complexes are quasi-isomorphic:

C[Ψ[E12]]� C[Ψ[E23]] ∼ C[Ψ[E13]] (3.185)

Though both this complexes are one-dimensional, so there is U mapping co-chain on the left hand

side to co-chain on the right hand side that is saturated by a vertex β123 that is non-zero.

On the other hand we also can easily say when β is zero: when a stability condition is broken.

Indeed solitons forming domain walls of the vacua fan should be solutions to the ζ-soliton equation

(1.31). Each IJ-ray outgoing from the bulk vertex has its own phase ζ0, if the soliton equation

(1.31) fails to have a solution interpolating between I and J vacua at phase ζ0 the corresponding

vertex β is zero. So β[qα] are not constant functions of parameters qα. Rather, they jump across

the stability walls.

Let us make a concluding remark for this subsection. Notice the presented bulk vertex β123 is

described by a homotopic interpolation between two field configurations: first a soliton brings a LG

field to a vacant vacuum near a puncture by some moment x1, then we change spatial coordinate

x further, at some moment x2 > x1 appears another soliton that carries this field away. Smoothly

shrinking the difference x2 − x1 to zero we get a homotopic interpolation between a trajectory in

the field space where the LG field stays “for a while” in the critical point and a trajectory without

delays (see fig.3.14).
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x

−

−

+
x < x1 x > x2

Figure 3.14: Gluing field trajectories I.

Consider an opposite situation: the first soliton makes a vacuum near a puncture unoccupied,

then the next soliton fills it in (see fig.3.15). A similar analysis requires the bulk vertex for this

process to be non-zero (for instance, a subcomplex of q-degree 2 in Htpy++−
++− (see sec.3.5.3.3 for

a definition)), thus there is a 3-valent bulk vertex connecting two trajectories in the field space

depicted in fig.3.15. Notice, effectively, two LG fields denoted by red and blue colors turn out to be

permuted during this transition, though we think of them as indistinguishable, so boundary critical

points are equivalent. This 3-valent vertex breaks flavour charge conservation (see sec.3.5.4.1).

x

+

+

−
x > x2 x < x1

Figure 3.15: Gluing field trajectories II.

3.5.4 Fusing/defusing interfaces

3.5.4.1 Quantum algebra heritage

Fusing/defusing interfaces can be defined as D-branes, i.e. proper boundary conditions for a theory

with two punctures.

We will try to approach this problem in an indirect way. Let us start with some generic boundary

conditions for a theory with two punctures. We will denote the very interfaces as “black boxes”.

We can define what critical points one can as an output of this interface. There are two strands, i.e.

two vacant vacua, they are filled or unoccupied (we will denote them as V(ij)):

=

+ +

V(++)

⊕

+ −

V(+−)

⊕

− +

V(−+)

⊕

− −

V(−−)

(3.186)
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where we have denoted the defusing interface as a “black box”. A major property of this interface

is that it does not change vacuum properties of the empty theory, it behaves as it is not present.

For example, in the quantum algebra construction of Jones polynomials analogous expression (q-

Clebsh-Gordan coefficient, see sec.1.5) behaves as a trivial representation under action of Uq(sl2)

generators K, E and F . Using co-multiplication formulae one can derive explicitly expressions for

corresponding q-Clebsh-Gordan coefficients.

After categorification we lose a naive notion of Uq(sl2)-generators. Still we can mimic their action

by braids:

1. ∆(K): Total charge of the defusing interface should be 0. This cuts possible boundary condi-

tions at the spatial +∞:

= V(+−) ⊕V(−+) (3.187)

2. ∆(E), ∆(F ): These generators can be interpreted as following braid – defusing interface

relations:

= = (3.188)

The second condition is similar to two copies of one ∆(F ) co-product condition:

−

+− −

⊕

−

+− −

∼ ∅ (3.189a)

−

+− −

⊕

−

+− −

∼ ∅ (3.189b)

Indeed the soliton brings the Landau-Ginzburg field to a strand of the defusing interface so it acts as

lowering operator F . Although we have two types of solitons (denoted by a single and by a double

line).
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It turns out that these two conditions are inconsistent with the conservation of the flavour

charge discussed in sec.3.4.6. Different flavour charge of soliton configurations implies that they lie in

different homology classes of trajectories on the field space, so there is no a smooth field configuration

connecting them. This in turns implies that there are no instantons carrying flavour charge, thus

the flavour charges of two complex generators homotopic to ∅ should coincide. Comparing (3.189a)

and (3.189b) we get two inconsistent relations for flavour charges of defusing interfaces:

h[V(−+)] = h[V(+−)] + h[X1] (3.190a)

h[V(−+)] = h[V(+−)] + h[X2] (3.190b)

where X1 and X2 are solitons depicted in fig.3.16. This is an apparent obstacle in the construction

of the fusing/defusing interfaces and therefore knot invariants.

21

X2X1

Figure 3.16: Solitons X1 and X2.

The obstacle would be eliminated if there were an instanton interpolating between Bloch solitons,

and the flavour charge was not conserved.

From now on let us add this transition by hand: we posit that there is a finite action process

breaking flavour charge conservation. Let us draw consequences of this assumption.

All the states become h-scalars, so all the Bloch solitons are indistinguishable, there are just

counterclockwise B and clockwise B−1 Bloch solitons and it can be put to any puncture with filled

vacuum, all these situations are equivalent. Furthermore, we are allowed to eliminate the stability

wall in the model with symmetry breaking (see fig.3.9). Soliton X is smoothly continued by soliton

Ỹ −1 across the wall.

It is worth mentioning that we have already encountered a case when the h-charge is not con-

served (see fig.3.15). We have transition between two trajectories p1 and p2 in the field space. The

corresponding change of the flavour charge can be calculated in the following way:

∆h = h(p2)− h(p1) = h(p2 ◦ p−1
1 ) =

1

2
h(p2 ◦ p−1

1 ◦ p2 ◦ p−1
1 ) (3.191)

Where ◦ denotes concatenation fo paths. The path p2◦p−1
1 ◦p2◦p−1

1 can be easily drawn (see fig.3.17)

To see that this path in the field space of two LG fields has non-trivial homotopy class it is enough
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Figure 3.17: Path p2 ◦ p−1
1 ◦ p2 ◦ p

−1
1

to deform the parameter corresponding to the puncture ka → 1 + εa, in this case the central charge

(2.8) of this path reads 2πiεa, and the path having a non-zero central charge is non-contractible.

3.5.4.2 Construction of fusing/defusing interfaces

Having broken flavour symmetry one can propose some model of fusing/defusing interfaces.

We will try to present a model of fusing/defusing interfaces made of R-interfaces considered

already.

In the algebraic sense the twist map (R-matrix) is a map

R : A⊗A → A⊗A (3.192)

where A is a representation of Uq(sl2). It splits into “s-channels” according to the spin in the

isotipical decomposition of the tensor product of representations A⊗A:

A⊗A → A → A⊗A

Rj2,j1j1,j2
=
∑
j

Cjj1,j2 f(j) Cj2,j1j

(3.193)

where f(j) are certain coefficients (“s-channel amplitudes”) depending only on the spin j of the

intermediate representation.

So our strategy is to choose just one channel containing the trivial representation:

R0 = (A⊗A → C→ A⊗A) (3.194)

Then we can apply this artificial interface as fusing(defusing) interface.

Generically we consider a knot (link) diagram consisting of n strands embedded into a n-strand

braid. We continue fusing and defusing interfaces to R0-interfaces:

→ , → (3.195)

Generically to an n-strand braid we associate a linear map A⊕n → A⊕n. R0-interfaces act as

projectors on the space of maps A⊕n → A⊕n giving just a component of the n-strand map being knot
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invariant. Similarly, a categorified version will act, we will consider a subspace of the perturbative

ground states space of a braid, cohomologies of this subspace will give a knot invariant.

Now we present a proper channel choice without a proof, afterwards we will show that our choice

satisfies Reidemeister move I.

As fusing interface we choose fourth and sixth terms of R-interface (3.212a), as defusing interface

we choose third and fifth terms of the inverse R-interface (3.212b) with proper rescaling:

= q
1
2

+ −

− +

⊕ q− 1
2

+ −

+ −

= q
1
2

+−

+−

⊕ q− 1
2

−+

+−

(3.196)

Let us show that this construction is invariant under change of the knot diagram by adding or

subtracting strands. In particular, we would like to state the following equivalence:

= (3.197)

Let us decompose both sides:

=

−

−

⊕

+

+

, =

− + +

+ + −

⊕ 1
2

− + −

− + −

(3.198)

First notice that both sides give equivalent number of term with equivalent critical points at spatial

boundaries and fermion numbers.

Thus we would like to show that the l.h.s. and r.h.s. give identical contributions to Qζ matrix

elements. A typical instanton is represented by a boosted soliton X moving, say, towards positive

x-direction, for example,

x

+

−

−

X

Qζ−→

x

+

+

−
X

τ

x

X

(3.199)
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At the r.h.s. we have an analogous process:

x

X

1
2

− +
+

− + −

Qζ−→

x

− + +

+
+ −

X̃

τ

x

X X̃

1 2

(3.200)

Notice that the soliton marked as 2 is the future binding point, so its trajectory is straight vertical

line. Thus the process goes through a 4-valent bulk vertex. The coordinate of the 4-valent vertex

is defined by x-coordinate of the soliton 2, so this curved sub-web does not have internal moduli,

if there is a 1-parametric curved web saturating Qζ matrix element at the l.h.s. there is analogous

curved web at the r.h.s. and vice versa. So the MSW complexes for knots with a straight strand

and the strand with a hump are quasi-isomorphic.

In what follows we will use fusing(defusing interfaces) at spatial infinities, so we can simplify

their representation by untwisting their diagrams:

= q
1
2

−

−

+

+

⊕ q− 1
2

+

−

−

+

(3.201)

= q
1
2

+

−

−

+

⊕ q− 1
2

+

+

−

−

(3.202)

Solitons that were binding points in the representation (3.196) are boundary conditions for instanton

configurations at spatial infinities, binding rays, they define curved web trajectories that go to spatial

infinity at certain fixed angle.

An important property of the fusing/defusing interfaces is that it performs an “inversion” of

strands, in this way we can relate, for example, R-interface and R−1-interface:

= (3.203)
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Let us decompose both sides of this equality in diagrams:

LHS = q

− + −

− − +

⊕ q−1

− + −

+ − −

⊕

+ + −

− + +

⊕

⊕q

+ + −

+ − +

⊕ q−1

+ + −

+ − +

⊕

+ + −

+ + −
(3.204)

RHS = q

+ − −

− − +

⊕ q−1

+ − −

+ − −

⊕

+ − +

− + +

⊕

⊕q

+ − +

+ − +

⊕ q−1

+ − +

+ − +

⊕

+ − +

+ + −
(3.205)

Obviously, each term in the left hand side expression is homotopic to the corresponding term in the

right hand side expression. The fourth and fifth terms are homotopic through a 3-valent bulk vertex

similarly to what we have discussed in sec.3.5.3.3.

3.5.4.3 Reidemeister move I

. Here we consider Reidemeister move I:

U−→ (3.206)

The l.h.s. of this move gives the following contribution to MSW complex:

M

  = q−
3
2


q

1
2

− +

+ −

− +

⊕ q− 1
2

+ −

+ −

− +

⊕ q 3
2


+ −

− +

− +

⊕

+ −

+ −

− +



(3.207)
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As we see the map U shifts the q-degree by − 3
2 and homological degree by +1, so we can write

= q−
3
2 t (3.208)

This coefficient is interpreted as a change of framing, since we construct invariants not of the knots

rather of thin knotted strips. The framing can be taken into account by an overall monomial pre-

factor of the knot polynomial.

To confirm cohomology homotopic invariance we make an untwist of the braid top end and follow

the true states mapped to each other and fake states merge by pairs.

When we untwist the braid two first terms in (3.207) are mapped to two corresponding terms in

the cap interface (3.212c). The binding point at the top under the instanton equation (3.132) flow

runs away to the spatial infinity.

Two complex generators in round brackets correspond to fake ground states and merge during

homotopic move. Indeed notice that thin line soliton binding point if moved across the R-twist

becomes thick line soliton binding point. Thus in the last term binding point in the middle merges

with boundary binding point at the top and they both flow to spatial infinity.

Naively, there are more Reidemeister type I moves: we can pair R- or R−1-interface with cap

or cup, so there are four possibilities. Also we can put a loop not on the cap, rather on the vertical

strand. Actually, having derived (3.208) we are able to reconstruct all the others through more

elementary moves we have encountered before, for example

(3.203)
=

3.208
= q−

3
2 t

3.197
= q−

3
2 t (3.209)

To conclude this section let us consider one more type of Reidemeister move I relation:

= q
3
2 t−1 ⊕


+ −

− +

⊕

+ −

− +
 (3.210)

The terms in the brackets should merge this relation to satisfy Reidemeister I move, it is easy to

notice that the solitons corresponding to binding points in the last term have the same central

charge though, but different flavour charge h. They are analogous to solitons X1 and X2 depicted

in fig.3.16, so the fact that in sec.3.5.4.1 we have proposed charge h is unconserved is explicitly

applicable in this situation, otherwise terms in the brackets can not merge and the invariance of the

construction under Reidemeister I move is broken.
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3.6 Summary of rules for MSW knot complex construction

Let us summarize rules to construct MSW complex in the case of the fundamental representation

and show how to calculate its Poincare polynomial.

First we associate 1
2 -spin states (|+〉 and |−〉) to filled or vacant vacuum near a puncture:

+

+

∼ qa ,

−

−

∼ qa (3.211)

Now we present R-interfaces, inverse R-interfaces, cups and caps (the spatial x-axis is oriented

vertically from the bottom to the top):

= q
1
2

+ +

+ +

⊕ q 1
2

− −

− −

⊕ q− 1
2

− +

+ −

⊕

⊕q− 1
2

+ −

− +

⊕ q 1
2

+ −

+ −

⊕ q− 3
2

+ −

+ −

(3.212a)

= q−
1
2

++

++

⊕ q− 1
2

−−

−−

⊕ q 1
2

−+

+−

⊕

⊕q 1
2

+−

−+

⊕ q 3
2

+−

+−

⊕ q− 1
2

+−

+−

(3.212b)

= q
1
2

−

−

+

+

⊕ q− 1
2

+

−

−

+

(3.212c)
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= q
1
2

+

−

−

+

⊕ q− 1
2

+

+

−

−

(3.212d)

In the interface, solitons of the two homotopy types can exist at binding points and these are

indicated in equations (3.212a) – (3.212d) by horizontal single or double lines. If the soliton has

fermion number f then horizontal lines with black bullet ( ) or white bullet ( ) represent

solitons with fermion number f + 1 or f −1 respectively. We will not need to know the precise value

of f to compute the homology, only relative fermion number matters.

Both soliton homotopy types are flowing from left to right and their trajectories on the φ-plane

for two punctures qa and qb can be depicted as follows:

qa qb (3.213)

We have expanded interfaces on a segment [x−, x+] over elementary quasi-classical LG wave

functions corresponding to soliton contributions Ii.

Each Ii connects two LG ground states at x− and x+. We call them ∂−(I) and ∂+(I).

We can glue two wave functions I1 and I2 corresponding to two consequent segments according

to a simple rule:

I1 � I2 =

 I12, if ∂+(I1) = ∂−(I2),

∅, otherwise
(3.214)

Moreover, ∂−(I12) = ∂−(I1) and ∂+(I12) = ∂+(I2).

We construct MSW complex in the following way:

1. Cut knot (link) K into “time” slices as we did in sec.3.4.1. Each slice contains either R-twist

or caps/cups.

2. Substitute interfaces and expand.

3. Glue wave functions with respect to the gluing rule (3.214).

As a result of this procedure we get explicitly all the chains of MSW complex M(K) corresponding
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to the knot K as generated by quasi-classical wave functions Ψp
7:

M(K) =
⊕
p

C[Ψp(K)] (3.215)

The complex is double graded. We use qdeg for q-grading and tdeg for homological grading (fermion

number). Each generator I in the complex gives a homotopy class of trajectories in the field space

φi(s) and the moduli space qa(s) we denote traj(I) and has some amount of black bullets ( ) and

white bullets ( ). Degrees of certain generator are defined as follows:

qdeg I =
1

πi

∫
traj(I)

dW

tdeg I = #( )−#( )

(3.216)

Let us split the complex into separate subcomplexes according to their q-degree. We write:

M(K) =
⊕
α

qαMα(K) (3.217)

The differential (supercharge Qζ) acts inside each component Mα. The corresponding instanton

field configuration saturating 〈Ψ′|Qζ |Ψ〉 is approximately given by curved webs. This is a collection

of boosted IJ-soliton trajectories satisfying (3.139) connected by bulk vertices of different valence.

A possible way of calculating bulk vertices was presented in sec.3.5.3.4.

Generically solitons trajectories can not intersect stability walls, though we have sacrificed a

stability wall where flavour charge of certain solitons jumps (see sec.3.4.6), if across a wall a soliton

with flavour charge h1 becomes unstable while another soliton with a flavour charge h2 and the same

other charges becomes stable we smoothly glue their trajectories across the wall.

The sign of the matrix element 〈Ψ′|Qζ |Ψ〉 is defined by the relative sign of the top form Ψ′∧?QζΨ

with respect to the volume form on the field space. For an example of this calculation see sec.3.5.2.

Having these data we define the cohomology group of subcomplex Mα(K) in a usual way:

H•(Mα(K),Qζ) = Ker Qζ/Im Qζ (3.218)

Thus we define a framed knot invariant:

P(q, t|K) =
∑
α,i

qαti dimHi(Mα(K),Qζ) (3.219)

7 Here as an underlying ring we are using the complex field C. We should stress that the Morse theory and the
Khovanov theory imply naturally an integer structure, so a natural expectation for the underlying ring would be
integer nubers Z. Though we derive our MSW complex from quantum field theory, in particular it resembles a Hilbert
space endowed with a conventional complex structure. In this case the complex is insensitive to a possible torsion.
However the rules stated here make sense over Z.
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And we can define an unframed knot invariant analogously to (1.88).

We conjecture that the Khovanov polynomial is just a simple redefinition of this polynomial:

K (q, t) = P(qt, t) (3.220)

3.7 Examples

3.7.1 Unknot

The unknot is the easiest calculation. Using our rules we get the following MSW complex:

M
( )

= q

+

−

−

+

︸ ︷︷ ︸
C[Ψ1]

⊕ q−1

+

−

−

+

︸ ︷︷ ︸
C[Ψ2]

(3.221)

Obviously q-grading splits this complex in two one-dimensional subcomplexes

M1 = 0
Qζ→C[Ψ1]

Qζ→ 0, M−1 = 0
Qζ→C[Ψ2]

Qζ→ 0,

in each of them the differential acts trivially. Fermion numbers are

f(Ψ1) = f0 − 1, f(Ψ2) = f0 + 1

So we conclude:

P(q, t|Unknot) =
q

t
+
t

q
(3.222)

Let us add a twist to the unknot and calculate its polynomial again:

M

( )
= q−

1
2



− +

+ −

⊕

− +

+ −

⊕

− +

+ −


⊕ q− 5

2

− +

+ −

(3.223)

Let us denote soliton wave functions as Ψ1, Ψ2 and so on correspondingly as they appear in this

expansion. Thus we have two subcomplexes:

M− 1
2

= (0→ (C[Ψ1]⊕ C[Ψ2])→ C[Ψ3]→ 0) , M− 5
2

= (0→ C[Ψ4]→ 0) (3.224)

Cohomology of the second subcomplex can be easily calculated.
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To calculate cohomology of the first complex we need to construct Qζ-map between 0-cochain

and 1-cochain. Actually we do this by explicit calculation of the Qζ matrix elements. We will draw

explicitly 1-parameter curved web families representing instantons saturating corresponding matrix

elements:

〈Ψ3|Qζ |Ψ1〉 = 1 ∼ T0

+∞

−∞ +∞

t

x

, 〈Ψ3|Qζ |Ψ2〉 = 1 ∼ T0

+∞

−∞ +∞

t

x

(3.225)

On these pictures the future binding point corresponds to a soliton coming from R-interface, and

rays going to spatial ±∞ are represented by solitons form cap and cup.

So we can construct explicit Qζ-map between 0-cochain and 1-cochain:

Qζ =

 1

1

 (3.226)

And the only nonzero cohomology of the subcomplex reads:

H0(M− 1
2
,Qζ) = C[Ψ1 −Ψ2] (3.227)

So the knot polynomial

P

(
q, t
∣∣∣ )

= q−
3
2 t

(
q

t
+
t

q

)
(3.228)

differs from P(q, t|Unknot) only by an overall monomial factor that appears due to change of knot

framing8.

3.7.2 Hopf link

Let us calculate the link polynomial of a Hopf link

8Unframed knot polynomial, an invariant of an oriented knot can be defined by formula (1.88). For the unknot

P̂(q, t) = qt−1 + q−1t
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The calculation gives us four q-subcomplexes:

M(Hopf) = q−3

+ − + −

− + − +

+ − + +

+ −

+ − + +

⊕ q−1

+ − + −

− + − +

− + − +

+ −

− + − +

⊕ q3

+ − + −

− + − +

− + − +

+ −

− + − +

⊕

⊕q


+ − + −

− + − +

− + − +

− +

− + − +

⊕

+ − + −

− + − +

− + − +

+ −

− + − +

⊕

+ − + −

− + − +

− + − +

+ −

− + − +

⊕ (3.229)

⊕

+ − + −

− + − +

− + + −

+ +

− + + −

⊕

+ − + −

− + − +

+ − − +

− −

+ − − +


The only non-trivial contribution is M1, we denote generators of this subcomplex C[Ψi] conse-

quently. So we would like to calculate cohomology of the following complex:

M1 = (0→ C[Ψ1]→ C[Ψ2]⊕ C[Ψ3]→ C[Ψ4]⊕ C[Ψ5]) (3.230)

As before we find instanton field configurations saturating corresponding supercharge matrix

elements.
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First we present:

〈Ψ2|Qζ |Ψ1〉 = 1 ∼

x

τ

T0

+∞

−∞ +∞

(3.231)

Here we marked by corresponding colors boundary binding vertices as they appear on the knot

diagrams.

The same we have for the other element with permuted vertices:

〈Ψ3|Qζ |Ψ1〉 = 1 ∼

x

τ

T0

+∞

−∞ +∞

(3.232)

Similarly, we construct elements 〈Ψ4|Qζ |Ψ2〉, 〈Ψ5|Qζ |Ψ2〉:

〈Ψ4|Qζ |Ψ2〉 = 〈Ψ5|Qζ |Ψ2〉 = 1 ∼

τ

x+∞−∞

+∞
T0

(3.233)

Here two rays going to spatial infinity correspond solitons coming from caps and cups. Notice that

binding points from R-interface (blue and red boxes on the figure) are future binding points, so

vertical trajectories are exactly straight.

Analogous instantons saturate two remnant matrix elements

〈Ψ4|Qζ |Ψ2〉 = 〈Ψ5|Qζ |Ψ2〉 = −1 ∼

τ

x+∞−∞

+∞
T0

(3.234)

We have assigned −1 to these elements according to the chosen sign rule discussed in sec.3.5.2.

So, eventually, for the complex

M1 =

(
0 −→ C[Ψ1]

Q(21)
ζ−→ C[Ψ2]⊕ C[Ψ3]

Q(32)
ζ−→ C[Ψ4]⊕ C[Ψ5]−→ 0

)
(3.235)

we have

Q(21)
ζ =

 1

1

 , Q(32)
ζ =

 1 −1

1 −1

 (3.236)
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Obviously, Q(32)
ζ Q(21)

ζ = 0 and we easily calculate cohomology:

H0(M1,Qζ) = C[Ψ4 −Ψ5] (3.237)

The link polynomial of the Hopf link reads:

P(q, t|Hopf) = q−3t2 + q−1 + q + q3t−2 =

(
q

t
+
t

q

)(
q2

t
+

t

q2

)
(3.238)

3.7.3 Trefoil

Now we consider the trefoil knot (knot 31 according to the Rolfsen knot table)

Applying our strategy we get MSW complex containing five subcomplexes:

M(31) =

2⊕
i=−2

q2iM2i (3.239)

The most intriguing term is

M−2 =

+ − + −

− + − +

− + − +

+ −

+ −

− + − +

1 2

3

4

5

⊕

+ − + −

− + − +

+ − + −

+ −

+ −

+ − + −

6

7 8

(3.240)

This subcomplex is two dimensional, one generator has homological degree [+1], the other has

homological degree [+2]:

M−2 = (0 −→ C[Ψ1] −→ C[Ψ2] −→ 0) (3.241)
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The matrix element 〈Ψ2|Qζ |Ψ1〉 is saturated by the following field configuration:

1

2

3 4 5

6

7

8

x

τ

T0

+∞

−∞

(3.242)

Here we have marked binding points by corresponding numbers.

Notice here the bulk vertices are 4-valent. The choice of 4-valent vertex is dictated by necessity.

Indeed consider a collision point of solitons 1, 2 and 3. For a transition associated to soliton 3 to be

possible a vacant vacuum near the second strand from left should be filled and one near the third

strand should be unoccupied, this is done exactly by solitons 1 and 2. So neither soliton 1 nor 2 can

cross the vertical line of soliton 3 trajectory, otherwise the fan of vacua for such an intersection vertex

would be inconsistent. Hence trajectories of solitons 1 and 2 should simultaneously hit trajectory of

soliton 3 creating a new soliton.

Thus we have

H•(M−2,Qζ) = ∅ (3.243)

Cohomologies of the other subcomplexes can be easily calculated in the fashion of the Hopf link.

So, finally, we get

P(q, t|31) = q−4t3 + 1 + q2 + q4t−2 (3.244)

3.7.4 Figure-eight knot

Now we consider the figure-eight knot (knot 41 according to the Rolfsen knot table)

Its MSW complex contains six subcomplexes:

M(41) =

5⊕
i=0

q2i−5M2i−5 (3.245)
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As usual subcomplex M−5 is one dimensional:

M−5 =

+ − + −

+ − + −

+ −

+ − −

− −

+ − −

+ −

(3.246)

Now we consider subcomplex M−3:

M−3 =

+ − + −

− + − +

+ −

+ − +

− +

+ − +

− +

1 2

3

4

5

6

⊕

+ − + −

+ − + −

+ −

+ − −

− −

+ − −

+ −

7

8

(3.247)

It is easy to construct the curved web corresponding to interpolating between these states. We have

denoted binding points and boundary rays by numbers as they appear on the expansion diagram:

1

2

3 4 5 6

7

8

x

τ

T0

+∞

−∞

(3.248)

So we conclude

〈Ψ2|Qζ |Ψ1〉 = 1 (3.249)

Thus the cohomological group is empty:

H•(M−3,Qζ) = ∅ (3.250)
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Complex M−1 consists of three co-chains:

M−1 =
(

0 −→ C(−1) −→ C(0) −→ C(1) −→ 0
)

(3.251)

Where

C(−1) =

+ − + −

− + − +

− +

+ − +

− +

+ − +

− +

⊕

+ − + −

− + − +

+ −

− + +

+ +

− + +

− +

(3.252)

C(0) =

+ − + −

− + − +

+ −

+ − +

− +

+ − +

− +

⊕

+ − + −

− + − +

+ −

+ − +

− +

+ − +

− +

⊕

+ − + −

− + − +

+ −

+ − +

− +

+ − +

− +

⊕

+ − + −

− + − +

+ −

+ − +

− +

+ − +

− +

(3.253)

C(1) =

+ − + −

+ − + −

+ −

− + −

− +

− + −

+ −

⊕

+ − + −

− + − +

+ −

+ − +

+ −

+ − +

− +

(3.254)
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We denote corresponding complex generators as Ψij where i is homological degree and j is order

number of the diagram as they appear in the above expansion.

Then we construct a diagram of Qζ matrix elements (arrows go from degree [f ] to degree [f + 1],

solid arrows correspond to matrix element +1, dashed arrows correspond to matrix elements −1):

Ψ−11

Ψ−12

Ψ11

Ψ12

Ψ01

Ψ02

Ψ03

Ψ04

(3.255)

It is pretty obvious how to construct curved webs corresponding to field configurations saturating

all these matrix elements9. Instead concrete sign calculation is important, so we concentrate on it.

We follow mechanism described in sec.3.5.2. So first we write out all the generators as forms on the

field space. For generators of C(−1) we have:

Ψ−11 ∼ ψ̄+(x3)ψ̄+(x4) ∧ Ω−11, Ψ−12 ∼ ψ̄+(x1) ∧ Ω−12 (3.256)

For generators of C(0) we have:

Ψ01 ∼ ψ̄+(x2)ψ̄+(x3)ψ̄+(x4)ψ̄−(x1) ∧ Ω01, Ψ02 ∼ ψ̄+(x1)ψ̄+(x3)ψ̄+(x4)ψ̄−(x2) ∧ Ω02,

Ψ03 ∼ ψ̄+(x1)ψ̄+(x2)ψ̄+(x4)ψ̄−(x3) ∧ Ω03, Ψ04 ∼ ψ̄+(x1)ψ̄+(x2)ψ̄+(x3)ψ̄−(x4) ∧ Ω04

(3.257)

For generators of C(1) we have:

Ψ11 ∼ Ω11, Ψ12 ∼ ψ̄+(x1)ψ̄+(x2) ∧ Ω12 (3.258)

Here by Ω we denoted a bulk of the high energy modes, and we keep an explicit track of nearly zero

energy modes. We order them according to the Dirac eigenvalue, so first go ψ̄+-modes that have

negative Dirac operator eigenvalue, then ψ̄− having positive eigenvalues. We assume that ψ̄+-modes

corresponding to different soliton binding points have nearly equal eigenvalues, though they are

localized on the x-axis in the neighbourhood of the binding point, so we order them according to

their localization xi, where i is a number of the R (R−1)-twist as it appears on the diagram from

bottom to top. We expect that the supercharge acts on the left by multiplication:

Qζ ∼ (ψ̄+(x1) + ψ̄+(x2) + ψ−(x3) + ψ−(x4))∧ (3.259)

9Though notice that in an instanton saturating matrix element, say, 〈Ψ12|Qζ |Ψ01〉 a Bloch boosted soliton appears.
For discussion of properties of these solitons see sec.3.4.6.
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So, for example, if we calculate an element 〈Ψ11|Qζ |Ψ−11〉:

ψ̄+(x3)ψ̄+(x4) ∧ Ω−11
Qζ−→ ψ̄+(x2)ψ̄+(x3)ψ̄+(x4) ∧ Ω−11

flow−→

flow−→ ψ̄+(x2)ψ̄+(x3)ψ̄+(x4)ψ̄−(x1) ∧ Ω11

(3.260)

Here we first act by the supercharge, so a new form has a degree greater by 1, then a new ψ−(x1)

comes from the bulk of high energy modes. The bulk form actually changes though we neglect this

change assuming that the sign from this change can be absorbed into the definition of the orientation.

Acting in this way, assuming that the supercharge acts on the left and appearing (disappearing)

low energy modes coming from (to) the high energy bulk modes should stand on the right, we get

diagram (3.255).

Or, explicitly,

Q(−10)
ζ =



1 1

1 −1

−1 −1

1 −1


, Q(01)

ζ =

 1 −1 1 1

1 −1 1 1

 (3.261)

And we check easily Q(01)
ζ Q(−10)

ζ = 0. It’s easy to calculate cohomology of this complex:

H•(M−1,Qζ) = C[Ψ01 + Ψ02]⊕ C[Ψ11 −Ψ12] (3.262)

The rest of the knot polynomial can be restored from a symmetry for a figure-eight knot:

P(q, t|41) = P(q−1, t−1|41) (3.263)

The knot polynomial of this knot reads:

P(q, t|41) = q−5t3 + q−1(1 + t) + q(1 + t−1) + q5t−3 (3.264)

3.8 Further remarks

3.8.1 Cabling and higher spin link (co-)homology

One of the major advantages of field theory approach to knot homology is a natural generalization

to higher spins. Indeed, spins are just encoded in parameters ka in Yang-Yang SLG Lagrangian

(3.48), and all our previous logic is applicable.

Though a concrete realization in not so trivial. Indeed, following either an approach using

Wigner droplets (sec. 3.4.4), or a model with explicit symmetry breaking (sec. 3.4.5) implies pretty
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tough calculations in the generic case. So instead we use a cabling trick (see for example [5]): we

construct higher dimensional representations from direct products of the lower dimensional ones. A

direct product in the language of Wilson lines usually implies operator product expansion. So we

represent a strand of a knot carrying spin J as a collection (a “cable”, so this is the origin of trick’s

name) of 2J strands carrying spin 1
2 . Though the tensor product of fundamental representations

decomposes generically into a mixture of different irreducible representations. So to distill one

irreducible representation one should introduce a system of projectors.

An obstacle emerging when we try to categorify the knot homology is we are loosing some natural

algebraic structures of quantum algebras, so we did with the q-Clebsh-Gordan coefficients and fusing

(defusing) interfaces (see sec. 3.5.4). Though we can expect that a structure corresponding to the

specific series of Clebsh-Gordan coefficients CJ1+J2
J1,J2

should survive categorification. Indeed, in this

case we expect a relation between two Yang-Yang-Landau-Ginzburg theories with different number

of punctures qα. However the theory with a puncture q and puncture parameter k1 + k2 can be

represented as a limit of a theory with two punctures q1 and q2 with parameters k1 and k2 when

these two punctures merge.

Thus we expect the higher spin theories are lying naturally on certain boundaries of the parameter

space. So we will construct a projector from a product of 2J spin- 1
2 representations to a spin-J

representation. Let us start with a classical Uq(sl2)-algebra story.

R-matrix acts diagonally on the isotypical decomposition, in other words q-clebsh-Gordan coef-

ficients are eigen vectors of the R-matrix:

∑
j′1,j
′
2

R
j′2,j
′
1

j1,j2
Cjj′2,j′1

= (−1)j1+j2−jqcj−cj1−cj2Cjj1,j2 (3.265)

Where cj = j(j+ 1) is a classical sl2 Casimir element of representation of spin j. Or, pictorially, we

can rewrite this equation as (see also [66, eq.(4.8)])

j

j1 j2

= (−1)j1+j2−jqcj−cj1−cj2

j

j1 j2

(3.266)
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Thus for one R-matrix and identity operator can be expanded as

1
2

1
2

j

j

=

1
2

j

1
2 j

j − 1
2 +

1
2

j

1
2 j

j + 1
2

j

1
2

1
2

j

= −q−(j+1)

j 1
2

1
2 j

j − 1
2 + qj

j 1
2

1
2 j

j + 1
2

(3.267)

Combining these two equations we derive easily a recursive equation for the projector to spin j state:

Pj+ 1
2

=
(
1 + q2j+1

)−1

 1
2

1
2

j

j

+ qj+1

j

1
2

1
2

j

 (3.268)

Here by the dashed line we denoted projector Pj . Or, we can write explicitly few first terms of this

reccurent relations:

P1 = (1 + q2)−1

 + q
3
2

 (3.269)

P 3
2

= (1 + q2)−1(1 + q3)−1

 + q
3
2 + q3 + q

9
2

 (3.270)

And so on.

Thus we conjecture a categorified analog of the recurrence formula:

Pj+ 1
2

= B1

 1
2

1
2

j

j

⊕ Bqj+1

 j

1
2

1
2

j

 (3.271)

where Bα is an extra Bloch wave factor. Its role is to give a proper q-factor between equivalent

terms. So, for example, let us calculate the corresponding fusion and defusion interfaces for spin 1.

For the defusion interface we have:

1 1

= B1

 ⊕ B
q

3
2

  (3.272)
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Expanding the first interface we get:

= q−1

+ + − −

+ + − −

⊕

+ + − −

+ − + −

⊕

+ + − −

− + − +

⊕ q

+ + − −

− − + +

(3.273)

Expanding the second interface we get:

= q−
1
2

+ + − −

+ − + −

⊕ q− 3
2

+ − + −

+ − + −

⊕ q 1
2

+ − + −

+ − + −

⊕

⊕q− 1
2

− + + −

+ − + −

⊕ q− 1
2

− + + −

+ − + −

⊕ q 3
2

− − + +

+ − + −

(3.274)

Then we would like to untwist homotopically the second interface, so we permute + and − strands

in the bottom of the interface. Notice that the first term in the second interface after this untwist

would be identical to the first term in the first interface. Though their q-degrees differ by 2. To get

this q-degree shift we add the “Bloch” soliton discussed in sec.3.4.6 to all the terms in the second

interface then consider the tensor sum. Notice that after this Bloch soliton addition and untwist

the second term in the second interface and the second term in the first interface cancel through the

instanton.

Eventually, we get the following expression for the defusion interface in the spin-1 case:

1 1

= q−1

+ + − −

+ + − −

⊕ q

+ + − −

+ + − −

�

⊕

+ + − −

− + − +

⊕ q

+ + − −

− + + −

�

⊕

⊕q

+ + − −

+ − − +

�

⊕q2

+ + − −

+ − + −

�

⊕q

+ + − −

− − + +

⊕ q3

+ + − −

− − + +

�

(3.275)
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Analogously, we get for the fusion interface:

1 1
= q

	

− − + +

− − + +

⊕q3

− − + +

− − + +

⊕

	

− + − +

− − + +

⊕q

− + + −

− − + +

⊕

⊕q

+ − − +

− − + +

⊕q2

+ − + −

− − + +

⊕q−1

	

+ + − −

− − + +

⊕q

+ + − −

− − + +

(3.276)

Here we denoted as 	 and � correspondingly clockwise and counterclockwise Bloch solitons.

As spin-j R-complex we use just a cabled version of the usual R-complex:

j1 j2

j2 j1

−→

j1 j2

(3.277)

So we can verify that derived spin-1 fusion (defusion) interfaces satisfy Reidemeister move I:

= t2q−4 (3.278)

In this way we get a construction satisfying two important properties:

1. It gives a knot (link) invariant, since the 2nd and 3rd Reidemeister moves are automatically

implemented.

2. The corresponding Euler characteristic givaes a knot polynomial proportional to the spin-1

Jones polynomial.

Notice we have not implemented in these expressions a factor (1 + q2)−1 from (3.269). We

imply that the Poincaré polynomial constructed for proposed spin-1 knot cohomology factorizes, for

example for the unknot we have:

P��(q, t|Unknot) = (1 + q2)2[3]q/t (3.279)

In a similar way we can construct fusing/defusing interfaces, R-interfaces and knot K (link) MSW

complexes MJ(K) for arbitrary spin J . Then the corresponding Poincaré polynomial P[J](q, t|K) is
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almost a link invariant. To get a link invariant we should strip off all the extra factors:

P̂[J](q, t|K) =

[
J∏
k=2

(1 + qk)

]1−ns

(tJq−J(J+1))n+−n−P[J](q, t|K) (3.280)

where n+ and n− are corresponding numbers of positive and negative intersections as in sec.1.5, and

ns is a number of strands.

3.8.2 On skein relations, knot co-bordisms and equivalence to Khovanov

homology

One important expected application of QFT approach to knot homology is a natural construction of

knot co-bordisms [99] in terms of certain amplitudes in higher dimensional field theory where knots

embeddings impose certain boundary conditions.

To be more specific let us start with a well known skein exact triangle relation [75, 72]. Consider

a link L0, let us choose any self-intersection in this link. And let us glue in two possible resolutions.

In this way we get three links: a link itself and two possible resolutions of chosen self-intersection:

L0

,

L+

,

L−

(3.281)

The Khovanov homological group satisfy the exact triangle relation by definition:

. . .→ H(L0)→ H(L+)→ H(L−)→ H(L0)[1]→ . . . (3.282)

So does the Heegaard Floer homology [82]. It is an interesting question if our construction in terms

of Landau-Ginzburg theory admits a simple derivation of this relation.

A usual way to prove such a kind of relations is to start with a construction of chain map

satisfying certain properties (see e.g.[72, Lemma 7.1]). Unfortunatelly, in our construction there is

no natural chain map relating MSW complexes of L0 and L+. A naive obstacle for this is that these

configurations are not homotopic to each other, so to move between them we should go through

boundaries of the parameter space of the YYLG theory when two punctures collide. In what follows

we will prove that there is no local non-trivial chain map between M(L0) and M(L+).

A map U of degree d is a chain map if it satisfies

UQζ = (−1)dQζU (3.283)

So if we manage to present an explicit vector v 6∈ Im U , s.t. v ∈ Im QζU , then the chain map

condition can not be satisfied.
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We expect the chain map U to be local, in other words it should preserve Chan-Paton factors, or

classical critical points at the spatial boundaries of the interface. Thus the interface M(L0) contains

six different subspaces corresponding to six elements in (3.103). Let us enumerate them as they

appear in the expression and denote as wi. Similarly, interface M(L+) contains four subspaces:

M(L+) =

+ +

+ +

⊕

− −

− −

⊕

+ −

+ −

⊕

− +

− +

(3.284)

If we enumerate these subspaces as well according to the order as they appear in the expansion and

denote them as vi. Then the only form the chain map respecting the structure of states the interface

is interpolating between could have the following form:

U =



a1 0 0 0 0 0

0 b1 0 0 0 0

0 0 0 0 c1 d1

0 0 0 0 0 0


(3.285)

Where a, b, c and d are corresponding complex coefficients. Thus the subspace v4 has an obvious

property v4 6∈ Im U , though we will show it lies in Im QζU . In particular we will demonstrate in

concrete examples that there are matrix elements 〈v4|Qζ |vi〉 6= 0, where i = 1, 2, 3.

Reconsider an example of the twisted unknot (3.223). There is a non-zero matrix element between

the first and the third term of M− 1
2
. So we have an instanton map that just moves the soliton towards

positive x-direction:

+ −

− +

− +

Qζ−→

+ −

+ −

− +

(3.286)

Then we construct easily two examples by adding a loop

v1 =

+ −

− +

− +

+ Qζ−→

+ −

+ −

− +

+ = v4 (3.287)
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v2 =

+ −

− +

− +

− Qζ−→

+ −

+ −

− +

− = v4 (3.288)

And we have already encountered an example of the matrix element 〈v4|Qζ |v3〉 in (3.240).

Thus we conclude all the coefficients a, . . . , d should be zero, and the map U has to be trivial.
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Chapter 4

Discussion and outlook

In the disseration we have discussed application of interfaces in supersymmetric theories to a study

of their IR dynamics. We have applied this technique to N = (2, 2) supersymmetric two dimensional

Landau-Ginzburg theory and N = 2 four dimensional class S theories. A remarkable property of

interfaces in these theories, defects with spatially changing boundary conditions for fields or coupling

constants, is they are tightly related to a flat parallel transport on the parameter space of the theory.

In particular, they admit a presence of flat connection families

∇i(ζ) = d−
(
ζ−1ϕidti +A+ ζϕ†idt̄i

)
where family parameter ζ is a phase defining the supersymmetry preserved by the interface, and

the interface partition function is a flat section of this connection. The flatness condition for this

connection can be thought of as a generalization of the Hitchin system to multiple dimensions. A

useful way to work with this system is to analytically continue the phase ζ to the punctured complex

plane C× and consider a holomorphic limit ζ → 0. Then the conventional technique of asymptotic

behavior study is applicable.

This asymptotic behavior stores a lot of information about IR dynamics of the theory in question.

So, an algebraic equation governing asymptotic behavior, a spectral curve, can be identified with

Seiberg-Witten curve. Moreover Stokes coefficients in the representation of the flat section as a sum

over asymptotic contributions are not globally well-defined, they jump discontinuously across certain

loci in the parameter space. These coefficients and their jumps are identified with BPS indices and

wall-crossing phenomena respectively. This procedure allows one to define such IR observables as

low energy effective action and indices of BPS excitations in the theory by purely geometrical means.

There is a natural demand for a “refinement” of this construction. Indeed there are physical

quantities in the theories in question storing more information about their IR structures that can be
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thought of as deformations of BPS indices by some chemical potentials for conserved charges. We

have considered two types of such deformations.

First deformation is known as protected spin character (1.20) where we add a chemical potential

q for spin and isospin. This type of deformation is expected to be analogous to promotion of algebras

of cluster Fock-Goncharov coordinates on the Teichmüller space to quantum coordinates satisfying a

Heisenberg algebra relations. We have proposed an abstract way to consider an Abelianization map

relating non-Abelian flat parallel transport on Riemann surfaces to Abelian parallel transport on its

cover, an analog of asymptotic expansion, and further projection to non-commutative coordinates

analogous to Fock-Goncharov coordinates. As a test problem we have considered so called wild wall-

crossing in families of theories associated to Kronecker quivers. As a test result we have presented

a non-perturbative functional equation encoding protected spin characters and shown that they are

in agreement with ones derived by other methods.

Another direction of the deformation program is categorification. This direction is suitable to

discuss association with the knot theory. To follow this route braiding should be represented as

certain interfaces. It is rather suitable that the quasi-classical description of these interfaces turns

out to be quite universal. The classical theory delivers invariants of knots known as hyperbolic

volume of the knot complement. q-deformation of the hyperbolic volume, Jones polynomials, is

given by averages of Wilson loops in the Chern-Simons theory. The next “refinement” step, a

categorification of Jones polynomials was constructed in a combinatorial way by Khovanov. We

have presented a way of possible quantum field theory formulation of knot homologies. We have

considered braiding as interfaces in Landau-Ginzburg theory and constructed braid invariants as

Hilbert spaces of non-perturbative ground states in the theory in the presence of an interface. These

Hilbert spaces are bi-graded by q-degree and fermion number and isomorphic to cohomologies of

nilpotent supercharge Qζ . So the output is an isomorphism class of bi-graded vector spaces encoded

in polynomials of two variables (q, t) that should be compared to Khovanov’s.

The construction of knot invariants includes two more elementary constructions: categorified

braid group representation and braid closures through fusing/defusing interfaces. To give a braid

invariant the construction should be invariant under Reidemeister moves II and III: consequently

placed twist and inverse twist are homotopic to identity and the Yang-Baxter relation. As we have

shown these homotopic moves lead to corresponding quasi-isomorphisms of ground state spaces.

The construction relies on certain curved web solutions including only 3-valent bulk vertices. These

3-valent bulk vertices can be derived equivalently from conventional soliton wall-crossing formulae

for corresponding Euler characteristics.
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A naive way to introduce fusion/defusion interfaces leads to contradictory conditions (3.190a)

and (3.190b) for their flavour charges. To overcome this problem we have broken flavour charge

conservation, fortunately, this way did not lead to obvious pathologies. In this (modified) theory

we have used the curved web technique to construct approximate instanton field configurations

saturating matrix elements of supercharge Qζ . We have proven the resulting construction to satisfy

three Reidemeister moves and to be insensitive to homologous changes of number of strands in the

braid representation. Resulting knot polynomials are shown to coincide with Khovanov’s in explicit

examples. Regretably, we were unable to find a general construction of a quasi-isomorphism of our

knot homology complex with that of Khovanov. The present construction lacks the combinatorial

elegance of Khovanov’s. To calculate a field configuration saturating supercharge matrix elements

one is required to solve auxiliary problems: construct curved web and define sign of the matrix

element determined by a form on the field space. Surely, this complicates any explicit calculation.

We hope the present QFT-inspired knot cohomology we have presented can be further reduced to a

more elegant combinatorial calculation scheme.

It is a natural question if the introduced modification breaking flavour charge conservation is

really physical. Development in this direction might require some completing of the initial theory

or lifting of the Yang-Yang super Landau-Ginzburg theory to original 5d SYM as it was proposed

in [48, 47]. We leave this direction for further investigation.

To construct fusing/defusing interfaces we used already constructed R-interfaces, we have con-

sidered Hilbert spaces of interfaces corresponding to knots (links) as certain subspaces of Hilbert

spaces corresponding to braids. Generically one expects the fusing/defusing interfaces to be certain

boundary conditions (D-branes) in the Landau-Ginzburg model [59, 60, 47]. An explicit relation

between these two approaches remains to be studied, moreover this might shed some light on the

necessity to introduce explicit flavour charge conservation breaking or even allow one to avoid it.

Some approaches to categorifation knot polynomials start with categorification of quantum al-

gebras (see e.g.[15, 16, 63, 85]). In sec.3.5.4.1 we have proposed how the co-multiplication structure

could be implemented in the braid group representation, and therefore it has a categorified analog

in our setup. It might be fruitful to continue this analogy to implement other quantum algebra

structures and compare to approaches proposed in mathematical literature.

One of the advantages of the QFT approach is an expected simple generalization to categorified

version of colored Jones polynomials: expectation values of Wilson loops in higher spin represen-

tations. We have proposed a cabling model: a knot (link) is represented by cable of strands in

the fundamental representations, higher spin representations appear in an isotypic decomposition of



123

such cables.

More effort is needed to construct the analogous cohomology for higher rank groups and compare

it to Khovanov-Rozansky categorification of HOMFLY polynomials and superpolynomials. Indeed

Witten’s five dimensional SYM setup [99] easily allows for such a generalizations, though there is

still more to be done to reduce explicitly this setup to simple theories analogous to [48]. We leave

this direction for future investigation.

Known approaches to superpolynomials indicate a crucial difference between them and Khovanov-

Rozansky polynomials, in particular, coefficients of superpolynomials are not necessarily integer,

therefore not dimensions of some vector spaces. This suggests a parallel way of generalization directly

related to (q, t)-deformation of conformal field theories and five-dimensional Yang-Mills theories.

Differential equations defining flat parallel transport on the parameter space should be promoted

to difference equations [102], though a spectral curve formalism can be applied, the spectral curve

should be substituted by a spectral curve of a relativistic integrable system [79] (see also [1] and

references therein), still we can expect some generalization of the Abelianization map to be valid in

this case. We leave this direction for future investigation.
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Appendix A

Sign rule in Stokes coefficients

First, let us remind how the sign rule (2.22) is realized in the quantum mechanics. Consider a classical

application of the WKB method to the 1d Schrödinger equation for a particle with a normalized

mass 1
2 in an external potential U(x):[

−~2 d
2

dx2
+ U(x)

]
ψ(x) = 0 (A.1)

To derive WKB asymptotic expansion one uses a substitution transforming the Schrödinger equation

into a Riccati equation:

ψ(x) = e~
−1
∫ x J(x′)dx′ , J(x)2 + ~J ′(x)− U(x) = 0 (A.2)

and explicit representation ρ of the path algebra reads:

ρ[Ya] = e~
−1
∫
a
J(x′)dx′ (A.3)

In this representation we have

ρ[Ya] + ρ[Ya′ ] = ρ[Ya] + e
~−1

∮
a′a−1

J(x)dx︸ ︷︷ ︸
ξ

ρ[Ya] = (1 + ξ)ρ[Ya] (A.4)

One would like to define eikonal J(x) as a series expansion:

J(x) = J (0)(x) + ~J (1)(x) + . . . (A.5)

In the neighbourhood of the branching point p we have J (0)(x) ∼ α
√
x− p, while J (1)(x) =

1
2
d
dx log J (0)(x), higher order contributions do have no log-singularity.

Then

ξ = exp

~−1

∮
a′a−1

J (0)(x)dx+

∮
a′a−1

J (1)(x)dx+ . . .

 = eπi = −1 (A.6)
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Thus constraint (2.22) is fulfilled explicitly in this representation. Notice in this example the rep-

resentation admits homotopy invariance rather than just regular homotopy invariance, in this case

the “bubble” in a′ can be contracted and does not contribute.

Now consider a representation where the regular homotopy is important. This representation is

directly related to the tt∗-connection (3.47), indeed, as we have mentioned it can be reformulated

as a null-vector equation in CFT: [
b−2∂2

z − T̂ (z)
]

Ξ(z) = 0 (A.7)

Similarly, we can expect that the partition function can be derived through the action of the current

operator (see [20, 49]):

Ξ(z) = Peb
∫ z Ĵ(z′)dz′Ξ(0) (A.8)

Though the Riccati equation differs from (A.2) in one coefficient (Q = b + b−1) due to quantum

corrections:

T̂ (z) =: Ĵ2(z) +QĴ ′(z) (A.9)

From this definition it is clear that the current operator is branched over the base curve C and the

commutation relation reads: ∮
γ

Ĵ(z)dz,

∮
γ′

Ĵ(z′)dz′

 = 2πi〈γ, γ′〉 (A.10)

Where 〈?, ?〉 is the intersection pairing on the cycles on the branched cover Σ. As it was proposed

in [52] a nice representation for the path algebra is given on the closed paths with the help of the

writhe (wr a, a signed sum over self-intersections, see [52] for details and peculiarities, q = eπib
2

):

ρ[Ya] = qwr ae
b
∮
a

Ĵ(z)dz
(A.11)

Thus considering the constraint (2.22) in this representation we get:

ρ[Ya] + ρ[Ya′ ] =

1 + qwr a′−wr a︸ ︷︷ ︸
q−1

e
b
∮

a′a−1

Ĵ(z)dz︸ ︷︷ ︸
ξ

 ρ[Ya] (A.12)

The “bubble” gives an extra self-intersection so the writhe term gives a multiplier q−1, on the other

hand due to quantum corrections the ξ is not just −1 since coefficient in the quantum Riccati

equation differs from the exponential multiplier in the representation formula, so we expect:

Ĵ(z) = Ĵ (0)(z) +
Q

2

d

dz
log Ĵ (0)(z) + . . . (A.13)
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We expect a square root singularity from Ĵ (0) ∼ α̂
√
z − p in the neighbourhood of a branching point

p, thus

ξ = ebQπi = −q (A.14)

And again in this representation the constraint (2.22) is fulfilled.
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Appendix B

Solitons in CP∞ model

Another interesting model with a homogeneous-like superpotential that does not belong to the class

(3.46) is for CPN−1 model [60]:

W (X,λ) =
∑
k

Xk +
λ

N−1∏
k=1

Xk

(B.1)

This model has a ZN -symmetry:

Xk → Xke
2πi
N , W →We

2πi
N (B.2)

So the vacuum states labelled by a = 1, . . . , N break this symmetry:

X
(a)
k = λ

1
N e

2πia
N , W (a) = Nλ

1
N e

2πia
N (B.3)

To perform our mean field analysis, we also would like to deform the potential by adding to it a

Coulomb probe, meanwhile this deformation should be small, so the resulting potential reads

W̃ (X|z, λ) =
N

α

∑
k

Xk +
λ

N−1∏
k=1

Xk

−
N−1∑
k=1

log(z −Xk) (B.4)

As always the partition function is given by an integral over some Lefschetz thimbles

Ψ(z, λ) =

[∫
DX

]
eζW̃ (X|z,λ) (B.5)

The Ward identities have the same form as usual (for arbitrary function f(x))〈∑
i

f ′(Xi) + ζ
∑
i

∂XiW̃ (X)f(Xi)

〉
= 0 (B.6)

Choosing f(x) = (z − x)−1 we get〈∑
i

1 + ζ

(z −Xi)2
+ ζ

N

α

∑
i

1

z −Xi

(
1− λ

Π

1

Xi

)〉
= 0 (B.7)



128

where we denoted Π =
N−1∏
k=1

Xk.

Thus we have

ζ−1∂2
zΨ− N

α
∂zΨ−

ζNλ

α

〈∑
i

Π−1X−1
i

z −Xi

〉
Ψ = 0 (B.8)

The latter term we decompose as〈∑
i

Π−1X−1
i

z −Xi

〉
=

1

z

〈∑
i

Π−1X−1
i

〉
+

1

z

〈∑
i

Π−1

z −Xi

〉
(B.9)

Using the Ward identity for f(x) = 1 we get the following relation between correlators:

N(N − 1)

α
− N

α
λ

〈
Π−1

∑
i

X−1
i

〉
−

〈∑
i

1

Xi − z

〉
= 0 (B.10)

Combining all together we get the following equation:[
ζ−1∂2

z −
N

α
∂z −

1

z
∂z + ζ−1λ

z
∂z∂λ −

ζ

z

N(N − 1)

α

]
Ψ = 0 (B.11)

In the limit N → ∞ the parameterization of vacua by 2πa/N , a = 1, . . . , N reduces to an

arbitrary phase ϑ ∈ [0, 2π). Thus we expect the following asymptotic behavior of the partition

function

Ψ(z, λ) ∼ eζ N
2

α λ
1
N eiϑ+NζW(z,λ) (B.12)

In the limit N →∞ the differential equation gives the following equation for the spectral cover:

(∂zW)2 − α−1

(
1− eiϑ

z

)
∂zW − α−1

z
= 0 (B.13)

This curve does not give good predictions for the pure CP∞ unless α� 1.

Indeed the potenital difference of two neighbourhood vacua a and a+ 1 may be estimated as

∆W ∼ N

α
eiϑ (B.14)

And this term is compatible with the Coulomb probe interaction. If we choose

dW = α−1

(
1− eiϑ

z

)
dz + pdz (B.15)

Then the spectral curve is

p2 =
1

4α2

(z − eiϑ + α)(z − eiϑ − α)

z2
, α� 1 (B.16)

As we see there are two nearly coinciding branching points p
(±)
0 = eiϑ ± α. They are located

exactly where the average field giving minimum to the potential is.
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Figure B.1: CP∞ critical network

The spectral network technique gives just one critical graph: a looped ”fish” (see fig.B.1). The

loop implies that there is actually infinite tower of solitons:

(1− Y )−1 =

∞∑
k=0

Y k (B.17)

where Y = exp(ζN
∮
dW). These solitons are labelled by an index k, with the following data:

µk = 1 (B.18)

∆Wk = 2πiNkeiϑ (B.19)

Arg ζ
(crit)
k = ϑ+

π

2
(B.20)

These data coincide with known results.
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Appendix C

Homology calculus in Khovanov theory

C.1 Hopf link

The Hopf link can be represented by the following link diagram:

Thus for the link complex we have the following expansion:

〈Hopf〉 = q−3t4

− +

+ −

− +

⊕ q−1


t2

+ −

+ −

+ −

v1

⊕ t2

− +

− +

− +

v2

⊕

⊕ t3

− +

− +

− +
v3

⊕ t3

− +

− +

− +

v4

⊕ t4

− +

− +

− +

v5


⊕ q



+ −

− +

+ −

v6

⊕
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⊕ t

+ −

+ −

+ −

v7

⊕ t

+ −

+ −

+ −

v8

⊕ t2

+ +

+ +

+ +

v9

⊕ t2

− −

− −

− −

v10


⊕

⊕q3

+ −

+ −

+ −

Fugacity t indicates the homology degree of the corresponding 1d vector space in the complex.

Clearly, spaces with q-degree -3 and 3 are one dimensional. To find homologies for spaces of

q-degree -1 and +1 we label all the 1d spaces by vi. And we can define matrix elements 〈vi|d|vj〉,

where d is our differential, following rules (1.76) and (1.77). These matrix elements are either -1, or

0, or 1, we denote non-zero elements by arrows indicating the action of the differential, if the matrix

element is +1 the arrow is solid, if -1 one is dashed1. For q-degree -1 we have the following picture

and just one non-zero homology group:

v1
//

%%

v3
**⊕ ⊕ v5

v2
//

99

v4

44 , H2,−1 = Span(e1 − e2) (C.1)

Where by ei we mean a basis vector of the corresponding 1d vector space vi.

Similarly for q-degree +1 we find:

v7
//

%%

v9

v6

44

**
⊕ ⊕
v8

99

// v10

, H2,1 = Span(e9 − e10) (C.2)

Thus finally we have:

P�(q, t|Hopf) = q−3t4 + q−1t2 + qt2 + q3 (C.3)

1 To define what sign we should use we follow a natural physical rule: an ordering of fermionic actions of the
differential. Suppose we have chosen any enumeration of all the knot diagram intersections. So at each n-th step we
have acted on vertices i1, i2 and so on up to in. Now we can assume that the 1d vector space corresponding to a
concrete diagram corresponds to an ordered tuple ψn = (i1, . . . , in), where ij < ij+1. On n+ 1-th step we get a new
action on in+1-th vertex. This gives a wave function ψn+1 = (i1, . . . , in, in+1) that is not ordered. So the sign of
differential matrix element is defined by the sign of permutation ψn+1.
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It should be compared to the Khovanov polynomial for the trefoil:

K�(q, t|Hopf) =
t

q3

(
q2 + 1

) (
q4t2 + 1

)
(C.4)

C.2 Trefoil

The trefoil knot can be represented by the following knot diagram:

First we will consider a particular term in the q-expansion and discuss peculiarities of its calcu-

lation.

This term reads [
q

1
2 〈Trefoil〉

]
q−2

=

= t3



+ −

+ −

+ −

+ −

e1

⊕

− +

+ −

− +

− +

e2

⊕

− +

− +

+ −

− +

e3



⊕

⊕t4



− +

+ −

+ −

− +

f1

⊕

− +

+ −

− +

− +

f2

⊕

− +

− +

+ −

− +

f3



(C.5)
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So we have the following picture of the differential action:

e1

$$

��

f1

⊕ ⊕
e2

::

// f2

⊕ ⊕
e3

DD

// f3

, d =


0 1 1

1 1 0

1 0 1

 , rk d = 3, H
(correct)
?,−2 = ∅ (C.6)

Now let us discuss some peculiarities of this calculation.

Technically the vertex model (1.81) and our soliton model (3.212a) differ by two following terms:

q
1
2

− +

− +

⊕ q 1
2 t−1

− +

− +

(C.7)

These two terms have the same q-degree and differ by 1 t-degree, so if any diagram decomposition

contains a vector space with the first vertex, say v1, there is always a vector space, say v2, with

just this vertex replaced by the second one, and we can claim 〈v2|d|v1〉 = 1, and in the classical

limit (t = −1) these contributions always cancel. We could expect that these terms can be cancelled

on the level of the R-complex, but they can not. And this example illustrates this peculiarity

explicitly. Indeed, suppose we omited terms (C.7) in the R-complex, then we should drop terms ei

and fi for i = 2, 3, then we are left with just two terms e1 and f1, moreover, 〈e1|d|f1〉 = 0. Thus we

would get a wrong result for the homology group:

H
(wrong)
?,−2 = t3e1 ⊕ t4f1 (C.8)

So indeed both the complexes as vector spaces and the action of the differential are different

in Khovanov homology and QFT cohomology we have constructed despite the resulting Poincaré

polynomials are equal in examples we have calculated.

Let us present a calculation of one more term:

[
q

1
2 〈Trefoil〉

]
q2

= t−1

+ −

− +

− +

+ −

e1

⊕



+ −

− +

+ −

+ −

f1

⊕ (C.9)
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⊕

+ −

+ −

− +

+ −

f2

⊕

+ −

− +

− +

+ −

f3



⊕

⊕t



+ −

+ −

+ −

+ −

g1

⊕

+ −

+ −

+ −

+ −

g2

⊕

+ −

+ −

+ −

+ −

g3



⊕ (C.10)

t2



+ +

+ +

+ +

+ +

h1

⊕

− −

− −

− −

− −

h2


In this case we have the following maps of complexes:

f1
//

##

g1
))

��

⊕ ⊕ h1

e1

;;

//

##

f2
//

##

g2

55

))
⊕

⊕ ⊕ h2

f3

DD

// g3

AA

55

(C.11)
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So we can compose the following chain complex:

0
d−2−→C−1

d−1−→C0
d0−→C1

d1−→C2
d2−→ 0 (C.12)

With

d−1 =


1

1

1

 , d0 =


−1 0 1

−1 1 0

0 1 −1

 , d1 =

 1 −1 1

1 −1 1

 (C.13)

Obviously, di+1di = 0 and it is simple to calculate the homology of this chain complex:

H?,2 = t2(g1 − g2) (C.14)

Remaining terms can be calculated in a similar fashion giving the following knot polynomial:

P�(q, t|Trefoil) = t5q−4 + 0 q−2 + t2 + q2t2 + q4 (C.15)

It should be compared to the Khovanov polynomial:

K�(q, t|Trefoil) = K�(q t, t|Trefoil) =
t

q4

(
1 + q4t+ q6t3 + q8t3

)
(C.16)
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Appendix D

Simplified tt∗-equations

In this Appendix we provide some details on derivation of tt∗-equations in a simplified version of

the superpotential

W = −
∑
i

log(z − φi) + 2
∑
i<j

log(φi − φj) +
∑
i

V (φi, qa) (D.1)

The Ward identity reads in this case〈
−
∑
i

1

(z − φi)2
+ βζ

∑
i

1

(z − φi)

− 1

φi − z
+ 2

∑
i6=j

1

φi − φj
+ V ′(φi, qa)

〉 = 0 (D.2)

Now we use simple identities

2
∑
i

1

z − φi
∑
j 6=i

1

φi − φj
=
∑
i 6=j

1

(z − φi)(z − φj)
(D.3)

the term containing z reduces to

[∮
γi

dφi
]
eβζW (φi,qa)

βζ (∑
i

1

z − φi

)2

−
∑
i

1

(z − φi)2

 =
1

βζ
∂2
z

[∮
γi

dφi
]
eβζW (φi,qa) (D.4)

In a similar way one can deal with with the potential term. First we can divide it in two parts〈∑
i

βζ
V ′(φi, qa)− V ′(z, qa) + V ′(z, qa)

z − φi

〉
= βζ

〈∑
i

V ′(φi, qa)− V ′(z, qa)

z − φi

〉
− V ′(z, qa)∂z〈1〉(D.5)

And the term in brackets is indeed in the chiral ring of operators C[φi]/〈∂iW = 0〉 in the LG model,

at least for a polynomial model. One can produce expectation values of chiral operators via the

following relation

βζ〈∂qaV 〉 = ∂qa〈1〉 (D.6)
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If the ring of chiral operators is finite and there is enough amount of moduli qa then operators ∂qa

form a basis in this ring. Thus our operator can be decomposed in this basis

βζ

〈∑
i

V ′(φi, qa)− V ′(z, qa)

z − φi

〉
=
∑
a

Da(z, q)∂qa〈1〉 (D.7)

Thus our partition function Z(z, q) is a solution to the following differential equation[
1

βζ
∂2
z − V ′(z)∂z +

∑
a

Da(z, q)∂qa

]
Z(z, q) = 0 (D.8)

We can calculate the coefficients Da in the case of Yang-Yang model

V (p, q) = −
∑
a

ka log(p− qa) (D.9)

Indeed

βζ

〈∑
i

V ′(φi, qa)− V ′(z, qa)

z − φi

〉
= βζ

〈∑
i

1

z − φi

(
−
∑
a

ka
φi − qa

+
∑
a

ka
z − qa

)〉
=

= −βζ

〈∑
i,a

ka
(z − qa)(φi − qa)

〉
= −

∑
a

1

z − qa
∂qa〈1〉

(D.10)
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Appendix E

Spectral curve for

Knizhnik-Zamolodchikov connection

Here we derive a spectral curve discribing asymptotic behavior of Wilson loop operators in SU(2)

Chern-Simons theory on a manifold CP1 × I. Suppose a single time slice, a Riemann sphere is

intersected by n strands carrying spins Ji of a link in points qi, i = 1, . . . , n. Wave functions Ψ

in the Chern-Simons theory are identified with conformal blocks in WZW model and satisfy the

Knizhnik-Zamolodchikov equation:∂qi +
1

κ+ 2

∑
j 6=i

T ai ⊗ T aj
qi − qj

Ψ = 0 (E.1)

We would like to consider as operators in this setup Wilson loops lying in the time slice, so technically

we add a new strand position z in the fundamental representation and consider monodromies of the

wave function with respect to braiding z with other strands assumed to stay fixed. A new strand

modifies the Knizhnik-Zamolodchikov equations:∂qi +
1

κ+ 2

∑
j 6=i

T ai ⊗ T aj
qi − qj

+
1

κ+ 2

σa ⊗ T ai
qi − z

Ψ = 0 (E.2a)

(
∂z +

∑
i

1

κ+ 2

σa ⊗ T ai
z − qi

)
Ψ = 0 (E.2b)

We take the ∂z-derivative of eq.(E.2b) and substitute term proportional to ∂zΨ again through

eq.(E.2b), the resulting expression reads:

∂2
zΨ− 1

κ+ 2

∑
i

σa ⊗ T ai
(z − qi)2

Ψ− 1

(κ+ 2)2

(∑
i

σa ⊗ T ai
z − qi

)2

Ψ = 0 (E.3)
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The connection square in the third term can be decomposed as(∑
i

σa ⊗ T ai
z − qi

)2

=
∑
i

(T ai )2

(z − qi)2
+
∑
i

1

z − qi

∑
j 6=i

T ai ⊗ T aj
qi − qj

(E.4)

The first term in this expansion gives the second Casimir elements of corresponding representations

(T ai )2 = c2(Ji), the second term can be substituted from (E.2a). Summarizing all the substitutions

we arrive to the following equation:[
∂2
z −

κ+ 3

(κ+ 2)2

∑
i

σa ⊗ T ai
(z − qi)2

− 1

(κ+ 2)2

∑
i

c2(Ji)

(z − qi)2
+

1

κ+ 2

∑
i

∂qi
z − qi

]
Ψ = 0 (E.5)

In the limit Ji ∼ hi
2g , g → 0 different terms in this equation have different behavior, in particular,

∂2
z ∼ g−2, T ai ∼ g−1, c2(Ji) ∼ g−2, ∂qi ∼ g−2, so we expect the following asymptotic from the wave

function Ψ ∼ e
− (κ+2)−1

g2
F(qi)− (κ+2)−1

g

z∫
dW

, in the limit g → 0 this equation reduces to an algebraic

equation:

dW2 =
∑
i

(
h2
i

(z − qi)
+

∂qiF

(z − qi)

)
dz2 (E.6)
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