TY - JOUR TI - Structural implications for oxygen electrocatalysis in Earth-abundant transition metal oxides DO - https://doi.org/doi:10.7282/T35B04TH PY - 2016 AB - Transition metal oxides and related nitrides/nitride-oxides represent a class of materials that have shown great promise as oxygen electrocatalysts to replace the otherwise non-scalable noble metal-based catalysts currently implemented in commercial technologies. That is, compounds in this class of materials have shown promise as electrocatalysts for both the oxygen evolution (OER) and oxygen reduction reactions (ORR). The two aforementioned half-reactions are at the cornerstone of most renewable energy transformations, as oxygen is an inherently practical and abundant source and sink for electrons. In water electrolysis to produce hydrogen, oxygen is inevitably formed, and in a fuel cell the driving force for extracting electrochemical energy from hydrogen is pairing it with the reduction of oxygen to water. If this can be accomplished reversibly, the problem of "transient" renewable energy and its storage can be mitigated. We have examined many metal oxides and related compounds based upon Earth- abundant transition metals (primarily first row) that are crystalline, yet high surface area, for these important electrocatalytic reactions, and found that crystal structure plays a crucial role in determining activity. In fact, while most studies on heterogeneous catalysis focus on the synthesis of defect-rich, high surface area, practically amorphous materials to elicit high activity, we have found that particular crystalline phases possess not only the appropriate activity, but to some degree more importantly, the stability to be named good catalysts. In Chapter 2, we demonstrate that of the two structural types of lithium cobalt oxide (LiCoO2) - layered (R-3m) and cubic (Fd-3m) - only the cubic phase is revealed to be an efficient and stable catalyst for OER. Whether water oxidation is driven photochemically, or electrochemically, the cubic phase LiCoO2 possessing a spinel-like structure (AB2O4) with [Co4O4] subunits within the crystal is more active. It is seen that electrochemically, both the cubic and layered phases transform to the spinel LiCo2O4 at surface and subsurface levels. This coincides with partial delithiation that is more extensive in layered LiCoO2. It is revealed that the oxidation of Co3+ to Co4+ is accompanied by delithiation in aqueous electrolyte to form the active state of the LiCoO2 catalyst. The electronic properties of the cubic spinel allow for localization of electron holes at cubic core active sites to effect water oxidation, whereas holes are more extensively delocalized in layered LiCoO2 in concert with the Li+ deintercalation reaction. In Chapter 3, we investigate the influence of chemical composition on the catalytic water oxidation activity of Co-substituted spinel LiMn2O4 and Mn-substituted cubic LiCoO2. We find that in the spinel LiMn2O4, Co3+ substitution occurs at the B-site for Mn3+, and the solid solution limit for starts at 1:1 Co:Mn ratio, where Co begins to go into the A-site. The activity for OER increases with increasing Co, owing to the symmetrization of the M4O4 core structure (Jahn-Teller distortions suppressed), which allows for hole delocalization that enables Co3+/4+ oxidation. The more positive redox potential of Co4+ makes for facile water oxidation. Substituting Mn for Co in cubic LiCoO2 allows for retention of Mn3+, which has been correlated with water oxidation activity in many catalysts. The solid solution limit in this series is also near 1:1 at the B- site. However, the increase in Mn content corresponds to decreasing activity in both water oxidation and oxygen reduction, which correlates well with decreases in pre- catalytic oxidation and reduction peak yields. The results show replacement of Co3+ with Mn3+ effectively eliminates active sites. Therefore, Mn3+ in this electronic and structural environment is not active, which agrees well with a recent literature report on corner- shared Mn3+ octahedral being necessary to produce OER activity in Mn oxides. Finally, in chapter 4, bifunctional oxygen electrocatalysts are explored in depth with a series of cobalt-molybdenum oxides/nitrides. We demonstrate that CoMoN2, with relatively strong M-N interactions, has ideal electronic properties for ORR, and upon oxidation of the surface, yields an active OER catalyst. However, the surface oxidation is found to be irreversible and once oxidized, the activity for ORR significantly decreases. The surface both before and after catalysis was analyzed by XPS, which showed the suppression of Mo and N signals after exposure to OER conditions, meaning the active catalyst is a Co oxide of high valency (3/4+). The results from this study suggests truly reversible, bifunctional oxygen electrocatalysis may be obtained by designing a catalyst whose surface is only partly oxidized and/or can be reversibly reduced in the potential window relevant to OER and ORR. KW - Chemistry and Chemical Biology KW - Transition metal oxides KW - Catalysts LA - eng ER -